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Abstract

An assessment is made of the J-integral test procedure for initial crack growth in an open-
cell aluminium alloy foam by combining finite element (FE) simulations with experiment. It
is found experimentally that a zone of randomly failed struts develops ahead of the primary
crack tip, and is comparable in size to that of the plastic zone. Hence, a crack tip J-field is
absent at the initiation of crack growth from the primary crack tip. This implies that the
measured JIC value and the J versus crack extension ∆a curve cannot be treated as material
properties despite the fact that the specimen size meets the usual criteria for J validity. The
toughness tests were performed on a single-edge notched bend specimen, and crack exten-
sion wasmeasured by the direct current potential dropmethod, by digital image correlation
and by X-ray computed tomography. The crack growth resistance of the foam is associated
with two distinct zones of plastic dissipation: (i) a bulk plastic zone emanating from the crack
tip (containing a cluster of randomly failed struts), and (ii) a crack bridging zone behind the
advancing crack tip. The applicability of a cohesive zone model to predict the fracture re-
sponse is explored for the observed case of large scale bridging. To do so, FE simulations are
performed by replacing the discrete lattice of the open-cell metallic foam by a compressible,
elastic-plastic hardening solid while the fracture process zone in the foam is represented by
a cohesive zone, as characterised by a tensile traction versus separation law. A detailed com-
parison of the cohesive zonemodel with experimental observations reveals that it is possible
to capture the load versus displacement response but not the details of the fracture process
zone using a single set of process zone parameters.
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1. Introduction

Metallic foams enjoy increasing application in sandwich panels for lightweight structural
components, in energy absorption systems for protection from impacts, in heat sinks for
electronic devices and in acoustic insulation, inter alia. The focus of this study is the fracture
response of open-cell aluminium alloy foams.

The standard method for measuring the fracture toughness and crack growth resistance of
ductile materials, including metallic foams, is the J−integral procedure as outlined in the
ASTM standard E1820 [1], see for example Jelitto and Schneider [2] for a review of fracture
toughness tests on porous materials. The ability of the J−integral to characterise crack ini-
tiation and crack growth is predicated upon the existence of a near-tip J−field, such as the
HRR field in a fully dense elasto-plastic solid. This J−field must encompass the fracture pro-
cess zone (FPZ) at the crack tip, as sketched in Fig. 1(a). Recall that the FPZ is on the order of
the crack tip opening displacement for a fully dense metallic solid. At issue is whether the
FPZ much exceeds the cell size ` of a metallic foam, particularly when failure is stochastic in
nature and involves the failure of struts in a zone ahead of the crack tip.

Previous studies of the fracture ofmetallic foams assume that a crack bridging zone develops
only after advance of the main crack tip, with successive strut-by-strut failure occurring at
the crack tip [3–5]. However, this assumption needs to be validated by experiment. It may
be that a large FPZ develops ahead of the main crack tip in metallic foams, with a stochastic
distribution of strut failure in existence before the main crack tip advances. If this FPZ is
comparable in size to the plastic zone size, as illustrated in Fig. 1(b), then no J−field exists,
regardless of the overall size of the specimen and of the initial crack length. The relative size
of FPZ to plastic zone is unclear from the literature on metallic foams, and is measured in
the present study.

Combaz andMortensen [5] have performed J-tests on compact tension specimensmade from
aluminium-replicated open-cell foams. Their open-cell foams have a small and relatively

2



uniform cell diameter (≈ 400µm) and are made from highly ductile pure aluminium. They
observed that strut fracture was stochastic in a zone ahead of the crack tip, and the resulting
crack extension is accompanied by the development of a substantial crack-bridging zone.
For example, their bend specimen had a net section ligament of length 10mm, ahead of the
pre-crack, at the start of the toughness test, and they report a large scale bridging zone of
length 5mm behind the crack tip after crack advance on the order of 7mm. Hence, it is un-
likely that a J−field surrounds the advancing crack tip. Similar observations on the existence
of a bridging zone (of size 4 to 8 cells) in the wake of an advancing crack have been reported
for the case of open-cell aluminium alloy foams [3], open-cell titanium alloy foams [4], and
closed-cell aluminium alloy foams [6, 7]. These experimental studies all followed the ASTM
standard E1820 [1] to measure the crack growth resistance from the fracture response of a
bend specimen, and each met the size criteria as demanded by the standard. A significant
R-curve behaviour is reported in each of these studies due to the presence of crack bridging
ligaments behind the advancing crack tip. O’Masta et al. [8] have used the same ASTM pro-
cedure for measuring the crack growth resistance of 3D octet-truss lattices. They observed
that the fracture toughness scales linearly with the square root of the cell size and linearly
with the lattice relative density. However, in contrast to the fracture process observed in
foams, the struts of the lattice failed cell by cell at the crack tip, without the formation of a
recognisable bridging zone.

1.1 Prediction of crack growth in metallic foams

The cohesive zone approach is a useful predictive tool for modelling crack growth in the
presence of bulk plasticity as observed in metallic foams. In this approach, the details of
the crack tip failure mechanism are not stated explicitly. Rather, a cohesive zone, as defined
by a tensile traction versus separation response, idealises the FPZ at the crack tip and is
embedded within an elasto-plastic continuum. The cohesive zone approach has the virtue
that it can be used to model both small scale and large scale bridging [9, 10].

The discrete foam can be idealized as a compressible continuum when the length scales (as-
sociated with the geometry and loading) are much larger than the cell size [11]. Size effects
are exhibited when the structural length scale is comparable to the cell size (see e.g. [12]),
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and the classical continuum theorymust then be extended to include a characteristic length
scale in the constitutive description, or the foam microstructure has to be explicitly mod-
eled. Higher-order continuum theories have been used by Dillard et al. [13] and Tekoğlu
et al. [14] to study the strain fields around a hole in a cellular solid. These theories were able
to capture some of the observed cell size effects that were observed in the experiments of
Dillard et al. [13]. Discrete micromechanical models of a foam have also been used to study
the strain fields around a sharp notch [15, 16]. Onck and co-workers [17, 18] have explored
numerically the fracture of a discrete Voronoi structure under remote tension, and made
from a strain-hardening solid. Each cell wall was modelled as an array of beam elements,
and damage in the cell wall material was represented by a linear softening stress versus dis-
placement response of the beam element beyond a critical value of stress. They found that
the cell walls fail at random locations within the structure. Clusters of 2 to 3 failed struts
eventually coalesce to form a single macroscopic crack which leads to final failure. Predic-
tions have also beenmade for the case of regular hexagonal honeycombs in the elastic-brittle
regime [19] and in the creep ductile regime [20] by assuming that each cell wall comprises
several continuum elements in order to capture the scatter in the strut geometry (i.e. thick-
ness and Plateau border radius). The failure of each strut was modelled by a linear softening
constitutive response. The critical cluster size of the failed struts was found to be only a cell
size for the elastic-brittle lattice and about half the width of the specimen for lattices in the
creep ductile regime. These micromechanical models are able to explain the observed ten-
sile ductility of foams, but their use is limited to small specimens containing only a few unit
cells due to the associated computational cost.

In the present study, a cohesive zone approach is used to predict the fracture response of
foams. The cohesive zone parameters representing the fracture process are deduced from
the measured load versus displacement response of pre-cracked bend specimens. Predic-
tions are thenmade for crack growth initiation and growth inmetallic foams. The feasibility
of the cohesive zone approach to model the fracture response is thereby assessed. We begin
by reviewing the use of cohesive zone models in non-linear fracture mechanics.
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1.2 Cohesive zone models

Tvergaard and Hutchinson [21] considered crack growth at the tip of a long crack within an
elasto-plastic solid of yield strength σY and selected levels of strain hardening. The crack
growth resistance curve (or R−curve) was predicted by placing a tensile cohesive zone of
peak strength σ̂ and of toughness Γ0 (equal to the area under traction versus separation
curve) along the crack plane. The initiation fracture toughness K0 for the onset of crack
growth follows directly from the Irwin relation EΓ0 =

(
1− ν2

)
K2
0 in terms of the Young's

modulus E and Poisson ratio ν of the bulk solid. For the choice σ̂ ≤ 3σY, the cohesive zone
strength σ̂ is too small to activate plasticity within the surrounding bulk solid, resulting in
a flat R−curve1. In contrast, a rising R−curve was observed for σ̂ > 3σY with the elevation
in crack growth resistance extremely sensitive to the value of σ̂ /σY. For example, for a solid
with mild strain-hardening, the steady state value of fracture toughness KSS (at large crack
extensions) increases from 2.2K0 when σ̂ = 3.5σY to 4K0 when σ̂ = 3.75σY. Chen et al. [22]
made similar predictions for theR−curve in an elastic-plastic compressible solid. They found
that KSS/K0 equals unity for σ̂ ≈ σY and increases dramatically with increasing σ̂ /σY > 1.
This reduction in critical value of σ̂ from 3σY to σY is a direct consequence of the reduction
in plastic constraint at the crack tip in a compressible solid. It is apparent from the studies of
Tvergaard and Hutchinson [21] and of Chen et al. [22] that the solid must possess sufficient
strain hardening in order to attain the prescribedmagnitude of peak traction σ̂ , and for crack
growth to ensue.

It is emphasised that the accuracy of the cohesive zone approach is sensitive to the specifi-
cation of the cohesive traction versus separation law that describes the fracture process. In
general, the cohesive law has 3 main features: (i) a peak value of traction, σ̂ , (ii) a softening
curve associated with the tensile fracture process, and (iii) a toughness, Γ0 (as defined by the
area under the traction versus separation curve). Inverse analysis methods have been used
extensively in the literature to determine the precise form of the cohesive law; see Elices
et al. [23] for a review of these methods. They include a standard J-integral approach for a
crack in a double cantilever beam specimen wherein the cohesive traction is computed as

1The factor of 3 closely relates to the Prandtl solution for peak traction ahead of the crack tip in an elastic
perfectly-plastic incompressible solid.
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the derivative of the J-integral with respect to the crack tip opening displacement. However,
it is challenging to deduce the cohesive zone law from a single geometry and then use it to
predict the collapse response of a different geometry or loading condition.

1.3 Scope of study

The aim of this study is to attempt to measure the toughness of an open-cell aluminium
alloy foam, and to interpret the toughness in terms of the underlying microstructure. The
J−integral test method, as specified in ASTM E1820, is adopted for single-edge-notch-bend
(SENB) specimens. The direct current potential drop (DCPD) method is used to infer the
degree of crack growth, and Digital Image Correlation (DIC) is used to measure the plastic
zone size. The fracture process zone is observed by 3D X-ray computed tomographic (XCT)
reconstructions of the specimen, at regular intervals during the test. Thus, the existence of
a near tip J-field is investigated.

A cohesive zone, embedded in a compressible, elastic-plastic hardening solid, is used to pre-
dict the fracture response of the foam. The cohesive zone parameters, peak strength and
toughness, are deduced fromagoodness-of-fitmeasure between themeasured andpredicted
load versus displacement response of the SENB specimens. The ability of the cohesive zone
model to predict the fracture response of the foam is thereby explored.

2. Experimental investigation

2.1 Material specification and experimental programme

Flat panels of open-cell Al6101-T6 foam2, of dimension 300mm x 300mm x 26.4mm, were
obtained in two (nominal) relative densities, ρ = 6.6% and ρ = 9.6%. The foam microstruc-
turewas interrogated byX-ray computed tomography, see Figs. 2(a) and (b). For both relative
densities of foam, the mean cell edge length is ` = 1.96mm.

The foam panels were machined into the following 4 geometries: (i) dogbone-shaped speci-
men, as shown in Fig. 3(a), for measuring the tensile response of the foam, (ii) compression

2Manufactured by ERGAerospace Corporation, Oakland, California, USA. Refer to Ashby et al. [24] for details
on the manufacturing process.
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test specimen, as shown in Fig. 3(b), (iii) single edge notched bend (SENB) specimen for mea-
suring toughness, see Fig. 3(c), and (iv) bend specimen without a pre-notch in order to assist
in the validation of the foam constitutive model as used in the FE simulations. Local vari-
ations in the foam microstructure are accompanied by a variation in the relative density ρ
from specimen to specimen; consequently, the precise value of ρ for each test specimen was
measured by weighing with a digital balance.

Uniaxial tension tests were performed on the dogbone-shaped specimens of Fig. 3(a) us-
ing a screw-driven test machine at a constant displacement rate of 0.01mm/s. The cross-
sectional area of the uniform section was 30mm x 26.4mm, and the total length of the
specimen (excluding the end tabs) was 100mm. The foaming rise direction of all specimens
is the out-of-plane z−direction, see Fig. 3(a). The end tabs of the specimen were filled with
epoxy for local reinforcement. Circular holes of diameter 10mm were drilled at the centre
of the epoxy-filled tabs to facilitate pin-loading of the specimen in the axial y−direction.
Four repeat tests were performed for each value of ρ. The load was measured by the load
cell clamped to the stationary platen of the rig, and the average axial strain in the specimen
was measured by an extensometer of gauge length Lg = 50mm attached at mid-length of
the specimen, see Fig. 3(a).

Uniaxial compression tests were performed on specimens of geometry shown in Fig. 3(b) to
measure the in-plane response in the x and y directions. The shortening of the specimen
was used to define the compressive strain in the specimen. Both platens were lubricated
with PTFE spray to reduce friction. Four repeat tests for each value of ρ were performed at
a constant displacement rate of 0.01mm/s. The plastic Poisson's ratio νP of the foam was
defined as the negative ratio of the lateral logarithmic strain to the axial logarithmic strain.
The value of νP was determined from the uniaxial compression test using Digital Image Cor-
relation (DIC) by tracking two facet points, one on each lateral edge of the specimen (with
respect to the loading direction), during the course of the test.
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2.2 J-test procedure

The crack growth resistance of the aluminium alloy foam was determined from the single
edge notch bend (SENB) specimens, following the J-integral test procedure as outlined in
ASTM standard E1820 [1]. The direct current potential drop (DCPD)methodwas used to infer
crack extension in the foam specimen. Details of the specimen geometry and test apparatus
are given in Fig. 3(c). The test procedure is summarised below.

2.2.1. Specimen size and loading

The length of pre-crack, a0, and of ligament, W − a0, were chosen to satisfy the ASTM re-
quirements for a valid JIC test (for fully dense metals) as given by:

(a0,W − a0) ≥ 25δTc = 25
JQ
σY

(1)

where δTc is the critical crack tip opening displacement, JQ is the provisional value of ini-
tiation toughness from the single specimen technique prescribed in ASTM E1820 [1], and
σY is the tensile yield strength of the foam as measured from the uniaxial tensile test. The
size criterion of Eq. (1) demands that (a0,W − a0) > 9 mm for both ρ = 6.6% and ρ = 9.6%.
Accordingly, we chose a0 = 20mm and W = 50mm for all SENB specimens tested in this
study. The specimens were of span S = 200 mm between the support rollers and of thick-
nessB = 26.4mm. The pre-crackwasmachined using a fine blade of thickness 300µmwhich
is much less than the cell size of ` = 1.96mm.

Specimens were loaded in three-point bending via rollers of diameter 13mm, using a screw-
driven testing machine at a constant displacement rate of 0.01mm/s. These rollers ensured
that the specimen was electrically insulated from the test machine to facilitate accurate po-
tential drop measurements. The load P was measured via a 2kN load cell clamped to the
stationary platen of the rig. The crosshead displacement v was tracked by a non-contact
laser extensometer in addition to the DIC instrumentation. Prior to the start of the test, the
specimens were spray-painted by black paint in order to enhance the speckle contrast of the
DIC images. A single camera of the GOM system3 was used to track a facet of size 20 × 20

3GOM ARAMIS 12M system, maximum resolution: 4096× 3072 pixels, 100mm lens
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pixels on the foam directly beneath the point of contact with the loading roller. An array of
additional facets were placed (by the DIC post-processing software) at suitable locations on
the surface of the foam specimen to enable the measurement of crack mouth and crack tip
opening displacements, and to determine the plastic zone size.

2.2.2. Measurement of crack extension by direct current potential drop method

A constant current of 1A was applied between the ends of the specimen, see Fig. 3(c). The
resulting voltage across the crackmouth wasmeasured via soldered probe wires of diameter
0.2 mm. The location of these probe wires is included in Fig. 3(c), and the voltage across
the probe wires was recorded by a data logger. The relationship between the potential drop
across probewires and the crack lengthwas obtainedusing the electrical analoguemethod as
described by Smith [25]. WriteVo as the voltage across the probewires for a normalised crack
length a/W equal to a0/W = 0.4 for the SENB specimen. Then, the relationship between the
normalised crack length a/W and the normalised voltageV /V0was obtained from regression
fitting of the data from 3 repeat tests of the electrical analogue to give

a
W

= −0.01478+0.50116
(
V
Vo

)
− 0.0894

(
V
Vo

)2
+0.00557

(
V
Vo

)3
(2)

The voltage drop V /V0 increases with increasing crack length a/W according to Eq. (2). The
increase in voltage (and resistivity) with distributed strut failure has been noted previously
by Amsterdam et al. [26] for the same composition of aluminium alloy foam tested under
uniaxial tension and without a pre-crack.

Unloading compliance techniques were used to verify the accuracy of the potential drop
method in the toughness tests. The specimens were unloaded by 10% of the current load,
and then re-loaded at regular intervals during the test. The DIC technique was used to track
the crackmouth opening displacement and the load-line displacement during the toughness
tests.
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2.3 Damage visualisation using X-ray computed tomography

Three-dimensional computer-assisted X-ray tomography (XCT)was used tomap the 3D frac-
ture pattern of failed struts in the foamat selected stages of crack extension∆aPD, as inferred
from the potential drop method. The toughness test was interrupted at selected values of
∆aPD and the crackwas held open bywedging a PMMA sheet between the crack faces prior to
unloading of the specimen in the testmachine. High resolution 3DXCT scans of the specimen
were obtained byplacing the region of interest (in the vicinity of the crack tip) in the detector
field-of-view; the typical voxel size of the scans was 30µm. A series of post-processing steps
were carried out in order to identify the broken struts and thereby compute the fracture
process zone. The details are as follows. First, the 2-dimensional grey-scaled images from
the XCT were stacked in a series of thin slices of height ∆W = 1.5mm, length L = 20mm,
and depth B = 26.4mm into the page, as sketched in Fig. 3(d). Each slice was binarised to
separate an intact aluminium strut (white) from air (black) by following the method as de-
scribed in [27]. The binarised images were cleaned by removing islands of single pixels or
pixels with up to 4 neighbours. Next, the cleaned 3D image of each slice was projected onto
a plane by assigning specific grey-scale value to each pixel depending upon its location in
the slice. This technique enables the visual identification of the failed struts as well as their
location. Finally, an image processing software4 was used to catalogue the number and the
(x,y,z) coordinates of the mid-point of each failed strut.

3. Material characterisation

The in-plane tensile and compressive responses of Al alloy foam of relative density ρ = 6.6%

and 9.6% are shown in Fig. 4 in terms of the nominal stress σ versus nominal strain ε. Data
are shown for 4 nominally identical specimens for each relative density, with the solid line
corresponding to themean response and the shaded region representing the scatter in data.
The initial response in both uniaxial tension and compression involves elastic bending of
the cell walls. In uniaxial compression, yield occurs at a constant plateau stress prior to
significant hardening at a nominal strain beyond 30%. In contrast, under remote tensile

4Fiji software, https://fiji.sc
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loading, a few cell walls within a narrow band in the gauge section undergo tensile failure
almost immediately after yield, and this leads to a softening post-yield response. The foam
ductility is between 2% and 5% depending upon relative density, see Fig. 4. The out-of-plane
compressive strength was higher than the in-plane compressive strength by approximately
10% for both values of relative density. This mild anisotropy is attributed to the foaming
process and is ignored in the remainder of the study. The ultimate tensile strength (UTS) is
typically 10% below the in-plane compressive plateau stress σY for both values of ρ, as seen
from Fig. 4.

The Young’s modulus E of each foam is measured from the slope of the unloading curve
of the in-plane compressive response at a small value of plastic strain on the order of 1%.
Power-law fits to the measured mean values of E and σY provide scaling laws for E and σY in
terms of the foam relative density ρ:

E
ES

= ρ2.14 and σY
σYS

= 0.7 ρ1.71 (3)

whereES and σYS are the Young’smodulus and yield strength, respectively, of the fully dense
aluminium 6101 alloy. Here, ES equals 70GPa and σYS equals 200MPa, as taken from Ashby
et al. [24]. The exponents on ρ in Eq. (3) are broadly consistent with bending of the cell walls
of the foam: simple analytical models [28] suggest E ∝ ρ2 and σY ∝ ρ3/2.

The plastic Poisson's ratio νP of the foamwas measured from the uniaxial compression tests
using DIC software. The lateral strain in each specimen was measured at 5 equally spaced
transverse sections of the specimen at a compressive strain of 10%. The mean value of νP

from 4 nominally identical specimens for each value of ρ was found to be νP = 0.17 for
ρ = 6.6% and νP = 0.25 for ρ = 9.6%.

4. Fracture tests

4.1 Crack growth resistance curves

The response of the deep notched bend specimen is shown in Fig. 5 in terms of the load P
and crack extension ∆aPD from DCPD as a function of cross-head displacement v. Data are
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shown for 4 repeat tests for ρ = 6.6% and 9.6%, with the solid line corresponding to the
mean response from the 4 tests and the shaded region representing the scatter in data. In all
cases, crack growth (as inferred from the potential dropmethod) initiates prior to peak load.
The accuracy of the potential drop method was verified by additionally measuring the crack
extension by the unloading compliance method as described in ASTM E1820 [1]. Acceptable
agreement was found between the unloading compliance and potential dropmeasurements.

The JR versus∆aPD crack growth resistance curves are obtained from the P versus v and∆aPD
versus v curves following the steps outlined in ASTM E1820 [1]; these responses are shown
in Fig. 5(c) for both values of ρ. Significant R−curve behaviour is observed for both values
of relative density. The extent of the plastic zone ahead of the crack tip was measured using
surface strain mapping by the DIC software. Contours of strain εyy are shown in Fig. 5(d) at
peak load for one specimen of ρ = 6.6%; it reveals the existence of a plastic zone on the order
of the crack length at the onset of crack growth. The R−curve of the foam is attributed to
two distinct zones of energy dissipation: (i) the bulk plastic zone emanating from the crack
tip (containing a distribution of broken struts), and (ii) the crack bridging zone behind the
advancing crack tip.

The value of toughness at crack initiation JIC is determined from the J −R resistance curves
as follows. A crack blunting line, JR = 2σY∆a, is drawn as shown in Fig. 5(c), and an offset line
is drawn parallel to the blunting line, intersecting the abscissa at 0.2mm. The value of the
initiation toughness JIC is given by the intersection of the J −R curve with the 0.2mm offset
line. Following this procedure, we obtain JIC =0.5kNm−1 for ρ = 6.6% and JIC =0.85kNm−1

for ρ = 9.6%.

4.2 Extent of the process zone due to strut failure

Adistribution of failed struts forms a fracture process zone at the crack tip. The location of all
failed struts at a given value of crack extensionwas obtained byX-ray computed tomography,
as described previously in Section 2.3. Consider one specimen of ρ = 6.6% in detail. The
distribution of failed struts projected over all z in the x − y plane, and projected over all y
in the x − z plane is shown in Fig. 6(a) for ∆aPD = 2mm and in Fig. 6(b) for ∆aPD = 10mm.
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We emphasise that the markers in the projected x−y plane indicate the (x,y) location of the
mid-point of each failed strut over all values of z, that is 0 ≤ z ≤ B. Likewise, the markers
in the projected x − z plane indicate the (x,z) location of the mid-point of each failed strut
over for all values of y such that −L/2 ≤ y ≤ L/2. The damage parameter f as a function
of location x at any value of ∆aPD is obtained as follows. We first identify the number of
failed struts nf within each control volume of ∆W LB (where ∆W = 1.5mm, L = 10mm,
and B = 26.4mm) corresponding to a traction-free fracture surface. The average value of
nf(x) is 22, see for example Fig. 6(b), for control volumes at x < 6mm. Second, we count the
number of failed struts n(x) within each control volume centred at x. Then, the fraction of
failed struts f (x) is defined as f = n/nf. The limit f = 1 is a somewhat severe requirement
due to scatter in material ductility, and scatter in the value of nf(x) in the definition of a
traction-free crack, and so we arbitrarily assume that f = 0.9 corresponds to a traction-free
crack extension (i.e. no bridging ligaments) whereas f = 0 corresponds to a region where no
struts have failed. The distribution of failed struts ahead of the initial crack tip is shown in
Fig. 6(c) for the choice∆aPD = 10mm. The region over which 0 ≤ f ≤ 0.9 can be interpreted
as a fracture process zone (FPZ), or equivalently a crack bridging zone (depending upon the
assumed location of the crack tip). For definiteness, we shall assume that the physical crack
tip exists at the transition point from f ≡ 0 to f > 0. Define the maximum extent of the FPZ,
∆aD, as the distance along the x−direction from the initial crack tip to the nearest location
of f = 0. The traction-free crack extension ∆af is the length over which f ≥ 0.9 ahead of the
initial crack tip. We note from Fig. 6(c) that an inferred crack extension of ∆aPD = 10mm

corresponds to traction-free extension of ∆af = 8.4mm and a FPZ of length ∆aD = 18.3mm

ahead of the current location of the traction-free crack tip.

The extent of damage f is plotted as a function of location x ahead of the initial crack tip in
Fig. 7(a) for selected values of ∆aPD in the range 1mm to 10mm. The relation between ∆af,
∆aD, and ∆aPD is given in Fig. 7(b). Note that, when ∆aPD = 2mm, the FPZ is of size ∆aD =

7.4mm and the traction-free crack extension ∆af vanishes. In general, the traction-free
crack tip lags behind the inferred crack tip from PD measurements by about 4mm. Further,
the extent of the bridging zone∆aD increases steeplywith crack extension: ∆aD = 3.4mm at
∆aPD = 1mm and∆aD = 18.3mm at∆aPD = 10mm. It is instructive to compare the relative
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extent of crack tip plastic zone rP and the FPZ ∆aD in order to assess whether a crack tip J-
field exists. As an approximation, assume that the foam yields when the von Mises measure
of strain exceeds a value of σY/E, and define rP as the maximum extent of plastic zone from
the crack tip. The von Mises strain εe was calculated from the measured values of minor
principal strain ε1 and the major principal strain ε2 on the z = 0 plane as

ε2e =
2
9

[
(ε1 − ε2)2 + ε21 + ε

2
2

]
(4)

assuming plane strain, ε3 ≡ 0. The values of ε1 and ε2 were obtained from the DIC software
based on facets of size on the order of the foam cell size. The extent of plastic zone rP is
plotted in Fig. 7(b) as a function of crack extension for ρ = 6.6%. Plots similar to Figs. 7(a)
and (b) have also been generated for the case of ρ = 9.6%, see Figs. 7(c) and (d).

We conclude from Figs. 7(b) and (d) that the FPZ size∆aD in the Al alloy foams is on the order
of the plastic zone size at the onset of traction-free crack extension, and for subsequent
crack growth. Consequently, a crack tip J−field does not exist, and the measured value of
JIC following the ASTM J−integral test procedure cannot be treated as a material property
despite the specimen sizemeeting the criteria of the ASTM standard. We emphasise that the
ASTM procedure is based on the assumption that the FPZ is much smaller than the plastic
zone size. This criterion is obeyed in fully dense metals but is violated for the metal foam
under current consideration. Note that the fracture toughness KIC remains a valid material
parameter for the foam provided the specimen size is sufficiently large for an outer K−field
to exist. Recall that the ASTM guideline suggests the following dimensions for a valid KIC

test on a single edge notch bend geometry:

(a0,W − a0,B) > 2.5
(
KIC

σY

)2
(5)

This size criterion remains meaningful, but we cannot estimate the value of KIC from the
value of JIC from a J−test. We emphasise that this case of metals foams is different from
situations such as those discussed by Pineau [29] where J is an insufficient parameter to
characterise fracture in fully dense metals. In those cases a J−field exists but fracture is
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dependent on both the J−field and the so-called non-singularQ term, introduced by O’Dowd
and Shih [30, 31].

4.3 Conditions for the existence of a crack tip J−field: fully dense alloys versusmicro-

architected materials

Recall that the criterion for the existence of a crack tip J−field in a fully dense alloy is given
by Eq. (1), consistent with Fig. 1(a). Additional length scales arise in metallic foams (and
in lattice materials in general): the cell size ` and strut thickness t. The criterion for the
existence of a crack tip J−field may thus differ from that stated in Eq. (1). A J−field can only
exist if the plastic zone spans a minimum number n1, of cells, such that rP > n1` (where
the precise value of n1 requires future study). Further, the FPZ must be contained within
the zone of J−dominance. This criterion is achievable when fracture occurs in a sequential
fashion strut-by-strut at the crack tip. In contrast, when struts fail stochastically in a zone
of size comparable to that of the plastic zone, an annular zone of J−dominance does not
surround the FPZ, recall Fig. 1(b). In this case, no near-tip J−field exists and J cannot be used
as a fracture parameter. This is the case for the current metallic foam under consideration.

5. Fracture model

Can a cohesive zonemodel be used to predict the fracture response of the foamof the present
study? To address this, the cohesive zone method of Tvergaard and Hutchinson [21] is used
to model crack advance in the deep-notched bend (SENB) specimen. This method allows for
crack bridging in the presence of bulk plasticity as observed in the metal foam without as-
suming a priori that the bridging zone is much smaller than the plastic zone. Static finite
element (FE) calculations were performed with ABAQUS/Standard v6.14 to aid interpreta-
tion of the experimental observations such as the R−curve and the bridging zone. The foam
is modelled as an isotropic, compressible elastic-plastic strain-hardening solid, based on the
compressible elastic-plastic constitutive model of Deshpande and Fleck [11]. The objectives
of the numerical study are: (i) to deduce the cohesive parameters such as the peak traction
σ̂ and toughness Γ0 based on the measured load versus displacement response, and (ii) to
determine whether the cohesive zone model can predict the extent of crack growth.
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5.1 FE model

The FE mesh assumes that the notch in the SENB specimen has a semi-circular tip5 of di-
ameter d = `, where ` = 2mm is the average cell edge length of the foam. Introduce the
co-ordinate system (x,y) as shown in Fig. 8. A cohesive zone is placed ahead of notch on
a0 ≤ x ≤ W comprising four-noded cohesive elements (type COH2D4 in ABAQUS) of zero
thickness. The FE mesh for the foam comprises linear quadrilateral elements of plane strain
(type CPE4R). All rollers are modelled as rigid surfaces, and frictionless contact is assumed
between the rollers and foam. A symmetric half model is employed in the FE study with the
support roller fixed in all directions and the loading roller subjected to a constant downward
velocity in the z−direction. The velocity of loading is chosen to be sufficiently small for in-
ertial effects to be negligible; the response obtained from the explicit FE simulation is thus
quasi-static. Salient features of the assumed material models for the foam and the cohesive
zone are outlined below.

5.2 Material model for the foam

The initial modulus of the foam (for ρ = 6.6%) is taken to be E = 175MPa, based on the
measured mean value of the unloading modulus during uniaxial compression test. An elas-
tic Poisson’s ratio of 0.3 is assumed, based on [28]. The post-yield behaviour of the foam is
modelled using the ABAQUS crushable foam model with isotropic hardening, based on the
constitutive model of Deshpande and Fleck [11], as follows. The yield surface is assumed to
be elliptical, with the centre of the ellipse located at the origin of the mean stress versus von
Mises effective stress plane. It evolves in a geometrically self-similar manner, and is of the
form

φ = σ̂ − σY = 0 (6)

5A series of additional FE simulations were performed with a sharp crack tip. It was found that the notch
acuity has a negligible effect upon the load versus displacement response.
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where σY is the uniaxial yield strength of the foam (assumed to be identical in tension and
compression), and the effective stress σ̂ is defined as

σ̂2 =
1

1+
(α
3

)2 (
σ2
e +α2 σ2

m

)
(7)

Here, σe is the von Mises effective stress, σm is the mean stress, and α is the shape factor of
the yield ellipse. Associated plastic flow rule is assumed. Consequently, α is related to the
plastic Poisson’s ratio νP of the foam according to

α2 =
9
2

(
1− 2νP

1+ νP

)
(8)

Duringplastic flow, the yield surface grows in a geometrically self-similarmannerwith strain,
in accordance with the specified hardening response and the fixed value of shape factor α
of the yield surface.

The initial yield strength σY = 1.42MPa of the foam (for ρ = 6.6%) is based on the measured
mean value from 4 uniaxial compression tests, recall Fig. 4. The assumed (idealised) true
stress σ versus true strain ε response for the foam is shown in Fig. 9(a); it is derived from the
mean of the measured nominal compressive stress σn versus nominal compressive strain εn
responses of Fig. 4 using the following relation to account for plastic compressibilty:

σ = σn

[
1+ εn

1+ (1− 2νP)εn

]
(9)

A value of νP = 0.17 is assumed for the foam of ρ = 6.6% based on the measured mean value
of νP from 4 tests, recall Section 3. The shape factorα of the yield surface follows fromEq. (8)
as α = 1.58.

5.3 Cohesive zone model

Crack advance from the tip of the pre-notch is modelled via the tensile traction versus open-
ing displacement relation. It is assumed that crack growth occurs on the symmetry plane
y = 0. Consequently, it suffices to specify a relation for the normal traction T and crack
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opening δ. We adopt the XuâĂŞNeedleman interfacial law [32] for each cohesive element in
both tension and compression; it has the form

T
σ̂

=
δ
δn

exp
(
1− δ

δn

)
(10)

where σ̂ is the peak crack opening traction that occurs at an opening δ = δn, as shown in
Fig. 10(a). The fracture energy (or toughness) of the cohesive zone is the area under the T
versus δ curve: Γ0 =

∫∞
0
T dδ = eσ̂δn. The crack opening displacement δ is related directly to

the material displacement along the centre-line of the specimen such that δ = 2uy (0+,x) =

−2uy (0−,x).

The precise values of the cohesive properties (σ̂ ,Γ0) for the foam are not known a priori; in-
stead, we deduce values for (σ̂ ,Γ0) based on a goodness-of-fit between the predicted and
measured load versus displacement response during crack growth. To achieve this, a series
of FE simulations were performed for selected values of σ̂ from 1.42MPa (equal to the initial
yield strength of the solid σY) to 2MPa, and Γ0 in the range of 0.1kNm−1 to 1kNm−1. Recall
that the characteristic cohesive length `c is defined by

`c =
π
8
EΓ0
σ̂2 (11)

In order to ensure adequate mesh resolution during all stages of crack growth, 0 ≤ ∆a ≤

W − a0, a uniform FE mesh of element size `e (for both the solid and the cohesive zone) is
constructed across the ligament such that `e ≤ 0.05 `c, see Fig. 8.

6. Predicted fracture response

6.1 Validation of the foam constitutive model

In order to verify the accuracy of the foam constitutivemodel, an FE simulation is performed
for the case of 3-point bending of the foam specimen absent a pre-notch (and without a
cohesive zone). The relevant dimensions of this specimen are: S = 200mm, W = 30mm,
and plane strain thickness B = 26.4mm.
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Themeasuredmean curve of the load versus displacement response is shown in Fig. 9(b); the
load P is normalised by the plastic collapse load, σYBW 2/S, and the roller displacement v is
normalised by the span S. The peak load of the bend specimen is dictated by plastic collapse
of the ligament of the specimen. Subsequently, tensile failure of the cell walls occurs at
the outermost layer, and a crack propagates through the specimen, leading to a softening
P versus v response. The FE prediction of the bend response is included in Fig. 9(b). Good
agreement is noted between the FE prediction and the experiment until plastic collapse of
the section at the mid-length (y = 0) occurs at P S/σYBW 2 = 1. Failure of the foam was not
included in the FEmodel; the continuedmild hardening in P versus v response for v/S > 0.03

is a consequence of the assumed strain-hardening response of the foam.

6.2 Response of a deep notch specimen under 3-point bending: limiting cases

Consider the following 3 limiting cases of cohesive zone properties: (i) σ̂ = Γ0 =∞ such that
softening and crack extension do not occur, (ii) a rigid, ideally plastic cohesive zone with
σ̂ = σY and Γ0 = ∞, and (iii) σ̂ = σY and Γ0 = 0.1kNm−1 to simulate brittle fracture. (Note
that the choice Γ0 = 0 would require `e = 0 in order to adequately resolve the crack tip field
within the cohesive elements.) Denote the initial ligament length by b0 such that b0 =W−a0.
The normalised load P S/σYBb20 versus normalised displacement v/S for these limiting cases
are plotted in Fig. 10(b) and they demonstrate the bounds of the P versus v response that can
be obtained from the cohesive zone model. The measured mean response lies within these
bounds. The responses of cases (i) and (ii) are nearly identical due to the bulk plasticity at
the notch tip and beneath the roller. The mild increase in load beyond the plastic collapse
load

(
P S/σYBb

2
0 = 1

)
is due to the strain-hardening characteristic of the foam.

6.3 Extraction of the cohesive parameters

A series of FE simulations were performed using selected combinations of (σ̂ ,Γ0), with σ̂
between 1.42MPa and 2MPa, and Γ0 between 0.1kNm−1 and 1kNm−1. Each FE simulation,
obtained for a given combination of (σ̂ ,Γ0), gives rise to the following quantities which can
be compared with the experimental observations:

(i) load P versus roller (or cross-head) displacement v response,
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(ii) traction-free crack extension ∆af versus v,

(iii) evolution of the crack tip opening displacement δT and crack mouth opening displace-
ment δM with increasing v,

(iv) FPZ size ∆aD (comprising cell wall failure and crack bridging), plastic zone size rP, and
traction-free crack extension ∆af ahead of the pre-notch tip, each versus v.

The crack tip opening displacement δT and crack mouth opening displacement δM are de-
fined in Fig. 8: δT is the change in distance between points T and T’ placed on the diametric
ends of the semi-circular notch tip, and δM is the change in distance betweenpointsMandM’
at the notch mouth. The precise locations of T, T’, M, andM’ are identified (within ±0.1mm)
and tracked during the experiment using DIC software. Traction-free crack extension is as-
sumed to occur in the FE simulation when the traction T at an integration point within the
cohesive element drops to 0.01σ̂ . The traction-free crack extension ∆af in the experiments
is determined from the 3D reconstruction of the fracture process zone based on a set of XCT
scans, recall Fig. 7(a).

In order to extract the cohesive parameters (σ̂ ,Γ0) associated with the fracture process, we
define a goodness-of-fit measure, χ, for the P versus v response as follows:

χ =

∫ vf
0
|Pexp (v)− PFE (v) | dv∫ vf

0
Pexp (v) dv

(12)

Here, Pexp (v) is the load versus displacement response from the experiment; a mean re-
sponse from 4 tests is assumed for the calculation of χ. PFE (v) is the predicted load versus
displacement v response and vf is the maximum value of cross-head displacement v in the
experiment. A value of χ = 1 indicates perfect agreement between predicted and measured
responses. Contours ofχ, as obtained from a set of 64 FE simulations, are plotted in Fig. 11(a)
with axes of cohesive strength σ̂ and toughness Γ0.

Three distinct local maxima of best fit (χ ≥ 0.9) emerge in the map of Fig. 11(a). We direct
our attention towards the optimal pointwithin each of these regions: point Awith (χ, σ̂ ,Γ0) =
(0.91,1.47MPa,0.96kNm−1), point Bwith (χ, σ̂ ,Γ0) = (0.94,1.63MPa,0.45kNm−1), andpoint
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C with (χ, σ̂ ,Γ0) = (0.97,2.00MPa,0.10kNm−1). The corresponding cohesive laws for the 3
cases are shown in Fig. 11(b). The predicted load versus displacement response for cases A, B,
and C are compared in Fig. 12(a) with the measured response. Note that the Dugdale plastic
zone length as given by Eq. (11) is of magnitude `c = 30.5mm, 11.7mm and 1.7mm for cases
A, B and C respectively.

The crack tip opening displacement δT and crack mouth opening displacement δM for the
three best fitting cases A, B, and C are almost indistinguishable, and they agree well with the
corresponding measured data from DIC, see Fig. 12(b). Thus, it is not possible to distinguish
the best choice of (σ̂ ,Γ0) values on the basis of P versus v response alone. In order to gain
further insight into the best choice of A, B, or C, it is necessary to explore the accuracy of the
predictions with additionally available experimental data, as follows.

Consider the cohesive law of Fig. 10(a). We assume that damage in the cohesive element
initiates when the traction T attains the peak value of σ̂ ; the damage parameter f at this in-
stant is equal to zero. With increasing opening displacement δ, f increases until it becomes
unity when T drops to 0.01σ̂ , marking the onset of traction-free crack extension ∆af. The
region over which 0 ≤ f < 0.9 in the cohesive elements ahead of the pre-crack can be in-
terpreted as the fracture process zone (FPZ), recall Section 4.2. Consequently, the maximum
extent of the FPZ,∆aD, corresponds to the distance along the ligament from the initial crack
tip to the location of f = 0. Likewise, the traction-free crack extension ∆af is the distance
along the ligament from the initial crack tip over which f attains or exceeds 0.9. The extent
of damage zone ∆aD and the traction-free crack extension ∆af from the FE simulations are
shown in Figs. 12(c) and (d), respectively, as a function of roller displacement v, for the 3
best fitting cohesive laws. The measured values of ∆aD and ∆af, as taken from Fig. 5(b) and
Fig. 7(b), are included in Figs. 12(c) and (d), respectively. The ordinate in each case is nor-
malised by the initial ligament length, b0 =W −a0. We note from Figs. 12(c) and (d) that case
A best predicts the evolution of damage zone ∆aD but case B provides best agreement with
the observed traction-free crack extension ∆af. The cross-plot of ∆af and ∆aD in Fig. 12(e)
further demonstrates the large variation in response for cases A to C.

It is instructive to compare the extent of the plastic zone rP at the tip of the pre-crack to
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the size of the FPZ. Predictions of rP based on Eq. (4) are shown in Fig. 12(f) for the 3 best
fitting cohesive laws along with the DIC measurement of rP. The FPZ size ∆aD is generally
smaller than the plastic zone size rP, with the observed response sandwiched between the
predictions for cases A and B. Further, we find from Figs. 12(e) and (f) that the initiation of
crack growth (∆af = 0+) is accompanied by a large FPZ in all 3 predictions (as well as in the
experiment): ∆aD/rP = 0.92 for case A, ∆aD/rP = 0.36 for case B, and ∆aD/rP = 0.1 for case
C, at ∆af = 0+. These points are marked by the symbol O in Fig. 12(f) for clarity.

We conclude from Fig. 12 that no unique pair of (σ̂ ,Γ0) examined here can simultaneously
capture all the experimental observations: load, crack extension, and the development of
the damage/bridging zone. The predictions of crack growth are sensitive to the choice of
σ̂ /σY: a value of σ̂ less than σY implies that the fracture process zone is embedded within an
elastic solid, thereby leading to a flat R−curve. In contrast, a value of σ̂ greater than σY will
give an increasing R−curve but the low strain hardening characteristic of the foam leads to
an extreme sensitivity of the predicted response to the precise choice of σ̂ /σY. Additionally,
we find that the values of σ̂ /σY that give best alignment between predicted and measured
load versus displacement (as well as crack mouth and crack tip opening displacements) cor-
responds to tensile strains on the order of 40%−50% at the notch-tip; this is unrealistic for
metal foams since their tensile ductility is on the order of a few percent (2%−5%, depending
upon the relative density).

7. An attempt to measure directly the cohesive zone law

We proceed to explore whether the mode I cohesive law can be measured directly from the
response of a deep-notch tensile specimen. In particular, the relationship between the co-
hesive zone law and the average traction versus additional axial displacement of a deeply
notched specimen, is now determined. Here, we interpret the additional displacement as
the additional elongation associated with the presence of the edge cracks and plasticity in
the net section.

Double edge notch specimens of length 2L = 100mm, width 2W = 50mm, and thickness
B = 26.4mm were machined from a flat panel of ρ = 6.6% foam. Notches of length a were
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machined using afine blade of thickness300µm, on both sides of the specimen, see Fig. 13(a).
Two notch sizes were considered: a = 15mm and a = 20mm. The extra displacement ∆u
associated with plasticity and distributed cracking of the net section between the notches
wasmeasured using DIC by tracking two facet points spaced 10mm apart and symmetrically
about the mid-plane as shown in Fig. 13(a).

The load versus displacement response of the two deep notched specimens are shown in
Fig. 13(b). The net section stress σ∞ in both cases is normalised by the un-notched com-
pressive yield strength σY of the foam, and is plotted against the gauge displacement ∆u.
The peak value of σ∞ for both the notch geometries slightly exceeds the yield strength of
the foam, consistent with the notch strengthening behaviour observed in open-cell metallic
foams due to size effects, see for example, Andrews and Gibson [15] and Combaz et al. [33].

Contours of the displacement uy in the loading direction at peak load, as obtained from the
DIC, are shown in Fig. 14(a) and (b), for a = 15mm and a = 20mm, respectively. Note that
there is no significant displacement jump within a thin ligament between the notch tips.
Consequently, the measured σ∞ versus ∆u response is not a direct measure of the crack
bridging law. The DIC contours show a displacement jump ∆uy of 0.4mm across the gauge
length of 10mm at peak load: the observed failure strain of 4% from the DIC is consistent
with the tensile ductility of the foam.

7.1 An independent test that makes use of the calibrated cohesive law

FE simulations were performed on the two double edge notch specimens (a/W = 0.6 and
a/W = 0.8) by using the best calibration, case B, from the bend tests for the cohesive zone
parameters. The T versus δ curve for case B is included in Fig. 14(b); it differs from the mea-
sured σ∞ versus ∆u response in the softening portion of the curve. Predictions of the load
versus displacement response are shown in Fig. 13(b) along with contours of displacement
uy in Fig. 14(a) and (b). We find that the cohesive zone model gives an acceptable agreement
of the load versus displacement response for the two deep notch tensile specimens with
their corresponding measured response. However, in a similar manner to the bend test, the
FE simulation predicts unrealistically high notch root strains (> 20%) within a zone on the
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order of the cell size, see Fig. 14(c) for contours of strain at peak load.

8. Concluding remarks

The J-test procedure, as outlined in the ASTM standard E1820, is valid onlywhen the fracture
process zone is much smaller than the plastic zone surrounding the crack tip. This is not the
case for the aluminium alloy foams of the present study. A crack tip J-field does not exist for
the foams studied here, at any stage of crack growth. This is traced to the fact that a large
fracture process zone exists ahead of the crack tip, and extends to almost the plastic zone
boundary. The measured value of JIC is therefore not a material property. The present ex-
perimental study does not consider specimens that are sufficiently large to satisfy the ASTM
criterion for a remote K−field to exist, recall Eq. (5). If tests were performed on specimens
of sufficient size that an outer K−field exists, then this test could be used to measure KIC.
Thus, KIC remains a material property for the foam.

A cohesive zonemodel has the ability to capture the large scale bridging that occurs inmetal
foams, but it remains a challenge for themodel to capture themain features of crack advance
that are observed in the experiment in addition to the load versus displacement collapse re-
sponse. In the present study, the cohesive zone model of Tvergaard and Hutchinson [21],
along with a compressible plasticity model for the foam, was used to model crack growth
in a deep notched bend specimen, and thereby used to extract the cohesive zone parame-
ters: the cohesive strength and toughness. Three possible combinations of cohesive strength
and toughness give an acceptable agreement with the measured load versus displacement
response. However, the value of σ̂ /σY that gives best agreement with themeasured load ver-
sus displacement (as well as crackmouth and crack tip opening displacements) demands the
existence of tensile strains on the order of 40% − 50% at the notch-tip. This is unrealistic
since the foam has a tensile ductility of only a few percent. None of the 3 choices of cohe-
sive zone lawwas able to predict accurately the degree of crack extension (bridged crack and
traction-free crack) as a function of remote displacement.
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Fig. 1. (a) A fracture process zone (FPZ) embedded within a crack tip J-field; (b) no crack tip J-field is present
due to the existence of a FPZ comparable in dimension to the plastic zone size.

(a) (b)

Fig. 2. X-ray CT images of aluminium alloy foam of (a) relative density ρ = 6.6% and (b) ρ = 9.6%. The scale
bar is of length 1mm.
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Fig. 3. Specimen geometries for (a) uniaxial tension test, (b) uniaxial compression test, and (c) fracture tough-
ness test along with the apparatus. The out-of-plane thickness of all specimens is B = 26.4mm. (d) Definition
of a slice used in the XCT analysis for damage visualisation.
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(a) (b)

(c) (d)

plastic zone

Fig. 5. Fracture response of deep-notched bend specimens: (a) Load P versus cross-head displacement v re-
sponse, (b) crack extension ∆aPD, as measured from the DCPD method, versus v, (c) crack growth resistance
curves for ρ = 6.6% and 9.6% specimens, and (d) DIC contours of longitudinal strain εyy in a specimen of
ρ = 6.6% at peak load. The yield strain of this foam is εY = σY/E = 0.008.
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(a)

(b) (c)

Fig. 6. Distribution of failed struts as determined from XCT analysis in a representative specimen of ρ = 6.6%:
(a) Location of failed struts for ∆aPD = 2mm: the projected view in the (x,y) plane shows failed struts over
all z; likewise, the view in the (x,z) plane shows failed struts over all y−values. (b) Location of failed struts for
∆aPD = 10mm: again, the projected view in the (x,y) is over all z; likewise, the view in the (x,z) plane is over
all y. (c) fraction of failed struts f along the ligament (x-direction) for ∆aPD = 10mm.

36



(a)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

∆aPD = 10 mm

6.0

4.0

2.0
1.0

f

x [mm]

(b)

(c)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

∆aPD = 10 mm

6.0

4.0

2.0

1.0

f

x [mm]

(d)

Fig. 7. Extent of crack bridging for ρ = 6.6%: (a) f versus distance x ahead of initial crack tip, (b) traction-
free crack extension ∆af, extent of damage zone ∆aD, and extent of plastic zone size rP versus inferred crack
extension ∆aPD. Extent of crack bridging for ρ = 9.6%: (c) f versus distance x ahead of initial crack tip, (d)
∆af, ∆aD, and rP versus ∆aPD.
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Fig. 8. Geometry of the SENB specimen used in FE simulations and details of the notch tip mesh.

(a) (b)

Fig. 9. (a) Idealised true stress versus true strain response for the foam of ρ = 6.6%. (b) Comparison of the
predicted and measured load versus displacement response of the bend specimen (without a pre-notch).
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(a) (b)

Fig. 10. (a) Assumed traction T versus separation δ response for the cohesive zone. (b) Predictions of the
load versus displacement response of a deeply notched bend specimen with the 3 limiting cases of cohesive
properties: (i) σ̂ = Γ0 = ∞, (ii) rigid, perfectly plastic cohesive zone (σ̂ = σY,Γ0 =∞), and (iii) σ̂ = σY,Γ0 → 0.
The measured mean response for ρ = 6.6% is included.

(a) (b)

Fig. 11. (a) Contours of goodness-of-fit χ, and (b) cohesive laws for the 3 best fitting cases.
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Fig. 12. Comparison of the FE predictions for cases A, B, and C labelled in Fig. 11(a) with experimental observa-
tions for ρ = 6.6%: (a) load P versus displacement v response, (b) evolution of crack tip opening displacement
(δT) and crack mouth opening displacement (δM) with v, (c) extent of the damage/bridging zone ∆aD versus
displacement v, (d) traction-free crack extension∆af versus v, (e)∆aD versus∆af, and (f) relative extent of the
plastic zone rP to the damage zone (with O denoting the point of initiation of a traction-free crack, ∆af = 0+).
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(a) (b)

Fig. 13. Response of a double edge notch specimen under tension: (a) geometry and loading, (b)measured and
predicted load versus displacement response. The cohesive traction T versus opening δ response for the best
fitting case, case B, of the bend toughness test is included.
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