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The initial ideas of this theory of algebraic approximation come from 
HERMITE's famous paper "Sur la fonction exponentielle" (3), which 
started the modern theory of transcendental numbers. Hermite's basic 
principle was as follows. For a given system of distinct complex numbers 
Wt, w2, ... , wm and of non-negative integers !?t. (J2, ... ,em, with sum a, 
he constructed a system of m polynomials 

of degrees equal to a-et, a-e2, ... ,a-em, respectively, such that all 
the remainder functions 

(j,k=1,2, ... ,m) 

vanish at z = 0 at least to the order a+ 1. He then used this system of 
polynomials to study the arithmetic approximation of the exponential 
function. In a later paper [4], HERMITE introduced a second type of 
algebraic approximation of the exponential function, by constructing a 
second system of m polynomials 

of degrees equal to (Jt-1, !?2-1, ... , em-1, respectively, such that the 
remainder function 

m 
r(z) = ~ ak(z) e"'k• 

k=l 

vanishes at z = 0 at least to the order a- 1. Hermite did not use his second 
polynomial system to deduce arithmetic properties of the exponential 
function, nor did he seemingly realize that his two types of approximation 
were related. 

Some fifty years later, Mahler, in his paper "Zur Approximation der 
Exponentialfunktion und des Logarithm", returned to Hermite's two 
types of algebraic approximation of the exponential function. He deduced 
further properties of the two polynomial systems and showed that they 
were fundamentally related. Using both of Hermite's polynomial systems, 
Mahler was able to obtain very strong arithmetic properties of the exponen
tial and logarithmic functions. 
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Hermite's two polynomial systems were based on special identities 
connected with the exponential function, and many mathematicians 
thought that the theory was too specialized to be of general applicability. 
SIEGEL's [11] general method of 1929 in the theory of transcendental 
numbers was based on a different principle. However, at a course given 
at the University of Groningen in 1934-5, MAHLER generalized Hermite's 
two approximation systems as follows. He considered an arbitrary system 
of m functions 

which are analytic in some domain of the complex domain. Given an 
arbitrary sequence of equal or distinct points 

in this domain, and non-negative integers QI, e2, ••• , Qm, with sum a, 
there exists then a non-trivial system of polynomials 

of degrees at most a-e~, a-e2, ... ,a-em, respectively, such that all 
the remainder functions 

(j, k= 1, 2, ... , m) 

vanish at least at all the points z1, z2 , ••• , z"'+l' and also there exists a 
non-trivial system of polynomials 

a 1(z), a2(z), ... , am(z) 

of degrees at most 121-1, (!2-1, ... , em-1, respectively, such that the 
remainder function 

m 

r(z) = L ak(z) A(z) 
k=l 

vanishes at least at all the points z1, z2 , ... , Zu-l· Mahler now introduced 
the notion of a perfect system (for his definition see part VII of this paper) 
of analytic functions as a natural generalization of Hermite's results. 
The significant change was that he defined this notion of a perfect system 
in terms of the properties of the algebraic approximation alone. Mahler 
did not publish his theory. In his unpublished manuscript, he obtained 
the results of part VII of this paper for perfect systems of analytic functions. 
For such systems he also introduced the transformation matrices of 
part VI of this paper, and obtained a number of explicit expressions for 
these matrices. 

In the present paper, I generalize Mahler's theory as follows. An 
axiomatic theory is given, which, in particular, holds for rings of analytic 
functions defined on certain subsets of fields, which are complete under 
a valuation. Under some circumstances, the theory also holds for rings of 
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formal power series with coefficients in any field. This theory therefore 
contains the work of MAHLER and the later work of JAGER [2] as particular 
cases. A local property is defined to be a property at one system (11, (12, .•• , em, 
while a global property is a property at infinitely many systems (11, (12, ..• ' em· 
With this terminology, Mahler's global notion of perfectness is generalized 
to the local notion of normality, while still retaining locally the essential 
properties of the approximation. The methods used are very simple, and 
are those introduced by Mahler in his unpublished manuscript. Mahler 
placed his unpublished manuscript at my disposal, and gave his free 
permission for the use of its results. For this kindness, and his generous 
advice, I wish to express my sincere thanks to professor Mahler. 

A central problem of this theory is to determine at what systems of 
non-negative integers (11, (12, ••• , em, a given system of functions /r, /2, ... , f m 
is normal. As a contribution to this problem, I prove that the local notion 
of normality always implies certain global properties (see the Normality 
Zigzag Theorem in part V). I also prove new results on the exponential 
function.· 

The study of this algebraic approximation is interesting for the following 
reasons. Firstly, the approximation has considerable interest in itself. 
Even for the exponential function, our knowledge of the behaviour of the 
approximation is quite limited. This approximation gives generalizations 
of several important functions of classical analysis, for example, the 
Gamma functions and the Beta function. JAGER [2] has shown that a 
particular case of the approximation generalizes many classical results 
on the pade Table. 

Secondly, the approximation is a powerful tool for studying questions 
of arithmetic approximation in the theory of transcendental numbers and 
the Thue-Siegel Theorem (see [5], [6], [7], [9]). 

Thirdly, the methods used should be applicable to the study of other 
types of algebraic approximation, as, for example, the approximation of 
p-adic integers by rational integers. 

I. 

I. We begin by introducing two rings in which we shall be studying 
algebraic approximation. A non-archimedean valuation is defined on one 
ring, and a sequence of pseudo-valuations on the other, and these are 
shown to be related in a simple manner. In the next part, we shall define 
the algebraic approximation to be studied in terms of this valuation 
and this sequence of pseudo-valuations. 

Firstly, we introduce the ring from which the approximating elements 
will be chosen. Let w be a Euclidean domain with non-archimedean 
valuation ~~ ~~. This means that for all a, b E w, 

(I) if a#O, raJ is a non-negative integer, but fOT = ~ oo; 

(2) la+bl <max {raJ, fb[}; 
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(3) f(ib[ = ra1 + Jb1 ; 
(4) there exists c, dE co such that 

a=bc+d 

where either d = 0 or TdT < fbl. 
Then, since co is a principal ideal of itself, it has a unit element l. Let F 
be the set of all those elements of co which satisfy 

o.:=O or r;;j =0. 

Then F is a field. For it is obvious that F is a subring of co, and if o.: is any 
non-zero element, of F, then, by (4), there exists {J E co such that 

o.:{J= l. 

This equation implies that fPT = 0, and hence o.: has an inverse {J in F. 
From now on F will be called the constant field, and the elements of F 
will be called constants. 

Let p be an any prime element of co. We associate with p the valuation 
ord'll defined by 

where n is the largest non-negative integer such that p-na is still an element 
of co. Since every non-zero element a E co has a unique factorization into 
a finite number of primes, at most finitely many of the values 

ord'll(a) 

are distinct from zero. Further, these values are linked by the fundamental 
equation 

(5) 

The valuations ordp will be of subordinate importance in this paper, 
and will only be used in the proof of the fundamental lemma later in 
this part. 

2. Next let 
II: P1• Pz, Ps• ··· 

be an arbitrary infinite sequence of equal or distinct elements of co, 
satisfying 

IP.tl = l 

Then every element of this sequence is a prime of co. Put 
.t 

1Jlo= l, 1fl.t = IT P1 
!~1 

so that 

(A.= l, 2, ... ). 

(A.=l,2, ..• ). 

(A.=O, l, 2, .•• ). 
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The algebraic approximation to be studied will be defined in terms of 
this sequence of primes II. We now introduce the ring in which we shall 
study this approximation. We define Q to be an integral domain which 
contains w as a subring, and all of whose elements satisfy the following 
expansion condition in terms of the sequence of primes II: 

(6) for every f E Q and for every prime p,. Ell, there exists a unique 
constant cp,. and an element f,_ E Q, both depending on f and p,., 
such that 

Before studying the properties of Q, we note that, given w, at least one 
such ring always exists, since the ring w itself always satisfies this condition. 
However, from the point of view of algebraic approximation, the most 
interesting czse is when w is a proper subring of Q. It is essential to our 
theory that the expansion constant cp,. in [6] is unique. We shall call Q 
a weld ring of the sequence of primes II. 

We now investigate the properties of Q. Iff is any element of Q, then 
there exists a unique constant cp<O> and an element f<1> E Q such that 

I= cp<Ol + Pd(l}. 

Since Q is an integral domain, f<1> is also uniquely determined. Again, 
since f<1> E Q, there exist a unique constant cp<1l and a unique element 
f<2> E Q such that 

j<l> = cp<l> + P2f<z>. 

Thus there exist unique constants cp<O>, cp<1l and a unique element f<2> E Q 
such that 

A simple inductive argument shows that, for all positive integers n, there 
exist unique constants cp<O>, cp<1>, ..• , cp<n-1> and a unique element f<n> E Q 
such that 

n-1 
/= ~ cp<Al'PA+VJ,.f<n>. 

A-o 

This expression will be called the interpolation series for f. The unique 
constants cp<0>, cp(l>, •.. , cp<n-1> will be called the coefficients of f. The 
elements of Q will henceforth be called functions. 

The existence of this unique interpolation series for every function is 
the fundamental property of the weld ring Q. As a first consequence of 
this property, we show that w can be characterized as the set of all functions 
which have finite interpolation series, in the sense that only a finite 
number of their coefficients are non-zero. For, if a is any element of w, 
it follows from § 1 (4) that there exist a constant "'<o> an element a<1> E w 
such that 
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Repeating the above argument for a<l> E w, and so on, after a finite 
number of steps, we obtain the finite interpolation series 

1!-J 
a= 2, txY·>'IfJ;.· 

A=O 

This is then the only interpolation series for a in the weld ring Q. Since 
the valuation -~ -~ is non-archimedean, this interpolation series has the 
further property that ,x(T<If) #- 0. Conversely, every finite interpolation 
series 

is an element of w, satisfying fbl < n, with equality if and only if p<n> #- 0. 
For this reason, call the elements of w polynomials, and for all polynomials 
a the value fal will be called the degree of a. 

Hence, in particular, for all non-negative integers n and m, 
m+n 

1fJ111fJm= ! -r<">(m,n)1jJ;., 
A=max{m,11} 

where the -r<">(m, n) are certain constants such that always -r<m+n>(m, n) 
is non-zero. From now on we shall suppose that these constants are 
normalized so that 

(m, n=O, 1). 

The interpolation series for the sum of two functions is equal to the 
sum of their respective interpolation series. Similarly, using the expressions 
for the interpolation series of the products 1fJn 1fJm, we can oblain the inter
polation series for the product of two functions from their respective 
interpolation series. 

3. Let (} be either Q or w, and let f by any element of 0. Then the 
symbol (f )8 will denote the principal ideal of (} generated by f. The symbol 
(f) will only be used to denote the principal ideal of Q generated by f. 

We now define a sequence of pseudo-valuations of Q 

_1_1 (n= 1, 2, ... ) 
11 

as follows. For every f E Q and for every positive integer n, put 

W =A if f E (~), but f ¢ (1fJ1+1) •. .. 
Then each of the pseudo-valuations _I _I satisfies, for all f, g ED, .. 
(7) W > 0, j_QJ = oo; .. 11 

(8) lf+gl >min {ill,lfl}; 
n n n 

(9) lmJ > max {ill' W}· 
n n n 
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The first pseudo-valuation _[ _[ has a particularly important role in the 
1 

subsequent theory. For brevity, we shall often write _[ _[ instead of _I _[, 

and we shall call the value W the order of f. - 1 

The valuation -~ -~ and each of the pseudo-valuations _[ _I are closely 

" related, and this relation is the basis of most of the investigations of this 
paper. Explicitly, the relation is the following. 

Lemma l. If A is any non-negative integer, and a is a polynomial 
satisfying fUl ,;;; nA, ~ > A, 

" 
then a=(X'fJJL for some constant (X. Further, (X is non-zero if and only if 
fUl = nA. 

Proof. Firstly, we use induction on n to prove that for all positive 
integers n 

It is obvious that for all positive integers n 

('1Jl1)w ~ ('1Jl1).a n w 

(A=O, l, ... ). 

(A=O,l, ... ). 

We prove the converse by induction on n. Consider first the case n= l. 
If b is any element of ("P.<).a n w, then the interpolation series for b must 
be of the form 

It is therefore immediate that bE ("P.<)w, and this ("P.<).a n w ~ ("P .. )w· This 
proves the case n= l. Next assume the result true for n-1. If b is any 
element of ('1Jl1).a n w, then, in particular, b is an element of ("P.<b n w, 
so that b is an element of the ideal ("P.<)w· Therefore bf'fJJ.< is a polynomial, 
and since Q is an integral domain, bf"P.< E ("P1- 1).a n w. Thus, by the inductive 
hypothesis, bf"P.<E('fJJ1- 1 )w, whence bE('fJJ1)w. We have therefore shown that 

(A=O, l, ... ), 

and this completes the proof of the first assertion. 
Secondly, if a is a polynomial satisfying the hypotheses then, by the 

definition of the pseudo-valuation_[ _[,a E ("P1).a n w. Since ("P1).a n w = ('1Jl1)w, 
n 

it follows that a= b"P1, where b is a polynomial. We can suppose that a is 
non-zero, because the lemma holds for a=O. The fundamental equation (5) 
therefore gives 

nA+ 1 ord11(b) = fUl < nA, 
1J 

and this inequality implies that 

fUl = nA, fbl = 1 ord11(b)=0. 
1J 

This completes the proof. 
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II. 

4. We now establish two distinct types of simultaneous algebraic 
approximation of functions by polynomials. These two types of approxima
tion are fundamentally related, as will be shown later. 

From now on, m will denote a fixed, but arbitrary, positive integer 
such that m:;;;. 2, because the case m = 1 is trivial. 

Let 

be any fixed system of m functions. For brevity, we shall henceforth 
call this system of functions a function vector, and denote the whole system 
by the symbol f. For all positive integers q, the function vector 

If, f~, ... , l':n 

will be denoted by the symbol fq. 
Let further 

be a system of m parameters, with sum a, which will always be assumed 
to range over the non-negative integers. This system of m parameters 
will be said to be trivial if 

e1 = e2= ··· = em=O. 

Likewise, a system of m polynomials will be said to be trivial if all of its 
elements are zero. 

With this notation, there exists then a non-trivial system of polynomials 

which, together with the remainder function 

m 

r(et e2 ... em) = ! ak(e1 e2 ... em) tk' 
k-1 

satisfies the inequalities 

lak(ele2 ... em)l < ek-1 

I r(e1e2 ... em)l > a-L 

(k= 1, 2, ... , m), 

(k=1,2, ... ,m), 

For take m polynomials, with unknown coefficients, satisfying the former 
m 

condition. These polynomials have ! e~c =a unknown coefficients amongst 
k-1 

them. The function r(e1 e2 ... em) will satisfy the latter condition if and 
only if the coefficients of 

"Po• "P1• · · · "Pa-2 

in its interpolation series are all zero. This gives a-1 homogeneous linear 
equations for these a unknown coefficients. These equations always have 
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a non-trivial solution in the field. F Hence the assertion is true. This is 
the first type of algebraic approXimation, and we introduce the following 
terminology. The polynomial system and the remainder function 

(k= 1, 2, ... , m) 

will be called a Latin polynomial system and its remainder, respectively, 
belonging to the system 

Further, there exists a non-trivial system of polynomials 

which, together with the remainder functions 

ro;k(ed?2 .•. e,.) = ak(e1 e2 ... e,.) li - a;(el e2 ... e,.) fk 

satisfies the inequalities 

I ak(e1 e2 ... e,.)l < a- ek 

I ro,"k(e1 e2 ... e,.)l > a+ 1 

(k= 1, 2, ... , m), 

(j, k= 1, 2, ... , m), 

(k= 1, 2, ... , m), 

(j, k= 1, 2, ... , m). 

For take m polynomials with unknown coefficients, satisfying the former 
m 

condition. These polynomials have 2 a-ek+1=(m-1)(a+1)+1 un-
k-1 

known coefficients amongst them. The remainder functions 

(j, k= 1, 2, ... , m) 

satisfies the latter condition if and only if the coefficients of 

'Po• 'P1• • · ·' 'Pa 

in the interpolation series for 

roik(e1 e2 ... e,.) (j=1, 2, ... ,m,j=fok) 

are all zero. This gives (m-1)(a+ 1) homogeneous linear equations for 
these (m-1)(a+ 1) + 1 unknown coefficients, which always have a non
trivial solution in the field F. Hence the assertion is true. Again, we 
introduce the following terminology. The polynomial system and the 
remainder functions 

(j, k= 1, 2, ... , m) 

will be called a German polynomial system and its remainders, respectively, 
belonging to the system 

5. To study the properties of the approximation just introduced, it is 
now necessary to impose a minor restriction on the function vector f. 
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We shall say that the function vector f vanishes at the prime p;, E II if 
the m expansion constants cpv. , cp2;., ••• , Cf!mJ., where 

(k= 1, 2, ... , m) 

are all zero. The result we need is the following. 

Lemma 2 . If the function vector f vanishes at none of the primes in TI, 
then, for all positive integers nand q, and for all functions g, the inequalities 

(j==1, 2, ... ,m) 
n 

imply 
!JLI >A. 

n 

Proof. The proof of the lemma is in three parts. Firstly, we assume 
that n= 1 and q= 1, and use induction on A. The result is trivial correct 
when A= 0, and thus we suppose it true for A- 1. Let g be any function 
satisfying jg/il ;>A, or equivalently gfi E (V';.), for j=1, 2, ... , m. Then, 
by the inductive hypothesis, g E (V';.- 1). In addition, there exist the 
expansions 

(j=1, 2, ... ,m), 

where, by assumption, at least one of the constants Cf!i;, is non-zero. It is 
therefore clear that g E (V';.), which is the assertion for A. This completes 
the proof of the first part. 

Secondly, the result just proven implies the assertion for all positive 
integers q, since, if the function vector f vanishes at none of the primes 
in II, then the function vector fq likewise vanishes at none of the primes 
in II. We are still assuming that n = 1. 

Finally, an obvious inductive argument (just as in Lemma 1) proves 
the assertion for arbitrary positive integers n. This completes the proof. 

Henceforth, unless stated to the contrary, we sha.l always assume that 
the function vector f vanishes at none of the primes in II. 

6. We now introduce an expression which will be of fundamental 
importance in our study of the algebraic approximation. The expression 

will always denote an expression of the form 

where 
(k=1,2, ... ,m) 
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are two systems of polynomials, which, together with the functions 

m 

r = ! akfk , 'roik=akfi-adk 
k~l 

satisfy the inequalities 

lakl < rk-1 , I ak I < ~-'rok, 

~>s-1, lroikl>~+l. 

(j, k= 1, 2, ... , m). 

From these inequalities, we at once obtain the following estimate, 

(D) 

Further, for j = 1, 2, ... , m, 

and from it we deduce that 

(j = 1, 2, ... ,m). 

But the function vector f vanishes at none of the primes in fl, and thus, 
by Lemma 2, 

(0) 

The estimates (D) and (0) are basic for our later work. 

III. 

7. We begin with two definitions. A local property of the approximation 
is defined to be a property at one system e1, e2, ... , em, while a global 
property is a property which holds for infinitely many systems ei. e2, ... , em· 
We derive three global properties of the approximation which hold for 
every function vector that vanishes at none of the primes in fl. 

For a given system e1, e2, ... , em let us arbitrarily choose one (there 
may be many) system of Latin polynomials, which is then supposed 
fixed for the rest of this part. We denote this system and its remainder by 

(k= 1, 2, ... , m). 

{
1Hh=k · 

Let bhk = 0 if h * k be the Kronecker symbol. For h = 1, 2, ... , m put 

ahk(lb e2 ... em) = ak(el + r5hl e2 + r5h2 ... em+ bhm) (k= 1, 2, ... ,m), 

rh(el e2 ... em)= r(el + r5hl e2 + r5h2 ... em+ bhm)' 
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m 

rn(etl!2 ... em) = ! ahk(e1e2 ... em) f.,.. 
k-1 

Further, let a(el e2 ... em) be the m X m matrix 

a(ele2 ... em)=(ahk(e1e2 ... em))h.k=1,2, .... m> 

and let d(el e2 ... em) be the determinant of this matrix. 
This determinant can easily be evaluated. For the degree of the element 

in its h,th row and kth column is at most ek + d11k- l. Thus the degree 
of the determinant does not exceed the sum of the greatest possible 
degrees of its diagonal elements, that is 

Next we obtain an estimate for the order of the determinant. Applying 
elementary column operations to the determinant, we find that for 
j=1, 2, ... , m. 

/
au, ... , a1;-1 > r1, ~i+1, ... , a1m 

/;d(e1e2 ... em) = a21' ... , a2i-1' r2 'a2i+1' ... , a2m ' 

lam1> ... , ami-1> rm, ami+1• ... , amm 

where the parameters have been omitted for brevity. Now the remainders 
satisfy 

(h=1,2, ... ,m), 
so that 

(j= 1, 2, ... ,m). 

By assumption, the function vector f vanishes at none of the primes in ll, 
whence we obtain the estimate 

Therefore 
d(e1e2 ... em)= ~"Pa with ~ EF. 

The constant ~ will be non-zero if and only if the degree of the determinant 
is equal a, and this will be so if and only if 

(h= 1, 2, ... ,m). 

We shall investigate this property and its implications later. 

8. There is an analogous determinant in the German poly~omials and 
we can evaluate it in a similar manner. For a given system et, e2, ... , em 
let us arbitrarily choose one system of German polynomials, which are 
then again supposed fixed for the rest of this part. We denote this system 
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and its remainders by 

ak(!h !?2 ... !?m) ' ttl;k(!?l !?2 ... !?m) 

For h= l, 2, ... , m, put 

alik(!?l !?2 .•• !?m) = ak(!?l - ~h1 !?2- ~h2 ••• !?m - ~hm) 

ttlhik{!?l !?2 • · • !?m) = ttl;k{!?1- ~hl !?2- ~h2 · • · !?m- ~hm) 

so that 

(j, k= l, 2, ... , m). 

(k=l,2, ... ,m), 

(j,k= l, 2, ... ,m), 

tuhik(e1 !?2 ••• em) = tullk(!?1 !?2 •.• em) /; - ah;(el !?2 ... em) I k (j, k = l, 2, ... , m). 

Further, let a(e1, !?2 •.• em) be the m x m matrix 

a(e1!?2 ... !?m) = (alik(!?1!?2 ... !?m)h.k=1.2 ....• m• 

and let b(e1 !?2 •.• em) be the determinant of this matrix. 
In this determinant, the degree of the element in the hth row and kth 

column is at most a- l - !?k + ~nk· Therefore the degree of the determinant 
does not exeed the sum of the greatest possible degrees of its diagonal 
elements, that is again 

I b(!?1!?2 ••• !?m) I < (m-1) a. 

Next, applying again elementary column operations to the determinant, 
we find that for j = l, 2, ... , m 

ttl1:11 • .•• , ttllii-1' ali' ttlliH1' .•. , ttl1:1m 

r:-1b(e1!?2 ... !?m) = tu2i1' .•. , tu2ii-1' ~' tu2ii+l' ... , tt12im 

ttlm;1• ..• , ttlm;;-1, (l,.;, ttlmii+1> ••. , ttlm;m 

where the parameters have been omitted for brevity. Now the remainders 
satisfy 

(h,j, k= l, 2, ... ,m), 
so that 

I tr-1 b(e1 !?2 ···em) I > a (j=l,2, ... ,my. 
m-1 

By assumption, the function vector f vanishes at none of the primes in II, 
whence, by Lemma 2, we obtain the estimate 

I b(e1 !?2 .. · !?m) I > a· 
m-1 

Therefore the value of the determinant is 

b(e1 !?2 .•. !?m) = {Jtp':-1, with {J E F. 

The constant {3 will be non-zero if and only if the degree of the determinant 
is equal to (m-l)a, and this will be so if and only if 

(h=l,2, ... ,m). 

We shall investigate also this property and its implications later. 
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8. Finally, we prove a remarkable relation between the Latin and 
German polynomial systems. The polynomials 

m 

ehi = L ahk(fll e2 ... em) aik(e1 e2 ... em) 
k~l 

(h,j=1,2, ... ,m) 

are expressions of the form e( r1 r2 ••• rms"), with parameter values 
lU1 lU2 · • · Wm ::> 

s=a+1 ~=a-1. 

From these values, (D) and (0) give the estimates 

leMI < max {(ek+bhk-1)+(a-1-ek+bik)} = max {a+bhk+bik-2}, 
k~L ...• m k~L ... ,m 

lehil >min {a,a}=a. 

These estimates imply that for h of- j 

and for h=j 

The constant eh is non-zero if and only if the degree of ehk is equal to a, 

and this is so if and only if 

We shall investigate also this property later. In any case, 

m 

L ahk(e1 e2 ... em) aik(el e2 ... em) = bhi sh 1Jla 
k~l 

(h,j = 1, 2, ... ,m), 

and these equations can be written as the single matrix equation 

... , 

... , 

... , 

where the dash denotes the transposed matrix. 

(To be continued) 




