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The initial ideas of this theory of algebraic approximation come from
HerMiTE’s famous paper “Sur la fonction exponentielle’ (3), which
started the modern theory of transcendental numbers. Hermite’s basic
principle was as follows. For a given system of distinct complex numbers
w1, @2, ..., oy and of non-negative integers o1, g, ..., 0m, With sum o,
he constructed a system of m polynomials

0;(2), ax(2), ..., Gn(2)

of degrees equal to o—g1, 6—ps, ..., 0 —pm, respectively, such that all
the remainder functions

mik(z)zak(z) ewjz—ai(z) k" (j3k=l>2’ ’m)

vanish at z=0 at least to the order o+ 1. He then used this system of
polynomials to study the arithmetic approximation of the exponential
function. In a later paper [4], HERMITE introduced a second type of
algebraic approximation of the exponential function, by constructing a
second system of m polynomials

a1(2), @5(2); ---5 G(2)

of degrees equal to g1—1,902—1, ..., 0m— 1, respectively, such that the

remainder function
m

r(2)= Y ay(z)e”x*
k=1
vanishes at z=0 at least to the order 0 — 1. Hermite did not use his second
polynomial system to deduce arithmetic properties of the exponential
function, nor did he seemingly realize that his two types of approximation
were related.

Some fifty years later, Mahler, in his paper “Zur Approximation der
Exponentialfunktion und des Logarithm’, returned to Hermite’s two
types of algebraic approximation of the exponential function. He deduced
further properties of the two polynomial systems and showed that they
were fundamentally related. Using both of Hermite’s polynomial systems,
Mahler was able to obtain very strong arithmetic properties of the exponen-
tial and logarithmic functions.
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Hermite’s two polynomial systems were based on special identities
connected with the exponential function, and many mathematicians
thought that the theory was too specialized to be of general applicability.
SteGEL’s [11] general method of 1929 in the theory of transcendental
numbers was based on a different principle. However, at a course given
at the University of Groningen in 1934-5, MAHLER generalized Hermite’s
two approximation systems as follows. He considered an arbitrary system

of m functions
fl(z)’ fz(z), AR fm(z)

which are analytic in some domain of the complex domain. Given an
arbitrary sequence of equal or distinct points

215 Ry 23, --»

in this domain, and non-negative integers g1, g2, ..., om, With sum o,
there exists then a non-trivial system of polynomials

al(z)a az(Z), cey am(z)>

of degrees at most o—pi1, 0—02, ..., 0 —pom, respectively, such that all
the remainder functions

(2) = 0;(2) fx(2) — x(2) f5(2) (¢, k=1,2,...,m)
vanish at least at all the points 21, 2s, ..., 2,41, and also there exists a

non-trivial system of polynomials
al(z): GZ(Z), AR a"m(z)

of degrees at most g1—1,02—1, ..., om— 1, respectively, such that the
remainder function

)= 3 o) (o)

vanishes at least at all the points 2y, 23, ..., 2,_;. Mahler now introduced
the notion of a perfect system (for his definition see part VII of this paper)
of analytic functions as a natural generalization of Hermite’s results.
The significant change was that he defined this notion of a perfect system
in terms of the properties of the algebraic approximation alone. Mahler
did not publish his theory. In his unpublished manuscript, he obtained
the results of part VII of this paper for perfect systems of analytic functions.
For such systems he also introduced the transformation matrices of
part VI of this paper, and obtained a number of explicit expressions for
these matrices.

In the present paper, I generalize Mahler’s theory as follows. An
axiomatic theory is given, which, in particular, holds for rings of analytic
functions defined on certain subsets of fields, which are complete under
a valuation. Under some circumstances, the theory also holds for rings of
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formal power series with coefficients in any field. This theory therefore
contains the work of MAHLER and the later work of JAGER [2] as particular
cases. A local property is defined to be a property at one system o1, 2, .., 0m,
while a global property is a property at ¢nfinitely many systems g1, o2, ..., 9m.
With this terminology, Mahler’s global notion of perfectness is generalized
to the local notion of normality, while still retaining locally the essential
properties of the approximation. The methods used are very simple, and
are those introduced by Mahler in his unpublished manuscript. Mahler
placed his unpublished manuscript at my disposal, and gave his free
permission for the use of its results. For this kindness, and his generous
advice, I wish to express my sincere thanks to professor Mahler.

A central problem of this theory is to determine at what systems of
non-negative integers g1, 02, --., om, & given system of functions f1, f2, ..., fm
is normal. As a contribution to this problem, I prove that the local notion
of normality always implies certain global properties (see the Normality
Zigzag Theorem in part V). I also prove new results on the exponential
function.’

The study of this algebraic approximation is interesting for the following
reasons. Firstly, the approximation has considerable interest in itself.
Even for the exponential function, our knowledge of the behaviour of the
approximation is quite limited. This approximation gives generalizations
of several important functions of classical analysis, for example, the
Gamma functions and the Beta function. JAGER [2] has shown that a
particular case of the approximation generalizes many classical results
on the padé Table.

Secondly, the approximation is a powerful tool for studying questions
of arithmetic approximation in the theory of transcendental numbers and
the Thue-Siegel Theorem (see [5], [6], [7], [9]).

Thirdly, the methods used should be applicable to the study of other
types of algebraic approximation, as, for example, the approximation of
p-adic integers by rational integers.

L

1. We begin by introducing two rings in which we shall be studying
algebraic approximation. A non-archimedean valuation is defined on one
ring, and a sequence of pseudo-valuations on the other, and these are
shown to be related in a simple manner. In the next part, we shall define
the algebraic approximation to be studied in terms of this valuation
and this sequence of pseudo-valuations.

Firstly, we introduce the ring from which the approximating elements
will be chosen. Let w be a Euclidean domain with non-archimedean

valuation | |. This means that for all a, b € w,
(1) if a#0, [a| is a non-negative integer, but [0] = — oco;

(2) la+b] < max{]a|, [b]};
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(3) ab| = |a| +[8];
(4) there exists ¢, d € w such that
a=bc+d

where either d=0 or m < m

Then, since w is a principal ideal of itself, it has a unit element 1. Let F
be the set of all those elements of w which satisfy

x=0 or m=0.

Then F is a field. For it is obvious that F is a subring of w, and if « is any
non-zero element, of F, then, by (4), there exists § € w such that

af=1.

This equation implies that [f| =0, and hence « has an inverse 8 in F.
From now on F will be called the constant field, and the elements of F
will be called constants.
Let p be an any prime element of w. We associate with p the valuation
ord, defined by
if a0, ord,(a)=n|p]|, ord,(0)=oo,

where 7 is the largest non-negative integer such that p—7a is still an element
of w. Since every non-zero element a € w has a unique factorization into
a finite number of primes, at most finitely many of the values

ord,(a)

are distinct from zero. Further, these values are linked by the fundamental
equation

(6) > ord,(a)=|a].

?
The valuations ord, will be of subordinate importance in this paper,
and will only be used in the proof of the fundamental lemma later in
this part.

2. Next let
H: .pl’ Pz, Ps’

be an arbitrary infinite sequence of equal or distinct elements of o,
satisfying L
I-pl| = ]. (l=1,2, ...).

Then every element of this sequence is a prime of w. Put

2
wo=1,¢f=11pl ‘(1=1,z.ux
so that

4] = 4 (1=0,1,2,...).
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The algebraic approximation to be studied will be defined in terms of
this sequence of primes /1. We now introduce the ring in which we shall
study this approximation. We define 2 to be an integral domain which
contains o as a subring, and all of whose elements satisfy the following
expansion condition in terms of the sequence of primes I7:

(6) for every f e 2 and for every prime p, €I, there exists a unique
constant @, and an element f, € 2, both depending on f and p,,
such that

=@+t

Before studying the properties of 2, we note that, given w, at least one
such ring always exists, since the ring w itself always satisfies this condition.
However, from the point of view of algebraic approximation, the most
interesting czse is when  is a proper subring of Q. It is essential to our
theory that the expansion constant ¢, in [6] is unique. We shall call Q
a weld ring of the sequence of primes I7.

We now investigate the properties of Q. If f is any element of 2, then
there exists a unique constant ¢©® and an element fO) €2 such that

f= (P(O) +p1f(l).

Since 2 is an integral domain, @) is also uniquely determined. Again,
since f) € Q, there exist a unique constant @) and a unique element
f® € Q such that

0=+, .

Thus there exist unique constants ¢©, @ and a unique element @ € 2
such that

1

1= 3 ol

A simple inductive argument shows that, for all positive integers =, there

exist unique constants ¢©, p@), ..., -1 and a unique element f(» € Q
such that

n—1
f= AZO e N A

This expression will be called the interpolation series for f. The unique
constants @©, M), ..., =1 will be called the coefficients of f. The
elements of 2 will henceforth be called functions.

The existence of this wnique interpolation series for every function is
the fundamental property of the weld ring Q. As a first consequence of
this property, we show that o can be characterized as the set of all functions
which have finite interpolation series, in the sense that only a finite
number of their coefficients are non-zero. For, if a is any element of w,
it follows from § 1 (4) that there exist a constant «©® an element a® € w
such that

a=0®+p,a? and [a?| < [a| - 1.
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Repeating the above argument for a®) € w, and so on, after a finite
number of steps, we obtain the finite interpolation series

lg]
a= Y Py,
i=o

This is then the only interpolation series for a in the weld ring . Since
the valuation | | is non-archimedean, this interpolation series has the
further property that (sl = 0. Conversely, every finite interpolation

series
n

b= Z ﬁw P2
i=o
is an element of w, satisfying |b| < n, with equality if and only if g 0.
For this reason, call the elements of w polynomials, and for all polynomials
a the value |a| will be called the degree of a.
Hence, in particular, for all non-negative integers n and m,

m=+n

Yo¥m= z T(;')(m: ’I’b) Ya,

A=max{m,n}
where the 7(m, n) are certain constants such that always t(m+n)(m,n)
is non-zero. From now on we shall suppose that these constants are
normalized so that .
™+ (m, n) =1 (m,n=0,1).
The interpolation series for the sum of two functions is equal to the
sum of their respective interpolation series. Similarly, using the expressions
for the interpolation series of the products y,ym, we can oblain the inter-
polation series for the product of two functions from their respective
interpolation series.

3. Let 0 be either 2 or w, and let f by any element of 0. Then the
symbol (f), will denote the principal ideal of 6 generated by f. The symbol
(f) will only be used to denote the principal ideal of 2 generated by f.

We now define a sequence of pseudo-valuations of 2

| (n=1,2,..))

n

as follows. For every f e 2 and for every positive integer n, put
m =1 if fe(y}), but f¢ (y}1)-

Then each of the pseudo-valuations | | satisfies, for all f,g € 2,
(7) |f| >0, m = 00;
(8) |f+g] > min {|f].]g]};

n n n

(9) |fg] > max {

S
-
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The first pseudo-valuation | | has a particularly important role in the

1
subsequent theory. For brevity, we shall often write | | instead of I [,
and we shall call the value |f| the order of f.
The valuation | | and each of the pseudo-valuations | | are closely

related, and this relation is the basis of most of the investigations of this
paper. Explicitly, the relation is the following.

Lemma 1. If A is any non-negative integer, and a is a polynomial
satisfying [a] < n4, |a| > A
n

then a=oy%, for some constant . Further, o is non-zero if and only if
a] =

Proof. Firstly, we use induction on n to prove that for all positive

integers n
& (¥e N o= (4), (=01, ..).
It is obvious that for all positive integers n
(¥ C(Wh)eNo (A=0,1,...).

We prove the converse by induction on n. Consider first the case n=1.
If b is any element of (y;)o N w, then the interpolation series for b6 must
be of the form

18]
b= Z i Y-
1=

It is therefore immediate that b € (y,),, and this (v;)e N » C (9,),. This
proves the case n=1. Next assume the result true for n—1. If b is any
element of (y%)o N w, then, in particular, b is an element of (y;); N w,
so that b is an element of the ideal (y;),. Therefore b/y; is a polynomial,
and since {2 is an integral domain, b/y, € (p% 1), N w. Thus, by the inductive
hypothesis, b/y; € (y3~1),, whence be (y?),,. We have therefore shown that

("P;.b)!)mw—c—("/);f)w (A'__Oa L..),

and this completes the proof of the first assertion.
Secondly, if @ is a polynomial satisfying the hypotheses then, by the
definition of the pseudo-valuation| |, a € (y})o N o. Since (¥} ) N 0= (¥})o,

it follows that a=by}, where b is a polynomial. We can suppose that a is
non-zero, because the lemma holds for @ = 0. The fundamental equation (5)

therefore gives ni+ Z ord,(b) = [a] <

and this inequality implies that
I—a’v] = nd, i | =2 ord,(b)=0.

4

This completes the proof.
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II.

4. We now establish two distinct types of simultaneous algebraic
approximation of functions by polynomials. These two types of approxima-
tion are fundamentally related, as will be shown later.

From now on, m will denote a fixed, but arbitrary, positive integer
such that m>2, because the case m=1 is trivial.

Let
fla fzs ce fm

be any fixed system of m functions. For brevity, we shall henceforth
call this system of functions a function vector, and denote the whole system
by the symbol f. For all positive integers ¢, the function vector

A1 ons I

will be denoted by the symbol fa.
Let further
Ql, 92’ AR Qm

be a system of m parameters, with sum ¢, which will always be assumed
to range over the non-negative integers. This system of m parameters
will be said to be #rivial if

01=02=...=0n=0.

Likewise, a system of m polynomials will be said to be trivial if all of its
elements are zero.
With this notation, there exists then a non-trivial system of polynomials

ak(QIQZ"' Qm) (k=1, 2,...,’”&),

which, together with the remainder function

m
7010z -+ Om) = k21 (0102 -+ Om) fr>
satisfies the inequalities
'ak(QIQZ"'Qm)l < o—1 (k=1’2""’m)’

| 7010 --- en)| > 0~ 1.

For take m polynomials, with unknown coefficients, satisfying the former

m
condition. These polynomials have 3 gi=o unknown coefficients amongst
k=1
them. The function 7(p1 g2 ... om) Will satisfy the latter condition if and
only if the coefficients of

Vo> Y15 «++ Yo-2

in its interpolation series are all zero. This gives o —1 homogeneous linear
equations for these ¢ unknown coefficients. These equations always have
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a non-trivial solution in the field. F Hence the assertion is true. This is
the first type of algebraic approximation, and we introduce the following
terminology. The polynomial system and the remainder function

(0102 -+ @m)> 7(0102 -+ Om) (k=1,2,...,m)

will be called a Latin polynomial system and its remainder, respectively,
belonging to the system

015 025 +++» Ome
Further, there exists a non-trivial system of polynomials
0(01 02 -+ Om) (k=1,2,...,m),
which, together with the remainder functions
10;1(01 02 -+ Om) = 01(0102 -+ €n) 5 — G102 - €m) fr (. k=1,2,...,m),
satisfies the {nequalities
[ (10 - om)| < 002 (k=1,2,...,m),
|01 02 - Om)| > 0+1 (4, k=1,2,...,m).
For take m polynomials with unknown coefficients, satisfying the former
condition. r‘I‘hese polynomials have g oc—ok+1l=(m—1)(c+1)+1 un-
known coefficients amongst them. T}kleremainder functions
10;,(01 095 -.., M) (4,k=1,2,...,m)
satisfies the latter condition if and only if the coefficients of

Yo> Y15 +++5 Yo
in the interpolation series for
100102 -+ ) (1=1,2,...,m,j#k)

are all zero. This gives (m—1)(c+1) homogeneous linear equations for
these (m —1)(c+1)+1 unknown coefficients, which always have a non-
trivial solution in the field F. Hence the assertion is true. Again, we
introduce the following terminology. The polynomial system and the
remainder functions

0k(9192 Qm)’ mik(9192 Qm) (j’kzl’ 2’ ’m)

will be called a German polynomial system and its remainders, réspectively,
belonging to the system
015025 «++5 Om

5. To study the properties of the approximation just introduced, it is
now necessary to impose a minor restriction on the function vector f.
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We shall say that the function vector f vanishes at the prime p, € IT if
the m expansion constants ¢,;, @s;, ..., @n;, Where

fo= P+ Pafa (k=1,2,...,m)

are all zero. The result we need is the following.

Lemma 2. If the function vector f vanishes at none of the primes in I,
then, for all positive integers n and q, and for all functions g, the inequalities

lgft] > 2 (G=1,2,...,m)
imply "
Iil > A
n
Proof. The proof of the lemma is in three parts. Firstly, we assume
that n=1 and ¢=1, and use induction on A. The result is trivial correct
when 1=0, and thus we suppose it true for 1—1. Let g be any function
satisfying |gf;| > 4, or equivalently g¢f; € (y;), for j=1,2, ..., m. Then,
by the inductive hypothesis, g € (y;,_,). In addition, there exist the
expansions
fi=®n+Dalia (G=12,...,m),

where, by assumption, at least one of the constants ¢;; is non-zero. It is
therefore clear that ¢ € (y;), which is the assertion for A. This completes
the proof of the first part.

Secondly, the result just proven implies the assertion for all positive
integers ¢, since, if the function vector f vanishes at none of the primes
in IT, then the function vector f¢ likewise vanishes at none of the primes
in II. We are still assuming that n=1.

Finally, an obvious inductive argument (just as in Lemma 1) proves
the assertion for arbitrary positive integers n. This completes the proof.

Henceforth, unless stated to the contrary, we sha.l always assume that
the function vector f vanishes at none of the primes in II.

6. We now introduce an expression which will be of fundamental
importance in our study of the algebraic approximation. The expression

( P19 e Ty 8 )

e

10,10, ... 10, 8
will always denote an expression of the form

( 1Ty oo TS ) m
e = a; Q
10, ... 10,8/ S

where
a , a (k=1,2,...,m)
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are two systems of polynomials, which, together with the functions

m

r= kZ @ fr > W= 0 f;— 0 (4, k=1,2,...,m),
=1

satisfy the inequalities

ne—1, | o | < 8—1oy,

| <
lrl>s

From these inequalities, we at once obtain the following estimate,

(D) Je( 1l e T )F max {(re—1) -+ (3— 1wy}
;10 ... 10, 8 k=1.2.m

Further, for j=1,2, ..., m,
P17 oer Ty S m
;€ = ;7 10, @ )
h (mlmz mmé> i+ 2 i

and from it we deduce that

( 179 oo TS
i

> min{s—1,8+1} (j=1,2,...,m).
e mlrmn.hjmg))>m1n{s +1} @ )

But the function vector f vanishes at none of the primes in 77, and thus,
by Lemma 2,

0 ( rlrz...rms> . | ar1
© “\m, 1, ... 10,8 > min {s—1, 8+1}.

The estimates (D) and (0) are basic for our later work.

IIT.

7. We begin with two definitions. A local property of the approximation
is defined to be a property at one system g1, 02, ..., om, While a global
property is a property which holds for infinitely many systems g1, g, ..., 0m.
We derive three global properties of the approximation which hold for
every function vector that vanishes at none of the primes in II.

For a given system g1, g2, ..., om let us arbitrarily choose one (there
may be many) system of Latin polynomials, which is then supposed
fixed for the rest of this part. We denote this system and its remainder by

(0101 -+ O) > T(0102 -+- Om) (k=1,2,...,m).

lifh=Ek

Let oy = {Oifk;ék

be the Kroneckér symbol. For A=1,2,...,m put

(01 02 - -+ Om) = W01+ 611 02+ Opg -+ O+ Ops) (k=1,2,...,m),
72(010z ++- @m) =7(01+ 64102+ O - -+ O+ Opm)5
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so that

m

(0102 - Om) = 2 (0102 - Om) [

k=1

Further, let a(o1 02 ... om) be the m xm matrix

a(010z --- Om) = (x(0102 -+ - Om) ) k=1.2,...m>

and let d(g1 02 ... om) be the determinant of this matrix.

This determinant can easily be evaluated. For the degree of the element
in its A row and kth column is at most px+dnr—1. Thus the degree
of the determinant does not exceed the sum of the greatest possible
degrees of its diagonal elements, that is

|d(010; .. 0m) | < 0.

Next we obtain an estimate for the order of the determinant. Applying
elementary column operations to the determinant, we find that for
i=1,2,..., m.

Q1 5 ooy Qi1 571 5 Bgjpy s ooy Qi
[ 00105 .. 0m) = | B2t > -+ Gai1 s Ta s Oyt oos o |
‘a‘mly coos Qui—15 Tms A5 <5 Imm

where the parameters have been omitted for brevity. Now the remainders
satisfy

[7(0105---0 )| > @ (h=1,2,...,m),
so that

MM>G (1=1,2,...,m).

By assumption, the function vector f vanishes at none of the primes in 77,
whence we obtain the estimate

|d(010; --- Qm_)__] > 0.

Therefore
d(0102 -+ 0m) = oy, With x € F.

The constant « will be non-zero if and only if the degree of the determinant
is equal ¢, and this will be so if and only if

[@n(0105 - om)| = 0 (h=1,2,...,m).

We shall investigate this property and its implications later.

8. There is an analogous determinant in the German polynomials and
we can evaluate it in a similar manner. For a given system g1, g2, ..., 0m
let us arbitrarily choose one system of German polynomials, which are
then again supposed fixed for the rest of this part. We denote this system
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and its remainders by
(0102 -+ Om) 5 Wik(€102 --- €m) (G, k=1,2,...,m).
For =1, 2, ..., m, put
00102 -+ @m) = 03(01— Op1 02— sz -+ O — Opim) (k=1,2,...,m),
7320102 - -+ Om) = 1i(@1— On1 02— O --- O — Opim) (G, k=1,2,...,m),
so that
102(01 02 -+ Om) = Wra(010z -+ Om) fi— Onil@102 --- 0w) [ (1, k=1,2,...,m).
Further, let a(o1, 02 ... om) be the m xm matrix

a(9192 Qm) = (ahlc(el Qz--- Qm))h.k=1.2.....m7

and let d(o1 02 ... om) be the determinant of this matrix.

In this determinant, the degree of the element in the Att row and ktn
column is at most o — 1 — gz + dxx. Therefore the degree of the determinant
does not exeed the sum of the greatest possible degrees of its diagonal
elements, that is again

[0(e10: - om) | < (m—1) 0.

Next, applying again elementary column operations to the determinant,
we find that for j=1,2,...,m

W1 5 <o Wyjio1 5 Ogj 5 Wajiga s -5 Wajm

b

M=15(0;0g +er O) = | 021 5 -++> Wajj—1 5 Ogj > Wajjigs 5 «oor Wajm

mmil’ (RS mmﬁ—l: Qg > mmﬁ+19 cee mmim

where the parameters have been omitted for brevity. Now the remainders
satisfy

,mhjk(9192"‘ Qm)I >0 (h:f:k=1’ 2"'~’m),
so that
|7 1D(e105 -+ 0m)| > © (G=1,2,...,m).
m—1

By assumption, the function vector f vanishes at none of the primes in /7,
whence, by Lemma 2, we obtain the estimate

|D(010 --- 0m)| > 0.

m-—1
Therefore the value of the determinant is
D(010z--- 0m) = Py5 ™", With e F.
The constant g will be non-zero if and only if the degree of the determinant
is equal to (m—1)o, and this will be so if and only if
| 00102 --- €m)| = 0 —e (h=1,2,...,m).

We shall investigate also this property and its implications later.
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8. TFinally, we prove a remarkable relation between the Latin and
German polynomial systems. The polynomials

e = kzlahk(9192 on Om) 00102 -+ Om) (h,j=1,2,...,m)

7179 e ¥ S

), with parameter values
10,10, ... 10,3

are expressions of the form e(

7=0u+ Ou , Wy=0p— Oy,
s=ad+1 , 3=0-—1.
From these values, (D) and (0) give the estimates

[€n]| < max {(ox+0we—1)+(0—1—g,+ 0)} = max {o+ O+ 0 —2},
=1, m

k=1,....m k ces

|€x;| > min {o,0}=0.

These estimates imply that for h=#j

m <leLj[ 9 i.e. eh,-———O,
and for A=y

U> |ehhl < |ehh >0‘ 5 i.e. ehh=8h1/)g, With €hEF.

The constant ¢, is non-zero if and only if the degree of exx is equal to o,
and this is so if and only if

(0102 - 0m)| = 01 5 |Ow(0102 --- 0w)| = O —4-

We shall investigate also this property later. In any case,

m

2 00102 --- Om) Cil(0102 --- Om) = Oj&n Yo (h,j=1,2,...,m),

and these equations can be written as the single matrix equation

&, 0, ..., 0
a(010z -+ 0m) /(0102 --- On) = %<O’ B1s e 0)

0,0, ..., &

where the dash denotes the transposed matrix.

(To be continued)





