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Abstract 

The endosomal sorting complexes required for transport (ESCRTs) are essential for multiple 

membrane modelling and membrane-independent cellular processes. Here we describe 6 

unrelated individuals with de novo missense variants affecting the ATPase domain of 

VPS4A, a critical enzyme regulating ESCRT function. Probands had structural brain 

abnormalities, severe neurodevelopmental delay, cataracts, growth impairment and anaemia. 

In cultured cells, over-expression of VPS4A mutants caused enlarged endosomal vacuoles 

resembling those induced by expression of known dominant-negative ATPase-defective 

forms of VPS4A. Proband-derived fibroblasts had enlarged endosomal structures with 

abnormal accumulation of the ESCRT protein IST1 on the limiting membrane. VPS4A 

function was also required for normal endosomal morphology and IST1 localisation in iPSC-

derived human neurons. Mutations affected other ESCRT-dependent cellular processes, 

including regulation of centrosome number, primary cilium morphology, nuclear membrane 

morphology, chromosome segregation, mitotic spindle formation and cell cycle progression. 

We thus characterize a distinct multisystem disorder caused by mutations affecting VPS4A, 

and demonstrate that its normal function is required for multiple human developmental and 

cellular processes.  
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Introduction 

The endosomal sorting complexes required for transport (ESCRTs) are multifunctional 

membrane modelling machineries that drive membrane fission or constriction in cellular 

processes that involve “inside out” membrane topology.1-3 These are exemplified by fission 

reactions that cause vesicle budding away from the cytoplasm, in which ESCRT-III 

complexes assemble on the inner cytosolic face of a vesicle neck and promote membrane 

constriction from the inside. Modification of ESCRT-III complexes drives fission, and this is 

performed by the catalytic activity of members of the VPS4 ATPase family (which in 

vertebrates comprises two paralogues, VPS4A and VPS4B) – thus VPS4 is an indispensable 

component of all ESCRT-related membrane modelling.4 Processes that involve this type of 

membrane topology include formation of the late endosomal multivesicular body (MVB), 

nuclear envelope reformation and the abscission stage of cell division, amongst others.1-3 In 

addition, certain ESCRT-III-associated proteins are active in more conventional “outside in” 

fission, notably in endosomal tubule fission, where atypical ESCRT-III proteins constrict 

from the outside to promote fission of sorting tubules from the endosomal body.5; 6 

Study of the ESCRT complexes and VPS4 in the endocytic pathway has informed 

mechanistic understanding of their role in membrane modelling.2; 3; 7-9 Endocytosis regulates 

the cell surface concentration of plasma membrane proteins and so controls multiple critical 

cellular processes. After endocytosis from the cell surface, membrane proteins are trafficked 

to the early sorting endosome, from where they may be sorted away from the endosomal 

system (e.g. to the plasma membrane) or retained for degradation in the late endosome-

lysosome pathway.10 Membrane proteins to be degraded are exposed to the lumenal 

degradative compartment of the late endosome and lysosome by a process involving inward 

budding of the endosomal limiting membrane to form the intralumenal vesicles (ILVs) of the 

late endosome or multivesicular body (MVB). Concentration and sorting of cargoes into, and 
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formation of, the ILVs is accomplished by the action of the ESCRT- 0, I, II and III 

complexes.3; 7-9 In the final stage of this process, ILVs are released into the MVB lumen by 

the ESCRT-III complex, comprising a number of charged multivesicular body proteins 

(CHMPs) that are recruited from monomeric cytosolic pools to form a filamentous structure 

inside the ILV neck. Complex formation is accompanied by a conformational change in the 

CHMP proteins that exposes C-terminal motifs that bind to MIT (Microtubule-interacting and 

trafficking) domains in interacting proteins such as VPS4, promoting their endosomal 

recruitment.11-14 VPS4 functions as a hexameric ring which, using energy from ATP-

hydrolysis, modifies the ESCRT-III complex filaments by unfolding subunits through its 

central pore – this subunit removal has been proposed to constrict ESCRT-III filaments and 

tighten the ILV neck.1; 4  

ESCRT-III proteins and VPS4 also have roles unrelated to membrane modelling, participating 

in the dynamic control of mitotic spindle morphology and mitotic spindle checkpoint 

signalling, as well as in multiple aspects of centrosome biology and primary cilium formation. 

Cells lacking many different individual ESCRT-III or VPS4 proteins develop aberrant nuclei 

composed of fragmented or interconnected micronuclei, an increased number of centrosomes, 

multipolar spindles and abnormal chromosome alignment during metaphase.15 In addition, 

VPS4 dynamically localises to centrosomes and regulates centrosome function, position, 

number and morphology.15; 16 Related to this, loss of VPS4 or over-expression of a dominant 

negative ATPase-defective VPS4 mutant has also been linked to reduced primary cilium 

formation independent of ESCRT-III, via a mechanism proposed to involved disrupted 

centriolar satellite assembly at the centrosome.16 

Although mutations in the ESCRT-III proteins CHMP1A, CHMP2B and CHMP4B cause 

autosomal recessive pontocerebellar hypoplasia (MIM 614961), autosomal dominant 

amyotrophic lateral sclerosis - frontotemporal dementia (MIM 614696) and autosomal 
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recessive cataract (MIM 605387) respectively, somewhat surprisingly other ESCRT-III-

related proteins have not been linked to genetic disease.17-19 In this study, we have identified 

and functionally characterised multiple de novo heterozygous missense mutations in VPS4A 

(MIM 609982), which cause a severe neurodevelopmental disorder characterised by severe 

hypotonia and developmental delay (DD), intellectual disability (ID), structural brain 

abnormalities including thin corpus callosum and ponto-cerebellar hypoplasia, extrapyramidal 

neurological dysfunction, congenital cataracts with visual dysfunction, sensorineural deafness 

and haematological abnormalities, providing evidence of an essential function of this ATPase 

in multiple cellular and developmental processes in humans.  
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Materials and Methods 

Subjects 

Clinical data and DNA specimens were collected, stored and used following procedures in 

accordance with the ethical standards of the declaration of Helsinki protocols, with signed 

informed consents from the participating subjects or families. The study was approved by the 

local Institutional Ethical Committee of the Ospedale Pediatrico Bambino Gesù, Rome 

(1702_OPBG_2018) and the Cambridge South Research Ethics Committee (13/EE/0325). 

All probands except proband 5 were analysed in the context of dedicated research projects 

focused on undiagnosed disorders, while proband 5 was referred for diagnostic genetic 

testing. Explicit permission was obtained to publish the photographs of the subjects shown in 

Fig. 1.  

Genomic analyses 

WES and WGS was performed using DNA samples obtained from leukocytes. A trio-based 

strategy was used in all cases. WES and WGS data processing, and variant filtering and 

prioritization by allele frequency, predicted functional impact, and inheritance models were 

performed as previously reported.20-22 The de novo origin of the VPS4A mutations was 

confirmed by Sanger sequencing (primer sequences available on request). 

Protein sequence conservation and mapping of variants to homologous VPS4 protein 

structures 

Sequence conservation of VPS4 proteins was analysed across orthologous and paralogous 

protein sequences for different model species as previously described.23 Constrained coding 

regions model was run for gnomAD 2.1.1 exomes.24 

There are protein structures homologous to human VPS4A in hexameric or monomeric forms 

in Protein Data Bank (PDB).25 Because the hexamer is the functional form of VPS4A, first 
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we mapped all the de novo missense variants to the homologous yeast VPS4, since it is the 

most similar structure to human available in this oligomeric state. This structure has ADP 

bound and a cyclic peptide in the central pore (PDB ID 6OO2, cryo-EM with resolution 

4.4Å).26 Then, we compared our observations to the monomeric forms using the homologous 

human and mouse VPS4B, all X-ray crystal structures. These were in apo forms (human PDB 

ID 1XWI, with resolution 2.8Å; mouse PDB ID 2ZAM, with resolution 3.5Å) and in ATP or 

ADP bound forms (mouse PDB ID 2ZAN and 2ZAO, with resolution 2.8Å and 3.2 Å 

respectively).27; 28 All structures were visualized and aligned with PyMOL version 2.0 (The 

PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC). 

Antibodies  

Antibidies used: rabbit polyclonal anti-beta III tubulin (ab18207), rabbit polyclonal anti-

CHMP2B (ab33174), mouse monoclonal anti-M6PR (ab2733), mouse monoclonal anti-

MAP2 (ab11268), rabbit polyclonal anti-pericentrin (ab4448), rabbit polyclonal anti-Tau 

(ab64193) from Abcam; mouse monoclonal anti-CD63 (clone H5C6; Developmental Studies 

Hybridoma Bank, University of Iowa); rabbit polyclonal anti-Cathepsin D (219361), rabbit 

polyclonal anti-Histone H2A.X (07-627), mouse monoclonal anti-myc (clone 4A6, 05-724) 

from EMD Millipore; mouse monoclonal anti-TfnR (13-6800), mouse monoclonal Anti-

BrdU (B35130) from Invitrogen; IRDye-conjugated secondary antibodies from LICOR; 

rabbit polyclonal anti IST1 (51002-1-AP) from Proteintech Group; mouse monoclonal anti-

SNX1 (611582), anti-EEA1 (610456), anti-Rab5 (610742) from BD transduction 

laboratories; mouse monoclonal anti-CHMP6 (clone B-3; sc-398963), mouse monoclonal 

anti-EGFR (clone A-10, sc-373746), mouse monoclonal anti-LAMP1 (H4A3), mouse 

monoclonal anti-lamin A/C (E-1: sc-376248), mouse monoclonal anti-acetylated α-tubulin 

(sc-23950), mouse monoclonal VPS4A (clone A-11, sc-393428) from Santa Cruz 

Biotechnology, Inc; horseradish peroxidase (HRP)-conjugated secondary antibodies, mouse 
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monoclonal anti-β-tubulin (T4026) from Sigma-Aldrich; rabbit polyclonal anti-GAPDH 

(2118), mouse monoclonal anti-Nanog (clone 1E6C4, 4893), rabbit polyclonal anti-oct-4 

(2750), rabbit polyclonal anti-Sox2 (2748) from Cell Signalling Technology; Alexa Fluor 

488-, 594- and 568-labelled secondary antibodies for immunofluorescence from Molecular 

Probes. 

Constructs 

Lentiviral plasmids used the A62 backbone and the packaging plasmids pMD VSV-G and 

pCMV Δ8.91. A62-myc-VPS4A was generated by cloning VPS4A from pLNCX2-mCherry-

VPS4A into the A62 vector (NheI-EcoRI) with the addition of an N-terminal myc tag. Mutant 

versions of A62-myc-VPS4A (p.R284G, p.R284W, p.E228Q, p.E206K, p.I337V and 

p.P168S) were generated by site-directed mutagenesis. sgRNA sequences targeting the 

transcription start site of VPS4A were selected from the Weissman CRISPRi-v2 library.29 

Sense and antisense sgRNA oligonucleotides were designed with 5’CACC and 3’CAAA 

overhangs, respectively and cloned into pKLV-U6gRNA-EF(BbsI)-PGKpuro2ABFP (BpiI) 

for lentivirus production. The following sgRNA were used: 

Scrambled: GGGACGCGAAAGAAACCAGT 

VPS4A G1: GGCAGGGCGGCCGCTCGCAG 

VPS4A G2: GACTCGGCTCCCGCTGCGAG 

VPS4A G3: GGGAGCCGAGGTACTGGGTC 

pLNCX2-mCherry-VPS4A was a gift from Sanford Simon (Addgene plasmid # 115334; 

RRID:Addgene_115334). pKLV-U6gRNA-EF(BbsI)-PGKpuro2ABFP was a gift from 

Kosuke Yusa (Addgene plasmid # 50946; RRID:Addgene_50946). A62 was a gift from 

Michael Fernandopulle (University of Cambridge, UK).  

Cell Culture 
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Proband fibroblasts, HeLaM and HEK-293T cells were grown in complete Dulbecco’s 

Modified Eagle’s Medium (DMEM, Sigma-Aldrich) supplemented with 10% foetal bovine 

serum (FBS, Sigma-Aldrich), 100 U/mL penicillin and 100 µg/mL streptomycin (Sigma-

Aldrich) and 2 mM L-Glutamine (Sigma-Aldrich). Human i3N and CRISPRi-i3N iPSCs 

(generated in a WTC11 iPSC background line) were a gift from Michael Ward (NIH, 

Bethesda, USA). iPSCs were cultured in TESR-E8 (STEMCELL Technologies) on dishes 

coated with Matrigel Matrix (Corning). TESR-E8 was replaced daily and cells were passaged 

at 80%-90% confluency with 0.5 mM EDTA to maintain colony growth and with the ROCK 

inhibitor Y-27632 (10 µM, Tocris). CRISPRi-i3N iPSCs stably expressing pKLV were 

additionally cultured in the presence of 2 µg/mL puromycin (Sigma-Aldrich). All cell lines 

were cultured with 5% CO2 at 37°C and were regularly tested for mycoplasma contamination.  

HeLa Cell transfection 

HeLa cells were transfected with purified plasmid using polyethylenimine (PEI, Sigma-

Aldrich). In brief, a mixture of 50 µL optiMEM and 1.69 µg of DNA was prepared and 

incubated at room temperature for 5 minutes. Another mixture containing 150 µL optiMEM 

and 3.38 µL PEI was prepared and incubated for 5 minutes. Both solutions were then mixed 

together and incubated for 20 minutes. The total volume was then added to one well of a 6-

well plate, already containing 1.5 mL of DMEM supplemented with 10% FBS and 2 mM L-

Glutamine. Cells were typically transfected 24 h after plating and incubated with transfection 

reagents for 29 h. 

I3Neuron differentiation 

Differentiation into i3Neurons was as previously described, with slight modifications.30 

Briefly, on Day 0 iPSCs were dissociated into single cells using StemPro Accutase (Thermo 

Fisher Scientific) and seeded at a density of 150,000 cells/cm2 on Matrigel-coated culture 
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dishes in Induction Medium (IM) composed of DMEM/F-12, 1X N-2 Supplement, 1X MEM 

Non-Essential Amino Acids Solution, 1X GlutaMAX Supplement (all Thermo Fisher 

Scientific), 10 µM Y-27632 and 2 µg/mL doxycycline hydrochloride (Sigma-Aldrich). Pre-

differentiated cells were maintained in IM for 3 days with daily medium changes. After the 3-

day differentiation period, cells were dissociated with StemPro Accutase and seeded at 5 x 

104 cells/cm2 onto culture plates coated with 0.1 mg/mL poly-L-ornithine (Sigma-Aldrich). 

Cells were maintained in Cortical Neuron Culture Medium, composed of BrainPhys 

Neuronal Medium (STEMCELL Technologies), 1X B-27 Supplement (Thermo Fisher 

Scientific), 10 ng/mL BDNF (PeproTech), 10 ng/mL NT-3 (PeproTech) and 1 µg/mL mouse 

Laminin (Thermo Fisher Scientific) with half media changes carried out every 3-4 days. 

Stable cell lines 

Stable cell lines were generated by lentiviral transduction of iPSCs with the VPS4A and 

sgRNA lentivectors described earlier. Briefly, HEK-293T cells were co-transfected with a 

lentiviral expression construct and the packaging vectors pCMVΔ8.91 and pMD VSV-G at a 

ratio of 1:0.7:0.3 using TransIT-293 (Mirus Bio) as per the manufacturer’s instructions. The 

viral supernatant was collected 48 h post-transfection, passed through a 0.45 µm filter, and 

added to target cells in the presence of 10 µg/mL polybrene (Sigma-Aldrich). Typically, 

following spinoculation at 1800 rpm for 1h at 32°C, cells were transduced for 16 h. 

Transduced cells were selected by adding puromycin at a final concentration of 1 µg/mL 

from 24 h if required. 

Immunoblotting 

Cells were washed twice on ice with PBS and subsequently scraped with ice-cold Triton X-

100 lysis buffer (1% Triton X-100, 150 mM NaCl, 50 mM HEPES pH 7.4, 1 mM EDTA, 

10% (v/v) glycerol and protease inhibitors). Samples were centrifuged at 20,000 g for 10 
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minutes at 4°C. Sample buffer was added to supernatant and samples were heated at 95°C for 

5 minutes. Proteins were resolved by SDS-PAGE and transferred to a PVDF membrane. 

Membranes were blocked in 5% (w/v) skimmed milk powder in PBS containing 0.1% Tween 

20 for 30 minutes at room temperature before being probed with primary and secondary 

antibodies. Membranes were visualised using an ECL Western Blotting Detection Kit (GE 

Healthcare) for HRP-conjugated antibodies or, for IRDye-conjugated secondary antibodies, 

imaged directly for infrared fluorescence signal detection on an Odyssey Infrared Imaging 

System using LICOR Image Studio software (LICOR, US). Western blots were quantified by 

densitometry using ImageJ. 

Analysis of centrosome and mitotic spindle number, morphology and chromosome 

segregation 

After 24 h of culture in complete medium, fibroblasts were treated with 2 mM thymidine 

(Sigma-Aldrich) for 24 h, washed with PBS 1X, recovered with complete medium for 3 h and 

then treated with 100 ng/ml nocodazole (Sigma-Aldrich) for 12 h. Afterwards, fresh drug-free 

medium was added and recovery was allowed for the different time points (15 to 120 minutes) 

by fixing cells every 15 minutes using PHEMO buffer for 10 min at room temperature.  

Primary cilium analysis 

Cells were plated onto coverslips, maintained for 24 h in low serum medium to promote 

emission of cilia and then fixed in absolute chilled methanol for 10 minutes at -20°C.  

BrdU assay 

Assessment of cells in the different cell cycle phases was performed by dual flow cytometry 

analysis of cells incorporating BrdU and stained with the fluorescent DNA probe propidium 

iodide (PI). Briefly, cells were incubated for 1 h with BrdU (Sigma-Aldrich) at a final 

concentration of 30 µM. Then, BrdU was removed, cells were rinsed with PBS prior 
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harvesting, and permeabilized using ice-cold 100% ethanol. Cells were incubated with HCl 

3N to denature DNA, and 0.1 M sodium tetraborate to stop this reaction. Finally, fibroblasts 

were incubated with an anti-BrdU antibody followed by goat anti-mouse Alexa Fluor 488 

secondary antibody. Cells were then re-suspended in a buffer containing 10 µg/ml RNase A 

and 20 µg/ml PI and immediately analysed by FACS. 

Cytokinesis-block micronucleus and chromosome aberration assays 

The cytokinesis-block micronucleus assay was conducted following a previous protocol.31 In 

actively dividing cells, cytokinesis was blocked with 4.5 µg/ml cytochalasin B (Sigma-

Aldrich), an inhibitor of actin polymerization. Twenty four hours later, cells were collected by 

cytospin centrifugation (Shandon Cytospin 3, Thermo Fisher Scientific) at 600 r.p.m for 5 

min and fixed in absolute methanol at −20°C for 10 min. Slides were stained with 3% Giemsa 

(Sigma-Aldrich) in Sorensen buffer, pH 6.8, and the analysis was performed by using an 

optical microscope. Cells were analysed following previously reported criteria.31  

Chromosome aberrations were analysed in mitotic cells obtained from actively dividing cells 

treated for 2 hours with colcemid (0.1 µg/ml, Sigma-Aldrich). Cells were harvested by 

standard procedures. Briefly, after 10 min incubation at 37°C in 0.075 M KCl, fibroblasts 

were fixed three times with cold methanol/acetic acid (3:1). Slides were prepared by a 

conventional air-drying technique and stained with 5% Giemsa in Sorensen buffer pH 6.8.  

Immunofluorescence microscopy on fixed cells 

Cells were fixed at room temperature in 3.7% (v/v) formaldehyde in PBS and permeabilised 

in PBS containing 0.1% (v/v) saponin (Sigma-Aldrich) or 0.1% (v/v) Triton X-100 (Sigma-

Aldrich). Coverslips were labelled with primary and secondary antibodies as previously 

described.32 Slides were analysed with a LSM980 confocal microscope (63x NA 1.40 oil 

immersion objective, 37°C), LSM880 confocal microscope (100x or 63x NA 1.40 oil 
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immersion objective, 37°C), LSM780 confocal microscope (63x NA 1.40 oil immersion 

objective, 37°C), Leica TCS SP2 AOBS confocal microscope (63x NA 1.40 oil immersion 

objective, 37°C) or an AxioImager Z2 Motorized Upright Microscope (100x or 63x NA 1.40 

oil immersion objective, room temperature, Axiocam 506; ZEISS). Images were 

subsequently processed using Huygens Professional software for deconvolution, ImageJ, 

Adobe Photoshop and Adobe Illustrator.  

Image analysis and quantitation 

To determine the percentage of cells with large marker-positive endosomes, the largest 

organelle per cell was measured using ImageJ, with at least 100 cells recorded per 

experimental condition. For quantification of the mean number of puncta per cell, images of 

≥20 cells per condition were analysed using the ImageJ ‘analyse particles’ command. Co-

localisation analysis was performed by a) individual puncta were first delineated by intensity 

thresholding in ImageJ and the number of co-localised puncta were then counted manually for 

5 cells (proband fibroblasts) or ≥ 20 cells per condition per experimental replicate 

(i3Neurons), or b), the extent of co-localisation was determined by calculating the Pearson’s 

correlation coefficient for red and green pixels in each cell using the Coloc2 ImageJ plugin for 

10 cells per condition. To assess the percentage of cells with aberrant centrosome number, 

≥25 cells were analysed in each of the 6 biological repeats for each experimental condition 

(200 cells/line). To assess the percentage of cells with aberrantly shaped nucleus, ≥40 cells 

were analysed in each of the 4 biological repeats for each experimental condition (200 

cells/line). To assess the percentage of cells with micronuclei and nucleoplasmic bridges, 200 

cells (micronuclei) or 250 (nucleoplasmic bridges) were analysed in each of the 5 

(micronuclei) or 4 (nucleoplasmic bridges) biological repeats for each experimental condition 

(1000 cells/line). For the analysis of chromosome aberrations, ≥30 well-spread metaphases 

were analysed in each of the 3 biological repeats for each experimental condition (100 



 16 

cells/line). Since fixation procedures may often result chromosome loss, the analysis was 

restricted to metaphases containing 45-46 chromosomes. To assess DNA damage, ≥40 cells 

were analysed in each of the 4 biological repeats for each experimental condition (200 

cells/line), counting only cells showing more than 20 foci positive to γ-H2AX staining. 

Finally, for determining the amount of cells with aberrant primary cilium, a total of 100 cells 

were analysed for each cell line over two experiments. 

Statistical analysis  

Statistical analysis and post hoc tests were carried out as described in figure legends using 

GraphPad Prism 8. The statistical significance is denoted on graphs by asterisks (*), where 

*P<0.05, **P<0.01, ***P<0.001 and n.s = not significant. 
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Results 

Genetic Analysis 

Using data from GeneMatcher, the UK National Institute for Health Research Bioresource 

and Genomics England Research Consortium,33 or repositories linked to diagnostic testing 

(GeneDx Laboratory), 6 unrelated individuals with de novo variants in VPS4A 

(NM_013245.3) were identified. All had a common and distinctive phenotype including 

microcephaly, profound neonatal onset of hypotonia and global developmental delay, with 

similar structural brain abnormalities and cataracts in the majority. 

Five of the probands had de novo heterozygous missense variants at amino acid position 284. 

These included four (Probands 1, 3, 4 and 5) who had a c.850A>T (p.Arg284Trp) substitution 

and a single case (Proband 2) with a c.850A>G (p.Arg284Gly) change. Three of these cases 

were identified from a trio-based whole genome sequencing (WGS) approach (Probands 1, 3 

and 4),34; 35 whilst the others were identified using trio-based whole exome sequencing (WES) 

in the context of the Undiagnosed Patients Program at the Ospedale Pediatrico Bambino Gesù 

(Proband 2) or within routine care by GeneDx Laboratory (Proband 5). In addition, trio WGS 

in a further case identified a de novo variant at c.616G>A (p.Glu206Lys; Proband 6). In each 

case, there was a single plausible de novo variant in the absence of any pathogenic variant in 

genes previously associated with Mendelian diseases. Subsequent WGS in Proband 2 further 

excluded the occurrence of other clinically relevant variants. The DNA variants causing the 

p.Arg284 and p.Glu206 alterations were not present in control population databases 

(gnomAD, ExAC, TOPMed), fell in regions highly constrained for variation in control 

populations (Fig. 1A) and affected conserved amino acids of the AAA ATPase domain of 

VPS4A that are invariable across VPS4 family members from multiple species (Fig. S1). 

They had strong computational evidence for pathogenicity (Table S1).  
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Two DNA variants c.502C>T (p.Pro168Ser) and c.1009A>G (p.Ile337Val), were also 

observed in one and three unrelated families respectively from the Genomics England 

Research Consortium. These were also absent from gnomAD. However, the mode of 

inheritance of the variants was unavailable and the pathogenicity of these substitutions was 

less plausible computationally, with lower CADD (25 and 23) and REVEL scores (0.911 and 

0.336) respectively. Additionally, the clinical phenotype of the probands was of non-specific 

ID, without the distinctive features that were prominent in the other subjects, so these variants 

were assessed as having uncertain significance.  

Mapping of putative pathogenic missense variants in VPS4A to homologous VPS4 

protein structure 

Protein structural mapping of the putative pathogenic variants to the yeast VPS4 homologous 

protein structure revealed their proximity to the ATP catalytic site and the pore lining loops. 

Arg284 was a hot-spot of de novo mutations in our subjects. It is one of two arginine residues 

known as the arginine fingers, a motif that is part of the interface between chains of the 

hexamerised VPS4, where the catalytic active site is assembled (Fig. 1B-D). Mutations of 

equivalent arginine finger residues have been studied in multiple ATPases, and cause 

complete loss of in vitro or in vivo catalytic activity of the protein, indicating that they are 

necessary for ATP hydrolysis.36 The arginine fingers may also be important for 

oligomerisation of ATPase protein complexes.36 Thus, existing functional data strongly 

support a deleterious effect of mutations affecting Arg284. 

In contrast, the Glu206 residue is functionally uncharacterised. It is located by the N-terminal 

of the α3-helix in the boundary with the Pore loop 1 (Fig. 1B-D). The lateral chain of Glu206 

(Glu211 in yeast) points to the α5-helix that is on top and connected to Pore loop 2 in all the 

chains of the hexamer (Fig. 1B-D, Fig. S2A). Pore loops 1 and 2 are very flexible and shape 

the central pore of the hexamer in ATPases. In the yeast structure both interact with a 
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synthetic peptide that mimics ESCRT-III proteins, highlighting their role on the translocation 

of these proteins through the pore (Fig. 1D).26 The replacement of Glu206 by lysine 

introduces a change from a negative to a positively charged and slightly bigger lateral chain. 

Additionally, mapping of this position to the monomeric human and mouse VPS4B shows 

that the Glu213 (equivalent to Glu206) adopts different orientations, and the N-terminal of the 

α3-helix is slightly unfolded with the coordinates of Pore loop 1 unresolved (Fig. S2B), 

suggesting a possible conformational change in this region between the monomeric and 

hexameric forms. Therefore, we suggest that this variant is likely to affect the fold of the N-

terminal of α3-helix, the flexibility of the Pore 1 loop and the lateral interactions between α3 

and α5 helices, hence resulting in alterations in the recognition and translocation of ESCRT-

III proteins. 

Clinical profile of probands 

The six probands with de novo substitutions affecting Glu206 and Arg284 had a consistent 

phenotype characterized by severe DD, profound ID and dystonia (Figs. 1E, S3, Table S1, see 

Supplemental Note). Children were very delayed in establishing head control and none 

achieved independent walking. Other common findings were cerebellar hypoplasia (five 

individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a 

variable degree of corpus callosum hypoplasia. One individual also had bilateral 

polymicrogyria. Epilepsy was present in three and dystonia in five. Eye involvement was also 

a common finding, including congenital cataract, retinal dystrophy, and in one case congenital 

Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. 

Three subjects had anaemia, which was characterised as dyserythropoietic in two. Severe 

feeding difficulties were present in four individuals, requiring assisted feeding in three. Two 

had sensorineural deafness. Severe growth retardation, generally for all parameters, was 

present in most cases. Notably, severe microcephaly (typically with Z scores < -5) was 
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universal. Overall, the disorder seems to have a poor prognosis as two affected individuals 

died in childhood or early adult life (Table S1).  

In general, the affected individuals presented with a complex and severe phenotype with some 

features reminiscent of a ciliopathy-related disorder (cerebellar hypoplasia, retinal dystrophy 

or Leber amaurosis, sensorineural deafness), a significant neurodevelopmental condition 

(severe microcephaly and ID), and other features including cataracts, hepatosplenomegaly and 

congenital anaemia, giving rise to a distinct syndrome.  

VPS4A disease-associated variants have a dominant negative effect on endosomal 

morphology 

To investigate the molecular pathological mechanism of the disease-associated VPS4A 

alterations, we first examined the cellular expression of VPS4A, and found no alteration in 

protein abundance in fibroblasts from individuals with de novo p.Arg284Trp or p.Arg284Gly 

substitutions versus healthy parental controls, suggesting that mutant protein stability is 

unaltered (Fig. 2A,B). 

The published, rationally designed VPS4A-Glu228Gln mutant and the equivalent VPS4B 

mutant (p.Glu235Gln) are ATP hydrolysis-defective. Cultured cells over-expressing either of 

these mutants develop significantly enlarged endosomal vacuoles, caused by a dominant 

negative effect of incorporation of the ATPase-defective protein into VPS4 hexamers and 

subsequent failure of disassembly of the ESCRT complexes, which in turn makes ESCRT 

proteins unavailable for subsequent rounds of ILV formation.37-39  

 We used this phenotype to interrogate whether the identified disease-associated variants have 

a dominant negative effect on VPS4A function. We first confirmed that, as expected, 

expression of VPS4A-Glu228Gln in HeLa cells caused an enlarged endosomal vacuolar 

phenotype, in contrast to wild-type VPS4A, which exhibited a pan-cytosolic distribution 
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consistent with its known expression pattern (Fig. 2C, D). Expression of VPS4A-Arg284Trp, 

VPS4A-Arg284Gly or VPS4A-Glu206Lys caused the development of vacuolar endosomal 

structures identical to those generated by VPS4A-Glu228Gln expression (Fig. 2E-G). In 

contrast, the expression pattern of VPS4A-Pro168Ser and VPS4A-Ile337Val resembled that 

of wild-type VPS4A (Fig. 2H, I). We concluded that the p.Arg284Trp, p.Arg284Gly and 

p.Glu206Lys amino acid substitutions exert a dominant negative effect on VPS4 hexamer 

function, while the p.Pro168Ser and p.Ile337Val sequence changes do not; considered with 

the clinical and bioinformatics data above, this suggests that the latter two variants are 

unlikely to be pathogenic. 

Physiological expression of disease-associated VPS4A causes abnormal endolysosomal 

morphology in proband fibroblasts 

We examined whether physiological expression of heterozygous p.Arg284Trp or 

p.Arg284Gly mutants in proband-derived fibroblasts caused altered endosomal morphology. 

We did not observe extremely large vacuolar structures of the type observed in cells over-

expressing exogenous ATPase-defective VPS4. However, the proband-derived cell lines had 

an increase in the percentage of cells with larger vesicles labelled by EEA1 (an early 

endosome marker), CD63 (which is typically enriched in the ILVs of the late endosome) and 

LAMP1 (enriched in lysosomes), in the absence of significant alterations in the total number 

of endosomal structures of each compartment (Fig. 2J-L). We did not observe any increased 

co-localisation between early endosomal, late endosomal or lysosomal markers in proband 

cells (Fig. S4). Thus heterozygous expression of mutant VPS4A at endogenous levels causes 

significant enlargement of multiple endosomal compartments, without apparent content 

mixing between them. 

Localisation and known functions of the core ESCRT-III complex at endosomes are not 

defective in proband fibroblasts 
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As cells over-expressing dominant negative ATPase-defective VPS4 develop accumulations 

of ESCRT proteins on enlarged endosomal structures, we investigated whether the proband 

fibroblasts showed similar aberrant endosomal ESCRT-III localisation. We examined the 

ESCRT-III protein CHMP2B, a core ESCRT-III component that is recruited to the endosomal 

membrane during ILV formation. Surprisingly, there was no alteration in the number of 

cellular CHMP2B puncta with an area greater than 0.1 µm2, or in the percentage of EEA1- or 

CD63-positive endosomes that were associated with CHMP2B puncta (Fig. S5A,B).  

We examined late endosomal ultrastructure in the proband cell lines. Consistent with the light 

microscopy findings, large endosomes appeared to be more prominent. However, endosomes 

were still competent to make ILVs, a key function of ESCRT-III, as ILVs within MVBs were 

readily observed in the proband cells (Fig. S5C). 

Efficient degradation of the epidermal growth factor receptor (EGFR) involves sorting to the 

ILVs of the MVB, via a mechanism that requires core ESCRT-III components.40 EGFR 

degradation is inhibited by VPS4B depletion, either alone or combined with VPS4A 

depletion, or by expression of dominant negative ATPase-defective VPS4B-Glu235Gln.38; 41-

43 To our knowledge the specific role of VPS4A in this process has not been investigated. We 

examined EGFR degradation in proband fibroblasts carrying the VPS4A-Arg284Trp or 

VPS4A-Arg284Gly mutants and, consistent with the retained competence of these cells to 

make ILVs and regulate endosomal localisation of core ESCRT-III components, we found 

that it was not inhibited; indeed EGFR degradation was increased at 180 minutes post 

internalisation (Fig. S5D).  

We concluded that heterozygous expression of mutant VPS4A in proband cells does not affect 

the cellular distribution of a core ESCRT-III complex member, prevent formation of ILVs, or 

adversely affect the degradation of EGFR. 
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The atypical ESCRT-III protein IST1 accumulates on endosomes in proband fibroblasts 

ESCRT-III proteins also play a role in fission of endosomal sorting tubules from the parent 

endosome. Rather than involving the core ESCRT-III complex, this activity is mediated by a 

complex formed of two atypical ESCRT-III proteins, IST1 and CHMP1B.5; 6; 44 Suitable 

antibodies are available to visualise IST1 by immunofluorescence. At steady state IST1 is 

localised in juxtaposition with early endosomal markers, and it is recruited to endosomal 

membranes by dominant negative VPS4A-Glu228Gln.45 We examined the appearance and 

localisation of IST1 and observed an increased number of IST1 puncta and increased 

percentage of EEA1-positive endosomes associated with IST1 puncta in proband-derived 

fibroblasts with the p.Arg284Trp or p.Arg284Gly substitutions, consistent with the idea that 

VPS4A ATPase activity is required to regulate the association of IST1 with endosomes (Fig. 

3A). No increased recruitment of IST1 to late endosomes or lysosomes was observed (Fig. 

S6). HeLa cells lacking IST1 show increased tubulation of the endosomal tubular marker 

SNX1 caused by a failure of endosomal tubule fission,6 but we did not consistently observe 

this phenotype in the proband fibroblasts (Fig. 3B).  

We concluded that heterozygous VPS4A mutations cause aberrant accumulations of the 

atypical ESCRT-III protein IST1 on endosomal membranes.  

Human neurons lacking VPS4A exhibit similar endosomal phenotypes to proband 

fibroblasts 

In view of the prominent neurodevelopmental phenotype observed in probands affected by 

VPS4A mutants, we attempted to model their effect in human neurons. We first generated i3 

iPSC lines expressing the VPS4A-Arg284Trp or -Arg284Gly mutants, using lentiviral 

transduction of appropriate constructs. In contrast to lines expressing wild-type VPS4A, these 

lines showed no detectable exogenous VPS4A expression by immunoblotting, and only very 
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sparse expression (<1% of cells) was observed by immunofluorescence. Those cells that did 

express the mutant VPS4A exhibited enlarged, vacuolar endosomal structures typical of 

dominant negative VPS4 mutants (Fig. S7).37-39 In i3 iPSCs, the neurogenic transcription 

factor NGN2 is integrated under a doxycycline-responsive promoter at a safe harbour locus in 

the WTC11 iPSC line.46 This experimental system allows simple and rapid generation of 

glutamatergic cortical neurons (i3Ns) upon brief culture of the iPSCs in the presence of 

doxycycline; the cells have morphological and biochemical properties of neurons 14 days 

post-induction, and are electrically active after 21 days (Fig. S8).46 However, no VPS4A-

mutant expressing cells were identified upon differentiation of the i3 iPSCs to neurons and we 

concluded that over-expression of these altered proteins is incompatible with neuronal 

survival. 

In light of the apparent dominant negative effect of the over-expressed VPS4A mutants, we 

reasoned that lack of VPS4A may have similar cellular consequences to heterozygous 

physiological expression of VPS4A mutants that are capable of blocking the function of the 

wild-type protein, and so may provide useful insights into the potential functional effects of 

the mutants in neurons. In addition, analysis of neurons lacking VPS4A will elucidate the 

physiological role of VPS4A in these cells. We therefore employed a modified i3 iPSC 

system, in which CRISPR-inhibition (CRISPRi) machinery is integrated into a safe harbour 

locus.47 In CRISPRi, an enzymatically dead Cas9 fused to a KRAB transcriptional repressor is 

targeted close to the transcriptional start site of a target gene by a single guide RNA (sgRNA), 

thereby inhibiting expression of the gene. This system has advantages over standard CRISPR-

based knock-out systems, including high specificity with strikingly few off-target effects and 

low toxicity.48 We targeted VPS4A for repression in CRISPRi-i3 iPSCs, using two 

independent sgRNAs, confirmed cellular depletion of VPS4A in the iPSCs, then differentiated 

each line to i3Ns (Fig. 4A, B). We examined endosomal morphology in these neurons at 14 



 25 

days differentiation. While there was no significant increase in the percentage of neurons that 

had enlarged EEA1-positive puncta (Fig. 4C), we observed a significant increase in the 

percentage of cells with enlarged structures marked by CD63, LAMP1 or the lysosomal 

enzyme cathepsin D (Fig. 4D, E). In addition, there was an increase in the number of IST1 

puncta per cell and of IST1 localisation on early and late endosomal structures (Fig. 5A, B). 

No difference in the number of puncta of the core ESCRT-III component CHMP6 was 

observed (Fig. 5C). 

We concluded that VPS4A regulates endosomal size and endosomal membrane localisation of 

the atypical ESCRT-III protein in human neurons, and that loss of VPS4A in neurons largely 

recapitulates phenotypes that are observed in proband cells expressing dominant negative 

VPS4A at physiological heterozygous levels. 

VPS4A mutants affect centrosome and mitotic spindle organization, and are associated 

with aberrant chromosomal segregation and G2/M cell cycle arrest  

Centrosomes serve as solid-state signaling platforms to dynamically regulate a wide array of 

cellular structures and processes. The ESCRT-III complex and VPS4 proteins are required to 

maintain normal centrosome morphology and function, and their silencing alters centrosome 

and spindle pole numbers, frequently producing multipolar spindles and defects in 

chromosome segregation and nuclear morphology.15 To further validate the functional 

relevance of the identified VSP4A mutations we analysed centrosome and mitotic spindle 

organization in synchronized proband-derived fibroblasts carrying the heterozygous 

p.Arg284Trp or p.Arg284Gly substitutions. As expected, in interphase, control cells typically 

had two discernible centrosomes (Fig. 6A). Similarly, during mitosis, these cells formed 

normal bipolar spindles with two centrosomes. In metaphase, canonical mitotic spindles with 

properly aligned chromosomes were observed in the vast majority of cases (Fig. 6B). In 

contrast, proband fibroblasts showed an anomalous centrosome number and morphology in 
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interphase (Fig. 6A); similarly, multipolar spindles were observed during mitosis, resulting in 

a high frequency of aberrant chromosome alignment during metaphase (Fig. 6B). Aberrant 

chromosome segregation was documented by the presence of both lagging and bridging 

chromosomes during anaphase and telophase (Fig. 6B), and was associated with polyploidy 

and production of micronuclei, i.e. encapsulated lagging chromosomes or damaged 

chromosome fragments not incorporated in the main nucleus after anaphase (Fig. 7A). 

Consistent with these findings, a high proportion of proband fibroblasts were observed at 

G2/M, as measured by BrdU incorporation flow cytometry analysis (Fig. 7B), which possibly 

results from altered G2/M and abscission checkpoint activation and/or a faulty progression 

towards cell division.49-51 

Proband fibroblasts have abnormal nuclear envelope morphology and increased DNA 

damage 

During anaphase, when chromosome separation has been achieved, the nuclear envelope is 

reassembled around the forming nuclei, to coordinate proper segregation of the nuclear 

content in daughter cells and assure the structural integrity and functionality of the nuclear 

compartment. The ESCRT-III complex and VPS4A and B contribute to nuclear envelope 

sealing and spindle disassembly at the nuclear envelope-microtubule intersection sites during 

mitotic exit,52; 53 and defective ESCRT function causes abnormal nuclear membrane sealing 

and altered morphology.54; 55 Moreover, the ESCRT-III complex contributes to repair of 

nuclear envelope ruptures during interphase, and expression of a dominant negative VPS4A 

protein delayed repair.56; 57 Based on these considerations, we explored possible changes in 

nuclear morphology and architecture in proband fibroblasts expressing the VPS4A-

Arg284Trp or -Arg284Gly mutants. Immunofluorescence microscopy with the nuclear 

envelope marker lamin A/C labelling demonstrated a significant increase in the proportion of 

proband-derived cells with irregular nuclear morphology compared to control cells (Fig. 8A). 
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It has been established that nuclear deformation may result in a breaking of the nuclear 

envelope, which in turn exposes chromosomal DNA to the cytoplasmic environment, thus 

promoting DNA damage. Consistent with this, immunofluorescence microscopic 

identification of γH2AX foci, a marker of damaged DNA, showed an increased number of 

positive cells and foci per cell among those carrying the VSP4A mutants compared to control 

cells (Fig. 8B), indicating increased spontaneous DNA damage. Thus nuclear envelope 

morphology and integrity are altered in fibroblasts from individuals with heterozygous 

VPS4A mutations. 

Defective VPS4A function affects primary cilium morphology 

Vesicular trafficking plays an essential role in cilium biogenesis and function. Of note, VPS4 

has been identified as a dynamic component of the ciliary transition zone, a region in which 

the mother centriole, tethering to plasma membrane by the transition fibres, becomes the 

basal body for primary cilium formation. Defective VPS4A ATP hydrolysis causes a block of 

ciliogenesis after formation of the ciliary vesicle and this function appears to be ESCRT-III-

independent.16 We therefore analysed primary cilium biogenesis and morphology in 

fibroblasts from affected subjects. Assessment of cilium structure in starved fibroblasts 

revealed the presence of aberrant primary cilium formation in both fibroblast lines with 

mutated VPS4A alleles. Specifically, normal cilia were absent in fibroblasts expressing the 

VPS4A-Arg284Gly mutant, which instead showed a visible basal body (dot cilium); 

similarly, a dot cilium was documented in most fibroblasts heterozygous for the p.Arg284Trp 

substitution, although a small number of elongated cilia were also observed in cells from this 

proband (Fig. 8C). Thus defective VPS4A has pleiotropic consequences on diverse cellular 

processes, including perturbation of a variety of centrosome-dependent structures.  
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Discussion 

The ESCRT-III complex and VPS4 together form a multifunctional membrane modelling 

machinery. Against the background of the multiplicity of functions ascribed to ESCRT-III, it 

is perhaps surprising that only three complex members, CHMP1A, CHMP2B and CHMP4B, 

have been implicated in Mendelian genetic disease thus far.17-19 This may be explained by 

functional redundancy between ESCRT-III complex components, or because loss of 

components might lead to an embryonic lethal phenotype, as has been observed in some, but 

not all, mouse models lacking specific CHMP proteins.58; 59 However, we now report a 

distinct syndromic neurodevelopmental disorder caused by dominantly acting amino acid 

substitutions in VPS4A, a key enzyme that regulates ESCRT-III function. We propose the 

acronym CIMDAG (Cerebellar hypoplasia and Cataracts, Intellectual disability, congenital 

Microcephaly, Dystonia and Dyserythropoeitic Anemia, Growth retardation) to highlight the 

main clinical features of this syndrome, which may also include other structural brain 

abnormalities, retinal dystrophy, hepatosplenomegaly and sensorineural deafness. The 

haematological features of this condition are thoroughly characterised in the accompanying 

paper.60 

The pleotropic clinical effects observed in CIMDAG likely reflect the multitude of cellular 

functions in which ESCRT-III and VPS4A participate, including those demonstrated to be 

affected by our studies. In the future it will be important to unravel which ESCRT-III and 

VPS4A functions underlie the pathology of the different clinical phenotypes we observed. 

The centrosomal and mitotic defects we observed are strong candidates to underlie 

microcephaly and other growth impairments in CIMDAG. These processes play a crucial role 

during brain development, including in neurogenesis, neuronal migration and polarity, and 

defects in them commonly underlie neurodevelopmental diseases.61 Defects in mitosis have 

also been linked to dyserythropoietic anaemia and are a feature of the anaemia seen in 
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CIMDAG.60; 62 In contrast, congenital cataract is a recognised feature of lysosomal storage 

diseases and so it may be related to the endolysosomal dysfunction that we observed, which 

may also be relevant for the health of mature post-mitotic neurons, as it has been implicated in 

several forms of neurodegeneration.63 Finally, it is striking that many of the clinical features 

found in our probands (including cerebellar hypoplasia, retinal dystrophy, Leber amaurosis, 

DD, ID, cataract, sensorineural deafness and hypogonadism) occur in ciliopathies, and our 

data support the proposed role of VPS4A in controlling primary cilium morphogenesis.16; 64 

Thus it is possible that abnormal primary cilium function contributes to the CIMDAG 

phenotype. 

Multiple heterozygous VPS4A loss-of-function mutations are present in general population 

databases, indicating that a haploinsufficiency mechanism is unlikely to cause the type of 

severe early childhood condition that we describe.65 In contrast, our data and published 

evidence point to the p.Glu206Lys, p.Arg284Trp and p.Arg284Gly mutants having a 

dominant negative effect. Over-expression of each of these mutants in immortalised cells 

caused development of the highly characteristic enlarged endosomal structures that are 

induced by expression of known dominant-negative forms of VPS4A. Similar, although less 

marked, enlarged endosomal phenotypes were also observed in proband cells. As VPS4A 

protein expression was not altered in proband cells, assuming equal expression of wild-type 

and mutant VPS4A we expect that a large majority of VPS4A hexamers will have impaired 

function as they will contain at least one mutant subunit. This may explain the similar 

endosomal phenotypes we observed in proband fibroblasts and iPSC-derived neurons lacking 

VPS4A.  

The archetypal function for VPS4 proteins is in endosomal sorting and our observations 

elucidate details of the physiological role of VPS4A in this process. Over-expression of 

dominant negative VPS4A in cultured cells affects ILV formation, causes trapping of ESCRT 
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proteins on the endosomal membrane and inhibits EGFR degradation.38; 39 However, a 

surprising observation in our study was that proband fibroblasts expressing dominant negative 

VPS4A mutations at heterozygous physiological levels showed no obvious effect on ILV 

formation or EGFR degradation. Consistent with this, we did not observe accumulation of the 

“core” ESCRT-III complex member CHMP2B on the endosomal membrane, suggesting that 

functional VPS4A is not required for removal of the core ESCRT-III complex from the 

endosomal membrane. This may be because of redundancy between VPS4A and VPS4B – 

previous studies have shown that double knock-down of these proteins is required for 

formation of a “VPS4-dominant-negative”- type endosomal compartment. An ESCRT-

independent ILV formation pathway has also been described, which could also provide an 

explanation for retained ILV formation.66; 67 In contrast, the endosomal localisation of IST1 

was increased in both proband fibroblasts and iPSC-derived neurons lacking VPS4A, so it 

appears that VPS4A is absolutely required for recycling of this protein, the best-characterised 

function of which is in promoting endosomal tubule fission.5; 6 Further studies will be required 

to elucidate the functional consequences of this accumulation on endosomal tubule fission 

dynamics and endosomal receptor traffic, and its relationship to pathogenesis in our probands, 

but we speculate that the enhanced EGFR degradation we observed in patient fibroblasts may 

be explained by defective tubular sorting of this receptor away from endosomal degradation. 

In summary, we have identified de novo missense mutations affecting the key ESCRT-

regulation enzyme VPS4A in probands with a distinct multisystem neurodevelopmental 

condition. Study of the functional effects of the mutations demonstrated that they act by a 

dominant negative mechanism to cause effects on multiple ESCRT-dependent cellular 

pathways, and indicate an absolute requirement for proper VPS4A function in 

neurodevelopment and other physiological developmental processes in humans.  
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Figure Legends 

Figure 1. De novo missense variants in VPS4A mapped to the schematic protein diagram 

and the homologous yeast structure. A) Allele count of missense variants in gnomAD and 

the constrained coding regions’ (CCRs) percentiles are represented for human VPS4A 

(NP_037377) and are aligned with protein domains. The de novo missense variants cluster in 

constrained regions of the large ATPase domain. Coordinates of the protein domains were 

from Pfam (UniProtKB entry Q9UN37). MIT = microtubule interacting and trafficking; AAA 

= ATPase family associated with various cellular activities; AAA_lid = AAA+ lid domain; 

Vps4_C = Vps4 C-terminal oligomerization domain; LC = low complexity region. Disordered 

regions are shaded in translucent grey. B-D) De novo missense variants in VPS4A are mapped 

to the cryo-EM structure of the ATPase domain of the homologous yeast VPS4 in 

homohexameric form (PDB ID: 6OO2). The approximate locations of the active sites are 

shaded in orange, with the ADP nucleotides represented in sticks, when present. The 

conserved motifs that define the ATP binding site and pore loops 1 and 2 are shown in dark 

blue or grey. B) Structure of the homohexamer, with the six chains alternately coloured in 

blue and white. C) Structure of a single chain. Both p.R284W and p.R284G are observed to 

affect the R-finger of the active site and p.E206K affects the intra-chain interface between α3 

and α5-helices, located after the pore loops 1 and 2. Only the name of these two helices is 

shown for clarity. p.E228Q, a rationally-designed mutant that produces dominant-negative 

ATPase-defective VPS4A, falls in the Walker B motif of the active site. D) Zoom in of the 

inter-chain interface. The pore loops 1 and 2 shape the pore and interact with the synthetic 

peptide (in yellow) that shows how the ESCRT-III protein would translocate through the pore. 

E) Images of probands at representative ages.  

Figure 2. VPS4A disease-associated variants have a dominant negative effect on 

endosomal morphology. A) Representative VPS4A immunoblots of fibroblast cell lysates 
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from a proband (Proband 1) with the p.R284W sequence change and her parents (control-1 

and control-2), and from a proband (Proband 2) with the p.R284G sequence change. B) 

Immunoblot band intensities from 3 such experiments were quantified, normalised to GAPDH 

loading control values, and plotted in the corresponding graph. C-I) HeLa cells were 

transfected with constructs expressing wild-type myc-VPS4A, myc-VPS4A containing the 

rationally-designed ATPase-defective p.E228Q mutant, or myc-VPS4A harbouring the 

sequence changes identified in probands. Cells were fixed, labelled with anti-Myc and anti-

RAB5 antibodies and visualised with confocal microscopy. The inset panels show higher 

magnification views of the boxed regions- examples of large vacuolar endosomal structures 

are shown. J-L) Cultured fibroblasts from the control subjects and probands indicated were 

fixed, labelled with EEA1 (early endosomes) (J), CD63 (preferentially labels late endosomes) 

(K) and LAMP1 (predominantly labels lysosomes) (L), then visualised by widefield 

immunofluorescence microscopy. The percentage of cells with an endosomal organelle over a 

nominal cut-off size and the number of labelled organelles per cell was counted in n=3 

biological repeats for each marker (in 100 cells per experimental condition in each repeat), 

then quantified in the corresponding charts. Bars in all plots show mean ± S.E.M., p-values 

calculated by one-way ANOVA with Tukey’s post-hoc test for repeated measures. Scale bars 

= 10 µm. 

Figure 3. The atypical ESCRT-III protein IST1 accumulates on endosomes in proband 

fibroblasts. A) Cultured fibroblasts from control subjects or the probands indicated were 

fixed, labelled against EEA1 and IST1, then visualised with confocal immunofluorescence 

microscopy. The number of IST1 puncta per cell and the percentage of EEA1-positive 

endosomes associated with an IST1 punctum was quantified in 3 such experiments (in 5 cells 

per experimental condition in each biological repeat) and plotted in the corresponding charts. 

Arrows indicate juxtaposed or co-localised puncta. B) Cultured fibroblasts from control 
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subjects or the probands indicated were fixed and labelled for the endosomal tubular marker 

SNX1, then visualised with widefield immunofluorescence microscopy. The percentage of 

cells with at least one SNX-1-positive tubular structure >1.2µm in length was quantified in 

100 cells per sample, and the results for 3 such experiments were plotted in the corresponding 

chart. Bars indicate mean ± S.E.M., p-values calculated by one-way ANOVA with Tukey’s 

post-hoc test for repeated measures. Micrograph scale bars = 10 µm. 

Figure 4. Human neurons lacking VPS4A exhibit similar endosomal phenotypes to 

proband fibroblasts. A) CRISPRi-i3N iPSCs with were transduced with a scrambled sgRNA 

and three separate sgRNAs (G1-G3) directed against VPS4A. Cell lysates were 

immunoblotted against VPS4A. B) Selected lines were treated with doxycycline to induce 

neuronal differentiation, then blotted against VPS4A 14 days later. GAPDH signal validates 

equal lane loading. C) CRISPRi-i3N iPSCs expressing the guides indicated were 

differentiated to neurons for 14 days, fixed and labelled for EEA1. The percentage of cells 

with an EEA1-positive organelle over a nominal cut-off size was visualised by widefield 

microscopy and quantified in 3 experiments (≥ 100 cells per experimental condition in each 

repeat). The number of EEA1-positive endosomes per cell was visualised using confocal 

microscopy and quantified in 3 experiments (≥ 20 cells per experimental condition in each 

repeat). Quantifications are plotted in the corresponding graphs. D) i3Neurons expressing the 

sgRNAs indicated were fixed and labelled for CD63, then visualised by widefield 

microscopy. The percentage of cells with a CD63 organelle over a nominal cut-off size was 

quantified as described for EEA1. E) i3Neurons expressing the sgRNAs indicated were fixed 

and labelled for LAMP1 and cathepsin D, then visualised by widefield microscopy. The 

percentage of cells that had a LAMP1 or cathepsin D organelle over a nominal cut-off size 

was quantified as described for EEA1. Bars show mean ± S.E.M., p-values generated by one-

way ANOVA with Tukey’s correction for multiple testing. Scale bars = 10 µm. 
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Figure 5. The atypical ESCRT-III protein IST1 accumulates on endosomes in human 

neurons lacking VPS4A. i3Neurons expressing the guides indicated were fixed and labelled 

for IST1 and EEA1 (A) or IST1 and CD63 (B), then visualised by confocal 

immunofluorescence microscopy. The number of IST1 puncta per cell and the percentage of 

EEA1- or CD63- positive endosomes associated with an IST1 punctum was quantified in 3 

experiments per marker (in ≥20 cells per experimental condition in each repeat) and plotted in 

the corresponding charts. Arrows indicate juxtaposed or co-localised puncta. C) i3Neurons 

expressing the guides indicated were fixed and labelled for CHMP6, then visualised by 

confocal immunofluorescence microscopy. The number of CHMP6 puncta per cell was 

quantified in 3 biological repeats (≥20 cells per experimental condition in each repeat). Bars 

indicate mean ± S.E.M., p-values calculated by one-way ANOVA with Tukey’s correction for 

multiple testing. Micrograph scale bar = 10 µm. 

Figure 6. Defective VPS4A function affects centrosome numbers and mitotic spindle 

organization. Confocal microscopy analysis was performed in synchronized skin fibroblasts 

from subjects with VPS4A mutations and control cells. Images are representative of three 

stages of the cell cycle (A), interphase, (B), metaphase and anaphase-telophase. Cells were 

stained using antibodies against pericentrin (centrosome marker) and a-tubulin (microtubules 

and mitotic spindle); chromosomes with DAPI. Scale bars represent 15 µm. The 

corresponding graphs show the mean +/- SEM of 6 separate counts (≥25 cells/line each) for a 

total of 200 cells/line scored.  P-values were calculated by one-way ANOVA with Tukey’s 

correction for multiple testing. 

Figure 7. VPS4A mutations cause aberrant chromosome segregation and alter cell cycle 

progression. A) Staining performed using a fluorescent probe (anti-lamin A/C green) or 

Giemsa show a significant increase in micronuclei (arrow), chromosome bridges (arrow) and 

aneuploidy in proband cells compared to control cells. In experiments to assess micronuclei 
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and chromosome bridges, graphs show the mean +/- SEM of 5 (micronuclei) or 4 

(chromosome bridges) separate counts (200 cells/line each, micronuclei; 250 cells/line each, 

chromosome bridges) for a total of 1000 cells/line scored. In experiments to assess 

aneuploidy, graphs show mean +/- SEM of 3 separate counts (≥30 cells/line each) for a total 

of 100 cells/line scored. B) Cell cycle phases of control (top) and probands’ (bottom) 

fibroblasts as measured by BrdU incorporation and propidium iodide (PI) flow cytometry 

analysis. The upper box identifies cells incorporating BrdU (S phase), the lower left box 

identifies G0/G1 cells, and the lower right box represents G2/M cells. A representative of 

three independent experiments is shown. In all experiments, p-values were calculated by one-

way ANOVA with Tukey’s correction for multiple testing. Graph bars show mean +/- SEM.  

Figure 8. Proband fibroblasts have abnormal nuclear envelope morphology, increased 

DNA damage and abnormal primary cilium morphology. A) An increased number of 

aberrantly shaped nuclei in fibroblasts carrying the VPS4A mutations was observed versus 

control cells. Staining was performed using anti-lamin A/C and DAPI. Scale bar is 10 µm. B) 

Representative images showing an increase number of γ-H2AX foci in probands’ fibroblasts 

carrying compared to control cells. The staining was performed using γ-H2AX antibody and 

DAPI. Scale bar is 2.5 µm. In all experiments, mean +/- SEM of 4 separate counts (≥40 

cells/line each) for a total of 200 cells/line scored. p-values were calculated by one-way 

ANOVA with Tukey’s correction for multiple testing. Graph bars show mean +/- SEM. C) 

Confocal images showing altered primary cilium morphology in proband fibroblasts 

compared to control cells. Cells heterozygous for the p.R284G amino acid change show 

absent cilia with only a visible basal body (dot cilium, zoomed image), whereas cells with the 

p.R284W substitution show either a dot cilium or occasionally an elongated or normal cilium 

(zoomed image). Primary cilia are labelled with acetylated α-tubulin, basal bodies and nuclei 
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are labelled with g-tubulin and DAPI respectively. Scale bar is 5 µm. 100 cells were analysed 

for each line over two independent experiments, bars represent the mean. 

 



















 

Supplemental Note: Case Reports for representative probands. 

Proband 1 (c.850A>T, p.Arg284Trp).   

Proband 1 is the 1st child of healthy unrelated parents. Her father was 35 years old and 

mother 33 years old at the time of her birth.  Routine antenatal testing showed a low PAPP-

A; a Harmony trisomy screening test was normal.  No abnormalities were noted on 

antenatal ultrasound scan, but in view of the low PAPP-A, serial ultrasound screening was 

undertaken; the appearances were normal until around the 36 weeks scan, when growth 

was noted to be small. A semi-urgent caesarean section was undertaken in view of the 

growth and breech presentation; she was born with birthweight of 2310g (Z -2.8) with a 

head circumference of 31.4cm (Z -2.6) at 37 weeks. 

She cried at birth, and did not need any active resuscitation. She would not breast-feed but 

sucked reasonably well by bottle with expressed breast milk. She failed her newborn 

hearing test twice, but further testing subsequently confirmed normal hearing.   

Parents were concerned about her visual behaviour and that she was not fixing or following 

at 8 weeks of age.  Ophthalmological examination showed significant central and lamellar 

lens opacities but no microphthalmia or anterior segment abnormalities.  Her father at that 

time was found to have very mild symptomatic bilateral sutural lens opacities.  Following 

cataract removal, fundal examination on the proband showed an abnormal retinal 

appearance with abnormal atrophic changes at the macula in keeping with a retinal 

dystrophy, which was confirmed with very poor ERG and VEP amplitudes. 

She developed mild symptoms of cow's milk protein intolerance and gastro-oesophageal 

reflux, which was treated with ranitidine and omeprazole, and started on Nutramigen. 

Feeding has continued to be a problem; at the age of 2 years she takes no solids orally, and 

milk is mild given via NGT. She has persistent vomiting and poor weight gain. 

Developmental progress has been slow. She started smiling from around 6 months of age, 

around which time head control was improving; she was beginning to move her head to 

sounds at 7 months of age. At the age of 2 years, she is able to roll from back to front, and 

pivot on her back using her legs, but is not able to support her head on her hands when 

prone. She is not sitting independently. She laughs responsively and is able to attract 



 

parents’ attention by laughing. She recognises her parents’ voices, and will respond to 

familiar stories and songs. She has no words, but has some vocalisations. 

Sleep pattern is poor. She developed obstructive sleep apnoea, and underwent a 

tonsillectomy. She takes melatonin and tends to fall asleep easily, but will often wake after 

30-60 minutes and then repeatedly throughout the night, sometimes staying awake for 

several hours. 

Examination showed central hypotonia, with hands held in a clenched position. She tends to 

hold her mouth open with a protruding tongue. Her movements are dyskinetic. She has 

small hands and feet. 

Array CGH, neurometabolic investigations and a TORCH screen were normal. An 

echocardiogram was reported as normal. NGS of a panel of genes associated with cataracts 

and retinal dystrophy did not identify any pathogenic changes.  She has had an anaemia 

with haemoglobin of 88 g/l in infancy, then later 83 g/l, but possibly dietary owing to her 

intake. The blood film stated that the red cells showed anisocytosis. 

MRI: Sulci are mildly prominent which in conjunction with microcephaly suggest cerebral 

volume loss. The corpus callosum is present; it is thin suggesting white matter volume loss. 

Sylvian fissures are widened anteriorly. Cortical gyration is likely to be within normal limits. 

Cerebellar vermis and hemispheres are hypoplastic and there is a small posterior fossa. 

Brain stem is within normal limits.  

ERG showed no consistent retinal responses above the level of noise to a range of stimulus 

intensities. 

VEPs showed no consistent pattern reversal cortical responses evident above the level of 

noise confirming a very degraded pattern. 

Proband 2 (c.850A>G, p.Arg284Gly).   

An 8-month-old male presented with a phenotype characterized by microcephaly (-5 SD), 

congenital cataract, large ears, long palpebral fissures, strabismus, retrognathia with wide 

mandibular angle, single transverse palmar crease, bilateral clubfoot, hypertonia, global 

developmental delay. The pregnancy was uncomplicated. He was born to partners who were 

cousins, at 39 weeks of gestation, by elective secondary caesarean section. Auxologic 



 

parameters were normal, Apgar score was 3 at 1 minute and 9 at 5 minutes after birth, 

orotracheal intubation was not performed. 

Four days after birth he developed severe haemolytic anaemia requiring transfusion. 

Haemolytic episodes recurred leading to liver and spleen enlargement, common causes of 

anaemia and haemolisis were ruled out. Afterwards the proband’s medical history was 

significant for severe oromotor disability and failure to thrive with weight and length < -5 SD, 

parents declined artificial nutrition. He presented with hypovision and moderate bilateral 

sensorineural deafness. 

At 18 months psychomotor development delay was confirmed, cerebral MRI revealed corpus 

callosum hypoplasia and severe cerebellar hypoplasia. Electroencephalography detected 

abnormal brain electrical activity; the proband didn’t present with clinical seizures. The 

neurological pattern got worse and he developed severe intellectual disability and total 

dependence from caregiver. 

At the last clinical evaluation, 3 months before death, he presented with severe malnutrition, 

microcephaly, large ears, long palpebral fissures, strabismus, long oval face, long philtrum, 

gingival hypertrophy, exposed upper incisors, retrognathia with wide mandibular angle, single 

transverse palmar crease, flexion deformity of wrist, elbow, knee with popliteal pterigium, 

bilateral clubfoot, scoliosis of the spine and hypogenitalism. He also showed yellow sclera, 

suggestive of liver involvement. He died at the age of 29 years from respiratory failure 

secondary to pneumonia. 

Proband 3 (c.850A>T, p.Arg284Trp).   

The proband was the second child to unrelated Caucasian parents. He was born at term 

following an uncomplicated pregnancy and discharged home at 6 hours of age. He was 

readmitted within 24 hours with vomiting and drowsiness. He was investigated for sepsis 

and treated with antibiotics. Microcephaly and hypotonia were noted on that admission. He 

continued to vomit and had failure to thrive. Feeding became a significant issue and never 

was successfully established – he had a PEG inserted but vomiting remained problematic. 

He subsequently had a fundoplication and a jejunal tube placed – this helped his symptoms 

but he continued to retch. He made very little in the way of developmental progress – he 

could hold his head in the midline and responded to his parents voice; he never fixed and 



 

followed. From the beginning, he had episodes of arching and irritability – initially thought 

to be due to significant gastro-oesophageal reflux.  With time, these evolved into dystonic 

and dyskinetic movements. As his condition progressed, he was diagnosed with ‘salt and 

pepper’ retinitis, cataract and liver dysfunction. He had progressively enlarging liver and 

mild conjugated hyperbilirubinaemia and abnormal liver function tests. He did not develop 

liver failure. Prior to his death he had short episodes of gazing in one direction associated 

with limb movements but was never formally diagnosed with seizures. He died at 26 months 

of age. 

  

He was extensively investigated from a neurometabolic point of view and his positive 

findings included 

1.       MRI - bilateral frontal polymicrogyria and Pontocerebellar hypoplasia 

2.       CK – raised on 2 occasions to 1500, normal on other occasions 

3.       Muscle Biopsy – said to show features of myopathy 

4.       Liver Biopsy – microvesicular steatosis and haemosiderosis 

5.       Respiratory chain analysis – normal 

6.       Microarray 17p11.2 del - VUS paternally inherited 

7.       Cardiff Cortical malformation gene panel– no significant findings 

 

Additional findings at Post mortem included 

1. Skeletal survey showed ‘hair on end’ appearance to outer table of skull  

2. Moderate abdominal ascites 

3. Malrotation and volvulus - Appendix, caecum and proximal ascending colon in left 

upper quadrant 

   

The clinical impression was always of a rare neuro metabolic disorder. 
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Supplemental Methods  

 

EGFR degradation assay 

EGFR degradation assays were performed as described previously.32 Briefly, proband 

fibroblasts were serum starved overnight before the addition of 100 ng/mL EGF 

(Calbiochem) in the presence of 10 µg/mL cyclohexamide (Sigma-Aldrich). Cells were lysed 

at 0, 30, 90 and 180 minute time-points, then analysed by western blotting. 

Electron Microscopy 

Fibroblasts were seeded to Thermanox (Thermo Fisher Scientific) plastic coverslips and fixed 

with 2% PFA, 2.5% glutaraldehyde, and 0.1 M cacodylate buffer (pH 7.2). Cells were post-

fixed with 1% osmium tetroxide:1.5% potassium ferricyanide before being incubated with 

1% tannic acid to enhance contrast. Cells were dehydrated using increasing percentages of 

ethanol before being embedded onto EPON stubs or beam capsules. Resin was cured 

overnight at 65°C, and coverslips were removed using a heat-block. Ultrathin (50- to 70-nm) 

conventional sections were cut using a diamond knife mounted to a Reichart ultracut S 

ultramicrotome. Sections were collected onto copper grids stained using lead citrate. 

Sections were viewed on a FEI Tecnai transmission electron microscope at a working voltage 

of 80 kV. 

  





 

Figure S1. Multiple sequence alignment of VPS4 proteins from representative species.  

The novel de novo missense variants in VPS4A are represented in the corresponding columns 

of the alignment, using the same symbols as in Figure 1. The top track depicts CCRs 

percentiles for human VPS4A (hVPS4A). The protein domains depicted in the second track 

are based on hVPS4A (UniProtKB entry Q9UN37). The third track shows secondary structural 

elements based on PDB structures for different regions of hVPS4A or human VPS4B 

(hVPS4B). In the multiple sequence alignment residues are coloured according to their 

physicochemical properties (Jalview color scheme). PONAB= orangutan; MOUSE= mouse; 

CANLF= dog; CHICK= chicken; XENTR= frog; DANRE= zebrafish; DROME= drosophila; CAEEL= 

worm; ARATH= arabidopsis; 9FUNG= fungus; DICDI= slime mold; SCHPO= yeast; CANAL= 

Candida albicans; 9ARCH= heimdallarchaeota. The bottom track shows amino acid 

conservation. 

  





 

Figure S2. Protein structural superposition of the ATPase domain of A) the 6 chains of the 

VPS4 hexamer from yeast (PDB ID: 6OO2) and B) the monomeric VPS4B from human (PDB 

ID: 1XWI) and mouse (PDB ID: 2ZAM, 2ZAO, 2ZAN). In (B), chains in white correspond to 

apo structures and chains in blue have ADP or ATP bound. The superposition of all chains 

was done using the human structure as reference. In yellow is the synthetic peptide that 

shows how the ESCRT-III proteins would translocate through the pore. Residues with missing 

coordinates are represented with dashed lines. The flexible linker connector is missing in 

human and mouse structures (B) but can be partially observed as α-helix in four chains of 

yeast VPS4 structure (A). 

  





 

Figure S3. Additional clinical images of probands.  A) Photographs showing probands 1, 2 

and 5.  Note common features of microcephaly, long palperal fissures, strabismus, long 

relatively smooth philtrum and broad and arched eyebrows. In the older probands, large 

ears, long oval face, gingival hypertrophy, exposed upper incisors and retrognathia with wide 

mandibular angle are common features. Proband 2 also had jaundice, a single transverse 

palmar crease, flexion of wrist, elbow, knee with popliteal pterigium, bilateral clubfoot and 

scoliosis. B) MRI images of probands 1 and 5. Proband 1: Sagittal and axial T2 MRI images, 

Proband 5, left is sagittal T1 MRI image and right is T2 flair axial image. Abnormal features in 

both include thinning of the corpus callosum, atrophy or under-development of the 

cerebellum, pontine hypoplasia and white matter volume loss. In proband 1 there is 

extensive dysgyria and in proband 5 there is periventricular gliosis and scalloping of the 

lateral ventricles. 
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Figure S4 Part 2 

Figure S4. VPS4A proband fibroblasts show no endosomal compartment content mixing. 

Cultured fibroblasts from control subjects and the probands indicated were fixed, labelled 

with the early endosomal marker RAB5 and CD63 (A), EEA1 and LAMP1 (B) and CD63 and 

LAMP1 (C), then visualised by confocal immunofluorescence microscopy. Colocalisation was 

measured using Pearson’s co-efficient (in 20 cells in each repeat), and the result of n=3 

biological repeats for each set of markers is quantified in the corresponding charts. Bars 

indicate mean ± S.E.M., p-values were calculated by one-way ANOVA with Tukey’s post-hoc 

test for repeated measures. Micrograph scale bars = 10 µm. 





 

Figure S5. Proband fibroblasts show no defects in endosomal functions of the core ESCRT-

III complex. A-B) Cultured fibroblasts from the control subjects or the probands indicated 

were fixed, labelled against EEA1 (A) or CD63 (B) and the core ESCRT-III complex member 

CHMP2B, then visualised by confocal immunofluorescence microscopy. In (A) the number of 

CHMP2B puncta and the percentage of EEA1-positive endosomes associated with a CHMP2B 

punctum was quantified in 3 experiments (5 cells per experimental condition in each repeat) 

and plotted in the graphs beneath the images. In (B) the percentage of CD63-positive 

endosomes associated with a CHMP2B punctum was quantified in 3 experiments (in 5 cells 

per experimental condition in each repeat) and plotted beneath the images. Micrograph 

scale bar = 10 µm. Arrows indicate juxtaposed or co-localised puncta. C) Fibroblasts derived 

from the subjects indicated were imaged for transmission electron microscopy. MVBs 

containing ILVs were evident in all cases (indicated by *).  Scale bar = 500 nm. D) Fibroblasts 

from probands and controls were stimulated with EGF, lysed at the times indicated, then 

immunoblotted to monitor EGFR degradation. The line chart on the left shows EGFR 

quantification normalised to the initial amount of EGFR for a representative experiment, 

while the plot on the right shows the percentage of EGFR remaining at the 180 min time 

point for n=3 such experiments. In all plots, bars indicate mean ± S.E.M., p-values calculated 

by one-way ANOVA with Tukey’s post-hoc test for repeated measures. 

 

  





 

Figure S6. No increased recruitment of IST1 to late endosomes or lysosomes in proband 

fibroblasts. Cultured fibroblasts from the control subjects and the probands indicated were 

fixed and labelled for A) IST1 and CD63 or B) IST1 and LAMP1. The percentage of CD63 or 

LAMP1-positive endosomes associated with an IST1 punctum was quantified in 3 

experiments per marker (in 5 cells per experimental condition in each repeat) and plotted in 

the corresponding charts. Arrows indicate juxtaposed or co-localised puncta. Bars indicate 

mean ± S.E.M., p-values were calculated by one-way ANOVA with Tukey’s post-hoc test for 

repeated measures. Micrograph scale bar = 10 µm. 

 

  





 

Figure S7. Expression of VPS4A containing disease-associated sequence changes causes the 

development of vacuolar endosomal structures in iPSCs. A) I3 iPSCs were lentivirally 

transduced with expression constructs for myc-tagged wild-type VPS4A, or forms of VPS4A 

containing the p.R284G or p.R284W disease-associated changes. Cell lysates were then 

immunoblotted with the antibodies indicated. GAPDH immunoblotting serves as a control to 

verify equal protein loading in each lane. B) Transduced cells were also fixed and labelled 

with antibodies against the myc epitope and RAB5, then visualised by confocal 

immunofluorescence microscopy. Examples of rare cells containing large vacuolar 

endosomal structures are shown in the inset higher magnification boxes. Micrograph scale 

bar = 10 µm. 

  





 

 
Figure S8. Time course experiment demonstrating loss of pluripotency and gain of 

neuronal characteristics in i3N iPSCs and neurons. A) i3N iPSCs were cultured in the 

presence of doxycycline for 3 days. Cell lysates were then made at the time points indicated 

and blotted against the neuronal differentiation markers MAP2, Tau and bIII-tubulin, as well 

as the pluripotency markers Oct-4 and NANOG. GAPDH immunoblotting serves as a control 

to validate equal protein loading across lanes. B-E) i3N iPSCs (B and C) and i3Neurons 14 days 

post induction of differentiation (D and E) were fixed and processed for confocal 

immunofluorescence microscopy with the pluripotency (Oct-4, NANOG and SOX2) and 

neuronal markers (TAU and bIII-tubulin) indicated. 

 
 
 
 

 
 



Patient number Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6
Gender (M/F) F M M F F M
Ethnicity Caucasian (White British) Caucasian Caucasian (White British) Caucasian Caucasian Caucasian (White British)
Genetic Infirmation
(Genome Build) 38 37 38 38 38
gDNA (Genome Build) 16:69320768 A>T chr16:69354671 A>G 16:69320768 A>T 16:69320768 A>T 16:69320768 A>T 16:69319539G.A 
cDNA c.850A>T c.850A>G c.850A>T c.850A>T c.850A>T c.616G>A
Protein (NM_013245.2) p.Arg284Trp p.Arg284Gly p.Arg284Trp p.Arg284Trp p.Arg284Trp p.Glu206Lys
Mutation type missense missense missense missense missense missense
REVEL score 0.97 0.983 0.97 0.97 0.97 0.917
CADD score 35 34 35 35 35 34
Inheritance de novo de novo de novo de novo de novo de novo
 Analysis method WGS WES/WGS WGS WGS WES WGS
 Clinical Information 
Age at last examination (y or m) 2 y 29 y 2 y 6 m 6 y
Deceased (age) no yes (29 y) yes (26 m) no no

Cause of death respiratory failure complicating 
pneumonia

bowel ischaemia and volvulus

Neurologic
Intellectual disability (IQ or severity) severe severe severe severe severe severe
Developmental delay severe severe severe severe poor head control severe severe
Motor delay yes severe severe yes yes
Speech delay yes severe absent yes absent
Epilepsy no yes no yes no yes
Hypotonia yes yes yes yes yes no
Spasticity mild in upper limbs yes yes no yes

Ataxia yes not assessed - severe motor 
delay

no non-ambulatory; dysmetria no

Dystonia yes profound yes yes yes yes no
Other abnormal movements no no chorea no no
Sleep disturbances yes yes unknown yes; central sleep apnea yes
Brain imaging

Major features hypoplastic cerebellar vermis and 
hemispheres 

cerebellar hypoplasia bilateral polymicrogyria and 
pontocerebellar hypoplasia 

pontocerebellar hypoplasia progressive pontocerebellar atrophy 
involving vermis and hemispheres; 

severe cerebral atrophy on CT 
at 1 year

Other MRI findings thin corpus callosum corpus callosum hypolasia follow - up MRI parenchymal loss 
and possible dysmyelination

decereased cerebral white matter 
volume with preiventriculat gliosis

Growth Parameters
Delivery (wks+days) 37 39 40 38+6 33 38+4
Weight at birth (gr; SD or centile) 2310 g (Z -2.8) 3120  g (25th) 2450 g (Z -2.4) 2083 g (50th-75th) 2073 g (<0.04th)
Length at birth (cm; centile) 48 cm (9-25th) 45 cm (75th)
Head circumference at birth (cm; SD or 
centile)

31.4 cm (Z -2.6) 35 cm (50th) 30.5 cm (<0.04th, Z< -3) 25 cm (<0.04th, Z<-3) 31 cm (0.04th-2nd)

Microcephaly yes yes yes yes yes yes
Height (cm; SD) 74.5 cm (Z -1.87) 115 cm (Z -5.5) 78 cm (at 26m) (Z -3.0 ) 124 cm (Z 1.4)
Head circumference (cm; SD or centile) 46 cm (Z -6.8) 42 cm (at 26m)  (Z -4.5) 39 cm (at 6 m) (Z -5) 42.3 cm (<< 0.04th) 46 cm (Z -5.0)
Weight (kg; SD) 7.645 kg (Z -2.31) 15 kg (Z -6.0) 12.45 kg (at 26m) (Z -0.41) 6.56 kg (at 6 m) (Z -1.1) 21.3 kg (Z 0.17) 2nd-9th centiles

Feeding difficluties
yes - severe gastroesophageal 

reflux yes yes yes - gastroeosophageal reflux no

Nasogastric (NG) feeding or percutaneous 
endoscopic gastrostomy (PEG) NG/PEG-J no (declined)

PEG/ fundoplication and jejunal 
tube yes no

Eye phenotype
Congenital Cataract yes yes yes no yes
Retinal Dystrophy yes no salt and pepper retinitis no yes

Leber congenital amaurosis no no no yes no

Vision no fixing or following poor  fixing and no following no fix and following poor  fixing and following at 6 m diminished diminished

Staphyloma yes no no
Aphakia yes (post-operative) no no no yes

Liver function

Hepatomegaly yes and conjugated bilirubinaemia 
at 1 yr

mild hepatosplenomegaly progressive hepatomegaly from 1 
year of age

congenital hepatosplenomegaly no

Other raised AFP no haemosiderosis mild cholestasis,  iron overload 
secondary to CDA-1

Gallstones no yes microvesicular steatosis no no
Musculoskeletal anomalies
Lipodystrophy no yes no no no
Abnormal CPK no yes mild on 3 occasions yes on 2 occasions not done no
Muscle biopsy no no myopathic no no
Scoliosis no yes, severe no no yes
Toe abnormalities II toes hypoplasia no short toes no
Hip dysplasia no yes no coxa valga yes
Single palmar creases no yes no no no
Talipes (bilateral) no yes no yes no yes
Haematological anomalies

Anemia
yes- raised reticulocyte count and 

platelets 
blood film - anisopoikilocytosis

macrocytic anemia with 
anisopoikilocytosis no yes no

Hemolytic crisis no yes no no no
Bone marrow biopsy/aspiration no dyserythropoiesis no - normal at post mortem no
Congenital dyserythropoitic anaemia yes no yes no
Other features
Renal defects no no no no
Liver fibrosis no no no no
Sensorineural deafness no yes no yes no
Hypogonadism no yes no no
Stipsis no yes yes yes no
Stomatitis no yes no no no
Dental anomalies no yes no no (delayed eruption)
Recurrent infections no yes no no no
Aphakia post operative no no no yes

Other comments left testicular torsion and 
right undescended testis

Table S1. Genetic and clinical features of patients with de novo heterozygous VPS4A sequence alterations.
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