
Walker-like Domain Wall breakdown in layered Antiferromagnets

driven by staggered spin-orbit fields

Supplementary Note 1

We revisit here the concept of the so-called gyrofield to explain the physical origin of the vortex core
reversal in submicron-sized dots [1]. We extend its treatment to 1D systems and to purely translational
motion. Hence, associated to DW1, driven by SO-field, emerges a magnetic field whose origin is due the
translational dynamics of the DW itself. The kinetic part of the Lagrangian density can be written in
the invariant form as [1-3]

Lkin(m, ṁ) =
Ms

γ

n · (m× ṁ)

1 + m · n
, (1)

where m = M/Ms is the reduced magnetization, and n is a unit vector along an arbitrary direction
called as the Dirac´s string, γ is the gyroscopic constant and ṁ = ∂tm.

In the following, we calculate the kinetic field for a Néel domain wall moving along the x-axis due
to the action of a spin-orbit field directed along the y-axis. It was suggested by Guslienko et al. [1] to
re-write the kinetic Lagrangian (Eq. 1) in the form of the effective Zeeman energy

Lkin = Msm · h, (2)

where an effective magnetic field h (gyrofield or kinetic field) proportional to the magnetisation derivative
with respect to time ṁ was introduced as

h =
1

γ

1

(1 + n ·m)2
[−m× ṁ + (ṁ× n)(1 + n ·m)] . (3)

Note that only longitudinal component of the gyrofield along the n direction (the first term in Eq. (3))
was used in [1] to describe critical velocity of the vortex core motion to reach the vortex core
polarization reversal. The longitudinal component of the gyrofield satisfies the usual relation of the
energy density and corresponding effective field

hn =
1

Ms

δLkin

δmn
, (4)

whereas for the transverse gyrofield components (perpendicular to the n direction) the relation

ht =
1

2Ms

δLkin

δmt
(5)

is valid. The variation derivatives with respect to m, ṁ dynamical variables are used in Eqs. (4), (5).

The n direction was chosen along the cylindrical dot axis Oz (vortex core magnetisation direction). In
the case of a domain wall dynamics and parametrisation of the magnetisation via the spherical angles
m(θ, φ) it seems that n can be defined as direction of the z-axis of the spherical coordinate system.
Note that the kinetic field given by Eq. 3 is related to neither the magnetic emergent field nor electric
emergent field which are often introduced to describe the dynamics of magnetisation textures (vortices,
skyrmions, domain walls etc.). See, for instance [4]. Nevertheless, the concept of the kinetic field is
useful to describe qualitatively the dynamics of the magnetisation textures because it is proportional to
the texture velocity and can be used as a fictitious driving force for the magnetisation texture dynamic
deformations.
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The z-component of the kinetic field is found to reach values up to 35 T in absolute value, the x and y
components reach a maximum absolute value of circa 6 mT and 3.5 mT respectively, see Supplementary
Figure 1. Such big difference between the kinetic field in-plane and out-of-plane components is due to
specific magnetization texture considered. The domain wall magnetisation is in the basal xOy plane and
mz = 0 approximately.

Supplementary Figure 1: Snapshots of x and y-components of the kinetic field at different instances
during DW1 motion along the track. Panel a to d corresponds to physical times of 10, 90, 110 and 145
picoseconds.

The region generated in front of the DW1 that is fully reversed along the −mx direction (see
Supplementary Figure 2) is about 20 nm in the moving frame. In the rest frame this length corresponds

to more than twice the exchange length, lex defined as: lex = (A/Kani)
1/2

=19.78 nm, where A and K2‖
represent the effective exchange stiffness and uniaxial anisotropy constants respectively (see Table 1 in
the main text). Once this occurs, the energy competition between the anisotropy energy and the
exchange energy over the region which is twice lex led to a formation of domains walls preserving the
overall winding number. We note that the crucial point is not just the DW1 to reach certain speed to
generate a large enough kinetic fields but also that the kinetic field extends sufficiently in space to
accommodate a DW-pair.
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Supplementary Figure 2: a mx distribution along the track. We have over imposed a domain wall profile
(black solid line) given by Eq. 5 to extract the DW1 width as well as profiles for DW2 and DW3. b
Zoom-in on the region where for the first time we observe a small bulge that suggest the nucleation of
DW2 and DW3 is about to begin. We have again super imposed a profile comprised by DW2 and DW3

(dashed blue lines) in order to reproduce in the best manner the small bulge. The domain wall widths
extracted from the fitting for DW2 and DW3 are: ∆DW2

=∆DW3
=10 nm.

Different type of magnetic distributions could in principle appear obeying the boundary conditions
imposed over the generated magnetic domain, see Supplementary Figure 3 a. Supplementary Figure 3
panel b shows an arrangement where the Zeeman energy comprised by the spin-orbit field and the
kinetic field are minimised. Moreover, one can differentiate two magnetic textures whose winding
number w, are opposite giving an overall winding number cero and therefore preserving the overall
topological charge. Panel c in Supplementary Figure 3 shows that although that particular arrangement
minimises the spin-orbit part of the Zeeman energy, it is not compatible with the orientation of the
spins promoted by the torque exerted by the kinetic field (along negative x̂.dir.) nor the Zeeman energy
from the kinetic field.

Supplementary Figure 3: a Schematic of the coordinate system and the orientation of the spin-orbit field
~Hso. Panels b - c corresponds to the possible arrangements compatible with the spin-orbit field but only
the texture shown in b correspond to appropriate arrangement consistent with the torque exerted by the
z-component of the kinetic field as well as the the minimisation of the Zeeman energy coming from the
kinetic field and the SO-field.
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Supplementary Note 2

The topological charge distribution extracted from the numerical simulations corresponds to:
| DW1,DW2,DW3〉 =| 1

2 ,
1
2 ,−

1
2 〉 where the numbers within the bracket represent the winding number

associated to each DWi. As DW1 and DW2 have the same topological charge implies that the central
spin of each of them are antiparallel oriented with respect to each other (as shown in Supplementary
Figure 4) which implies that, as they are located in the same ferromagnetic basal plane, the exchange
interaction among them will be therefore repulsive.

Supplementary Figure 4: Illustration of the magnetisation distribution after the nucleation process has
been completed. This assortment as shown before is the only compatible with the conditions of the
numerical simulations and will be our starting point for explaining the boost experienced by the DW3

In the following, we calculate the exchange interaction between DW1 and DW2 as a function of the
distance between them. The azimuthal angle of a 1D domain wall is described by

Φ (x, t) = 2 arctan

[
Exp

[
q

(x−X(t))

∆(t)

]]
, (6)

where X(t) represents the domain wall position, ∆(t) the domain wall width and q the topological
charge. Note that even though the domain wall is treated as a rigid object is subject to contraction and
so ∆ has an explicit dependence on time, t. For sake simplicity, we assume two domain walls with the
same width and same topological charges so that q1,2 = q = +1. Therefore the compound profile of the
two magnetic domain wall will simply be the superposition of both profiles

Φ (x) = 2 arctan

[
exp

[
q

(x−X1(t))

∆(t)

]]
+ 2 arctan

[
exp

[
q

(x−X2(t))

∆(t)

]]
, (7)

The exchange interaction Eexc, is given by

Eexc = A

∫ +∞

−∞

(∑
i

∂xΦi

)2

dx, (8)

where the integral is calculated over the whole 1-dimensional chain. For a single domain wall the spatial
derivative of the azimuthal angle is given by

∂xΦi =
q

∆(t)
sech

(
q

(x−Xi(t))

∆(t)

)
. (9)

Hence, the overall exchange interaction composed by the two magnetic textures is

∑
i

∂xΦi =
1

∆(t)

[
sech

(
x−X1(t)

∆(t)

)
+ sech

(
x−X2(t)

∆(t)

)]
. (10)

Now just taking the square in Eq. 9 allows us to calculate the exchange interaction
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(∑
i

∂xΦi

)2

=
1

∆(t)2

[
sech2

(
x−X1(t)

∆(t)

)
+ sech2

(
x−X2(t)

∆(t)

)
+ 2 sech

(
x−X1(t)

∆(t)

)
sech

(
x−X2(t)

∆(t)

)]
,

(11)

where we can identify the first two terms as the self-exchange energy terms for each of the domain walls

Ei =
A

∆(t)2

∫ +∞

−∞
sech2

(
x−Xi(t)

∆(t)

)
dx. (12)

Whereas the third term in Eq. 10 corresponds to the interaction between the domain walls.

E12 =
2A

∆(t)2

∫ +∞

−∞
sech

(
x−X1(t)

∆(t)

)
sech

(
x−X2(t)

∆(t)

)
dx. (13)

It is possible to rewrite Eq. (11) as

Eexc = E1 + E2 + E12. (14)

In order to calculate the interaction term, E12, given by Eq. 12, we make use of hyperbolic functions
and the following tabulated trigonometric relationship

cosh (ξ1) cosh (ξ2) = a+ a cosh (2ξ1) + c sinh (2ξ1) , (15)

where ξi = (x−Xi(t)) /∆(t), and the coefficients a and c are defined as

a =
1

2
cosh

(
X1(t)−X2(t)

∆(t)

)
, (16)

c =
1

2
sinh

(
X1(t)−X2(t)

∆

)
. (17)

The integral in Eq. 12 can be now expressed as

E12 =
2A

∆2

∫ +∞

−∞

dx

a+ a cosh (2ξ1) + c sinh (2ξ1)
=

2A

∆2
I, (18)

where I is the sum of the two following integrals

I =
∆(t)

2

[∫ +∞

0

dy

a+ a cosh (y) + c sinh (y)
+

∫ +∞

0

dy

a+ a cosh (y)− c sinh (y)

]
=

∆

2
[I (a, a, c) + I (a, a,−c)] . (19)

The solution of this integral can be found in [5] and is given by

I (a, a, c) =
1

c
ln

(
a+ c

a

)
. (20)
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Now, 2 atanh (x) = ln [(1 + x) / (1− x)] and the integral for I can be rewritten as

I = 2 (X1(t)−X2(t)) csch

(
X1(t)−X2(t)

∆(t)

)
, (21)

and, subsequently, Eq. 12 can be expressed as

E12 = q1 · q2 ·
4A (X1(t)−X2(t))

∆(t)2
csch

(
X1(t)−X2(t)

∆(t)

)
, (22)

where the product of the DW topological charges q1 · q2=+1 corresponds to repulsion, and q1 · q2= -1 to
attraction of DWs.

Supplementary Figure 5: a Temporal evolution of DW1 and DW2 after the nucleation. The two domain
walls are separated by a distance that will be kept constant. When the spin-orbit field is set to zero
the two domain walls separate even further. b Schematic illustration of the role played by the exchange
energy and the Zeeman energy. While the exchange energy tries to separate DW1 and DW2, the Zeeman
energy forces them to stay as close as possible.

Once the nucleation process has terminated there is a stable distance between DW1 and DW2 as shown
in Supplementary Figure 5 a. Moreover, we can observed that this distance increases when the
spin-orbit field is set to zero. Supplementary Figure 5 b shows an illustration of the magnetisation
distribution. We can see that the two domain walls (DW1 and DW2) have same winding number and as
a consequence, it appears a region in between them whose polarisation is along the −ŷ-direction.
Sub-panel i) in Supplementary Figure 5 b shows that the repulsive interaction between DW1 and DW2

due to the exchange interaction, Eexc, results into an expansion of the magnetic domain separating both
domain walls. On the contrary, ii) sub-panel shows that as the magnetic domain between the domain
walls has opposite orientation with respect the spin-orbit field, Hso, the Zeeman energy, EZee, tries to
shrink the magnetic domain in order to minimise the Zeeman energy and as a result the two domain
walls are pulled together. Overall, we can see that the stable distance among the two domain walls is
due to the competition between the exchange and Zeeman energies. This competition can be expressed
as

∆E = (X1 −X2)MsHso +
4A (X1 −X2)

∆2
csch

(
X1 −X2

∆

)
, (23)
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where as before X1 and X2 represent the location of the domain walls’ center, ∆ is the domain wall
width (see Supplementary Figure 2) for each domain walls extracted from the numerical simulations.

Supplementary Figure 6 a shows the different energies in action for a spin-orbit field of 20 mT. As the
the spin-orbit field and magnetic domain between the two domain walls is antiparallel, the minimum
energy corresponds to a zero distance between the walls. The opposite happens with the exchange
energy, the smaller is the distance between the two domain walls the larger is the exchange energy
(A > 0). One can see that (brown dashed line) that when combing the exchange and the Zeeman
energy appears a global minimum which corresponds to a stable configuration distance between DW1

and DW2. The stable distance between the two domain walls as a function of the applied spin-orbit
field is represented in Supplementary Figure 6 b. It can be observed that starting for the larger
spin-orbit field (60 mT), the stable distance increases as the spin-orbit field (SO-field) decrease meaning
that the Zeeman force needs more extension of the magnetic domain to compensate the repulsion
between the domain walls.

Supplementary Figure 6: a Exchange and Zeeman energy as a function of the DW1 to DW2 distance for
an applied spin-orbit field of 20 mT. b Total energy comprised by the exchange energy and Zeeman energy
for different applied spin-orbit fields. The small grey dots represent the global minimum for the different
spin-orbit fields and the dashed purple line represents the thermal energy (kBT ) at room temperature.

Supplementary Note 3

As the nucleation occurs while DW1 translates, we assume that the dip which will eventually led to the
DW-pair, DW2 and DW3 is also propagating at the same velocity as DW1. The DW1 mobility depends
linearly on the SO-field as follows

vDW1
=
γ

α
Hso ∆0

[
1−

(
vDW1

vg

)2
]1/2

, (24)

where α is the damping constant, γ is the gyromagnetic ratio, Hso is the spin-orbit field, ∆0 is the
DW-width at rest and vg is the maximum group velocity of the magnons. The sole energies involved in
the dynamics of DW3 are: the Zeeman energy (coming from the spin-orbit field) and the exchange
interaction between DW1 and DW2 which we assume that is transferred to DW3. The repulsive
exchange energy between DW1 and DW2 is given by

Eexc =
4A (Xp(t0)−X1(t0))

∆2
DW(t0)

csch

(
Xp(t0)−X1(t0)

∆DW(t0)

)
, (25)

where Xp(t0)−X1(t0) is the distance between DW1 and DW-pair, ∆DW is the domain wall width
extracted from the simulations. A is the effective ferromagnetic exchange stiffness. For sake of
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simplicity, we translate our system of reference to DW1 which implies X1(t0) = 0 and therefore
Xp(t0)−X1(t0) = x(t0). We obtain the DW3 width by fitting two domain walls to the dip in front of
the moving DW1 as shown in Supplementary Figure 2 b.

The Lagrangian formalism allows us to characterise the DW3 boost as a function of its distance to the
DW2. By integrating over the Lagrangian density, L, for the magnetisation profile of the Néel wall in an
embedded ferromagnetic plane, we obtain the temporal evolution of each canonical coordinate,

d

dt

∂L
∂ξ̇
− ∂L
∂ξ

= Fξ, (26)

where Fξ makes reference to non-conservative forces and can be calculate by the so-called Rayleigh
dissipation function, W

Fξ = −∂W
∂ξ̇

= −αµ0Ms

2γ

∂

∂ξ̇

∫
d3r

(
Φ̇2 + Θ̇2sin2Φ

)
, (27)

where µ0 is the magnetic permeability in vacuum and Φ and Θ represents the in-plane and out-of-plane
component of the magnetisation. Here after, we assume that the values for the damping, saturation
magnetisation, anisotropy constants and ferromagnetic exchange stiffness are the same for all the
ferromagnetic layers that conform the Mn2Au unit crystal.

By combining again the Rayleigh dissipation function and the Euler-Lagrange equation of motion allows
us to get the boost over vDW3 as a function of its distance to DW1

vDW3 =
2γA

αMs∆2
DW3

[
x(t0) coth

(
x(t0)

∆DW3(t0)

)
−∆DW3(t0)

]
csch

(
x(t0)

∆DW3(t)

)
. (28)

However, the overall DW3 speed will be comprised by its initial velocity provided by the DW1 and the
boost coming from the repulsion between DW1 and DW2 which can be expressed as

vDW3
=
γ

α
Hso ∆0

[
1−

(
vDW1

vg

)2
]1/2

+
2γA

αMs∆2
DW3

[
x(t0) coth

(
x(t0)

∆DW3
(t0)

)
−∆DW3

(t0)

]
csch

(
x(t0)

∆DW3
(t0)

)
.

(29)

Supplementary Figure 7 shows the dependence of the maximum speed experienced by DW3 as a
function of the distance between DW3 and DW1 according to Eq. 28. Note, the maximum boost does
not correspond to a zero distance due to finite size of the DWs. Instead, the maximum boost in speed
which corresponds to 133 km/s appears at a distance of 16.1 nm between the DW1 and DW3. From
numerical simulations, the distance between the DW1 and DW2 is 17 nm and the extracted value for
the speed about 177 km/s.

Supplementary Figure 7: Blue color line represents the DW3 velocity as a function of the distance between
DW1 and DW3. Dashed black line represents the maximum group velocity of the magnons, vg.
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Supplementary Note 4

A Mn2Au spin lattice is used for the atomistic spin dynamics simulations. The structure is shown in
Supplementary Figure 8. There are two types of sites occupied by Mn, A and B as indicated in the
figure. A current density along unit-direction ĵ coinciding with the x-direction, results in a staggered
magnetic field, HSO at each site (see Supplementary Figure 8).

We use 60000 unit Mn2Au lattice cells in the simulations along x. Periodic boundary conditions
(wrap-around) are applied along the y-direction. As initial condition for the dynamical simulations we
use precomputed and stabilized 180◦ domain walls. Spins in the xy-plane are ferromagnetic ally ordered
(the J3-bonds) and antiferromagnetically coupled along z (the J1 and J2 -bonds) as also indicated in
Supplementary Figure 8). Data is extracted along a 1D line shown by a dotted line in Supplementary
Figure 8 denoted Data extraction line.

The LLG-equation is integrated using a 5th order Runge-Kutta scheme with adaptive time-stepping.
The domain wall position is tracked from moments of the winding number density w along the data

extraction line at each time t via xDW (t) =
∫
xw(x,t)dx∫
w(x,t)dx

from which the speed is computed. The time

dependence of the DW width is computed by fitting the Sy-component along the data extraction line to

φ (x, t) = 2 arctan
[
exp

(
x−xC,t

∆DW(t)

)]
, in which xC,t is the DW centre and ∆DW (t) is the DW width. The

fitted values will yield a slight overestimation of the actual width during acceleration and deceleration
stages of the DW motion as the fitting function assumes a symmetric profile.

Supplementary Figure 8: Single Mn2Au cell used in the simulations. Mn-spins occupy A and B-type
sites resulting in a staggered distribution of HSO as indicated in this figure. The exchange bonds taken
into consideration, J1, J2 and J3 are shown by thick red lines. Note that the ferromagnetic J3 bond acts
between all nearest neighbour’s in the xy-plane. Crystal dimensions are a=0.3328 nm and c = 0.8539
nm. The 1D line whereby spatio-temporal data is extracted from simulations is shown as a finely dotted
line and denoted ” Data extraction line ”.
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The maximum magnon group velocity vg is estimated in a separate simulation according to the
following steps: A homogeneous Néel state is used as starting state. Then spins within a local region in
the centre are slightly perturbed by imposing small Sx-component. The symmetry of this perturbation
is such that the induced Sx-components alternate in sign along the z-direction. Using the perturbed
state as starting configuration, the system is let to ring down and the time dependence of Sx is recorded
at each site on the data extraction line. In a last step, a 2D FFT is performed, giving frequency (f)
versus k-vector along x (kx). The (f, kx) points with maximum oscillation-amplitudes is then extracted
to form a line plot of the dispersion relation shown in Supplementary Figure 9.

Supplementary Figure 9: Computed dispersion relation. The lower branch is used in the velocity vs.
k-vector plot in the main text as it contains the highest slope and thus yields the maximum group
velocity.

The maximum magnon group velocity vg is extracted from the lower branch (black filled circles and

black line in Supplementary Figure 9) by vg =
(
dω(k)
dk

)
max

, where ω = 2πf . The dispersion-relation

will affected by the presence of a background SO-field present when the DW is being driven. However,

the effect is only to shift the dispersion relation along the frequency-axis does not alter
(
dω(k)
dk

)
. The

relation in Supplementary Figure 9 is obtained under a constant Hso =100 mT. For the calculation of
the dispersion relation, we used a shorter computational domain (40000 cells long) due to resulting large
file sizes due to fine time sampling. The parameters were: time step = 1 fs and data was recorded every
3 fs during a total time of 50 ps.

Supplementary Note 5

As mentioned in the main text, a different excitation protocol can result in a completely different DW
distribution. Supplementary Figure 10 shows another such protocol.

Supplementary Note 6

The dampening process of the oscillations (see Supplementary Figure 11 and its caption) can be
mapped into damped harmonic oscillator reproducing nicely the convoluted oscillations obtained from
numerical simulations.
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Supplementary Figure 10: Top: an excitation protocol consisting of three positive pulses and one long
negative pulse. Bottom, the winding number density versus space and time

Supplementary Figure 11: Time evolution of the mx-component at a fixed point X0 of annihilation,
extracted along the (X0,t) line shown by the dotted yellow line in the inset. The oscillations are well
fitted by a function y=Exp(-bt)[A*cos(ωt-φ)], thus verifying the exponential decay in Eq. 30
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