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Abstract: Expression quantitative trait loci (eQTL) can provide a link between disease susceptibility 

variants discovered by genetic association studies and biology. To date, eQTL mapping studies have 

been primarily conducted in healthy individuals from population-based cohorts. Genetic effects 

have been known to be context-specific and vary with changing environmental stimuli. We 

conducted a transcriptome- and genome-wide eQTL mapping study in a cohort of patients with 

idiopathic or heritable pulmonary arterial hypertension (PAH) using RNA sequencing (RNAseq) 

data from whole blood. We sought confirmation from three published population-based eQTL 

studies, including the GTEx Project, and followed up potentially novel eQTL not observed in the 

general population. In total, we identified 2314 eQTL of which 90% were cis-acting and 75% were 

confirmed by at least one of the published studies. While we observed a higher GWAS trait 

colocalization rate among confirmed eQTL, colocalisation rate of novel eQTL reported for lung-

related phenotypes was twice as high as that of confirmed eQTL. Functional enrichment analysis of 

genes with novel eQTL in PAH highlighted immune-related processes, a suspected contributor to 

PAH. These potentially novel eQTL specific to or active in PAH could be useful in understanding 

genetic risk factors for other diseases that share common mechanisms with PAH. 

Keywords: expression quantitative trait locus; eQTL; pulmonary arterial hypertension; blood; 

genetics 
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1. Introduction 

The relationship between genomic variability, disease risk and endophenotypes has been a focus 

of many research groups with access to suitable disease cohorts. This has been aided by the increasing 

affordability of genotyping and sequencing methodologies. Interpretation of the mechanisms behind 

the effects of genetic variants discovered to associate with phenotypes poses a challenge as many are 

located in the non-coding space of the genome [1]. Non-coding variants exert no direct effect on 

protein structure, making the biological link to the disease or phenotype more difficult to discern. 

Variants in the non-coding space may instead exert their effect by influencing gene expression [1]. 

Characterising the genomic control of gene expression can offer a handle on understanding the role 

of disease-associated variants by linking them to disrupted pathways [2]. Variants associated with 

the expression of a gene, commonly called expression quantitative trait loci (eQTL), have been 

described, primarily in population-based studies [3–5]. 

Differential gene expression analyses comparing cases and controls may be useful for diagnostic 

and/or prognostic purposes or in identifying genes, which may have a causal role in developing the 

disease [6–8]. In the case of the latter, distinguishing between differentially expressed genes that are 

secondary to the disease and those that contribute to disease development is a significant challenge. 

If the frequency of one or several eQTL for a differentially expressed gene is also different between 

cases and controls, a causal association may be established, given the assumptions of causal inference 

[9] are met. In brief, for a causal relationship to be established between a gene product proxied by an 

eQTL and a disease, the eQTL has to be independent of the confounders of the association between 

the gene and the disease, and it has to have no direct effect on the disease via a pathway that does 

not involve the gene being instrumented. 

Currently, one of the main limiting factors for causal inference analysis using genomic data is 

the number of known eQTL. Certain eQTL effects, which go undetected in healthy cohorts commonly 

used for eQTL mapping, may be unmasked by disease and development. The diagnostic value of 

gene expression profiles, i.e., that they can be used to distinguish affected individuals from non-

affected ones, underlines the uniqueness of the set of genes expressed in a disease state [6,7]. 

Differential gene expression in diverse states (carcinogenesis, inflammation, etc.) or at diverse stages 

(such as stages of embryonic development) becomes evident when comparing the gene correlation 

matrices of a biological system under multiple different conditions. Such techniques are called 

‘differential co-expression networks’ [10] and have been used successfully to identify genes and gene 

sets that are important in the state or stage under investigation in a network of genes [11,12]. By 

principle, functionally involved nodes or modules rewire more frequently than uninvolved ones in 

states they create and/or maintain and, therefore, can be identified [13]. 

With the exception of housekeeping genes, the majority of genes in the human transcriptome 

are tissue-specific. Therefore, tissue selection for gene expression studies of disease is of importance. 

The lung is the most relevant tissue in the pathogenesis of pulmonary arterial hypertension (PAH), a 

disease in which pulmonary vascular remodelling drives right ventricular failure. Whole blood also 

has relevance to PAH and might capture more than just systemic effects given the immune 

component of this disease. The role of inflammation in PAH has been extensively studied, based on 

the observation that inflammatory cells infiltrate the remodeled vascular wall [14]. Since PAH can be 

a complication of many inflammatory diseases, including connective tissue disease, thyroiditis, 

scleroderma, systemic lupus erythematosus, human immunodeficiency virus infection and 

schistosomiasis, it might be reasonable to suspect that inflammatory processes, even in the absence 

of a diagnosed comorbidity, contribute to disease development and maintenance. Another advantage 

of using whole blood instead of lung tissue is the non-invasiveness of sampling and availability. Lung 

samples are often only obtainable from the explanted organ after lung transplantation or from post-

mortem tissues. Appropriate control samples for differential gene expression analyses are equally 

hard to come by. 

This study aimed to characterise the genetic variability of transcriptome-wide gene expression 

in whole blood from 276 consecutively sampled patients with PAH and defined potentially novel 
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eQTL active in this disease state. These potentially disease-specific eQTL could be useful in 

elucidating known genotype-phenotype associations or causal analyses. 

2. Materials and Methods 

2.1. Study Participants and Sample Processing 

A total of 276 patients with idiopathic, heritable or drug-induced PAH diagnosed following 

international guidelines [15] were recruited from expert centres across the UK with whole-genome 

sequence conducted as part of the UK National Institute for Health Research BioResource (NIHRBR) 

study [16,17]. Transcriptome profiling through RNAseq was completed as part of the PAH cohort 

study [18]. Demographic characteristics and white blood cell counts of the individuals in this study 

are shown in Supplementary Table S1. 

2.2. Gene Expression Data 

RNA sequencing and transcript abundance estimation procedures are described in the 

Supplementary Appendix. White blood cell composition was quantified using quanTIseq, a novel 

deconvolution algorithm [19]. Predicted white blood cell fractions from quanTIseq correlated with 

clinical white cell fractions available in a subset of PAH patients (Spearman correlation = 0.44–0.73). 

Well-detected transcripts with a minimum of two reads in at least 95% of samples (n = 26,050) were 

taken forward to the eQTL analyses. 

2.3. Genetic Data 

Whole-genome sequence Hg19-aligned data were available from the NIHRBR study described 

in detail elsewhere [16]. Genetic variants with a minimum minor allele frequency of 5% were 

extracted from the NIHRBR variant call format (VCF) files and further filtered for variants called in 

at least 95% of the samples and had a p-value greater than 10−5 for Hardy Weinberg equilibrium, 

leaving a total of 7,362,566 variants for eQTL mapping. Software tools used in the eQTL mapping 

pipeline included PLINKv1.90 [20] for data extraction and computing multidimensional scaling 

components, QCTOOLv2.0 [21], for variant filtering, and QUICKTESTv1.1 [22] for association 

testing. 

2.4. eQTL Effect Estimation 

Raw gene count data were first variance stabilised to achieve homoskedasticity and then 

quantile normalised to the median distribution. The sample means were then centered to zero, and 

the sample variance was linearly scaled, such that each sample had a standard deviation of one. A 

total of 7,362,566 markers were tested for their effects on the expression of 26,050 well-detected genes. 

Variants within 1 megabase (Mb) on either side of the gene’s transcription start site (TSS) were 

regarded cis-acting or cis-eQTL while all other markers farther on the same chromosome or on 

different chromosomes were regarded trans-eQTL. Each well-detected transcript was modelled as a 

function of genotype (coded 0, 1 or 2 reflecting the number of alternate alleles) in a linear regression 

framework while adjusting for the following covariates: Sex, first four components from 

multidimensional scaling and white blood cell fractions (Supplementary Table S1). The genome-wide 

results were subsequently pruned using the ‘clump’ command in PLINK 1.90 (parameters: --clump-

p1 1.9 × 10−12; --clump-r2 0.01; --clump-kb 1000) to pick the lead variant with the lowest p-value in a 

block of variants in linkage disequilibrium, and thus obtain independent effects. Genetic variants that 

reached the Bonferroni-adjusted significance threshold of 1.9 × 10−12 given by dividing the genome-

wide significance threshold (p ≤ 5 × 10−8) by the number of transcripts tested (n = 26,050) were 

considered eQTL in this study. 
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2.5. Confirmation Rate 

The confirmation rate of eQTL in this study was calculated in the 2 largest published eQTL 

studies to date and the Genotype-Tissue Expression (GTEx) Project [3,4,23] (Table 1) to assess the 

extent to which eQTL in PAH overlapped with eQTL described in healthy populations. These studies 

were selected for having measured gene expression in the same tissue as our study, in addition to 

being the largest eQTL mapping studies to date. No eQTL study other than the GTEx Project with 

available genome-wide results applied RNAseq in whole blood at the time this study was conducted. 

Confirmation rate was defined as the number of PAH eQTL confirmed by the published study, 

divided by the total number of PAH eQTL tested by the published study and multiplied by 100 to 

give a percent value. The matching of gene transcripts and genetic variants between our study and 

the published studies as well as similarities and differences between the designs of this study and the 

3 published studies are described in Table 1 and in the Supplementary Appendix. 

Table 1. Characteristics of the PAH Cohort eQTL mapping study and published eQTL studies used 

for confirmation. 

 Westra et al. Joehanes et al. GTEx This Study 

Gene expression 

array 

Illumina HumanHT-

12 v4.0 

Affymetrix 

HuEx 1.0 ST 
RNAseq RNAseq 

Genotyping panel HapMap2 1000-Genomes WGS WGS 

MAF threshold ≥5% ≥1% ≥1% ≥5% 

n variants in 

analysis 
not reported 8,510,936 10,008,325 7,362,566 

cis-eQTL ≤250 kb from PMP 
≤1 Mb from the 

TSS 

≤1 Mb from 

the TSS 

≤1 Mb from 

the TSS 

trans-eQTL ≥5 Mb from PMP 
>1 Mb from the 

TSS 

>1 Mb from 

the TSS 

>1 Mb from 

the TSS 

Comparison of gene expression- and genetic data and expression quantitative trait locus (eQTL) 

definitions. MAF = minor allele frequency; PMP = probe midpoint; TSS = transcription start site; 

RNAseq = RNA sequencing; WGS = whole-genome sequencing. 

2.6. Overlap with Variants from the GWAS Catalog 

An important aim of this study was to identify eQTL in PAH with effects that had not been 

observed in population-based studies and to assess the relevance of these PAH-specific eQTL to 

related phenotypes and diseases. The NHGRI-EBI GWAS Catalog of published genome-wide 

association studies (GWAS) [24] provided a curated database of genetic markers associated with a 

wide range of traits and diseases. All variant-phenotype pairs below an association p-value threshold 

of 9 × 10−6 were downloaded from the GWAS Catalog website on 5 March 2020. The GWAS Catalog 

at the time contained 113,510 unique variants (including variants in linkage disequilibrium [LD]) 

reported as lead variants for 4314 phenotypes. The list of GWAS variants were intersected with each 

PAH eQTL (including the lead eQTL and variants in LD with the lead eQTL [r2 ≥40%]). The difference 

between the proportions of novel eQTL and previously reported eQTL overlapping lung-related 

phenotypes and diseases curated from the full GWAS Catalog phenotype list was tested using the 2-

sample equality of proportions test. 

2.7. Functional Enrichment Analysis of Genes with Novel eQTL 

Functional enrichment analysis of genes with novel eQTL in PAH using the WEB-based GEne 

SeT AnaLysis Toolkit (WebGestalt) [25] was conducted to determine if genes with novel eQTL were 

predominantly from pathways with relevance to the pathobiology of PAH. A form of pathway 

analysis called over-representation analysis (ORA) [26] was run using the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathways [27] database to group these genes into a smaller number of 

gene-sets relating to biological processes. We queried the list of genes with novel eQTL whilst all the 
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tested genes also present on the expression array of at least one of the published eQTL studies used 

for the confirmation process constituted the list of background genes. Pathways below a false-

discovery rate (FDR)-corrected significance threshold of 0.05 were considered significant. 

3. Results 

We observed 2354 eQTL in total with the majority (90%) acting in cis (Figure 1A), accounting for 

9% of all genes tested in this transcriptome- and genome-wide eQTL mapping analysis in PAH whole 

blood samples. Of these eQTL, 146 were associated with unmapped transcripts not yet annotated in 

the Ensembl database (Figure 1B). Lead eQTL ranked by the percent of variance explained (R2) in 

gene expression are presented in the Supplementary Table S2. The proportion of variation explained 

(R2) in gene expression levels was generally lower for trans-eQTL than for cis-eQTL (mediancis-eQTL = 

23.1%, IQRcis-eQTL = 12.5%; mediantrans-eQTL = 21.5%, IQRtrans-eQTL = 11.5%; t(df=1332) = 4.5, p-value = 8.3 × 10−6). 

(A) 
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(B) 

Figure 1. (A) Results of the pulmonary arterial hypertension (PAH) Cohort eQTL mapping. Genomic 

eQTL location (x-axis) plotted against the transcription start site of the gene associated with the eQTL. 

Bubble size and color are proportional to the effect size of the eQTL-gene association. (B) Pie chart 

showing the proportions of cis-, trans- and unmapped eQTL identified in the PAH Cohort eQTL 

mapping. Counts of eQTL within each category are shown next to the category name. An eQTL was 

considered ‘novel’ if it was eligible to be confirmed in at least one of the previously published studies 

and was not reported as an eQTL previously. Those eQTL that reached the study-specific significance 

threshold in at least one of the published studies were considered ‘confirmed’. Unmapped transcripts 

not yet annotated in the Ensembl database could not be confirmed. Ineligible eQTL were not tested 

by any of the three studies used for confirmation. 

3.1. Confirmation Rate 

Out of the 1986 unique genes with cis-eQTL, 1509 (76%) could be mapped to the Illumina HT12v3 

array used by Westra et al. and 2134 (95%) to the Affymetrix Human Exon chip used by Joehanes et 

al., respectively. Results from the GTEx Portal were obtained for 73% of eQTL in this study. Twenty-

eight percent of cis-eQTL were confirmed by Westra et al., 31% by Joehanes et al. and 90% of tested 

cis-eQTL confirmed in GTEx. Overall, 75% of cis-eQTL were confirmed in at least one of the published 

studies (Figure 1). The overall confirmation rate for trans-eQTL reached 16%, with all but one being 

confirmed by GTEx alone. Joehanes et al. confirmed only one trans-eQTL for JAM3 (chr1:248039451 

[C/T]). 

3.2. Overlap with Variants from the GWAS Catalog 

In order to assess the relevance of eQTL identified in this study to a wide range of phenotypes 

and diseases, the 2173 unique eQTL were intersected with the database of published genotype-

phenotype associations from the GWAS Catalog. In total, 929 eQTL were reported for at least one 

trait previously (median N GWAS traits/eQTL = 2; IQR N GWAS traits/eQTL = 3). Ninety-eight (11%) of the 929 eQTL 

had at least 10 or more unique GWAS phenotypes associated with them. Figure 2 shows the number 

of overlapping GWAS phenotypes per eQTL in the confirmed and novel eQTL categories. The 

proportion of cis-acting eQTL overlapping with at least one published GWAS association in the 

confirmed subset was 47%, while in the novel subset, it was 37%. Among trans-eQTL, the proportion 

of loci overlapping at least one GWAS trait was 50% in the confirmed and 27% in the novel group. 

The higher proportion of overlapping loci in the confirmed eQTL groups was significant for both cis- 
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and trans-acting eQTL (two-sample equality of proportions test cis-eQTL: χ2(df=1) = 13.9; 95% CI = 0.05–

0.15; p-value = 0.0002. trans-eQTL: χ2(df=1) = 4.2; 95% CI = −0.003–0.45; p-value = 0.04). Interestingly, the 

proportion of novel eQTL previously reported for lung-related phenotypes (11%) was twice as high 

as the proportion of confirmed eQTL associated with lung-related phenotypes (5.5%) (χ2(df=1) = 6.9; 

95% CI = 0.006–0.1; p-value = 0.009). Lung-related phenotypes reported for the novel eQTL included 

chronic obstructive pulmonary disease (COPD), lung function (forced vital capacity, forced 

expiratory volume), low versus high forced expiratory volume, interstitial lung disease, emphysema, 

lung cancer and lung adenocarcinoma. The full list of 63 QTL overlapping lung-related phenotypes 

in the GWAS Catalog can be found in Supplementary Table S3. 

 

Figure 2. GWAS trait-associations reported for eQTL in the PAH Cohort. Percentage of binned 

numbers of overlapping GWAS traits (y-axis) per eQTL in each eQTL category (x-axis). Reported 

genotype-trait associations were downloaded from the NHGRI-EBI Catalog of published genome-

wide association studies. 

3.3. Functional Enrichment Analysis of Genes with Novel eQTL 

We assessed the list of 606 genes with novel eQTL in the PAH Cohort for their involvement in 

certain biological processes or pathways in the KEGG knowledgebase. Five pathways were found to 

be significantly (FDR <0.05) enriched, with the pathways taste transduction, graft-versus-host disease 

and autoimmune thyroid disease being the three most significant (Table 2). Supplementary Table S4 

lists the overlapping genes driving the association of these five pathways and our results with the 

corresponding eQTL in PAH, including several human leukocyte antigen (HLA) genes. Furthermore, 

all genes overlapping with type I diabetes and allograft rejection pathways come from the HLA class. 

Genes encoded by the more than 200 HLA genes in the highly polymorphic HLA region play an 

important role in antigen processing and presentation. In total, 20 genes with eQTL in this study came 

from the HLA classes I and II (n = 18) and from the HLA class IB (n = 2) genes. Half of these eQTL-

HLA gene associations were found to be novel. Out of the 5 trans- and 17 cis-eQTL, 3 trans- and 8 cis-

eQTL were confirmed by published studies [3,4,23].
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Table 2. Pathways enriched for genes with novel eQTL in the PAH Cohort. 

Gene Set Description Size Overlap Expectation Enrichment Ratio p-Value FDR 

hsa04742 Taste transduction 48 8 0.87 9.24 1.78 × 10−6 5.72 × 10−4 

hsa05332 Graft-versus-host disease 32 6 0.58 10.40 1.85 × 10−5 2.86 × 10−3 

hsa05320 Autoimmune thyroid disease 34 6 0.61 9.79 2.66 × 10−5 2.86 × 10−3 

hsa05330 Allograft rejection 33 5 0.59 8.40 2.75 × 10−4 0.02 

hsa04940 Type I diabetes mellitus 36 5 0.65 7.70 4.19 × 10−4 0.03 

Results of the over-representation analysis using the Kyoto Encyclopedia of Genes and (KEGG) pathway database. Column names: Gene set = searchable identifier 

of the gene set in KEGG; Size = number of genes participating in the gene set and overlap gives the number of genes in the gene set that overlap with the queried 

gene list; Expectation = number of genes that are expected to be shared between the queried gene list and the gene set if the queried list was a random sample of the 

background gene list; Enrichment ratio = fold enrichment of the gene set for the queried gene list; p-value = enrichment significance of the Fisher`s exact test; FDR = 

false discovery rate adjusted significance.
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4. Discussion 

Gene expression serves as an intermediate phenotype between genetic variants and associated 

phenotypes, such as clinical diagnoses, accepted biomarkers and anthropometric and behavioural 

traits. Previous eQTL studies provided support for the idea that genetic effects on gene expression 

have phenotypic consequences and that eQTL aid in the biological interpretation of associated genetic 

markers in disease [3–5]. However, eQTL effects are not only dependent on the tissue or cell type 

under investigation [23,28] but also on the environment or context [5,29–31] in which gene expression 

is measured. This implies that a more comprehensive eQTL map could be constructed by extending 

mapping efforts beyond population-based studies. We ran a transcriptome-wide eQTL analysis in a 

cohort of 276 PAH patients to characterise the genetic control of gene expression variability in this 

condition, uncovering potentially novel eQTL not detected in healthy populations. The resulting 2354 

significant eQTL were intersected with the results of two previously published population-based 

eQTL studies and the results of the GTEx Project. In this study, 25% of cis-eQTL and 84% of trans-

eQTL were not found in any of the three studies used for confirmation. Novel and confirmed eQTL 

were investigated for their relevance to a wide range of diseases, and results focused on lung-related 

phenotypes from the NHGRI-EBI Catalog of published genome-wide association studies (GWAS 

Catalog). 

Nearly half (43%) of all eQTL identified in this study colocalised with at least one trait or disease 

in the GWAS Catalog. Even though the proportion of colocalising eQTL was higher for confirmed 

cis- and trans-eQTL than for novel eQTL, the proportion of eQTL associated with lung-related 

phenotypes was twice as high among novel eQTL than confirmed eQTL previously detected in 

population-based studies. This indicates that these novel eQTL identified in blood samples of PAH 

patients might be highly informative for pulmonary diseases such as COPD, interstitial lung disease 

and emphysema. The higher proportion of GWAS-trait associated eQTL in the confirmed subset 

might be explained by the lack of replication of novel eQTL by an independent PAH cohort; therefore, 

it is expected that a proportion of these novel association signals is spurious. 

As an example for the overlap between lung-related GWAS traits and eQTL in PAH, the novel 

GTF2IRD2B cis-eQTL rs13238996 (Supplementary Table S3) overlaps with multiple phenotypes 

including COPD [32], lung function [33], cardiovascular disease [33] and diastolic blood pressure 

[34]. The Deletion of GTF2IRD2B leads to a rare congenital disease called Williams-Beuren syndrome, 

which frequently presents with supravalvular aortic stenosis (SVAS; OMIM 185500), a congenital 

heart defect characterised by the narrowing of the aorta, pulmonary and coronary arteries and other 

blood vessels [35]. 

Pathway analysis of genes associated with novel eQTL identified five biological processes, 

including four immune-related phenotypes enriched for this list of genes from the KEGG database. 

Six genes from the graft-versus-host disease and allograft rejection pathways overlap with the list of 

genes with novel eQTL, five of which belong to the Human Leukocyte Antigen (HLA) class. The 

immune-related pathways enriched for genes with novel eQTL in this study demonstrate that novel 

eQTL could be identified in disease populations since their gene expression profiles differ from the 

profiles of healthy individuals. The complex pathophysiological mechanisms behind PAH involve 

multiple driving factors of which immune dysfunction and inflammation are suspected to be among 

the major contributors (Rabinovitch et al., 2014). The importance of antigen-presenting and 

recognition in PAH is underlined by the most significant genetic variant discovered in the PAH 

GWAS in the HLA-DPA1/DPB1 locus encoding class II major histocompatibility complex (MHC) 

molecules [16], which associated with three HLA-DPB1 alleles, all containing a glutamic acid at amino 

acid residue 69 (Glu⁶⁹). The HLA-DPA1/DPB1 PAH susceptibility locus emphasises the role of 

immune dysregulation in PAH development [36,37] and warrants further investigation. 

Overall, the confirmation rate of eQTL in this study was comparable to that seen in published 

studies [3,4]. A third of cis-eQTL confirmed in the two population-based studies by Westra et al. and 

Joehanes et al., while 90% of cis-eQTL were confirmed by the GTEx Project. Fifteen percent of trans-

eQTL confirmed in either the GTEx project or the study of Joehanes et al. Trans-eQTL validation rates 

are generally much lower (under 10%) than validation rates of cis-eQTL [3,4], reflecting the higher 
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average effect size of cis-eQTL and a stronger tissue-specificity of trans-eQTL effects compared to cis-

eQTL, which may render trans-eQTL more susceptible to confounding by differing experimental 

conditions and environmental factors. However, the confirmation rate reported by this study and 

other studies possibly underestimate the true extent of eQTL overlap between studies since the list 

of variants and genes that passed quality control and were tested by any one study are usually not 

made available. We observed a higher confirmation rate with the GTEx Project that also used RNAseq 

for assaying gene expression. Similarly, Joehanes et al. reported higher validation rates between two 

array-based studies than between array-based and RNAseq-based studies. This may be related to 

platform differences, for example, hybridisation in arrays is less sensitive than high-depth sequencing 

and potentially affected by differing background signals in various tissues. Differences between the 

study populations being compared can also give rise to imperfect validation and also to novel 

discoveries, as all genetic effects depend on both the genetic (epistasis) and environmental context of 

the population they were estimated in and, therefore, do not necessarily apply to another population 

or the same population at a different time. A more accurate way of identifying novel eQTL in this 

study would have been to contrast PAH eQTL effects with eQTL effects estimated in a control 

population assayed on the same platforms and in one batch with the PAH samples to reduce the 

variability due to technical factors. In addition, novel eQTL are yet to be replicated in an independent 

population of PAH patients to identify true positives. 

The effects of eQTL can vary by the tissue and even cell type under investigation [28,38] and 

may be modified by external and environmental factors [29,30]. Previous studies have successfully 

identified ‘response’ eQTL that are associated with gene expression levels in cells under one of two 

experimental conditions, but not both. For example, in the study of Barreiro, nearly 200 eQTL were 

identified in primary dendritic cells from 65 individuals with effects specific to either the 

Mycobacterium tuberculosis-infected cells or the uninfected ones [29]. These response eQTL were 

argued to constitute natural regulatory variation that likely affect host-Mycobacterium tuberculosis 

interaction and account for interindividual variation in the immune response and susceptibility of 

tuberculosis. The authors of the study found when integrating their data with genome-wide genetic 

susceptibility of pulmonary tuberculosis that these response eQTL were more likely to be associated 

with the disease, uncovering potential susceptibility genes in pulmonary tuberculosis. Another study 

by Fairfax et al. [30] investigated the effect of innate immune stimuli on eQTL effects by exposing 

primary CD14+ cells from 432 European volunteers to the inflammatory cytokine interferon-γ or the 

endotoxin lipopolysaccharide. Inflammatory stimulation revealed hundreds of eQTL specific to 

either stimulus, which were enriched for disease-risk loci. In this study, the proportion of eQTL also 

associated with lung diseases or lung function was twice as high in the novel eQTL subset than in the 

confirmed subset, highlighting the importance of genotype-environment interaction in 

understanding the genetic variation of disease susceptibility characterised by genome-wide 

association studies. 

To date, large-scale eQTL-mapping has been done in healthy individuals from population-based 

studies (Joehanes et al., 2017, Westra et al., 2013, Zhernakova et al., 2017), providing a valuable 

knowledge base for understanding associations between genetic variation and various phenotypes. 

It has been shown that by recapitulating the environmental context relevant to disease, it is possible 

to decipher the genetic variation of disease susceptibility more extensively (Fairfax et al., 2014, 

Barreiro et al., 2012, Çalışkan et al., 2015). Genome- and transcriptome-wide eQTL-mapping in this 

cohort of idiopathic and heritable PAH patients identified hundreds of potentially novel eQTL with 

twice the proportion of lung disease associated with genetic variants than eQTL confirmed by 

population-based studies. Apart from pulmonary conditions, these novel eQTL specific to, or active 

in, PAH could be useful in understanding genetic risk factors for other diseases that share common 

mechanisms with PAH, such as those with immune dysregulation. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/11/11/1247/s1, Table 

S1: Patient characteristics and white blood cell fractions in the PAH Cohort study, Table S2: Lead variants for 

novel eQTL in the PAH Cohort ordered by variance explained in gene expression, Table S3: Phenotypes from 

the NHGRI-EBI GWAS Catalog of published genome-wide association studies reported for novel and confirmed 
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eQTL, Table S4: Significant KEGG pathways from the enrichment analysis of genes with novel eQTL in the PAH 

Cohort. 
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