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Abstract: Liquid composite moulding (LCM) of plant fibre composites has gained much
attention for the development of structural biobased composites. To produce quality composites,
better understanding of the resin impregnation process and flow behaviour in plant fibre reinforcements
is vital. By reviewing the literature, we aim to identify key plant fibre reinforcement-specific factors that
influence, if not govern, the mould filling stage during LCM of plant fibre composites. In particular,
the differences in structure (physical and biochemical) for plant and synthetic fibres, their semi-products
(i.e., yarns and rovings), and their mats and textiles are shown to have a perceptible effect on their
compaction, in-plane permeability, and processing via LCM. In addition to examining the effects
of dual-scale flow, resin absorption, (subsequent) fibre swelling, capillarity, and time-dependent
saturated and unsaturated permeability that are specific to plant fibre reinforcements, we also
review the various models utilised to predict and simulate resin impregnation during LCM of plant
fibre composites.

Keywords: polymer matrix composites (PMCs); liquid composite moulding (LCM); resin transfer
moulding (RTM); permeability; flow modelling; natural fibres; biocomposites

1. Introduction

1.1. Liquid Composite Moulding (LCM)

Resin infusion or liquid composite moulding (LCM) processes accounted for 11% (ca. 1.3 Mtonnes)
of the 2019 global composite production market [1]. While the ratio of thermoset-to-thermoplastic
composites has evolved from 98:2 in the 1980s to almost 60:40 at present (2019), the use of a wide range
of principally thermosetting resin-based LCM processes [2], such as vacuum infusion and resin transfer
moulding, has grown consistently over the last few years and decades. The latter is primarily due to a
decline in manual processes such as hand lay-up and spray-up [1].

The basic approach in any LCM process is to force a catalysed thermosetting liquid resin, such as
epoxy, polyester, vinylester, phenolic, or furan resin, to flow through a dry, stationary, porous,
compacted reinforcement inside a closed mould by creating a pressure differential between the inlet(s)
and outlet(s). In general, a LCM process can be divided into four stages: (i) reinforcement lay-up,
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(ii) mould filling, (iii) post-filling, and (iv) demoulding. As the primary aim of any LCM process is to
ensure complete filling of the mould, successful execution of LCM involves understanding, controlling,
and optimising the mould filling stage in particular. This stage dictates the production cycle time
(for small to medium sized parts), quality (viz. defects including voids and dry spots), geometry
(e.g., thickness), and ultimately mechanical properties of the final part. Not surprisingly, computational
mould filling simulations are widely used as a cost-efficient and time-saving tool to optimise the LCM
process [3,4]. However, accurate manufacturing process simulations require accurate input data. Here,
we consider the processing of plant-fibre-reinforced plastics via LCM.

1.2. Plant Fibre Composites in LCM Processes

Plant fibre composites accounted for over 11% of the 11.7 million tonnes global fibre-reinforced
composite market in 2019 [1]. This includes plant fibres such as cotton, flax, hemp, jute, and kenaf,
but excludes 6.1 Mtonnes of wood–plastic composites produced in the same year [1]. Indeed,
the production of non-wood plant-fibre-reinforced plastics dwarfs the production of non-glass synthetic
fibre (e.g., carbon, aramid) composites in terms of volume.

The increasing consideration of plant fibres as sustainable next-generation reinforcements requires
tackling the first hurdle, which is composite manufacture (reviewed in [5–10]). Due to the commercial
applications of plant fibre composites in predominantly small-sized, high-volume, low cycle time,
non-structural components, such as for decking for the construction sector, as well as interior panels
for the automotive sector, injection–extrusion moulding and compression moulding are the widely
used manufacturing techniques [7,11]. The reinforcement forms have typically been pellets or granules
for the former and random fibre mats for the latter. While wood- and cotton-reinforced composites
largely (>80%) employ thermosetting matrices, plant fibre composites are primarily (>70%) based on
thermoplastic matrices [7,11,12].

LCM, on the other hand, is particularly suitable for (semi-)structural components utilising textile
reinforcements, which are fabrics comprising aligned, continuous yarns or tows that are knitted, woven,
stitched, or braided in thermosetting matrices with high fibre content. Other than the potential to
produce high-performance composites, LCM processes are specifically well-suited to natural fibre
reinforcements for a variety of reasons [7,13,14]:

• Low processing temperatures (often ambient, if not <150 ◦C), thereby avoiding thermal degradation
of plant fibres (which decompose above ca 200 ◦C, although both temperature and time of exposure
are pertinent parameters [15]);

• Minimal fibre damage during composite processing due to low shear rate range (as opposed to
injection–extrusion moulding), thereby allowing retention of high reinforcement length, alignment,
and mechanical properties;

• Use of liquid resins with low viscosities (0.1–1 Pa·s), thereby allowing good preform impregnation
with low porosity, even at low compaction or injection pressures;

• Relatively low-cost tooling, making the process compatible with low-cost plant fibres, particularly
when manufacturing in low- and middle-income countries with an abundance of indigenous
plant fibres;

• Closed-mould LCM processes reduce exposure to harmful emissions, therefore offering
worker-friendly conditions, much like non-hazardous plant fibres.

Consequently, LCM of plant fibre composites has received much recent attention in scientific research,
where critical aspects such as reinforcement compaction [13,16–21], permeability [17,19,20,22–24], wetting,
and resin flow behaviour [19,22,24–26] have been investigated.

Here, we aim to critically review the literature on LCM of plant fibre composites. It is
expected that the differences in structure, morphology, and composition of plant and synthetic
fibres, their semi-products (i.e., yarns and rovings), and their textiles will have a perceptible effect
on their processing via LCM. We aim to identify key findings concerning the reinforcement-related
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factors that influence the mould filling stage during LCM of plant fibre composites. We specifically
review the permeability of plant fibre reinforcements and highlight their key differences from synthetic
fibre reinforcements. These insights are then used as foundations to discuss, in a simplified manner,
developments in the numerical and computational modelling of the mould filling stage in LCM of
plant fibre reinforcements using adapted resin flow models. An overarching aim of our review is
to support better control, optimisation, and simulation of plant fibre composites manufactured by
LCM processes, and thereby progress the development of plant fibre composite products in wider
applications with reduced waste and efficient processing. The review has been written for an informed
composites audience, and will be particularly of interest to the biocomposites communities in academia
and industry.

2. Plant Fibre Reinforcements in LCM Processes

The key reinforcement-related parameters that affect the complex mould filling process are preform
compaction and preform permeability. Extensive research has been conducted to measure, predict,
and simulate the mould filling process in the LCM of conventional synthetic fibre composites [3].
Plant fibre reinforcements, however, require specific considerations.

2.1. Specificities of Plant Fibre Reinforcements

While synthetic fibres generally have very regular morphologies and no internal porosities,
this is not the case for plant fibres; they exhibit a range of specificities potentially influencing their
impregnation by a liquid resin. Notably, each plant fibre is an individual cell, and these cells may
have specific and distinct functions based on their role in the plant. Some plant fibres, such as flax,
have purely a structural support role, whereas others, such as wood tracheids, can have mechanical
support and conduction roles, for example. Two main aspects can be considered: their morphology
and their surface properties.

2.1.1. Plant Fibre Morphology

Plant fibres are elementary cells made up of successive layers that differ in composition and
ultrastructure [27]. Typically, a plant fibre consists of a primary wall on the outside and a secondary wall
divided into three sub-layers (S1, S2-G, and S3-Gn). The S2-G layer is generally the thickest. The main
property-governing parameters of each layer are their crystalline cellulose content and the cellulose
microfibrillar angle (MFA); these can differ significantly from layer to layer. These two endogen
parameters determine fibre performance, and in particular tensile longitudinal mechanical properties.

However, these structural parameters have little impact on the resin impregnation behaviour
during LCM. Rather, the architecture of the fibre, and in particular its central cavity, called the lumen,
has a greater role. The surface roughness of the fibre may be affected by the fibre extraction methods,
and particularly the quality of the retting process (Figure 1a,b). Indeed, depending on the type of
fibre, the lumen can have a significant volume, presenting a resin migration pathway during the
impregnation stage [28]. The size of the lumen may represent only a small part of the cross-sectional
area, as in the case of flax (Figure 1c) and hemp, or in contrast it may represent a significant part for
kenaf and wood (Figure 1d,e) [27].

This phenomenon will be more pronounced for shorter cut fibres, as lumen access areas will be
more numerous (per unit length). As with the size of the lumens, the length of the elementary fibre
also varies significantly with plant species. This is principally linked to the origin of the fibre tissue,
as well as the mode of growth (ontogenesis). Among the longest fibres, the primary fibres of flax,
hemp, and nettle are formed through intrusive growth, which enables them to reach lengths of several
tens of mm. These fibres are elementary cells, but they have the particularity of multiplying their
nucleus, which enables them to reach these large dimensions [29]. For other species, and in particular
when the fibre cells play a protective role or are responsible for fluid transport, their dimensions are
generally limited to a few mm; this is the case for wood, jute, and sisal fibres.
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Figure 1. SEM images of plant fibres. High-quality (a) and poorly retted (b) flax fibres and in planta 
cross-section (c) of flax fibres. (d,e) Wood fibres. One can notice the difference in lumen sizes between 
flax and wood. The presence of kink bands in flax is also visible. Images by the author A.B. 

The cross-sectional morphology of the fibres can also have an important influence on their 
impregnation behaviour, particularly when fibre preforms (e.g., mats, textiles) are compacted to 
achieve higher fibre volume fractions. Synthetic fibres are generally circular, which leads to specific 
geometric packing limits in terms of fibre volume fractions, e.g., π/4 = 0.785 for a square packing 
arrangement. As far as plant-derived fibres are concerned, their cross-section is generally polygonal, 
as evidenced for flax in Figure 1c. Such cross-sections make it possible to achieve high fibre volume 
fractions within plant structures (see Figure 1c), such as stems. Plant structures can, therefore, be a 
source of bioinspiration to optimise the fibre content in composite materials [30]. Indeed, natural 
plant structures have the advantage of being “grown’” through intelligent self-assembly processes. 
However, in a conventionally fabricated fibre composite, it is extremely difficult to reproduce these 
near-perfect packing arrangements due to the irregular cross-section and discrete length of these 
plant fibres, as well as the crude nature of the manufacturing processes. 

2.1.2. Fibre Surface Properties 

In addition to morphology, the surface quality (vis. roughness) and composition (relating to 
surface energy and wettability) of the outer cell wall layers plays an important role in the flow and 
impregnation phenomena. Plant fibres present notable differences in biochemical composition across 
two large families: (i) gelatinous fibres (flax, hemp, and nettle, for example), which are mainly 
composed of crystalline cellulose and a reduced fraction of non-cellulosic polysaccharides; and (ii) 
xylane-type fibres (jute, normal wood, and kenaf, for example), which are made up of fairly equal 
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Figure 1. SEM images of plant fibres. High-quality (a) and poorly retted (b) flax fibres and in planta
cross-section (c) of flax fibres. (d,e) Wood fibres. One can notice the difference in lumen sizes between
flax and wood. The presence of kink bands in flax is also visible. Images by the author A.B.

The cross-sectional morphology of the fibres can also have an important influence on their
impregnation behaviour, particularly when fibre preforms (e.g., mats, textiles) are compacted to achieve
higher fibre volume fractions. Synthetic fibres are generally circular, which leads to specific geometric
packing limits in terms of fibre volume fractions, e.g., π/4 = 0.785 for a square packing arrangement.
As far as plant-derived fibres are concerned, their cross-section is generally polygonal, as evidenced
for flax in Figure 1c. Such cross-sections make it possible to achieve high fibre volume fractions
within plant structures (see Figure 1c), such as stems. Plant structures can, therefore, be a source of
bioinspiration to optimise the fibre content in composite materials [30]. Indeed, natural plant structures
have the advantage of being “grown’” through intelligent self-assembly processes. However, in a
conventionally fabricated fibre composite, it is extremely difficult to reproduce these near-perfect
packing arrangements due to the irregular cross-section and discrete length of these plant fibres, as well
as the crude nature of the manufacturing processes.

2.1.2. Fibre Surface Properties

In addition to morphology, the surface quality (vis. roughness) and composition (relating to
surface energy and wettability) of the outer cell wall layers plays an important role in the flow
and impregnation phenomena. Plant fibres present notable differences in biochemical composition
across two large families: (i) gelatinous fibres (flax, hemp, and nettle, for example), which are mainly
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composed of crystalline cellulose and a reduced fraction of non-cellulosic polysaccharides; and (ii)
xylane-type fibres (jute, normal wood, and kenaf, for example), which are made up of fairly equal
fractions of cellulose, lignin, and non-cellulosic polysaccharides [29]. While the overall composition
of the cell walls has little impact on the impregnation properties or on the diffusion of the resin,
the composition and surface of the external layer directly in contact with the resin do affect flow.

After mechanical extraction, the surface quality of the plant fibres and their bundles generally
depends on the degree of retting, which in turn is highly dependent on weather conditions and farmer
know-how. Indeed, in the case of imperfect retting, residues of middle lamellae (Figure 1b) are present
on the surface of the extracted fibres. This can not only be detrimental to the quality of the interface
with the resin [31], but can also cause disturbance during LCM by causing collapse of the channels
or flow paths of the resin [32]. Indeed, these intermediate lamellae possess different stiffnesses and
degrees of cohesion [33], which can inhibit the flows.

Significant differences in composition have been highlighted between the surfaces of flax and
hemp fibres [34], with hemp fibres having higher lignin levels, for example. It should be noted that
this lignification can occur in flax if the plants are harvested late. Fibres such as jute and kenaf also
have high levels of lignification. It has been shown that this difference in composition allows hemp to
have better wettability with polyolefins [34]. Hence, the nature of the outer wall, depending on its
lignin content, will influence the flow, depending on the chemical nature of the resins used. In general,
plant fibres display numerous polar hydroxyl groups on the surface, which have a strong affinity with
aqueous media. This point should be carefully considered to avoid fibre swelling and resin absorption
phenomena during the composite material manufacturing process; this will be discussed further in
later sections.

2.2. Compaction and Packing of Plant Fibre Reinforcements

In relation to composite manufacture, the compaction behaviour of technical textiles affects the
reinforcement permeability and part fill time in the mould filling process, and also determines the
thickness and volumetric composition (i.e., fibre volume fraction) of the final part [35]. Tight control
of the part thickness (and therefore weight) is a requisite for quality assurance in any composite
manufacturing process. In addition, in their uncompressed state, textile reinforcements have a
low fibre volume fraction (typically between 10 and 25% [35]); for semi-structural applications
this must be increased (to up to 70%) during processing to exploit the mechanical properties of
the reinforcement. Studying the relationship between compaction pressure P and fibre volume
fraction vf for a given preform also enables determination of the maximum (practical) fibre volume
fraction. Consequently, compaction plays an important role in LCM processes and in the stamping
of textile-reinforced thermoplastic composites. While the compaction characteristics of synthetic
reinforcements is well-studied [35], the compaction response of natural fibre reinforcements is a
relatively new topic [13,16–21].

Analytical studies have provided an understanding of the key mechanisms driving compaction [36–38].
Table 1 identifies the primary and secondary mechanisms contributing to the compaction at three key
scales—the fibre scale, yarn scale, and preform scale.

As shown in Figure 2, plant fibre preforms experience all the compaction mechanisms that
synthetic fibre preforms experience (described in Table 1), but not vice versa. In particular, cross-section
deformation at the fibre scale (Table 1) is limited to plant fibre reinforcements, which due to their hollow
nature and low fibre transverse stiffness and strength [7,39] undergo lumen closure and transverse
cell wall buckling and delamination during compaction [13,17,40]. This is illustrated in Figure 3.
A substantial change in fibre cross-section shape due to the low fibre transverse stiffness—a result of
the hollow nature of the fibre and anisotropic properties of cellulose—is important in the context of
preform compaction, as it may alter the potential for fibre relative motion and yarn reorganisation,
and could lead to hindered impregnation in localised inter-fibre zones.



Materials 2020, 13, 4811 6 of 23

Table 1. The dominant and secondary compaction mechanisms at the fibre, yarn, and fabric scales in random mat, non-woven, and woven preforms.

Scale Mechanism Dominant in Secondary in

Fibre/filament
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Figure 3. (a): Increased compaction pressure on a wood pulp random mat increases the fibre volume
fraction, with partial contribution from cumulative lumen collapse-associated fibre deformation [40];
image reproduced with permission from© 2004 Wiley. Inset SEM depicts a collapsed fibre. (b): Lumen
collapse observed in a woven jute fabric due to increase in compaction pressure at higher fibre volume
fractions [13]. Reproduced with permission from© 2011 Sage.

Lundquist et al. [40] found that lumen compression occurred at fibre volume fractions of
34% to 69% in wood pulp random mat preforms (Figure 3). Void condensation is a dominant
compaction mechanism, particularly at low compaction pressures (e.g., when vf < 55%) in such random
mat preforms, with fibre or yarn bending deformation and flattening being additional secondary
mechanisms, particularly at high compaction pressures (e.g., when vf > 55%). Francucci et al. [13]
have also observed such irreversible transverse cell wall deformation in compacted woven jute
fabrics, and this phenomenon increased as the fibre content increased (Figure 3). They noted that this
mechanism would contribute, alongside irreversible yarn cross-section deformation, yarn flattening,
and yarn nesting, to the compaction of the woven material. However, Francucci et al. [13] opined that
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such lumen collapse would mostly occur when fibre rearrangement and tow movements are limited,
i.e., at high fibre volume fractions. This is in stark contrast with the observation of Lundquist et al. [40]
(Figure 3), where all wood pulp lumen had collapsed by vf = 69%, and the wood pulp random mat was
compressed further up to vf = 90%.

Luminal porosity varies between plant species and has a significant effect on the transverse
stiffness and yield strength in both compression and tension [40,44,45], where fibres with a larger lumen
(and smaller second moment of area) tend to deform more readily. Naturally, therefore, different plant
fibres would exhibit different degrees of fibre bending and cross-section deformation during plant
fibre preform compaction. Other micro- and macro-structural features, such as fibre cross-section
shape and surface roughness (relating to fibre slippage) and degree of fibre alignment and dispersion,
affect which (and when) compaction mechanisms will play primary and secondary roles.

2.3. In-Plane Permeability of Plant Fibre Reinforcements

Permeability is defined as the ease of fluid flow through a preform, and therefore it is an inverse
measure of the flow resistance [3]. The greater the preform permeability, the easier it is for the resin
to impregnate the reinforcement, and the lesser the time needed to fill the mould. While permeability
characterisation of natural fibre reinforcements is a relatively new topic [17,19,20,22–24], researchers have
already found some critical differences between natural and synthetic fibre reinforcements. In this review,
we focus on in-plane permeability as opposed to through-thickness permeability, as almost all research into
plant fibre permeability is on this area.

The limited research on permeability studies of natural fibre reinforcements shows that while
plant fibre reinforcement exhibit higher permeability than glass fibre reinforcements (Figure 4) [17,23],
wood fibre mats exhibit significantly lower (by about two orders of magnitude) permeability than
glass fibre mats [46]. Table 2 lists permeability data of various plant fibre reinforcements studied in
literature, by showing permeability K values at specific fibre volume fractions (vf = 0.2 and 0.5). Table 2
also lists semi-empirically derived Carman–Kozeny constants, C and n, which are commonly used to
describe permeability–porosity relationship in synthetic and plant fibre composites.
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Figure 4. Comparison of the (unsaturated) permeability of sisal, jute, and E-glass reinforcements
impregnated with glycerin solution (glycerin/water ratio of 0.88:0.12) at ambient temperature
and viscosity of 1.2 Pa·s. Carman–Kozeny constants (C and n, Equation (5)) are also provided.
Adapted from [23], with permission© 2004 Sage.
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Table 2. In-plane permeability data for various plant fibre reinforcements. Carman–Kozeny
constants (C and n, Equation (5)) are provided. It is specified whether data are for transverse
or through-thickness saturation.

Reinforcement C
[×108 m−2]

n
K at vf = 0.2 (or
φ = 0.8)

[×10−8 m−2]

K at vf = 0.5
(or φ = 0.5)
[×10−8 m−2]

Unsaturated or Saturated,
Test Fluid, Viscosity and

Temperature
Source

Wood
fibre—random mat 2460 1.80 0.00394 0.000203

Saturated
Mineral oil,

0.066–0.095 Pa·s,
14–23 ◦C

[46]

Wood
fibre—random mat 4000 1.76 0.00229 0.000125

Saturated
Mineral oil,

0.066–0.095 Pa·s,
14–23 ◦C

[46]

Sisal—
random mat 4.8 1.48 1.30 0.104

Unsaturated,
Glycerin solution,

1.2 Pa·s,
ambient

[23]

Jute—
plain-woven 5.3 1.48 1.17 0.0943

Unsaturated,
Glycerin solution,

1.2 Pa·s,
ambient

[23]

Sisal—
plain-woven 22.5 2.00 0.569 0.0222

Unsaturated,
Vinylester resin,

0.5–0.9 Pa·s
[47]

Jute—
plain-woven 81.0 0.88 0.0335 0.00617

Saturated,
Glycerin solution,

0.13 Pa·s,
ambient

[17]

Jute—
plain woven 133.8 1.29 0.0357 0.00373

Unsaturated,
Glycerin solution,

0.15 Pa·s,
ambient

[24]

Jute—
plain woven 84.6 0.91 0.0334 0.00591

Saturated,
Glycerin solution,

0.15 Pa·s,
ambient

[24]

Coconut—
random mat 0.21 1.45 0.0160 -

Unsaturated,
Glycerin solution,

0.085 Pa.s,
ambient

[48]

Jute—
plain-woven - - 0.00351 0.00197

Saturated
Mineral oil,
0.180 Pa.s,
ambient

[49]

Jute—
plain-woven - - 0.00270 0.00060

Saturated,
corn syrup solution,

0.180 Pa.s,
ambient

[49]

Flax–
random mat - - 0.00028 0.00005

Transverse saturated,
Silicon oil,

0.1 Pa.s,
ambient

[50]

Flax–
plain-woven - -

0.00090
(at vf = 0.3) 0.00006

Transverse saturated,
mineral oil,

0.14 Pa.s,
20 ◦C

[51]

Flax–
plain-woven - - 0.080 (at vf = 0.3) 0.00030

K1 In-plane saturated,
mineral oil,

0.14 Pa.s,
20 ◦C

[51]
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A predominant number of studies have used mineral oil (non-polar-fluid) or non-reactive glycerin
solution (polar fluid) at fixed (often ambient) temperatures and viscosities (comparable to commercial
resins) to study the permeability of plant fibre reinforcements. While the use of oils enable the study of
permeability with no fluid absorption and consequent swelling of the plant fibres, the use of glycerin
enables the study of “sink” and “source” effects (described in more detail in Section 3.2). A few
studies have examined permeability or flow behaviour with commercial thermosetting resins such as
phenolics [25] at elevated temperatures (e.g., 60 ◦C). However, even in these cases viscosity is (assumed
to be) constant during the mould filling stage, as the fill time (of 60 s to 1200 s) is significantly shorter
than the extended pot life (several hours) enabled by the selected catalysts.

Researchers have hypothesised that the higher flexibility of plant fibres in comparison to glass
fibres may make the former more permeable [23]. On the other hand, the lower permeability of wood
fibre mats (in comparison to glass fibre mats) has been attributed to the more tortuous flow paths
in the less-efficiently packed wood fibre mats, owing to the very short length of wood fibres [22].
The argument may have merit, as flax yarn random mats composed of longer fibres have notably and
consistently higher (saturated) permeability across a range of fibre volume fractions [20]. For instance,
the permeability values of random mats with 50 mm fibre lengths were found to be 22% and 25% higher
at the lowest (vf = 0.2) and highest (vf = 0.4) fibre volume fractions, in comparison to random mats with
15 mm fibre lengths [20]. Shives, which are present in flax mats, may also increase the permeability
due to their porous structure by creating channels for fluid movement, blurring the influence of the
volume fraction [52].

Yarn diameter (or linear density) is also known to affect the permeability of flax yarn random
mats [20]. Umer et al. [20] found that the permeability of medium yarn diameter (0.56 mm) mats was
consistently (i.e., over a range of porosity levels) 27% higher than small yarn diameter (0.35 mm) mats,
however the permeability of small and medium yarn diameter mats was consistently 68–77% higher
than large yarn diameter (0.81 mm) mats. Given that the permeability of preforms is dominated by the
characteristics of open channels, and that preform geometric parameters that describe the characteristics
of the open channels include the number of fibres in the bundle, the twist angle and orientation of
the bundle, and the dimensions and cross-sectional shapes of bundles and single fibres, Umer et al.
suggested that large diameter yarns were less compact and had lower twist levels. The loose fibres on
the surface of large diameter yarns restrict fluid flow through the open channels, thereby decreasing
permeability. The twist level of yarns may also affect permeability and impregnability by altering
competition between micro-flow and macro-flow [20,41,53]. This dual-scale flow is reviewed further
in a later section.

It is evident from Table 2 that experimental conditions have a notable effect on the permeability
data obtained for even the same plant fibre reinforcement (e.g., jute plain-woven fabric). In particular,
it is important to clarify (i) the type of test fluid employed (and its polarity) and ii) the viscosity
of the test fluid, and (iii) whether the saturated or unsaturated permeability has been measured.
For plant fibre preforms, saturated permeability tends to be higher than unsaturated permeability [24],
and permeability tends to be lower when measured in less viscous fluids (which is expected and easily
modelled). The more interesting issue is of the polarity of the test fluid, as plant fibres, unlike synthetic
fibres, absorb polar fluids, and consequently swell and soften [24,54].

Plant fibres are different from synthetic fibres such as glass, in that natural fibres tend to be polar
and hydrophilic; that is, plant fibres absorb polar liquids. This not only includes liquids used during
compaction and permeability testing such as water and glycerin solution, but also includes polar
thermosetting resins such as vinylester and phenolics [24]. Moreover, plant fibres swell upon liquid
absorption (10–25% moisture regain) [24]. For instance, over an immersion time of 6000 seconds,
jute fibres exhibited equilibrium transverse swelling (i.e., change in diameter) by over 18% in glycerin
solution, and between 6 to 8% in vinylester and phenolic resin [24]. In comparison, glass fibres do not
absorb liquid (<2% moisture regain), nor do they exhibit swelling [24].
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Conceivably, fluid absorption and swelling are important mechanisms in plant fibre preforms, due
to which both saturated and unsaturated permeability are reduced. Francucci et al. [24] demonstrated
through absorption, swelling, and permeability tests on untreated and treated jute fibre random mats
that untreated mats had up to five times higher absorption levels, up to twenty times higher transverse
swelling, and an order of magnitude lower permeability than treated mats. Umer et al. [54] show
that permeability levels of wood fibre mats measured in (polar) glucose syrup were lower than that
measured in (non-polar) mineral oil. Fluid absorption removes fluid from the main stream, acting as
a sink component, and thus decreasing flow velocity during the unsaturated flow. The swelling of
the plant fibres constricts the open flow path, reduces porosity, and increases flow resistance during
saturated flow. Since plant fibres will behave differently with different liquids, to accurately measure
their permeability, the plant fibre reinforcement should ideally be studied with the particular resin that
is to be used during LCM as the test fluid.

2.3.1. Permeability Anisotropy: Direction Matters

Aligned reinforcements, such as non-woven and woven fabrics, tend to produce anisotropic
flow due to anisotropic permeability. The permeability anisotropy ratio of plain-to-woven jute fabric
has been estimated to be 1.24 [17]. Random mats are quasi-isotropic reinforcements and would,
therefore, produce quasi-isotropic flow due to quasi-isotropic permeability. Xue et al. [19] measured
the anisotropy ratio in permeability (Kmax/Kmin) to range between 1.08 and 1.46 for flax random mats;
cross-laid mats were more isotropic than parallel-laid mats. Mekic et al. obtained anisotropy ratios
ranging between 1.58 and 1.71 for a range of in-plane isotropic flax fibre non-woven preforms [55].
Orientation distribution analysis showed that fibres were uniformly distributed in cross-laid mats,
but fibres in parallel-laid mats were oriented primarily along the machine direction [19]. As the
preferential resin flow path (path of least resistance) would be along the principal fibre orientation
direction, permeability was much higher in this direction for parallel-laid mats. In cross-laid mats,
due to the fairly equal paths of least resistance, flow was more isotropic. Note that interestingly,
parallel-laid mats exhibited lower overall permeability than cross-laid mats compacted under the
same pressure, due to fibre nesting and consequently lower porosity in parallel-laid mats. Looking at
woven fabrics, permeability is anisotropic due to the fibre orientation. In modifying this orientation by
shearing fabrics, which is representative of an industrial warping process, the permeability response,
the anisotropy behaviour, and the preferential impregnation direction of the fabric are impacted [51].

2.4. Summary

This section reviewed the specificities of plant fibre reinforcements that affect their compaction,
permeability, and impregnation through LCM methods. Plant fibres have unique morphologies,
characterised by the presence of luminal and structural porosity (which are significant in specific plant
fibre types) and their discrete lengths. These factors lead to compaction mechanisms unique to plant fibre
reinforcements, such as luminal collapse and transverse cell wall deformation, alongside irreversible
yarn cross-section deformation and flattening, as well as nesting and packing of the reinforcement
fabric, at high compaction pressures and fibre volume fractions. The morphologies of plant fibres
and their compaction behaviour influence their permeability. Reinforcements with longer fibres,
moderate yarn diameters, aligned textiles (versus random non-woven mats), and higher permeability
(lower fibre volume fractions) have higher permeability, increasing further with the viscosity of the
resin and with prior saturation of the reinforcement. Plant fibre reinforcements have substantially
higher permeability than synthetic fibre reinforcements.

Various studies have assessed the in-plane permeability of plant fibre reinforcements, such as
woven fabrics and non-woven mats, although for better control of the process (e.g., maintaining constant
viscosity and temperature), studies primarily use mineral oil (non-polar) or glycerin solution (polar) as
the test fluid, with viscosities comparable to thermosetting resins. Very few studies have examined
the permeability of plant fibre reinforcements with catalysed thermosetting resins, particularly at
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elevated temperatures, and those that have done this have utilised fill times substantially shorter than
the resin pot life. Plant fibres generally have rough fibre surfaces rich in functional groups such as
hydroxyls, having an affinity with conventional LCM resins, such as epoxies, polyesters, vinylesters,
and phenolics. There is notable evidence that plant fibres not only absorb water and glycerine and
subsequently swell, but they react similarly to resins such as vinyl esters and epoxies. Quantification
of the scale of resin absorption and swelling effects during impregnation is vital to accurate prediction,
modelling, and simulation of the LCM flow behaviour of plant fibre reinforcements. The next section
focuses on this.

3. Flow Modelling and Simulation of Natural Fibre Composites

Controlled and complete filling of the mould with adequate wetting of fibres is a primary objective
in LCM. Poor fibre wetting would lead to poor mechanical properties due to micro-void formation and
poor interfacial adhesion, while uncontrolled and incomplete filling would lead to defect formation
(e.g., dry spots), poor part quality, and even part scrappage and material wastage. Optimising mould fill
time whilst avoiding fluid pressure build-up is important in controlling mould filling. The microscopic
and macroscopic flow of the liquid resin through gaps within yarns and tows and the porous preform,
respectively, is, therefore, important to study. A number of factors affect the complex mould filling
process, including the permeability, pressure differential in the mould cavity, rate of resin injection,
resin viscosity (as a function of time), and inlet and outlet gate locations. Often permeability studies and
Darcy’s law, which can be derived from the Navier–Stokes equation through averaging methods [56],
are used to model the complicated viscous flow of resin in a porous media. Here, we explore the
developments in the numerical and computational modelling of the mould filling stage in LCM of
plant fibre reinforcements using adapted resin flow models.

3.1. Classical Flow Models

Darcy’s law generally describes the flow of Newtonian fluids in porous media. Assuming
steady-state 1D flow, Darcy’s law (Equation (1)) states that the macroscopic volumetric flow rate
Q is proportional to the mould cross-section area A and the pressure difference over the sample
∆P, and inversely proportional to the sample length L (in the flow direction) and fluid viscosity µ.
The constant K is termed the permeability.

Q = K
A
L

∆P
µ

(1)

Most flow behaviour studies on plant fibre composites use Darcy’s law to semi-empirically
determine reinforcement permeability, K. Permeability can be experimentally measured by tracking the
progression of the fluid flow front and monitoring the pressure field (Figure 5). A planar flow cell is
used, in which a test fluid (ideally with a similar viscosity to the resin) is injected into the fabric. A 1D
unidirectional flow achieved through line gate injection (Figure 5a,b) is commonly used. However, a 2D
radial flow achieved through central injection (Figure 5c,d) may be more appropriate for anisotropic
reinforcements to quickly measure anisotropy in permeability. The fluid viscosity is measured using a
viscosimeter or rheometer. A flow meter, which is typically placed at the inlet or outlet port, may be
used to measure fluid velocity. Alternatively, the flow velocity may be estimated by monitoring the
flow front evolution. The flow front can be tracked manually (e.g., with scale bars, as in Figure 5b),
with a video camera, or through pressure sensors. The pressure gradient in the mould may be recorded
through manometers or pressure transducers, which are typically placed at the inlet and outlet ports.
The pressure difference is measured relative to the flow front (which is at atmospheric pressure).



Materials 2020, 13, 4811 13 of 23
Materials 2020, 13, x FOR PEER REVIEW 15 of 26 

Materials 2020, 13, x; doi: FOR PEER REVIEW www.mdpi.com/journal/materials 

 
Figure 5. Permeability measurement and flow visualisation setups: (a,b) 1D linear flow through line 
gate injection [57]; (c,d) 2D radial flow through central injection [19,57]; (a,c) reproduced from [57], 
with permission from © 1995 Wiley; (d) reproduced from [19], with permission from © 2011 Taylor 
and Francis. 

The saturated (or steady-state) permeability, Ksat, is obtained once the reinforcement is fully 
saturated using Equation (2). On the other hand, the unsaturated (or transient) permeability, Kunsat, 
is obtained when the flow profile is measured during the injection process. Darcy’s law in Equation 
(1) can be integrated and rearranged to the form in Equation (3) [58], where x is the position of the 
flow front at time t, ϕ is the fabric porosity, and v is the average fluid velocity. Note that fabric 
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Figure 5. Permeability measurement and flow visualisation setups: (a,b) 1D linear flow through line
gate injection [57]; (c,d) 2D radial flow through central injection [19,57]; (a,c) reproduced from [57],
with permission from© 1995 Wiley; (d) reproduced from [19], with permission from© 2011 Taylor
and Francis.

The saturated (or steady-state) permeability, Ksat, is obtained once the reinforcement is fully
saturated using Equation (2). On the other hand, the unsaturated (or transient) permeability, Kunsat, is
obtained when the flow profile is measured during the injection process. Darcy’s law in Equation (1)
can be integrated and rearranged to the form in Equation (3) [58], where x is the position of the flow
front at time t, φ is the fabric porosity, and v is the average fluid velocity. Note that fabric porosity
is directly related to the fibre volume fraction. For a demonstration, Figure 6a shows the linear
relationship between the square of the flow front position and the fill time for two separate infusion
conditions; the slope of the curve x2/t is used as an input in Equation (3) to determine Kunsat.

Ksat = Q
µ

∆P
L
A

(2)

Kunsat =
x2

t
φµ

2∆P
, where φ =

Q
vA

and φ ≡ 1− v f (3)

The saturated and unsaturated permeability can then be determined over various conditions,
for example varying fabric porosities (or fibre volume fraction), as shown in Figure 6b. In fact,
the reinforcement fibre volume fraction, alongside the reinforcement type and orientation, is a key
reinforcement-related factor affecting permeability. Increasing the fibre content (decreasing porosity)
reduces the number of flow paths, and therefore reduces permeability. One way to play with this
porosity is to compact the preform by varying degrees. Often, the three-parameter exponential
function (Equation (4); proposed by Gauvin et al. [59]) or the two-parameter modified Carman–Kozeny
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equation [60] (Equation (5)) are used to model the permeability–porosity relationship. Both models are
found to be well-suited to natural fibre reinforcements [17,23]. As seen in Table 2 for a range of plant
fibre preforms, n in Equation (5) is close to 2 in most cases, implying that the fluid flow behaviour in
natural fibre reinforcements is close to the original Carman–Kozeny model, where fibre arrangement
can be described as parallel tubes with low tortuosity [23].
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Figure 6. Permeability testing of woven jute fabric with glycerin solution at ament conditions.
Adapted from [24], with permission from© 2010, Elsevier. (a) Plot of square of flow front position with
times for different infusion conditions (related to Darcy’s law). (b) Plot of saturated and unsaturated
permeability against porosity (= 1 – fibre volume fraction) (related to the Carman–Kozeny equation).

K = a + b · expcφ (4)

K =
φn+1

C(1−φ)n =
(1− v f )

n+1

Cv f
n (5)

Two problems commonly associated with permeability testing are mould deflection (induced by
the pressure gradient on thin moulds) and uncontrolled flow [57]. The latter may manifest in the form
of fibre washing or edge effects. Fibre washing refers to the displacement of the preform during filling,
while edge effects, also known as race tracking, refer to the faster flow of resin at the edges due to
lower permeability resulting from a clearance between the fibre preform and the mould edge. Indeed,
such concerns have been voiced in studies on the mould filling process of plant fibre reinforcements as
well (Figure 7) [6,23–25]. Fibre washing is more prevalent at high injection pressures and low fibre
volume fractions (e.g., fewer reinforcement layers), while edge effects are more prevalent at high fibre
volume fractions [25].Materials 2020, 13, x FOR PEER REVIEW 17 of 26 
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Figure 7. Catalysed phenolic resin flow at elevated temperature (60 ◦C) in 2-layer random mat hemp
reinforcements before (a) and after (b) fibre washing and edge flow problems were resolved. The flow
front is smoother, more uniform, and quasi-1D in (b). Flow front isochrones are shown, where each
isochrone represents 20 s. The mould filling direction is from left to right. Reproduced from [25],
with permission from© 2000 Elsevier.
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3.1.1. Dual-Scale Flow and Capillarity

As a preform is commonly made of yarns, its impregnation usually involves a dual-scale flow.
Resin flow between yarns (inter-yarn) is referred to as macro-flow, while resin flow through the yarns
(intra-yarn) is referred to as micro-flow. As resin flows at low Reynolds numbers, inertial forces can
be neglected. Macro-flow is dominated by viscous flow of the resin, while micro-flow is driven by
capillary pressure developed within the tows [61]. Capillary effects are important to study, not least
because they play a key role in the mechanism of void formation in LCM [61].

As Figure 8 highlights, at low flow velocities (and high fibre volume fractions) capillary flow
dominates, leading to inter-yarn voids, while at high flow velocities (and low fibre volume fractions)
viscous flow dominates, leading to intra-yarn voids. Based on the fact that impregnation in composites
often leads to non-wetting dynamic angles [62], the dual-scale flow is explained as follows. As the
inter-yarn flow front advances, the resin impregnates transversally in the yarns. As the resin fills the
yarn, the inter-yarn flow rate is reduced. If the inter-yarn flow rate is faster than the intra-yarn flow
rate, the resin flow front is unable to completely saturate and fill the yarns, leading to the appearance
of intra-yarn voids. This is typically the case of Ksat/Kunsat > 1. On the other hand, in the case (thanks to
capillary effects) that intra-yarn flow rate is faster than the inter-yarn flow rate, yarns will saturate
with resin, while the inter-yarn regions may remain unfilled. This may lead to notable porosity in
the inter-yarn regions. This is the case of Kunsat/Ksat > 1. Both effects have been shown for plant fibre
composites (Figure 8) as a function of the fibre volume fraction [41,63]. There exists an ideal flow
velocity (viz. capillary number) at which capillary effect is optimal, leading to equal flow rates in the
inter- and intra-yarn regions, and therefore no (or minimal) void formation [61,62].
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Figure 8. The complex dual-scale flow of resin in fibrous preforms can generate voids. Macro-scale
flow relates to the advance of resin between yarns or tows (i.e., inter-yarn flow), while micro-scale
flow relates to the penetration of resin into a yarn (i.e., intra-yarn flow). Note that permeability is also
different at the two scales. For instance, (a) for low fibre content, due to low yarn permeability but
high overall permeability, the yarn is not properly impregnated, and thus intra-yarn voids may form,
while (b) for high fibre content, although the yarn and overall permeability are similar, capillary flow
in the yarn dominates, and therefore inter-yarn voids are formed. Images reproduced by author D.U.S.
from [41,63], showing jute and flax unidirectional fabrics impregnated by epoxy and polyester resins at
ambient conditions.

3.1.2. Simulating Impregnation in Plant Fibre Preforms by Classical Approaches

Darcy’s law (Equation (6)) and the continuity equation (Equation (7)) are commonly and
conveniently used to describe the flow of thermosetting resins in porous reinforcements.

v = −
K
µ
∇P (6)

∇ · v = 0 (7)

where v is the volume-averaged fluid velocity and ∇P is the applied pressure gradient.
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Most permeability studies on natural fibre reinforcements so far have been conducted on the
presumption of a valid 1D Darcy’s law. The mould filling of natural fibre reinforcements has been
successfully simulated using the conventional model by some researchers, including Kong et al. [64].
They performed a resin flow analysis on the upper and lower parts of a flax–vinylester agricultural
chemical storage tank to predict fill times (and select a suitable injection pressure) and ensure complete
impregnation. A flow simulation of the lower part is illustrated in Figure 9. The simulations were
backed by experiments. It appears that the fill time for the upper part was well predicted, while the
fill time for the lower part, which has a more complex geometry, exhibits a relative difference of 20%.
This difference might come from the flax fibres being equated to synthetic fibres, ignoring the specific
behaviour of plant fibres during impregnation. The next section explores the effects of these plant fibre
specificities on the modelling of flow behaviour.Materials 2020, 13, x FOR PEER REVIEW 19 of 26 
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Figure 9. Resin flow simulation conducted in RTM-Worx software for the vacuum-assisted, light-RTM
manufacture of the lower part of a flax–vinylester composite agricultural chemical storage tank. Images show
progression of the flow front at time intervals as the part is 10%, 45%, 70% and 100% filled, with an image
of the final fabricated component. Adapted from [64], with permission from© 2014 Prof. C Kong.
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3.2. Modifying Flow Models to Accommodate Plant Fibre Specificities

3.2.1. Sink Effects

It has been observed for natural fibre reinforcements that the saturated permeability is higher
than the unsaturated permeability. The Ksat/Kunsat ratio ranges between 1.2 and 1.8 for plain woven
jute fabrics [24]. As with Pillai and Advani [65], Francucci et al. [24] argue that the jute yarns act as a
“sink”, leading to delayed impregnation of the tows through transverse micro-flow, which reduces the
average macro-flow velocity, thereby reducing the macro-scale permeability. As previously mentioned,
this is typical of dual-scale permeability with a non-wetting dynamic angle. Not only do plant fibres
yarns draw resin from the main flow, which synthetic yarns also do to an extent, plant fibres also
absorb the resin. The latter has a marked effect on the flow rate.

This absorption of fluid by the natural reinforcements provides an explanation for the high
saturated permeability [24]. Again, as the jute fibres and yarns act as sink components (because fibres
absorb liquid and yarns have micro-pores), the unsaturated permeability is reduced. Once infusion
is complete (i.e., no more pores within tows need to be filled and fibres cannot absorb more fluid),
the fibres and yarns are no longer sink components, and the permeability upon saturation is increased.
Note that the swelling of the fibres upon saturation does restrict flow paths, and therefore the increase
is only marginal. This argument is further strengthened by the fact that the difference between the
saturated and unsaturated permeability vanishes with increasing porosity (decreasing fibre volume
fraction) (Figure 6). In fact, at very high porosity (φ > 0.8), Ksat/Kunsat < 1 (Figure 6).

Notably, the difference between the saturated and unsaturated permeability is higher in untreated
jute fabrics (Ksat/Kunsat = 1.70–1.84) than in treated jute fabrics (Ksat/Kunsat = 1.21–1.40) [24]. This suggests
that while transverse micro-flow into tows may play an important role in the difference between the
saturated and unsaturated permeability of plant fibre reinforcements, the polar nature of untreated
natural fibres and their tendency to absorb polar fluids and swell has a more dominant role. Hence,
the scale of the “sink effect” can be changed through targeted surface treatment of the plant fibres.

3.2.2. Capillarity and Swelling Effects

Capillary effects in natural fibre reinforcements have received some attention [66,67],
particularly due to the common notion that the hollow structure of plant fibres may enhance capillary
effects. There is little evidence that resin can impregnate the lumen, especially if the fibres are not cut,
and in most cases the lumen has been shown to remain unfilled after composite manufacture [16,41].
However, Yin et al. [68] systematically examined the effect of lumen impregnation on the flow front
progress in a sisal composite. By comparing experimental measurements with model simulations,
they demonstrated that the progress of the flow front in their experiments falls between the models
considering full lumen impregnation and no lumen impregnation. One should note that sisal fibres
have more substantial luminal porosity than bast fibres such as flax and hemp. The role of the lumen
in the unsaturated permeability of a preform is probably dependant on the dimension of the lumen,
which in turn is related to the nature of the fibre.

Investigations have revealed that the dynamic capillary pressure values in plain woven jute fabrics
were −25 kPa and 36 kPa when measured in glycerin solution and vinylester resin, respectively [66];
that is, spontaneous infiltration occurs during infusion with glycerin solution, but capillary forces act
against the flow during infusion with the resin. This has significant implications for experimental
mould filling tests, as test fluids such as glycerin solution may provide deceivingly higher permeability
and lower fill times.

The capillary pressure has been found to increase exponentially with fibre volume fraction [66].
Notably, jute fabrics consistently exhibit capillary pressures two to three times higher than synthetic
reinforcements [66], implying that capillary effects and micro-flow are more dominant in natural fibre
reinforcements. Francucci et al. [66] also demonstrated that the measured capillary pressure may be
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used to determine a corrected unsaturated permeability, which was found to be similar for both the
test fluid and resin.

More recently, the impact of the absorption and the swelling on the capillarity behaviour of
plant fibres has become a point of interest. It is well-known that plant fibres absorb moisture and
water [69], but they have also been shown to absorb thermosetting resins. Testoni et al. [70] proposed a
modified Washburn equation to predict the capillarity behaviour of flax bundles, taking into account
the absorption of resin and the swelling as a function of time. Another model was developed by Vo [71],
taking into account only the swelling, but considering the dual-scale impregnation of a composite.
Both models are able to predict the capillarity behaviour of water with flax fibre, which is the severest
fluid with regards to absorption and swelling. This absorption and swelling phenomenon can decrease
the saturated permeability of a plant fibre fabric by 70%, depending on the resin used [49].

It appears that absorption (sink effects), capillarity, and fibre swelling are the main differences
between synthetic and plant fibres. Absorption primarily influences the unsaturated permeability by
increasing the sink effect, whereas swelling primarily impacts the saturated permeability by reducing
the path for the resin.

3.2.3. Models Suitable for Natural Fibre Reinforcements

During resin impregnation in an LCM process, plant fibre reinforcements, unlike synthetic
reinforcements, absorb liquid and subsequently swell. As discussed previously, the percentage
absorption and swelling is dependent on the (polarity of the) liquid; for instance, jute swells by
18–22% in glycerin solution but by 7–8% in vinylester or polyester resin [24]. Due to the absorption
of liquid, plant fibre preforms effectively act as a “sink”, soaking up some of the resin that is
infused. The subsequent fibre volume changes due to swelling have a two-fold, time-dependent,
“source-like” effect: (i) they reduce the porosity, and thus the permeability; (ii) they increase the
flow resistance. The conventional model in Equations (6) and (7) is, therefore, inappropriate, if not
ineffective, in describing the permeability of, and resin flow behaviour in, plant fibre reinforcements,
as it does not take these sink and source factors into account.

Several researchers have recently attempted to develop flow models specifically for plant fibre
reinforcements, including [22,72–76]. A modified continuity equation (Equation (8)) was initially
proposed, which incorporated a sink term S(t) related to the rate of fluid absorption by the reinforcement,
and a porosity term φ’(t) related to the rate of decrease in preform porosity due to increase in fibre
volume upon swelling, both of which are functions of time [22,72,75,76]. However, it was later found
that sink and porosity terms had to cancel each other out to satisfy experimental observations [22,72];
that is, the rate of fluid absorption (per unit volume) had to be equal to the rate of the change of fibre
volume (per unit volume). Consequently, Equation (8) is simplified to the conventional continuity
equation of Equation (7).

∇ · v = −S(t) −φ′(t) (8)

Following this, Masoodi et al. [18] proposed that the permeability K, alongside porosity φ and
fibre diameter d, were only functions of time (Equation (9)), where the subscript 0 indicates initial
values (at t = 0). Essentially, if the change in fibre diameter over time (due to swelling) was measured,
fitted curves could be used to then predict the evolution of the porosity and permeability with time.
Then, if the evolution of the pressure gradient as a function of time was known, Equation (10), which is
derived by resolving Darcy’s law (Equation (6)) with the continuity equation (Equation (8)), could be
used to predict the evolution of the flow front.

K(t) =
φ(t)n+1

C(1−φ(t))n , where φ(t) = 1− (1−φ0)
d(t)
d0

, and d(t) = a exp
(

b
c + t

)
(9)
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x2(t) =
2
φ0µ

t∫
0

∆P(t)K(t)dt (10)

The above model and similar models have been used with much success by Masoodi et al. [22,75],
Languri et al. [76], and Nguyen et al. [77] in predicting the flow in natural fibre reinforcements.
This particularly demonstrates the importance of tracking the evolution of the permeability as a
function of time in natural fibre reinforcements.

3.3. Summary

This section reviewed the developments in the numerical and computational modelling of the
mould filling stage in the LCM of plant fibre reinforcements using standard and adapted resin flow
models. Traditional physical models such as Darcy’s law and semi-empirical models such as the
Carman–Kozeny equation are frequently used to characterise permeability–parameter relationships of
plant fibre reinforcements with reasonable accuracy. However, yarn-based plant fibre reinforcements
may exhibit substantial influence, including dual-scale flow (inter-yarn macro-flow, and intra-yarn
micro-flow) and capillary effects (related to dominant micro-flow); capillary effects in natural fibre
reinforcements can be two to three times higher than synthetic fibre reinforcements. The dominance
of capillary effects at higher fibre volume fractions (low flow velocities) can lead to inter-yarn voids,
while at high flow velocities (and low fibre volume fractions) viscous flow dominates, leading to
intra-yarn voids. In addition, deviations from traditional permeability models arise due to the nature
of plant fibre reinforcements—they are susceptible to absorbing typical thermosetting resins, such as
vinyl esters, and are susceptible to acting as a “sink” and drawing resin away from the main flow.
Moreover, the subsequent swelling of plant fibres, restricting flow channels and substantially reducing
permeability (by up to 70%), has a “source”-like effects and governs the flow behavior. Most notably,
these “sink” and “source” effects, which are unique to plant fibres, are time-dependent. Nonetheless,
various adapted flow models have been developed and applied for simulation and verification of
the impregnation of full-scale products, such as biocomposite automotive hood parts and chemical
storage tanks.

4. Conclusions

Permeability studies and data are imperative to understanding and modelling the mould filling
stage in the LCM of composites. Plant fibre reinforcements, such as sisal, jute, flax, and hemp fibre
mats and woven textiles, demonstrate higher permeability than glass fibre reinforcements, while wood
fibre reinforcements exhibit lower permeability than the latter. The permeability of natural fibre
reinforcements increases with porosity, and can be modelled by conventional models such as the
modified Carman–Kozeny equation. The yarn diameter (linear density), length, and twist level are
all found to affect preform permeability, with moderate yarn diamaters, longer fibres, and low-twist
reinforcements having higher permeability. Fluid absorption and swelling are key mechanisms in
natural fibre preforms, due to which both the saturated and unsaturated permeability are reduced.

For natural preforms, the saturated permeability tends to be higher than the unsaturated
permeability, although the difference vanishes with increasing porosity (decreasing fibre volume
fraction). Moreover, capillary effects and micro-flow are more dominant in natural fibre reinforcements
than in conventional synthetic reinforcements. Importantly, as natural fibres exhibit unique behaviors
in comparison to synthetic fibre reinforcements when impregnated by resins (vis. absorption, swelling,
dual-scale flow, and capillary effects), in order to accurately measure their permeability, the natural
fibre reinforcement should be studied with the particular resin that is to be used during the LCM as
the test fluid.

To accurately model the mould filling stage in the LCM of natural fibre reinforcements,
researchers have proposed, experimentally validated, modified, and adapted Darcy’s law-based
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models, which specifically incorporate the effects of liquid absorption (“sink” effect) and subsequent
fibre swelling (“source” effect) on preform porosity and permeability as a function of time.

Important insights have been revealed to support better control, optimisation, and simulation
of plant fibre composites manufactured by LCM processes and to progress the development of plant
fibre composite products in wider applications. Nevertheless, it is evident that much more dedicated
research is necessary, particularly at larger length scales for verification of models. Better understanding
of the time-dependent characteristics of parameters is also required. There remain a number of gaps in
the plant fibre reinforcement permeability and flow behavior literature, including the lack of systematic
studies examining time-dependent changes in permeability (due to the sink and source effects), as well
as studies using catalysed resins showing viscosity changes as a function of time (and temperature).
Most studies in the literature employ oils and glycerin solution as the test fluids, which are incapable
of fully representing the flow of a typical liquid thermosetting resin in a plant fibre reinforcement.
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