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Abstract. This paper describes a generalisation of the methods of Iwasawa Theory

to the ®eld Fy obtained by adjoining the ®eld of de®nition of all the p-power torsion

points on an elliptic curve, E, to a number ®eld, F. Everything considered is essentially

well-known in the case E has complex multiplication, thus it is assumed throughout

that E has no complex multiplication. Let Gy denote the Galois group of Fy over

F. Then the main focus of this paper is on the study of the Gy-cohomology of the py-

Selmer group of E over Fy, and the calculation of its Euler characteristic, where

possible. The paper also describes proposed natural analogues to this situation of the

classical Iwasawa l-invariant and the condition of having m-invariant equal to 0.

The ®nal section illustrates the general theory by a detailed discussion of the three

elliptic curves of conductor 11, at the prime p � 5.

Let F be a ®nite extension of Q, and E an elliptic curve de®ned over F.

We assume throughout that E has no complex multiplication over the algebraic

closure of F and we will make no further comment about this in the statement

of our results. In fact, everything we shall consider is essentially well known in

the complex multiplication case (see [33]). Let p be any prime number. Our

aim is to consider a generalisation of the methods of Iwasawa Theory to the

®eld Fy obtained by adjoining all the p-power torsion points on E to F. By

a celebrated theorem of Serre [41], the Galois group Gy of Fy over F is iso-

morphic to an open subgroup of GL2�Zp�, and hence is a non-Abelian, p-adic,

Lie group of dimension four. This situation was ®rst considered by M. Harris

[20], [22], but remains shrouded in mystery today. We emphasize that the

methods of classical Abelian Iwasawa Theory do not extend in any obvious

fashion to the GL2 theory, and that there are a number of obvious pitfalls if one

follows such an approach (see [1].) We hope that our fragmentary results

provide evidence that there is a deep and interesting Iwasawa theory to be dis-

covered. We have largely concentrated on the study of the Gy-cohomology of

the py-Selmer group of E over Fy, and the calculation of its Euler characteristic
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when these cohomology groups are all ®nite. In the classical theory of Zp-

extensions an important role is played by Iwasawa's l and m-invariants for a

torsion module over the Iwasawa algebra. In §6 we propose what seem to be

natural analogues of the l-invariant and having m-invariant equal to 0 for the

dual of the py-Selmer group of E over Fy when we expect it to be torsion over

the Iwasawa algebra of Gy. (See also Greenberg [17], where a similar notion of

having m-invariant equal to 0 is introduced.) In §7 we illustrate our general

theory by a detailed discussion of the three elliptic curves of conductor 11 and the

prime p � 5, where we can prove all of our conjectures and calculate the an-

alogue of the l-invariant. We have not discussed at all the possible connexion of

the py-Selmer group of E over Fy with L-functions, although we strongly believe

that such a link must exist.

1. Statement of main results.

For any algebraic extension, H, of F we de®ne the py-Selmer group of E

over H, denoted Sp�E=H�, in the usual way, that is by the exactness of the

sequence

Sp�E=H� � Ker H 1�H;Epy� !
Y

o

H 1�Ho;E�

 !

; �1�

where o runs over all places of H. Here, if H is an in®nite extension of Q then

Ho denotes, as is usual, the union of the completions at o of all ®nite extensions

of Q contained in H. Denote by Fn the ®eld obtained by just adjoining the

pn�1-torsion points on E to F. As remarked above, Gy is de®ned to be the

Galois group of the ®eld extension Fy=F . Let Gn be the Galois group Gal�Fn=F �.

Then Gy can be embedded as a closed subgroup of GL2�Zp� and is thus a p-adic,

Lie group. We de®ne the Iwasawa algebra in this situation to be the following

completed group algebra

L�Gy� � lim
 �

Zp�Gn� �2�

where the inverse limit is taken with respect to the canonical projection maps.

Now Gy acts continuously on Sp�E=Fy�, where this latter module is

regarded as having the discrete topology, thus this action can be extended to a

continuous action of L�Gy� and it is generally more useful to regard Sp�E=Fy�

as a L�Gy�-module. We consider also

Cp�E=Fy� � Hom�Sp�E=Fy�;Qp=Zp� �3�

which has the structure of a compact L�Gy�-module.
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Because L�Gy� generally contains zero divisors it is also convenient to ®x a

pro-p subgroup

R � Gal�Fy=F0�; if p > 2; Gal�Fy=F1�; if p � 2: �4�

By restricting to the action of R, any L�Gy�-module naturally has the structure

of a L�R�-module, where L�R� is de®ned analogously to L�Gy�. It is known

that L�R� has no zero divisors. We say that a L�R�-module, M, is L�R�-torsion

if every element of M has a non-trivial annihilator in L�R�. Note that, because

L�R� is not Abelian, this is certainly weaker than asserting that M has a non-

trivial global annihilator in L�R�.

One ®nal piece of notation. If G is any pro®nite group which has ®nite p-

cohomological dimension, n say, and if M is any p-primary Abelian group with

the structure of a discrete G-module, then we de®ne its G-Euler Characteristic by

w�G;M� �
Y

0UiUn

�]H i�G;M���ÿ1� i �5�

if this is de®ned (i.e. all terms in the product are ®nite), otherwise we simply say

the G-Euler Characteristic of M is unde®ned. Recall that the p-cohomological

dimension of G, cdp�G�, is de®ned as the minimum number such that

H i�G;M� � 0 for all discrete, p-primary, G-modules, and for all i > cdp�G�. It

is well known, [38], [28], that a p-adic, Lie group has p-cohomological dimension

equal to its dimension as a p-adic manifold if it contains no element of order

p, and in®nite p-cohomological dimension otherwise. Thus our hypothesis on E

implies that cdp�Gy� � 4 if pV 5 but can be in®nite for p � 2; 3. This is the

main, but not only, reason for excluding in particular the prime p � 3.

Then we prove the following:

Theorem 1.1. Let p be a rational prime such that (i) pV 5, (ii) E has good

ordinary reduction at all places, n, of F dividing p, (iii) Sp�E=F� is ®nite and (iv)

Cp�E=Fy� is L�R�-torsion. Then w�Gy;Sp�E=Fy�� is de®ned and equals

rp�E=F � �
Y

n AM

Ln�E; 1�

�

�

�

�

�

�

�

�

�

�

p

; �6�

where rp�E=F � is de®ned by

rp�E=F� �

][�E=F ��p�
Q

njp

��] ~En�kFn
��p��2�

�]E�F��p��2
Q

n AS

jcnjp
: �7�

Here, S is any ®nite set of places of F containing the Archimedean places and

all primes of F which either divide p or where E has bad reduction. The set M
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consists of the set of non-Archimedean places of F at which the classical j-

invariant, jE , of E is non-integral. Other terms in (7) will be de®ned at the

beginning of §3. We simply note that it is ®nite, under our assumptions on E and

p above. In fact, in section 5 we carry out all the local calculations necessary to

prove a version of Theorem 1.1 replacing condition (ii) by the weaker statement

(ii) 0 E has potential good ordinary reduction at all places n of F dividing p. The

formula for rp�E=F � then becomes somewhat more complicated to state, but it

should be clear to anyone interested what form it takes, from the calculations in

§5.

We should confess at this point that the exact formula for the corresponding

result to Theorem 1.1 in our earlier note [7] is incorrect because of the omission

of the mysterious term coming from the Euler factors of primes in M. We are

grateful to Richard Taylor for pointing our earlier error out to us. We will

discuss further the signi®cance of these Euler factors later, when we carry out the

local calculations.

Theorem 1.2. Under the hypotheses (i) and (iv) of Theorem 1.1, for every

open subgroup G of Gy, the cohomology groups H i�G;Sp�E=Fy�� are zero for all

iV 2.

Note in particular that we are assuming nothing about the structure of

Sp�E=F �, the py-Selmer group over F, or, a priori, about the reduction type of E

at p. (In fact, we shall prove that these cohomology groups vanish under a

stronger condition, namely whenever Cp�E=Fy� satis®es Conjecture 2.4.)

More generally, we make the following conjectures:

Conjecture 1.3. Under the condition on p that E has good ordinary reduc-

tion at all places of F dividing p, Cp�E=Fy� is always L�Gy�-torsion, and thus

Conjecture 1.4. Under conditions (i), (ii) and (iii) of Theorem 1.1,

w�Gy;Sp�E=Fy�� is de®ned and equals the value given in (6) and (7).

Conjecture 1.3 was ®rst made by M. Harris in [19] (see also the correction

[22]). A more general conjecture, taking into account the behaviour of super-

singular primes, is given in the next section. This also allows us to conjecture

more generally when Theorem 1.2 should hold. Currently our evidence for this

conjecture is rather slight. It consists principally of a very weak theorem which

follows from a discussion of the relationship between Conjecture 1.3 and the

corresponding conjecture in the theory for the cyclotomic Zp-extension. We will

describe what we can currently say about the relationship between the two

situations in some detail in §6. Using this relationship we are able to prove all

of our conjectures for a small number of numerical examples, including the three

curves of conductor 11 and the prime p � 5. Our proofs are based on descent
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calculations for these elliptic curves over the ®eld Q�mp�, due to R. Greenberg

(see [10] for an account of Greenberg's work, which is announced in [17]),

and more recently to T. Fisher (unpublished). We will give a brief summary of

these calculations and the examples which follow in the ®nal section. Our other

main evidence is an explicit upper bound on just how large the rank of Cp�E=Fy�

as a L�Gy�-module can be, given in [25] and [24]. The main motivation for

Conjecture 1.3 is by analogy with the classical situation of the cyclotomic Zp-

extension of F, where the corresponding conjecture (originally due to Mazur, see

[29]) is long standing, and has recently been proven for E modular, de®ned over

Q and with F=Q Abelian, by Kato [26]. A similar statement to Conjecture 1.4 is

a well known theorem in this case, but the value of the Euler characteristic is

then just rp�E=F �, without the Euler factors at primes of non-integral j-invariant.

Due to the sparsity of explicit examples where Conjecture 1.3 is known to

hold, we will also establish a partial result in the direction of Theorem 1.1, which

holds without any assumption on the structure of Cp�E=Fy� as a L�Gy�-module.

In the potential good, ordinary case, however, we can establish nothing in the

direction of Theorem 1.2 without knowing the torsion of Cp�E=Fy�.

In an appendix we will also give a proof of the following result, the truth of

which was pointed out to us by R. Greenberg.

Theorem 1.5. Assume pV 5. Then

dimQp
�Cp�E=Fy�nZp

Qp� � y: �8�

In other words, the py-Selmer group is `large' despite Conjecture 1.3. Note

that, unlike in the classical cyclotomic situation, Theorem 1.5 is not incompatible

with Conjecture 1.3. The hypothesis pV 5 is only necessary in case E has

unstable reduction and integral j-invariant at all primes of F dividing p. We

believe that Theorem 1.5 is true for all primes p without restriction.

Our proof of Theorem 1.5 gives no indication as to whether the size of

Cp�E=Fy� is due to a large Mordell-Weil group over Fy or a large Tate-

ShafarevicÏ group, [�E=Fy�. This is something which would be extremely

interesting to clarify (presumably both can be large.) Under certain conditions

(including assuming E has good ordinary reduction at all primes n of F dividing

p) Theorem 1.5 follows from work of Harris in [21], where he actually constructs

explicit lower bounds on the Mordell-Weil rank of E over Fn.

Our motivation for studying Theorem 1.1 is the following. Exact formulae

play an important part in the Iwasawa Theory of elliptic curves. If the py-

Selmer group at the Fy level is to eventually be useful in studying the arithmetic

of E over the base ®eld, F, we must be able to recover the basic arithmetic

invariants of E over F from some formula related to the L�R�-module structure

of Sp�E=Fy�. In the classical analogue of our theory over the cyclotomic Zp-
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extension of F, Theorem 1.1, when combined with an Iwasawa Main Conjecture,

is what would be expected from a p-adic Birch and Swinnerton-Dyer conjecture,

as described in [30] and gives information about the original conjecture of Birch

and Swinnerton-Dyer. In fact, it largely motivated the formulation of the p-adic

Birch and Swinnerton-Dyer conjecture. For elliptic curves admitting complex

multiplication, such a Main Conjecture has been proven by Rubin and Yager.

In the setting of this paper we do not yet have the tools available to formulate an

analogous Main Conjecture. So we study such explicit formulae directly instead.

Further discussion of this motivation was given in our earlier paper [7]. We

note that a preliminary account of the results of this paper is also given in the

lectures [4].

Notation. The following notation is used throughout:
. If A is any Abelian group then A�p� denotes its p-primary subgroup.
. If S is any ®nite set of primes of F then F S denotes the maximal extension

of F unrami®ed outside S.
. If A is either a discrete p-primary Abelian group or a compact pro-p group

then the Pontrjagin dual of A is de®ned by

Â � Hom�A;Qp=Zp�:

. For an elliptic curve, E, de®ned over F, Fy throughout denotes the

extension of F obtained by adjoining all the p-power torsion points on E,

and F cyc denotes the cyclotomic Zp-extension of F.
. The Galois group of Fy over F is denoted by Gy and R is a ®xed pro-p

subgroup of Gy de®ned by (4).
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many helpful conversations and contributions to the contents of this paper. We

would also like to thank J-P. Serre for providing us with a proof of Theorem

4.2, R. Sujatha for ®rst pointing out the ®niteness of the cohomology groups in

(131), and Y-H. Ochi, R. L. Taylor and B. Totaro for making a number of

helpful observations while this work was in progress.

2. Preliminaries.

We will need certain general results about the algebraic structure of L�R�

and ®nitely generated L�R�-modules which are collected together here for ref-

erence. By a L�R�-module we will always mean a left L�R�-module. So long

as we are consistent, though, we could of course equally well talk about right

L�R�-modules.

The action of Gy on Epy de®nes a canonical representation

r : Gy ,! Aut�Epy�mGL2�Zp�: �9�
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When there is no danger of confusion, we shall drop the homomorphism r from

the notation, and identify Gy with a subgroup of GL2�Zp�. Note that r maps R

into the subgroup of GL2�Zp� consisting of all matrices which are congruent to

the identity modulo p if pV 3, 4 if p � 2. In particular, it follows that R is

always a pro-p group. However, it is not in general true that Gy itself is a pro-p

group. The following fundamental result about the size of Gy is due to Serre

[41].

Theorem 2.1. i) Gy is open in GL2�Zp� for all primes p, and

ii) Gy � GL2�Zp� for all but a ®nite number of primes p.

The following is an extension, due to Serre [38], of a theorem of Lazard [28].

Theorem 2.2. Any p-adic, Lie group, G, containing no element of order p has

®nite p-cohomological dimension which is equal to its dimension as a p-adic

manifold.

By virtue of Theorem 2.1, Gy is a p-adic Lie group of dimension 4. Thus

Gy will have p-cohomological dimension equal to 4 provided Gy has no p-

torsion. Since Gy is a subgroup of GL2�Zp�, it will certainly have no p-torsion

provided pV 5.

The ®nal algebraic property we need is

Theorem 2.3. The Iwasawa algebra L�R� is left and right Noetherian and

has no divisors of zero.

This is a special case of a theorem of Lazard's [28].

It is known (see [13] chapter 9) that Theorem 2.3 implies that L�R� admits a

skew ®eld of fractions, which we denote by K�R�. If M is any ®nitely generated

L�R�-module then we de®ne the L�R�-rank of M by

Definition.

L�R�-rank�M� � dimK�R��K�R�nL�R� M� �10�

Note that the theory of vector spaces over skew ®elds exactly parallels the usual

theory in the Abelian case, so this de®nition is a valid one. What is more, since

K�R� is a ¯at L�R�-module, L�R�-rank is additive with respect to exact sequences

of ®nitely generated L�R�-modules. As would be expected, M is torsion in the

sense de®ned previously if and only if the L�R�-rank of M is zero.

For each prime, n dividing p, of F de®ne the integer tn�E=F � by

tn�E=F� �

jFn : Qpj if E has potential

supersingular reduction at n,

0 otherwise.

8

<

:

�11�

Euler characteristics and elliptic curves II 181



Put

tp�E=F� �
X

njp

tn�E=F � �12�

We can now make the more general conjecture about the size of Cp�E=Fy�

promised in the previous section.

Conjecture 2.4. For every prime, p, the L�R�-rank of Cp�E=Fy� is equal to

tp�E=F�jGy : Rj:

Since, of course, tp�E=F� � 0 if E has good ordinary reduction at all primes of F

dividing p, this incorporates the earlier Conjecture 1.3 made above.

For interest, we quote here the following from [25], [24].

Theorem 2.5. For all primes pV 5 we have

tp�E=F�U
L�R�-rank�Cp�E=Fy��

jGy : Rj
U jF : Qj �13�

Let G now be any p-adic, Lie group. Recall the augmentation ideal of L�G� is

de®ned by

I�G� � Ker�L�G� ! Zp� �14�

Here L�G� is de®ned, for any p-adic Lie group, as in (2). Then the following

essentially well known theorem is discussed in [1]

Theorem 2.6 (Nakayama's Lemma). Assume that G is a pro-p, p-adic, Lie

group, and that M is a compact, left L�G�-module. Then M � 0 if and only if

M=I�G�M � 0. It follows that if M=I�G�M is a ®nitely generated Zp-module,

then M is a ®nitely generated L�G�-module.

Clearly any L�Gy�-module which is ®nitely generated as a L�R�-module is

also ®nitely generated as a L�Gy�-module.

It is interesting to note that the stronger version of Nakayama's lemma,

giving a useful criterion for M to be L�G�-torsion, does not generalise to arbitrary

pro-p, p-adic, Lie groups. See [1] a discussion of what can be said.

We now turn to some preliminary steps in the proof of Theorems 1.1 and

1.2. Recall S is any ®nite set of primes of F containing the set of primes

dividing p, the primes of bad reduction and the Archimedean primes and F S

denotes the maximal extension of F which is unrami®ed outside the set S. Then

F S contains Fy. It is well known that this implies the py-Selmer group (over

any ®eld contained in F S) can be de®ned by considering local conditions only at
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the primes dividing those in S. Because of our assumption that p0 2 we may

also ignore all local considerations at in®nite primes.

De®ne

Jn�Fy� � lim�! 0
onjn

H 1�Fn;on
;E��p� �15�

where the limit is taken with respect to the restriction maps. For each n, the

on range over the primes of Fn which lie above n, and Fn;on
denotes the

completion of Fn at on. Thus we obtain the following fundamental diagram

with exact rows.

0 ���! Sp�E=Fy�Gy ���! H 1�F S=Fy;Epy�
Gy ���!cy 0

n AS

Jn�Fy�

 !Gy

x???a

x???b

x???d�0 dn

0 ���! Sp�E=F� ���! H 1�F S=F ;Epy� ���!lF 0
n AS

H 1�Fn;E��p�

�16�

The vertical maps are given by restriction maps. It is by a detailed analysis

of this diagram that we will be able to prove Theorems 1.1 and 1.2.

The following well known lemma (see [8]), whose proof we omit, describes

the cokernel of lF when Sp�E=F � is ®nite.

Lemma 2.7. Let p be an odd prime and assume that Sp�E=F� is ®nite. Then

Coker�lF � � dE�F��p�.

The in¯ation-restriction sequence in Galois cohomology describes the kernels

and cokernels of b and d. We have the exact sequence

0 ! H 1�Gy;Epy� ! H 1�F S=F ;Epy� !
b
H 1�F S=Fy;Epy�

Gy

! H 2�Gy;Epy� ! H 2�F S=F ;Epy�

�17�

and thus Ker�b�, Coker�b� are both ®nite independent of any hypothesis on E,

p, as was ®rst pointed out by Serre in [37], [40]. We will explain this later, see

Lemma 4.1.

Turning to the local maps, we ®rst require

Lemma 2.8. For each prime n in S let o be any prime of Fy dividing n.

Then H i�Gy; Jn�Fy�� is canonically isomorphic to H i�Do;H
1�Fy;o;E��p��, where

Do is the decomposition group of Gy at o.
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By a prime of Fy we shall mean a compatible sequence of primes for each ®nite

extension of F contained in Fy. It is su½cient just to consider the sub-extensions

Fn. Then o � �on�, where the on satisfy on�1jon. This is equivalent to the

usual notion of a prime of Fy. To say that o divides n means simply that each

onjn. We then have

Fy;o � 6
n

Fn;on
�18�

We omit the proof of the above lemma, which follows immediately from

Shapiro's lemma as in prop. 7.2 chap. VII of [3].

Now we can give the local analogue of (17). For each n in S, we have an

exact sequence

0 ! H 1�Do;E�Fy;o���p� ! H 1�Fn;E��p� !
dn

H 1�Fy;o;E��p�
Dn

! H 2�Do;E�Fy;o���p� ! H 2�Fn;E��p�

�19�

describing Ker�dn�, Coker�dn�. In fact H 2�Fn;E��p� � 0.

The snake lemma applied to the fundamental diagram (16) gives the fol-

lowing exact sequence

0 ! Ker�a� ! Ker�b� ! Ker�d�V im�lF � ! Coker�a�

! Coker�b� ! im�cy�=d�im�lF �� ! 0:
�20�

We can thus immediately conclude

Theorem 2.9. The kernel of a is ®nite and the Pontrjagin dual of the

cokernel is ®nitely generated as a Zp-module. Thus

i) Cp�E=Fy� is a ®nitely generated L�R�-module, and

ii) the Pontrjagin dual of H 1�F S=Fy;Epy� is a ®nitely generated L�R�-

module.

Proof. Diagram (16) holds with any choice of ground ®eld, thus we may

take

F � F0 � F�Ep�; p > 2; F � F1 � F �E4�; p � 2:

Firstly, since Ker�b� is ®nite Ker�a� is ®nite also. Also, we know that

Ker�d�H 0
n AS

H 1�Fn;E��p�

By Tate local duality the Pontrjagin dual of each H 1�Fn;E��p� is E�Fn�n̂Zp,

a ®nitely generated Zp-module (of rank 0 if nap, rank jFn : Qpj if njp) and so

Ker�d� is co®nitely generated as a Zp-module. It follows that the same is true
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of Coker�a�. But Sp�E=F � is a subgroup of H 1�F S=F ;Epy� which is co®nitely

generated as a Zp-module (due to Tate, see [31] Corollary 4.15.) Thus Sp�E=F�

is itself co®nitely generated as a Zp-module. It follows that Cp�E=Fy�R, the

R-coinvariants of Cp�E=Fy�, is a ®nitely generated Zp-module. Since Cp�E=Fy�

is the Pontrjagin dual of Sp�E=Fy�, a discrete L�R�-module, and thus is itself a

compact L�R�-module, part (i) of the theorem then follows by Nakayama's

lemma, 2.6. Similarly, since Coker�b� is ®nite, it follows that H 1�F S=Fy;Epy�
R

is co®nitely generated as a L�R�-module. Since H 1�F S=Fy;Epy� is discrete, the

second part also then follows from 2.6. r

We are grateful to Y. Ochi ([32]) for pointing out to us the following which

is particularly interesting as the ®rst real example of a result which is actually

easier to prove in this non-Abelian situation.

Theorem 2.10. For all odd primes p, we have

H 2�F S=Fy;Epy� � 0: �21�

Indeed, for F cyc the cyclotomic Zp-extension of F, it has long been conjectured

that

H 2�F S=F cyc;Epy� � 0 �22�

for all odd primes p. However, at present this latter assertion has only been

proven in some rather special cases. Theorem 2.10 is not necessary in the proof

of Theorems 1.1 and 1.2 as stated above as in fact it would follow from the

assumption that Cp�E=Fy� is L�R�-torsion. It is, however, necessary for the

proof of part (ii) of Prop 3.1, part of the strongest result we can prove without

any version of the rank Conjecture, 2.4.

We will not give the full proof of Theorem 2.10. We simply note that since

Epy is rational over Fy the Galois group Gal�F S=Fy� operates trivially on Epy

and so it is su½cient to show (21) with Epy replaced by Qp=Zp. However,

because Fy contains all the pth-power roots of unity (due to the Weil pairing) this

is equivalent to

lim
�!

H 2�F S=Fn�mpy�;Qp=Zp� � 0: �23�

But each term in this inductive limit is known to be zero, by virtue of a classical

result due to Iwasawa.

3. Proofs of theorems 1.1 and 1.2.

In this section we give proofs of Theorems 1.1 and 1.2 subject to the

statement of certain results concerning the local and global Galois cohomology

of the ®eld Fy which will be established in the next two sections.
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We start by de®ning all the terms appearing in formulae (6) and (7).
. [�E=F� is the Tate-ShafarevicÏ group of E over F.

For each ®nite prime, n of F:
. cn � jE�Fn� : E0�Fn�j denotes the local Tamagawa factor at n, (recall E0�Fn�

is the subgroup of E�Fn� consisting of the points with non-singular reduc-

tion at n.)
. Ln�E; s� denotes the Euler factor of E at n.
. Write kFn

for the residue ®eld of F at n, and ~En for the reduction of E

over Fn, if E has good reduction at n. In this case, ~En;pywill denote the

p-primary subgroup of ~En�kFn
�.

Due to the sparsity of examples where the rank Conjecture 2.4 is known, we start

by proving the strongest result we can in the direction of Theorem 1.1 without

assuming that Cp�E=Fy� is L�R�-torsion.

Proposition 3.1. Assume pV 3 and jE is integral at all n dividing p. Then

the group H 0�Gy;Sp�E=Fy�� is ®nite if and only if both Sp�E=F� is ®nite and

tp�E=F� � 0. In this case

i) both H 1�Gy;Sp�E=Fy�� and the cokernel of the map c
y

appearing in the

fundamental diagram (16) are ®nite;

ii) they satisfy

]H 1�Gy;Sp�E=Fy�� divides ]Coker�c
y
�]H 3�Gy;Epy�: �24�

We will prove this together with the next proposition, obtaining formulae relating

the quantities appearing in the proposition which can then be made more explicit

if we strengthen the hypotheses on the reduction type of E at primes dividing

p. The reason for having to include the second condition, that jE is integral

at njp, is the following: it is conjectured that Ker�dn�, Coker�dn� are ®nite for n

dividing p such that jE is not integral, but it is currently unknown in general.

Since we need this in the proof of the proposition, we cannot include this case.

More generally, we conjecture

Conjecture 3.2. For each pV 5, w�Gy;Sp�E=Fy�� is de®ned if and only if

both

i) Sp�E=F � is ®nite and

ii) tp�E=F� � 0:

We shall see in the proof of Proposition 3.1 that even the ®niteness of

H 0�Gy;Sp�E=Fy�� implies that Sp�E=F� is ®nite and tp�E=F� � 0. It is the

converse which is currently mysterious, resting upon a proof of the case

tp�E=F� � 0 of Conjecture 2.4, together with a positive answer to the question

mentioned above about the ®niteness of Ker�dn�, Coker�dn� when ordn� jE� < 0.
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To get an exact formula, we simplify to the case where E has stable re-

duction at all primes of F dividing p. As remarked above, this is not strictly

necessary but it does make the statement of the formula much simpler.

Proposition 3.3. If pV 5 and E has good ordinary reduction at all primes

of F dividing p, and if Sp�E=F � is ®nite, then the cardinalities of Coker�cy� and

H 0�Gy;Sp�E=Fy�� are related by the formula

]H 0�Gy;Sp�E=Fy�� � ]H 3�Gy;Epy�]Coker�cy�rp�E=F�
Y

n AM

Ln�E; 1�

�
�
�
�
�

�
�
�
�
�
p

�25�

Proof. The ®rst easy remark is that if H 0�Gy;Sp�E=Fy�� is ®nite then

Sp�E=F � must be also. This is clear because, by Theorem 2.9, the kernel of the

map

a : Sp�E=F� ! Sp�E=Fy�Gy �26�

is ®nite. Consider, now, the following diagram.

0 ���! im�cy� ���! 0
n AS

Jn�Fy�

 !Gy

���! Coker�cy� ���! 0

x
?
?
?
d1 d�

x
?
?
?
0 dn

x
?
?
?
h

0 ���! im�lF � ���! 0
n AS

H 1�Fn;E��p� ���! Coker�lF � ���! 0

�27�

Here, Ker�d1� � Ker�d�V im�lF � and Coker�d1� � im�cy�=�d�im�lF ���.

But from the fundamental diagram, (16), and the exact sequence it gives,

(20), the assumption that Coker�a� is ®nite implies that Ker�d1� and Coker�d1�

are both ®nite. Since, by Lemma 2.7 and our assumption that pV 3, Coker�lF �

is ®nite, this implies that Ker�d� must be ®nite. But, we will see in Lemma 5.17

that Ker�dn� is in®nite if E has potential supersingular reduction at n for some n

dividing p. Since, by de®nition (11), tn�E=F� is non-zero if and only if E has

potential supersingular reduction at n, it follows that tp�E=F � must be zero.

The argument up until now has not required the hypothesis that jE is

integral at all n dividing p. We need this for the converse. Suppose tp�E=F � �

0 and Sp�E=F� is ®nite. Then, by Proposition 5.12 for primes not dividing p,

Corollary 5.22 for primes dividing p and Lemma 2.7, Ker�d�, Coker�d� and

Coker�lF � are all ®nite. By the snake lemma applied to diagram (27) above, we

®nd (i) Coker�h� is ®nite and thus Coker�cy� is ®nite and (ii)

]Ker�d1�

]Coker�d1�
�

]Ker�d�

]Coker�d�
�
]Coker�cy�

]Coker�lF �
�28�
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By (20) this implies that Coker�a� is ®nite and thus so is H 0�Gy;Sp�E=Fy��.

This completes the proof of the ®rst statement in Proposition 3.1. But in fact,

taking alternating products along the sequence (20), we get the explicit formula

]H 0�Gy;Sp�E=Fy�� �
]Ker�d�

]Coker�d�
�
]Coker�b�

]Ker�b�
�
]Coker�c

y
�

]Coker�lF �
� ]Sp�E=F �: �29�

We now substitute in the information from sequence (17) which, together with

Lemma 4.3, describes the kernel and cokernel of b, the information from Lemma

2.7 describing the cokernel of lF , and the fact that ]Sp�E=F � � ][�E=F��p�.

This gives

]H 0�Gy;Sp�E=Fy�� �
]Ker�d�

]Coker�d�
�
]H 2�Gy;Epy�

]H 1�Gy;Epy�

�
]Coker�c

y
�

]E�F ��p�
� ][�E=F��p�: �30�

We now add the extra hypothesis of Proposition 3.3, that E actually has good (not

just potential good) ordinary reduction at all the primes of F dividing p. Then

we can identify the term coming from the local maps explicitly. This is given in

Proposition 5.12 for primes not dividing p. For primes dividing p the value of

this term is given in Corollary 5.26. Substituting this information in, we obtain

]H 0�Gy;Sp�E=Fy�� �
]H 2�Gy;Epy�

]H 1�Gy;Epy�
� ]H 0�Gy;Epy�

�

rp�E=F �]Coker�cy
�
Q

n AM

Ln�E; 1�

�

�

�

�

�

�

�

�

p

Q

njp

Q

0UiU2

]H i�Do; ~En;py�
�ÿ1� i

 ! : �31�

From the global and local Euler characteristic theorems, (4.2 and equation (118)

in Proposition 5.26) proved in the next two sections, we see that the right hand

side of (31) is

� ]H 3�Gy;Epy�]Coker�cy
�rp�E=F �

Y

n AM

Ln�E; 1�

�

�

�

�

�

�

�

�

�

�

p

�32�

as required for the Proposition 3.3.

The ®nal remark we need to make is that the ®niteness of Sp�E=F � and

Coker�c
y
� implies H 1�Gy;Sp�E=Fy�� is also ®nite. We no longer need the

hypothesis that E has stable reduction at all n dividing p. Suppose X is the
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image of H 1�F S=Fy;Epy� under the localisation maps, so for some L�R�-module

Y, the sequences

0 ! Sp�E=Fy� ! H 1�F S=Fy;Fpy� ! X ! 0 �33�

0 ! X !
Y

n AS

Jn�Fy� ! Y ! 0 �34�

are exact. This gives the following commutative, exact diagram:

0
?
?
?
y

H 1�F S=Fy;Epy�
Gy

���!
e

X Gy
���! H 1�Gy;Sp�E=Fy�� ���! H 3�Gy;Epy�

?
?
?
y

0
n AS

Jn�Fy�

 !Gy

�35�

Thus if Coker�cy� is ®nite then so also is Coker�e�. We have H 3�Gy;Epy� on

the right because, by Lemma 4.4 of the next section, H 1�Gy;H 1�F S=Fy;Epy�� is

isomorphic to H 3�Gy;Epy�. This is ®nite. Thus H 1�Gy;Sp�E=Fy�� is ®nite

and satis®es

]H 1�Gy;Sp�E=Fy�� j ]Coker�e�]H 3�Gy;Epy�: �36�

Since cy is the composition of the map X Gy ,! �0
n AS

Jn�Fy�
�Gy and the map e,

it follows that ]Coker�e� j ]Coker�cy�. So we have the second part of Prop-

osition 3.1. r

Remark. In fact, under certain conditions (in particular when F � Q, dis-

cussed in [24]) it is possible to prove that cy is a surjection, giving a stronger

version of Propositions 3.1 and 3.3. This certainly fails for general ®elds F.

We will not give details of this here but see [15] for a similar discussion in the

cyclotomic Zp-extension case.

Recall the following sequence de®ning Sp�E=Fy�:

0 �! Sp�E=Fy� �! H 1�F S=Fy;Epy� �!
lFy 0

n AS

Jn�Fy� �37�

Proposition 3.4. For pV 5, the L�R�-rank of Cp�E=Fy� equals

jGy : Rjtp�E=F� if and only if the map, lFy , in (37) is surjective.
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The basic idea here is to compute L�R�-ranks along the dual of the exact

sequence, (37), above. We quote the following results from [25] and [24].

Theorem 3.5. The dual of H 1�F S=Fy;Epy� has L�R�-rank equal to

jF : Qj jGy : Rj, independent of any conditions on p.

Theorem 3.6. If p is any prime V5, then

d0
n AS

Jn�Fy� has L�R�-rank equal to jF : Qj jGy : Rj ÿ tp�E=F� �38�

The inequality of Theorem 2.5 mentioned above clearly follows from these.

Proof of Proposition 3.4. The implication lFy surjective implies Cp�E=Fy�

has the conjectured L�R�-rank is now clear from the determination of L�R�-ranks

quoted. Conversely, suppose Cp�E=Fy� has the expected L�R�-rank. It follows

from Theorems 3.5 and 3.6 that the dual of Coker�lFy� is L�R�-torsion. But the

following argument, well known from the cyclotomic situation, shows that there

is no non-zero L�R�-torsion in the dual of Coker�lFy�, and hence it must be

zero. Cassels' variant of the Poitou-Tate exact sequence extends (37) to

0 �!Sp�E=Fy� �! H 1�F S=Fy;Epy� �!
lFy 0

n AS

Jn�Fy�

�! dRp�E=Fy� �! H 2�F S=Fy;Epy�;

�39�

where Rp�E=Fy� is de®ned as the kernel of

lim
 �

H 1�F S=Fn;Fp n� ! lim
 �

0
onjS

H 1�Fn;on
;E��pn�: �40�

Here, the limit is taken with respect to corestriction maps and the canonical

maps induced by the multiplication by p maps, �p : Epn�1 ! Epn . Since

H 2�F S=Fy;Epy� is known to be zero from Theorem 2.10 above, it follows

that the dual of Coker�lFy� is isomorphic to Rp�E=Fy�. It is shown in [25],

[24], however, that this is L�R�-torsion free. r

We shall see in §6 how Proposition 3.4 allows us to relate Conjecture 1.3 to

the corresponding conjecture in the cyclotomic theory. Coping with potential

supersingular primes is easier, though.

Corollary 3.7. In particular,

i) if Cp�E=Fy� is L�R�-torsion, then lFy is a surjection,

ii) if E has potential supersingular reduction at all n dividing p then

tp�E=F� � jF : Qj and so, by Theorem 2.5, Conjecture 2.4 holds. It follows that

for pV 5 the map lFy is a surjection.

Assume until further notice that
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Hypothesis. i) pV 5

ii) E has good, ordinary reduction at all primes of F dividing p

iii) Sp�E=F� is ®nite

iv) Cp�E=Fy� is L�R�-torsion

That is, exactly the hypotheses of Theorem 1.1

Proof of Theorem 1.1. Since the fourth hypothesis listed above forces the

map lFy to be a surjection, taking Gy cohomology of (37) gives the following

cohomological long exact sequence:

0 �! Sp�E=Fy�Gy

�! H 1�F S=Fy;Epy�
Gy

�!
c
y

�!H 1�Gy;Sp�E=Fy�� �! � � � �! H 4 Gy;0
n AS

Jn�Fy�

 !

�! 0 �41�

The sequence terminating after the fourth cohomology groups because of the

assumption that pV 5 and thus cdp�Gy� � 4. However, under the above

hypotheses we can apply Proposition 3.3 to conclude that Coker�c
y
� is ®nite.

From Corollary 4.5 we have the isomorphisms

H i�Gy;H 1�F S=Fy;Epy��GH i�2�Gy;Epy�; iV 1

and thus also the ®niteness of these groups. Locally, by Lemma 5.16, we have

the isomorphisms

H i�Gy; Jn�Fy��GH i�2�Do; ~En;py� for iV 1; any njp and any ojn;

and these groups are again ®nite by Corollary 5.26. In fact, these groups are

zero, but it is convenient to continue keeping track of them in the formulae for

the present. Also, by Proposition 5.12,

H i�Gy; Jn�Fy�� � 0 for nap; iV 1:

Thus all the terms appearing in (41) after Coker�c
y
� are ®nite. In particular the

groups H i�Gy;Sp�E=Fy�� for iV 1 are ®nite. But it was shown in

Proposition 3.3 above that H 0�Gy;Sp�E=Fy�� is ®nite, thus the Euler charac-

teristic w�Gy;Sp�E=Fy�� is de®ned. Taking the alternating product of the

cardinalities of the terms in (41) appearing after the cokernel of c
y

then gives the

following formula

]coker�c
y
� �

Q

3UiU4

]H i�Gy;Epy�
�ÿ1� i

Q

1UiU4

]H i�Gy;Sp�E=Fy��
Q

njp

Q

3UiU4

]H i�Do; ~En;py�
�ÿ1� i

 ! �42�

Euler characteristics and elliptic curves II 191



Substituting this into the formula given above (31), relating the cardinality of

coker�cy� with ]�Sp�E=Fy��Gy we see that

w�Gy;Sp�E=Fy�� �

rp�E=F �
Q

n AM

Ln�E; 1�

�

�

�

�

�

�

�

�

p

w�Gy;Epy�

Q

njp

w�Do; ~En;py�
�43�

However, see Theorem 4.2 and Proposition 5.26 respectively, we know that for

njp

w�Do; ~En;py� � 1 � w�Gy;Epy�;

thus completing the proof of Theorem 1.1. r

Now turn to the proof of Theorem 1.2. In fact, we can replace the

hypotheses there by the following weaker hypotheses:

Hypothesis. Let G be any open subgroup of Gy. Assume

i) G contains no element of order p

ii) The map lFy is surjective

Proof of Theorem 1.2. By replacing F by the ®xed sub®eld of F we may

assume G � Gy. Returning to the cohomological long exact sequence of (41),

the conclusion of Theorem 1.2 follows immediately if we substitute in the facts:

1) that H i�Gy;H 1�F S=Fy;Epy�� � 0 for iV 2 from Corollary 4.5 and 2) that

H i�Gy;0
n AS

Jn� � 0 for iV 1 from Proposition 5.12 for n not dividing p and

Lemma 5.16 together with Corollary 5.26 for n dividing p. This proves Theorem

1.2 as stated in the introduction because, by Corollary 3.7, the assumption that

Cp�E=Fy� is L�R�-torsion implies that lFy is a surjection. r

We ®nish this section by proving the following result about the structure of

Cp�E=Fy�.

Corollary 3.8. Under the hypotheses above for which we proved Theorem

1.2, Cp�E=Fy� contains no non-trivial, ®nite L�W�-submodules, where W denotes

any open subgroup of the Galois group, Gal�Fy=F�mpy��. In particular, under

these conditions the p-primary part of the Tate-ShafarevicÏ group, [�E=Fy��p�, is

either in®nite or zero.

Proof. Since W is an open subgroup of Gal�Fy=F�mpy�� there exists some

n su½ciently large such that Hn � Gal�Fy=Fn�mpy�� is contained in W. Then it

is su½cient to show there are no ®nite L�Hn�-submodules, where we consider

Cp�E=Fy� as a L�Hn�-module in the only natural way, with the action induced by

restricting that of Gy. For n su½ciently large, Hn is a normal subgroup of
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Gal�Fy=Fn� with quotient group, Gn � Gal�Fn�mpy�=Fn�, isomorphic to Zp and

having cdp�Gn� � 1. The Hochschild-Serre spectral sequence thus gives rise to

the exact sequence

0 ! H 1�Gn;H
2�Hn;Sp�E=Fy��� ! H 3�Gal�Fy=Fn�;Sp�E=Fy�� !

H 3�Hn;Sp�E=Fy��Gn ! 0:
�44�

But, under the above hypotheses, we know that H 3�Gal�Fy=Fn�;Sp�E=Fy�� � 0.

Thus the Gn-coinvariants of the discrete, p-primary L�Gn�-module H 3�Hn;

Sp�E=Fy�� vanish. Since Gn is pro-p, this implies the vanishing of H 3�Hn;

Sp�E=Fy��, by Nakayama's Lemma, 2.6. Suppose MHCp�E=Fy� is a ®nite

Hn-module. Then M̂ is a ®nite quotient of Sp�E=Fy�. Since we have H 3�Hn;

Sp�E=Fy�� � 0, H 3�Hn; M̂� � 0. But since Hn is an open subgroup of SL2�Zp�,

Hn is an orientable PoincareÂ group of dimension equal to 3 and so H 3�Hn; M̂�

is dual to H 0�Hn;M� � MHn . Furthermore, this means MHn � 0. For Hn pro-

p this is not possible by Nakayama's lemma, 2.6. The last comment follows

because [�E=Fy��p� is the quotient of Sp�E=Fy� by E�Fy�nQp=Zp. r

Remark. Corollary 3.8 is stronger than that showing Cp�E=Fy� contains

no ®nite G-submodules for G any open subgroup of Gy. This weaker statement

follows in an identical manner only using the vanishing of H 4�G;S�E=Fy��.

One would expect the vanishing of H 2�G;S�E=Fy�� should say something

stronger yet about the structure of Cp�E=Fy�, but it is not currently clear to us

exactly what this could be.

Note in particular, it follows from Corollary 3.7 that both the vanishing of

the higher cohomology and Corollary 3.8 hold for all pV 5 such that E has

potential supersingular reduction at all primes of F dividing p.

4. Global Galois cohomology.

First we remark that the reduction type of E at p is clearly of no con-

sequence for all the results in this section, and we make no assumption about it.

We require the following fact

Lemma 4.1. The cohomology groups, H i�Gy;Epy� are ®nite for all p and all

iV 0. They are zero for iV 4 if Gy contains no element of order p.

This was ®rst proved by Serre, [37] and [40], but is also easy to see in the

following manner:

Proof. Upon choosing a basis of TpE, Gy is identi®ed with an open

subgroup of GL2�Zp�. Then it contains a homothety, x, in the centre of Gy and

acting upon Epy as multiplication by 1� p t for some t. Because x lies in the
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centre of Gy it acts trivially on the cohomology groups H i�Gy;Epy�. Thus

xÿ 1 annihilates the H i�Gy;Epy�. But xÿ 1 also acts as multiplication by p t,

and so we have an exact sequence

0 ! H i�Gy;Epy� ! H i�1�Gy;Ep t� ! H i�1�Gy;Epy� ! 0 �45�

for iV 0. Since all the H i�1�Gy;Ep t� are known to be ®nite (see [28] for the

case when Gy is pro-p, but an elementary argument extends this to any p-adic

Lie group) the ®niteness part of the lemma follows. But if Gy has no elements

of order p then we know it has p-cohomological dimension equal to 4, thus the

vanishing for iV 4 follows from (45) in this case also. r

It follows that w�Gy;Epy� is de®ned when Gy contains no element of order

p. In fact, in [44] Serre proved

Theorem 4.2. If Gy contains no element of order p then

w�Gy;Epy� � 1 �46�

As is shown in [9], Theorem 4.2 is in fact an easy consequence of the ®niteness of

the cohomology groups H i�Gal�Fy=F cyc�;Epy� for iV 0, where F cyc denotes the

cyclotomic Zp-extension of F. We shall use the ®niteness of these cohomology

groups in §6, and we are grateful to R. Sujatha for ®rst pointing out their

®niteness to us.

Let us quote the following result also needed, whose proof appears in [8].

For the remainder of this section we assume that p is odd.

Lemma 4.3. If Sp�E=F� is ®nite then H 2�F S=F ;Epy� � 0.

We require one last fact.

Lemma 4.4. For all iV 2 we have

H i�Gy;H 1�F S=Fy;Epy�� � H i�2�Gy;Epy� �47�

If we also assume that Sp�E=F � is ®nite then (47) holds for i � 1.

Corollary 4.5. Lemmas 4.1 and 4.4 together show that if Gy contains no

element of order p then

H i�Gy;H 1�F S=Fy;Epy�� � 0 for iV 2: �48�

If Sp�E=F � is also assumed to be ®nite then H 1�Gy;H 1�F S=Fy;Epy�� is ®nite, of

cardinality ]H 3�Gy;Epy�,

We now give the proof of Lemma 4.4.
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Proof. Recall, from 2.10, that we know H 2�F S=Fy;Epy� � 0. Thus the

Serre-Hochschild sequence in group cohomology gives rise to the following

exact sequence, for all iV 2,

H i�Gy;Epy� ! H i�F S=F ;Epy� !

H iÿ1�Gy;H 1�F S=F ;Epy�� ! H i�1�Gy;Epy� ! H i�1�F S=F ;Epy�:
�49�

But it is well known that, since p0 2,

H i�F S=F ;Epy� � 0 for iV 3;

giving the ®rst part of the lemma. If we make the additional hypothesis that

Sp�E=F � is ®nite then the case i � 2 follows immediately from Lemma 4.3.r

We remark that it is certainly possible that H 3�Gy;Epy� be non-zero.

Suppose pV 5 and so cdp�Gy� � 4. By the argument of the proof of Lemma

4.1 above, H 3�Gy;Epy�GH 4�Gy;Ep t� for t su½ciently large. But it is known

that Gy is a PoincareÂ group with dualising module Qp=Zp. Thus H 4�Gy;Ep t�

has PoincareÂ dual H 0�Gy;Ep t�ÿ1��. This is non-zero if and only if Ep t contains

a submodule isomorphic to mp, the pth roots of unity, as a Gy-module. In

particular, it is non-zero if both mp and a point of Ep are de®ned over F. We

conclude this section with the following remark.

Corollary 4.6. If W is any open subgroup of Gal�Fy=F�mpy�� then

the Pontrjagin dual of H 1�F S=Fy;Epy� contains no ®nite, non-trivial, L�W�-

submodules.

Proof. Replacing F by Fn so as to ensure Gy contains no element of order

p, this follows from Lemma 4.4 (the case i � 3) by an identical argument to the

proof of Corollary 3.8. r

5. Local Galois cohomology.

We start by recalling our notation. Let n be any prime of F. Then o

denotes a prime of Fy dividing n. We denote by Do the decomposition group of

o in Gy. Then the following explicit descriptions, as p-adic, Lie groups, of the

Do are well known. See the appendix to chapter IV of Serre's book, [39].

Lemma 5.1. i) If n divides p then Do has dimension 2 if jE is non-integral at

n, 3 if E has potential ordinary reduction at n.

ii) If n does not divide p then the decomposition group, Do, has dimension 2 if

jE is non-integral at n, and dimension 1 otherwise.

We sketch some of the ideas in this proof that will be needed later.
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Proof. Since the dimension is clearly invariant under ®nite extension of Fn

we may as well replace Fn by a ®nite extension, L, and assume E has semistable

reduction at n. Let D � Gal�Ly=L� and let Ly � L�Epy�.

We ®rst dispose of the easy case when n does not divide p. But then if E

has good reduction over L, by the results of Serre-Tate [45] Ly=L is unrami®ed

and the group D is topologically generated by Frobenius, hence is one dimen-

sional. If E has split multiplicative reduction then, by Tate's classi®cation of

such elliptic curves, we know that Ly is a Kummer extension, obtained by

adjoining to L�mpy� the pnth roots of the Tate period for all n. Thus it is clear

that D has dimension 2.

We next turn to the case n divides p. Then the case of jE non-integral

exactly parallels the argument given above. Suppose now that E has good

ordinary reduction over L, where the characteristic of the residue ®eld of L is p.

In this case it is most convenient to talk about the dimension of the corre-

sponding Lie algebra, g � Lie�D�. Fix a minimal Weierstraû model for E

de®ned over L, and let ~E denote the reduced curve, de®ned over the residue ®eld

of L. Let Ê be the formal group over the integers, OL, of L attached to the

NeÂron model for E over OL. We obtain an exact sequence of Galois modules

0 ! Vp�Êpy� ! VpE ! Vp� ~Epy� ! 0 �50�

where Vp�Êpy� � Tp�Êpy�nQp is the Qp vector space generated by the Tate

module of the formal group and Vp� ~Epy� similarly is given by the Tate module of

the points of p-power order on the reduced curve, ~E. Serre has shown (see [39])

that there exists a one dimensional subspace of VpE which is a supplementary

subspace of Vp�Êpy� and is stable under the action of g if and only if E has

complex multiplication over L. But our fundamental hypothesis throughout this

paper is that E has no complex multiplication. Thus it follows (as in [39]) that

g is the Borel subalgebra of End�VpE� generated by the endomorphisms ®xing the

subspace Vp�Êpy� of VpE. This is a 3-dimensional algebra. r

For future reference, we make the ®nal step in the above proof more explicit.

Choosing a basis of TpE whose ®rst element is a basis of Tp�Êpy� we have a

faithful representation

r : D ,! GL2�Zp�; s 7!
c�s� a�s�

0 f�s�

� �

�51�

where c is the character giving the action of D on Tp�Êpy�, f the character giving

the action of D on Tp� ~Epy�, and a�s� A Zp. The product cf is the cyclotomic

character, giving the action of D on mpy , by the Weil pairing. Then if Hy

denotes the maximal unrami®ed extension of L in Ly, Gal�Hy=L� and

Gal�Hy�mpy�=Hy� are p-adic Lie groups of dimension 1 and s 7! a�s� de®nes
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an injection of Gal�Ly=Hy�mpy�� into Zp. The point of Serre's theorem, as

quoted above, is that since E has no complex multiplication the image of this

map cannot be 0. Thus Gal�Ly=Hy�mpy�� is isomorphic to Zp.

Remark. Since it will not be necessary in any of the following arguments,

we have not considered the case of potential supersingular reduction at all. This

involves the concept of `formal complex multiplication' of the p-divisible group,

Êpy . See [39] for a description of g in this case.

We now turn to the local cohomology calculations. Recall that, for any

prime n of F, we de®ned

Jn�Fy� � lim
�!

0
onjn

H 1�Fn;on
;E��p� �52�

We ®rst study the Gy-cohomology of this. Recall from 2.8 that this corresponds

to studying the Do-cohomology of H 1�Fy;o;E��p� for any prime, o, of Fy
dividing n. We then turn to an analysis of the local restriction maps, dn, in

diagram (16). As the methods involved are largely di¨erent we keep separate the

cases where n divides p and where nap.
We start, however, with the following easy remarks which hold for all

primes.

Lemma 5.2. For all iV 1 we have the isomorphism

H i�Do;H
1�Fy;o;Epy��GH i�2�Do;Epy� �53�

Proof. We begin by observing that H 2�L;Epy� � 0 for each ®nite extension

L of Fn. This is because Tate local duality shows that H 2�L;Epy� is dual to

H 0�L;TpE�, and this latter group is zero since the torsion subgroup of E�L� is

®nite. Passing to the inductive limit over all ®nite extensions L of Fn contained

in Fy;o, it follows that

H 2�Fy;o;Epy� � 0 �54�

On the other hand, the absolute Galois group of Fy;o has p-cohomological

dimension at most 2 (see [43]) and so in fact

H i�Fy;o;Epy� � 0; for all iV 2: �55�

But then the Hochschild-Serre spectral sequence [23] gives the exact sequence

H i�1�Fn;Epy� ! H i�Do;H
1�Fy;o;Epy�� ! H i�2�Do;Epy� ! H i�2�Fn;Epy�:

�56�

Since the ®rst and last terms are zero for iV 1 the lemma follows. r
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Lemma 5.3. The cohomology group H 2�Fy;o;E��p� equals zero and so, from

the in¯ation restriction exact sequence (19), Coker�dn� � H 1�Dn;E��p�.

Proof. There is a canonical surjection

H 2�Fy;o;Epy� !! H 2�Fy;o;E��p� �57�

But the ®rst group is zero from (54) above. r

5.1. Primes not dividing p.

We ®rst dispose of this easier case. The reduction type of E at primes

dividing p has no bearing here, and we make no hypothesis about this.

In this case, since n does not divide p, we have

E�Lo�nQp=Zp � 0 �58�

for any algebraic extension, L of F, and any prime, o of L, dividing n. In

particular, it follows from Kummer theory that

H 1�Fn;E��p�GH 1�Fn;Epy� �59�

H 1�Fy;o;E��p�GH 1�Fy;o;Epy� �60�

Lemma 5.4. Suppose ordn� jE� < 0. Then Jn�Fy� � 0.

Proof. From (60) above, this will certainly follow if Gal�Fn=Fy;o� has

p-cohomological dimension equal to zero. This, in turn, follows if we show Fy;o

contains the maximal pro-p extension of Fn. But this is clear. We know by the

Weil pairing that Fy;o contains the unique unrami®ed Zp-extension of Fn as it

contains Fn�mpy�. Then it is well known (see [42]) that the maximal tamely

rami®ed extension of Fn has a topologically cyclic Galois group over the maximal

unrami®ed extension. It follows that any Galois extension of Fn�mpy� whose

pro®nite degree over Fn�mpy� is in®nitely divisible by p must contain the maximal

pro-p extension of Fn. But this holds for Fy;o, thanks to our hypothesis that

ordn� jE� < 0, by Lemma 5.1. r

Lemma 5.5. Suppose ordn� jE�V 0 and pV 5. Then H i�Gy; Jn�Fy�� � 0 for

all iV 1.

Proof. Combining the isomorphisms (59, 60) with the Lemmas 2.8 and 5.2

the assertion of Lemma 5.5 is equivalent to showing that H i�Do;Epy� � 0 for all

iV 3. But Do has p-cohomological dimension equal to 1 in this case. This is

because it has dimension 1 as a p-adic Lie group, from Lemma 5.1. Since it is a

closed subgroup of Gy and so the hypothesis that pV 5 ensures Do contains no

element of order p, cdp�Do� equals 1 by Theorem 2.2. r
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Remark. The assumption that pV 5 is only required in case E has unstable

reduction at n. If E has good reduction then the extension Fy;o=Fn is

unrami®ed. Since it contains the maximal unrami®ed pro-p extension, Do has

p-cohomological dimension equal to 1 for any choice of p.

We now carry out the crucial analysis of the kernel and cokernel of the local

restriction maps

dn : H 1�Fn;E��p� ! �Jn�Fy��Gy GH 1�Fy;o;E��p�
Do �61�

postponed from the proof of Theorem 1.1. In the light of the isomorphisms (59,

60) in this case (of nap) we may replace (61) by an analysis of

dn : H 1�Fn;Epy� ! H 1�Fy;o;Epy�
Do �62�

Then the in¯ation restriction sequence (19) describing the kernel and cokernel of

dn becomes in this case

0 ! H 1�Do;Epy� ! H 1�Fn;Epy� !
dn

H 1�Fy;o;Epy�
Do

! H 2�Do;Epy� ! 0

�63�

where the 0 on the right is because H 2�Fn;Epy� � 0 by (54).

Recall that cn � jE�Fn� : E0�Fn�j, the local Tamagawa factor, and Ln�E; s�

denotes the Euler factor of the complex L-function of E at n. We quote the

following well known lemma (see [8]).

Lemma 5.6. Let n be any ®nite prime of F not dividing p. Then

H 1�Fn;E��p� is ®nite, of order the exact power of p dividing cn=Ln�E; 1�.

We will omit the proof here.

Remark. We now see the reason for the appearance of the Euler factors in

Theorem 1.1. For any number ®eld H, we de®ne a restricted Selmer group by

S
0
p �E=H� � Ker H 1�H S=H;Epy� ! 0

n ASnM

H 1�Hn;E��p�

 !

�64�

where S and M are the sets of primes of H de®ned as always. Then Lemma 5.4

states that S
0
p �E=Fy� � lim

�!
S

0
p �E=Fn� satis®es

S
0
p �E=Fy� � Sp�E=Fy� �65�

As always, let F cyc denote the cyclotomic Zp-extension of F. Then it is generally

not true that S
0

p �E=F
cyc� � Sp�E=F

cyc�. If G denotes the Galois group of F cyc

over F then, as we remarked above, it is well known that
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Theorem 5.7 (Perrin-Riou, Schneider). Under the conditions (i), (ii) and (iii)

of Theorem 1.1, dSp�E=F cyc� is L�G�-torsion and

w�G ;Sp�E=F
cyc�� � rp�E=F �: �66�

If one instead considers the restricted Selmer group then the following variant of

this theorem is easy to check (see [24]).

If M is a discrete p-primary G-module such that its Pontrjagin dual M̂ is a

®nitely generated, torsion L�G�-module, we write char�M� for the characteristic

ideal of M̂.

Corollary 5.8. Under conditions (i), (ii) and (iii) of Theorem 1.1 the

restricted Selmer group, d
S

0
p �E=F

cyc
y �, is L�G�-torsion. Then

char�S 0
p �E=F

cyc
y

�� � char�Sp�E=F
cyc
y

�� � char 0
n AM

H 1�F cyc
n ;E��p�

 !
: �67�

The characteristic power series of the dual of 0
n AM

H 1�F cyc
n ;E��p� does not

vanish at T � 0, and its value there is equal, up to a p-adic unit, to

Y

n AM

Ln�E; 1�

�����

�����
p

:

Thus

w�G ;S 0
p �E=F

cyc�� � rp�E=F� �
Y

n AM

Ln�E; 1�

�����

�����
p

�68�

We note that 0
n AM

H 1�F cyc
n ;E��p� is known to be L�G�-cotorsion by results of

Greenberg's in [16]. Thus Conjecture 1.4 can be interpreted as saying that under

the given conditions on E and p

w�Gy;S 0
p �E=Fy�� � w�G ;S 0

p �E=F
cyc��; �69�

illustrating further the analogy between this new situation and the classical choice

of the cyclotomic Zp-extension.

Lemma 5.9. For pV 5 and for primes n not dividing p the map dn is a

surjection and thus H 2�Do;Epy� � 0.

Proof. If ordn� jE� < 0 then this is immediate because H 1�Fy;o;Epy� equals

zero from Lemma 5.4. So suppose ordn� jE�V 0. Now we need the hypothesis

that pV 5. But in this case we know that Do has p-cohomological dimension

equal to 1, as in the proof of Lemma 5.5. r
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Lemma 5.10. For primes n not dividing p, if ordn� jE�V 0 and pV 5, then dn
is an injection.

Proof. Recall F cyc
n denotes the cyclotomic Zp-extension of Fn and G the

Galois group Gal�F cyc
n =Fn�. Let F � Gal�Fy;o=F

cyc
n �. Then we have exact

sequence

0 ! H 1�G ;Epy�F
cyc
n �� ! Ker�dn� ! H 1�F;Epy�

G �70�

Now both Fy;o and F cyc
n contain the unrami®ed Zp-extension of Fn and, as in the

proof of 5.1, the results of Serre-Tate [45] show that the order of the inertial

subgroup of Do is prime to p. Thus F has pro®nite (in fact, ®nite) degree prime

to p and so the ®nal term in (70) is 0. The lemma will follow from the following

well known result in the cyclotomic theory, which we quote without proof. r

Lemma 5.11. Let n be any ®nite prime of F not dividing p. As above, let F cyc
n

denote the cyclotomic Zp-extension of Fn and set G � Gal�F cyc
n =Fn�.

Then H 1�G;Epy�F
cyc
n �� is ®nite, of order the exact power of p dividing cn �

jE�Fn� : E0�Fn�j.

Remark. In this case of ordn� jE�V 0 and pV 5 the maximal power of p

dividing cn is 1 because it is well known that the only primes dividing cn lie in

f2; 3g. Thus it is convenient to say that

]Ker�dn� � jcnj
ÿ1
p �71�

and to include cn in the de®nition of rp�E=F� in (7) above. In fact, we will see

later that an analysis of the case p � 3 indicates this is the correct formulation.

For p � 3 the map dn can fail to be an injection and then Ker�dn� � jcnj
ÿ1
p . Also,

if E has additive reduction then Ln�E; 1� � 1 and so we could include this factor

and enlarge the set M in the statement of Theorem 1.1. We do not do this

however.

We remark again that the hypothesis pV 5 is only required to deal with the

case where E has additive reduction at n.

For convenience, we here gather together the results proven above at primes

of F not dividing p.

Proposition 5.12. Assume n does not divide p. Then

i) H i�Gy; Jn�Fy��GH i�2�Do;Epy�, for all iV 1.

ii) If ordn� jE� < 0 then Jn�Fy� � 0. Hence Coker�dn� � 0, and also

]Ker�dn� �
Ln�E; 1�

cn

�

�

�

�

�

�

�

�

p

:
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iii) If ordn� jE�V 0 and pV 5 then

H j�Do;Epy� � 0; for jV 1

and so dn is an isomorphism.

iv) If E has good reduction at n then we can remove the condition pV 5

above.

We take the opportunity here to give the following lemma, which will be of

use later.

Lemma 5.13. Let K be a ®nite extension of Qq for q a rational prime with

�q; p� � 1. Let E be an elliptic curve de®ned over K such that E has potential

multiplicative reduction over K. Let Ky � K�Epy� and let W � Gal�Ky=K�mpy��.

i) If E has split multiplicative reduction over K�mp� then

H 1�W;E�Ky���p� � Qp=Zp: �72�

ii) Assume p > 2. If E has potential, but not split, multiplicative reduction

over K�mp� then

H 1�W;E�Ky���p� � 0: �73�

Proof. Since K is assumed to have residue characteristic di¨erent from p, it

follows from Kummer theory that

H 1�W;E�Ky���p� � H 1�W;Epy� �74�

as in (59) and (60).

i) By the Tate parameterisation, Epy ®ts into the canonical short exact

sequence of GK�mp�-modules

0 ! mpy ! Epy ! Qp=Zp ! 0; �75�

which does not split. But, as there is split multiplicative reduction over K�mp�,

Ky is obtained by adjoining to K�mpy� all the pth-power roots of the Tate period,

qE , of E and so WGZp as an Abelian group. Also, W acts trivially upon the

®rst and third terms in (75). Taking W cohomology, we obtain

0 ! Qp=Zp ! H 1�W; mpy� ! H 1�W;Epy� ! H 1�W;Qp=Zp� ! 0 �76�

where H 1�W; mpy�GH 1�W;Qp=Zp�GQp=Zp, from which (72) follows.

ii) Assume E has potential (but not split) multiplicative reduction over

K�mp�. Let K 0 be a quadratic extension of K�mp� over which E achieves split

multiplicative reduction. Set K 0
y

� K 0�Epy� and let W 0 � Gal�K 0
y
=K 0�mpy��.
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Let D � Gal�K 0=K�mp��. It follows from the assumption that p > 2 that E

does not attain split multiplicative reduction over K�mpy� and so if D 0 denotes

Gal�K 0�mpy�=K�mpy�� then D 0 has order 2. Then, again using that p > 2, it

follows from the Hochschild-Serre spectral sequence that

H 1�W;Epy� � H 1�W 0;Epy�
D 0

�77�

But from the ®rst case we know that

H 1�W 0;Epy�GH 1�W 0;D� �78�

where DGQp=Zp as an W 0-module but D 0 acts on D via its non-trivial char-

acter. Again, W 0 GZp as an Abelian group. One sees that the action of D 0 on

W 0, by conjugation, is trivial because the Tate period qE is de®ned over K. Thus

the action of D 0 on

H 1�W 0;D�GHom�W 0;D� �79�

is via its non-trivial character, and so

H 1�W 0;D�D
0

� 0 �80�

r

We conclude this subsection by giving a brief description of what happens

when p � 3. These remarks are not required anywhere else in this paper since

we assume p to be at least 5 for all the main results. We include them only to

explain what might otherwise appear to be a curious choice in the formulation of

Theorem 1.1. There we include the Tamagawa factors, cn, in the formula (7) for

rp�E=F� for all places n of F at which E has bad reduction. It follows from our

restriction to pV 5 that jcnjp � 1 for all places n at which jE is integral and thus

it might appear more natural to include only the terms coming from the

Tamagawa factors at places where jE is non-integral. The following description

of the behaviour when p � 3 motivates our choice to retain these extra terms.

As noted above in the statement of Proposition 5.12, taking p to equal 3 only

causes di½culties for primes na3 such that E has bad reduction but ordn� jE�V 0.

Then E has additive reduction at n and Ln�E; 1� � 1. Assume n is such a prime

of F for the remainder of this subsection.

Lemma 5.14. i) The H i�Do;E3y� are ®nite for all iV 0 and satisfy

]H i�Do;E3y� � ]H i�2�Do;E3y� �81�

It is possible for both to be non-zero.

ii) The cardinality of Ker�dn� is given by ]H 1�Do;E3y� � jcnj
ÿ1
3 .
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The signi®cant point for our choice of the formulation of Theorem 1.1 is part (ii)

which follows from the exact sequence (70) together with Lemmas 5.6 and 5.11.

For (i) we content ourselves with remarking that it involves explicit calculations

for Gal�Fn�E3�=Fn� isomorphic to each possible subgroup of GL2�F3�, using the

classi®cation of such subgroups (as described in, for example, [41].) We will not

give the proof as it is lengthy and not especially enlightening. Some details are

in [24].

It follows from Lemma 5.14 that w�Gy;Sp�E=Fy�� may fail to be de®ned for

p � 3.

5.2. Primes dividing p.

We now consider results analogous to 5.12 above, but for primes of F

dividing p. This situation is more subtle (and in fact we cannot obtain quite

such a complete result) for two reasons. The ®rst is that Do will generally have

higher p-cohomological dimension. It can, in fact, have p-cohomological

dimension 4 at potential supersingular primes, but this case will not concern us.

Secondly, and more seriously, there are no longer simple isomorphisms like those

of (59, 60) describing the image of Kummer in terms of an appropriate discrete,

p-primary, Galois module. Fortunately, however, the rami®cation theoretic

methods developed by one of us in joint work with R. Greenberg (see [5]) provide

a solution to this problem. We also note that our treatment of the possibility

that E has unstable reduction at n has been inspired by the methods used by D.

Delbourgo in [12] for the cyclotomic Zp-extension.

Throughout this subsection n will denote an arbitrary prime of F dividing p,

o a prime of Fy above n. We will omit this hypothesis from the statement of all

the results. Write Gn for the Galois group of Fn over Fn and In for the inertial

subgroup of Gn. As explained in [5], it is easy to see that there is a canonical

exact sequence of Gn-modules

0 ! C ! Epy ! D ! 0 �82�

characterised by the fact that C is divisible and D is the maximal quotient of

Epy by a divisible subgroup such that In acts on D via a ®nite quotient.

In particular, D is zero if and only if E has potential supersingular reduction

at n. If E has good ordinary reduction at n then D can be identi®ed with ~En;py ,

the p-primary subgroup of ~En. Recall, ~En denotes the reduction of E

modulo n.

We note that Fy;o is deeply rami®ed in the sense of [5], because it contains

the subextension Fn�mpy� which is itself already deeply rami®ed.Hence we can

apply the results of that paper to give the required description of the image of the

Kummer map.
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Proposition 5.15. (Propositions 4.3 and 4.8 of [5]).

H 1�Fy;o;E��p�GH 1�Fy;o;D� �83�

We prove the following analogue of Lemma 5.2 without any assumption on the

reduction type of E at n.

Lemma 5.16. For all iV 1

H i�Gy; Jn�Fy��GH i�2�Do;D�; �84�

where D is de®ned by (83) above.

Proof. We note that Gal�Fn=Fy;o� has p-cohomological dimension less

than or equal to 1 because the pro®nite degree of Fy;o over Fn is divisible by py

(see [43]). It follows that

H i�Fy;o;D� � 0; for iV 2: �85�

Thus, as in the proof of 5.2, the Hochschild-Serre spectral sequence applied to the

extension Fy;o over Fn gives exact sequences

H i�1�Fn;D� ! H i�Do;H
1�Fy;o;D�� ! H i�2�Do;D� ! H i�2�Fn;D� �86�

for iV 1. Since Gn has p-cohomological dimension equal to 2 the lemma follows

from this sequence (together with 2.8) for iV 2. It remains to show H 2�Fn;D� �

0. But H 2�Fn;Epy� � 0 as in the proof of Lemma 5.2 and H 3�Fn;C� � 0

by cohomological dimension. Taking Gn-cohomology of (82), we see that

H 2�Fn;D� � 0 also. r

We will turn to a more explicit description of the H i�Do;D� later. First we

give an analysis of the local restriction maps, dn, reducing this question also to a

description of some H i�Do;D�. In the case njp, Tate local duality shows that

H 1�Fn;E��p� is dual to

E�Fn�n̂Zp GZ d
p � E�Fn��p� �87�

where d � jFn : Qpj. In particular, H 1�Fn;E��p� is always in®nite (in contrast to

the case of nap, Lemma 5.6)

Lemma 5.17. Assume that E has potential supersingular reduction at n.

Then dn is the zero map. Hence in particular Ker�dn� is in®nite. We also have

Coker�dn� is zero.

Proof. This follows trivially from the remark made above that D is zero if

and only if E has potential supersingular reduction at n. The group Jn�Fy� is

contained in
Q

o
H 1�Fy;o;E��p�, which is now zero by Proposition 5.15. r
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As we remarked above, when E has potential multiplicative reduction at a

prime of F dividing p it is conjectured that Ker�dn� is ®nite, but is generally

unknown. The only case which is known is F � Q, the proof of which depends

upon a transcendence result of [2]. We will need to say something about

this case in order to prove Theorem 1.5. We start, however, with the case

ordn� jE�V 0.

Hypothesis (PG). i) pV 5, ii) ordn� jE�V 0.

By Corollary 2 of Theorem 2 of Serre-Tate [45], Hypothesis (PG) implies

that there exists a ®nite extension, K of Fn, satisfying

i) E has good ordinary reduction over K

ii) K is a Galois extension of Fn

iii) jK : Fnj is prime to p.

It follows immediately that Ky � K�Epy� is also a Galois extension of Fy;o

of ®nite degree prime to p. For example, [45] shows that one could take K �

Fn�E3� which is a Galois extension of Fn of degree dividing 48. We ®x any

such choice of K whenever (PG), or the following, stronger Hypotheses (PO), is

assumed to hold.

Hypothesis (PO). i) pV 5, ii) E has potential ordinary reduction at n.

Let Ê denote the formal group of E de®ned over K. As explained in [5]

page 151, we can take the p-divisible group C appearing in (82) to be the Galois

module consisting of the torsion points in Ê�M�, denoted Ê�M�py . Here, M is

the maximal ideal of the ring of integers of Fn. We have the exact sequence

0 ! Ê�M�Ky�� ! E�Ky� ! ~E�kKy
� ! 0 �88�

where M�Ky� denotes the maximal ideal of the ring of integers of Ky, and ~E the

reduction of E over K.

Let Y � Gal�Ky=Fn�, H � Gal�Ky=Fy;o� and T � Gal�K=Fn�. It is clear

from the sequence (83) and the identi®cation of C with Ê�M�py that D can be

identi®ed with ~E�kKy
�py . Let F denote the reduction map

F : E�K� ! ~E�kK�: �89�

Restricting to the subset E�Fn� of E�K� gives a map, also denoted by F,

F : E�Fn� ! ~E�kK�
T �90�

Lemma 5.18. Assume Hypothesis (PG). Then

i) for iV 2 we have the isomorphism

H i�Do;E�Fy;o���p�GH i�Y;D�: �91�
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ii) The following is exact.

0 !
~E�kK�

T�p�

F�E�Fn���p�
! H 1�Fn; Ê�M���p� ! H 1�Do;E�Fy;o���p�

! H 1�Y;D� ! 0 �92�

Proof. As remarked earlier Fy;o, and thus also Ky, is deeply rami®ed. It

follows from the principal result of [5] that

H i�Ky; Ê�M�� � 0; for iV 1: �93�

By the Hochschild-Serre spectral sequence, this vanishing implies

H i�Y; Ê�M�Ky���GH i�Fn; Ê�M��; for iV 1: �94�

We ®rst show

H i�Fn; Ê�M�� � 0; for iV 2: �95�

But by Kummer theory we have a surjection

H i�Fn;C� !! H i�Fn; Ê�M���p�; for all i; �96�

using the identi®cation of C with Ê�M�py . Hence it is su½cient to show

H i�Fn;C� � 0 for iV 2. This is clear for iV 3 by the fact that the cohomo-

logical dimension of Gn equals 2. For i � 2, if E has potential supersingular

reduction over Fn then C � Epy and so this follows from (54) appearing in the

proof of Lemma 5.2 above. Finally, if E has potential ordinary reduction over

Fn then C has Zp-corank equal to 1 and is its own orthogonal complement under

the Weil pairing. Thus H 2�Fn;C� is dual to H 0�Fn;TpD�. Since only ®nitely

many points of ~E�kK�py are rational over kK it follows that H 0�K ;TpD� equals

zero and thus so also is H 0�Fn;TpD�. We now take Y-cohomology of the exact

sequence (88). By (94) and (95) this gives an isomorphism

H i�Y;E�Ky���p�mH i�Y;
~E�kKy

���p�; for iV 2: �97�

Since ~E�kKy
� is torsion, the right hand side may be identi®ed with

H i�Y;
~E�kKy

�py�. Now Do is the quotient of Y by H, a ®nite group of

order prime to p. It follows from the Hochschild-Serre spectral sequence that

the in¯ation map gives an isomorphism

H i�Do;E�Fy;o���p�mH i�Y;E�Ky���p�; for all i: �98�

On identifying ~E�kKy
�py with D, we obtain the ®rst part of the lemma.

Substituting what we have discovered so far into the long exact sequence of
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cohomology obtained on taking Y-cohomology of (88) gives the exact sequence in

part (ii) immediately. r

The ®rst thing to observe is that ~E�kK��p� is ®nite and thus so is the ®rst

term in (92). We next turn our attention to the second term.

Lemma 5.19. Assume Hypothesis (PG) The group H 1�Fn; Ê�M���p� is

®nite if and only if E has potential ordinary reduction over Fn. In this case,

H 1�Fn; Ê�M���p� is cyclic, dual to ~E�kK�
T�p�.

Proof. We could deduce the only if part of this from 5.17. However, we

shall proceed independently. We have the exact sequence

0 ! Ê�M�Fn��nQp=Zp ! H 1�Fn;C� ! H 1�Fn; Ê�M���p� ! 0 �99�

All three terms in (99) are co®nitely generated as Zp-modules. Let hn be the

height of the formal group Ê, thus hn equals 1 or 2 according as E has potential

good ordinary or potential good supersingular reduction at n. The elementary

theory of the formal group tells us that the group on the left of (99) is divisible of

Zp-corank equal to dn � jFn : Qpj. It follows easily from Tate's local Euler

characteristic theorem (described, for example, in [31]) that the dual of H 1�Fn;C�

is a ®nitely generated Zp-module of Zp-rank equal to dnhn. Thus the group on

the right is ®nite if and only if hn � 1. Suppose this is the case. For convenience

let W denote H 1�Fn;C� and Wdiv the maximal divisible subgroup of W. Then

we have just seen that in this case

Wdiv � Ê�M�Fn��nQp=Zp

with W=Wdiv � H 1�Fn; Ê�M���p� ®nite. We introduce the Qp-vector space

Vp�Ê�GTp�Ê�nZp
Qp as in the proof of 5.1. Then the continuous cohomology

groups H i�Fn;Vp�Ê�� are also Qp vector spaces and so, in particular, are divisible

for all i. The continuous cohomology groups, H i�Fn;Tp�Ê��, however are ®nitely

generated as Zp-modules. Taking cohomology of the exact sequence

0 ! Tp�Ê� ! Vp�Ê� ! C ! 0 �100�

we deduce from the above remarks that there is an isomorphism

W=Wdiv GH 2�Fn;Tp�Ê��

Since we are now assuming that hn equals 1, the p-divisible group C has Zp-

corank equal to 1 and is its own orthogonal complement under the Weil pairing.

It follows from Tate local duality that H 2�Fn;Tp�Ê�� is dual to H 0�Fn;D�. This

latter group is exactly as claimed in the lemma. r
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In fact we at no point required that jK : Fnj be prime to p for the proof of

Lemma 5.19 which thus also holds for p � 2; 3.

We restrict now to the potential ordinary case.

Corollary 5.20. Assume Hypothesis (PO). Then there is an exact

sequence

0 !
~E�kK�

T�p�

F�E�Fn���p�
! ~E�kK�

T�p� ! H 1�Do;E�Fy;o���p� �101�

and thus, as an Abelian group, H 1�Do;E�Fy;o���p� contains a ®nite cyclic

subgroup isomorphic to F�E�Fn���p�.

Lemma 5.21. Assume Hypothesis (PO). Then we have isomorphisms

H i�Do;D�GH i�Y;D� �102�

for all iV 0. These groups are ®nite, and are zero for iV 3.

Proof. The isomorphism (102) follows exactly as in the proof of Lemma

5.18, from the Hochschild-Serre spectral sequence. (Recall Do is the quotient

of Y by a ®nite subgroup of order prime to p and D is p-primary.) Let

W � Gal�Ky=K�, a subgroup of Y of ®nite index, prime to p. Then, again by

the Hochschild-Serre spectral sequence, it is su½cient to prove the H i�W;D� are

®nite for all i and equal to zero for iV 3. But now E has good ordinary

reduction over K and D is simply ~E�kK�py . Then W embeds, as an open subgroup,

into the subgroup of GL2�Zp� consisting of the upper triangular matrices, as in

(51). The ®niteness of the H i�W;D� and vanishing for iV 3 now follows by an

identical argument to the proof of Lemma 4.1 in the previous section. We see

from (51) that W has p-cohomological dimension equal to 3 and contains a

central element which acts on D as multiplication by p t for some t. r

Corollary 5.22. Assume Hypothesis (PO). Then Ker�dn�, Coker�dn� are

both ®nite, of cardinalities given by

]Ker�dn� � ]F�E�Fn���p� � ]H 1�Y;D�

]Coker�dn� � ]H 2�Y;D�:
�103�

Proof. Recall, from the exact sequence (19) together with Lemma 5.3, that

the kernel and cokernel of dn can be identi®ed with H i�Do;E�Fy;o���p� for

i � 1; 2 respectively. Thus the Corollary is immediate from Lemmas 5.18, 5.19

and 5.21. r

Corollary 5.23. If pV 5 then H i�Gy; Jn�Fy�� � 0 for all iV 1, whatever

type of reduction E has at n.
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Proof. For the case ordn� jE�V 0 this is immediate from Lemmas 5.16 and

5.21, recalling that D � 0 if E has potential supersingular reduction at n. For

the case ordn� jE� < 0 it follows from Lemma 5.16 together with the fact that

cdp�Do� � 2. This latter fact follows from 5.1, 2.2 and the assumption that

pV 5. r

All that remains is to ®nd a way to remove the terms H i�Y;D�.

Proposition 5.24. Again assuming Hypothesis (PO), we have

w�Y;D� � 1 �104�

Proof. From Lemma 5.21 we know this Euler characteristic is de®ned,

given by

w�Y;D� �
Y

0UiU3

]H i�Y;D��ÿ1� i �105�

Let My denote the maximal unrami®ed extension of K�mpy� contained in Ky.

Put

G1 � Gal�Fn�mpy�=Fn�; G2 � Gal�My=K�mpy��; G3 � Gal�Ky=My�;

H1 � Gal�Ky=Fn�mpy��; H2 � Gal�Ky=K�mpy��:
�106�

We will show

Lemma 5.25. With the hypothesis of Proposition 5.24, the groups H i�H1;D�

are ®nite for all i.

Before proving this, let us note how Proposition 5.24 follows from it.

Indeed, on applying the Hochschild-Serre spectral sequence

H i�G1;H
j�H1;D�� ) H i�j�Y;D� �107�

and noting that G1 is topologically cyclic, of p-cohomological dimension equal to

1, we obtain exact sequences

0 ! H i�H1;D�G1
! H i�1�Y;D� ! H i�1�H1;D�G1 ! 0 �108�

for all iV 0, and H 0�Y;D� � H 0�H1;D�G1 . Since, from the lemma, the

H i�H1;D� are ®nite

]H i�H1;D�G1
� ]H i�H1;D�G1 : �109�

Thus the left hand term of sequence (108) at the ith level cancels with the right

hand term of the same sequence at the �i ÿ 1�th level in the alternating product,

(105), giving the formula for w�Y;D�. It just remains to prove Lemma 5.25.
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Proof of Lemma 5.25. First, note that since K is a ®nite extension of Qp

the residue ®eld of K�mpy� is ®nite and so it is clear that H 0�H1;D� is ®nite.

Secondly, it is su½cient to prove that the H i�H2;D� are ®nite, since the index

of H2 in H1 is prime to p and so the H i�H1=H2;D
H2� are zero for iV 1. Now

E has good ordinary reduction over K and so, as in (51), there is a faithful

representation r of H2 which has the form

r : H2 ,! GL2�Zp�; s 7!
f�s�ÿ1

a�s�

0 f�s�

 !

�110�

(Recall that det�r� gives the cyclotomic character, which is trivial on H2.)

Also, as described above, the assumption that E has no complex multiplication

means that a gives an isomorphism of G3 with an open subgroup of Zp. G2 is

the direct product of Zp with a cyclic group of order prime to p. This is because

f is a character mapping G2 into Z�
p . The image contains Zp because My

contains the unique unrami®ed Zp-extension of Fn. Thus G2 and G3 have

p-cohomological dimension equal to 1 and so the Hochschild-Serre spectral

sequence gives

0 ! H 1�G2;D� ! H 1�H4;D� ! H 1�G3;D�G2 ! 0; �111�

0 ! H i�H2;D� ! H iÿ1�G2;H
1�G3;D�� ! 0; for all iV 2: �112�

Also, H 1�G2;D� � 0. This is because G2 is topologically cyclic, and thus

H 1�G2;D�GDG2
: �113�

Since G2 acts non-trivially on D, via the character f, and since D is isomorphic to

Qp=Zp as an Abelian group, the right hand side of (113) is zero.

Now G3 acts trivially on D and thus

H 1�G3;D�GHom�G3;D� �114�

which is just isomorphic to Qp=Zp as an Abelian group. Thus, by the same

reasoning as we just used to show the vanishing of H 1�G2;D�, the lemma will

follow if we can show G2 acts non-trivially on H 1�G3;D�. Suppose t A G2,

s A G3. The action of G2 on G3 is via conjugation, t � s � ~ts~tÿ1. Here, ~t

denotes a lift of t to H2. It is clear from the matrix calculation

r�~t�r�s�r�~t�ÿ1 �
1 a�s�=f�~t�2

0 1

 !

�115�

that G3 is isomorphic to Zp�1=f
2� as a G2-module. Since DGQp=Zp�f� as a

G2-module, it follows from this and (114) that
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H 1�G3;D�GQp=Zp�f
3� �116�

as a G2-module. Since f gives the action of G2 on D, f3 is not the trivial

character. Thus H 1�G3;D�G2 is ®nite and H i�G2;H
1�G3;D�� � 0 for iV 1.

This, together with the exact sequences (111) and (112), gives the lemma. r

Assume pV 5. If E actually has good ordinary reduction at a prime njp

(not just potential good ordinary) then we may take K � Fn in the above ar-

guments. Denote the reduction of E modulo n by ~En. Then in this case, D

can be identi®ed with ~En;py and

F�E�Fn���p� � H 0�Y;D� � ~En�kFn
��p� �117�

Corollary 5.26. Assume E has good ordinary reduction at the place n

dividing p. Then Proposition 5.24 says

w�Do; ~En;py� is defined; equal to 1 �118�

where ~En;py denotes the module of p-power torsion points on the reduction of E

modulo n. Moreover, corollary 5.22 now states that Ker�dn�, Coker�dn� are ®nite

with orders given by

]Ker�dn� � ] ~En�kFn
��p� � ]H 1�Do; ~En;py�;

]Coker�dn� � ]H 2�Do; ~En;py�:
�119�

Finally, from Lemma 5.21 we have H 3�Do; ~En;py� � 0.

In fact, since there is no element of order 3 in the subgroup of GL2�Z3�

formed by the upper triangular matrices, the cohomological dimension of Do

equals 3 in the good ordinary case even if p � 3. Thus Corollary 5.26 holds for

pV 3.

We conclude our discussion of the integral j-invariant case with the ob-

servation

Lemma 5.27. If F � Q and E actually has good ordinary reduction at p, then

dn is a surjection.

We omit the proof of Lemma 5.27 (see the proof of lemma 3.16 in [4]). It is

not true in general that dn is a surjection, but it is true, for example, if n is

unrami®ed in F.

We complete the discussion of the local behaviour at primes dividing p with

the following two lemmas which we will require later.

Lemma 5.28. Let K be a ®nite extension of Qp and E an elliptic curve de®ned

over K such that E has potential multiplicative reduction over K. As usual we have

Ky � K�Epy�. Let W � Gal�Ky=K�mpy��.
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i) If E has split multiplicative reduction over K�mp� then

H 1�W;E�Ky���p� � Qp=Zp: �120�

ii) Assume p > 2. If E has potential, but not split, multiplicative reduction

over K�mp� then

H 1�W;E�Ky���p� � 0: �121�

Proof. i) Assume E has split multiplicative reduction over K. We do not

require p odd in this case. Then the module D appearing in the canonical exact

sequence of GK -modules, (82), is just Qp=Zp with the trivial action of GK . Now

both the ®elds Ky and K�mpy� are deeply rami®ed extensions of Qp. Thus, as in

Proposition 5.15 above, it follows from Proposition 4.8 of [5] that

H 1�W;E�Ky���p� � Hom�W;D� �122�

where D � Qp=Zp. But, as in the proof of Lemma 5.13 concerning primes not

dividing p, Ky is obtained by adjoining to K�mpy� all the pth-power roots of the

Tate period, qE , of E and so Gal�Ky=K�mpy��GZp. Hence (120) is clear.

ii) Assume E achieves split multiplicative reduction only over a quadratic

extension K 0 of K�mp�. Then (122) above is still valid, but now GK�mp� acts on D

via the non-trivial character of Gal�K 0=K�mp��. Then this case is deduced from

the ®rst case exactly as in the proof of Lemma 5.13, earlier. r

Lemma 5.29. If pV 3 then take K � F0, if p � 2 take K � F1. Suppose n

is a prime of F at which ordn� jE� < 0. Then E attains split multiplicative re-

duction over Kn 0 , where n 0 is a prime of K dividing n.

Proof. As explained in Lemma V.5.2 of [46], since E has potential split

multiplicative reduction there is a Tate curve, Eq=F , which is a quadratic twist of

E and thus the action of the absolute Galois group of Kn 0 on points of E is given

by the action on points of Eq twisted by a quadratic character, t. Then the

action of the absolute Galois group of Kn 0 on the Galois module D appearing in

the exact sequence (82) is entirely via the quadratic character, t. This is because

D is the Kummer group generated by the pth-power roots of the Tate period,

q. But the Galois action on D also ®lters through Gal�Kn 0�Epy�=Kn 0�, the

decomposition group at n 0 of Gal�F�Epy�=K�. By the assumption that K � F0 if

pV 3 (resp. F1 if p � 2) this latter Galois group is contained in the subgroup of

matrices congruent to 1 modulo p (resp. 1 modulo 4) so contains no 2-torsion.

Thus the absolute Galois group of Kn 0 acts on D trivially and so maps identically

to 1 under the quadratic character, t. But this means that the extension of Kn 0

over which E is isomorphic to Eq is of degree 1, that is E has split multiplicative

reduction over Kn 0 . r
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6. Relationship with the cyclotomic theory.

We explain the relationship between Conjecture 2.4 and the corresponding

conjecture in the cyclotomic theory. This gives some criteria under which we

can prove Conjecture 2.4. We freely admit that these results are rather weak.

However, as was pointed out to us by R. Greenberg, we can at last ®nally give

some concrete examples where Conjectures 1.3 and 1.4 can be proven. Recall, if

L is a ®nite extension of Q, we write Lcyc for the cyclotomic Zp-extension of L.

First recall that the analogue of Conjecture 2.4 for the cyclotomic Zp-

extension is long standing, originally due to Mazur in the ordinary case [29].

Conjecture 6.1. If G � Gal�F cyc=F � then, for every prime p,

L�G�-rank�Cp�E=F
cyc�� � tp�E=F� �123�

Here, at the Fy level, Cp�E=F
cyc� denotes the Pontrjagin dual of Sp�E=F

cyc�.

Recall Proposition 3.4 relating 2.4 to the surjectivity of certain localisation

maps. Analogously, we have

Proposition 6.2. In the sequence de®ning Sp�E=F
cyc�

0 ���! Sp�E=F
cyc� ���! H 1�F S=F cyc;Epy� ���!

lF cyc

0
n AS

Jn�F
cyc� �124�

if the above Conjecture 6.1 is true, then the map lF cyc is a surjection.

Here Jn�F
cyc� is de®ned analogously to the de®nition of Jn�Fy� in (15). The

proof of Proposition 6.2 is well known and is entirely analogous to the proof of

3.4. It is worth pointing out though that in this case 6.2 is not an if and only

if statement. The problem is that we do not now have the full strength of

Theorem 3.5, only a lower bound. To get equality one would have to prove the

so called `Weak Leapoldt Conjecture', which asserts that H 2�F S=F cyc;Epy� � 0

for p odd. We assume for the rest of this section that pV 5.

Corollary 6.3. Suppose Conjecture 6.1 holds for F replaced by every ®nite

extension of F contained in Fy, and assume p is at least 5. Then Conjecture 2.4

holds.

Proof. From Proposition 6.2, the hypothesis of the corollary implies lK cyc

is a surjection for any ®nite extension K, contained in Fy. But

H 1�F S=Fy;Epy� � lim
�!

H 1�F S=K cyc� �125�

Jn�Fy� � lim
�!

Jn�K
cyc� �126�

where the inductive limits are taken over all such K with respect to the
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canonical restriction maps. Hence so lFy is an inductive limit of the surjections

lK cyc , and thus is itself a surjection. The corollary then follows from Proposition

3.4. r

Corollary 6.3 does not give a very practically applicable method for proving

Conjecture 1.3 in general. The situation is improved if we strengthen the

condition on Cp�E=F
cyc�, assuming not only that it is L�G�-torsion, but also that

it has m-invariant equal to 0. We recall what this means. Let G denote any

pro®nite group which is isomorphic to Zp, and let L�G� denote the Iwasawa

algebra of G . We recall that L�G� is topologically isomorphic to the ring of

formal power series Zp��T �� in an indeterminate T with coe½cients in Zp. If X is

a ®nitely generated L�G�-module which is L�G�-torsion, then we say X has

m-invariant zero if its characteristic power series is not divisible by p in Zp��T ��.

It is easy to see that the following two assertions are equivalent for any

®nitely generated L�G�-module, X:

i) X is a ®nitely generated Zp-module

ii) X is L�G�-torsion and has m-invariant zero.

De®ne, for nV 0,

H � Gal�Fy=F cyc�; Hn � Gal�Fy=F cyc
n � and Gn � Gal�F cyc

n =Fn�: �127�

The ®eld F cyc
n is simply F�Ep n�1 ; mpy�, as F0 contains the pth roots of unity. Then

H0 is pro-p and contains no element of order p. De®ning L�H0� in the usual

manner, Theorem 2.3 is true with L�R� replaced by L�H0� and so we can de®ne

the L�H0�-rank of a ®nitely generated L�H�-module exactly analogously to the

de®nition of L�R�-rank in (10). Then H acts continuously on Sp�E=Fy� making

it into a discrete L�H�-module.

Theorem 6.4. Assume that pV 5.

i) If Cp�E=Fy� is a ®nitely generated L�H�-module, then Cp�E=L
cyc� is a

®nitely generated Zp-module for each ®nite extension L of F which is contained

in Fy.

ii) Conversely, assume that there exists a ®nite extension L of F which is

contained in Fy such that Gal�Fy=L� is a pro-p group and Cp�E=L
cyc� is a ®nitely

generated Zp-module. Then Cp�E=Fy� is a ®nitely generated L�H�-module, which

is L�R�-torsion, where we recall R � Gal�Fy=F0�.

This shows that the natural analogue to L�R�-modules of ®nitely generated

L�G�-modules being torsion and having m-invariant zero is that they should be

®nitely generated over L�H�. In the next section, we will give examples where

Cp�E=Fy� is ®nitely generated over L�H�, and where it is not.

Before giving the proof of Theorem 6.4 we note some obvious, but in-

teresting, corollaries.
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Corollary 6.5. Assume pV 5. If Cp�E=L
cyc� is a ®nitely generated Zp-

module for some ®nite extension L of F contained in Fy with Gal�Fy=L� a pro-p

group, then the same is true for all ®nite extensions of F contained in Fy.

Corollary 6.6. If pV 5 is any prime such that Cp�E=F
cyc� is not a ®nitely

generated Zp-module, then Cp�E=Fy� is not a ®nitely generated L�H�-module.

We now give the proof of Theorem 6.4.

Proof. We start with part i) and assume that Cp�E=Fy� is a ®nitely

generated L�H�-module. Thus, for some integer mV 1, there is a surjection

L�H�m !! Cp�E=Fy�: �128�

Let W be the subgroup of H ®xing Lcyc. Since L is of ®nite degree over F, W is

of ®nite index, d say, in H. Taking W coinvariants of (128) and using the fact

that �L�H�m�W is a free Zp-module, of rank md, there is a surjection

Z
md
p !! Cp�E=Fy�W; �129�

and so Sp�E=Fy�W has ®nite Zp-corank.

Consider the following diagram:

0 ���! Sp�E=Fy�W ���! H 1�F S=Fy;Epy�
W
���!

fy 0
n AS

Jn�Fy�

 !W

x
?
?
?
f

x
?
?
?
g

x
?
?
?
h

0 ���! Sp�E=L
cyc� ���! H 1�F S=Lcyc;Epy� ���! 0

n AS

Jn�L
cyc�

�130�

In Lemma 6.7 following, we will show Ker� f � is ®nite and Coker� f � has ®nite

Zp-corank. Given this it follows from (129) that Cp�E=L
cyc� has ®nite Zp-rank,

proving i).

We next assume the hypotheses of ii) are valid. The fact that Cp�E=L
cyc� is

a ®nitely generated Zp-module together with lemma 6.7 below (that Ker� f � and

Coker� f � have ®nite Zp-corank) gives that Sp�E=Fy�W has ®nite Zp-corank.

Moreover, as Gal�Fy=L� is pro-p it follows that the subgroup W is also pro-p.

Since Cp�E=Fy� is compact we may apply the Nakayama Lemma 2.6 to conclude

thatCp�E=Fy� is a ®nitely generated L�W�-module. But W is a subgroup of H

and thus Cp�E=Fy� is a ®nitely generated L�H�-module. It only remains to

remark that any ®nitely generated L�R�-module which is ®nitely generated as a

L�H�-module must be L�R�-torsion. This follows because H0 has in®nite index

in R and so L�R� is not a ®nitely generated L�H0�-module, but H0 has ®nite

index in H and so any ®nitely generated L�H�-module is also ®nitely generated as

a L�H0�-module. (Note that H itself is in general not a subgroup of R.) r
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Lemma 6.7. The following assertions hold for the diagram (130):

i) The kernel and cokernel of g are both ®nite.

ii) Assume pV 5. Then the kernel of h has ®nite Zp-corank, at most equal

to r where r is the ( ®nite) number of primes of L�mpy� at which E has split

multiplicative reduction. Also, Coker�h� is ®nite.

iii) Assume pV 5. If L contains F�mp� then the kernel of h has Zp-corank

exactly equal to the number r de®ned in part ii).

iv) Assume pV 5. Then Ker� f � is ®nite and Coker� f � has ®nite Zp-

corank, at most equal to the number r de®ned in part ii).

Proof. i) By the in¯ation restriction exact sequence

Ker�g� � H 1�W;Epy� and Coker�g�HH 2�W;Epy�: �131�

These are both shown to be ®nite in the appendix to [10], see also [9]. The

essential idea is that the Lie algebra of W is the semisimple Lie algebra sl2�Qp� for

which VpE is a simple, ®nite dimensional and non-trivial representation. Thus

H i�Lie�W�;VpE� � 0; for all iV 0; �132�

from which part i) follows, by a theorem of Lazard (see Theorem V.2.4.10 in

[28]) relating it to (132).

ii) We ®rst remark that since there are only ®nitely many primes of Lcyc

above any prime of L, and since E has non-integral j-invariant at only ®nitely

many primes of L, the number r is ®nite. As in the local analysis above, used to

prove Theorem 1.1, and in particular as in Lemma 2.8

Ker�h� � 0
njS

H 1�Wo;E�Fy;o���p� �133�

where n now runs over the primes of Lcyc dividing S and for each such n, o is a

prime of Fy dividing n, and Wo the decomposition group of W at o. Similarly,

Coker�h� � 0
njS

H 2�Wo;E�Fy;o���p� �134�

Suppose ®rst that n does not divide p. Then, as in the proof of Lemma 5.13

above, we need to analyse the H i�Wo;Epy� for iV 1. If n is a potentially

multiplicative prime then we showed in Lemma 5.13 that H 1�Gal�Fy;o=

L�mpy�o�;Epy� is either 0 or isomorphic to Qp=Zp. Then a simple argument

with the in¯ation-restriction exact sequence shows that H 1�Wo;Epy� has Zp-

corank at most equal to 1. Since Wo is isomorphic to the semidirect product of

a group isomorphic to Zp with a ®nite cyclic group of order prime to p it follows

by cohomological dimension that H 2�Wo;Epy� � 0 in this case. If E has poten-

tial good reduction at n then, since both Lcyc
n and Fy;o contain the unrami®ed
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Zp-extension of Ln, it follows from the work of Serre-Tate [45] that Wo is ®nite

and of order prime to p. Thus H i�Wo;Epy� � 0 in this case, for i � 1 or 2.

Next assume that n does divide p. Then as in the proof of Lemma 5.28

above, since both Lcyc
n and Fy;o are deeply rami®ed extensions of Ln, we have

H i�Wo;E�Fy;o���p� � H i�Wo;D�; iV 1 �135�

where D is the Galois module de®ned in (82). If E has potential supersingular

reduction at n then D � 0 and we are done. If E has potential ordinary re-

duction at n then we showed in Lemma 5.25 that H i�Ky=Lcyc
n ;D� is ®nite for all

iV 1, where K denotes a ®nite extension of Ln over which E acquires good

reduction and such that jK : Lnj is prime to p. It follows from the Hochschild-

Serre spectral sequence that H i�Wo;D� is ®nite for all iV 1. Finally, if E has

potential multiplicative reduction at n then that H 1�Wo;D� has Zp-corank at

most 1 follows from Lemma 5.28 as in the case of primes nap above.

Similarly the argument that H 2�Wo;D� � 0 is identical to that above.

iii) This exact value of the Zp-corank follows by the same arguments as

those above for part ii) where the only point at which we failed to give the exact

value of the Zp-corank was in using the in¯ation-restriction exact sequence to

obtain an upper bound on the Zp-coranks of the cohomology groups for the

extension Fo;y=Lcyc
n from the corresponding cohomology groups for the extension

Fo;y=L�mpy�o whose Zp-coranks we know explicitly from Lemmas 5.13 and

5.28. If L contains F �mp� then these extensions are the same. The only other

observation necessary is to note that E has split multiplicative reduction at a

prime o of L�mpy� if and only if E has split multiplicative reduction over L�mp�o,

because p > 2.

Finally, assertion iv) now follows immediately from diagram (130), by the

snake lemma. r

The following lemma follows from the above analysis of diagram (130).

Lemma 6.8. Assume pV 5. If Cp�E=Fy� is a ®nitely generated L�H�-

module then

Zp-rank�Cp�E=F
cyc
n �� � O�p3n� as n ! y: �136�

Proof. The upper bound

Zp-corank�Sp�E=Fy�Hn� � O�p3n� as n ! y; �137�

follows immediately from the asymptotic theorem (Lemma 3.4.1 in [19].) Upon

substituting L � Fn into diagram (130) and using Lemma 6.7 this translates into

the upper bound required in (136). The only extra observation required for this

is that for a prime n of F such that ordn� jE� < 0, if rn equals the number of
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primes of F cyc
n above n then rn � O�p2n�: This is because the decomposition group

Do, for any prime ojn, has dimension equal to 2 as a p-adic Lie group, by

Lemma 5.1. Thus

Zp-corank�Coker�Sp�E=F
cyc
n � ! Sp�E=Fy�Hn�� � O�p2n�: �138�

r

We can do much better, however. The full strength of Theorem 3.1 in [18]

describes the Zp-rank precisely in this situation. Recall that if Y is a ®nitely

generated, torsion L�G�-module then the l-invariant of Y, which we denote by

linv�Y�, is equal to the Zp-rank of Y=Y �p�. Then Theorem 3.1 in [18] describes

exactly how the l-invariant of Cp�E=F
cyc
n � changes as n increases, under certain

conditions.

Let Bn denote the kernel of the reduction map from GL2�Zp� to the

GL2�Z=p
n�1
Z�. Since Gy is an open subgroup of GL2�Zp� it is clear that we

have

Gal�Fy=Fn� � Bn �139�

for all su½ciently large n.

Proposition 6.9. Assume i) pV 5, ii) Gy is a pro-p group and iii)

Cp�E=F
cyc� is a ®nitely generated Zp-module. Let r�n� denote the number of

primes of F cyc
n not dividing p and at which E has split multiplicative reduction. Let

m be the smallest non-negative integer such that (139) is valid. Then, for nVm,

linv�Cp�E=F
cyc
n �� � Np3�nÿm� ÿ r�n� �140�

where

N � linv�Cp�E=F
cyc
m �� � r�m�: �141�

Proof. Under the hypotheses of the proposition, the formula of [18] applies

to give

linv�Cp�E=F
cyc
n �� � jF cyc

n : F cyc
m jlinv�Cp�E=F

cyc
n �� �

X

o AP

�en;m�o� ÿ 1� �142�

where P consists of the set of primes, o, of F cyc
n such that oap and E has split

multiplicative reduction at o. The number en;m�o� denotes the rami®cation

index of o in the extension F cyc
n =F cyc

m . (There is a third term in the general

formula, but this gives no contribution for the extension Fn=Fm.) Since the

primes o in P do not divide p, the extension F cyc
n;o=F

cyc
m;o is totally rami®ed. Also,

since this extension is a p extension and we assumed pV 5, E has split mul-

tiplicative reduction over F cyc
n;o if and only if E has split multiplicative reduction
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over F cyc
m;o. Thus P consists simply of the r�n� primes of F cyc

n dividing the r�m�

primes of F cyc
m which do not divide p and at which E has split multiplicative

reduction. Therefore

X

o AP

�en;m�o� ÿ 1� � jF cyc
n : F cyc

m jr�m� ÿ r�n�; �143�

and formula (140) follows from the choice of m satisfying (139). Indeed, for n at

least m, it follows from (139) that Fn�1 has degree exactly p4 over Fn. But, as it

is also clear from (139) that the Galois group of Fn�1 over Fn has exponent p, it

follows easily from the Weil pairing that the intersection of F cyc
n with Fn�1 must

be precisely the ®eld generated over F n by the pn�2th roots of unity. But then

we conclude that jF cyc
n�1 : F cyc

n j � p3 for all n at least m. This completes the proof

of Proposition 6.9. r

Corollary 6.10. Assume the hypotheses of Proposition 6.9 and let r�n� and

m be as de®ned there. Assume also that E has potential good reduction at all

primes n of F dividing p. Then for all nVm

Zp ÿ rank�Cp�E=Fy�Hn
� � Np3�nÿm� �144�

where N is as de®ned in (141) above. Thus Cp�E=Fy� is a ®nitely generated

L�H0�-module of L�H0�-rank equal to

N

jH0 : Hmj
�145�

Proof. In the fundamental diagram (130) relating the Fy level with the

cyclotomic level we take L � Fn and W � Hn. The assumption that Cp�E=F
cyc�

is a ®nitely generated Zp-module, together with the assumption that Gy is a pro-

p group, implies, by Corollary 6.5, that Cp�E=F
cyc
n � is L�Gn�-torsion. It follows

from Proposition 6.2 that the bottom right hand horizontal map in (130) is a

surjection. The assumption that Gy is pro-p implies that F contains mp. Then,

from parts i) and iii) of Lemma 6.7 and the assumption that E has potential

good reduction at all njp, the term ÿr�n� appearing in (140) is perfectly

corrected by the diagram (130), giving the ®rst part of the corollary. The ®nal

statement of the corollary then follows from the asymptotic formula, Lemma

3.4.1, in [19]. r

We end this section with a number of general remarks. Firstly, we want to

make clear our indebtedness to the very interesting paper [18] of Hachimori and

Matsuno for suggesting to us the results of this section. Secondly, we believe

that our results indicate parallels between the present GL2 Iwasawa Theory and

certain classical phenomena in the Iwasawa Theory of Zp-extensions. Let us
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assume that p is odd, and recall that

F0 � F�Ep�; R � Gal�Fy=F0�; and H0 � Gal�Fy=F0�mpy��: �146�

As we have already remarked, both L�R� and L�H0� are Noetherian and have no

divisors of zero, and so possess skew ®elds of fractions. We can therefore de®ne

the rank of a module over these Iwasawa algebras in the usual fashion (see

(10).) Let X be a ®nitely generated, torsion L�R�-module. We believe, in view

of Theorem 6.4, that the GL2 property parallel to being torsion and having m-

invariant zero in the theory of Zp-extensions should be that X is ®nitely generated

over L�H0�. Similarly, it seems reasonable to expect that the L�H0�-rank of X

should be analogous to the l-invariant in the theory of Zp-extensions. In §7 we

will exhibit an example of an elliptic curve where Cp�E=Fy� fails to be ®nitely

generated over L�H0� and yet still has ®nite L�H0�-rank.

Question. Assume E has potential good ordinary reduction at all primes

of F dividing p. If we take X � Cp�E=Fy� then does X always have ®nite

L�H0�-rank?

It would also be interesting to exhibit elliptic curves E over F and primes

p with Cp�E=F� ®nite such that Cp�E=Fy� has L�H0�-rank equal to zero.

Corollary 6.10 gives some speci®c conditions which would guarantee this. They

are not necessary, however, as this corollary only concerns the case where

Cp�E=Fy� is ®nitely generated as a L�H0�-module.

7. Examples.

We can ®nally give the ®rst concrete examples where Conjecture 1.3 can be

proven and thus all the hypotheses of Theorem 1.1 are satis®ed, namely the Q

isogeny class of elliptic curves of conductor 11 at the prime p equals 5. In order

to prove Conjecture 1.3 for all three isogenous curves, we prove the isogeny

invariance of the more general Conjecture 2.4.

Example. Consider the curve, 11(A3) in Cremona's tables [11], of con-

ductor 11. It has minimal Weierstraû equation

E : y2 � y � x3 ÿ x2 �147�

and is the elliptic curve corresponding to the modular group G1�11�. It is more

usually denoted X1�11�. It does not admit complex multiplication and thus is

relevant to the discussion in this paper. Serre has shown, in [41], that Gy �

GL2�Zp� for all p0 5, and so Theorem 6.4 is di½cult to apply in these cases.

For p � 5, however, the situation is more hopeful as X1�11� has a rational point

of order 5. It follows that E5 ®ts into the exact sequence
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0 ! Z=5Z ! E5 ! m5 ! 0: �148�

In fact, this sequence does not split and Q�E5� is a degree 5 extension of Q�m5�.

Indeed (148) does not even split as an exact sequence of Gal�Q11=Q11�-modules,

because E has split multiplicative reduction at 11 with the 11-adic Tate period,

qE , having order 1 at 11. We shall apply the second part of Theorem 6.4 with

L � Q�m5�, since Gal�Fy=L� is a pro-5 group. Clearly, though, the crux is

to show it satis®es the condition that Cp�E=Q�mpy�� is a ®nitely generated

Z5-module. The hypothesis that Cp�E=Q�m5y�� be L�G�-torsion presents no

problem as our ground ®eld is Q�m5�, an Abelian extension of Q, and so we

could appeal to recent work of Kato's referred to earlier. The condition that it

has m-invariant equal to zero requires a more subtle analysis. A classical descent

argument, carried out in [10], gives

Theorem 7.1.

S5�E=Q�m5�� � 0; E�Q�m5���5� � Z=5Z: �149�

Then for E � X1�11�, p � 5, F � Q�m5� we have

]� ~E�kF ��5�� � 5; [�E=F��5� � 0;

]E�F ��5� � 5; c11�E� � 1;
�150�

and E has good reduction at all primes not dividing 11. Thus r5�E=F� � 1 in

this case. It follows from 5.7 that w�G ;S5�E=Q�m5y��� is de®ned and equal to

1. Here G � Gal�Q�m5y�=F�. But since this gives the leading term for a

characteristic power series for S5�E=Q�m5y��, it follows that the characteristic

power series must be a unit in L�G�.

Corollary 7.2. The 5y-Selmer group S5�X1�11�=Q�m5y�� is ®nite and so,

in particular, has m-invariant equal to zero.

(In fact, one can show that S5�X1�11�=Q�m5y�� � 0, see [10].) It follows that we

have satis®ed all the conditions of Theorem 6.4 and so can conclude:

Corollary 7.3. For E � X1�11�, C5�X1�11�=Q�E5y��, is L�R�-torsion of

®nite L�H0�-rank, where H0 � Gal�Fy=F cyc
0 �, as above. It follows that X1�11�

satis®es all the conditions to apply Theorem 1.1 at the prime p � 5 taking as

ground ®eld either F � Q or F � Q�m5�.

A simpler 5-descent on E, described by Greenberg in [15], shows that

[�E=Q��5� � 0; E�Q� � Z=5Z: �151�

Also, for this E over Q the set M and corresponding Euler factors appearing in
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the full Euler characteristic formula in Theorem 1.1 consists of just

M � f11g; L11�X1�11�; s� � �1ÿ 11 s�ÿ1: �152�

Thus Theorem 1.1 gives

Corollary 7.4. Denote by Gy�F� the Galois group Fy=F . For F � Q and

p � 5 we have

w�Gy�Q�;S5�X1�11�=Q�E5y��� � 5: �153�

Similarly, for F � Q�m5�, we deduce from (150) that

w�Gy�Q�m5��;S5�X1�11�=Q�E5y��� � 54: �154�

The only extra observation required to prove (154) is that 11 splits completely

in Q�m5� and Ln�E; s� � �1ÿ 11ÿs�ÿ1 for each of the four primes n of Q�m5�

dividing 11.

We confess that we are currently unable to apply Theorem 1.1 to calculate

the Gy-Euler characteristic for E � X1�11� at a single ordinary prime pV 7.

We complete our discussion of the curve X1�11� at p � 5 by making some

further observations about the asymptotic behaviour of C5�X1�11�=Q�E5 n�1�cyc�,

as n ! y. We know from Corollaries 6.5 and 7.2 that C5�X1�11�=Q�E5 n�1�cyc�

is a ®nitely generated Zp-module for all nV 0.

From now until the end of Corollary 7.7 we take E to be X1�11�, and recall

that, with this choice of E,

F � Q�m5�; Fn � Q�E5n�1�; F cyc
n � Q�E5 n�1 ; m5y�: �155�

Proposition 7.5. We now have linv�C5�X1�11�=F
cyc
0 �� � 16, and

linv�C5�X1�11�=F
cyc
n �� � 4� 53n ÿ 4� 52nÿ1 �nV 1�: �156�

Proof. We begin by describing the image of Gal�Fy=Q� in the auto-

morphism group of T5X1�11�. Now E5y contains a unique cyclic subgroup F of

order 52, which is stable under the action of Gal�Q=Q�, and which contains the

subgroup of order 5 generated by �0; 0�. Pick a basis e1; e2 of T5E such that the

projection of e1 in E52 generates this subgroup F. For each s in Gal�Fy=Q�, we

have

s�e1� � ae1 � ce2; s�e2� � be1 � de2; �157�

and this clearly de®nes an injection of Gal�Fy=Q� into the subgroup W of

GL2�Z5� consisting of all matrices
a b

c d

� �

with c1 0 mod 52, a1 1 mod 5.

Now Lang and Trotter [27] have explicitly determined the image of Gal�Fy=Q�
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in T5X0�11�. By analysing the behaviour of the image under isogeny, one

deduces easily that the image of Gal�Fy=Q� in T5X1�11� is the whole of W. It

is then clear that Gy � Gal�Fy=F � can be identi®ed with the subgroup U of

W consisting of all matrices
a b

c d

� �

with c1 0mod 52, a1 d1 1mod 5. It

follows easily from this explicit description that jF cyc
0 : F cycj � 5, jF cyc

1 : F
cyc
0 j � 52

and jF cyc
n�1 : F cyc

n j � 53 for nV 1. Hence we obtain that jF cyc
n : F j � 53n for all

nV 1. We recall that 11 is the only prime at which X1�11� has split multi-

plicative reduction. As earlier, let r�n� denote the number of primes of F cyc
n

lying above 11. We claim that

r�0� � 4; r�n� � 4� 52nÿ1 �nV 1�; �158�

and that each of these primes has absolute rami®cation index equal to 5n�1 for all

nV 0. To justify this, we note that if n denotes any prime of F cyc
n above 11 then

the 11-adic Tate curve shows that

F cyc
n; n � Q11�m5y ; q

1=5 n�1

�; �159�

where q denotes the 11-adic Tate period of E. As X1�11� has discriminant ÿ11,

q has order 1 at 11, and so it is clear that F cyc
n; n has absolute rami®cation index

5n�1. Moreover, 11 splits completely in F, and then each of the four primes of

F above 11 are inert in F cyc. No residue ®eld extension of degree a power of 5

is possible above the ®eld Q11�m5y�, since this ®eld is the unique unrami®ed

Z5-extension of Q11. These remarks prove the above formulae for r�n�. The

assertion of Proposition 7.5 now follows immediately from the main result of

Hachimori-Matsuno [18] applied to X1�11� for the 5-extension Fn=F , recalling

that S5�X1�11�=F
cyc� � 0.

Corollary 7.6. Let Hn � Gal�Fy=F cyc
n �. Then, for all nV 0, we have

Z5-rank�C5�X1�11�=Fy�Hn
� � 4� 53n: �160�

As jH0 : Hnj � 53nÿ1 for all nV 1, it follows that C5�X1�11�=Fy� has L�H0�-rank

equal to 20.

Proof. Recalling that it is shown in the previous proof that, in this case,

(139) is valid for all nV 1, we could deduce (160) from Corollary 6.10.

However, it is just as easy to argue directly with the fundamental diagram (130)

relating S5�X1�11�=Fy� to S5�X1�11�=F
cyc
n � for all nV 0. Indeed, using the

value of r�n� calculated above, we conclude from Lemma 6.7 that, in this case,

Ker�h� has Z5-corank equal to 4 if n � 0, and to 4� 52nÿ1 if nV 1. It is then

clear that we obtain (160) from (156) using (130). The ®nal assertion then
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follows from the well known asymptotic formula (see Lemma 3.4.1 of [19], or

Theorem 2.22 of [24].)

As with Theorem 1.5, we simply do not know whether the Z5-rank in

C5�X1�11�=F
cyc
n � comes from the Mordell-Weil group or the Tate-ShafarevicÏ

group of X1�11� over F cyc
n . Indeed, we want to stress that at present we do not

even know if X1�11� has any points of in®nite order in the ®eld Fy. Of course,

Corollary 7.2 shows that X1�11� has no points of in®nite order in Q�m5y�, but

this is the limit of our current knowledge. Note that Harris' construction in [21]

does not apply in this case, since no subgroup of order 11 of X1�11� is stable

under the absolute Galois group of Fn for all nV 0.

Finally, since the Z-rank of X1�11��Fn� is bounded above by

linv�C5�X1�11�=F
cyc
n ��, we also obtain the following corollary of Proposition 7.5.

Corollary 7.7. The Z-rank of X1�11��F0� is at most 16, and

Z-rank of X1�11��Fn�U 4� 53n ÿ 4� 52nÿ1; nV 1: �161�

Let Z � C5�X1�11�=Q�E5y��. It would be of great interest to explicitly deter-

mine the structure of Z as a L�H0�-module. We know by Corollary 3.8 that

Z has no non-zero ®nite H0-submodule. We also know that Z has rank 20

over L�H0� by Corollary 7.6. In fact, one can prove that Z is not a free L�H0�-

module. On the other hand, one is tempted to speculate that the L�H0�-torsion

submodule of Z is zero. One can even go further and ask whether Z can be

embedded in L�D� with a ®nite, non-zero cokernel, where D � Gal�Q�E5y�=Q
cyc�.

As is well known (see [11]), there are precisely three elliptic curves in the

isogeny class of X1�11�. The curve X0�11� corresponds to the modular group

G0�11�. (It is denoted by 11(A1) in [11].) X0�11� has minimal Weierstraû

equation

y2 � y � x3 ÿ x2 ÿ 10xÿ 20 �162�

Then the third curve (denoted in [11] by 11(A2)) is given by

y2 � y � x3 ÿ x2 ÿ 7820xÿ 263580 �163�

Let E1, E 2 be two elliptic curves de®ned over a number ®eld, F, and with an

F-isogeny

x : E1 ! E2 �164�

Lemma 7.8. F�E1
py� � F�E2

py�

Proof. Since x induces a Gal�F=F�-invariant map E 1
py ! E2

py with ®nite

kernel, it is clear that F�E1
py� is an extension of F�E2

py�. The isogeny x also
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induces maps (denoted Tpx, Vpx respectively) de®ned by

0 ���! TpE
1
���! VpE

1
���! E1

py ���! 0
?
?
?
y
Tpx

?
?
?
y
Vpx

?
?
?
y
x

0 ���! TpE
2
���! VpE

2
���! E2

py ���! 0

�165�

Since the right hand map in (165) is surjective, with ®nite kernel, Vpx is an

isomorphism and Tpx is an injection. Suppose s A Gal�F=F �E2
py��. Then s

®xes TpE
2 and thus also the sublattice, TpE

1. But since

E1
py � lim

�!
TpE

1=pnTpE
1

this means s A Gal�F=F �E1
py�� also. Thus F�E2

py� contains F�E1
py�. r

Hence there will be no confusion if we write Fy for F �E i
py�, and de®ne Gy

as it has been throughout this paper. We can take R to be de®ned as in (4)

for either curve, E i. We recall that the reduction type of an elliptic curve is

unchanged by isogeny, that is tp�E
1=F� � tp�E

2=F �.

Proposition 7.9. Conjecture 2.4 is isogeny invariant. More precisely, if E1

and E2 are isogenous elliptic curves then the compact Selmer groups, Cp�E
1=Fy�

and Cp�E
2=Fy�, have the same L�R�-ranks.

Proof. We have the following diagram with exact rows:

0 ���!Sp�E
2=Fy� ���!H 1�Fy;E2

py� ���! lim
�!

0
on

H 1�Fn;on
;E2��p�

x
?
?
?
f

x
?
?
?
g

x
?
?
?
h

0 ���!Sp�E
1=Fy� ���!H 1�Fy;E1

py� ���! lim
�!

0
on

H 1�Fn;on
;E1��p�

�166�

the vertical maps being induced by x. Since x is an isogeny, it is a surjection and

Ker�x� is a ®nite group scheme of order deg�x�. Let p t be the maximal power of

p dividing deg�x�. Then p t annihilates the kernels and cokernels of the maps g

and h. (For example, Coker�g� embeds into H 2�Fy;Ker�x��p�� which is

annihilated by ]�Ker�x��.) It follows that

Cp�E
1=Fy�nQp GCp�E

2=Fy�nQp �167�

and the proposition follows. r

Let W denote any open subgroup of Gal�Fy=F cyc� such that L�W� has no

divisors of zero. Then the proof of Proposition 7.9 shows also that Cp�E
1=Fy�
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and Cp�E
2=Fy� have the same L�W�-rank, with the understanding that if one is

in®nite, then both are.

We recall that for p � 5, and E either of the two curves (162) or (163) it is

well known (see [10], [15] or [29]) that Cp�E=Q
cyc� has positive m-invariant.

Hence we deduce the following from Theorem 6.4, Corollary 7.3, Corollary 7.6

and Proposition 7.9.

Corollary 7.10. Take F � Q, p � 5, and let E be either of the curves (162)

or (163). Let

R � Gal�Q�E5y�=Q�m5��; W � Gal�Q�E5y�=Q�m5y��: �168�

Then:

i) C5�E=Q�E5y�� is L�R�-torsion.

ii) C5�E=Q�E5y�� is not a ®nitely generated L�W�-module.

iii) C5�E=Q�E5y�� has L�W�-rank equal to 4.

Example. Take E � X0�11�. As explained in Greenberg's article [15] a 5-

decent shows again that

[�E=Q��5� � 0; E�Q� � Z=5Z �169�

We also again have cq � 1 for all q0 11, but this time

c11�E� � 5 �170�

The Euler factor at 11 is still given by (152) and we conclude from Theorem 1.1

and Corollary 7.10 that

Corollary 7.11. Let Gy be the Galois group of Q�E5y�=Q for E the curve

X0�11�. Then

w�Gy;S5�X0�11�=Q�E5y��� � 52 �171�

Similarly, for E the curve 11(A2) of (163), one can calculate w�Gy;S5�11�A2�=

Q�E5y��� explicitly.

We ®rst make the following general remark. If Cp�E=F
cyc� is not a ®nitely

generated Zp-module, then it is easy to see that, for every ®nite extension L of F,

Cp�E=L
cyc� is not a ®nitely generated Zp-module. However, even if we know

that Cp�E=F
cyc� is a torsion module over L�GF �, (where GF � Gal�F cyc=F �) there

is no way in general of proving the same is true for Cp�E=L
cyc�. Notwith-

standing that, we do have the following example.

Corollary 7.12. For E either of the curves (162) or (163), C5�E=Q�E5n�1�cyc�,

is L�Gn�-torsion for all nV 0. It follows that C5�E=Q�E5 n�1�cyc� has strictly

positive m-invariant for all nV 0.
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Proof. Let E0 � X0�11� or 11�A2� and E1 � X1�11�. By Lemma 7.8

Q�E0
5n�1�HQ�E1

5y�. It follows from Theorem 6.4 that C5�E
1=Q�E0

5 n�1�
cyc� is

L�G�-torsion for G � Gal�Q�E0
5n�1�

cyc=Q�E0
5 n�1��. Then the same argument as

the proof of Proposition 7.9 shows that Conjecture 6.1 is also isogeny invariant.

This, together with the remark above, gives the corollary. r

Remark. In fact one can easily calculate the m-invariant exactly using the

formula given by Perrin-Riou in the appendix to [34] (and independently by

Schneider in [35]) which describes explicitly how the m-invariant of the Selmer

group changes under isogeny. If E0, E1 and E2 denote respectively the curves

X0�11�, X1�11� and 11(A2) then E1 � E0=m5, E2 � E0=�Z=5Z�. Let minv denote

the m-invariant of a ®nitely generated, torsion L�G�-module. Then

Corollary 7.13. Let L denote any ®nite extension of Q�m5� contained in

Q�E5y�, where E is any of E0, E1 or E2 (recall Q�E5y� is the same ®eld for all ).

Then

minv�S5�E0=L
cyc�� �

1

2
jL : Qj �172�

minv�S5�E2=L
cyc�� � jL : Qj �173�

We ®nish with the following observation, which is a well known consequence of

Corollary 7.12.

Corollary 7.14. Let E be any of the three curves of conductor 11. Let L

be any ®nite extension of Q contained in Q�E5y�. Then, E�L�m5y�� is ®nitely

generated as an Abelian group.

We recall that so far we cannot exhibit a single non-torsion element in

E�L�m5y�� for L any ®nite extension of Q contained in Q�E5y�.

Appendix. Proof of theorem 1.5.

We are most grateful to R. Greenberg for giving us the essential ideas behind

this proof.

We assume pV 5 throughout this appendix, although this is not necessary if

E has non-integral j-invariant at any prime of F dividing p. We need one extra

piece of notation. Denote by Sn the Galois group Gal�Fy=Fn�1�, so Gy=Sn �

Gn. We use the term `ordinary reduction' to mean either good ordinary or split

multiplicative reduction.

The ®rst thing to note is that the conclusion of Theorem 1.5 is trivially true

if Cp�E=Fy� is not a torsion L�R�-module and so, from now until the end, we

assume that this is the case. But from Theorem 2.5 we know that this means
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that E has either potential good ordinary reduction or non-integral j-invariant at

all primes of F above p. We now give the proof of Theorem 1.5 under this

assumption.

Lemma A.1. Let n be either any prime of F dividing p such that E has

potential ordinary reduction at n or any prime of F such that ordn� jE� < 0. Then

the number of primes of Fn lying above n is unbounded, as n tends to in®nity.

Proof. We saw in §5 (Lemma 5.1) that for any ojn the decomposition

group, Do, of o in the extension Fy=F , is a p-adic Lie group of dimension at

most 3 for n satisfying either of the conditions of the lemma. Since Gy has

dimension 4 as a p-adic Lie group, the lemma follows. r

Then we can give a simple proof of Theorem 1.5 under the condition that

there is at least one prime n of F0 at which E has split multiplicative reduction.

We do not even need to assume that njp. Taking L � Fn and Hn � Gal�Fy=Fn�

in diagram (130) we know from the ®niteness of H 1�Hn;Epy� that the restriction

map

fn : Sp�E=F
cyc
n � ! Sp�E=Fy�Hn �174�

has ®nite kernel. It follows that Theorem 1.5 is clear if there exists some nV 0

such that Cp�E=F
cyc
n � is not L�Gn�-torsion, where we recall Gn � Gal�F cyc

n =Fn�.

Hence we assume that Cp�E=F
cyc
n � is L�Gn�-torsion, for all nV 0. Thus, from

Proposition 6.2, the bottom, right hand, horizontal map in (130) is a surjection.

By the snake lemma applied to that diagram, together with Lemma 6.7

Zp-corank�Coker� fn�� � Zp-corank�Ker�hn��; �175�

where hn denotes the right hand, vertical map in (130) for L � Fn. But under

our assumption that E has split multiplicative reduction at n, in view of Lemma

5.28 if njp and Lemma 5.13 if nap, together with Lemma A.1, we see that the

right hand side of (175) is unbounded as n ! y, proving Theorem 1.5 in this

case.

But, by Lemma 5.29, if n is a prime of F dividing p such that ordn� jE� < 0

then E has split multiplicative reduction at all primes of F0 dividing n. Thus we

may assume E has potential good reduction at all primes n of F dividing p.

Furthermore, by the above remark we may assume E has potential good ordinary

reduction at n and we make this assumption throughout the remainder. (We

need no condition on the primes not dividing p for this argument.)

First, suppose that the Zp-corank of Sp�E=Fn� is unbounded as n ! y. We

saw above, in Theorem 2.9, that the map

Sp�E=Fn� ! Sp�E=Fy�Sn �176�
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induced by the restriction map has ®nite kernel. So Sp�E=Fy� contains arbi-

trarily many copies of Qp=Zp, and Theorem 1.5 follows in this case.

Thus we may assume that the Zp-corank of Sp�E=Fn� is bounded as n

grows. Consider the following commutative diagram, which is simply (16) with

the ground ®eld, F, replaced by Fn:

0 ���!Sp�E=Fy�Sn
���!H 1�FS=Fy;Epy�

Sn
���!

cn 0
onjS

Jon
�Fy�

 !Sn

x
?
?
?
an

x
?
?
?
bn

x
?
?
?
dn

0 ���! Sp�E=Fn� ���! H 1�FS=Fn;Epy� ���!
ln 0

onjS

H 1�Fn;on
;E��p�;

�177�

Here we de®ne

Jon
�Fy� � lim

�!
m

0
$jon

H 1�Fm;$;E��p�; �178�

exactly as in (15) above.

First consider ker�bn� � H 1�Sn;Epy�. By Lemma 4.1, this is known to be

®nite. However, Greenberg has analysed it more closely and proves the fol-

lowing in [14].

Lemma A.2. For ng 0

Ker�bn�G �Z=pn�1Z�6 �179�

as an Abelian group.

Proof. We will not give all the details. The idea is that for ng 0 the

centre of Sn consists of just the scalar matrices congruent to 1 modulo pn�1, and

then H 1�Fy=Fn;Epy� � H 1�P;Ep n�1�, where P is the quotient of Sn by its centre.

This is a p-adic Lie group of dimension 3 which, for ng 0, is uniform and thus

satis®es

P=�P;P�Ppn�1

G �Z=pn�1Z�3: �180�

But P acts trivially on Epn�1 and so H 1�P;Ep n�1� is just the group Hom�P;Ep n�1�.

Since Ep n�1 is isomorphic to Z=pn�1Z as an Abelian group, the lemma

follows. r

Now we look at the local restriction maps. Let Dn;o denote Gal�Fy;o=Fn;on
�.

Recall that, as in (19),

Ker�dn� � 0
onjS

H 1�Dn;o;E�Fy;o���p�: �181�
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Since we are assuming that on is a prime for which E has potential good ordinary

reduction, as we saw in 5.20 above, as an Abelian group H 1�Dn;o;E�Fy;o���p�

contains the cyclic subgroup which was there denoted by F�E�Fn;on
���p�. For n

su½ciently large this is isomorphic to Z=pn�1Z as an Abelian group. So we

obtain the following, exact as a sequence of Abelian groups

0 ! Z=pn�1Z ! H 1�Fy;o=Fn;on
;E�; �182�

and so, again exact as a sequence of Abelian groups, we have

0 ! �Z=pn�1Z�r�n� ! Ker�dn�; �183�

where r�n� equals the number of primes of Fn dividing n and so r�n� ! y, as

n ! y, by Lemma A.1 above.

Recall, (39), how the Cassels-Poitou-Tate sequence describes the cokernel of

the map ln in diagram (177).

0 ! Coker�ln� ! Rp�E=Fn� �184�

where Rp�E=Fn� is the compact Selmer group de®ned as in (40). It sits in the

exact sequence

0 ! E�Fn� n̂Zp ! Rp�E=Fn� ! Tp[�E=Fn� ! 0: �185�

Since we are assuming the Zp-corank of Sp�E=Fn� is bounded, as n ! y, this

implies the Zp-corank of [�E=Fn��p� is bounded as n ! y and so

Tp[�E=Fn�GZN
p ; for ng 0 �186�

for some N, independent of n. Similarly, the Zp-rank of E�Fn� n̂Zp is a ®xed

constant, M say, for ng 0. It follows that

E�Fn� n̂Zp GZM
p lEp n�1 ; ng 0: �187�

By (184) this implies that, as Abelian groups,

Coker�ln� ,! Rp�E=Fn�G �Qp=Zp�
R
l �Z=pn�1Z�2; �188�

where R is independent of n.

Recalling the basic diagram (177) above, the snake lemma gives the exact

sequence

Ker�bn� ! Ker�dn�V im�ln� ! Coker�an� �189�

Consider, now, the following variant of diagram (27) above:
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0 ���! im�cn� ���! 0
onjS

Jon
�Fy�

 !Sn

���! Coker�ly� ���! 0
x
?
?
?

x
?
?
?
dn

x
?
?
?

0 ���! im�ln� ���! 0
onjS

H 1�Fn;on
;E��p� ���! Coker�ln� ���! 0

x
?
?
?

x
?
?
?

x
?
?
?

Ker�dn�V im�ln� Ker�dn� Xn

�190�

where Xn is de®ned to be the kernel of the right hand vertical map. This gives

rise to

0 ! Ker�dn�V im�ln� ! Ker�dn� ! Xn �191�

where

Xn ,! Coker�ln� ,! �Qp=Zp�
R
l �Z=pn�1Z�2 �192�

from (188), above and so the number of Zp-cogenerators of Xn is bounded,

independently of n. But we know, from the local result (183), that Ker�dn�

contains the Abelian subgroup �Z=pn�1Z�r�n�, with r�n� unbounded as n ! y.

It follows that for n su½ciently large we must have

�Z=pn�1Z�r
0�n� ,! Ker�dn�V im�ln� �193�

where r 0�n� is also unbounded as n ! y.

This information, (193), together with the sequence (189) and Lemma A.2

describing the behaviour of Ker�bn� then implies that

�Z=pn�1Z�r
00�n� ,! Coker�an�: �194�

Here r 00�n� again is unbounded as n ! y. So, as Abelian groups, for n suf-

®ciently large we have

Sp�E=Fn� ���! Sp�E=Fy�Sn
���! Coker�an� ���! 0

x
?
?
?

�Z=pn�1Z�r
00�n�

x
?
?
?

0

�195�
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and r 00�n� is unbounded. Thus it follows that Sp�E=Fy� requires in®nitely many

Zp-cogenerators. But this is not quite strong enough. Theorem 1.5 follows

immediately, however, from (195) and the following general lemma about the

structure of ®nitely generated L�R�-modules.

Lemma A.3. Let M be any ®nitely generated (left or right) L�R�-module.

Then the exponent of the submodule, M�p�, comprising all the p-torsion in M, is

®nite.

Note that because the action of Zp commutes with that of R, M�p� really is

a L�R�-submodule of M.

Proof. Recall from 2.3 that L�R� is a (left or right, we shall omit this)

Noetherian ring. Thus a L�R�-module is ®nitely generated if and only if it

is itself Noetherian. Also, submodules of Noetherian modules are themselves

Noetherian. Thus M�p� is Noetherian and so ®nitely generated as a L�R�-

module. Suppose it is generated by fx1; x2; . . . ; xrg. Then there is some ®nite

integer, t say, such that p t annihilates all the xi. But then, since the xi form a

generating set for M�p�, and since p commutes with all the elements of R, it

follows that p t annihilates M�p�. r

Thus we see that the cogenerators of Sp�E=Fy�, whose existence is implied

by diagram (195), must actually generate in®nitely many copies of Zp in

Cp�E=Fy�. r
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