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Abstract
We investigate the structure of the loss function landscape for neural networks subject to dataset
mislabelling, increased training set diversity, and reduced node connectivity, using various techniques
developed for energy landscape exploration. The benchmarkingmodels are classification problems
for atomic geometry optimisation and hand-written digit prediction.We consider the effect of varying
the size of the atomic configuration space used to generate initial geometries andfind that the number
of stationary points increases rapidly with the size of the training configuration space.We introduce a
measure of node locality to limit network connectivity and perturb permutational weight symmetry,
and examine how this parameter affects the resulting landscapes.We find that highly-reduced systems
have low capacity and exhibit landscapes with very fewminima.On the other hand, small amounts of
reduced connectivity can enhance network expressibility and can yieldmore complex landscapes.
Investigating the effect of deliberate classification errors in the training data, wefind that the variance
in testing AUC, computed over a sample ofminima, grows significantly with the training error,
providing new insight into the role of the variance-bias trade-off when training under noise. Finally,
we illustrate how the number of localminima for networks with two and three hidden layers, but a
comparable number of variable edgeweights, increases significantly with the number of layers, and as
the number of training data decreases. This work helps shed further light on neural network loss
landscapes and provides guidance for future work on neural network training and optimisation.

1. Introduction

In this reportwe analyse the structure of the loss function landscape (LFL) for neural networks.Here, the landscape
refers to the loss as a functionof the trainable parameters (nodeweights), andwe exploit computational tools
developed for explorationof energy landscapes (ELs) inmolecular science [1]. Theprincipal focus is on the
organisationof localminimaof the loss function,which correspond to the isomers of amolecule.This organisation is
definedby thepathways between localminimamediatedby transition states,which are stationarypoints ofHessian
indexone,withprecisely onenegativeHessian eigenvalue [2]. The connectionbetween amolecular EL and aLFLhas
beendeveloped inpreviouswork, as summarisedbelow.Wehavepreviously referred to theLFL as amachine
learning landscape (MLL), andwewill employ these descriptions interchangeably in thepresent contribution.

Unfortunately, direct analysis of the loss landscape is challenging due to issues of computational complexity
[3]. The high dimensionality employed in deep learning representations produces poorly conditioned problems
for optimisation, and leads to slow convergence. Furthermore, the number of stationary points grows
exponentially with the dimensionality of the problem [4], as inmolecular science [5, 6]. Nevertheless, the power
and utility of recentmachine learning techniques is remarkable, and part of themotivation for the present work
is to understand these advances in terms of the underlying LFL.
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Choromanska et alhave previously considered the performance of various localminima for neural
networks [7]. A good performance, by theirmetric, corresponds to high accuracy for both an independent
training and test set. They show that theoretically, subject to a number of assumptions of independence, neural
network optimisation reduces tominimising the energy of the spin-glassHamiltonian from statistical physics
[7]. Based on the spin-glassmodel, bounds can be derived, suggesting that there exists a tight band of local
minima, bounded above the globalminimum, characterised by low training and testing errors. Furthermore, in
thismodel it is exponentially less likely tofind aminimumwith relatively high testing error as the dimensionality
of the neural network grows [7]. These results suggest that almost any localminimum that is found via standard
optimisation techniques should perform comparably to any other localminimumon an unseen test set [7].

Wu et alagreewith the conclusion that themajority of localminima solutions of the loss landscape tend to
have properties similar to that of the globalminimum [8]. This work suggests that neural networksmay
generalise well because they yield simple solutions with small Hessian norm. A theoretical analysis of two-layer
networks indicates that these simple solutions occur because the volumes of the basins of attraction forminima
with high test error are exponentially dominated by the volumes of the basins of attraction forminimawith low
test errors. In otherwords, good solutions lie in large, flat regions of parameter space and bad solutions lie in
small, sharp regions [8].

Li et alproposed afilter-wise normalisation scheme to preserve scale-invariant properties of neural
networks, which allows for comparison between different architectures and landscapes [9]. Low-dimensional
2D contour plots were created to investigate the loss function along randomdirections near chosenminima. By
studying a variety of different architectures on theCIFAR-10 dataset, Li et alsuggest thatflatminima tend to
generalise better than sharpminima. Furthermore, shallow,wide neural networks have contour surfaces with a
convex appearance, whichmightmake themmore generalisable. Nguyen et alagreewith this description, and
showed that, if a network has a pyramid-like structure following a verywide layer, then localminima are very
close to the globalminimumand the surface ismuch easier to navigate [10].

Some of the assumptionsmade in the above theoreticalmodels are quite restrictive, andmay not hold for
examples of practical interest. Furthermore, low-dimensional representations of the landscape canmisrepresent
the underlying non-convexity present in higher dimensions. In addition, it is possible tomanipulate the dataset
and optimisation problem to create solutionswith very high training accuracies but with arbitrarily low testing
accuracies. This scenario can be achieved by adding a tunable attacking term to the cost function or deliberately
misassigning labels during training [8]. Furthermore, it is possible to create datasets inwhich specific
initialisation schemeswill either not converge or converge to high-lying loss solutions [11].

To avoid the problems of low-dimensional projection and restrictive theoretical assumptions, the present
work builds on previous considerations of the LFL as an EL [12–15]. ELs inmolecular science [12, 13, 16–18] are
defined in terms of the potential energy (PE), withminima corresponding to physically stable structures, which
can interconvert via transition states.Minima are defined geometrically, as stationary points with non-negative
Hessian eigenvalues. Transition states are defined as stationary points with exactly one negativeHessian
eigenvalue (index one saddle points); [2] theMurrell–Laidler theorem guarantees that the pathwaywith the
lowest barrier between twominima involves only transition states, and not higher index saddles [1, 2]. By
investigating the correspondence between a potential energy surface (PES) and the neural network loss function,
where the atomic configuration space becomes the neural network parameter space,many of the tools developed
in EL research can be used to study neural network landscapes [12, 13].

We have recently compared the landscapes for neural networks with one, two and three hidden layers for a
similar number offitting parameters [18]. In principle, a single hidden layer with enough nodes is sufficient tofit
a well-behaved function [19], although the required number of hidden nodes scales exponentially with the
number of parameters [20]. In the present contributionwe report new results for the properties of such
networks to investigate the structure of the underlying LFL. In particular, we consider the effect of systematically
removing certain edges from the network to reduce the connectivity, and the effects of training setmislabelling.
In addition, we present some results for neural networkswithmultiple hidden layers for comparison.

Our goal in this research is to understand the behaviour of relatively small neural networks, where the
underlying solution landscape can be properly characterised.We hope that the resulting insight will carry over to
large networks, where theremay be toomany parameters to locate even a single localminimum.

2.Defining the network

Webeginwith a standard single hidden-layer neural network architecture [21] containing input, output, and
hidden nodes, plus a bias added to the sumof edgeweights used as input to the activation function for each
hidden node, wj

bh, and each output node, wi
bo. For the classification problemdescribed in §4 the inputs

correspond to interatomic distances for starting point geometries in a triatomic cluster, and there areNout=4
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possible outputs, corresponding to the four localminima that the cluster can adopt, as in previous work
[13, 14, 22]. Each training or test data itemα comprises Nin inputs written as { }= ¼a a ax xx , , N1 in

, and a set of
Ndata input data is written as { }= ¼X x x, , N1 data .

The outputs, yi, were calculated as

⎡
⎣⎢

⎤
⎦⎥( ) ( )( ) ( )å å= + +a a

= =

y w w w w xW x; tanh , 1i i
j

N

ij j
k

N

jk k
bo

1

1 bh

1

2
hidden in

for a given input data item xα, andweights ( )wij
1 between hidden node j and output i, ( )wjk

2 between input k and

hidden node j, and bias weights wj
bh and wi

bo collected into the vectorW. Softmax probabilities, ( )ap W x;c were
obtained from the outputs to reduce the effect of outliers

⎛
⎝⎜

⎞
⎠⎟( ) ( )( ) ( )å=a a a

p e eW x; . 2c
y

i

N
yW x W x; ;c i

out

The loss function, which defines localminima and transition states of theMLL, waswritten as the sumof a
cross-entropy, and anL2 regularisation termwith coefficientλ>0:
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where c(α) is the knownoutcome for input data itemα in the training set. The regularisation termbiases against
large values for theweights and shifts any zero eigenvalues of theHessian (second derivative)matrix, which
would otherwise complicate transition state searches [15, 23]. To accelerate computation of the potential, a GPU
version [24] of the loss function and gradient was also implemented and is available in the public domainGMIN
andOPTIM programmes [25–27].

3. Characterisation of the LFL

To train each networkweminimise the loss function, E(W;X), with respect to the variables ( ) ( )w w w, ,ij jk j
1 2 bh and

wi
bo, written collectively as a vector of weightsW. Basin-hopping global optimisationwas used [28–30] to search

for the globalminimum, and all the distinctminima obtained during these searches were saved for later
comparison. In this approachwe take steps between localminima of the loss function, accepting or rejecting
moves according to a simpleMetropolis criterion [31] based upon the change in loss function, scaled by a
parameter that plays the role of temperature. Downhillmoves are always accepted, and the probability of
accepting an uphillmove depends on the fictitious temperature [28–30]. For theMLLs considered in the present
work locating the globalminimum is usually straightforward, and the choice of basin-hopping parameters is not
critical. A customised LBFGS optimisation routine was employed for localminimisation, based on the limited
memory version [32, 33] of the quasi-Newton Broyden [34], Fletcher [35], Goldfarb [36], Shanno [37], BFGS
procedure.

Transition state candidates were determined using the doubly-nudged [38, 39] elastic band [40, 41] (DNEB)
approach, which involves optimising a series of intermediate atomic configurations (images) connected by a
harmonic potential. The transition state candidates were then refined using hybrid eigenvector-following
[42–44], which involves systematic energymaximisation along just oneHessian eigenvector. Having determined
a candidate transition state, the connectedminima are located byminimisation following small displacements
along the eigenvector corresponding to the unique negative eigenvalue. Thismethod can be employed to create
databases of connected localminima [45], which are analogous to kinetic transition networks [46–49].
Visualisation of the landscapewas performed using disconnectivity graphs [50–52]. This approach segregates
the EL into disjoint sets ofminima that can interconvert within themselves below each energy threshold. Using
this topologicalmethod, an undirected tree is constructed [53]. For themachine learning analysis, the vertical
axis represents the neural network training loss. The branches of the graph correspond to theminima of the loss
function.More specifically, each branch represents the vector of parameters containing the node-connectivity
weights for the neural network, and terminates at a height on the vertical axis corresponding to the training loss
function. The branches join together at regularly spaced intervals on the vertical axis when they can interconvert
via pathwaysmediated by index one saddle points (transition states). At the highest threshold all theminima lie
in the same group because there are no infinite barriers on the landscape, and only one vertical branch remains
in the graph.

Analytic first and second derivatives were programmed forE(W;X) in the public domainGMIN andOPTIM
codes for exploration of the corresponding LFLs [25–27]. Further details are provided elsewhere, including a
review of the EL perspective in the context ofmachine learning [12]. Performance of the neural networks was
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measured using standard area under curve (AUC)metrics. TheAUCmetric ranges from0 to 1, with an
AUC=0.5 signifying randomperformance. If theAUC value is<0.5, themodel performsworse than than a
randomguess and if the AUC is>0.5, it performs better. TheAUC is calculated by determining the true positive
and false positive statistics for themachine learning problem as a function of the threshold probability, P, for
predicting convergence to one of the outcomes. Details are provided in the supplementary information (SI),
which is available online at stacks.iop.org/MLST/1/023002/mmedia.

For the single-layered architectures, we use a short-hand, [A,B,C,D,E], to refer to the number of inputs,
hidden nodes, outputs, training data and regularisation constant, respectively. For example, in the geometry
optimisation classification problem the [2,10,4,1000,0.0001] architecture corresponds to 74 optimisable
parameters (two input bond lengths, 10 hidden nodes and 4 output classes with 1000 training points and a
regularisation constant of 0.0001), and for theMNIST dataset the [784,10,10,1000,0.1] architecture corresponds
to 7960 optimisable parameters.

4. Application to prediction of geometry optimisation outcomes for an atomic cluster

Thefirst classification problem that we consider involves predicting the outcome of localminimisation for a
triatomic cluster, as in previous reports [13, 14, 22]. Herewe emphasise that we are not usingmachine learning
to perform the optimisation [54–56], but instead to predict the outcome froma given starting configuration.

The PES for the cluster is defined by a two-body Lennard-Jones [57] potential and a three-bodyAxilrod–
Teller [58] term, weighted by a coefficientZ. The total PE for this LJAT3 cluster for particle positions ri, and
separations rij is then
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where the internal angles of the triangle defined by atoms i, j and k are θ1, θ2 and θ3.We chooseZ=2, for which
themolecular PES has an equilateral triangleminimumand three linearminimawith each of the three atoms in
the centre position. In all theAUC calculations for this problemwe chose to refer the threshold probability P to
the outcome corresponding to the equilateral triangleminimum.

This cluster, denoted LJAT3, defines amultinomial logistic regression problem. Localminimisation for any
starting configurationwill terminate in one of the fourminima, andwe seek to predict this outcome given inputs
corresponding to the initial geometry. The configuration is uniquely specified by the three interatomic distances
r12, r13, and r23, and given sufficient training data in this three-dimensional space a large enough neural network
canmake accurate predictions by learning the basins of attraction [1, 59] of the fourminima.Here, however, we
limit the inputs to two of the three distances, namely r12 and r13. The basins of attraction of the equilateral
triangle and the linearminimumwith atom1 in themiddle overlap in the space defined by themissing
coordinate, r23. Hence the best predictions possible should correspond to networks that learn themarginal
probabilities for the different outcomes in the lower dimensional space.

We note that this sort of classification problem is not only a convenient benchmark, but also has practical
applications. Knowledge of the relative configuration volumes for the catchment basins of differentminima can
be used to calculate thermodynamic properties [60], and predicting outcomes without running local
minimisation to convergence would provide away to save computational resources [61].

Two databases (D1 andD2) of initial configurations and outcomes were considered, as in previouswork
[18]. Starting geometries were generated by randomly distributing the three atoms in a cube of side length L. The
datasets involved 200,000minimisations for cube lengths of s=L 2 3 (D1) and s=L 1.385 (D2). A third
dataset, D3, with s=L 2 2 (D3)was also created; results for this dataset are reported in the Supplementary
Information (SI). In each case the data was divided into two halves for training and testing purposes. All the local
minimisations, which define the outcome and classification label for each data item, consisting of the initial r12
and r13 values, were performed using the customised LBFGS algorithm [32, 33] described above. The
convergence condition on the rootmean square gradient was e s-10 10 .

4.1. Landscapes subject to datasetmislabelling
Many real datasets of interest have significant label noise [62, 63], arising fromdifficulties in the data cleaning
and acquisition processes, or simply from ambiguous class differentiation criteria. Additionally, to reduce
acquisition loss,many practitioners prefer to obtain large amounts of low-quality data, rather than small
amounts of high-quality data.While this scenario allows for the creation of amuch larger labelled training set, it
also has the potential to greatly deteriorate the quality of the dataset [62–65]. In light of the positive advantages of
acquiring cheap data,much effort has been dedicated to improving the robustness of training neural networks
under noise. Previously, it has been demonstrated that neural networks can performwell under uniform label
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noise [62, 64], even retaining predictive capability in regimeswhere the ratio of noisy data to clean data exceeds
100 to 1. One possible explanation is that this phenomenon is a result of afiltering effect due to favourable
gradient cancellation [62]. On the other hand, it is known that neural networks performpoorly formore
sophisticated noisemodels, including both stochastic [64], and adversarial type noise [66].

Here we have analysed the uniformmislabelling case to see if the landscape approach can provide insight
into howneural networks learn under noise. To study this problem,we permuted a fixed percentage of training
outcomes for 1000 input data items. In this scenario, an outcome iwould bemapped to any other outcome jwith
probability

-N

1

1
, whereN is the number of output classes. Specifically, for theD1 andD2 datasets (four

outputs), class i could bemislabelled to that of any class ¹j i with equal probabilities of 1

3
. Similarly, for the

MNIST dataset [67], each of the ten output classes has nine possible options formislabellingwith corresponding
probabilities of 1

9
. It is important to note that themislabelling procedure was applied only to the training dataset

in order to study relevant properties on a clean unseen testing set.
Previous work by Rolnick et alused afixed amount of correct training data rather than a total error

percentage (fixed total training data). In our analysis, we opt for an error percentage formulation, as the number
of stationary points decreases with the amount of training data [18], complicating the interpretation of our
disconnectivity graph analysis. Here, we note that the distribution of outcomes varies with the size of the
configuration space. For example, themore compact dataset (D2) contains a larger number of equilateral
triangleminima (class 0). Sincewe cannot uncouple the outcome distribution from the choice of configuration
space in an unbiasedmanner, we studied all the relevant properties using the size of the configuration space as an
extra variable parameter.

For theD1 andD2 datasets, wewere able to perform a (near) exhaustive search of the low-lyingminima for
landscapes withfixed error percentages of 0%, 10%, 50%and 100% for the [2,10,4,1000,0.0001]neural network
architecture. Results for theD3 dataset are presented in the SI.

The number ofminima and transition states (Min andTs), as well as the loss associatedwith the training
globalminimum (Gmin Loss), are shown in tables 1 and 2. All training set distributions are available in the SI.

We found that, on average, the number of localminima and transition states increasedwith the percentage
ofmislabelled data for both datasets (tables 1 and 2). This observation suggests that a larger number of local
minima reflectmany competing values for the parameters of themodel, and thus produce higher uncertainty in
the statisticalfit. Based on this reasoning, it is unsurprising that noisier datasets lead to greater uncertainty in
fitting the training data. The loss value of the globalminimumalso increasedwith the percentage ofmislabelled
data (tables 1 and 2).

In addition, we observed that the larger themolecular configuration space (D1>D2), the greater the
number ofminima and transition states; this trend also holds forD3 (SI). This result is expected as there should
be greater uncertainty in predicting final outcomes frommore diffuse initialmolecular configurations. In other
words, the diversity of the dataset depends on the size of the configuration space. This interpretation is further
supported by the observation that the loss of the globalminimum increases with configuration space size.

To study generalisation, we used theAUC value corresponding to the training globalminimum (Gmin
AUC) as ametric to characterise the performance of the neural network on theD1 andD2datasets (tables 1 and
2). In both geometry optimisation datasets (D1 andD2), as the percentage ofmislabelled data increased, the
training and testing AUC for global trainingminimumdecreased (tables 1 and 2). This trend is consistent with
expectations, as randomising labels should increase the generalisation error. [65] For 0% error, we observe
relatively highAUCvalues for both training and testing; in particular, for theD1 andD2 datasets, the training
AUCs outperform the corresponding testing AUCs, as expected. Interestingly, however, for 10% and 50%error,
the testing AUCs outperform the training AUCs for the global trainingminimum (tables 1 and 2). This result
implies that the neural network learns the structure of the correct data and filters out the noise [62]. Thus, since
the trainingAUC is calculated on themislabelled dataset, the neural networks performpoorly (since they have
actually learned the correct structure). However, since the testing AUC is calculated on a correctly labelled
dataset, the neural networks perform significantly better. Note that when the error rate is increased to 100%, the
training error is relatively low [65], as the network overfits to noise.However, the testing AUCdecreases
precipitously. This decrease is unsurprising as the neural network isfitted to noise, and thus cannot possibly
generalise to an unseen dataset.

In addition to studying the properties of the training globalminimum,we also calculate the average (AUC)
and standard deviation [σ(AUC)] of the AUCvalues computed over all the training localminima in our database
(tables 1 and 2). For the case of 0% error, we observe a tight band of low-lying localminimawith high testing
accuracies, which agrees with previous work [7, 8]. For increasing error percentages, we also observe the same
trends for the average AUC values as those obtained using the training globalminima, suggesting a general
filteringmechanism for single-layered perceptrons under uniform label noise (tables 1 and 2).We alsofind that
the variance of the testing AUC increases significantly with the percentage of training error (tables 1 and 2).
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Table 1. Summary of results for theD1 dataset.Min andTs refer to the number ofminima and transition states, whileGmin refers to theminimumwith the lowest loss value.

Training Testing

Error (%) Min Ts GminAUC, Loss sAUC, (AUC) Incorrect sAUC, (AUC) Correct sAUC, (AUC) GminAUC, Loss sAUC, (AUC)

0 122 592 0.749, 0.850 0.746, 0.0035 — 0.746, 0.0035 0.732, 0.891 0.733, 0.0025

10 266 960 0.727, 1.000 0.724, 0.0036 0.509, 0.015 0.747, 0.0034 0.720, 0.726 0.726, 0.0043

50 394 1474 0.639, 1.291 0.638, 0.0029 0.539, 0.0079 0.760, 0.0072 0.706, 1.131 0.699, 0.0083

100 490 1395 0.589, 1.321 0.591, 0.0061 0.591, 0.0061 — 0.336, 1.918 0.340, 0.013
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Table 2. Summary of results for theD2 dataset.Min andTs refer to the number ofminima and transition states, whileGmin refers to theminimumwith the lowest loss value.

Training Testing

Error (%) Min Ts GminAUC, Loss sAUC, (AUC) Incorrect sAUC, (AUC) Correct sAUC, (AUC) GminAUC, Loss sAUC, (AUC)

0 6 20 0.810, 0.519 0.810, 0.000 33 — 0.810, 0.000 33 0.797, 0.552 0.796, 0.000 31

10 13 66 0.730, 0.791 0.728, 0.0021 0.190, 0.019 0.809, 0.0023 0.791, 0.622 0.791, 0.0020

50 26 155 0.604, 1.285 0.602, 0.0018 0.398, 0.010 0.779, 0.0054 0.741, 0.994 0.739, 0.0030

100 20 148 0.772, 1.236 0.768, 0.0047 0.768, 0.0047 — 0.242, 2.771 0.245, 0.0043
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To further analyse these effects, we investigated the performance of the network on themislabelled and
correctly labelled entries of the (mislabelled) training dataset (tables 1 and 2). For both datasets (D1 andD2), the
training AUCvalues for the correctly labelled components exceeded the corresponding testing AUCvalues
(tables 1 and 2). From these results, it is clear that, even at high training errors, the network can distinguish clean
data fromnoisy data.

To study the structure of the LFLs for single-layered perceptrons under uniformnoise, we produced the
corresponding disconnectivity graphs [50, 51], coloured by both training and testing AUCvalues, for theD1 and
D2datasets (figures 1–4).

Interestingly, single-funnelled ELs are observed in each case. Since even the graphs at 100% error have a
funnelled appearance, the structure likely arises due to the single-layered feed-forward architecture, not the

Figure 1.Disconnectivity graphs for dataset D1, 1000 training points,λ=0.0001, coloured by training AUCas a function of% label
errors, asmarked.
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input data. These results are consistent with previous work on the appearance of single-layered neural network
landscapes [8, 12, 13], as well as previous suggestions that noisy landscapes are no harder to train than clean
landscapes [65].

As expected, for all error thresholds, low-lyingminima correspond to high training AUCs. Furthermore, the
training and testing AUCvalues are reasonably correlated for 0%error. This result is also unsurprising, as the
premise of neural network training is that low-lyingminima generalise well to unseen training sets. Interestingly,
as themislabelling percentage increases, the better testing AUCminima (in the graphs, green-blue) are found at
higher loss values, and the low-lyingminima can have relatively low testing AUC values. This result highlights
the bias-variance trade-off between over-fitting and generalisation. Some low lossminima overfit to noise,
leading to high training AUCs and low testing AUCs.However, somehigh loss training canfilter the noisemore

Figure 2.Disconnectivity graphs for dataset D1, 1000 training points,λ=0.0001, coloured by testingAUC as a function of% label
errors, asmarked.
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effectively and thus generalise well (i.e. higher AUC values for testing). These results are consistent with the
hypothesis that it can sometimes be better to converge to localminima, rather than the globalminimum, to
prevent overfitting [7]. Together, these results help explainwhy the testing variance for the AUC increases with
the percentage ofmislabelled training data.

ForMNIST data, a similar pictures emerges aftermislabelling various fixed percentages of the training data.
Since the architecture used here, [784,10,10,1000,0.1], has nearly 8000 optimisable parameters, our results are
based on samples of low-lyingminima (i.e. not exhaustive searching). These calculations weremuchmore
computationally expensive, andwe used aGPU accelerated implementation for basin-hopping global
optimisation [24]. Unlike theD1 andD2 datasets, we do not obtain higher testing accuracies relative to training
accuracies as the error threshold is increased (table 3). However, analysis of neural network performance,

Figure 3.Disconnectivity graphs for dataset D2, 1000 training points,λ=0.0001, coloured by training AUCas a function of% label
errors, asmarked.
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average over databaseminima on the correct and incorrect portions of themislabelled dataset, shows that the
networks still perform significantly better on the clean segment of the training data, evenwith large amounts of
noise (table 3).

It is againworth highlighting that, similar to theD1 andD2 case, there is a systematic trend towards
increased testing AUCvariance with the increase in dataset error, which indicates a change in the structure of the
underlying landscape. Thus, while we dofind goodminima [62, 64], we alsofindmany badminima (figure 5).

Based on these numerical results it appears that the relatively tight band of localminima above the global
minimum [7, 8]no longer exists for themislabelled case. Furthermore, in almost every example, the variance of
the testing AUC is greater than the variance of the training AUC. Thus, while it is possible to obtain high testing

Figure 4.Disconnectivity graphs for dataset D2, 1000 training points,λ=0.0001, coloured by testingAUC as a function of% label
errors, asmarked.
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accuracies under uniform randomerror [62, 64], the landscape perspective indicates that the probability of
finding such solutions diminishes as the error percentage increases. These results indicate that itmight be
valuable to further analyse the properties of the subset ofminima that performwell under high training error.

Table 3. Summary statistics forMNIST dataset.

Training Testing

Error sAUC, (AUC) Incorrect sAUC, (AUC) Correct sAUC, (AUC) sAUC, (AUC)

0 0.9996, 0.0027 — 0.9996, 0.0027 0.9687, 0.010

10 0.9783, 0.0070 0.7747, 0.050 0.9997, 0.0014 0.9645, 0.012

25 0.9545, 0.013 0.8011, 0.044 0.9991, 0.0025 0.9472, 0.018

40 0.9429, 0.015 0.8440, 0.032 0.9976, 0.0042 0.9304, 0.022

50 0.9390, 0.016 0.8707, 0.029 0.9950, 0.0062 0.9197, 0.024

60 0.9310, 0.017 0.8893, 0.026 0.9891, 0.010 0.8940, 0.031

75 0.9281, 0.020 0.9164, 0.024 0.9729, 0.019 0.7716, 0.061

100 0.9509, 0.015 0.9509, 0.015 — 0.2333, 0.072

Figure 5.Box-plots for training (a) and testing (b)AUCvalues for various error percentages on theMNIST dataset. The box extends
from thefirst (Q1) to third (Q3) quartiles (25th to 75th percentiles, range - =Q Q IQR3 1 , the interquartile range)with a band at the
median.
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This approachmight be particularly helpful in designing newoptimisers to preferentially find good solutions
when training under noise.

5. Landscapeswith reduced connectivity

To investigate the effect of reduced connectivity between the layers of a networkwe defined locality via a
simple distancemetric. The nodes in each of the three layers weremapped onto a unit line at positions 0,

( ) ( ) ( ) ( )- - ¼ - -b b b bN N N N1 1 , 2 1 , , 2 1 , 1, definingNβ sites separated at intervals of ( )-bN1 1 . The
distance between hidden node h and an input node i or output node owas then defined as

( )-
-

-
-
-

-
-

-
-
-

h

N

i

N

h

N

o

N

1

1

1

1
, or

1

1

1

1
, 5

hidden in hidden out

for    h N i N1 , 1hidden in and  o N1 out. The distances were sorted and theweights
( )wij
1 and ( )wjk

2

corresponding to a specified number of nearest neighbours were retained.Weights corresponding to
connections outside the neighbour cutoff were frozen at zero, with all bias weights retained.When it was
necessary to choose between neighbours at the same distancewe simply selected the input or output nodewith
the lowest index i or o.

This scheme is related to the dropout procedure, where nodes are randomly removed during training
[68, 69]. Dropout helps to prevent overfitting in large networks, and also reduces the problemof local regions of
the network coadapting, which can degrade the predictive capabilities in testing. The present formulation is
closer to theDropConnect procedure, which removes connections rather than nodes [70]. However, unlike
bothDropOut andDropConnect, the architecture remains fixed during training in our analysis. Furthermore,
the connections are not removed at random, but instead are omitted to define a locality in the network. This
construction is similar to previous work by LeCun et alwho systematically reduced network connectivity using a
weight saliencymetric based on second derivative information [71]. The present analysis is designed to test
whether the global connections between adjacent layers of the network are responsible for the single-funnelled
appearance of theMLL, which has been observed in previous studies [13, 14, 17]. The potential ELs of atomistic
systems generally exhibitmore localminima and transition states for short-range forces [72–75]. Introducing
reduced connectivity based on localitymight have a systematic effect onMLLs, andwewish to investigate this
possibility for the present setup.Our formulation also gives an indication of how reducing the capacity of a
neural network ismanifested in the underlying landscape.

The potential defined in terms of neighbourhood connectivity described abovewas used to generate
databases ofminima and transition states for theD1 dataset with the [2,10,4,1000,0.0001] and
[2,5,4,1000,0.00001] single-layered architectures; this dataset was chosen because it has a relatively large number
ofminima. Landscapes for 1, 2, 3 nearest neighbours, and the fully-connected [2,10,4,1000,0.0001]model,
corresponding to 40, 20, 10 and 0 frozenweights, were created and visualised using disconnectivity graphs. To
study generalisability, all theminima obtainedwere coloured by testing AUC (figure 6).

For two and three nearest neighbours, the number of stationary points increased significantly from the fully
connected reference. This situation is consistent with previous results for interatomic potentials with short-
range forces inmolecular systems [72–75]. The present analysis also suggests that strong locality can induce
more complexMLLs. This conjecture is supported by recent results for two- and three-layered perceptrons,
which can havemore locality than the single-layered perceptrons, and exhibitmore localminima for a similar
number of edgeweight variables [18].

Localminima for the two- and three-neighbour networks performed reasonably well on an unseen testing
set, with two nearest neighbours even outperforming the fully-connectedmodel (figure 6). One possible reason
for this phenomenon is theDropOut argument; i.e.the reduced neural networkminimises the problemof local
regions of network coadaptation, and instead produces a small number of connections, which are independently
good at predicting the correct class [69, 71]. Another possibility is that the newnetwork has broken symmetry
and therefore no longer has highly degenerate solutions arising fromparameter permutation, whichmay
facilitate expression ofmore complexfitting functions [76]. This perspective is at least partially substantiated by
the observation ofmuchmore complicated landscapes for reduced connectivity (figure 6). Interestingly,
however, only two poorly performingminimawere found for the one nearest neighbourmodel. This
observation likely reflects the fact that the architecture has significantly reduced capacity, sincemore than half
the trainable weights are zero.Overall, our results suggest that in terms of the landscape, optimal architectures
may balance sparsity and expressiveness to performwell on unseen testing sets.

Although the reduced-connectivity landscapes obtained for the [2,10,4,1000,0.0001] architecture were
significantlymore frustrated than the fully-connectedmodel, theywere still relatively single-funnelled (figure 6).
To determinewhetherwe could obtain glassy ormulti-funnelled landscapes, we visualised disconnectivity
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graphs for two and three nearest neighbours and significantly reduced regularisation (ten-fold) architecture
[2,5,4,1000,0.00001] (figure 7).

Since the regularisation term is a convex L2 penalty, it is possible that part of the single-funnelled appearance
of the reduced-connectivity networks is due purely to regularisation; i.e.higher L2 regularisation convexifies the
landscape [15]. Again, for the fully-connected case, we observed a single-funnelled appearance, substantiating
our previous suggestion that this type of landscape is architecture dependent. However, for the two and three
nearest neighbourmodels, we observe that some additional sub-funnel structure starts to emerge (figure 7). This
result highlights the strong effect of locality on single-layered architectures.

6. Landscapes for two and three hidden layers

Herewe present some results for theD1 dataset obtainedwith neural networks containing two (2HL) and three
(3HL) hidden layers, to provide comparisonswith the single hidden layer results.We consider 2HLwithfive
nodes in each hidden layer, and 3HLwith four nodes in each hidden layer, giving 69 and 72 training variables,
respectively, for theD1 dataset obtained for the LJAT3 classification problem.Disconnectivity graphs that focus
on the lower-lying region of the landscape are shown infigure 8, and the corresponding stationary point

Figure 6.Disconnectivity graphs for 1 (top left), 2 (top right) and 3 (bottom left)nearest neighbours for theD1 dataset, compared to
the fully-connected architecture (bottom right). The colouring runs from red (low testingAUC) to blue (high testingAUC).
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databases are described in table 4. These results illustrate two trends, namely, the growth in the number of
stationary points with increasing hidden layers, andwith decreasing training data, for a comparable number of
variable edgeweights. The corresponding databases are far from complete forNdata=100, but should provide a
reasonable coverage of the low-lying region, which is the focus of interest here.

Comparing the lower panels of figure 8 for =N 1000data , with the top panels forNdata=100, we see that the
uphill barriers corresponding to pathways that lead to the globalminimumare significantly smaller. Further
analysis also shows that theminima span awider range of loss function values for the 3HL architecture. These
effects aremaintainedwhenmore training data is included; a systematic analysis will be presented
elsewhere [18].

7. Conclusions

Using customgenerated high-quality geometry optimisation training data we showed that increasing training
diversity (in this case, configuration space volume for an atomic cluster) leads to landscapes withmanymore
stationary points and higher loss values. These results suggest a correspondence between the number of local
minima and the statistical uncertainty of the LFL.

In ourmislabelling analysis, we found that neural networks can correctly filter uniformnoise for very high
levels of dataset poisoning and these results remain (empirically) true for averages over the database of local
minima.We alsofind that formislabelling, a tight band ofminima around the globalminimumdoes not occur.
Instead, the variance of the testing AUC increases significantly with the training error. Furthermore, we observe
thatmany high loss trainingminima performwell on unseen testing input, as they do not overfit to noise,
highlighting a bias-variance type trade-off. In future workwe aim to consider other types of noise.Much of the
realistic (and difficult)noise inmachine learning datasets is not uniform, but instead highly feature dependent or
adversarial [66, 77]. As afirst step, we plan to seewhether a landscape analysismight reveal why it ismore
difficult to train under stochastic permutation noise than uniform randomnoise.Wewould also like to compare
our noise analysis to neural networks withmore than one hidden layer, whichmay bemore resilient to labelling
noise [62].

We have also explored the landscapes of neural networkswith reduced connectivity. For two and three
nearest neighbours, the networks retained sufficient expressive capacity. In particular, the network for two
nearest neighbours systematically outperformed the fully-connected case on unseen testing data. The networks
with reduced connectivity are significantlymore complex, due to the effects of stronger locality and the
symmetry-broken architecture. For very limited connectivity (one nearest neighbour), we found only a few
minimawith poor predictive capability, reflecting the reduced capacity of the network. Furthermore, as we
reduced the regularisation (convexity) of the landscape, the reduced-connectivity architecture producedmuch
more complex LFLswith emerging subfunnel structure. These resultsmay be helpful in understanding the
difference between the performance of deep networks and shallownetworks, and in determining architectures
to obtain optimal capacity for neural networks (sparseness versus expressible trade-off). Futurework in this area
will likely include a generalised systematic scheme for reduced-connectivity of deep neural networks. In

Figure 7.Disconnectivity graphs for 2 (left) and 3 (middle)nearest neighbours with reduced connectivity for theD1 dataset, compared
to the fully-connected architecture (right). These results are for five nodes in the hidden layer andλ=0.00001.
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particular, the trends observed for LFLs as a function of the number of hidden layers, the number of training
data, and the presence ofmislabelling, should be investigated to test whether we can legitimately extrapolate to
large networkswhere a detailed analysis of the landscape is not feasible.

Figure 8.Disconnectivity graphs obtainedwith 100 (top) and 1000 (bottom) training data for theD1 datasetλ=0.0001 and neural
networks with two (left) and three (right) hidden layers.

Table 4.Number ofminima (Min) and transition states (Ts)
formachine learning landscapes with two and three hidden
layers,λ=0.0001, for 100 and 1000 training data drawn from
theD1 dataset.

100 1000

Hidden layers (%) D1 (Min,Ts) D1 (Min,Ts)
2 65 591, 90 622 3630, 3197

3 193 036, 540 962 13 298, 20 777
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