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Messenger RNA (mRNA) localization allows spatiotemporal regulation of the
proteome at the subcellular level. This is observed in the axons of neurons,
where mRNA localization is involved in regulating neuronal development
and function by orchestrating rapid adaptive responses to extracellular cues
and the maintenance of axonal homeostasis through local translation. Here,
we provide an overview of the key findings that have broadened our knowl-
edge regarding how specific mRNAs are trafficked and localize to axons. In
particular, we review transcriptomic studies investigating mRNA content in
axons and the molecular principles underpinning how these mRNAs arrived
there, including cis-acting mRNA sequences and trans-acting proteins play-
ing a role. Further, we discuss evidence that links defective axonal mRNA
localization and pathological outcomes.

provided
1. Introduction
Neurons have the ability to span huge distances across the body. The estimated
average cumulative length of a human forebrain cholinergic axon is approxi-
mately 100 m [1], while the dendritic branches of cat spinal alpha-motor
neurons have an average combined length of nearly 5 mm [2]. This complex mor-
phology permits the precise connectivity needed to relay and process information
across the nervous system. But while these figures illustrate the geometric diver-
sity of different neuron types and the remarkable lengths of their cytoplasmic
processes, they also present a dilemma.With long axonal and dendritic processes,
how do neurons quickly respond to signals with high spatial precision when the
source of the signal can sometimes be metres away from the cell body? One sol-
ution is to traffic particular sets of messenger RNAs (mRNAs) into neuronal
processes, where they can then be locally translated under basal conditions and
in response to particular cues. This approach of localizing mRNAs to axonal
and dendritic processes offers several advantages. First, because mRNAs are
often transported in a translationally silent state, it allows proteins to act at
their site of synthesis, facilitating the specific protein interactions that are
needed locally (such as complex formation), and preventing aberrant protein
expression and functioning that could be deleterious at other cellular regions.
Second, since many proteins—typically thousands [3,4]—are translated from a
singlemRNA, it provides an energy efficientmeans to localize numerous proteins
by transporting the mRNA molecule that encodes them. Lastly, mRNA localiz-
ation provides polarized cells with important degrees of subcellular autonomy.
Axons anddendrites have different functions, and each needs to respond to differ-
ent environmental signals to the cell body. By localizing specific subsets of
mRNAs to particular subcellular locations, these regions subsequently have the
ability to spatiotemporally regulate their own proteome both in response to
local demands and to extracellular cues.

The role of mRNA localization in neuronal axons was once a controversial
topic. Early studies identified polysomes and protein synthesis apparatus in

https://core.ac.uk/display/337605048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1098/rsob.200177&domain=pdf&date_stamp=2020-09-23
mailto:cioni.jeanmichel@hsr.it
http://orcid.org/
http://orcid.org/0000-0001-9928-8283
http://orcid.org/0000-0002-8651-5579
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsob
Open

Biol.10:200177

2
dendrites [5,6] but did not detect axonal polysomes, nor the
presence of Golgi apparatus and rough endoplasmic reticulum
(RER) needed for processing newly synthesized proteins
[5,7,8]. Since then, however, technological advances have
enabled direct visualization of axon mRNA translation [9],
actively translating ribosomes have been isolated from axons
[10], and components of both Golgi apparatus and RER have
been shown to be distributed along axons [11]. For the latter,
though, a dearth of evidence for the classical structure and
functioning of RER and Golgi apparatus in axons has led to
the suggestion of non-canonical pathways for processing
newly synthesized transmembrane and secreted proteins in
axons [12]. In addition, monosomes (single ribosomes which
are abundant in axons) have also been demonstrated to actively
translate [13,14]. The last 25 years has witnessed an upsurge
of studies outlining the many important roles that axonal
mRNA translation plays. During the development of neural
connectivity, local translation has been implicated in axon out-
growth, navigation, branching and synaptogenesis (reviewed
in [15]). In addition, axonal protein synthesis continues into
adulthood, where local mRNA translation is not only impli-
cated in regeneration [16], but also in presynaptic plasticity as
well as synapse maintenance [17–20].

In this review, we will focus on one specific (and little
understood) aspect of regulating local mRNA translation
in axons: the localization of the mRNA itself. What are
the mRNAs that are present in axons and how do they
move? Which features allow mRNAs to selectively reach
the axon tip? Could defects in axonal mRNA localization
underlie the pathological mechanisms behind neurological
disorders? A wealth of studies has begun to address these
important questions and paved the way for future progress
in the field.
2. Transcriptome analysis: a general view
on axonal mRNA localization

Thousands of mRNAs have been demonstrated to localize to
axons, forming functionally relevant mRNA libraries that
are separate in composition to the soma, which suggests
the existence of molecular mechanisms for selective axonal
targeting [21–25]. Repeatedly, it has been shown that axons
are enriched with groups of mRNAs that have relevant func-
tions in known axonal processes, like those encoding proteins
associated with translational regulation, mitochondria func-
tions and intracellular transport [21–26]. Within the axons
themselves, different mRNAs have different localization
patterns—some are enriched in the axon shaft (e.g. mRNAs
encoding proteins involved in protein trafficking and fold-
ing), and others are specifically enriched in the distal
growth cone (e.g. mRNAs encoding proteins involved in
cytoskeletal regulation) [21]. By contrast, certain mRNAs,
such as map2 and γ-actin, are present in the cell body but
are selectively excluded from axons of particular neurons
[27,28]. Several of these axon-enriched mRNA categories
have recently been shown to comprise a conserved core neur-
ite (dendrite and axon) transcriptome. These include mRNAs
coding for translational machinery, cytoskeletal proteins as
well as mitochondrial proteins, and indicate that certain
mRNAs are constitutively localized to neuronal projections
regardless of projection type and species [29].
2.1. The changing axonal transcriptome
Axonal transcriptomes have been shown to vary to some
extent between neuron types. A recent article comparing
transcriptome datasets from dorsal root ganglion (DRG)
and motor neuron axons revealed that two-thirds of axonally
enriched mRNAs are shared. Thus, while there is a good frac-
tion of overlap, a degree of discrepancy also exists that
indicates specialization in axonal transcriptomes between
neurons [30]. These differentially enriched mRNAs include
those with gene ontology (GO) functions in receptor activity,
chemotaxis and synapse assembly, and may consequently
entail motor neuron-specific aspects of development and
functioning [30]. Indeed, another example of a neuron-type
transcriptome difference is exemplified by actin mRNA iso-
forms. Here, the axonal compartment of neurons has long
been thought to only contain the β-actin mRNA isoform
[28,31]. However, it has recently been reported that α-,
β- and γ-actin mRNAs are present in motor neuron axons,
their local translation playing different roles in axon branch-
ing and growth [32]. Although a fascinating question, it
remains to be seen how different local pools of mRNAs in
axons might help confer specific functions related to
neuron-type through local translation. Some specializations
are, however, quite self-explanatory; an example being
the localization of mRNAs encoding olfactory receptors in
olfactory neuron axons [33,34].

As the neuron develops, changes in the axonal transcrip-
tome have been reported to occur; these are thought to
support the specific needs of the axon at different points in
time. For instance, while some transcripts are constitutively
enriched in both embryonic and adult DRG axons (e.g.
mRNAs linked to translation and mitochondria function),
others, such as mRNAs encoding cytoskeletal regulators,
cell cycle and intracellular transport proteins, are specifically
enriched in embryonic axons, while adult DRG axons are
enriched for mRNAs associated with inflammation and the
immune response [24]. Throughout development itself,
retinal ganglion cell (RGC) axons change their transcriptome.
Young growth cones are particularly enriched with mRNAs
coding for regulators of protein synthesis, and as develop-
ment progresses, there is an upregulation in mRNAs
encoding proteins involved in processes such as signalling
and metabolism in older growth cones [21]. These develop-
mental changes in axonal mRNA repertoires are reflected in
the translatome of mouse RGCs in vivo [10]. Interestingly,
however, developmental changes in the axonal transcriptome
precede their translation, indicating that the mRNAs are
initially stored in a translationally silent state before
becoming unmasked at a later time point [10].

The axonal transcriptome can also bemodified by the extra-
cellular environment. One classic example is the observation
that axon guidance cues and growth factors like Neurotro-
phin-1, BDNF, Netrin-1 and Sonic Hedgehog, can stimulate
increased growth cone localization of β-actin mRNA [35–39].
When BDNF and Netrin-1 are introduced as a gradient,
β-actin mRNA translocates to the growth cone periphery on
the near side of the attractive guidance cue stimulation,
where asymmetric β-actin protein synthesis is thought to pro-
mote preferential actin filament assembly on one side and
thus growth cone turning [38,39]. While a comprehensive
analysis of modulated axonal mRNA repertoires in response
to extrinsic cues is missing, extracellular signals have been
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shown to regulate axonal localization of many mRNAs
encoding proteins such as enzymes, antiapoptotic factors,
endoplasmic reticulum chaperones and cytoskeletal regulators
[25,31,40,41]. Recently, a proteomic study revealed how differ-
ent extracellular cues alter the repertoire of newly synthesized
proteins in axons at different time points after cue application
[42]. This study raises the question as to what extent altered
mRNA localization is responsible for cue-induced proteome
remodelling in axons. Regulation of mRNA localization
has been shown to be the main contributing factor for protein
localization in neurites [43]. However, extracellular signals
can also alter protein synthesis patterns in axon terminals
by enhanced translation of mRNAs independent of changes
in mRNA localization [44]. Coordinate investigation into
axonal mRNA transcriptome and protein synthesis changes
in response to extrinsic signals will therefore be an important
and fascinating question for the future.

2.2. Insights into axonal mRNA content in vivo
Whilemanyaxonal transcriptome studies have been performed
in vitro, recent work has also provided important insights into
axonal mRNA localization in vivo. For example, by developing
a method to sort growth cones of mouse callosal projection
neurons in vivo, Poulopoulos et al. [45] discovered an enrich-
ment of transcripts containing 50 terminal oligopyrimidine
(TOP) motifs (including mRNAs encoding translational
machinery). Interestingly, the translation of TOP-containing
transcripts is dependent on themammalian target of rapamycin
(mTOR), which is enriched in the callosal projection neuron
growth cones (alongwith other proteins in themTORpathway)
and required for axon growth. This focal distribution in growth
cones suggests a mechanism for precisely controlling the local-
ization of these mRNAs and their translation in axons in vivo
[45]. In another recent study, Hafner et al. [44] employed
‘fluorescence-activated synaptosome sorting (FASS)’ in
VGLUT1+venus knock-in mice to specifically isolate presynaptic
compartments. Here, the authors demonstrated that in vivo
adult excitatory axon terminals are enriched with mRNAs
encoding presynaptic proteins, such as those involved in presyn-
aptic vesicle release [44]. These results are in accordance with an
in vivo study in Caenorhabditis elegans that further confirmed an
axonal enrichment ofmRNAswith specialized presynaptic func-
tions, as well as revealing the presence of mRNAs encoding
RNA-binding proteins (RBPs), including the RBP Pumilio
which plays a role in regulating associative memory formation
[46]. Together, these transcriptome data highlight the emerging
role of axonal mRNA localization in regulating presynaptic
development and functioning in vivo [17,47,48].
3. RNA-binding proteins: the cornerstones
of axonal mRNA localization

Transcriptomic studies have thus revealed that particular sets
of mRNAs are enriched in axons, but how are they selectively
targeted to axons in the first place? The answer is thought to
lie with RBPs.

3.1. mRNA regulation by RBPs (a brief overview)
Studies in a variety of cell types and organisms have shown
that mRNAs do not travel alone. Instead, they are processed,
trafficked and ultimately degraded as part of complexes,
collectively named ‘messenger ribonucleoprotein particles,’
or ‘mRNPs’. Such complexes are highly variable in compo-
sition; made up of many different proteins, noncoding
RNAs, ions and small organic molecules which can remain
permanently associated or be dynamically exchanged as the
mRNP is remodelled throughout the mRNA’s lifetime
[49,50]. Here, RBPs facilitate the selective recruitment of
mRNAs into mRNPs. In the nucleus, mRNAs are co- and
post-transcriptionally recognized by RBPs; an interaction
that subsequently governs each step of their maturation and
ensuing nuclear export [51,52]. Both during and after nuclear
export, mRNPs are further remodelled. For example, the
nuclear export receptor complexes are displaced from the
mRNP at the cytoplasmic face of nuclear pores in an ATP-
dependent manner [53]. In addition, the mRNP is now
exposed to new cytoplasmic RBPs, which can, for instance,
promote cytoplasmic mRNP transport along cytoskeletal
tracks (see §5). A restricted number of RNA-binding domains
have been characterized so far, including the K homology
(KH) domain, zinc fingers (Znf) and the RNA recognition
motif (RRM) [51]. These classical globular RNA-binding
domains form structures that recognize particular sequences
within an mRNA transcript through shape complementarity
and interactions with nucleotide bases [54]. Further, the bind-
ing affinity between mRNA and RBP can rely on single or
multiple domains present in an RBP [54,55]. Aside from clas-
sical RNA-binding domains, RBPs can interact with mRNAs
through unconventional or uncharacterized RNA-binding
sites, including located within certain intrinsically disordered
regions [56]. Each RBP associates with a particular subset of
mRNAs, and individual mRNAs have the ability to bind to
multiple RBPs. Ultimately, precise control of the mRNP’s
molecular signature is thought to be essential for targeting
to a subcellular location and is achieved through multiple
modes of action by different RBPs (figure 1a,b). However,
how this is regulated in neurons to control axonal mRNA
localization is still unclear.

3.2. RBPs regulating mRNA localization in axons
One of the first RBPs discovered to regulate axonal mRNA
localization is Zipcode binding protein 1 (ZBP1 in chicks, the
mouse and human homologues being IMP-1, and in Xenopus
Vg1RBP). ZBP1 is an RBP important for axonal guidance and
branching, and was shown to regulate β-actin mRNA localiz-
ation in axons, which has subsequently provided a seminal
example for cue-regulated changes in mRNA localization and
translation of a particular mRNA by RBPs [38,39,57,58]. How-
ever, in addition to ZBP1, β-actin has also been found to directly
associate with other RBPs known to be present in axons, such
as heterogeneous nuclear (hn)RNP R, and human antigen D
(HuD, also known as ELAVL4) [59–61]. As has been shown
for ZBP1 binding β-actin mRNA in forebrain neuronal axons
[35], hnRNP R interacts with the 30UTR of β-actin mRNA to
subsequently promote localization to spinal motor axons
[61]. Whether hnRNP R directly cooperates with ZBP1 to
drive β-actin mRNA trafficking in axons, or whether different
RBPs regulate axonal localization of the same transcript in
different neuron types and contexts remains to be further inves-
tigated. However, the finding that hnRNP R knockdown
generates a more severe phenotype in motor neuron axons
compared to other neuron types [61] suggests that the role of
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Figure 1. Molecular interplay between RNA-binding proteins and mRNAs. Schematic of the molecular mechanisms by which RBPs can regulate mRNA localization.
(a) Cooperative regulation. Different RBPs bind to the same target mRNA and promote its localization (left panel). Alternatively, an RBP can recruit additional RBPs
to the mRNP through protein–protein interactions and together drive its localization (right panel). (b) Competitive regulation. RBPs with distinct localization com-
pete for the binding to the target mRNA with different affinities. The localization of the mRNA is thus controlled by the relative abundance of the RBPs (left panel).
RBP–RBP interactions prevent the binding to a target mRNA and thus its subcellular localization (right panel).
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these RBPs in regulating axonal β-actin mRNA localization
might vary according to neuron type. There are, however,
some instances of cooperative regulation by RBPs. For instance,
ZBP1 and HuD have been reported to cooperatively regulate
axonal localization of gap-43 mRNA by forming an RNA-
dependent complex [62]. Another slightly different example
of is the ‘hand over’ mechanism involving ZBP2 and ZBP1.
Here, ZBP2 binding of β-actin mRNA in the nucleus sub-
sequently facilitates the binding of shuttling ZBP1 that
defines cytoplasmic β-actin mRNA localization in neurites
[63]. Other examples of RBPs directly binding specific
mRNAs to regulate their localization in axons include survival
of motor neuron (SMN) and nucleolin [64–67], the particular
sequences bound by such RBPs are summarized in table 1.
In addition to RBP–RNA association, RBP–RBP binding has
also been demonstrated to be important for modulating
axonal mRNA localization. For example, HuD and SMN
were found to interact and colocalize in motor axons where
they regulate mRNA localization [80].

While RBPs are important for regulating the export of
mRNAs to axons, they can conversely determine whether a
particular transcript will be retained in the cell body and
excluded from the axonal compartment. This has been
observed in cortical neurons, where the RBP telomere
repeat-binding factor 2 (TRF2-S) was shown to be involved in
regulating axonal trafficking of rab3a and aplp1mRNAs through
binding a glycine–arginine-rich (GAR) domain in TRF2-S [81].
In these neurons, the RBP FMRP was found enriched in the
somatic compartment where it competes with rab3a and aplp1
mRNAs for binding to the TRF2-S GAR domain, thus prevent-
ing the association of these mRNAs to TRF2-S and reducing the
amount of TRF2-S mRNA targets transported into axons.
Similar results were also recently obtained in DRG neurons.
Here, the RBP Pumilio 2 was observed to be restricted to neuro-
nal cell bodies, where it regulates the axonal transcriptome
through somatic retention of a specific subset of transcripts; a
process developmentally regulated and essential for proper
axonal outgrowth and regeneration [82].
3.3. Phase separation and axonal RBPs in mRNA
localization

Many recent studies have focused on the assembly of
neuronal mRNPs into higher-order granules through
liquid–liquid phase separation (LLPS)— a reversible process
in which RNAs and associated proteins condense through
weak multivalent interactions to separate from the surround-
ing diluted phase [83,84]. The size, number and molecular
components of mRNP granules formed by LLPS can rapidly
change depending on the surrounding physical and chemical
properties in the cytoplasm [84]. Dynamic rearrangements
of mRNP granules have been reported to take place accord-
ing to specific biological requirements or cellular state (e.g.
stress) [84]. For instance, it has been recently reported in
C. elegans that mRNPs containing the RBP TIAR-2 form
liquid-like granules in axons that increase in number follow-
ing injury in vivo; a process that in turn inhibits axon
regeneration [85]. The assembly of mRNP granules occurs
by a combination of specific protein–protein, protein–RNA
and RNA–RNA interactions [86]. RBPs play a key role in
promoting liquid-like mRNP formation, and this occurs
mostly through domains characteristically composed of
only a few different types of amino acids present in high



Table 1. Cis-acting elements identified to be involved in axonal mRNA localization.

mRNA
location of cis-acting
element length (nt) important features RBP reference(s)

annexin A2 CDS (near 30UTR with
3nt overlap)

18 G-rich motif,

primary sequence

SMN [64,65]

calreticulin and Grp78/BIP 30UTR 98 and 105 conserved primary

sequence

unknown [68]

cytochrome c oxidase IV (COXIV) 30UTR 38 predicted hairpin FUS/TLS, YB-1 [69,70]

Gap43 30UTR 40 AU-rich regulatory element HuD–ZBP1

complex

[62]

importin β1 30UTR alternative
polyadenylation

34 stem–loop structure nucleolin [66,67]

myo-inositol monophosphatase-1

(IMPA1)

30UTR alternative
polyadenylation

120 unknown unknown [25]

neuritin/CPG15 30UTR 40 AU-rich regulatory element HuD [71]

synapsin 50UTR 66 stem–loop structure unknown [72]

tau 30UTR 91 U-rich sequence HuD, Ilf3 and NF90 [73,74]

Tubb5 30UTR 37 unknown unknown [75]

tyrosine hydroxylase 30UTR 50 putatively both structure

and sequence

unknown [76]

β-actin 30UTR 54 primary sequence ZBP1 [28,77]

β-actin 30UTR 87 G-rich sequence APC [78,79]

β2B-tubulin 30UTR 87 G-rich sequence APC [78,79]
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frequency that are referred to as ‘prion-like’, ‘low-complexity’
or ‘intrinsically disordered’ [87]. Various mutations in the
low-complexity domain (LCD) of RBPs have been linked to
altered mRNP formation in neurons, ultimately inducing
aggregates in neuronal compartments and leading to the
development of neurodegenerative disorders [88,89]. Some
of these LCD containing RBPs, such as TAR DNA-binding
protein 43 (TDP43) and fused in sarcoma/translated in lipo-
sarcoma (FUS/TLS), have been demonstrated to be involved
in axonal mRNA transport and/or translation [90,91]. Unlike
membrane-bound organelles, axonal TDP-43 mRNPs have
been shown to undergo shape deformation under the shear
of fast axonal transport, consistent with surface tension
dictating their form [92]. The size and trajectory of axonal
TDP-43 mRNPs were also altered following fusion events
or transitory interactions, suggesting molecular exchange
between mRNP granules [92]. Moreover, TDP-43 mRNPs
were found heterogeneous along the axon, exhibiting
different granule density and morphology that probably
reflect changes in the mRNP composition in different micro-
environments [92]. These latter findings raise the intriguing
question of how local variation in the levels of RBPs and
RNAs (as well as other constituents such as ATP and ions)
will modulate mRNP composition along the axon shaft,
and thus regulate their trafficking. Remarkably, mRNPs
containing TDP-43 mutated in the LCD displayed significant
changes in their viscosity to a more solid-like state that
correlated with impaired axonal transport [92,93]. These
results suggest that axonal trafficking of mRNP granules
is dependent on their viscoelastic properties and highlight
the importance of the RBP’s LCD in this process. A recent
study demonstrated that the prion-like domain of the
Drosophila Imp RBP promotes the axonal motility of Imp-con-
taining mRNPs in vivo [94]. Interestingly, the authors also
found that the role of the Imp LCD in axonal transport can
be uncoupled from its function in mRNP assembly. However,
more work will be needed to understand the precise molecu-
lar principles underlying mRNP granule assembly by LLPS
in neurons, their subsequent axonal transport, and to what
extent these granules participate in the precise localization
of specific transcripts.

3.4. An axonal regulon?
RBPs have been found to target functionally related sets of
mRNAs in numerous cell types and organisms. Such an
example has been demonstrated in the Puf family of yeast
RBPs, where each of the five RBP members binds distinct sets
of functionally related mRNAs [95]. In human fibroblasts,
mRNAs coding for proteins belonging to the same complex
have been reported to colocalize within the same mRNP [96].
Additionally, mRNAs encoding related proteins have been
reported to be co-translated and simultaneously assembled
into complexes across a range of cell-types and organisms
[97]. These findings have led to the idea of ‘RNA regulons’;
that to enhance efficiency, groups of mRNAs might be coordi-
nately regulated by RBPs in eukaryotic cells [98]. SincemRNAs
residingwithin the axonal growth cone are enrichedwith func-
tionally related sets of mRNAs (such as those encoding
cytoskeletal-related proteins and proteins involved in mRNA
translation [21]), do axonal RBPs also coordinately regulate
the localization and translation of these functionally related
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mRNAs? Recent studies have indeed suggested that this
might be the case. Adenomatous polyposis coli (APC) is a
microtubule-associated protein that is enriched at the axon
tip where it plays roles in axon growth, navigation and mor-
phology by regulating the cytoskeleton [99–102]. Excitingly,
this protein has also been shown to additionally function as
an RBP in axons [78]. Here, APC was discovered to bind mul-
tiple mRNAs related to its known function as a cytoskeletal
regulator (e.g. mRNAs encoding microtubule-associated
motors and tubulin isotypes). Of these APC-associated
mRNAs, β2B-tubulin mRNAwas found to rely on APC for its
axonal localization and translation, a regulation required for
proper cytoskeletal dynamics and growth cone morphology
[78]. More recently, the RBP splicing factor poly-glutamine
rich (SFPQ) was shown to orchestrate the axonal transport of
mRNAs coding for survival factors essential to maintain
DRG axons [103]. In addition, SFPQ was found to promote
the co-assembly of these functionally linked mRNAs within
the same mRNPs; a role that could directly support their
synchronized axonal translation when required [103].

That axonal regulons couldprovideanefficientmeanstocoor-
dinately regulate sets of mRNAs to carry out specific functions
raises the question of whether these mRNAs are transported
together or individually. Studies looking at mRNAs localized in
neuronal dendrites have revealed that dendritic mRNAs travel
in low copy numbers and that certain different mRNA species
are transported independently [104–106]. Similarly, within
axons, mRNAs have been shown to mostly travel in low copy
numbers [107] while some mRNAs, but not others, have been
reported to co-assemble in the same axonal mRNP [103]. Since
one mRNA can be translated multiple times, transporting lower
copies of mRNAs may allow a tighter control over the quantity
and localization of axonal mRNAs. However, stoichiometry
analysis has only been performed for a limited number of
mRNA species, and it remains conceivable that mRNA transport
could be more multiplexed for certain mRNA species or circum-
stances (e.g. as observed for some germ plasm mRNAs in
Drosophila [108]). Indeed, this is a question that is particularly
intriguing in the case of mRNPs formed by LLPS.

In conclusion, while many more questions still need to
be answered regarding the role and mode of action of
individual RBPs, proper axonal trafficking of a particular
mRNA appears to rely on a combination of RBP–RNA and
RBP–RBP bindings that are dynamically modulated
depending on the functional needs of the axon.
4. mRNA features that drive their axonal
localization

mRNA recognition by specific RBPs and their subsequent
localization patterns pivot on particular structural and
primary sequence features within the mRNA itself. These
‘cis-acting elements’, or ‘zipcodes’, have been shown to con-
trol the mRNA’s transport and anchoring in subcellular
compartments [109].

4.1. Cis-acting elements that drive axonal mRNA
targeting

Cis-acting elements come in many shapes and sizes, ranging
from just a few nucleotides to hundreds of nucleotides in
length [109]. Relatively few mRNA cis-acting elements and
corresponding RBPs have been identified for axonal localiz-
ation (table 1). Just like the cis-acting elements involved in
mRNA localization within other cell types [109], these can
depend on nucleotide sequence, structure, or both, and are
mostly found in the 30UTR. One example is the axonal
localization of cytochrome c oxidase IV (COXIV) mRNA, a
nuclear-encoded mitochondria protein involved in oxidative
phosphorylation, where its local translation is important
for ATP production and axon growth [69,110]. Here, a 38-
nucleotide predicted stem–loop structure in COXIV mRNA
was found sufficient to confer axonal mRNA localization in
superior cervical ganglion neurons [69]. Immunoprecipitation
of the COXIV mRNA cis-acting element revealed association
with approximately 53 proteins, forming a distinct inter-
actome compared to those of neuronal mRNP granules
associated with the RBPs Staufen2 and Barentsz (two RBPs
associated with mRNP transport to dendritic neuronal com-
partments) [70,111]. Of these COXIV mRNA cis-element
interacting proteins, the RBPs FUS and Y-box protein 1
(YB-1) were further validated as bona fide binding partners,
and their knockdown led to significantly decreased levels
of COXIV mRNA in axons [70]. Here, while affecting
axonal COXIV mRNA levels, FUS siRNA treatment did not
affect cell body levels of COXIV mRNA, suggesting that
this RBP might specifically regulate mRNA localization to
axonal compartments rather than affecting mRNA stability
or earlier stages like transcription [70].

Another example ofmRNAcis-acting elements in axons are
the short AU-rich elements in the mRNAs encoding Gap-43,
Neuritin and Tau, which are all recognized by the RBP HuD
[62,71,73]. Each of these AU-rich cis-acting elements targeted
by HuD are capable of driving mRNA localization to axons
[62,71,73]. Two RRM domains of HuD have been shown to
directly bind cis-acting elements in the mRNA, while the
third binds the mRNA’s poly(A) tail, which stabilizes that
mRNP complex [112]. HuDhas known roles inmRNA stability
[113], and has been demonstrated to stabilize neuritinmRNA in
the brain [71], raising the question as to whether these differ-
ences in localization might be partly due to increasing
mRNA lifetime in axons. Intriguingly, the differential binding
affinity of cis-acting elements to HuD appears to be a key
factor for HuD-dependent regulation of mRNA metabolism.
gap43mRNA has a higher binding affinity to HuD than neuri-
tin mRNA, resulting in competition-dependent regulation of
axonal mRNA localization [71]. Recently, the RNA target
with the highest affinity for HuD binding in differentiating
motor neuron cultures was shown to be a small noncoding
RNA Y3 [114]. Y3 acts as a ‘molecular sponge’ to sequester
HuD away from polysomes and supress mRNA translation
needed for neural differentiation in that system [114]. These
findings hint at the complexity of mRNA regulation by cis-
acting element recognition of HuD—involving an interplay
of differential cis-element binding affinities (figure 2a). Interest-
ingly, different cis-element binding affinities were also recently
suggested to act as a mechanism to regulate the amount of
mRNA species transported in the axon [79]. Here, the RBP
APC (which has been demonstrated to regulate axonal
mRNA localization [78]) was shown to selectively bind G-rich
sequences in the 30UTR of β2B-tubulin and β-actin mRNAs to
enable their trafficking [79]. In cortical and hippocampal neur-
ons, β-actinmRNA is in greater than or equal to 10-fold greater
abundance than β2B-tubulin mRNA [115], but β2B-tubulin
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mRNA has a fivefold higher affinity for binding to APC [79].
These differential binding affinities were thus intriguingly
suggested to act as a mechanism to ensure that less abundant
mRNAs are still transported into axons (figure 2b). Axonal
mRNA localization is, however, not regulated by one type of
RBP and corresponding cis-acting element. Interestingly, a
recent study revealed that no one RBP interaction is shared by
four different cis-acting elements (belonging to four different
mRNAs) that can each drive axonal mRNA localization in
motor neurons [116]. Instead, it was discovered that particular
hnRNPs bind one or two different cis-acting elements, indicat-
ing that different combinations of RBPs coordinately regulate
axonal mRNA transport through different RNA localization
signals in axons [116]. As a result, one of themost exciting ques-
tions for future studies will be to further understand how
different RBPs work together with differences in cis-element
binding affinities to fine-tune mRNA levels in axons.

4.2. The axon–dendrite paradox
Despite a neuron’s dendrites and axon being structurally and
functionally distinct, many of the identified axonal mRNA
cis-acting elements also paradoxically drive mRNA localiz-
ation to dendrites. This raises the crucial question of how
subcellular localization specificity is achieved in neurons
through the same cis-acting element. Onewell-known example
is the zipcode region of β-actinmRNA. In addition to its role in
regulating axonalmRNA localization, it also targets mRNAs to
dendrites of neurons, as well as the leading edge of fibroblasts
[77,117,118]. The zipcode cis-acting element in β-actinmRNA is
recognized by the RBPZBP1 [77]. ZBP1-dependent localization
of β-actin mRNA relies on a bipartite 54 nucleotide ‘zipcode
sequence’ in the 30UTR of β-actin mRNA, and is required for
the increased localization of the mRNA in axonal growth
cones in response to particular cues [35,38,119,120]. Other
examples include two cis-acting elements in the 30UTR of
calreticulin mRNA, which drive both dendritic and axonal
mRNA localization within the same cortical neurons [68].
Furthermore, many RBPs that regulate axonal mRNA localiz-
ation, like ZBP1, FMRP, HuD and FUS, are also localized
to dendrites and implicated in regulating dendritic mRNA
localization [118,121–123]. Dendrites have different functions
compared to axons, respond to different signals and
additionally contain different transcriptomes (where for
example map2 mRNA is enriched in dendrites but excluded
from axons [27,124]). If they often have the same cis-acting
elements, bound by the same RBPs, how then might these
sub-compartmental mRNA localization patterns be differen-
tially regulated in neurons? One possibility is that many of
the identified cis-acting elements and associated RBPs might
regulate more general cytoplasmic localization in neurites,
while additional cis-acting elements and RBPs are required
for sorting into different neuronal compartments. For instance,
synapsin mRNA contains two cis-acting elements: one in the
50UTR and one in the 30UTR [125]. Here, the 30UTR of synapsin
mRNA is able to confer localization to distal neurites, but only
a 66 nucleotide stem–loop structure in the 50UTR is able to loca-
lize the mRNA to the synapse [72,125]. Indeed, a similar
concept is also seen during Xenopus and Drosophila germ
plasm development. Here, different cis-acting elements target
mRNAs at different stages of the localization process [126–129].

While specific axonal mRNA targeting signals remain
poorly understood, in the reverse direction of inquiry, a cis-
acting element was recently identified to keep mRNA out
of axons. Here, Martínez et al. [82] employed a bioinformatics
approach to look at sequences associated with the axonal
versus somatodendritic transcriptome. Although the authors
found no sequence motifs associated with the axonal tran-
scriptome, a UGUAAAU motif was discovered as enriched
within the somatodendritic transcriptome. When inserted
into ordinarily axonally localized transcripts this motif was
able to diminish axonal localization; the RBP responsible
was identified to be Pumilio 2 [82]. In the future, new tech-
niques, such as ‘proximity-CLIP’, [130] might be able to
help us further decipher how differences in protein–RNA
interactions lead to altered mRNA localization patterns
between axons, dendrites and soma.
5. Lights, camera, axon! Unravelling the
mechanisms behind mRNA movement
in axons

Understanding howmRNAs are trafficked in axonswill solve a
large piece of the puzzle elucidating how specific axonal



Box 1. Live-imaging approaches to study mRNA transport.

Understanding the type of motion that takes place in cells often necessitates live-imaging approaches to directly visualize
mRNA movement. To this end, there have been several methods developed, each with their own advantages and caveats.

Firstly, one could image exogenous mRNA by in vitro transcribing the mRNA of interest using UTP-conjugated organic
fluorophores and subsequently deliver this fluorescently labelled synthetic mRNA into cells [131]. The main advantage of
this approach is the specificity, high signal-to-noise ratio and speed of experimental design. However, exogenous mRNA
can be delivered into the cytoplasm above physiological levels and proper mRNA localization often involves nuclear proces-
sing events [132], thus exogenous mRNA may not always mimic the same transport and localization methods as their
endogenous counterparts. Nonetheless, the delivery of exogenous mRNA has been demonstrated to recapitulate endogenous
localization patterns in several systems and is a particularly useful approach for analysing sequence and mRNA processing
requirements for trafficking and localization [133–135]. One of the most popular methods for studying endogenous mRNA
trafficking is the MS2 system [136,137] (as well as variants such as the PP7 system [138]). The MS2 approach involves geneti-
cally engineering your mRNA of interest to encode multiple MS2 hairpins each of which are recognized and bound by two
MCPs (MS2 coat proteins) fused to a fluorescent protein. This method has been prototypical for imaging endogenous mRNAs
and led to many exciting discoveries. However, false positives can arise from non-specific conjugation of MCP-fluorescent
proteins [139] and the formation of decay fragments [140]. Many advancements of the MS2 system have been published
(for example increasing signal-to-noise [141] and allowing life cycle visualization [142]). Recently, modifications of the
CRISPR/Cas9/13 systems have provided an exciting alternative to the MS2 approach, enabling labelling of endogenous
RNA without time-consuming genetic manipulation, albeit with lower signal to noise [143,144]. In addition, fluorogenic
RNA aptamers provide a method for live mRNA imaging by inserting the aptamer into the mRNA of interest. This approach
offers the advantage of lower background signal and since the development of Spinach RNA aptamer that exhibits fluor-
escence resembling GFP [145], different advancements have been made to include increased photostability and brightness
[146] as well as fluorescence at different wavelengths [147]. Finally, another alternative approach is to use molecular beacons
[148,149]. Here, each molecular beacon is designed to contain an antisense probe region that binds to the endogenous mRNA
of interest, as well as a GC-rich stem region that places a fluorophore and quencher in close proximity. Binding of the anti-
sense probe region to the mRNA changes the molecular beacon conformation so that the fluorophore is separated from the
quencher, thus labelling the endogenous mRNA of interest with fluorescence. While this approach is experimentally simple
and allows visualization of endogenous mRNA without genetic modification, non-specific signal in the nucleus as well as
non-specific background labelling necessitates the use of good controls.

To our knowledge, only molecular beacons and fluorescent exogenous mRNA have been used to study mRNA transport
in axons [37,93,107]. We anticipate, however, the use of different techniques to study axonal mRNA transport in the future, in
addition to new data analysis techniques such as automated kymograph analysis by machine-learning [150].
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mRNA localization patterns are generated. Often deciphering
how mRNA molecules move involves the use of live-imaging
methods, the techniques and advances for which are described
in box 1. In this section, we will provide a general overview
of mRNA transport mechanisms, before delving into what is
currently known about mRNA transport in axons.
5.1. A short introduction to mRNA transport in cells
In general, there are three main mechanisms by which
mRNAs move in cells: directed transport, diffusion or a mix-
ture of both [151]. Diffusion describes the Brownian motion
of molecules due to fluctuations in thermal energy, creating
a random walk in which the molecule has an equal pro-
pensity to move in any direction [152]. Without other
mechanisms to direct localization, diffusion will eventually
create a uniform spread of molecules across the cytoplasm.
This distribution is seen for several non-localizing mRNAs
[153], although even uniformly distributed mRNAs appear
to undergo some periods of directed transport [154]. Asym-
metric localization can be achieved by diffusion through
external factors that bias random movement in one direction
and/or locally anchor diffusing mRNAs. An example for
both mechanisms is illustrated by Drosophila nanos mRNA
that is localized to the posterior of the oocyte via a ‘diffusion
and entrapment mechanism’ involving a combination of
ooplasmic streaming and local anchoring at the posterior
pole [155,156].

Perhaps one of the most common mechanisms for achiev-
ing targeted mRNA localization is through directed transport
by motor proteins. Directed transport involves motor proteins
that use ATP hydrolysis to trigger conformational changes
that generate processive movement along microtubule or
actin microfilament tracks. The myosin superfamily of motor
proteins associate with actin filaments, whereas kinesin and
dynein families of motor proteins travel along microtubules
in opposing directions (kinesins towards plus ends
of microtubule polymers and dynein towards minus ends)
[157]. Since polarized cytoskeletal organization is often a
common feature among polarized cells [158], preferential
association with specific motor proteins promotes directed
transport to particular cellular regions. Many examples for
directed transport by motor proteins exist for mRNA localiz-
ation. For instance, in budding yeast, the type V myosin
motor is required for ASH1 mRNA localization [159,160],
and the concerted actions of the microtubule-associated Kine-
sin1 and Kinesin2 motor proteins are needed for Vg1 mRNA
targeting to the vegetal cortex of Xenopus oocytes [161]. In
some instances, mRNAs can bind opposing motors, resulting
in bidirectionalmovement [162]. Here, asymmetric localization
is achieved by biasing motion in one direction through, for
instance, increasing the copy number of a specific motor
protein. For example, mRNA cis-acting elements have been
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directly demonstrated to alter dynein copy number to drive
biased bidirectional movement and apical localization of the
Drosophila fs(1)K10mRNA transcript [163]. In addition, bidirec-
tional directed transport can be coupled with local anchoring.
This has been observed for the local entrapment of β-actin
mRNA at activated synapses in dendrites [164]. Given these
now well-established mRNA transport methods in different
cell types and model systems, how are mRNAs transported
into the axon of neurons?

5.2. Microtubule-driven mRNA transport in axons
The sheer length of neuronal axons logically suggests that
directed transport is important. Indeed, live-imaging has
shown that β-actin mRNA exhibits directed movement in
axons as well as periods of diffusion; the directed transport
component being essential for mRNA delivery to the axon
tip [107]. Since the discovery that mRNA does not accumulate
in nerve terminals following disruption of microtubules by col-
chicine [165], numerous studies have demonstrated that basal
and stimuli induced changes in axonal mRNA localization
rely on an intact microtubule cytoskeleton [31,35,166,167].
Further, direct visualization of exogenous fluorescently
tagged β-actin mRNA movement recently revealed that
the integrity of the microtubule cytoskeleton is essential to
maintain directed transport [37]. As such, it is clear that micro-
tubule-driven directed transport is important for localizing
mRNA to the axon tip and various underlying molecular
mechanisms have now been proposed, leading to a generalized
hypothetical model for mRNA trafficking in axons (figure 3).

Different motor proteins have different kinetic properties
and polarity preferences that in turn can generate unique cellu-
lar distributions for different cargoes [168]. What are the motor
proteins that specifically transport mRNAs in axons? In axons,
microtubule orientation is highly polarized. Greater than 90%
of microtubules are orientated plus-end out, with growing
ends pointing towards the axon tip [169]. In addition, different
microtubule-associatedmotor proteins drive either plus-end or
minus-end directed motion (kinesin and dynein towards plus
and minus ends, respectively) [157]. Thus, axonal anterograde
microtubule-driven transport requires the kinesin motor
protein family, while retrograde microtubule transport is
driven by cytoplasmic dynein. Since mRNA movement in
axons is bidirectional [37,93,107,170,171], it follows that both
should play a role. Indeed, bidirectional transport of other
axonal cargoes has been shown to involve the simultaneous
association of opposing kinesin and dynein motors that coop-
eratively regulate processivity [172].While cytoplasmic dynein
is the major retrograde microtubule motor transporting cargo
in axons, multiple kinesinmotor proteins perform axonal ante-
rograde transport; at least 3 of the 14 kinesin subfamilies
(kinesin-1, kinesin-2, kinesin-3) are reported to transport
axonal cargos [173]. Different kinesins have been shown to pos-
sess different kinetic properties and transport distinct cargo, as
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well as in some instances cooperatively transport the same
cargo [169,174]. Only recently have specific kinesin motor pro-
teins been associated with mRNA transport in axons. Axonal
mRNA transport of APC has been shown to depend on kine-
sin-1 and kinesin-2 [175] and APC-dependent transport of
β-actin and β2B-tubulin mRNAs was recently demonstrated to
involve APC complexed with kinesin-2, via the KAP3 cargo
adaptor protein within reconstituted complexes in vitro [79].
Although it will be important to ascertain whether APC trans-
port driven by kinesin-2 also regulates mRNA trafficking
within neuronal axons themselves, these data strongly support
a role for kinesin-2 in axonal mRNA transport by APC. More-
over, that interactions with both kinesin-1 and kinesin-2
regulates localization of the RBP APC to axon tips [175], and
that axonal β-actin mRNA transport exhibits multimodal vel-
ocities [107], are indicative that multiple motors and/or
regulator proteins might be at play. In another study, Fukuda
et al. [176] provided direct evidence for particular kinesins driv-
ing axonal mRNA transport by another RBP. Here, the authors
excitingly found that the RBP SFPQ interacts with the heavy
chain kinesin-1 family member KIF5A via the adaptor KLC1;
this binding was shown to take place in an RNA dependent
manner and is needed for driving axonal transport of SFPQ
[176]. That these two studies identified different kinesin
family members involved in transporting different axonally
localized RBPs raises the fascinating question of how RBPs
and their associated mRNA interactomes might differentially
associate with different motor proteins to uniquely spatiotem-
porally regulate axonal mRNA localization. Do, for example,
different RBPs exhibit distinct kinetics in axons that might be
indicative of different transport mechanisms? Moreover, do
different motor proteins play separate roles in the transport
of the same mRNA depending on the neuron-type and/or
developmental stage?

5.3. A role for actin in axonal mRNA localization?
Although plentiful evidence suggests microtubules are
important in axonal mRNA trafficking, coordination with
motors associated with the actin cytoskeleton has also been
implicated. Here, cue-stimulated increases in axonal mRNA
localization are slightly affected by actin filament disruption
[31]. Similarly, under basal conditions actin depolymerization
results in failure of microinjected BC1 mRNA to concentrate
in cortical axonal domains, leading to the suggestion that
myosin-driven motor transport might play a role in short-
range axonal mRNA transport [166]. By contrast, recent
work has shown that actin filaments are not needed for
cue-induced changes in exogenous β-actin mRNA to periph-
eral domains of RGC axon growth cones [37], but appears
to play a role in anchoring endogenous β-actin in the same
axons [107]. The actin cytoskeleton is also fundamental for
axonal cargo sorting. Cargo sorting in axons involves the
axon initial segment (AIS), which prevents entry of somato-
dendritic cargo (figure 3). This occurs firstly by anchoring a
crowd of membrane proteins to provide a diffusion barrier
[177]. Secondly, by actin patches within the axon hillock
that immobilize somatodendritic cargo by myosin V associ-
ation with particular motifs on somatodendritic proteins
[178]. Thirdly, through axon cargo association with particular
microtubule-associated motor proteins that direct axonal traf-
ficking due to the polarized microtubule orientation in axons
[179]. It is likely, therefore, that axonal mRNA localization
might similarly involve a sorting mechanism in the AIS trig-
gered by (as yet unidentified) cis-acting elements and RBPs.
In support of this, both actin filament depolymerization
and inhibiting myosin Va leads to axonal localization of the
normally somatodendritic cargo map2 mRNA and Staufen 1
RBP [180].

5.4. Getting there by organelle hitchhiking in axons
Recent data suggest that a certain number of mRNPs can travel
along the cytoskeleton by hitchhiking on intracellular orga-
nelles in axons (figure 3). For example, mRNP granules,
(probably assembled by LLPS) have been found to be co-
transported with lysosomes in cortical axons [181]. Here,
similar to observations of a lipid-binding adaptor protein
allowing RBP and mRNA recruitment on endosomes in
fungal hyphae [182], the annexin protein ANXA11 was
shown to couple RNA granules to lysosomal compartments
[181]. ANXA11 has several specific features that allow this
function, including a prion-like domain that facilitates its
association with mRNP granules and a Ca2+-dependent
lipid-binding domain that regulates its interaction with lyso-
somes. While intriguing, the exact function for this type of
transport in regulating the axonal transcriptome is not yet
clear, but the fact that an association between a portion of
mRNPs and endosomal compartments has been reported in
Xenopus RGC axons [170] supports a potential more broad
role for membrane trafficking in axonal mRNA localization.
In both Xenopus axons and fungal hyphae, RNA granules
associatedwith endosomes displayed bidirectional movement,
and were found to associate and dissociate from endosomal
compartments—a feature that could ensure the proper distri-
bution of specific transcripts [170,183]. Evidence in both
systems also point toward the idea that somemRNAs are trans-
lated on endosomes [170,183,184], adding a complementary
role for endosomes as specific sites of protein synthesis.
This dual function is further supported by a recent study show-
ing colocalization between early endosomes and specific
mRNAs in a HeLa cell line; an association relying on intact
ribosomes for a significant proportion of mRNAs, indicating
that these mRNAs localize to endosomes in a translation-
dependent fashion [185]. In this system, the spatial distribution
of specific transcripts was found altered upon manipulation of
early endosome trafficking, thus suggesting co-transportation
of endosomes and mRNAs. As other organelles present in
axons (e.g. mitochondria, endoplasmic reticulum, peroxi-
somes) have also been shown to harbour mRNAs on their
membrane [171,186–188], these results open the possibility
that hitchhiking on membranes could be an important
regulatory process in axonal mRNA trafficking.

5.5. Regulation of axonal mRNA localization by
degradation

Finally, although not a transport mechanism,mRNAdecay has
been shown to be an important way by which mRNA localiz-
ation patterns are generated for particular mRNAs and cell
types. One classic example is posterior localization of hsp83
mRNA (encoding a heat shock protein) in the Drosophila
embryo generated by selective protection from degradation at
the posterior pole of the embryo that is regulated by cis-
acting elements in hsp83 30UTR as well as cis-acting elements



Table 2. Neurological disorders linked to impaired axonal mRNA localization.

disease name experimental model associated impairment reference(s)

fragile X syndrome

(FXS)

knockdown of FMRP in primary mouse

embryonic DRG neurons

reduced axonal transport of miR-181d, Map1b and Calm1-

positive granules

[197]

Alzheimer’s

disease (AD)

treatment of rat embryonic hippocampal

neurons distal axons with oligomeric

Aβ1–42

altered axonal transcriptome with 151 upregulated and

211 downregulated transcripts, including the relevant

atf4 mRNA

[198]

amyotrophic lateral

sclerosis (ALS)

compartmentalized cultures of SOD1G93A

and TDP43A315T mouse embryonic

motor neurons

altered axonal transcriptomes with 176 upregulated and

271 downregulated transcripts in TDP43A315T axons

compared to controls, and 95 upregulated and 80

downregulated transcripts in SOD1G93A axons compared

to controls; both models show an increase of the

mRNA coding for the RBP Elavl2 in axons

[30]

amyotrophic lateral

sclerosis (ALS)

Drosophila- and human-derived motor

neurons bearing ALS-causing mutations

in TDP43

Nefl mRNP granules anterograde axonal transport is

significantly impaired after 9 days in culture

[93]

amyotrophic lateral

sclerosis (ALS)

mouse embryonic stem cells (mESCs)-

derived motor neurons overexpressing

SOD1G93A

altered axonal transcriptome with 96 upregulated and 25

downregulated transcripts between mutated and control

axons

[199]

spinal muscular

atrophy (SMA)

knock-down of survival motor neuron

(SMN) protein in mouse embryonic

motor neurons (shRNA)

general reduction of polyA-positive RNAs in the axonal

compartment evaluated with qFISH using digoxigenin-

labelled oligo-dT probes

[80]

spinal muscular

atrophy (SMA)

knock-down of survival motor neuron

(SMN) protein in mouse embryonic

motor neurons (shRNA)

altered axonal transcriptome with 165 upregulated and

1189 downregulated transcripts in axons depleted for

SMN compared to controls

[200]
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in the open reading frame generating increased destabilization
in the rest of the cytoplasm [189–192]. Nonsense-mediated
decay (NMD) is a degradation pathway, which usually ensures
that improperly translated mRNAs (carrying premature ter-
mination codons) are degraded [193]. In commissural neuron
axons, this method of degradation is used to regulate Robo3.2
mRNA levels (encoding an axon guidance receptor) after
Robo3.2 translation is derepressed at the floorplate [194]. As
well as commissural axons, axonal growth cones of different
neuron-types (dorsal root ganglia and hippocampal neurons)
are also enriched with components of NMD machinery,
suggesting that local regulation of mRNA degradation in the
growth cone may be a common method for regulating
mRNA localization and translation at the axon tip [194].
Because NMD targets particular transcript features (Robo3.2
for example has a retained intron [194]) axonal NMD degra-
dation is likely to selectively regulate a subset of mRNA
transcripts. At the other end of the table, recent work has
suggested that certain mRNAs are protected from degradation
in axons [195]. Here, Nikolaou et al. [195] revealed that the
major spliceosome protein SNRNP70 associates with mRNAs
in axons and protect certain transcripts from NMD-mediated
degradation through alternative splicing [195]. How degra-
dation interplays with mRNA trafficking mechanisms to
spatiotemporally regulate mRNA localization in axons will
be an exciting question for future studies that will be enabled
through methods to visualize mRNA degradation such as
TREAT [196].
6. When axonal mRNA localization
mechanisms go wrong

Defects in axonal mRNA localization have been associated
with an increasing number of neurological disorders affecting
different areas of the brain. These disorders with links to dis-
rupted axonal mRNA localization are summarized in table 2
and further expanded upon below.
6.1. Neurodevelopmental disorders
Although the functional importance of axonal mRNA trans-
lation has mostly been demonstrated in developing neurons,
only a restricted number of developmental disorders have
been linked to altered mRNA transport. One of these is fragile
X syndrome (FXS), an X-linked disease caused by the loss of the
RBP FMRP [201]. It has been shown that FMRP has the ability
to associate with a vast number of mRNAs [202,203], and mul-
tiple mechanisms underlying its role in controlling mRNA
translation have been described [204–206]. However, less is
known regarding FMRP function in mRNA trafficking.
FMRP was found to be present in developing [207] and
mature [208] distal axons, and loss of its function has been
associated with defects in growth cone dynamics and axon
growth [207,209]. In mouse DRG axons, FMRP has been
shown to associate with map1b and calm1 mRNAs, and its
depletion was found to impair axonal mRNA targeting [197],



royalsocietypublishing.org/journal/rsob
Open

Biol.10:200177

12
supporting a role for FMRP in axonal mRNA localization
(albeit a role that has been suggested to be more complicated
by other work [81]). In a recent study, subcellular fractionation
and high-throughput sequencing were applied in a mouse
neuronal tumour line (CAD) to identify the transcripts differ-
entially localized in somata and neurites in the absence of
FMRP [210]. The authors found a large number of neurite-
depleted mRNAs in the absence of FMRP, a result that they
further confirmed using iPSC-derived motor neurons from
FXS patients. They also demonstrated that FMRP regulates
the transport of transcripts containing G-quadruplex motifs
in their 30UTR through the binding to its RGGdomain. Intrigu-
ingly, the function of FMRP in mRNA localization appeared
dissociated from its role in translational regulation, which is
potentially achieved through different modes of target recog-
nition. Although there has been some light shed on the
physiological function of FMRP and the defects caused by its
depletion, the direct functional consequences of mislocalized
mRNAs in axons in FXS pathogenesis still needs to
be determined.

6.2. Neurodegenerative disorders
In recent years, the potential link between impaired axonal
mRNA localization and neurodegenerative disorders have
received increasing attention. This is particularly the case
for amyotrophic lateral sclerosis (ALS), a multigenic disease
resulting from mutations in various genes including super-
oxide dismutase (SOD1), TDP43 or FUS protein [211].
Expression of ALS-linked mutated forms of FUS were
found to decrease axonal protein synthesis in Xenopus RGC
axons [212]. Moreover, expression of FUS mutants at concen-
trations close to physiological levels of endogenous FUS,
leads to the accumulation of the mutant protein along the
axons of hippocampal neurons in vitro and sciatic nerves
in vivo, and is sufficient to cause a reduction in intra-axonal
protein synthesis, in turn leading to motor and cognitive
impairment [213]. Although a direct link with impaired
axonal mRNA transport is missing, it has recently been
shown that, upon mutation of FUS and formation of FUS-
positive inclusions, APC-dependent transport of mRNAs to
cell protrusions is disrupted, both in neurons and non-
neuronal cell types [214], supporting a direct role in mRNA
trafficking in neuronal compartments.

As described in a previous section of this review, TDP43 is
an RBP that participates in the assembly of mRNPs [215].
While accumulation of TDP43 is observed in frontotemporal
lobar degeneration (FTLD) [216], its role in axonal mRNA
trafficking has been shown to be impaired by several ALS-
causing mutations of the protein. In particular, trafficking of
TDP43 along cortical axons was found altered by mutations
in its prion-like C-terminal domain, possibly by affecting
phase separation and mRNP formation [93]. These ALS-
causing mutations were also found to compromise axonal
trafficking of Neurofilament-L (Nefl) mRNA in vivo in
Drosophila, and in mouse cortical neurons [93], supporting a
direct link between ALS-associated mutations of TDP43 and
defects in axonal mRNA transport. Since then, hundreds of
mRNAs have been shown to be differentially present in
axons isolated from TDP43A315T murine motor neurons [30].
Interestingly, the same study compared these changes to
the alterations induced by the ALS-associated mutation
SODG93A. While mutations in these two genes lead to distinct
direct functional consequences, they found common altered
axonal levels of specific transcripts, supporting the hypo-
thesis that ALS might be initiated by defective mRNA
localization in axons of particular neuron types.

Interestingly, similar observations have been reported in
neurons carrying mutations associated with spinal muscular
atrophy (SMA). SMA is a neuromuscular disease characterized
by the degeneration of spinal motor neurons and caused by
reduced levels of the RBP SMN due to deletions or, less fre-
quently, mutations in the SMN1 gene [217,218]. Several
observations have led to the hypothesis that SMN protein
might be important for localizing a subset of important
mRNAs to the neuromuscular junction (NMJ). Firstly, SMN is
transported into motor neuron axons and knockdown of the
protein results in a reduction of both poly(A) mRNA levels
and HuD protein present in axons [80]. Secondly, analysis of
the corresponding changes in the axonal transcriptome follow-
ing SMN knockdown revealed decreased levels of mRNAs
encoding proteins with roles in axonal growth and synapse
regulation [200], supporting an important role in presynaptic
function. Interestingly,when compared to the changes observed
following SODG93A overexpression [199], 16 genes were
identified as commonly dysregulated, suggesting that some
common pathological-associated changes in axonal mRNA
localization exist between different neurodegenerative diseases.

While less studied, pathologies affecting the central ner-
vous system have also been found associated with altered
axonal mRNA repertoires. Alzheimer’s disease (AD) is a neu-
rodegenerative disorder affecting diverse brain areas and
mainly characterized by the accumulation of β-amyloid
(Aβ) in neurites in particular soluble oligomers of Aβ1–42
[219–221]. Application of Aβ1–42 to distal axons of rat embryo-
nic hippocampal neurons was reported to induce changes in
the local transcriptome, including mRNAs related to Aβ
production and metabolism, such as app, apoE and clu, or
involved in tau pathology like fermt2 [198]. The authors
further focused on atf4 mRNA which was found recruited
to the axon upon treatment with Aβ1–42, where its intra-
axonal translation was suggested to participate in causing
neurodegeneration linked to AD.

An increasing number of observations are now pointing
towards the hypothesis that alterations in the axonal transcrip-
tome could participate in the pathophysiology of various
diseases, including disorders that are not directly associated
with mutations in genes coding for well-known regulators of
RNA processing. While more work will be needed to clearly
demonstrate the therapeutic potential of counteracting defects
in axonal mRNA mislocalization, an interesting example
supporting this possibility was recently reported. Here,
mutations in the gene coding for the motor protein KIF5A
have been linked to Charcot–Marie–Tooth disease type 2D
(CMT2D), amyotrophic lateral sclerosis (ALS) and hereditary
spastic paraplegia (HSP) [222–224]. KIF5A was found impor-
tant for the axonal localization of SFPQ mRNPs in DRG
axons [176]; an RBP that has previously been shown to control
a regulon of transcripts coding for survival factors, including
regulating the axonal trafficking of the mRNA encoding Bclw
[103]. Remarkably, the authors also found that axon degener-
ation induced by CMT2D KIF5A mutation can be rescued by
introducing a peptide that mimics the function of the axonally
synthesized protein Bclw [176]. This approach could poten-
tially be extended to other diseases with defects in axonal
mRNA transport and/or translation. Moreover, that mRNAs
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have been found associated with various organelles, including
endosomes and lysosomes in axons [170,181], also opens new
therapeutic perspectives for diseases in which organelle
transport has been disrupted.
ietypublishing.org/journal/rsob
Open
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7. Conclusion
It is now unambiguously established that mRNA translation
in axons is important for neuronal development, function
and survival, but our current knowledge of how specific
mRNAs become localized to the axonal compartment in the
first place remains limited. As illustrated in this review,
some advances have been made in the field, including the
identification of key cis-acting elements and trans-acting
factors involved in axonal mRNA targeting and transport.
However, many important open questions still remain. For
example, it will be important to increase our repertoire of
sequence elements, and associated RBPs, involved in the
‘positive’ or ‘negative’ targeting of specific mRNAs to the
axon. With respect to cis-acting sequences, further under-
standing the role of secondary and tertiary mRNA
structures will be crucial to both identifying new cis-acting
elements as well as further understanding the mechanisms
by which sequences already identified act. Moreover, it will
also be important to understand how the cooperative actions
of different RBPs and motor machinery components fine-tune
the localization patterns of multiple different mRNAs in
axons. Finally, future work will be needed to explore the
functional relevance of axonal mRNA localization in vivo.
For instance, how is the dynamics of axonal mRNA transport
affected by synaptic activity? Is this process experience
dependent? What would be the consequences of impairing
axonal trafficking of particular subsets of mRNAs on brain
function? As a strong link between neurological diseases
and defective axonal mRNA localization is currently emer-
ging, the answer to these issues might be key to better
understand the pathophysiological mechanisms behind
these disorders.
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