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1 Introduction

This paper reports on the observation of the electroweak production of a top quark or

an anti-top quark associated with a Z boson (tZq) by the ATLAS collaboration using a

data sample corresponding to an integrated luminosity of 139 fb−1 of proton-proton (pp)

collisions at a centre-of-mass energy of
√
s = 13 TeV. The final state is where the Z boson

decays into electrons or muons, and the W boson, from the top-quark decay, decays into

an electron or muon and an associated neutrino, and also includes the contribution from

τ -lepton decays into electrons or muons. The requirement of three leptons in the final state

maximises the signal significance relative to the backgrounds. Evidence for this process has

previously been reported by the ATLAS collaboration [1] with a significance of 4.2 standard

deviations using data collected in 2015 and 2016. The CMS collaboration [2] reported an

observation with a measured cross-section uncertainty of 15% using data collected in 2016

and 2017.

At leading order (LO) in the Standard Model (SM) both the single top-quark pro-

duction and decay occur through the electroweak interaction. The main LO Feynman
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Figure 1. Example Feynman diagrams of the lowest-order amplitudes for the tZq process, cor-

responding to (a, b) resonant `+`− production and (c) non-resonant `+`− production. In the

four-flavour scheme, the b-quark originates from gluon splitting.

diagram is the same as in t-channel single top-quark production with the addition of a Z

boson radiated from any of the quarks (figure 1a) or from the t-channel W -boson propa-

gator (figure 1b). This allows the t-Z and the W -Z couplings to be indirectly studied in a

single interaction. At LO the ttZ process is O(α2
s ) in QCD, and the extraction of the t-Z

coupling is more sensitive to higher-order QCD corrections. Furthermore, for the tZq pro-

cess the next-to-leading-order (NLO) QCD corrections are small and therefore deviations

from the SM can easily be studied in the framework of the SM effective field theory [3].

In addition to resonant Z -boson production, a small non-resonant `+`− (with ` = e,

µ, τ) contribution to this process (t`+`−q) is accounted for (figure 1c). Throughout this

paper, single top-quark production with either resonant or non-resonant `+`− in the final

state is referred to as tZq . In the SM, the expected cross-section for this process, calculated

at NLO in QCD for a dilepton mass greater than 30 GeV, is 102+5
−2 fb.

2 ATLAS detector

The ATLAS detector [4] at the LHC covers nearly the entire solid angle around the colli-

sion point.1 It consists of an inner tracking detector surrounded by a thin superconducting

solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer incorporat-

ing three large superconducting toroidal magnets.

1
ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in

the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre

of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse

plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar

angle θ as η = − ln tan(θ/2). Distances in the η–φ plane are measured in units of ∆R ≡
√

(∆η)
2

+ (∆φ)
2
.
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The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides

charged-particle tracking in the range |η| < 2.5. The high-granularity silicon pixel detector

covers the vertex region and typically provides four measurements per track, the first hit

being normally in the insertable B-layer installed before Run 2 [5, 6]. It is followed by

the silicon microstrip tracker, which usually provides eight measurements per track. These

silicon detectors are complemented by the transition radiation tracker (TRT), which enables

radially extended track reconstruction up to |η| = 2.0. The TRT also provides electron

identification information based on the fraction of hits (typically 30 in total) above a higher

energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |η| < 4.9. Within the re-

gion |η| < 3.2, electromagnetic (EM) calorimetry is provided by barrel and endcap high-

granularity lead/liquid-argon (LAr) calorimeters, with an additional thin LAr presampler

covering |η| < 1.8, to correct for energy loss in material upstream of the calorimeters.

Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into

three barrel structures within the region |η| < 1.7, and two copper/LAr hadronic end-

cap calorimeters. The solid angle coverage is completed with forward copper/LAr and

tungsten/LAr calorimeter modules optimised for electromagnetic and hadronic measure-

ments respectively.

The muon spectrometer comprises separate trigger and high-precision tracking cham-

bers measuring the deflection of muons in a magnetic field generated by superconducting

air-core toroids. The field integral of the toroids ranges between 2.0 and 6.0 T m across most

of the detector. A set of precision chambers covers the region |η| < 2.7 with three layers

of monitored drift tubes, complemented by cathode-strip chambers in the forward region,

where the background is highest. The muon trigger system covers the range |η| < 2.4 with

resistive-plate chambers in the barrel and thin-gap chambers in the endcap regions.

Interesting events are selected for recording by the first-level trigger system imple-

mented in custom hardware, followed by selections made by algorithms implemented in

software in the high-level trigger [7]. The first-level trigger selects events from the 40 MHz

bunch crossings at a rate below 100 kHz, which the high-level trigger further reduces to

record events to disk at about 1 kHz.

3 Data and simulation samples

The data sample used in this article corresponds to 139 fb−1 of pp collisions at
√
s = 13 TeV

collected by the ATLAS detector during 2015–2018, after requiring stable LHC beams and

that all detector subsystems were operational [8].

Candidate events were required to satisfy one of the single-electron triggers or one of

the single-muon triggers [7, 9–13]. Single-lepton triggers with low transverse momentum,

pT, thresholds and standard isolation requirements were combined in a logical OR with

higher-threshold triggers that had a looser identification criterion and did not have any

isolation requirement, resulting in an efficiency of almost 100% for events passing the

analysis selection. The lowest pT threshold used for electrons was 24 GeV (26 GeV) in 2015

(2016–2018), while for muons the threshold was 20 GeV (26 GeV).
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To evaluate the effects of the detector resolution and acceptance on the signal and

background, and to estimate the SM backgrounds, simulated event samples were produced

using a Geant4-based Monte Carlo (MC) detector simulation [14, 15]. Some of the samples

used for evaluating systematic uncertainties did not use the full Geant4 simulation but

instead relied on parameterised showers in the calorimeter. The top-quark mass in the

event generators described below was set to 172.5 GeV.

The simulated data must account for the fact that significantly more than one inelastic

pp collision occurs per bunch crossing. The average number of collisions per bunch crossing

ranged from 13 to 38 for the 2015 through 2018 data-taking periods, respectively. Inelastic

collisions were simulated using Pythia 8.186 [16] with the A3 set of tuned parameters [17]

and the NNPDF2.3 LO [18] set of parton distribution functions (PDFs), and overlaid on

the signal and background MC samples. These simulated events were reweighted to match

the conditions of the collision data, specifically the additional pp interactions (pileup).

To estimate the signal acceptance and efficiency, and to study the effect of differ-

ent selection criteria on the expected precision of the measurement, a tZq sample was

simulated, including non-resonant `+`− contributions. The sample was generated us-

ing the four-flavour scheme at NLO in QCD with MadGraph5 aMC@NLO 2.6.0 [19],

requiring the dilepton invariant mass to be larger than 30 GeV and using the

NNPDF30 nlo as 0118 nf 4 [20] PDF set. Following the discussion in ref. [21], the

functional form of the renormalisation and factorisation scale was set to 4
√
m2

b + p2T,b ,

where the b-quark is the one produced in the gluon splitting in the initial state associ-

ated with tZq production. The parton showering and hadronisation in signal events were

simulated using Pythia 8.230 [22], with a set of tuned parameters selected according to

ref. [23], referred to as the “A14 tune”.

The predicted cross-section was calculated with MadGraph5 aMC@NLO 2.6.0, using

the five-flavour scheme with the NNPDF30 nlo as 0118 PDF set and with the renor-

malisation and factorisation scales, µr and µf, set to µr = µf = (mt + mZ)/4 = 66 GeV.

The SM tZq cross-section at NLO in QCD, including non-resonant contributions with

m
`
+
`
− > 30 GeV, is 102 fb. The renormalisation and factorisation scale uncertainties are

+5.2
−1.3% and the PDF uncertainty is ±1.0%. The PDF uncertainty was calculated using the

replica method described in ref. [24].

The background to the signal is estimated by using simulated samples that contain at

least two leptons and at least two jets. These samples include the production of tt , ttH,

ttZ , ttW , tW , tWZ , diboson (W W , W Z , or Z Z ), and Z + jets events.

The nominal tt and ttH simulated samples were generated using the NLO matrix-

element generator Powheg-Box v2 [25–29] with the parameter hdamp, which controls the

transverse momentum of the first additional gluon emission beyond the Born configuration,

set to 1.5 × mt for tt [30] and 0.75 × (2 × mt + mH ) for ttH, with mH = 125 GeV.

These events were then passed through Pythia 8.230 to generate the underlying event

and perform the parton showering and hadronisation. The PDF set used in the sample

simulation was NNPDF3.0 NLO and for Pythia 8 the A14 tune and NNPDF2.3 LO PDF

set were used.
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Additional tt simulated samples are used to assess modelling uncertainties [31]. To

evaluate the uncertainty due to initial-state radiation, samples with higher parton radiation

were produced by decreasing the factorisation and renormalisation scales by a factor of 0.5

and simultaneously increasing the hdamp parameter to twice its nominal value, and using

the “Var3c” up variation from the A14 tune [32]. For lower parton radiation, the nominal

hdamp value was used, while the renormalisation and factorisation scales were increased by

a factor of two and the “Var3c” down variation was selected in the parton shower. To

study the impact of using an alternative parton shower and hadronisation model, a sample

was produced with the Powheg-Box v2 generator interfaced to Herwig 7.0.4 [33, 34],

the former using the NNPDF3.0 NLO PDF set and the latter using the H7UE set of tuned

parameters [34] and the MMHT2014 LO PDF set [35]. To assess the uncertainty due to the

choice of matching scheme, a sample generated by MadGraph5 aMC@NLO 2.6.0 with the

NNPDF3.0 NLO PDF set was passed through Pythia 8.230, which used the A14 tune and

NNPDF2.3 LO PDF set. For all samples produced with this set of generators, the matrix-

element correction for the first emission was turned off and the global recoil option was used.

The production of ttZ and ttW events was modelled using the Mad-

Graph5 aMC@NLO 2.3.3 generator at NLO in QCD, with the NNPDF3.0 NLO PDF

set. Parton showering and hadronisation were modelled with Pythia 8.210, using the

A14 tune and the NNPDF2.3 LO PDF set. Non-resonant `+`− contributions are included

for ttZ .

To assess modelling uncertainties, alternative ttZ simulated samples were produced

with the Sherpa 2.2.1 [36] generator with one additional parton at NLO accuracy. The

CKKW matching scale of the additional emissions was set to 30 GeV. The default

Sherpa 2.2.1 parton shower was used along with the NNPDF3.0 NNLO PDF set.

The tW simulated samples used the same generators as those used for the various tt

samples [37]. To avoid overlap between tW and tt production, the diagram removal (DR)

scheme was employed [38], where all NLO diagrams that overlap with the doubly resonant

tt contributions are removed from the calculation of the tW amplitude.

The production of tWZ events was modelled using the MadGraph5 aMC@NLO 2.3.3

generator at NLO with the NNPDF3.0 NLO PDF set. The generator was interfaced to

Pythia 8.212, which used the A14 tune and the NNPDF2.3 LO PDF set. The modelling

uncertainties for this process are evaluated by comparing with a MC sample produced

using the same generators but employing a different treatment of the interference between

ttZ and tWZ , namely the diagram removal scheme that takes the interference term into

account (DR2), as opposed to the nominal DR1 scheme [39].

The simulation of the diboson event samples used the NLO Sherpa event generators:

Sherpa 2.2.1 for events with one boson decaying into hadrons, and Sherpa 2.2.2 for

events with both bosons decaying into leptons. In this set-up, multiple matrix elements

were matched and merged with the Sherpa parton shower based on Catani-Seymour dipole

factorisation [40, 41] using the MEPS@NLO prescription [42–45]. The simulations included

up to one additional parton at NLO accuracy and up to three additional parton emissions

at LO accuracy. The virtual QCD corrections for matrix elements at NLO accuracy were

provided by the OpenLoops library [46, 47] with the NNPDF3.0 NLO PDF set.
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To assess modelling uncertainties for the diboson background, the Powheg-

Box v2 [48] generator was used to generate the diboson processes at NLO in QCD. Events

were generated using the CT10 NLO PDF set [49] and showered with Pythia 8.210 with

the AZNLO [50] tune and the CTEQ6L1 [51] PDF set.

For the modelling of Z + jets, a sample was generated using Sherpa 2.2.1 with the

NNPDF3.0 NNLO PDF set. The matching and merging procedure, as well as the vir-

tual QCD corrections, were similar to those described for the diboson event simulation.

The simulations included up to two additional partons at NLO accuracy and up to four

additional parton emissions at LO accuracy.

4 Object reconstruction

The reconstruction of the basic objects used in the analysis is described in the following.

The primary vertex [52] is selected as the pp vertex candidate with the highest sum of the

squared transverse momenta of all associated tracks with pT > 400 MeV.

Electron candidates are reconstructed from energy clusters in the EM calorimeter that

match a reconstructed track [53]. The clusters are required to be within the range |η| <
2.47, excluding the transition region between the barrel and endcap calorimeters at 1.37 <

|η| < 1.52. Electron candidates must also satisfy a transverse energy requirement of ET >

20 GeV [53]. A likelihood-based discriminant is constructed from a set of variables that

enhance the electron selection, while rejecting photon conversions and hadrons misidentified

as electrons [53]. An η- and ET-dependent selection on the likelihood discriminant is

applied, such that it has an 80% efficiency when used to identify electrons from Z -boson

decays. Electrons are further required to be isolated using criteria based on ID tracks

and topological clusters in the calorimeter, with an efficiency of 90% (99%) for ET =

25 GeV (60 GeV). Correction factors are applied to simulated electrons to take into account

the small differences in reconstruction, identification and isolation efficiencies between data

and MC simulation.

Muon candidates are reconstructed by combining a reconstructed track from the inner

detector with one from the muon spectrometer [54], and are required to have pT > 20 GeV

and |η| < 2.5. To reject misidentified muon candidates, primarily originating from pion

and kaon decays, several quality requirements are imposed on the muon candidate. An

isolation requirement based on ID tracks and topological clusters in the calorimeter is

imposed, resulting in an efficiency of 90% (99%) for pT = 25 GeV (60 GeV). The overall

efficiency obtained for muons from W -boson decays in simulated tt events is 96%. Like

for electrons, correction factors are applied to simulated muons to account for the small

differences between data and simulation.

Jet reconstruction in the calorimeter starts from topological clustering [55] of individual

calorimeter cells calibrated to the electromagnetic energy scale. The anti-kt algorithm [56,

57], with the radius parameter set to R = 0.4, is used to reconstruct the jets [58]. These jets

are then calibrated to the particle level by the application of a jet energy scale derived from

simulation and in situ corrections based on
√
s = 13 TeV data [59]. Jets are required to have

pT > 35 GeV in the region |η| < 4.5. To suppress jets arising from pileup, a discriminant

– 6 –
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called the “jet vertex tagger” (JVT) is constructed using a two-dimensional likelihood

method [60]. For jets with pT < 60 GeV and |η| < 2.5 a JVT requirement corresponding to

a 92% efficiency, while rejecting 98% of jets from pileup and noise, is imposed. To reject jets

at high |η| originating from additional pp interactions, a forward jet vertex tagger (fJVT)

requirement is applied [61]. All jets with |η| > 2.5 are required to satisfy the requirements

of the fJVT “medium” working point. This has an efficiency of selecting hard-scattered

jets of up to 97% and a pileup-jet efficiency of 53% for jets with a pT of 40 GeV.

To identify jets containing a b-hadron (b-jets), a multivariate algorithm is em-

ployed [62, 63]. It uses impact parameter and reconstructed secondary vertex information

from tracks contained in the jet as input. A calibration in bins of pT is derived at four

efficiency points. Each jet is assigned a score, depending on how many of the efficiency

points are passed. Due to its use of the ID, the reconstruction of b-jets is restricted to the

region |η| < 2.5. Candidate b-jets must have a b-tagging discriminant value that exceeds a

threshold such that a 70% b-jet selection efficiency is achieved in simulated tt events. With

this criterion, the misidentification rate for light-jets, i.e. jets containing neither a b- nor

a c-hadron, is 0.3%, while it is 11% for jets initiated by c-quarks. Correction factors are

derived and applied to correct for differences in b-jet selection efficiency and the mistagging

rates between data and MC simulation [62, 64, 65].

The missing transverse momentum, with magnitude Emiss
T , is calculated as the negative

of the vector sum of the transverse momenta of all reconstructed objects. To account for

the soft hadronic activity, a term including tracks associated with the primary vertex but

not with any of the reconstructed objects is added to the Emiss
T calculation [66].

To avoid cases where the detector response to a single physical object is reconstructed

as two separate final-state objects, an overlap removal procedure is used. If electron and

muon candidates share a track, the electron candidate is removed. After that, if the ∆Ry,φ
distance2 between a jet and an electron candidate is less than 0.2, the jet is discarded.

If multiple jets satisfy this requirement, only the closest jet is removed. For jet-electron

distances between 0.2 and 0.4, the electron candidate is removed. If the distance between

a jet and a muon candidate is less than 0.4, the muon candidate is removed if the jet has

more than two associated tracks, otherwise the jet is removed.

5 Signal and control regions

The tZq final state used for this measurement comprises three charged leptons (electrons

or muons), missing transverse momentum, one b-jet from the top-quark decay and an

additional jet that does not satisfy the b-tagging requirement (untagged jet) and is expected

to be emitted preferentially at high |η|. A second untagged jet is allowed in order to include

events with QCD radiation. To help separate the tZq signal from the backgrounds that do

not contain a Z boson and a top quark (diboson, Z + jets and tt events), both the Z -boson

and the top-quark invariant masses are reconstructed.

2
∆Ry,φ is the Lorentz-invariant distance in the rapidity-azimuthal-angle plane, defined as ∆Ry,φ =√

(∆y)
2

+ (∆φ)
2
.
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Common selections

Exactly 3 leptons (e or µ) with |η| < 2.5

pT(`1) > 28 GeV, pT(`2) > 20 GeV, pT(`3) > 20 GeV

pT(jet) > 35 GeV

SR 2j1b CR diboson 2j0b CR tt 2j1b CR ttZ 3j2b

≥ 1 OSSF pair ≥ 1 OSSF pair ≥ 1 OSDF pair ≥ 1 OSSF pair

|m`` −mZ | < 10 GeV |m`` −mZ | < 10 GeV No OSSF pair |m`` −mZ | < 10 GeV

2 jets, |η| < 4.5 2 jets, |η| < 4.5 2 jets, |η| < 4.5 3 jets, |η| < 4.5

1 b-jet, |η| < 2.5 0 b-jets 1 b-jet, |η| < 2.5 2 b-jets, |η| < 2.5

SR 3j1b CR diboson 3j0b CR tt 3j1b CR ttZ 4j2b

≥ 1 OSSF pair ≥ 1 OSSF pair ≥ 1 OSDF pair ≥ 1 OSSF pair

|m`` −mZ | < 10 GeV |m`` −mZ | < 10 GeV No OSSF pair |m`` −mZ | < 10 GeV

3 jets, |η| < 4.5 3 jets, |η| < 4.5 3 jets, |η| < 4.5 4 jets, |η| < 4.5

1 b-jet, |η| < 2.5 0 b-jets 1 b-jet, |η| < 2.5 2 b-jets, |η| < 2.5

Table 1. Overview of the requirements applied when selecting events in the signal and control

regions. OSSF is an opposite-sign same-flavour lepton pair. OSDF is an opposite-sign different-

flavour lepton pair.

The data are divided into eight non-overlapping regions: two signal regions (SR) de-

signed to select tZq events and six control regions (CR) designed to enhance the selection

of the main sources of background events (ttZ , diboson, Z + jets and tt events). The CRs

are used to adjust the normalisation and reduce the associated systematic uncertainties in

the main backgrounds.

Table 1 summarises the selection criteria applied across all the regions considered.

Leptons and jets have to satisfy the requirements discussed in section 4 and one of the

leptons is required to have pT > 28 GeV, because of the trigger thresholds, and match,

with ∆R < 0.15, the lepton reconstructed by the trigger. The nomenclature njmb is used

to denote the regions, where n is the total number of jets, of which m are b-tagged.

The SRs require an opposite-sign, same-flavour (OSSF) lepton pair to reconstruct the

Z boson. In the µee and eµµ channels the pair is uniquely identified, whereas in the

eee and µµµ channels both of the possible combinations are considered and the pair with

the invariant mass closer to the Z -boson mass is chosen. The dilepton invariant mass

requirement is |m`` − mZ | < 10 GeV. The remaining lepton and the Emiss
T are used to

reconstruct the leptonically decaying W boson.3 The four-momenta of the reconstructed

W boson and the b-jet are summed to reconstruct the top quark.

The diboson CRs use the same event selection as each of the SRs but a b-tag veto is

applied. The CRs for ttZ are the same as the SRs except for the addition of another b-jet.

The CRs for tt are the same as the SRs except for the requirement of no OSSF lepton pair

and at least one opposite-sign, different-flavour (OSDF) lepton pair.

3
The longitudinal component of the neutrino four-momentum is obtained by using the mass constraint

of the W boson. The twofold ambiguity is resolved by choosing the solution with the smaller |pνz |, since

the W boson is expected to be produced with small pseudorapidity [67].
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These SRs and CRs are included in a binned maximum-likelihood fit that is performed

to measure the signal cross-section. In the fit, the normalisations of the signal and the tt

(including tW ) and Z + jets backgrounds are unconstrained, while the other backgrounds

are constrained to be close to their SM prediction (see section 8).

6 Background estimation

Two classes of backgrounds are considered: processes in which three or more prompt leptons

are produced, such as diboson production or the associated production of a top-quark pair

and a boson (W , Z or H ); and processes with only two prompt leptons in the final state

(such as Z + jets, tt and tW production) and one additional non-prompt or fake lepton

that satisfies the selection criteria. Such non-prompt or fake leptons can originate from

decays of bottom or charm hadrons, from jets misidentified as electrons, leptons from kaon

or pion decays, or electrons from photon conversions.

After applying the SR event selection, diboson, ttZ , Z + jets and tt production consti-

tute the largest backgrounds. For the SR 2j1b, the dominant background source is diboson

production, mainly WZ events. Monte Carlo simulation indicates that these represent

50% of the total number of selected background events in this region, while the second

largest backgrounds, ttZ and tWZ amount to 32%. Non-prompt-lepton backgrounds are

predicted to contribute up to 14% of the events. In the SR 3j1b, ttZ is the dominant

background source, giving 45% of background events. Diboson production yields 28% of

all background events in that region.

The diboson contribution is split according to the origin of the associated jets using

generator-level information. If one of the jets contains a b- or c-hadron then it is classified

as diboson + heavy flavour (V V + HF), otherwise the event is classified as diboson + light

flavour (V V + LF).

The ttZ and tWZ backgrounds are combined, as are tt and tW . The ttW and ttH

contributions are also combined, since both are very small.

All background contributions involving prompt leptons are estimated by using MC

samples that are normalised to their respective SM predicted cross-sections calculated at

NLO in QCD. The cross-section of the ttH background includes NLO+NLL soft-gluon

resummation [68].

The estimation of the non-prompt-lepton background using MC samples is challenging.

The simulation does not accurately model the rate for prompt-lepton misidentification. In

addition, it suffers from low statistics after applying the SR event selection requirements,

leading to large fluctuations in the predicted event kinematics. The first issue is addressed

by normalising the non-prompt-lepton predictions to data in dedicated CRs. The method

developed to address the second issue is discussed in the following. Generator-level stud-

ies have shown that for tt events4 and Z + jets events passing the event selection, the

additional non-prompt lepton usually originates from a charm- or bottom-hadron decay,

4
This is also valid for the very small number of tW events. The same method of estimating their

contribution is used for both processes.
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with a smaller contribution from other sources, such as photon conversions in the case of

non-prompt electrons.

Therefore, the method used to estimate the shape of kinematic distributions for non-

prompt-lepton backgrounds with high statistical precision uses MC samples enriched in

events with semileptonic b-jet decays. Generated events are used for tt + tW and Z + jets

independently, with a preselection of two leptons instead of three leptons and two b-jets.

One of the two b-jets, which is selected at random, is replaced by a lepton. The energy and

polar angle of the replacement lepton, relative to the direction of the b-jet momentum, are

derived from a generator-level study of the polar-angle distribution versus lepton energy in

the rest frame of the b-hadron, which is assumed to carry the b-jet energy. The azimuthal

angle is generated uniformly around the b-jet direction. The lepton four-momenta are

transformed to the laboratory frame using the b-jet four-momenta. If the b-jet is within

a cone of ∆R = 0.4 around the lepton, the b-jet is removed. In the other events the b-jet

is kept and the event will ultimately not satisfy the common selection, as it contains two

b-jets. The distributions of kinematic variables from the resulting sample are compared

with those from the tt + tW and Z + jets MC samples, applying the common selection,

and are found to agree within statistical uncertainties.

7 Multivariate analysis

To improve the separation between signal and background, a neural network (NN) is used

to derive a discriminant that takes correlations among the input variables into account.

The package NeuroBayes [69, 70] is used, which combines a three-layer feed-forward NN

with a complex, robust preprocessing that orders the input variables by their separation

power [71]. The first layer of the network consists of one input node for each input variable

plus one bias node [69]. The second layer can have an arbitrary, user-defined, number

of hidden nodes. There is one output node that gives a continuous value in the interval

[−1, 1]. The NN uses Bayesian regularisation [69] during the training process to improve

its performance and stability, and to avoid overtraining. All background processes are

considered in the training and are weighted according to the expected number of events in

each SR.

Only variables that provide good separation and are well modelled are used in the

final NN. A separate network is trained for each of the SRs, with each NN starting with

the same input variables and 25 hidden nodes. The 15 input variables that give the best

separation according to NeuroBayes are used for the final NN training. The full list of the

variables used for the NN training is shown in table 2. The untagged jet is denoted jf.

When two untagged jets are selected, jf (jr) refers to the one for which the invariant mass

of this untagged jet and the b-tagged jet is the largest (smallest).

Variables related to the reconstructed Z boson help to reduce the tt background, while

top-quark-related quantities are useful in separating the signal from processes such as WZ

and Z + jets, in which no top quark is produced. For the signal, the untagged jet comes

from the spectator quark in the hard-scattering process and thus tends to have higher |η|,
helping the NN provide better separation from diboson and ttZ background events. The
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Variable Rank Definition

SR 2j1b SR 3j1b

mbjf
1 1 (Largest) invariant mass of the b-jet and the untagged jet(s)

mtop 2 2 Reconstructed top-quark mass

|η(jf)| 3 3 Absolute value of the η of the jf jet

mT(`, Emiss
T ) 4 4 Transverse mass of the W boson

b-tagging score 5 11 b-tagging score of the b-jet

HT 6 – Scalar sum of the pT of the leptons and jets in the event

q(`W ) 7 8 Electric charge of the lepton from the W -boson decay∣∣∣η(`W )
∣∣∣ 8 12 Absolute value of the η of the lepton from the W -boson

decay

pT(W ) 9 15 pT of the reconstructed W boson

pT(`W ) 10 14 pT of the lepton from the W -boson decay

m(``) 11 – Mass of the reconstructed Z boson

|η(Z )| 12 13 Absolute value of the η of the reconstructed Z boson

∆R(jf,Z ) 13 7 ∆R between the jf jet and the reconstructed Z boson

Emiss
T 14 – Missing transverse momentum

pT(jf) 15 10 pT of the jf jet

|η(jr)| – 5 Absolute value of the η of the jr jet

pT(Z ) – 6 pT of the reconstructed Z boson

pT(jr) – 9 pT of the jr jet

Table 2. Variables used as input to the neural network in SR 2j1b and SR 3j1b. The ranking of the

variables in each of the SRs is given in the 2nd and 3rd columns, respectively. The untagged jet is

denoted jf. When two untagged jets are selected, jf (jr) refers to the one for which the invariant mass

of this untagged jet and the b-tagged jet is the largest (smallest). The b-tagging score indicates

whether the b-jet would also satisfy a tighter b-tagging requirement corresponding to a working

point with an efficiency of 60% instead of 70%.

invariant mass of an untagged jet and b-jet, mbjf
, is also used as a discriminating variable

for selecting signal over background.

In terms of the separation power, the four highest-ranked variables for the two SRs

are the same. The highest-ranked variable is mbjf
. The mbjf

value is larger for topologies

with a forward jet, because of the large angular separation between the forward jet and the

central b-jet. The other three variables are the reconstructed top-quark mass, the absolute

value of the untagged jf jet pseudorapidity, and the transverse mass of the W boson.5

The post-fit distributions of the three variables with the highest discrimination power

are shown in figure 2 for the two SRs. Good agreement between data and prediction

is observed.

5
The transverse mass is calculated using the momentum of the lepton associated with the W boson,

E
miss
T and the azimuthal angle, φ, between the two: mT

(
`, E

miss
T

)
=

√
2pT(`)E

miss
T

[
1− cos ∆φ

(
`, E

miss
T

)]
.
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Figure 2. Comparison between data and prediction (“Pred.”) for the three most discriminating

NN input variables after the fit to data (“Post-Fit”) under the signal-plus-background hypothesis.

The variables displayed are: (a) and (d) the invariant mass of the b-jet and the untagged jet, (b)

and (e) the mass of the reconstructed top quark, and (c) and (f) the absolute value of the η of

the jf jet, shown in the SR 2j1b (top row) and SR 3j1b (bottom row). The jet denoted jf is the

untagged jet for which the invariant mass of this untagged jet and the b-tagged jet is the largest.

The uncertainty band includes both the statistical and systematic uncertainties as obtained by the

fit. The rightmost bin includes overflow events. The lower panels show the ratios of the data to the

prediction. The open triangles indicate points that are outside the vertical range of the figure.

8 Systematic uncertainties

Systematic uncertainties in the signal acceptance and in the normalisation of the individual

backgrounds, as well as uncertainties in the shape of the fitted distributions, are taken

into account. These are treated as correlated between the different regions, unless stated

otherwise. The uncertainties can be classified into the following categories:

Reconstruction efficiency and calibration uncertainties. Systematic uncertainties

affecting the reconstruction efficiency and energy calibration of electrons, muons and jets

are propagated through the analysis, each contributing at the percent level to the signal

and background uncertainties before the fit.
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The differences between the electron (muon) trigger, reconstruction and selection ef-

ficiencies in data and those in MC simulation are corrected for by scale factors derived

from dedicated Z → e+e− (Z → µ+µ−) enriched control samples using a tag-and-probe

method [53, 54].

The jet energy scale (JES) was derived using information from test-beam data, LHC

collision data and simulation, as described in ref. [59]. The fractional JES uncertainty

decreases with the pT of the reconstructed jet and is rather stable in η. It has various

components according to the factors it accounts for and the different steps used to compute

it. The impact of the uncertainty in the jet energy resolution is also evaluated.

The b-tagging efficiencies and mistagging rate are measured in data using the same

methods as described in refs. [62, 64, 65], with the systematic uncertainties due to b-tagging

efficiency and the mistagging rates calculated separately. The impact of the uncertainties on

the b-tagging calibration is evaluated separately for b-, c- and light-jets in the MC samples.

The uncertainty in Emiss
T due to a possible miscalibration of the soft-track component of

the Emiss
T is derived from data-MC comparisons of the pT balance between the hard and soft

Emiss
T components [66]. The uncertainty associated with the leptons and jets is propagated

from the corresponding uncertainties in the energy/momentum scales and resolutions, and

is classified together with the uncertainty associated with the corresponding objects.

Signal and background modelling. The systematic uncertainties due to MC mod-

elling of the signal and the tt and ttZ backgrounds are estimated by comparing different

MC generators and by varying the parameters associated with the renormalisation and

factorisation scales, and additional radiation.

For the signal MC simulation, the effects of the systematic uncertainty in the renor-

malisation and factorisation scales, which are set equal to each other, and in the amount of

additional radiation are calculated simultaneously and are referred to as “tZq QCD radia-

tion”. This is done by increasing the scales by a factor of two and using the “Var3cDown”

parameter of the A14 tune, and by decreasing the scales by a factor of 0.5 combined

with the A14 tune using “Var3cUp” [23]. The PDF uncertainty in the signal MC pre-

diction is also taken into account by calculating the RMS of the 100 replicas of the

NNPDF30 nlo as 0118 nf 4 PDF set following the PDF4LHC prescription [24]. The

PDF uncertainty shape variations are very small and are therefore neglected.

The effect of changing the MC generator for tt events is included as the tt NLO

matching systematic uncertainty by taking the difference between the Powheg-Box and

MadGraph5 aMC@NLO predictions. The impact of changing the parton shower and

hadronisation model is evaluated by comparing samples generated with Powheg-Box

interfaced with either Pythia 8 or Herwig 7, as described in ref. [72]. Systematic uncer-

tainties related to the scale and additional radiation are also included using the samples

described in section 3.

The effect of changing the MC generator for ttZ events is included as the ttZ modelling

systematic uncertainty by taking the difference between the MadGraph5 aMC@NLO and

Sherpa predictions. Uncertainties related to the choice of renormalisation and factorisa-

tion scales, as well as initial-state radiation are also included.
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The uncertainty associated with the modelling of diboson events is assessed by com-

paring the predictions of the Sherpa and Powheg-Box generators. This uncertainty is

treated as uncorrelated for the V V + LF and V V + HF components.

To account for the possible differences in the distribution shape of Z + jets events origi-

nating from sources other than semileptonic b-decays, a systematic uncertainty in the shape

of the Z + jets distribution is applied. The systematic uncertainty is constructed by com-

paring the distribution shapes of MC events from different sources separated according to

the origin of the fake lepton in the event (e.g. heavy-flavour decay, photon conversion, etc.).

This uncertainty is not included for tt + tW since the non-prompt-lepton contributions in

CRs and SRs have the same composition and are fully dominated by semileptonic b-decays.

Background rate uncertainty. For ttZ and tWZ productions, a cross-section uncer-

tainty of 12% is used [73], correlated among the two processes. For V V + LF production,

the normalisation uncertainty is taken to be 20% [74]. The uncertainty for V V + HF pro-

duction is 30% [75]. The diboson production uncertainties are taken to be uncorrelated.

In addition, modelling uncertainties are also used in the fit, as mentioned above. For ttW

and ttH a 15% systematic uncertainty in the normalisation is used [73], correlated among

the two processes.

For the backgrounds that are unconstrained in the fit (Z + jets and tt + tW ), an

additional normalisation uncertainty of 15% for Z + jets and 7% for tt + tW , uncorrelated

for each region, is included to allow for differences between the regions. These values

correspond to the largest statistical uncertainty in the predicted yields for the Z + jets and

tt + tW MC samples in the SRs and the relevant CRs.

Luminosity. The uncertainty in the combined 2015–2018 integrated luminosity is

1.7% [76], obtained using the LUCID-2 detector [77] for the primary luminosity measure-

ments.

Uncertainty in pileup modelling. The uncertainty in pileup modelling is accounted

for by varying the reweighting of the MC samples to the data pileup conditions using the

uncertainty on the average number of interactions per bunch crossing.

9 Results

A simultaneous binned maximum-likelihood fit of the SRs and CRs is performed using MC

distributions for both the signal and background predictions. The templates are binned

distributions of the NN output (ONN) for the SRs and ttZ CRs; mT(`, Emiss
T ) for the

diboson CR, to provide separation between diboson and Z + jets events in this region; and

the total event yield in the tt CRs. For the ttZ CR templates, the NN trained in a given

SR is evaluated on the events selected in the corresponding CR. In this case, the top-quark

reconstruction is performed using the reconstructed W boson and b-jet combination that

has the invariant mass closest to mt . To measure the tZq cross-section the normalisation

of the signal template is extracted from the fit.
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Nuisance parameters are included in the fit to account for each systematic variation

described in section 8. When variations of the shape of the distributions are not statistically

significant, only the effect on the normalisation is taken into account in the assessment of

the systematic uncertainty. To quantify the statistical significance of the fit and its resulting

power to reject the background-only hypothesis, a test statistic is constructed using a profile

likelihood ratio.

Figures 3 and 4 show the comparison between data and post-fit background and sig-

nal distributions, in the SRs and CRs, respectively. The numbers of fitted signal and

background events compared with the data are shown in table 3. The normalisation of

the unconstrained fit parameters agrees with the SM predictions. Validation regions are

defined to further check the level of agreement between data and simulation. Details are

given in appendix A.

The results of the fit yield a tZq production cross-section, including non-resonant

dilepton pairs with m
`
+
`
− > 30 GeV, of 97 ± 13 (stat.) ± 7 (syst.) fb, assuming mt =

172.5 GeV, corresponding to a total uncertainty of ±14%. The SM cross-section for this

process is 102+5
−2 fb. The statistical uncertainty of 13% in the measurement, which is domi-

nant for this result, is obtained by performing the fit after fixing all nuisance parameters to

their post-fit values. The systematic uncertainty is computed by subtracting in quadrature

the statistical component of the uncertainty from the total. The impact of the systematic

uncertainties on the tZq cross-section, broken down into major categories, is summarised

in table 4.

The statistical significance of obtaining a signal at least as large as that observed in

the data if no signal were present is calculated using the test statistic in the asymptotic

approximation [78]. Both the expected and observed significances are well above five stan-

dard deviations.

The distributions of the reconstructed pT of the top quark and of the Z boson in the

SR 2j1b for events with high ONN score (ONN > 0.4) are shown in figure 5. Good agreement

is observed between data and the prediction.
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Figure 3. Comparison between data and prediction (“Pred.”) after the fit to data (“Post-Fit”)

under the signal-plus-background hypothesis for the fitted distributions of the neural network output

ONN in the SRs (a) 2j1b and (b) 3j1b. The uncertainty band includes both the statistical and

systematic uncertainties as obtained by the fit. The lower panels show the ratios of the data to

the prediction.
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Figure 4. Comparison between data and prediction (“Pred.”) after the fit to data (“Post-Fit”)

under the signal-plus-background hypothesis for the fitted distributions in the CRs. The fitted

distributions are: (a) and (d) the mT(`, Emiss
T ) distribution in the diboson CRs, (b) and (e) the

event yields in the tt CRs, and (c) and (f) the ONN distribution in the t tZ CRs. The uncertainty

band includes both the statistical and systematic uncertainties as obtained by the fit. The lower

panels show the ratios of the data to the prediction.
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SR 2j1b CR diboson 2j0b CR tt 2j1b CR ttZ 3j2b

tZq 79 ± 11 53.1± 7.5 0.2± 0.1 12.9± 2.0

tt + tW 23.8± 4.8 13.7± 2.7 33.3± 6.3 1.7± 0.3

Z + jets 28 ± 13 181 ± 82 < 0.1 1.4± 0.6

V V + LF 19.7± 7.9 2000 ± 100 < 0.1 0.1± 0.1

V V + HF 101 ± 22 383 ± 78 0.4± 0.1 5.2± 1.7

ttZ + tWZ 96 ± 11 63.2± 7.0 4.8± 0.5 59.3± 7.1

ttH + ttW 6.5± 1.0 3.0± 0.5 12.4± 1.9 2.8± 0.5

Total 354 ± 16 2697 ± 56 51.1± 6.1 83.5± 6.4

Data 359 2703 49 92

SR 3j1b CR diboson 3j0b CR tt 3j1b CR ttZ 4j2b

tZq 43.4± 6.2 21.2± 3.3 0.2± 0.1 8.0± 1.3

tt + tW 11.0± 2.2 6.9± 1.3 15.4± 3.1 1.0± 0.2

Z + jets 12.8± 6.0 53 ± 23 < 0.1 0.4± 0.2

V V + LF 10.1± 4.2 624 ± 53 < 0.1 0.1± 0.1

V V + HF 58 ± 17 186 ± 51 0.3± 0.1 3.4± 1.0

ttZ + tWZ 132 ± 12 61.9± 6.2 3.9± 0.5 58.1± 5.3

ttH + ttW 4.7± 0.7 1.7± 0.3 8.2± 1.3 2.0± 0.3

Total 272 ± 12 955 ± 29 28.0± 3.0 72.8± 5.0

Data 259 949 31 75

Table 3. Predicted and observed yields in each of the analysis regions considered. The signal

and background predictions are shown after the fit to data. The quoted uncertainties include the

statistical and systematic uncertainties of the yields, computed taking into account correlations

among nuisance parameters and among processes.
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Uncertainty source ∆σ/σ [%]

Prompt-lepton background modelling and normalisation 3.3

Jets and Emiss
T reconstruction and calibration 2.0

Lepton reconstruction and calibration 2.0

Luminosity 1.7

Non-prompt-lepton background modelling 1.6

Pileup modelling 1.2

MC statistics 1.0

tZq modelling (QCD radiation) 0.8

tZq modelling (PDF) 0.7

Jet flavour tagging 0.4

Total systematic uncertainty 7.0

Data statistics 12.6

tt + tW and Z + jets normalisation 2.1

Total statistical uncertainty 12.9

Table 4. Impact of systematic uncertainties on the tZq cross-section, broken down into major cate-

gories. For each category the impact is calculated by performing a fit where the nuisance parameters

in the group are fixed to their best-fit values, and then subtracting the resulting uncertainty in the

parameter of interest in quadrature from the uncertainty from the nominal fit. For simplicity, the

impact is given as the average of the up and down variations. Details of the systematic uncertainties

are provided in the text. MC statistics refers to the effect of the limited size of the MC samples. The

total systematic uncertainty is a bit larger than the quadratic sum of the individual contributions

due to correlations.
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Figure 5. Comparison between data and prediction (“Pred.”) after the fit to data (“Post-Fit”)

under the signal-plus-background hypothesis for the reconstructed pT of (a) the top quark and (b)

the Z boson in the SR 2j1b, for events with ONN > 0.4. The uncertainty band includes both the

statistical and systematic uncertainties as obtained by the fit. The rightmost bin includes overflow

events. The lower panels show the ratios of the data to the prediction.
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10 Conclusion

The cross-section for tZq production, including non-resonant dilepton pairs with m
`
+
`
− >

30 GeV, is measured. The analysis uses 139 fb−1 of proton-proton collision data collected

by the ATLAS experiment at the LHC between 2015 and 2018 at a centre-of-mass energy

of 13 TeV. The result of this measurement is 97 ± 13 (stat.) ± 7 (syst.) fb, assuming a top-

quark mass of 172.5 GeV, corresponding to a total uncertainty of ±14%. This result is in

good agreement with the SM prediction of 102+5
−2 fb.
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A Validation regions

The normalisation and modelling of the four main backgrounds are constrained using CRs.

Additional diboson and tt +ttV validation regions (VRs) are used to confirm the goodness

of the background modelling. These VRs are defined so as to be as close as possible to

both the SRs and CRs.

The diboson VRs are defined using the same selection as the SRs except that a “loose”

b-tag requirement (indicated as 1Lb in the region name) is imposed that has a b-jet selection

efficiency in the range 85%–70%. The tt + ttV VRs are defined using the same selection

as the SRs except that the OSSF invariant mass requirement is inverted.

The NN training from each SR is applied to the corresponding VRs. Distributions of

the ONN in the various VRs are shown in figure 6. Any variables used in the NN training

that are undefined in the VRs (e.g. due to missing jets) are replaced by a dummy value

such that the variable is not used by NeuroBayes during the evaluation. This is also valid

for the variables that have a different range compared to the one that was used in the

training, such as the b-tagging score.
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Figure 6. Comparison between data and prediction (“Pred.”) after the fit to data (“Post-Fit”)

under the signal-plus-background hypothesis for the ONN distributions in the VRs (a) diboson

2j1Lb, (b) diboson 3j1Lb, (c) tt + t tV 2j1b and (d) tt + t tV 3j1b. The uncertainty band includes

both the statistical and systematic uncertainties as obtained by the fit. The lower panels show the

ratios of the data to the prediction. The open triangles indicate points that are outside the vertical

range of the figure.
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M.C. Lanfermann54, V.S. Lang46, J.C. Lange53, R.J. Langenberg103, A.J. Lankford171,

F. Lanni29, K. Lantzsch24, A. Lanza71a, A. Lapertosa55b,55a, S. Laplace136, J.F. Laporte145,

T. Lari69a, F. Lasagni Manghi23b,23a, M. Lassnig36, T.S. Lau63a, A. Laudrain65, A. Laurier34,

M. Lavorgna70a,70b, S.D. Lawlor94, M. Lazzaroni69a,69b, B. Le105, E. Le Guirriec102, A. Lebedev79,

M. LeBlanc7, T. LeCompte6, F. Ledroit-Guillon58, A.C.A. Lee95, C.A. Lee29, G.R. Lee17,

L. Lee59, S.C. Lee158, S. Lee79, B. Lefebvre168a, H.P. Lefebvre94, M. Lefebvre176, C. Leggett18,

K. Lehmann152, N. Lehmann182, G. Lehmann Miotto36, W.A. Leight46, A. Leisos162,w,

M.A.L. Leite81d, C.E. Leitgeb114, R. Leitner143, D. Lellouch180,*, K.J.C. Leney42, T. Lenz24,

R. Leone7, S. Leone72a, C. Leonidopoulos50, A. Leopold136, C. Leroy110, R. Les167, C.G. Lester32,
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M. Slawinska85, K. Sliwa170, R. Slovak143, V. Smakhtin180, B.H. Smart144, J. Smiesko28b,

N. Smirnov112, S.Yu. Smirnov112, Y. Smirnov112, L.N. Smirnova113,t, O. Smirnova97,

J.W. Smith53, M. Smizanska90, K. Smolek142, A. Smykiewicz85, A.A. Snesarev111, H.L. Snoek120,

I.M. Snyder132, S. Snyder29, R. Sobie176,ad, A. Soffer161, A. Søgaard50, F. Sohns53,

C.A. Solans Sanchez36, E.Yu. Soldatov112, U. Soldevila174, A.A. Solodkov123, A. Soloshenko80,

O.V. Solovyanov123, V. Solovyev138, P. Sommer149, H. Son170, W. Song144, W.Y. Song168b,

A. Sopczak142, A.L. Sopio95, F. Sopkova28b, C.L. Sotiropoulou72a,72b, S. Sottocornola71a,71b,

R. Soualah67a,67c,f, A.M. Soukharev122b,122a, D. South46, S. Spagnolo68a,68b, M. Spalla115,
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68 (a)

INFN Sezione di Lecce;
(b)

Dipartimento di Matematica e Fisica, Università del Salento, Lecce;
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Università degli Studi di Trento, Trento; Italy.
77

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck; Austria.
78

University of Iowa, Iowa City IA; United States of America.
79

Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America.
80

Joint Institute for Nuclear Research, Dubna; Russia.

– 41 –



J
H
E
P
0
7
(
2
0
2
0
)
1
2
4

81 (a)
Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de

Fora;
(b)

Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro;
(c)

Universidade

Federal de São João del Rei (UFSJ), São João del Rei;
(d)

Instituto de F́ısica, Universidade de São

Paulo, São Paulo; Brazil.
82

KEK, High Energy Accelerator Research Organization, Tsukuba; Japan.
83

Graduate School of Science, Kobe University, Kobe; Japan.
84 (a)

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science,

Krakow;
(b)

Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland.
85

Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland.
86

Faculty of Science, Kyoto University, Kyoto; Japan.
87

Kyoto University of Education, Kyoto; Japan.
88

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University,

Fukuoka ; Japan.
89

Instituto de F́ısica La Plata, Universidad Nacional de La Plata and CONICET, La Plata;

Argentina.
90

Physics Department, Lancaster University, Lancaster; United Kingdom.
91

Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.
92

Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics,
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CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.
103

Department of Physics, University of Massachusetts, Amherst MA; United States of America.
104

Department of Physics, McGill University, Montreal QC; Canada.
105

School of Physics, University of Melbourne, Victoria; Australia.
106

Department of Physics, University of Michigan, Ann Arbor MI; United States of America.
107

Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States

of America.
108

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk; Belarus.
109

Research Institute for Nuclear Problems of Byelorussian State University, Minsk; Belarus.
110

Group of Particle Physics, University of Montreal, Montreal QC; Canada.
111

P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow; Russia.
112

National Research Nuclear University MEPhI, Moscow; Russia.
113

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow;

Russia.
114

Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany.
115

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München; Germany.
116

Nagasaki Institute of Applied Science, Nagasaki; Japan.
117

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan.
118

Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States

of America.
119

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University

Nijmegen/Nikhef, Nijmegen; Netherlands.

– 42 –



J
H
E
P
0
7
(
2
0
2
0
)
1
2
4

120
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam;

Netherlands.
121

Department of Physics, Northern Illinois University, DeKalb IL; United States of America.
122 (a)

Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk;
(b)

Novosibirsk State

University Novosibirsk; Russia.
123

Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino;

Russia.
124

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research

Centre ”Kurchatov Institute”, Moscow; Russia.
125

Department of Physics, New York University, New York NY; United States of America.
126

Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan.
127

Ohio State University, Columbus OH; United States of America.
128

Faculty of Science, Okayama University, Okayama; Japan.
129

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK;

United States of America.
130

Department of Physics, Oklahoma State University, Stillwater OK; United States of America.
131
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