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ABSTRACT
The lungs are exposed to a range of environmental 
toxins (including cigarette smoke, air pollution, 
asbestos) and pathogens (bacterial, viral and fungal), 
and most respiratory diseases are associated with 
local or systemic hypoxia. All of these adverse factors 
can trigger endoplasmic reticulum (ER) stress. The ER 
is a key intracellular site for synthesis of secretory and 
membrane proteins, regulating their folding, assembly 
into complexes, transport and degradation. Accumulation 
of misfolded proteins within the lumen results in ER 
stress, which activates the unfolded protein response 
(UPR). Effectors of the UPR temporarily reduce protein 
synthesis, while enhancing degradation of misfolded 
proteins and increasing the folding capacity of the ER. If 
successful, homeostasis is restored and protein synthesis 
resumes, but if ER stress persists, cell death pathways 
are activated. ER stress and the resulting UPR occur in 
a range of pulmonary insults and the outcome plays 
an important role in many respiratory diseases. The 
UPR is triggered in the airway of patients with several 
respiratory diseases and in corresponding experimental 
models. ER stress has been implicated in the initiation 
and progression of pulmonary fibrosis, and evidence 
is accumulating suggesting that ER stress occurs in 
obstructive lung diseases (particularly in asthma), in 
pulmonary infections (some viral infections and in the 
setting of the cystic fibrosis airway) and in lung cancer. 
While a number of small molecule inhibitors have 
been used to interrogate the role of the UPR in disease 
models, many of these tools have complex and off-target 
effects, hence additional evidence (eg, from genetic 
manipulation) may be required to support conclusions 
based on the impact of such pharmacological agents. 
Aberrant activation of the UPR may be linked to disease 
pathogenesis and progression, but at present, our 
understanding of the context-specific and disease-
specific mechanisms linking these processes is 
incomplete. Despite this, the ability of the UPR to defend 
against ER stress and influence a range of respiratory 
diseases is becoming increasingly evident, and the UPR is 
therefore attracting attention as a prospective target for 
therapeutic intervention strategies.

ENDOPLASMIC RETICULUM STRESS AND THE 
UNFOLDED PROTEIN RESPONSE
The endoplasmic reticulum (ER) contains enzymes 
that modify newly synthesised proteins (eg, by 
disulphide bond formation) and chaperones to 
facilitate accurate three-dimensional folding. Exces-
sive protein load, incorrect amino acid sequence or 
conditions that perturb protein folding lead to the 
accumulation of misfolded proteins. Sensors detect 
this ‘ER stress’ and initate signalling events that 
temporarily reduce global protein synthesis while 

enhancing production of folding chaperones. This 
unfolded protein response (UPR) also promotes 
the degradation of misfolded proteins (ER-asso-
ciated protein degradation—ERAD), but if these 
compensatory mechanisms fail, the affected cells 
may undergo apoptosis.1 2

Misfolded proteins trigger the dissociation of 
the chaperone binding immunoglobulin protein 
((BiP) also known as GRP78) from three transmem-
brane ER stress sensors: inositol-requiring kinase/
endonuclease (IRE)1, protein kinase RNA-like ER 
kinase (PERK) and activating transcription factor 
(ATF)6, each of which initiates an arm of the UPR 
(figure  1).1 In addition, misfolded proteins may 
interact directly with IRE1 to trigger its activation, 

Figure 1  The unfolded protein response. A range of 
respiratory-relevant factors perturb protein homeostasis 
to activate endoplasmic reticulum (ER) stress sensors 
activating transcription factor (ATF) 6, inositol-requiring 
kinase/endonuclease (IRE) 1, and protein kinase RNA-like 
ER kinase (PERK). Activation of UPR signalling initiates 
downstream processes including protein and mRNA 
degradation via ER-associated protein degradation 
(ERAD) and regulated IRE1-dependent mRNA decay 
(RIDD), inhibition of global protein synthesis, upregulation 
of folding chaperones. If normal protein folding is not 
restored, apoptosis, inflammatory signalling and fibrotic 
responses may result, driving disease progression in a 
variety of conditions. CHOP, CCAAT homologous protein; 
eIF2α, eukaryotic translation initiation factor 2 alpha; 
PPP1, protein phosphatase 1; PM, particulate matter; 
ROS, reactive oxygen species; TLR, toll-like receptor; UPR, 
unfolded protein response, XBP, X-box binding protein.

    1Bradley KL, et al. Thorax 2020;0:1–8. doi:10.1136/thoraxjnl-2019-213738
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with BiP acting as a ‘sensitivity adjustor’ for different stressors.3 4 
Protein synthesis is reduced by (a) IRE1-mediated cleavage of 
mRNAs (regulated IRE1-dependent mRNA decay—RIDD) and 
(b) PERK phosphorylation of the translation initiation factor 
eukaryotic translation initiation factor 2 alpha (eIF2α), which 
inhibits translation of most proteins.1

Each ER stress sensor initiates the action of a transcription 
factor to induce UPR-dependent genes. IRE1 promotes splicing 
of X-box binding protein 1 (XBP1) mRNA to yield the active 
transcription factor XBP1s. ATF6 is cleaved to an active form 
in the Golgi. Active XBP1s and ATF6 localise to the nucleus and 
increase the transcription of UPR chaperone proteins such as 
BiP to improve folding capacity and components of the ERAD 
machinery to degrade misfolded proteins.1 Finally, phosphory-
lation of eIF2α by PERK paradoxically enhances the translation 
of some mRNAs, including the transcription factor ATF4 and 
its target CCAAT/enhancer-binding protein-homologous protein 
(CHOP).1 2 Together, ATF4 and CHOP induce protein phos-
phatase 1 regulatory subunit 15A (PPP1R15A), also known as 
GADD34, which selectively dephosphorylates eIF2α, providing 
a negative feedback loop.1 Because the recovery of translation 
mediated by PPP1R15A contributes to cell death during chronic 
ER stress, deletion of either CHOP or PPP1R15A renders cells 
more resistent to prolonged ER stress.5 The precise mechanisms 
by which ER stress initates apoptosis are incompletely under-
stood; ER stress can trigger autophagy and alter mitochon-
drial bioenergetics to impact on cell fate in ways that appear 
to be context and cell-type specific.6–9 It is important to note 
that phosphorylation of eIF2α occurs in response to a range of 
cellular stresses including iron or amino acid deficiency.10 The 
downstream pathways involving ATF4 have therefore been 
termed the integrated stress response (ISR) and do not always 
equate to ER stress.10

ER STRESS TRIGGERS RELEVANT TO RESPIRATORY DISEASE
Several inhaled triggers can activate local ER stress/UPR signal-
ling. In some diseases UPR activation has been demonstrated 
in patient-derived lung tissue, with other studies undertaken in 
vitro or in animal models. Cell culture may not always fully reca-
pitulate the multicellular airway environment, and species differ-
ences do exist. These factors may explain variation between 
studies and are flagged where relevant.

Cigarette smoke, particulate matter and asbestos
A range of inhaled agents provoke ER stress in airway epithelia 
and other relevant cells such as alveolar macrophages. Cigarette 
smoke (CS) contributes to the pathogenesis of COPD, lung 
cancer and possibly asthma and pulmonary fibrosis. Acute acti-
vation of the UPR by CS has been reported in airway epithelial 
cell lines and primary rodent and human bronchial epithelial 
cells.11–13 However, UPR-associated protein expression was 
not increased in mice subjected to chronic CS exposure or in 
airway epithelial cells from smokers vs non-smokers, but was 
increased in cells from patients with COPD, perhaps suggesting 
increased susceptibility to CS-induced ER stress in this patient 
group.14–17 CS may synergise with other environmental stressors, 
for example, prior CS-exposure increased UPR activation in the 
lungs of mice infected with respiratory syncytial virus (RSV).17

Mice exposed to fine particulate matter (PM2.5) displayed UPR 
activation in lung and liver, with similar effects seen in vitro in a 
PM2.5-treated macrophage cell line.18 Interestingly, the observed 
effects appeared to be mediated predominantly by the PERK-
eIF2α axis. Although IRE1 was activated on PM2.5 exposure with 

increased RIDD, splicing of XBP1 mRNA was suppressed, an 
effect mirrored in human bronchial epithelial cells exposed to 
CS.13

Asbestos inhalation is linked to pulmonary fibrosis, mesothe-
lioma and lung cancer. Treatment of the lung adenocarcinoma-
derived A549 cell line and rat primary airway epithelial cells 
with asbestos increased expression of IRE1 and XBP1s mRNAs, 
and to a lesser extent proteins.19 However, direct detection of 
IRE1 and PERK protein is challenging, and the minor changes 
reported should be interpreted with caution. Of interest, 
increased expression of CHOP in human mesothelioma tissue 
was an independent predictor of poor survival, although the 
mechanism of this association is uncertain.20

These environmental agents simultaneously induce multiple 
cellular stress pathways, including ER stress and oxidative 
stress.18 19 21 ER stress and oxidative stress can interact, for 
example, reduced expression of the antioxidant enzyme gluta-
thione peroxidase-1 in COPD airway cells was associated with an 
increased UPR and its restoration ameliorated UPR induction.17 
Oxidation of redox-sensitive ER chaperones such as protein 
disulphide isomerase (PDI) represents a potential mechanism by 
which oxidative stress might promote ER stress.22

Bacterial, fungal and viral pathogens
UPR activation is induced by several pathogens relevant to respi-
ratory disease including cystic fibrosis, asthma and COPD.

Toll-like receptor (TLR) activation and bacterial infection can 
trigger the UPR and may do so selectively. For example, TLR2 
and TLR4 specifically activated IRE1 to promote inflammatory 
mediator release.23 24 Respiratory pathogens may also subvert 
the UPR; Legionella pneumophila, an intracellular pathogen that 
replicates in an ER-associated compartment, selectively blocks 
activation of the IRE1 pathway.25 Secreted bacterial toxins can 
modulate the UPR; for example, pyocyanin (from Pseudomonas 
aeruginosa) triggered this response in human primary airway 
cells, evidenced by XBP1 splicing and induction of BiP.26 It is 
worth noting that induction of PPP1R15A, a protective response 
in this study, was more dependent on the ISR than PERK, high-
lighting the importance of fully dissecting stress-sensitive path-
ways and not confusing ISR activation with the UPR.

Aspergillus fumigatus is a fungal pathogen that interacts 
variably with airway defences, leading to a range of outcomes 
including allergic bronchopulmonary aspergillosis (ABPA). 
BiP expression was increased in lung tissue from patients 
with ABPA.27 Administration of A. fumigatus to mice induced 
pulmonary UPR and airway hyperresponsiveness. The mecha-
nism(s) remain to be fully elucidated but involved generation 
of mitochondrial reactive oxygen species (ROS) and disruption 
of PDI function, reminiscent of the findings in CS-induced ER 
stress.22 27 28

Many viruses induce ER stress including RSV, influenza A 
virus (IAV), coxsackievirus A16, SARS-CoV-1 and SARS-CoV-2 
(the causes of SARS and COVID-19 respectively).29–33 The 
mechanism of viral-induced ER stress may relate to prolific viral 
protein translation overwhelming protein folding capacity.26 34 
IAV was reported to activate IRE1 with little activation of PERK 
or ATF6, leading to inflammation and apoptosis of primary 
human bronchial epithelial cells.31 It is worth noting, however, 
that UPR sensors show differing time courses of activation and 
inactivation. In this study, PPP1R15A was induced, raising the 
possibility that transient PERK activation might have been 
missed. Treatment with tauroursodeoxycholic acid (TUDCA), 
a compound with complex effects including the amelioration 
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of ER stress or with 3,5-dibromosalicylaldehyde (a putative 
IRE1 inhibitor) significantly reduced viral replication. While 
such observations raise the possibility that enhanced ER stress 
promotes IAV replication, they should be strengthened by 
appropriate genetic knockout experiments. Picornaviruses, such 
as rhinovirus, might also benefit from activation of IRE1, since 
this may promote autophagy and picornaviruses use autopha-
gosomes as sites of RNA replication.35 In contrast, while RSV 
was also reported to induce non-canonical activation of the 
UPR with activation of IRE1 and ATF6 but not PERK, IRE1 
suppressed RSV replication, suggesting that inhibiting this arm 
of UPR could be detrimental in RSV infection.36

Thus infection may activate the UPR pathways in a pathogen-
specific fashion, and host responses may counter pathogen 
survival/replication or be suborned to promote it.

Hypoxia
Systemic hypoxia results from any severe lung disease, and 
profound tissue hypoxia characterises inflamed or poorly vascu-
larised tissues; examples include COPD and CF airways, or the 
tumour microenvironment. Links between hypoxia and UPR 
have been extensively investigated, particularly in the context 
of cancer.37 While hypoxia triggers the UPR in a range of targets 
including airway epithelial cells, the mechanism(s) by which this 
occurs is/are incompletely understood.38 ROS generated in the 
context of hypoxia may modulate UPR activation by direct or 
indirect effects on BiP and by impaired disulphide bond forma-
tion.39 40 The redox-sensitive chaperone PDI becomes reduced 
during protein folding; it recovers by transferring electrons 
to ERO1 (ER oxidoreductin), which then requires molecular 
oxygen to become reoxidised and regain function.41 Further-
more, ERO1 is a hypoxia-inducible factor (HIF) target, hence 
hypoxia might regulate disulphide bond formation by multiple 
routes.42 Several pathways thus exist by which hypoxia may 
induce ER stress and UPR, and compensatory pathways attempt 
to mitigate their impact and restore cellular homeostasis.

These factors together with host-specific predispositions may 
provoke ER stress/UPR in a disease-specific context. Exploita-
tion of these pathways is increasingly viewed as a therapeutic 
possibility in treatment-recalcitrant conditions. A fuller under-
standing of the role of UPR in respiratory diseases is thus an 
important research topic.

THE UPR AND PULMONARY FIBROSIS
Idiopathic pulmonary fibrosis (IPF) is a scarring disease, char-
acterised histologically by fibroblastic foci. Despite antifibrotic 
therapies, prognosis remains poor.43 The biological mechanisms 
that drive this condition remain unclear; the study of rare familial 
cases has suggested ER stress plays an important role (figure 2).

Alveolar type II (AT2) cells secrete surfactant; mutations in 
surfactant protein C (SFTPC) have been associated with familial 
IPF and profound UPR activation.44 Many of these mutations 
disrupt the SFTPC BRICHOS domain, which acts as a self-
chaperone to facilitate SFTPC folding.45 Impaired SFTPC 
folding can lead to protein aggregation and activation of all arms 
of the UPR.46 In mouse models, these mutations either disrupt 
lung morphogenesis to drive fibrosis directly or sensitise the lung 
to ‘second hits’ that induce pulmonary fibrosis.47 48

Host factors have also been associated with IPF in genome-wide 
association studies (GWAS), and UPR provides a potential link 
between these associations and disease. The MUC5B promoter 
variant rs35705950 (associated with increased MUC5B (mucin 
5B) expression) is the strongest population-wide genetic risk 

factor associated with IPF.49 XBP1s is coexpressed with MUC5B 
in IPF lungs, induces expression of MUC5B in the distal bron-
chiolar epithelia and preferentially activates the rs35705950 
promoter variant, providing a potential positive feedback mech-
anism linking UPR-induced expression of MUC5B and IPF.50 
Precisely how MUC5B might promote IPF remains uncertain 
and warrants further investigation.

ER stress is also implicated in sporadic IPF. Deletion of BiP 
from murine AT2 cells predictably not only resulted in activation 
of the UPR but also led to spontaneous age-related pulmonary 
fibrosis.51 Markers of UPR are present in fibrotic lungs from 
patients with sporadic as well as genetically determined IPF.52–54 
Upregulation and activation of ATF6, prominent expres-
sion of ATF4 and CHOP and activation of the IRE1 pathway 
were observed in alveolar epithelial cells in fibroblastic foci; 
these markers colocalised with cleaved caspase 3 and TUNEL 
(terminal deoxynucleotidyl transferase dUTP nick end labeling) 
staining, suggesting UPR is linked to apoptosis in this setting.52

Epithelial-mesenchymal transition (EMT) has also been impli-
cated in IPF pathogenesis with several studies describing ER 
stress-induced EMT; upregulation of UPR markers XBP1s and 
BiP and myofibroblast marker α-smooth muscle actin, coincided 
with a reduction in epithelial cell markers including zonula 
occludens-1 and E-cadherin and a fibroblast-like morphology.55 56

Additional links between UPR and pulmonary fibrosis exist. 
As noted, CS and particulates activate the UPR; smoking is a 
risk factor for IPF and ambient particulates are associated with 
accelerated decline in this disease.57 Hypoxia-related signalling 
may exacerbate ER stress locally: HIF-1α and CHOP proteins 
were detected together in alveolar epithelium in patients with 
IPF lung biopsies, in murine bleomycin-induced pulmonary 
fibrosis and in epithelial cells from rats exposed to acute hypoxia 
to initiate fibrosis.58 As noted above, viral infections can induce 
ER stress, and viral infections may initiate IPF exacerbations. 
Both herpes viral DNA and antigens have been associated with 
IPF lung tissue, the latter colocalised with markers of activated 
UPR.59

Although most studies have focused on IPF, UPR activation 
has been reported in other pulmonary fibrotic conditions. For 
example, markers of UPR activation were found in the proteome 
of lungs from patients with fibrotic nonspecific interstitial pneu-
monia (NSIP).52 UPR was also detected in macrophages exposed 

Figure 2  ER stress and the unfolded protein response in pulmonary 
fibrotic lung disease. In pulmonary fibrosis, triggers such as cigarette 
smoke, asbestos, particulate matter or viruses may trigger ER stress in 
a genetically predisposed (eg, surfactant protein mutations, MUC5B 
polymorphisms) host. This is associated with apoptosis and epithelial 
mesenchymal transition (EMT). Tissue hypoxia may further promote ER 
stress in affected areas. ER, endoplasmic reticulum; MUC5B, mucin 5B; 
UPR, unfolded protein response.
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to asbestos in vitro, and in the alveolar macrophages of mice 
exposed to asbestos and humans with asbestosis.60 In a mouse 
model of amiodarone-induced pulmonary fibrosis, surfactant 
accumulation was observed together with induction of ER-stress 
and epithelial apoptosis.61 Although these reports are limited in 
number, they suggest that ER-stress and UPR may be a common 
pathway in the induction and/or progression of fibrotic lung 
disease including but not limited to IPF.

THE UPR AND ASTHMA
GWAS have linked ORMDL3 with asthma. ORMDL3 regulates 
both ceramide biosynthesis and UPR activation; these pathways 
could interact to promote changes in airway physiology during 
allergic responses.62 In mice, ORMDL3 is an allergen-inducible 
airway epithelial protein, and ORMDL3 knockout mice were 
protected from Alternaria-induced allergic airway disease, with 
decreased activation of ATF6/XBP1.63

Overexpression of ORMDL3 selectively activated ATF6 in 
A549 cells and increased expression of phosphorylated eIF2α 
and BiP in HEK293 cells, contrasting with depletion of these 
markers by treatment with ORMDL3 siRNA.64 65 However, in 
a separate study, knockdown of ORMDL3 did not affect phos-
phorylated eIF2α, CHOP or spliced XBP1 expression in A549 
or 1HAE airway epithelial cells.66 Effects may thus be cell-type 
or species-specific or relate to over-expression and remain to be 
investigated in primary asthmatic airway cells.

Murine models have suggested a role for UPR in asthma 
pathogenesis, with upregulation of UPR markers (BiP, CHOP, 
ATF6, XBP1s and phosphorylated eIF2α) in lung tissue from 
ovalbumin (OVA)-sensitised or OVA-LPS (lipopolysaccharide)-
sensitised mice.67 68 Induction of BiP and CHOP has been shown 
in blood monocytes and alveolar macrophages from human 
asthmatics.67 ER stress has also been associated with the expres-
sion of interferon-stimulated genes and type 2 inflammation in 
airway epithelial brushings from mild asthma.69 Asthma exacer-
bations are often driven by respiratory viruses known to induce 
ER stress, which could lead to repeated cycles of UPR activa-
tion, and thus contribute to sustained inflammation and airway 
remodelling. In OVA-induced ‘asthma’ in mice, pretreatment 
with the compound 4-phenylbutryic acid (4-PBA, which has a 
range of actions that include alleviation of ER stress, described 
below) led to a significant reduction of UPR markers BiP and 
CHOP, with concomitant reduction in airway inflammation and 
bronchial hyper-responsiveness.67 68 Importantly, established 
asthmatic features were also attenuated by 4-PBA administered 
after completion of OVA challenge.67 House dust mite (HDM) 
models have also demonstrated induction of UPR,70 and ER 
stress markers were upregulated in mice in vivo and human 
bronchial and nasal epithelial cells challenged with HDM in 
vitro.71 72 As noted above, inhaled A. fumigatus has been linked 
to UPR activation and ABPA in mouse and human studies.22 27 28

Overall, these studies imply a link between ER stress in 
asthma and suggest that aberrant UPR activation may contribute 
to asthma pathogenesis or progression in some settings (see 
figure 3).

THE UPR AND COPD
Despite extensive GWAS and sequencing studies in COPD, no 
clear genetic links have emerged with ER stress or UPR. CS 
can induce ER stress in airway epithelial cells, but this does not 
equate to a mechanistic link, and multiple cell stress pathways are 
initiated by CS. Min and colleagues reported increased expres-
sion of phosphorylated eIF2α and CHOP by immunoblotting in 

the lungs of patients with COPD, although the IRE1 and ATF6 
arms of the UPR were not investigated.73 However, a separate 
study detected no increase in ER stress markers (including ATF4, 
ATF6 and CHOP) quantified by western blotting and PCR in the 
lungs of patients with COPD.54 These differences might reflect 
differing methodologies or patient heterogeneity, but additional 
studies are needed to clarify such discrepancies. Hassan and 
colleagues reported that decreased expression of miR199a-5p 
underpinned increased expression of BiP, ATF6 and XBP1s in 
patient with COPD monocytes, an intriguing finding but with 
uncertain significance to lung pathology.74

Mouse models have also suggested possible roles for ER 
stress in emphysema, although how such models recapitulate 
human disease is debatable. 4-PBA was partially protective in 
a mouse model of CS-induced emphysema, and mice treated 
with the heme-scavenging protein haemopexin developed less 
ER stress, airway fibrosis and less emphysema than control mice 
in response to inhalation of bromine.15 75 Studying the develop-
ment of COPD in mice with targeted mutations in UPR genes in 
such models should yield more definitive results.

Thus, overall, while UPR may be activated in the context 
of COPD, the contribution of UPR to COPD pathogenesis is 
currently unclear.

THE UPR AND CYSTIC FIBROSIS
Loss-of-function mutations affecting the cystic fibrosis trans-
membrane conductance regulator (CFTR) cause CF. Class II 
CFTR mutations including F508del (present in approximately 
90% of patients with CF) lead to protein misfolding. Misfolded 
F508del-CFTR fails ER quality control and is targeted for prote-
asomal degradation, with reduced cell membrane delivery.76 
However, most CFTR mutations (including F508del) reside 
in cytoplasmic domains, and hence would not be expected to 
induce the UPR. Studies of the role of UPR in CF airway epithelia 
are complicated by the use of overexpressed versus endogenous 
protein, primary cells versus cell lines and the presence of airway 
infection.

Overexpression of F508del activates UPR, with increased 
expression of ATF6 and BiP; however, protein overexpression 
per se may induce ER stress and this finding is non-specific.77 78 
Atypical activation of UPR with enhanced XBP1 splicing was 
reported in CF lung tissue and macrophages versus non-CF 

Figure 3  ER stress and the unfolded protein response in asthma. In 
asthma, triggers such as house dust mite, viral or fungal pathogens, and 
cigarette smoke may trigger ER stress in a genetically predisposed (eg, 
ORMDL3 polymorphisms) host. This is associated with inflammation, 
apoptosis, mucus hypersecretion and leads to airway reactivity and 
remodelling. ER, endoplasmic reticulum; UPR, unfolded protein 
response.
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samples, but the airway cell work supporting this observation 
lacked appropriate control cells.79 Ribeiro and colleagues also 
demonstrated increased levels of XBP1s in native CF compared 
with normal human airway epithelia, with enhanced secretion of 
inflammatory mediators; importantly, they found that infected 
CF secretions induced equivalent XBP1 splicing and increased BiP 
expression, demonstrating that induction of UPR in CF epithelia 
is likely secondary to infection rather than CFTR misfolding.80 81 
Similar findings were reported in alveolar macrophages from 
patients with CF versus healthy controls, with enhanced XBP1 
splicing suggested to be secondary to the inflammatory milieu 
rather than to CFTR misfolding.82 Enhanced activation of the 
IRE1α-XBP1 pathway in CF monocytes and macrophages was 
associated with increased glycolysis and mitochondrial function, 
plus exaggerated TNF (tumour necrosis factor) and IL-6 produc-
tion, suggesting relevant functional consequences.83

Thus, ER stress may occur in the context of CF and have proin-
flammatory actions, however, it likely reflects airway infection 
rather than a primary effect of protein misfolding (see figure 4).

THE UPR AND LUNG CANCER
The role of ER stress and the UPR is well established in a range 
of cancers. Solid tumours are oxygen‐deprived and nutrient‐
deprived environments, factors that will promote ER stress. 
Increased expression of BiP, phosphorylated eIF2α and XBP1s 
has been demonstrated in several lung cancer studies.13 84 85 
Ribosome-binding protein 1 (RRBP1) is highly expressed in lung 
cancer tissue and may help render cancer cells tolerant of 

ER-stressful environments by enhancing BiP expression.84–86Ac-
cordingly, knockdown of RRBP1 lowered BiP levels and reduced 
the tumorogenic potential of lung cancer xenografts, regulating 
apoptosis via activation of the p38/JNK pathway .87

Several studies implicating UPR in lung cancer treatment-
resistance have been performed in the A549 lung adenocarci-
noma cell line; additional evidence is required to confirm that 
these effects are clinically relevant. Some researchers have 
employed models with greater disease relevance. Using patient-
derived xenografts, KRAS-mutant lung cancer cells resistant to 
pemetrexed and trametinib were found to be highly dependent 
on UPR for survival, with a selective vulnerability to drug combi-
nations including targeting the UPR.88 A recent paper impli-
cated a novel post-translational pathway in linking ER stress to 
treatment resistance: deletion of the ufmoylation pathway trig-
gered a protective UPR in lung cancer ‘persister cells’ tolerant 
to tyrosine kinase inhibitors, associated with protumorigenic 
inflammatory signalling. Thus, post-translational modifications 
may regulate UPR signalling independent of protein expression 
and may warrant further investigation in lung cancer and other 
conditions.89 90

The role of the UPR in lung cancer is currently unclear 
but understanding is increasing and may for example enable 
‘synthetic lethality’ approaches to target drug-resistant targets.

UPR AND POTENTIAL THERAPUTIC INTERVENTION IN 
RESPIRATORY DISEASE
While blocking the UPR should be approached with caution 
due to the homeostatic nature of this system, uncovering the 
complexity and individuality of UPR activation in different 
disease states has generated interest in targeting specific UPR 
components, developing ‘chemical chaperones’ and utilising 
modulators of ERAD (see table 1).1

Evidence that airway diseases such as asthma and emphy-
sema respond to pharmacological manipulation of the UPR 
is limited to interventions in animal and cellular models. For 
example, salubrinal (which promotes phosphorylation of eIF2α 
by poorly understood mechanisms) protected cultured airway 
epithelial cells from CS-induced apoptosis and repressed CS‐
induced airway epithelial ER stress in a mouse model, with the 
mice protected from the development of emphysema.73 75 91 92 
Mammalian target of rapamycin (mTOR) inhibitor rapamycin 
prevented ER stress-induced apoptosis through activation of 
autophagy and removal of misfolded proteins in vitro.93 Medi-
ators downstream of mTOR have been used to modulate UPR. 
For example, AMP-activated protein kinase (AMPK) activators, 
including metformin, reduced palmitate-induced and LDL-
induced ER stress in a diabetes disease context.94 Peroxisome 
proliferator-activated receptor agonists have also been shown 

Figure 4  ER stress and the unfolded protein response in cystic 
fibrosis. In cystic fibrosis, pulmonary infection leads to ER stress and 
UPR activation in airway epithelial cells and macrophages, promoting 
inflammatory injury and hence further increasing the potential for 
infection. ER, endoplasmic reticulum; UPR, unfolded protein response. 
TNF, tumour necrosis factor; IL6, interleukin 6.

Table 1  Therapeutic intervention of UPR and ER stress

Therapeutic agent Disease Experimental model References

Salubrinal COPD, asthma In vitro (HBE, COPD HBE, BEAS-2B, HEK cells); in vivo (murine, ferret) 73 75 91 92

mTOR inhibitor (rapamycin) – In vitro (MEF cells) 93

AMPK activators (metformin) Diabetes, metabolic diseases In vivo (murine) 94

PPAR agonists Metabolic diseases In vitro (HepG2); in vivo (murine) 94

PERK and IRE1 inhibitors Cancer In vitro (C6 cells) 94

Chemical chaperones (4-PBA,TUDCA) Pulmonary fibrosis, asthma In vivo (murine); ex vivo (BALF) 67 68 95–97

BALF, bronchoalveolar lavage fluid; BEAS-2B, bronchial epithelial cell line; C6, glioma cell line; ER, endoplasmic reticulum; HBE, primary human bronchial epithelial cells; HEK, 
human embryonic kidney; HepG2, liver hepatocellular carcinoma cell line; IRE, inositol-requiring enzyme; MEF, mouse embryonic fibroblasts; mTOR, mammalian target of 
rapamycin; PBA, phenylbutryic acid; PPAR, peroxisome proliferator-activated receptor; TUDCA, tauroursodeoxycholic acid; UPR, unfolded protein response.
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to inhibit palmitate-induced UPR in vivo and in vitro.94 In 
cancer, a range of UPR modulating factors that target ER stress 
proteins has been described, including PERK and IRE1 inhib-
itors.94 Chemical chaperones such as 4‐PBA and TUDCA have 
been used widely in animal models, for example, ameliorating 
ER stress, inflammation and fibrosis in bleomycin-induced 
pulmonary fibrosis and attenuating ER stress and manifesta-
tions of allergen-induced ‘asthma’ in mouse models.67 68 95–97 
A note of caution should be sounded, as the term ‘chemical 
chaperones’ is often used for small molecules such as 4-PBA 
and TUDCA, but there is little evidence they function through 
direct interaction with misfolded proteins. Rather, they appear 
to affect a complex repertoire of cellular processes, whose 
relevance to ER stress is uncertain. For example, 4-PBA has 
also been shown to modulate cargo sorting into COPII vesi-
cles and to reduce nuclear translocation of NF-κB.67 98 TUDCA 
and another conjugated bile acid, alanyl β-muricholic acid, 
have recently been suggested to bind ATF6 to inhibit HDM-
induced UPR and allergic airway disease, but bile acids have 
other functions, notably altering gene transcription via recep-
tors such as the nuclear farnesoid X receptor.99 Inhibitors of ER 
stress sensors such as PERK are being developed and may also 
have off-target effects.100 Ongoing initiatives to develop more 
specific compounds should both enhance our understanding of 
the consequences of ER stress and UPR and offer more targeted 
therapeutic opportunities.

CONCLUSIONS
Many respiratory insults are associated with ER stress, but 
causality cannot be assumed. There is reasonable evidence for a 
causal role of ER stress and the UPR in a restricted range of lung 
diseases, such as familial and perhaps sporadic IPF, infection in 
CF and treatment-resistance in certain lung cancers. However, 
further work is required to improve our understanding of its 
role in conditions such as asthma, while evidence for a role in 
COPD is currently limited to correlative studies. Genetic models 
may yield more definitive mechanistic insights than use of poorly 
characterised small molecule inhibitors. A better understanding 
of how such compounds restrain cellular stress responses may 
facilitate the development of treatments targeting UPR alone, or 
individual UPR components that are dysfunctional or hijacked 
in specific respiratory disease states. The therapeutic potential 
of the UPR is thus an exciting prospect for the future, but more 
work is required before this promise can be fulfilled.
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