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Abstract
We present a novel apparatus for generating internal waves of arbitrary size and shape, including both phase-locked and 
propagating waves. It is an actively driven, flexible “magic carpet” in the base of a tank. Our wave maker is computer-
controlled to enable easy configuration. The actuation of a smooth, flexible surface produces clean waveforms with a 
predictable spectrum, for which we derive a theoretical model. We demonstrate the versatility of our wave maker through 
an experimental study of linear and nonlinear, isolated, and combined internal waves, including some that are sufficiently 
nonlinear to break remote from their source.

Graphic abstract

1 Introduction

Internal waves are one of the most important energy trans-
mission systems on Earth: lunar diurnal excitation alone 
drives around 1 TW of wave power within the world’s oceans 
(Egbert and Ray 2001). This energy causes, for example, 
the upwelling 2.5 × 107 m3 s−1 of dense, salty water from 
the deep ocean to the surface, as part of sustaining the 

meridional overturning circulation (Nikurashin and Ferrari 
2013). Internal waves play an essential role in the Earth’s 
climate and laboratory studies provide us with an insight into 
their properties. In particular, many key natural processes 
found in internal waves are nonlinear, such as wave break-
ing (see Staquet and Sommeria 2002), so it is desirable for 
such experiments to contain internal waves of appreciable 
amplitude.

The classical way to generate internal waves of a fixed 
frequency in the laboratory is by oscillating a small object 
vertically; for example, Görtler (1943), and later Mowbray 
and Rarity (1967) and Sutherland et al. (1999), used a 
cylinder with its axis horizontal. In this two-dimensional 
case, internal waves are emitted equally in the four direc-
tions admissible by the dispersion relation. In fact, the 
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object may be oscillated in any direction that displaces 
fluid vertically; for example, a horizontally oscillating 
sphere can also emit internal waves (Lin et  al. 1994). 
However, for inviscid, linear internal waves, oscillating 
an object produces singularities along the characteristics 
that are tangent to the object, as predicted for cylinders 
by Hurley (1972, 1997). These singularities introduce a 
full spectrum including very high wavenumbers and are 
only regularised by viscosity, which leads to a transition 
from a bimodal to unimodal profile with distance from the 
cylinder (Hurley and Keady 1997). Thus, we lose control 
of the spectrum of the generated internal waves.

A second limitation is that internal wave beams pro-
duced by a moving solid body are typically less than one 
wavelength across, so there is an incomplete picture of any 
phase-dependent interactions. McEwan (1971, 1973) used 
an articulated paddle of several straight sections hinged 
together and mounted on a horizontal shaft to generate 
two-dimensional standing internal waves with beams 
several wavelengths in width. However, the paddles are 
straight sections, which produce a triangular waveform, so 
again contains a broad spectrum of wavenumbers. Moreo-
ver, a new set of paddles would need to be constructed for 
each desired dominant wavelength.

A significant step forwards towards a controllable, 
general wave maker was made by Gostiaux et al. (2007). 
They designed a wave generator actuated by a sequence 
of cams, each mounted off-centre along a shaft, in a pat-
tern arranged to approximate a travelling sinusoid as the 
shaft is rotated. For circular cams of the type used in their 
experiments, the frequency is determined by the shaft rota-
tion rate, the amplitude by the radial offset of the cams, 
and the wavelength by the phase difference between adja-
cent cams. The shape they produce has the form:

where x is the coordinate along the wave generator, t is time, 
gn is the displacement of cam n, w is the spacing between 
cams, and H is the Heaviside step function. Such a wave 
generator produces a single beam several wavelengths in 
width and the amplitude could be set to observe nonlinear 
effects such as triadic resonance instability (a generalisa-
tion of parametric subharmonic instability, Bourget et al. 
2013). In addition, Maurer et al. (2017) adapted this appa-
ratus to generate three-dimensional axisymmetric internal 
waves. However, in both versions, the mechanical linkage 
makes impossible the alteration of the wave profile during 
an experiment. Furthermore, the cams produce a staircase 
approximation (1) to a sinusoid that introduces other wave-
numbers to the spectrum, albeit with a cleaner waveform 
than the paddles of McEwan.

(1)h(x, t) =
∑
n

gn(t)H
(
w

2
− |x − nw|

)
,

To overcome these limitations, we present the Arbitrary 
Spectrum Wave Maker (Dobra et al. 2016), which is like 
a “magic carpet” in the base of the tank, able to produce 
almost any shape that can be defined as a continuous, single-
valued function, h(x, t) . Unidirectional sinusoids, solitary 
humps, and superpositions of multiple frequencies and phase 
velocities with time-varying amplitudes are all possible.

The apparatus is described in Sect. 2. Complementing the 
analysis of Mercier et al. (2010) for their cam-driven wave 
generator, we present a calibrated model in Sect. 3 for the 
shape obtained by the wave maker surface. In Sect. 4, we 
discuss the compactness of the Fourier spectrum generated 
by the wave maker, and we demonstrate the capabilities of 
the wave maker in Sect. 5.

2  The Arbitrary Spectrum Wave Maker

The Arbitrary Spectrum Wave Maker (ASWaM) is a 
1 m-long, flexible section in the base of an 11 m-long tank, 
and its shape is controlled by an array of low-cost, computer-
controlled, linearly actuating stepper motors. We fill the tank 
with a linear density stratification of the form 
�0(z) = �00 + z

d�0

dz
 , where z is the height above the base of 

the tank and �00 is the density at the base of the tank (which 
in Sect. 4 we will identify as the Boussinesq reference den-
sity), using sodium chloride as the solute. The shape of the 
wave maker is specified in software and can be varied 
throughout an experiment. By slowly increasing the ampli-
tude of oscillations, large amplitude internal wave perturba-
tions, �′ , can be generated in the liquid without the flow 
separating near the moving surface. The wave maker is pic-
tured in Figs. 1 and 2 and it is shown schematically, includ-
ing definitions used in Sect. 3. Early prototypes were sur-
faced mounted (Lawrie and Dalziel 2014), but although a 
base-mounted wave maker requires more complex sealing 
arrangements, it is a more flexible configuration, since the 
free surface remains unobstructed.

2.1  Mechanical components

The ASWaM consists of a 3 mm-thick nylon-faced neoprene 
foam sheet (similar to that used for wetsuits) that is deformed 
by 100 horizontal rods, each spanning the width of the tank. 
The rods are individually actuated to move vertically and 
have radius 2 mm and uniform spacing 10 mm. At zero dis-
placement, the wave maker is flush with the base of the tank. 
Neoprene foam was selected as a matt black, opaque, elastic 
material that is chemically inert in a salt stratification. Neo-
prene has some resistance to bending, and this facilitates the 
creation of smooth, low wavenumber shapes on the wave 
maker specified by a discrete set of actuation rods.
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The lengthwise edges of the sheet are not sealed to 
the tank wall, so there is an 80 mm-deep cavity of fluid 
beneath the neoprene and both sides of the sheet are wet-
ted. We thus avoid supporting the full hydrostatic head, so 
the motors only do work against the dynamic component 
of the force. Moreover, there is no pressure gradient to 
drive a leakage flow from the underlying cavity into the 
working section of the tank, provided the chosen waveform 
conserves volume. To leading order, three-dimensional 
effects are limited to wall boundary layers. Beyond the 100 
actuators, the two ends of the neoprene foam are clamped 

at a distance 60 mm from the nearest rod, as sketched in 
Fig. 2, reducing the severity of gradients between the tank 
base and the neoprene.

The neoprene is driven by an array of Portescap 
26DBM10D1B-L linear stepper motors, each of which has 
a vertical resolution of 0.0127 mm and a stroke of 48 mm. 
To minimise heat dissipation from the motors, each is sup-
plied with 0.14 A instead of their rated current of 0.34 A. 
This reduces the total heat production to 126 W. The lead 
screw has a tendency to rotate, so a guide rod moves in a 
sleeve to ensure the actuation is only vertical. The bodies 
of these motors are too large to be packed in a single line 
to match the 10 mm pitch of the actuation rods, so to ena-
ble a fine horizontal resolution, the motors are staggered 
in three horizontal and three vertical planes, keeping them 
as close as possible to the centreline of the wave maker, 
as shown in Fig. 3.

The neoprene attaches to sleeves around the horizontal 
rods using hook-and-loop fastener. This facilitates main-
tenance and can release if the tension in the neoprene foam 
becomes too great, thereby preventing damage. Further-
more, since the sleeves can rotate about the rods, the con-
tact point of the neoprene varies to minimise the tensile 
stress in the sheet and the bending moments on the actua-
tors. We find that the wave maker can reliably produce 
sinusoids of steepness |||

�h

�x

||| ≤ 0.6 without the motors stall-
ing or neoprene detaching.

Fig. 1  Arbitrary spectrum wave maker mounted in the base of the 
tank. The 100 horizontal actuating rods determine the shape of the 
neoprene foam sheet. They are driven up and down by an array of 
stepper motors underneath the wave maker. Each motor is pow-
ered via its own driver board, which are all out of the field of view. 
Behind the tank is the dot pattern on the TV screen used for Synthetic 
Schlieren

W

w

h

2r

s

ρB

ρ0(z) + ρ′

Neoprene foam sheet
Horizontal actuating rod

Glycerol seal

Rotating sleeve

Fig. 2  Longitudinal view of a wave maker shown schematically 
with six horizontal rods. The cavity underneath the surface of this 
wave maker is filled with dense, homogeneous salt water of density, 
�
B
 , with a Boussinesq stratification above the wave maker. A layer 

of glycerol (dark blue) in the base of the cavity inhibits the ingress 
of salt down the vertical shafts. The dimensions shown are used in 
Sect. 3

Motor

Lead screw

Bearing block

Guide rodHorizontal rod

Vertical rod

Fig. 3  Perspective drawing of the arrangement of the wave maker lin-
ear actuators. The vertical rods are driven up and down, which deter-
mines the instantaneous height of each horizontal rod. The neoprene 
foam sheet of the wave maker is attached to these horizontal rods, so 
its shape is determined by their heights. The motors are staggered 
across three horizontal and three vertical planes to enable a tight rod 
separation of 10 mm
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As the motor shafts pass through the base of the cavity, 
there must be a watertight seal. We use a grease box with a 
pair of silicone O-rings on either side. Typically, the strati-
fication is created using a salt solution, but inside the cavity, 
we add glycerol to provide an insulating layer between the 
salt water and the O-ring seals. The risk with leakage of salt 
water is that after use, the water evaporates and leaves salt 
crystals behind, and these can prise open the seals over time. 
The depth of the glycerol layer is a compromise between 
prolonging the life of the seals and entraining glycerol into 
any leakage flow, which might then interfere with optical 
diagnostic techniques such as Synthetic Schlieren (Dalziel 
et al. 1998, 2000, 2007; Sutherland et al. 1999). The seals 
and motor blocks are mounted in modular blocks of ten, to 
facilitate maintenance.

2.2  Electronics

The low-cost stepper motor driver, which employs a 
pulsewidth modulation (PWM) to control the current 
through each of the motor windings, sequences the actuation 
windings in a half-step mode, which enables us to achieve 
our fine vertical resolution. For generating the digital input 
signals, the Texas Instruments Beaglebone Black revision C 
(BBB) was selected as a low-cost hardware–software inter-
face. It has a Programmable Real-time Unit and Industrial 
Communication SubSystem (PRU-ICSS) embedded in its 
Sitara AM3358BZCZ100 processor, on which every instruc-
tion takes exactly 5 ns. An efficient assembly-language algo-
rithm uses 15 instructions to issue signals to motor drivers. 
In the worst case, it might take 1.9 μs to execute all motors 
simultaneously, but in a typical use-case steps are rarely syn-
chronous and have an effective resolution of 30 ns. This is 
sufficient temporal resolution to generate smooth waveforms 
without unwanted additional frequencies in the observable 
range.

A second key feature of the BBB is its large array of 65 
general purpose input/output (GPIO) header pins. Since 200 
GPIO pins are required to produce pulse and direction sig-
nals for each motor, multiple BBBs are required. To ensure 
the parallel BBBs remain synchronised with 30 ns precision, 
thereby avoiding horizontal drift of wave phase between sec-
tions of the wave maker, a timing pulse is transmitted along 
wires from a GPIO pin in one BBB (designated the master) 
to each of the other (slave) BBBs. This software clock is 
also written in the assembly language of the PRU-ICSS to 
minimise latency.

2.3  Software

The software for controlling the wave maker is available 
at https ://bitbu cket.org/aswam /wavem aker, with a brief 
overview here. As discussed in Sect. 2.2, precise timing of 

the hardware is imperative and accordingly is programmed 
in assembly. The input instruction set is created using a 
bespoke compiler that calculates the timings for a waveform 
specified in text as analytic functions, typically sine waves 
with some envelope, within an XML file. A web interface 
using Javascript writes the XML input to the compiler and 
allows the user to preview their chosen waveform prior to 
execution on the wave maker. The reader is referred to Dobra 
(2018, chap. 3) for a detailed discussion of the algorithms.

3  Model of shape of wave maker

We develop an analytic model for the resultant profile of 
the neoprene carpet for a given input waveform, hin(x, t) . 
The input only specifies the time-dependent displacement of 
each rod. The clamps at each end of the wave maker impose 
a uniform tension along the wave maker, which can be taken 
as zero when the wave maker is in the equilibrium position.

3.1  Definitions

A schematic of the longitudinal view of the wave maker is 
shown in Fig. 2. The arbitrary wave maker consists of 100 
rods of effective radii r, including the fastening sleeves, with 
separation w and a gap of W between the last rod and where 
the elastic sheet is clamped to the tank. The sheet has thick-
ness s, which we assume to be constant. For the ASWaM, 
w = 10 mm , W = 60 mm , and s = 3 mm , and we find from 
the calibration of our model (Sect. 3.5) that r = 4 mm.

3.2  Governing equations

The neoprene foam sheet is modelled in its linear-elastic 
regime, under the assumptions of Euler–Bernoulli beam the-
ory, which is valid for waveforms of sufficiently small cur-
vature and when tensile stress is predominantly absorbed by 
the neoprene rather than the nylon facing. For the maximum 
wave steepness our wave maker supports, the strain never 
exceeds 8.5% and the nylon facing only becomes significant 
at much larger strains and helps prevent damage to the foam 
by over-extension. Thus, for a neoprene foam sheet clamped 
at both ends and under tension due to actuation by the rods, 
we use the elastic theory laid out by Howland (1926) and 
Kelly (2015). The time-dependent forces and moments per 
unit width across the tank acting on a short section of the 
sheet of length 2 �x at position x along the wave maker are 
shown in Fig. 4.

Let � be the angle the sheet makes with the horizontal 
and h(x, t) be the vertical displacement of the sheet; then, the 
trigonometric relation gives � in terms of h, tan � =

�h

�x
, and 

the vertical components of the inviscid hydrodynamic forces 
become −2 �x pA(x) cos ��z and 2 �x pB(x) cos ��z . The static 

https://bitbucket.org/aswam/wavemaker
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equilibrium assumption of Euler–Bernoulli beam theory 
implies that the horizontal forces, T, vertical forces, S, and 
moments, M, acting on the element balance: 

 Let p∗(x) = pB − pA be the net pressure, which is zero for 
static shapes and can be estimated for moving waveforms 
using linear wave theory. For waves of low steepness (|||

𝜕h

𝜕x

||| ≪ 1
)

 , cos � ≈ 1 , and sin � ≈
�h

�x
 . Then, dividing 

through by 2 �x , in the limit �x → 0 , these become the cou-
pled differential equations: 

Differentiating the moment Eq. (3c) with respect to x gives

Using the horizontal (3a) and vertical (3b) force balances 
to eliminate the derivatives of the tension and vertical shear 
forces leaves

(2a)
T(x + �x) − T(x − �x)

+ 2 �x pA(x) sin � − 2 �x pB(x) sin � = 0,

(2b)2�x
(
pB − pA

)
cos � − S(x − �x) + S(x + �x) = 0,

(2c)

M(x + �x) −M(x − �x)

+ �x cos � S(x + �x) + �x cos � S(x − �x)

− �x sin � T(x + �x) − �x sin � T(x − �x) = 0.

(3a)
�T

�x
= p∗ sin � ≈ p∗

�h

�x
,

(3b)
�S

�x
= −p∗ cos � ≈ −p∗,

(3c)
�M

�x
+ S − T

�h

�x
= 0.

(4)�2M

�x2
+

�S

�x
− T

�2h

�x2
−

�T

�x

�h

�x
= 0.

The fourth term is quadratically smaller than the second, 
which leaves the linear Euler–Bernoulli beam equation 
under longitudinal tension:

In the static case, where p∗ = 0 , our constraint, |||
𝜕h

𝜕x

||| ≪ 1 , 
vanishes, implying that our model is valid over the entire 
operational range of our wave maker. The assumption of 
linearity is retained in the local curvature, |||

�2h

�x2

||| , respecting 
both the physical characteristics of the neoprene and 
Euler–Bernoulli theory.

The tension in each longitudinal fibre of the neoprene is 
the sum of the externally applied tension, T, which is uni-
form across the thickness of the sheet, and a perturbation 
tension, determined by the bending of the sheet. Under this 
decomposition, the bending moment is the same as for an 
elastic beam with pure bending, which is proportional to the 
curvature and Young’s modulus, E:

Assuming that the wave maker remains at sufficiently low 
steepness for the sleeves around the rods to fully redistribute 
the longitudinal stress, the external tension is imposed by the 
clamps at each end of the wave maker plus some local varia-
tion due to the dynamic pressure, p∗ , given by the horizontal 
force balance (3a). For a sinusoid, scaling analysis shows 
that T is an order of magnitude greater than the component 
of the tension due to the dynamic pressure, so the tension is 
approximately uniform along the wave maker. Thus, at each 
instant, the surface, h(x, t) , of the wave maker satisfies the 
forced fourth-order ordinary differential equation (ODE):

For a complex Fourier mode of amplitude A, wavenumber k 
and frequency � that generates an internal wave above the 
wave maker propagating at an angle � to the vertical, p∗ is 
non-zero and the inhomogeneous form becomes

where p∗ = −
A�2

k

(
�B + i�00 tan�

)
ei(kx−�t) . Real waveforms 

can be obtained by considering each constituent mode inde-
pendently and then summing the results.

Defining the bending stiffness coefficient � =
Es3

12
 and 

using prime to denote an x derivative, the biharmonic 
form (8) can be written as

(5)�2M

�x2
− p∗ − T

�2h

�x2
+ p∗

(
�h

�x

)2

= 0.

(6)�2M

�x2
− T

�2h

�x2
= p∗.

(7)M =
Es3

12

�2h

�x2
.

(8)Es3

12

�4h

�x4
− T

�2h

�x2
= p∗.

(9)Es3

12

�4h

�x4
−

Es|A|2k2
4

�2h

�x2
= p∗,

2δx pA(x)

2δx pB(x)

T (x− δx)

T (x+ δx)

S(x− δx)

S(x+ δx)

M(x− δx) M(x+ δx)

δxs

x

z

Fig. 4  Forces and moments acting on an element of the sheet (based 
on Kelly 2015, p. 202). Shear and tension forces are exerted on each 
end by the neighbouring elements, in addition to a pair of moments. 
The fluid above and below the sheet exerts a pressure perpendicular 
to the sheet
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and has general solution

where � =
√

T

�
 , hp is the particular integral for p∗ , and the 

coefficients Bj are arbitrary constants to be determined by 
the boundary conditions. This differs from the typical 
Euler–Bernoulli solution by the presence of hyperbolic func-
tions instead of cubic polynomials.

3.3  Statement of boundary conditions

The attachment of the neoprene to the actuating rods is com-
plex and worthy of further discussion. There are two forms 
of flexibility: a vertical elasticity in the hooks and loops, and 
a rotational freedom of the sleeve around the actuating rod, 
which helps equilibrate horizontal stresses.

We model the vertical elasticity as a linear spring with 
tension exerted by the neighbouring sections of the neoprene 
foam sheet applying vertical force, as shown in Fig. 5. Pro-
vided that the local gradient of the prescribed waveform is 
small, there is negligible lateral forcing on the rod and the 
vertical forces are given by

Approximating the sheet as line segments between a pair of 
rods j and j + 1 , we obtain

We define the spring stiffness to be K and the extension to be 
r̃ − r , where h̃ = hin + (r̃ − r) , and it follows that

(10)�h(iv) − Th�� = p∗,

(11)h = hp + B0 + B1x + B2 cosh �x + B3 sinh �x,

(12)Tspring = T sin �+ + T sin �−.

(13)sin � ≈ tan � =
hin
j+1

− hin
j

w
≈

�hin

�x
.

Next, we consider the rotation of the sleeve around the 
rod. Since the rod spacing is much larger than its radius, 
w ≫ r , the radius of curvature of the neoprene is much 
greater than the effective radius of the rod and so the sheet 
can be considered straight with an arbitrary constant gradi-
ent near the rod. Measured with respect to the rod axis (see 
Fig. 6), the additional height of the neoprene is given by

which we approximate as

with a centred finite difference. On the ASWaM, each of 
these corrections to h above the centre of the rod is not 
expected to exceed 1 mm, compared to a maximum sinusoi-
dal displacement of 20 mm (or 25.4 mm for other shapes that 
do not need to be symmetric about z = 0).

At each end of the wave maker, there is an extra section 
of length W that is clamped in a vertical channel, as shown 
in Fig. 2. At the clamps, the displacement is fixed, h = 0.

(14)r̃ − r ≈
T

K

(
hin
j+1

− 2hin
j
+ hin

j−1

w

)
≈

Tw

K

𝜕2hin

𝜕x2
.

(15)r̃j(sec 𝜃 − 1) = r̃j

�√
1 + tan2 𝜃 − 1

�
,

r̃j

⎛⎜⎜⎝

�
1 +

�
𝜕h̃

𝜕x

�2

− 1

⎞⎟⎟⎠
,

Neoprene foam sheet

Rod

Spring of natural
length r

r̃

T

θ−

T

θ+

Fig. 5  Model of forces determining the separation between the neo-
prene foam sheet and a horizontal metal rod. The upper tensions are 
those applied on this element by neighbouring elements of the sheet. 
The hook-and-loop fastening that connects the rod to the sheet is 
modelled as a spring, which is either in tension or compression pro-
portional to its displacement

Neoprene foam sheet

r̃

r

r̃ sec θ

r̃(sec θ − 1)

θ

Fig. 6  Variable contact point of the sheet with the rod. For a rod of 
radius r, the neoprene foam sheet sits at a position given by a larger, 
variable virtual radius r̃ , due to elasticity in the hook-and-loop attach-
ment. Assuming the bending of the sheet is negligible, its height 
above the centre of the rod increases by r̃(sec 𝜃 − 1) as the contact 
point moves away from the top in either direction
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3.4  Basis functions

Each rod imposes a boundary condition on h, thus constrain-
ing the values of Bj . The complete system is vastly overdeter-
mined, because there are now 102 such constraints for four 
constants. We seek to define basis functions that by construc-
tion are compatible with all these boundary conditions and 
to do so we split the wave maker into 101 sections of length 
d bounded by the rods. Each section should satisfy the bihar-
monic equation (10) and thus requires four boundary condi-
tions. Two of those are already provided by h being specified 
at each rod and the remaining two are generated by requir-
ing that h′ and h′′ are continuous between sections (though 
their values are not constrained). The end sections are longer, 
W = 6w , so the neoprene foam is approximately straight near 
the clamps, and to obtain an exactly determined system we 
constrain h�� = 0 (and leave h′ unconstrained). Splines would 
be an inappropriate choice here, because polynomials cannot 
satisfy the biharmonic equation (10). Instead, we generalise 
Hermite interpolants to the case of non-polynomial functions 
to evaluate the shape. The pressure integral, hp , is computed 
first, then the constants, Bj , of the complementary functions are 
calculated to satisfy the four boundary conditions.

Let x̂ be the coordinate along each section, with x̂ = 0 
defined on the left end and x̂ = d on the right end. For interior 
sections, d = w , and for the two end sections between the final 
rod and the neoprene clamp, d = W . For convenience, rather 
than directly using the complementary functions:

we choose four linearly independent linear combinations, 
expressed as � = �� , and select the matrix � such that gj and 
g′′
j
 are each non-zero at only one end of the segment. In 

particular, we take

where �4 is the identity matrix. This choice is motivated by 
our need to specify h at the junctions between each segment 
and additionally h′′ at the ends of the wave maker. By taking

such that � = �� = �4 , we determine

(16)�(x̂) =

⎡⎢⎢⎢⎣

1

x̂

cosh 𝜆x̂

sinh 𝜆x̂

⎤⎥⎥⎥⎦
,

(17)� =
[
�(0) ���(0) �(d) ���(d)

]
= �4,

(18)� =
[
� (0) � ��(0) � (d) � ��(d)

]

(19)� = �−1

⎡⎢⎢⎢⎢⎣

1 −
1

d
0 0

−
1

�2

1

�2d

1

�2
−

1

�2 tanh �d

0
1

d
0 0

0 −
1

�2d
0

1

�2 sinh �d

⎤⎥⎥⎥⎥⎦
,

and then, we obtain the four basis functions:

Defining a vector of constants � to be determined by the 
boundary conditions, the general solution between each rod 
is thus

In common with cubic Hermite interpolation polynomials 
(cubic splines), our interpolation functions form pairs that 
are reflections of themselves. The functions g0 and g2 are 
straight lines, providing the continuity of the sheet, while g1 
and g3 (see Fig. 7) give the curvature arising from the bend-
ing stiffness, thereby enabling C2 continuity.

In the regime of low bending stiffness, � → 0 and � → ∞ , 
the turning points of g1 and g3 move nearer the end points of 
the section and their magnitudes decrease; in other words, 
they become closer to constant zero functions. This degen-
erate behaviour arises from the bending term, �h(iv) , in the 
biharmonic equation (10) vanishing, hence the reduction of 
the equation from fourth order to second order.

In the opposite limit of large bending stiffness, � → 0 , 
Eq. (10) is again degenerate, as the term Th′′ vanishes. Using 
Taylor expansions, it can be shown that the bending basis 
functions reduce to cubic polynomials:

These are generalised first-order (cubic) Hermite interpola-
tion polynomials when the zeroth and second derivatives 
are specified.

The boundary conditions across all sections of the wave 
maker form a linear system of 404 simultaneous equations 
for all of the 101 constant vectors, � . The system is sparse 

(20)�(x̂) =

⎡
⎢⎢⎢⎢⎣

1 −
x̂

d

−
1

𝜆2
+

x̂

𝜆2d
+

cosh 𝜆x̂

𝜆2
−

sinh 𝜆x̂

𝜆2 tanh 𝜆d
x̂

d

−
x̂

𝜆2d
+

sinh 𝜆x̂

𝜆2 sinh 𝜆d

⎤
⎥⎥⎥⎥⎦
.

(21)h(x̂) = hp(x̂) + � ⋅ �(x̂).

(22)g1 ∼ −
x̂3

6d
+

x̂2

2
−

x̂d

3
, g3 ∼

x̂3

6d
−

x̂d

6
.
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Fig. 7  Curvature basis functions for the surface of the wave maker 
shown at various shape parameters, � using a unit rod spacing 
(d = 1) . The solid lines show the basis function  g

1
 and the dashed 

lines show its reflection, g
3
 . The curves become cubic in the large 

bending stiffness case when � = 0
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and can be reduced to a simpler system of 101 coupled equa-
tions using the symmetries of the basis functions, and be 
solved numerically. In the case of a static Fourier mode (for 
which p∗ = 0 ), an analytic solution can be obtained using 
recurrence relations. We refer the reader to Dobra (2018, 
Chap. 3) for details.

3.5  Calibration and verification of model

We tested the model experimentally on four classes of 
static waveform by illuminating the centreline of the wave 
maker using a FLEXPOINT® MVnano laser diode of wave-
length 520 nm and fan angle 30◦ . We filmed the laser profile 
through the side wall of the tank using an ISVI IC-X12CXP 
12-megapixel camera (Fig. 8 shows a typical image), making 
appropriate ray-path corrections for refractive index varia-
tions, as illustrated in Fig. 9. The tank was completely filled 
with fresh water to minimise distortion of the image. Under 
these conditions, internal waves cannot be generated, so the 
parts of the model that introduce pressure corrections due 
to internal waves have not been included in this test; here, 
we restrict to cases with p∗ = 0 , which correspond to static 
waveforms.

Five types of waveform were tested: a single rod raised 
with all other rods at the zero position (Fig. 8), a single rod 
lowered, all the rods on one half of the wave maker raised by 
a uniform amount (Heaviside step), and two sinusoids, one 
of wavenumber 100 radm−1 and the other of wavenumber 
20 radm−1 . The amplitudes were increased by 1.27 × 10−3 m 
(100 motor steps) between each consecutive image until the 
reliable limit of the wave maker had been obtained, typically 
due to the motors stalling when unable to further increase 
the tension in the neoprene foam. This ensures that the full 
range of typical configurations are tested. A sample output 
is shown in Fig. 10.

We were surprised to discover that neoprene foam—a 
mildly anisotropic material—has an unusual relationship 
between bending stiffness, governed by � , and tensile 
stresses, governed by T, and a consequence of this is that 
the ratio � =

√
T

�
 is approximately constant. We find that 

� is logarithmically insensitive to changes in the solution, 
and we obtain � = 400 ± 25 . It follows that T ∝ Es3 and the 
thickness, s, can be reasonably assumed not to increase 
with T. We hypothesise that cells forming the foam col-
lapse progressively under tension and can, therefore, resist 
Poisson’s ratio contraction more effectively, yielding an 
apparent increase in the Young’s modulus with respect to 
bending. Furthermore, we note that the coupled parameter 
(T∕K) = (9 ± 1) × 10−4 m is also a constant (thus, as ten-
sion increases, the hook-and-loop fasteners become stiffer) 
and the equilibrium effective rod radius is r = 4 × 10−3 m. 
Conveniently, the invariance of these parameters directly 
implies invariance of the wave maker response to any input 
waveform.

0.3 0.35 0.4 0.45 0.5 0.55 0.6
m

Fig. 8  Raw image of the laser (white line) on the centreline of the 
wave maker with one rod raised by 5.08 mm. Illuminating the centre-
line records the average height across the wave maker and accounts 
for small variations in transverse slope along each horizontal rod. The 
compactness of the stitching of the hook-and-loop fasteners varies 
from rod to rod and is calibrated out to ensure a smooth fluid-facing 
surface. The rods themselves, therefore, vary in height to produce 
this, as can be seen in the figure

z = 0
h

Neoprene foam sheet

Laser
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x
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z

Fig. 9  Apparatus for optically measuring height of wave maker. A 
line laser illuminates the centreline of the wave maker from above, 
which is recorded through the transparent side wall of the tank by a 
camera
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Fig. 10  Comparison of theory with profile recorded on the appara-
tus for one rod of the wave maker displaced down by 3.81 × 10−3 m . 
The prediction has a small RMS error of 4 × 10−5 m and exhibits the 
small humps around x = ±1.3 × 10−2 m , which result from the bend-
ing stiffness
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4  Finite approximations to infinite plane 
waves

We aim to be able to produce waveforms that are as close 
to monochromatic as possible within the confines of the 
laboratory. Only a plane wave with periodic boundaries 
or boundaries at infinity can truly satisfy this condition. 
Any wave with a fundamental wavenumber k0 , but of finite 
spatial width, will contain a full spectrum of wavenumbers 
even if it has a single temporal frequency, because any 
deviation away from uniformly zero amplitude involves a 
local discontinuity in at least one of the derivatives.

In Fourier space, the integral operator is 1/ik, where 
i is the imaginary number. Given that the Fourier trans-
form of a Dirac �-function is a constant, by integrating �(x) 
twice, we obtain a C0 continuous function, whose spectral 
signal must decay as |k|−2 . By induction, the general case 
follows a power law Cq

↦ |k|−(q+2) . Typically, such wave-
forms have a symmetric spectrum around k0 , and therefore, 
this will include both positive and negative wavenumber 
components. The negative components produce a wave 
travelling in the opposite direction to k0.

For the piecewise constant cam-driven wave genera-
tor of Gostiaux et al. (2007), their C−1 continuity means 
that the spectrum only decays as |k|−1 . In contrast, the 
C2 continuity imposed by our neoprene foam leads to a 
decay as |k|−4 , reducing the spectral spread and producing 
a cleaner waveform. However, further refinements can be 
made by profiling the amplitude envelope towards each 
end of the wave maker, maximising the smoothness of 
the output waveform, an approach previously pursued by 
Mercier et al. (2010). We have used a range of candidate 
input functions in our experiments: trapezia with piece-
wise linear 

(
C0

)
 and half cosine 

(
C1

)
 ends and a smoother 

C1 envelope comprised of a single wavelength of cos2 x . 
For the range of k0 used in our experiments, the piecewise 
linear ramp has lower amplitude in wavenumbers imme-
diately surrounding k0 compared with the half cosine; 
however, it has higher amplitudes for small negative k. 
Nonetheless, with all wave maker outputs C2 continuous 
by design, improving the input continuity to C3 has little 
observable effect on the output spectrum and these details 
are not significant for most applications. The cos2 x input 
envelope has a noticeably more compact spectrum than the 
trapezia, but has lower response at k0 and has no region of 
constant amplitude. For comparison, in Fig. 11, we show 
instantaneous profiles, their envelopes and spectra for the 
following cases: a piecewise linear trapezium input, its 
corresponding model output (which differs only in the 
extremities) and the output for a cos2 x envelope.

Care must be taken to ensure overall volume conser-
vation in the chamber underneath the neoprene, and we 

find this is typically satisfied to ± 40ml when the profile 
contains an integer number of wavelengths and the length 
of the ramp is calibrated accordingly. Inevitably, the finite 
spacing of actuators also broadens the spectrum, but this 
is mitigated first by selecting low values of k0 and sec-
ond by the C2 continuity of the material. The smoothness 
of the deforming material surface is a key feature of our 
wave maker. When waves grow to large amplitude, inertial 
effects do become significant near the surface and without 
sufficient smoothness, flow separation may result. As later 
results in Sect. 5 show, we can produce very large ampli-
tudes with our design with relatively little flow separation 
occurring.

Although our wave maker attempts to produce waves of the 
form A sin

(
k0x − �t

)
 , the existence of negative wavenumbers 

in the spectrum means that waves will also travel backwards. 
The narrower the region of non-zero amplitude, the broader the 
spectrum and the more energy will travel in the negative direc-
tion. The breadth of the spectrum has particular significance 
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Fig. 11  Instantaneous shapes and spectra for two classes of amplitude 
envelope for a travelling sinusoid with k

0
=

2�
1

6
×0.96

≈ 39.3 radm−1 . 
The red line shows the input that produces the blue output waveform; 
there is very little difference (RMS error = 4.7 × 10−4 m ), except for 
a slight reduction in amplitude due to the elasticity in the rod attach-
ments
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when generating internal waves, which propagate away from 
the wave maker into the density-stratified medium, because 
the manner in which different Fourier components interact 
nonlinearly is still not fully understood and this has been one 
motivation for our study. We will introduce the underlying 
mechanisms of these nonlinear processes in Sect. 5.2.

Two-dimensional linear internal waves are a restricted 
solution of the Navier–Stokes equations in the case, where 
we assume inviscid, Boussinesq flow (with reference den-
sity �00 ) and the nonlinear terms, which contain the advec-
tion operator � ⋅ ∇ , are considered negligible. The remaining 
derivative operators can be isolated into a complex matrix � 
that acts on a state vector � , say, and the system arranged 
into homogeneous form. Taking a single Fourier mode of 
� , we can write

where � =
[
k m

]T and � =
[
x z

]T . The derivative operator 
� then takes the complex algebraic form �̂� . For a homogene-
ous system, non-trivial symmetries are found when the 
determinant |||�̂�

||| = 0 , and these correspond to resonant wave 
behaviours. From

arises a natural frequency, the buoyancy (Brunt–Väisälä) 
frequency:

and by examining the geometry of k

|�| , a dispersion 
relation:

is obtained, where � is the angle between wavevector � and 
the horizontal. Further examination of the properties of (24) 
shows that waves travel through a density-stratified medium 
in beams perpendicular to �.

Although the inviscid theory represents the leading-order 
behaviour of internal waves, our experiments, which we will 
present in Sect. 5, do show some viscous attenuation. For 
example, the low-frequency beam spanning the width of 
Fig. 15 is seen to have its amplitude decreased to a third of 
its original value over a distance of 1 m. This is consistent 
with estimates in the literature (Hurley and Keady 1997; 
Sutherland 2010), where the amplitude A decays with beam 
ordinate � as

(23)𝝓 = �̂� ei(�⋅�−�t),

(24)
|||�̂�
||| = �2 −

(
−

g

�00

d�0

dz

)
k2

|𝐤|2 = 0

(25)N =

√
−

g

�00

d�0

dz
,

(26)� = N cos�,

(27)A(�) = A(0)e−
�|�|3

2N sin�
�
,

where � is the kinematic viscosity. On the scale of our exper-
iments, this is acceptably small to ignore as a second-order 
effect.

When actuating the wave maker, we have an arbitrary 
choice of k and � , so we may represent an arbitrary spec-
trum of travelling wave material surface displacements. 
Typically, however, we oscillate the wave maker at a com-
mon (temporal) frequency for all (spatial) wavenumbers. 
The surface spectrum specifies the horizontal components 
of 2D wavevectors for any internal waves produced, and 
the vertical component thereof is determined to satisfy the 
angle � of that wavevector, as constrained by the choice of 
� in the dispersion relation (26). For a broad surface spec-
trum that includes negative wavenumbers, internal waves 
leaving the wave maker must travel in two distinct direc-
tions: one beam in each upper quadrant (Baines 1971). 
In practice, nonlinearity gives rise to additional harmon-
ics generated by the boundary, a topic explored by Dobra 
(2018) that we intend to publish at a later date.

An example of the complexity that can arise from forc-
ing by the wave maker is shown in Fig. 12, using Synthetic 
Schlieren to infer motion from optical measurements of 
density perturbations. By selecting a spatially compact 
forcing (here a single wavelength) and a low forcing fre-
quency, � = 0.108N , the dispersion relation permits nine 
harmonics, all of which are visible, along with significant 
energy travelling in the −k0 direction. By contrast, a care-
fully configured wave maker input produces an almost-
monochromatic wave, shown in Fig. 13, with almost no 
energy propagating in the −k0 direction and only a very 
weak signal in the second harmonic propagating up and to 
the right. All experimental observations show a subsection 
of the tank near the wave maker, and are displayed with 
unit aspect ratio and a length scale measured from the left 
end of the wave maker.

0.010m−1−0.01

ω
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Fig. 12  Horizontal gradient of the normalised density perturbation 
1

�00

��′

�x
 for a sinusoid of amplitude 0.018 m with a cos2 x envelope, 

k
0
= 20 radm−1 and � = 0.19 rad s−1 ≈ 0.108N . The narrow active 

zone produces a broad spectrum of waves with both positive and neg-
ative wavenumbers, including nine harmonics
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5  Example wave fields

In this section, we present a sample of results showcasing 
the flexibility of our experimental tool. None of the con-
figurations shown would have been possible with devices 
reported in the previous literature. We first discuss our ana-
logue of atmospheric lee waves before considering weakly 
nonlinear interactions of internal wave beams. By increasing 
amplitude, we begin to access a strongly nonlinear regime in 
which wave-breaking events may occur.

5.1  Lee waves

When density-stratified flow is displaced vertically over a 
mountain, internal lee waves form (Scorer 1949). A phase-
locked wave train is created behind the obstacle, in accord-
ance with the measurements of Dalziel et al. (2011). They 
used a closed-loop flume containing an obstacle to exam-
ine lee wave formation in the low Froude number regime. 
However, those results were contaminated by boundary layer 
growth and startup transients. Our configuration holds the 
medium quiescent, and we generate lee waves by propa-
gating a solitary hump along our wave maker, as shown in 
Fig. 14. Unaffected by boundary layer growth, we have very 
precise control over the spectral signature. In our case, tran-
sients do occur due to the creation of the hump at one end of 
the wave maker, but near-steady-state lee waves are observed 
towards the opposite end. Many other shapes and velocity 
profiles could, of course, also be specified to represent more 
general topographic features.

5.2  Interacting beams

Weakly nonlinear interactions of internal waves arise from 
the quadratic nonlinearity in the transport terms of the 
Navier–Stokes equations (Phillips 1960; Martin et al. 1969; 

Tabaei et al. 2005). They are best understood in Fourier 
space, where the velocity term can be expressed in the fol-
lowing form:

Its gradient

combines as follows:

where we recognise the sums of wavevectors and corre-
sponding frequencies to be new, independent wave direc-
tions. We also have to consider the complex conjugates and 
so there exist pairings of wavevectors and frequencies whose 
combination satisfy the dispersion relation (26), including 
those arising from 

(28)� =
∑
p

�̂pe
i(�p⋅�−𝜔pt).

(29)∇� =
∑
q

i�̂q�qe
i(�q⋅�−𝜔qt),

(30)� ⋅ ∇� =
∑
p

∑
q

i�̂q
(
�q ⋅ �̂p

)
ei((�p+�q)⋅�−(𝜔p+𝜔q)t),
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Fig. 13  Clean horizontal gradient field of the normalised density per-
turbation 1

�00

��′

�x
 for a sinusoid of amplitude 0.005 m with 

k
0
= 60 radm−1 and � = 0.6 rad s−1 ≈ 0.41N
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Fig. 14  Horizontal gradient of the normalised density perturbation 
1

�00

��′

�x
 for a solitary sinusoidal hump of height 0.0075 m and width 

0.09 m moving at 0.17 m s−1 . Each image is separated by 5 s, and 
N = 1.45 rad s

−1
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Should the collision of two accordingly configured internal 
waves p′ and q′ occur, we would expect emission of this 
particular wave r′.

For example, the configuration shown in Fig.  15 
has incident frequencies �p� = 0.55 rad s−1 ≈ 0.37N 
and �q� = 2.2�p� ≈ 0.82N with corresponding domi-
nant horizontal wavenumbers kp� = 55 rad m−1 and 
kq� = 2.2kp� = 121 rad m−1 . We reflect the lower frequency 
wave, p′ , off the free surface so that it approaches from the 
opposite vertical direction. We see from the figure that a 
new internal wave r′ is clearly generated in the interaction 
region, having not propagated in from the boundaries. It 
has frequency �r� = �q� − �p� = (2.2 − 1)�p� and the beam 
is directed exclusively into the first quadrant, in agree-
ment with the correction of Jiang and Marcus (2009) to 
the theory of Tabaei et al. (2005), and the experiments in 
Smith and Crockett (2014).

On detailed examination, we note that an oscillation 
of frequency �q� − �p� and wavevector �q� − �p� does not 
satisfy the dispersion relation (26), so cannot propagate 
as an internal wave. However, a new internal wave is, 
nevertheless, produced, but �r� ≠ �q� − �p� . This demon-
strates that wavevectors across the spectrum of a spatially 
narrow beam participate in the interaction, not just the 
dominant �p′ and �q′ , which makes it especially important 
to have a good quantification of the input spectrum. Also 
visible in the figure is the second harmonic of the left-
most-generated wave, which reflects off the free surface 
and interacts with its fundamental.

(31a)�r = �q − �p

(31b)�r = �q − �p.

5.3  Wave breaking

We sought to explore amplitude extremes with our wave 
maker while preserving attached flow for as long as possible. 
High amplitude internal waves cease to conform to linear 
theory, and this is an area ripe for further investigation. We 
began with a standing sinusoid of horizontal wavenumber 
k0 = 33 radm−1 and frequency � = 0.63 rad s−1 ≈ 0.5N , 
initialised from rest and grown linearly to reach steady oscil-
lations at an amplitude of A = 0.015 m , as shown in Fig. 16. 
The conf igurat ion had a  wave steepness  of |||
�h

�x

|||max
= Ak0 = 0.5 , just below the wave maker limit identi-

fied in Sect. 2.1. Initially (Fig. 16a, A = 0.0076 m ), an inter-
ference pattern of left- and right-travelling waves was cre-
ated in the centre of the tank. With increasing amplitude, 
there was progressive loss of coherence in the pattern as 
nonlinearity became visible around A = 0.0126 m 
(Fig.  16b). At full amplitude (Fig.  16c), the Synthetic 
Schlieren diagnostic showed incoherent patches. These were 
caused by large curvature in the density field, and hence the 
refractive index. They make the light rays incident on the 
camera cross one another, breaking the assumption of a 
bijection between visible points on the background image 
and its projection. Direct observation showed that the large 
curvature was caused by local patches of turbulent mixing. 
These patches originate where waves have broken (leading 
to material surfaces that are multivalued in the vertical and 
so are Rayleigh–Taylor unstable) and these modify the back-
ground stratification, tending to generate intrusions that 
propagate horizontally as they return to hydrostatic 
equilibrium.

Standing waves are not the only approach to wave break-
ing with our wave maker: we input a spatially narrow 
incident beam, expecting that the breadth of its spectrum 

0.10m−1−0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
m

Fig. 15  Vertical gradient of the normalised density perturbation 
1

�00

��′

�z
 for two incident wave beams, �p� = 0.55 rad s

−1 ≈ 0.37N gen-
erated on the left and �q� = 2.2�p generated on the right end of the 

wave maker, crossing in the right half of the field of view. A new 
wave �q� − �p� is emitted, in addition to other triadic interactions 
elsewhere
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would produce even richer phenomena. Figure 17 shows a 
wave field that breaks on reflection from the free surface. 
The sinusoid is two wavelengths wide, with frequency 
� ≈ 0.84N , horizontal wavenumber k0 = 50 radm−1 and a 
cos2 x amplitude envelope. Similar to our other experiments, 
we slowly increased the amplitude from rest at a constant 

rate of 0.001 mmin−1 , which equates to 7 × 10−5 m per 
period, helping to inhibit the formation of a turbulent bound-
ary layer on the wave maker surface. At the instant shown in 
Fig. 17, the forcing amplitude was 0.0088 m.

An important feature of the wave-breaking event shown 
here is the emission of new internal waves at frequencies 
below the incident frequency. In fact, the lowest of those 
is the limiting case of zero frequency and arises due to 
unstable overturning of isopycnals that produces irrevers-
ible mixing and material transport. In other contexts, these 
displacements may be known as intrusive gravity currents, 
and their signature can be identified in the figure near the 
free surface. Any displacement of mass, whether oscilla-
tory or aperiodic, distorts material surfaces in equivalent 
ways to imposed boundary conditions such as our wave 
maker. In the case shown, material surfaces bounding the 
wave-breaking region configure to generate a multiplicity 
of new internal waves. It can be shown that waves are emit-
ted in all four quadrants in a manner analogous to the clas-
sical oscillating cylinder of Mowbray and Rarity (1967). 
However, the frequencies of those waves turn out to be 
inconsistent with straightforward triadic interactions of the 
form (31), and therefore, they must emerge from a more 
complex nonlinear process, as a patch of turbulence would 
provide. Also visible in this figure is a weakly nonlinear 
instability of the primary beam due to the well-known phe-
nomenon of triadic resonant instability (Davis and Acrivos 
1967), and the example here is typically classified as para-
metric subharmonic instability. This is separated in space, 
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Fig. 16  Vertical gradient of the normalised density perturbation 1
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for a standing sine wave of linearly growing amplitude until 0.015 m 
is attained. The instantaneous amplitudes are 0.0076 m (a), 0.0126 m 
(b), and 0.015 m (b), with a time interval of 100 s between images. 
The standing wave pattern progressively modulates and then breaks. 
In c, small hydraulic jumps are responsible for small changes to the 
background stratification in immediate proximity to the wave maker; 
these are only significant at very high wave amplitudes
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Fig. 17  Vertical gradient of the normalised density perturbation 1

�00

��′

�z
 

showing the breaking of an internal wave (top-centre) of angular fre-
quency � = 1.5 rad s

−1 ≈ 0.84N , incident from the bottom-left. New 
internal waves are emitted from the breaking zone at lower frequen-
cies, both to the left and to the right
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independent from and at a much lower amplitude than the 
strongly nonlinear features closer to the free surface.

6  Conclusion

We have presented a novel wave maker capable of generating 
large amplitude internal waves of arbitrary shape, configured 
purely through a software interface. Our wave maker pro-
duces clean, reproducible spectra, which we have modelled 
and validated. We have demonstrated our new capability 
to produce various forms of time-varying material surface 
deformation, and we use this to increase the wave amplitude 
without inducing significant flow separation, such that these 
waves may break remote from their source or interact non-
linearly. There is a rich collection of fluid phenomena yet to 
be discovered that we will now be able to access using this 
new technology.
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mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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