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Abstract

This thesis presents work on the development of model-based Bayesian approaches to
object tracking and intent prediction. Successful navigation/positioning applications
rely fundamentally on the choice of appropriate dynamic model and the design of
effective tracking algorithms capable of maximising the use of the structure of the
dynamic system and the information from sensors. While the tracking problem with
frequent and accurate position data has been well studied, we push back the frontiers
of current technology where an object can undergo fast manoeuvres and position fixes
are limited. On the other hand, intent prediction techniques which extract higher level
information such as the intended destination of a moving object can be designed, given
the ability to perform successful tracking. Such techniques can play important roles
in various application areas, including traffic monitoring, intelligent human computer
interaction systems and autonomous route planning.

In the first part of this thesis Bayesian tracking methods are designed based on a
standard fix-rate setting in which the dynamic system is formulated into a Markovian
state space form. We show that the combination of an intrinsic coordinate dynamic
model and sensors in the object’s body frame leads to novel state space models according
to which efficient proposal kernels can be designed and implemented by the sequential
Monte Carlo (SMC) methods. Also, sequential Markov chain Monte Carlo schemes are
considered for the first time to tackle the sequential batch inference problems due to
the presence of infrequent position data. Performance evaluation on both synthetic and
real-world data shows that the proposed algorithms are superior to simpler particle
filters, implying that they can be favourable alternatives to tracking problems with
inertial sensors.

The modelling assumption that leads to Markovian state space models can be
restrictive for real-world systems as it stipulates that the state sequence has to be
synchronised with the observations. In the second major part of this thesis we relax this
assumption and work with a more natural class of models, termed variable rate models.
We generalise the existing variable rate intrinsic model to incorporate acceleration,
speed, distance and position data and introduce new variable rate particle filtering



methods tailored to the derived model to accommodate multi-sensor multi-rate tracking
scenarios. The proposed algorithms can achieve substantial improvements in terms of
tracking accuracy and robustness over a bootstrap variable rate particle filter. Moreover,
full Bayesian inference schemes for the learning of both the hidden state and system
parameters are presented, with numerical results illustrating their effectiveness.

The last part of the thesis is about designing efficient intent prediction algorithms
within a Bayesian framework. A pseudo-observation based approach to the incorpora-
tion of destination knowledge is introduced, making the mathematics of the dynamical
model and the observation process consistent with the Markov state process. Based
on the new interpretation, two algorithms are proposed to sequentially estimate the
probability of all possible endpoints. Whilst the synthetic maritime surveillance data
demonstrate that the proposed methods can achieve comparable prediction performance
with reduced computational cost in comparison to the existing bridging distribution
based methods, the results on an extensive freehand pointing database, which con-
tains 95 three-dimensional pointing trajectories, show that the new algorithms can
outperform other state-of-the-art techniques. Some sensitivity tests are also performed,
confirming the good robustness of the introduced methods against model mismatches.
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Chapter 1

Introduction

For many problems in scientific fields such as statistical signal processing, time series
analysis, biostatistics and econometrics, one of the most important tasks is to obtain an
accurate estimate of some hidden quantity (state) based on observations from various
sources. This is a nontrivial task since in addition to accounting for the randomness
which the state of interest exhibits in its evolution process, we also need to deal with
the data that is typically noisy, incomplete and/or limited in quantities.

In many cases, we may have already obtained some level of prior knowledge regarding
the evolving pattern of the quantity from fields such as physics. For example, it is well
known that the motion of a physical object can be described by certain mathematical
models. This information, along with a probabilistic model stating the relationship
between the data and the underlying quantity, may be represented using probabilistic
state space models. While the statistical modelling of the system embodies our views
about how the data is generated, performing reasoning about the properties of the
underlying quantity is the next crucial step before making any decisions and conclusions
given the data at hand.

Among a variety of statistical methods, the Bayesian approach provides a theo-
retically sound framework for us to perform statistical modelling and inference. It
deals with the associated uncertainties in a quantitative way and thus allows informed
assessments to be made. The beauty of Bayesian methods also lies in the fact that
it provides a natural solution to the sequential update of our beliefs when new data
arrives over time. This feature is well suited to the modeling of data that arrives
sequentially and hence it underpins many sequential learning methodologies. In this
thesis, we aim to tackle real-world problems, including object tracking and intent
prediction, with model-based Bayesian approaches.

1



Introduction

The ability to accurately track an object of interest is important in many application
domains. A successful tracking algorithm relies heavily on the choice of a good model
for object dynamics and an effective inference algorithm. This is because the former
condition imposes an informed prior while the latter resolves the uncertainties in a better
way. Therefore, these two essential ingredients are both sought when designing tracking
algorithms in this thesis. Due to the presence of complicated mathematical models
and/or indirect measurements, analytically tractable models are often unavailable
in tracking applications, preventing the exact Bayesian inference. In such cases, we
resort to methods which can provide reliable approximations of posterior distributions,
such as those based on Monte Carlo theory. In particular, we are interested in
developing Bayesian approaches for challenging tracking scenarios, based on Sequential
Monte Carlo (SMC) methods which have proved to be very powerful when dealing
with non-linear and/or non-Gaussian systems and are well adapted to sequential
inference tasks. Furthermore, building upon the accurate tracking of a moving object,
Bayesian approaches can also be applied to inference problems in which knowing the
intended destination of an object is of concern. Many application areas, ranging from
human computer interaction, smart assistance systems and surveillance, can benefit
from correct and fast estimations of the object intent. Motivated by these potential
applications, this thesis also addresses the problem of online intent prediction in object
tracking.

1.1 Thesis Outline and Contributions

In the year of writing this thesis the bootstrap filter of [Gordon et al., 1993], i.e. the
first working instance of modern SMC methods which will be used extensively in this
thesis, has just celebrated its twenty-fifth anniversary. Chapter 2 starts with a brief
introduction to the Bayesian inference framework, which is followed by a condensed
review of stochastic simulation methods such as importance sampling (IS) and Markov
chain Monte Carlo (MCMC). It is organised in this way because they are the building
blocks of the SMC approaches. After that, we give a detailed review of the SMC
methods, covering the sequential learning schemes based on the ideas of IS and MCMC,
respectively and the relevant improvement strategies over the past 25 years.

Chapter 3 studies object tracking problems from a fixed rate perspective where
the dynamic system is formulated using Markovian state space models. We adopt an
intrinsic coordinate dynamic model for the motion, since it offers a promising solution
to address the problem of fusing measurements from sensors that are physically in the

2



1.1 Thesis Outline and Contributions

intrinsic frame of an object. It is shown that the combination of inertial measurements
with the intrinsic model enables the design of effective proposal kernels, which can
be incorporated effectively into IS-based SMC filters and sequential MCMC. The
performance of the proposed methods are assessed using synthetic data, track cycling
data as well as real vehicle data, and the results indicate their strong potential for
navigation/tracking problems where inertial sensors are involved and position data is
limited.

Although the fixed rate assumption has been widely made in many practical
problems, it is not necessarily a realistic description of the actual system dynamics
in that hidden states are forced to arrive synchronously with measurements. The
stringency of this assumption can be relaxed by allowing the hidden state to evolve
continuously in time and independently from the observations. The resulting models
are usually referred to as “variable rate models”.

Chapter 4 is devoted to the development of particle filtering methods tailored to
variable rate manoeuvre models. The existing intrinsic coordinate model is generalised
into a compatible state space form, allowing straightforward incorporation of inertial
measurements. We then show how variable rate particle filters with improved per-
formance in comparison to its bootstrap equivalent may be designed in the presence
of asynchronous measurements, based on the ideas of sampling disturbances of the
dynamic system and state rejuvenation. The proposed methods are tested on both
the synthetic data and benchmark trajectory data, giving a comprehensive evalua-
tion as to their performance. Furthermore, sampling-based schemes are proposed to
perform full system inference for the considered model and numerical examples are
provided to demonstrate their effectiveness in learning both the hidden state and
system parameters.

While the previous chapters focus on building advanced Bayesian tracking algorithms
from different modelling perspectives, Chapter 5 presents a Bayesian framework for
predicting an object’s intended destination in the context of object tracking. The
existing bridging distribution based intent prediction methods impose the assumption
that the initial state is independent of the terminal state and thus is inconsistent with
the Markov state process. To provide a consistent formulation, we propose to model
the destination point as a ‘pseudo-observation’ instead of an augmented state. It will
be shown that this new interpretation not only preserves the underlying Markovian
structure but also leads to two new algorithms that are computationally more efficient
than the original bridging distribution based approaches.

3



Introduction

Chapter 6 summarises the arguments made and methods introduced in the previous
chapters. Conclusions are drawn and some suggestions for future research are provided.

The main contributions of this thesis are summarised as follows:

• The presentation of a fixed rate intrinsic coordinate model which allows for the
fusion of inertial (accelerometer, gyroscope, speedometer and distance meter)
and asynchronous position measurements. (Chapter 3)

• The design of section-wise forward-filtering-backward-sampling based proposal
kernels as well as sequential locally optimal proposal kernels, which leads to
improved tracking performance when used with sequential Monte Carlo methods
(including particle filters and sequential MCMC). (Chapter 3)

• A generalised variable rate intrinsic coordinate model and corresponding particle
filtering algorithms for asynchronous multisensor object tracking, leading to
better performance and robustness in some challenging tracking scenarios as
compared with the standard variable rate particle filter. (Chapter 4)

• Effective proposal kernels based on simulation smoother are designed to accom-
modate conditionally deterministic models. (Chapter 4)

• A novel Bayesian approach to intent prediction based on Markov bridging dis-
tributions. Algorithms designed based on the new formulation can provide
competitive performance with reduced computational complexity when compared
to the existing bridging distribution based methods. (Chapter 5)

Some further contributions include:

• Two samplers are designed based on the particle MCMC methods to perform full
system inference under a conditionally deterministic model. (Chapter 4)

• Improvement strategies based on MCMC sampling methods are presented for
use with the fixed rate and variable rate SMC filters. (Chapter 3 and 4)

4
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1.2 Publications

Works covered in this thesis

Parts of this thesis have been published in the following peer-reviewed journal and
conferences:

• J. Liang, B. I. Ahmad, R. Gan, P. Langdon, R. Hardy, and S. Godsill. On
destination prediction based on Markov bridging distributions, IEEE Signal
Processing Letters, vol. 26, no. 11, November 2019.

• J. Liang and S. Godsill. Bayesian fusion of asynchronous inertial, speed and
position data for object tracking, in Proc. of the 44th International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pp. 5212-5216, 2019.

• J. Liang and S. Godsill. A particle filter localisation system for indoor track
cycling using an intrinsic coordinate model, in Proc. of the 21st International
Conference on Information Fusion (FUSION), pp. 1896-1903, 2018.

The work in Chapter 4 is going to be submitted in the near future:

• J. Liang and S. Godsill. Particle filtering methods for variable rate models with
asynchronous sensors, In Preparation.

Other peer-reviewed works

The below are relevant works that are not directly covered in this thesis:

• J. Liang, B. I. Ahmad, and S. Godsill. Simultaneous intent prediction and state
estimation using an intent-driven intrinsic coordinate model, 2020 IEEE 30th
International Workshop on Machine Learning for Signal Processing (MLSP). In
press.

• R. Gan, J. Liang1, B. I. Ahmad, and S. Godsill. Modelling intent and destination
prediction within a Bayesian framework: predictive touch as a usecase, Data-
Centric Engineering, Cambridge University Press. In press.

• Q. Li, S. Godsill, J. Liang, and B. I. Ahmad. Inferring dynamic group leadership
using sequential Bayesian methods, in Proc. of the 45th International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pp. 8911-8915, 2020

1joint first author
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• B. I. Ahmad, P. M. Langdon, J. Liang, S. Godsill, M. Delgado, and T. Popham.
Driver and passenger identification from smartphone data, IEEE Transactions
on Intelligent Transportation Systems, vol. 20, no. 4, pp. 1278-1288, April 2019.
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Chapter 2

Bayesian Inference with Sequential
Monte Carlo methods

2.1 Bayesian Inference

Being able to extract accurate and/or high-level information out of real-world data
coming from various sources can be beneficial as better insights towards the problem
of interest can be gained by knowing such hidden information. However, in the data
collection process it is almost sure that random noises will be introduced owing to, for
example, the use of imperfect instruments. In many cases such noises/randomness can
be characterised by some known distributions and hence the likelihood function p(D|x),
with D the collected data and x some hidden quantities of interest, can be evaluated
accordingly. Based on the computed likelihood one may identify the most probable
value of x that leads to the observed data. Clearly, this approach implicitly assumes
that the hidden quantities are fixed constants and thus it can not account for the
uncertainty associated with the estimate of x. In order to quantify such uncertainty,
the hidden quantities x need to be treated as random variables instead of constants.
Consequently, the goal of the inference task is changed from obtaining a point estimate
of x based on p(D|x) to estimating the distribution p(x|D). The way to obtain this
inverse distribution is given by the Bayes’ rule:

p(x|D) = p(D|x)p(x)
p(D)

where the probability density function p(x|D) is known as the “posterior”, p(x) is
termed “prior” which governs the way how the hidden variables are generated and p(D)
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is normally served as a normalising constant given a certain set of data. The philosophy
behind this simple expression may be interpreted as follows: initial assumptions with
respect to x, which may come from experts in the related fields, can be made at
the beginning. These prior beliefs are embedded into the prior distributions which
will be converted into posterior distributions in the light of observed data. In other
words, the Bayes’ rule offers a solution to the problem of inferring random variables by
combining the expert knowledge (subjective) with observed data (objective). The hope
is that a better estimation towards the variables of interest may be obtained by doing
a trade-off between prior belief and likelihood. The inference principle given above
can be regarded as an informal introduction to Bayesian inference, which is a general
inference framework that plays an important role in the many scientific fields such as
modern statistical signal processing and machine learning. A thorough introduction to
the modern Bayesian inference methods is out of the scope of this thesis as there have
been many exceptional materials covering this topic (see [Bishop, 2006; Godsill, 2019a;
Liu, 2004; Murphy, 2012]).

The work presented in this thesis is devoted to the developments of sequential
Bayesian inference methods. By sequential we refer to the scenarios where data arrive
in order over time, that is D = y0:n where yn is a measurement made at time instant tn,
with ti−1 < ti, i ∈ N+. If the system is Markovian and observations yn are conditionally
independent of all other variables provided xn, Bayes’ formula may be re-written as

p(x0:n|y0:n) = p(y0:n|x0:n)p(x0:n)
p(y0:n) ∝ p(yn|xn)p(xn|xn−1)p(x0:n−1|y0:n−1)

where x0:n denotes the hidden variables linked to the measurements. This formulation
offer a natural way to recursively update the posterior using the information contained
in the incoming measurement and hence it forms the basis of many sequential Bayesian
inference methods, including the Sequential Monte Carlo methods considered through-
out this thesis. In the following sections we will give a detailed survey covering the
progress of sequential Monte Carlo methods made over the last 25 years.

2.2 Sampling Methods

In many applications we want to estimate some important properties (e.g. moments)
associated with some distribution p. This normally requires the evaluation of the
following integral

ϕ̄ =
∫
ϕ(x)p(x)dx = Ep{ϕ(x)} (2.1)
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with ϕ(·) being the function of interest and Ep the expectation with respect to p.
The fact that the above integral can not be evaluated analytically in many realistic
scenarios has led to the extensive use of Monte Carlo approximation methods. In the
simplest case, when random samples can be drawn from a distribution p easily the
above integral can be approximated in an unbiased manner as follows

ϕ̄ ≈ 1
Np

Np∑
i=1

ϕ(x(i)), x(i) ∼ p(x), i = {1, 2, . . . , Np} (2.2)

Note that this simple Monte Carlo approach is subject to the situation where
direct simulation of random samples from p is possible (e.g. via the Inverse Transform
method). More often, it is not possible to sample from complicated distributions
directly and thus we have to resort to indirect sampling techniques such as Importance
Sampling, Markov Chain Monte Carlo (MCMC) and Rejection Sampling.

2.2.1 Importance Sampling (IS)

In importance sampling, samples are proposed from another distribution q other
than p of interest [Liu, 2004; Robert and Casella, 2004]. The proposal q should be
a distribution where samples can be conveniently drawn and it must have the same
(or greater) support as p in order to construct a valid importance sampler. More
formally, p is called the target distribution, q is known as the importance distribution
(or instrumental distribution) and the ratio ω(x) = p(x)/q(x) is termed importance
weight. To see how this construction can lead to a valid Monte Carlo sampling scheme,
rewrite (2.1) by adding q(x) at the top and the bottom:

ϕ̄IS =
∫ ϕ(x)p(x)q(x)

q(x) dx =
∫
ϕ(x)w(x)q(x)dx = Eq{ϕ(x)w(x)} (2.3)

This familiar form suggests that we may approximate the integral of interest using
draws from the importance distribution:

ϕ̄IS ≈ 1
Np

Np∑
i=1

ϕ(x(i))w(x(i)), x(i) ∼ q(x) (2.4)

It can be shown that the resulting estimator is unbiased and consistent, which
means that (2.4) converges almost surely to (2.1) as Np goes to infinity [Geweke, 1989].
Note again that although the importance sampler has the same convergence rate as
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the simple Monte Carlo integration, it offers a solution to the simulation of random
variables from some highly complex density p.

More importantly, importance sampler can be readily applied to target distributions
that are only known up to an unknown normalising constant. This feature is very
useful for Bayesian applications in which the objective is to generate variable x from
the following target (posterior) distribution

p(x|y) = p(y|x)p(x)∫
p(y|x)p(x)dx = p(y|x)p(x)

C
(2.5)

where y is the observed data and the integral in the denominator serves as a normal-
ising constant C which is typically unknown. It can be shown that a Monte Carlo
approximation for C can be obtained straightforwardly using samples generated from
the importance distribution:

C̄ =
∫
Cp(x|y)dx =

∫ p(y|x)p(x)
q(x) q(x)dx ≈ 1

Np

Np∑
i=1

ω̃(x(i)) (2.6)

with ω̃(x) = p(y|x)p(x)
q(x) as the unnormalised importance weight. Consequently the

expectation with respect to p(x|y) is approximated as

ϕ̄IS =
∫
ϕ(x)p(x|y)

q(x) q(x)dx

=
∫
ϕ(x)p(y|x)p(x)

Cq(x) q(x)dx

≈ 1
Np

Np∑
i

ϕ(x(i)) ω̃(x(i))
C̄

=
Np∑
i=1

ϕ(x(i))ω(x(i)), ω(x(i)) = ω̃(x(i))∑N
j=1 ω̃(x(j))

(2.7)

where ω(x) is the (self) normalised importance weight. Further, the target distribution
p(x|y) can be represented using the weighted point masses

p(x|y) ≈
Np∑
i=1

ω(x(i))δx(i)(x) (2.8)

with δ(·) the Dirac delta function. Importance sampling is the building block of the
particle filter with which sequential Bayesian inference on non-linear non-Gaussian
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state space models can be performed. While the former is briefly reviewed here, the
latter will be discussed in detail in the preceding sections.

2.2.2 Markov Chain Monte Carlo (MCMC)

An alternative class of indirect sampling techniques to importance sampling, which
allows simulation from some high dimensional and complicated distribution by con-
structing a proper Markov chain with the distribution of interest as its stationary
distribution, is Markov chain Monte Carlo (MCMC). As with the target distribution in
importance sampling, it is often straightforward to identify the stationary distribution,
say p(x), in MCMC applications. However, knowing the target distribution is not
equivalent to having it as the stationary distribution of the underlying chain. Hence, it
is essential to ensure the constructed Markov chain will eventually leads to the desired
stationary distribution.

Denoting K(z|x) as the transition kernel associated with some MCMC algorithm, it
turns out that a sufficient condition for p to be a stationary (or invariant) distribution
of the underlying Markov chain is that the following detailed balance is satisfied:

K(z|x)p(x) = K(x|z)p(z) (2.9)

Meeting the detailed balance condition implies that once we have obtained a sample
x ∼ p, subsequent samples generated according to the transition kernel K will be
distributed marginally as p as well. While the detailed balance is simply a sufficient
condition to check the stationary distribution, there are several other conditions under
which one can also examine whether a distribution is guaranteed to be the stationary
distribution of a Markov chain. However, a detailed review on all these aspects is out
of the scope of this thesis and interested readers may find [Gilks et al., 1995] a decent
and thorough introduction to MCMC.

Metropolis-Hastings

The Metropolis-Hastings (MH) algorithm, as one of the most representative MCMC
algorithms, was introduced and generalised in [Hastings, 1970; Metropolis et al., 1953].
Let p(x) be the target distribution, q(·|x) be the transition distribution from which
samples are drawn and ρ be the acceptance ratio based on which an accept-reject
decision can be made, a MH algorithm then proceeds as per Algorithm 1. Note that
a ∧ b = min{a, b}.
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Set x(0) arbitrarily;
for m = 1, 2, . . . , Niter do

Sample x∗ ∼ q(x|xm−1);
Compute:

ρ(x∗, xm−1) = 1 ∧ p(x∗)
p(xm−1)

q(xm−1|x∗)
q(x∗|xm−1) ;

Sample u ∼ Unif(0, 1);
Set xm = x∗ if u ≤ ρ(x∗, xm−1); otherwise, set xm = xm−1;

end

Algorithm 1: Metropolis-Hastings (MH) Algorithm

Recall that each MCMC algorithm implicitly defines a transition kernel from which
we simulate a new state, for MH the steps taken within a single iteration represent
this kernel. More formally, the transition kernel of MH can be written as:

K(z|x) = ρ(z|x)q(z|x) +
(
1 −

∫
ρ(s|x)q(s|x)ds

)
δx(z) (2.10)

where δx is the Dirac mass at x. It is straightforward to show that this kernel satisfies
the detailed balance condition by considering the two parts delimited by the plus
symbol separately. An appealing feature of the MH algorithm is that it provides us
with great flexibility in specifying proposal distributions.

Gibbs sampling

Suppose that we want to sample from a target distribution p(x) with x = [x1, x2, . . . , xk]T

and define x−i = {x1, . . . , xi−1, xi+1, . . . xk} the set of variables excluding xi. In the
simplest case, the Gibbs sampler [Brooks et al., 2011; Gelfand and Smith, 1990; Geman
and Geman, 1984] produces samples by operating on one element xi at a time at the
n-th iteration, that is

(a) Pick an index i ∈ {1, 2, . . . , k} either systematically or uniformly.

(b) Sample from the full conditional x∗
i ∼ p(xi|x−i)

(c) Set x(n)
i = x∗

i and return to (a), repeat until a sweep is finished

To understand why the above procedure leads to a valid sampling scheme, we may
interpret the Gibbs sampler as a special variant of the MH algorithm whose acceptance
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ratio always equals to one. More precisely, consider a MH sampler with the full
conditional as its proposal, the acceptance ratio can be shown as

ρ(x∗
i , x

(n−1)
i ) = 1 ∧ p(x∗

i , x
(n−1)
−i )q(x(n−1)

i )
p(x(n−1)

i , x
(n−1)
−i )q(x∗

i )

= 1 ∧ p(x∗
i |x

(n−1)
−i )p(x(n−1)

−i )p(x(n−1)
i |x(n−1)

−i )
p(x(n−1)

i |x(n−1)
−i )p(xn−1

−i )p(x∗
i |x

(n−1)
−i )

= 1

which suggests that properties of MH algorithms may be readily inherited by the Gibbs
sampler.

In summary, MCMC methods have led to a huge body of successful applications in
different domains since its rediscovery in 1990s and recent advances have revealed that
1). sequential Monte Carlo (SMC) methods can be designed based on MCMC and the
resulting algorithms can be strong competitors to renowned importance sampling (IS)
based SMC methods in challenging scenarios [Berzuini et al., 1997; Gilks and Berzuini,
2001; Golightly and Wilkinson, 2006; Li and Godsill, 2018; Liang and Godsill, 2019;
Pang et al., 2011b; Pitt and Shephard, 1999; Septier and Peters, 2016]; 2). Leveraging
the output of IS-based SMC methods, efficient MCMC algorithms can be designed to
estimate unknown parameters of system models [Andrieu and Roberts, 2009; Beaumont,
2003; Fernández-Villaverde and Rubio-Ramírez, 2007; Riabiz et al., 2015] or to jointly
infer both parameters and hidden states [Ahmad et al., 2016b; Andrieu et al., 2010;
Pitt et al., 2012].

2.3 Particle Filters

2.3.1 State Space Models

State space representation of dynamic systems is widely considered when modelling
time series data. Denoting y0:n ≜ {y0,y1, . . . ,yn}, yn ∈ Rm×1, m ≥ 1, as observations
made at times {t0, t1, . . . , tn} and x0:n ≜ {x0,x1, . . . ,xn}, xn ∈ Rs×1, s ≥ 1 as the
hidden state sequence that is of interest, a generic dynamic system may be expressed
in terms of the following state space form,

xn = a(xn−1,un)
yn = b(xn,vn)

(2.11)
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where a(·) and b(·) are functions which specify the respective generation criterion of xn
and yn given the state and noise disturbances un and vn. These functions can be either
linear or non-linear, depending on different modelling choices. Moreover, it is necessary
to specify the probability distributions of the noises so as to complete the model in a
probabilistic setting. We assume here that the state process is Markovian, meaning that
i) each state is generated according to its previous state; ii) the observation depends
only upon current state; iii) u and v are white. When the noises are additive, (2.11)
becomes

xn = a(xn−1) + un
yn = b(xn) + vn

(2.12)

Alternatively, a probabilistic state space model may be described in terms of a
state evolution density and an observation density:

xn ∼ p(xn|x0:n−1,y0:n−1)
yn ∼ p(yn|y0:n−1,x0:n)

(2.13)

This specification can be found in a huge body of literatures related to Bayesian
modeling and inference [Cappé et al., 2007; Doucet et al., 2000b; Godsill et al., 2004;
Liu and Chen, 1998; Särkkä, 2013; West and Harrison, 1997] and will be adopted
throughout this thesis. If again a Markov system is considered, (2.13) can be re-written
as

xn ∼ p(xn|xn−1)
yn ∼ p(yn|xn)

(2.14)

Note that (2.14) and (2.11) are equivalent. More importantly, (2.14) allows the
decomposition of the joint probability density p(x0:N ,y0:N) at tN to be simplified as

p(x0:N ,y0:N) = p(x0)
N∏
n=1

p(xn|xn−1)p(yn|xn) (2.15)

A graphical representation corresponding to this factorisation of the joint distribution
is given in Fig. 2.1. Because the hidden state shares the same set of times as the
observations and a Markov process is assumed, this model can be regarded as a hidden
Markov (state space) Model (HMM) [Doucet et al., 2000b]. Throughout this thesis, we
will frequently refer to the models formulated in a Markovian state space form as “fixed
rate” models, in order to emphasise the difference between this class of models and the
“variable rate” models. The assumption of a fixed rate system is ubiquitous due to its
simplicity and inference methods based on this assumption have led to many successful
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applications. However, sometimes a relaxation of this restriction which allows the
evolution of hidden state to be decoupled with observations may be more natural and
attractive. Models based on such a variable-rate assumption have been shown effective
in capturing different degrees of manoeuvrability of agile objects [Godsill et al., 2007]
and in predicting sudden price changes in financial markets [Christensen et al., 2012].
Because of its usefulness in modelling real-world scenarios and the easy extension
to non-Markovian cases, variable rate models have become a strong competitor to
conventional fixed-rate models. More details regarding variable rate models can be
found in Chapter 4.

xn−1 xn
p(xn|xn−1) xn+1

p(xn+1|xn)

yn−1

p(yn−1|xn−1)

yn

p(yn|xn)

yn+1

p(yn+1|xn+1)

Fig. 2.1 Graphical model of the state space model in (2.14), showing the dependencies
between the hidden state (circle) and the measurements (rectangle).

2.3.2 Bayesian Filtering

In the context of Bayesian filtering problems, our objective is to estimate the posterior
density p(x0:n|y0:n) (or its marginal p(xn|y0:n) ) recursively, based on the state space
models introduced before. In addition to the posterior distribution, the expectation of
some function ϕ(·) that takes the state as its input may be also of interest:

ϕ̄ = E{ϕ} =
∫
ϕ(x0:n)p(x0:n|y0:n)dx0:n (2.16)

For instance, the estimator will give the posterior mean by setting ϕ(x0:n) = x0:n. To
illustrate the recursive procedure using which one can approach the desired posterior
distribution over time, we start with assuming that p(x0:n−1|y0:n−1) from the last time
instant is available. Consequently, the joint predictive distribution of the hidden state

15



Bayesian Inference with Sequential Monte Carlo methods

may be expressed as below,

p(x0:n|y0:n−1) = p(xn|x0:n−1,y0:n−1)p(x0:n−1|y0:n−1)
= p(xn|xn−1)p(x0:n−1|y0:n−1) (2.17)

where the second line stems from the Markovian assumption. Alternatively, this
prediction step can be formalised in terms of marginalisation, as in [Arulampalam
et al., 2002] and [Doucet and Johansen, 2011],

p(xn|y0:n−1) =
∫
p(xn|xn−1)p(xn−1|y0:n−1)dxn−1 (2.18)

This is partially due to the fact that many conventional filtering methods such as Kalman
filters seek for closed form solutions for the above integral, whereas in intractable
cases where simulation-based techniques are used the joint distribution (2.17), of which
(2.18) admits a marginal, is believed to be a relatively more convenient representation.

According to Bayes’ rule, information contained in the incoming measurement yn
can be incorporated into (2.17) via

p(x0:n|y0:n) = p(yn|x0:n,y0:n−1)p(x0:n|y0:n−1)
p(yn|y0:n−1)

∝ p(yn|xn)p(x0:n|y0:n−1) (2.19)

with the normalising constant given by

p(yn|y0:n−1) =
∫
p(yn|xn)p(xn|y0:n−1)dxn (2.20)

It is now clear that expressions (2.17) and (2.19) together offer a solution to the problem
of recursive estimation of p(x0:n|y0:n) as well as any features associated with it. They
are known as the “prediction-correction recursion” as per [Cappé et al., 2007; Ho and
Lee, 1964; Särkkä, 2013].

If the initial distribution p(x0) is Gaussian and the models in (2.14) are linear-
Gaussian, it can be shown that p(xn|y0:n) is still Gaussian (p(x0:n|y0:n) is henceforth
jointly Gaussian) owing to the properties of conjugate distributions. From this point
onwards, a Bayesian interpretation of Kalman filters [Anderson and Moore, 1979] can
be obtained [Ho and Lee, 1964]. However, although linear-Gaussian models or discrete
HMMs can result in closed-form solutions the cases where they can be directly applied
are limited. For most state space scenarios, the dynamic system is typically non-
linear and/or non-Gaussian which means analytical forms of p(x0:n|y0:n) ∝ p(x0:n,y0:n)

16



2.3 Particle Filters

are usually unavailable. Henceforth, a lot of effort has been made to improve the
conventional Kalman filtering methods such that they can accommodate non-linear
systems. Among them, the extended Kalman filter (EKF) and its variants linearise
the functions in (2.12) when computing covariance matrices so that analytical Kalman
recursions can be applied again in inference. The approximation errors introduced by
the linearisation as well as the uni-modal assumption on the posterior distribution
can lead to poor performance when dealing with systems of high non-linearity and/or
non-Gaussianity [Wan and Van Der Merwe, 2000]. Instead of relying on the lower-order
linearisation as in EKFs, the unscented Kalman filter (UKF) [Julier and Uhlmann,
1997; Wan and Van Der Merwe, 2000] approximates the posterior distribution via a
set of “sigma points” which are carefully chosen according to a deterministic sampling
technique called unscented transformation (UT). As the distribution given by the UKF
is parameterised by a mean and covariance (i.e. Gaussian), it still leads to a mismatch
when the true posterior is multi-modal (which is typical for non-linear systems).

In fact, all these drawbacks/limitations associated with Kalman-type approaches
have contributed to the great interest in using sampling-based methods for solving
filtering and smoothing problems. The remaining question is whether it is feasible to
adapt the aforementioned sampling strategies so that they can operate in a sequential
manner to suit sequential Bayesian inference problems as per Kalman methods. The
answer is YES thanks to the pioneering work by [Gordon et al., 1993] and many other
parallel/following works as in [Andrieu et al., 2010; Carpenter et al., 1999; Doucet
et al., 2000a,b; Gilks and Berzuini, 2001; Godsill and Clapp, 2001; Godsill et al., 2007;
Hürzeler and Künsch, 1998; Kitagawa, 1996; Liu and Chen, 1998; Moral et al., 2006;
Pang et al., 2011b; Pitt and Shephard, 1999; Septier and Peters, 2016] - just to name
a few. In the sequel, we will start by introducing particle filtering methods. Later,
an alternative SMC method termed “sequential MCMC” will be also discussed since
together with the particle filter they serve as the main tools used in this thesis.

2.3.3 Sequential Importance Sampling

Importance Sampling, as discussed before, is not inherently recursive and thus not
applicable for performing direct sequential inference. To see how a sequential version
of IS may be designed, first consider factorising the posterior distribution (or target
distribution) to be estimated in terms of the Bayesian prediction-correction recursion
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(i.e. (2.17) and (2.19)):

p(x0:n|y0:n) = p(yn|x0:n,y0:n−1)p(xn|x0:n−1,y0:n−1)p(x0:n−1|y0:n−1)
p(yn|y0:n−1)

As in the non-sequential Importance Sampling scenario, we denote q(x0:n|y0:n) as the
importance distribution (or instrumental distribution) from which random samples
of the state trajectory x0:n can be drawn conveniently. The resulting equation for
computing the unnormalised importance weights is then given by

ω̃n = p(x0:n|y0:n)
q(x0:n|y0:n) = p(yn|x0:n,y0:n−1)p(xn|x0:n−1,y0:n−1)p(x0:n−1|y0:n−1)

q(x0:n|y0:n)p(yn|y0:n−1)
(2.21)

The key to a recursive version of (2.21) then lies in the following construction of the
importance distribution:

q(x0:n|y0:n) = q(xn|x0:n−1,y0:n)q(x0:n−1|y0:n−1) (2.22)

Supposing that a finite set of weighted particles {x(i)
0:n−1, ω

(i)
n−1}

Np
i=1 has been generated

to approximate the joint posterior distribution at the previous time instant:

p(x0:n−1|y0:n−1) ≈
Np∑
i=1

ω
(i)
n−1δx(i)

0:n−1
(x0:n−1), ω

(i)
n−1 = ω̃

(i)
n−1∑Np

j=1 ω̃
(j)
n−1

, ω
(i)
n−1 ≥ 0

and plugging (2.22) into (2.21), we end up with

ω̃(i)
n = p(x(i)

0:n|y0:n)
q(x(i)

0:n|y0:n)

= p(x(i)
0:n−1|y0:n−1)

q(x(i)
0:n−1|y0:n−1)

p(yn|x(i)
0:n,y0:n−1)p(x(i)

n |x(i)
0:n−1,y0:n−1)

q(x(i)
n |x(i)

0:n−1,y0:n)p(yn|y0:n−1)

∝ ω
(i)
n−1

p(yn|x(i)
0:n,y0:n−1)p(x(i)

n |x(i)
0:n−1,y0:n−1)

q(x(i)
n |x(i)

0:n−1,y0:n)
(2.23)

with x(i)
n ∼ q(xn|x(i)

0:n−1,y0:n). The proportionality can be achieved due to the
self-normalised property of importance weights and the state-independent factor
p(yn|y0:n−1). This equation allows the sequential update for importance weights
and thus forms the basis of the Sequential Importance Sampling (SIS) algorithm
[Arulampalam et al., 2002; Doucet et al., 2000b; Liu and Chen, 1998]. When the
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Markovianity is assumed, (2.23) can be modified as

ω̃(i)
n ∝ ω

(i)
n−1

p(yn|x(i)
n )p(x(i)

n |x(i)
n−1)

q(x(i)
n |x(i)

0:n−1,y0:n)
(2.24)

This is the form that can be found in numerous tutorials and reviews about particle
filters [Arulampalam et al., 2002; Cappé et al., 2007; Doucet et al., 2001, 2000b; Doucet
and Johansen, 2011; Godsill, 2019b; Künsch, 2013]. Consequently, an approximation
for the state posterior, after taking into account the newly received observation yn, is
given by

p(x0:n|y0:n) ≈
Np∑
i=1

ω(i)
n δx(i)

0:n
(x0:n) (2.25)

Based on (2.25), many quantities of interest may be obtained straightforwardly. For
example, in most online applications, one may be particularly concerned with the
marginal distribution

p(xn|y0:n) =
∫
p(x0:n|y0:n)dx0:n−1 ≈

Np∑
i=1

ω(i)
n δx(i)

n
(xn) (2.26)

as well as the associated mean and covariance:

µn|0:n = E{xn|y0:n} ≈
Np∑
i=1

ω(i)
n x(i)

n

Pn|0:n = E{(xn − µn|0:n)(xn − µn|0:n)T |y0:n}

≈
Np∑
i=1

ω(i)
n (x(i)

n − µn|0:n)(x(i)
n − µn|0:n)T

(2.27)

For the forecasting purpose a m-step ahead predictive distribution may be of
interest. This distribution can be also estimated using the same SIS framework since

ω̃
(i)
n+m = p(x(i)

0:n+m|y0:n)
q(x(i)

0:n+m|y0:n)
=

(∏n+m
j=n+1 p(x

(i)
j |x(i)

j−1)
)
p(x(i)

0:n|y(i)
0:n)(∏n+m

k=n+1 q(x
(i)
k |x(i)

k−1)
)
q(x(i)

0:n|y(i)
0:n)

(2.28)

This suggests that if new states are drawn according to the state evolution density up to
time tn+m (i.e. setting q(xn+1:n+m|xn) = p(xn+1:n+m|xn)), the predictive weights using
which we approximate p(x0:n+m|y0:n) will be identical to those at tn. More specifically,
in the light of the relationship ω̃

(i)
n+m ∝ ω(i)

n , an estimate of the predictive marginal
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distribution may be obtained as

p(xn+m|y0:n) ≈
Np∑
i=1

ω(i)
n δx(i)

n+m
(xn+m) (2.29)

Furthermore, one may have already realised that the joint distribution (2.25) can be
regarded as a smoothing distribution. This property of having the smoothing density
as a side product when performing sequential Monte Carlo filtering was first described
in [Kitagawa, 1996].

Despite being adapted to a sequential setting, the IS-based framework presented by
far is known for its poor performance when dealing with long data sequence, namely
n ∈ N0 is large. This is due to the fact that we are trying to sample from a high
dimensional state space with increasing dimensions using limited samples and a proposal
which may be significantly distinctive from the target distribution. Imaging that at
some time step many particles are far away from the peak of the likelihood function,
they may never make it back to the right track in the subsequent steps. In the end, we
only have very few particles that carries most of the probability mass. This is known
as the degeneracy problem whose degree can be measured via the so-called “effective
sample size” [Kong, 1992; Kong et al., 1994]. Anyhow, because of the unavoidable
degeneracy the estimation error will accumulate over time, leading to completely useless
results after several iterations.

2.3.4 Sequential Importance Sampling and Resampling

In order to use SIS in practice, the degeneracy problem has to be taken care of. There
exists several favourable remedies for this problem. The first one is based on the idea
of “Sampling Importance Resampling” introduced by [Rubin, 1987] where a resampling
step is used following the weighting step of a non-sequential importance sampler. It
turns out that this additional random selection scheme can be readily adopted in
the case of SIS. The resulting recursive Monte Carlo algorithms are known as the
“Sequential Importance Sampling and Resampling” (or SIR [Doucet et al., 2000b],
which should not be confused with Rubin’s sampling importance resampling technique)
methods. More generally, this class of methods is usually referred to as “particle filters”
(PFs). In the following sections, these two terms will be used interchangeably.

In the simplest case, at time tn the resampling procedure may be carried out
by drawing M independent and identically distributed samples from a multinomial
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distribution parameterised by the normalised particle weights, that is

N1, N2, . . . , NNp |M ∼ Mult
(
M, {ω(i)

n }Npi=1

)
where ∑Np

i=1 Ni = M . Following this procedure, the particle set {x(i)
0:n}Npi=1 will be

replaced by a new one {x(j)
0:n}Mj=1 in which there are Ni replicas of the i-th particle in the

original set and the importance weight associated with each particle will be reset to 1
M

.
It is common to set M = Np for a fixed budget implementation, but theoretically M can
be any number (mostly M ≥ Np). After such an intermediate random selection step,
particles with large enough weights are split into multiple identical offsprings which
can independently explore the state space at the next time step. As for particles with
negligible weights, it is very likely that they will never be visited during the resampling
sweep and thus be discarded before being propagated to the next iteration. In this
way, the resulting algorithm can deliver better estimation results. Expect for this
intuitive “sample with replacement” approach, there are many other more elaborate
resampling methods that can lead to variance reduction, such as stratified resampling
[Kitagawa, 1996], residual resampling [Liu and Chen, 1998], systematic resampling
[Carpenter et al., 1999] and branching [Bain and Crisan, 2008]. For some theoretical
analyses regarding common resampling methods, see [Douc et al., 2005; Gerber et al.,
2019]. Nonetheless, in this thesis only the multinomial resampling method and a fully
deterministic sampling method as in [Godsill et al., 2007] are considered.

It should be also pointed out that resampling actions do not have to be executed at
each time step as in the debut of “bootstrap filter” [Gordon et al., 1993]. Resampling
introduces additional Monte Carlo variance via random draws and thus we may only
want to reasample particles when the degree of degeneracy reaches some certain
thresholds. As mentioned before, effective sample size (ESS) is a good measure for
degeneracy, meaning that it may be used as an indicator for making a resampling
desicion. Specifically, ESS is defined as below

NESS,n = Np

1 + varq(x0:n|y0:n)(ω̄n)

= Np

1 + Eq(x0:n|y0:n)(ω̄2
n) −

(
Eq(x0:n|y0:n)(ω̄n)2

)
= Np

Eq(x0:n|y0:n)(ω̄2
n) (2.30)
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where varq(·) and Eq(·) are the variance and the expectation with respect to distribution
q(·), respectively. ω̄n = ω̃

(i)
n

1
Np

∑Np
i=1 ω̃

(i)
n

are the standardised importance weights. Since

(2.30) is not tractable, a Monte Carlo approximation to it is usually considered:

N̂ESS,n = 1∑Np
i=1(ω

(i)
n )2

=

(∑Np
i=1(ω̃(i)

n )
)2

∑Np
i=1(ω̃

(i)
n )2

(2.31)

Small N̂ESS,n implies that only a few samples needs to be drawn from the target
distribution in order to achieve the same variance as that of the IS estimator - a sign
of degeneracy. Typically, the resampling step is triggered once N̂ESS,n is below some
empirical threshold Nthold, e.g. 2

3Np.
For state space models, combining SIS with an optional resampling step gives

rise to the well-known SIR algorithm as summarised in Algorithm 2. Note that the
resampling method in the algorithm can be replaced by any other suitable schemes, as
discussed above. Moreover, in practice owing to the limited machine precision, weight
calculations can easily fail if a particle filter operates on a linear scale. To tackle
this issue, one may instead store all weights on a log scale and bring them back to
the linear scale when necessary. It is also helpful to subtract the largest log-weight
from all computed log-weights in order to ensure large weights are within machine
accuracy, as suggested by [Cappé et al., 2007]. The differences between the SIR filter
and the bootstrap filter are that the latter uses the state transition density (prior)
as the importance distribution (proposal) and resamples particles at each time step.
Interestingly, 70 years ago, a SIS-like algorithm, which also used the same proposal
as in bootstrap filter, was proposed in [Handschin and Mayne, 1969]. However, the
resampling step, which turns out to be the key enabler for modern particle filters, was
missing back then.

Better proposals

In addition to the use of resampling strategies, mitigation of degeneracy can be
achieved by sampling from better proposals which lead to the reduction in the variance
of importance weights. Considering that a SIR filter is designed using the prior kernel
p(xn|xn−1) as its proposal, (2.24) can be simplified as

ω̃(i)
n ∝ ω

(i)
n−1p(yn|x(i)

n ) (2.32)
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for i = 1, 2, . . . , Np do
Sample x(i)

0 ∼ q(x0|y0);
Compute initial particle weights: ω(i)

0 ∝ p(y0|x(i)
0 )p(x(i)

0 )
q(x(i)

0 |y0)
;

end
for n = 1, 2, . . . , N do

if N̂ESS,n ≤ Nthold then
For all i:
Select indexes {j(i)} with probability Pr(j(i) = k) = ω

(k)
n−1;

Reset weight ω(i)
n−1 = 1

Np
;

end
for i = 1, 2, . . . , Np do

Sample x(i)
n ∼ q(xn|x(i)

0:n−1,y0:n−1);

Weighting: ω̃(i)
n = ω

(i)
n−1

p(yn|x(i)
0:n,y0:n−1)p(x(i)

n |x(i)
0:n−1,y0:n−1)

q(x(i)
n |x(i)

0:n−1,y0:n)
;

Update state trajectories: x(i)
0:n = {x(i)

n ,x
(i)
0:n−1} ;

end
for i = 1, 2, . . . , Np do

Normalise weights: ω(i)
n = ω̃

(i)
n∑Np

j=1 ω̃
(j)
n

;

end
end

Algorithm 2: Sequential Importance Sampling and Resampling (SIR)

which shows that the update of importance weights only depends on the likelihood
function. This construction is often associated with poor performance/severe degeneracy
because proposing states blindly can result in a mismatch between the predictive
distribution p(x0:n|y0:n−1) and the posterior distribution p(x0:n|y0:n). Although this
problem may be mitigated by significantly increasing the number of particles, it is not
practical in most scenarios.

Instead, we may wish to propose states in the light of more useful information.
The form of the general proposal q(xn|x0:n−1,y0:n) has already indicated that this
proposal can be constructed by incorporating further information such as the incoming
measurement yn. For a Markovian system if we can sample from q(xn|x0:n−1,yn) =
q(xn|xn−1,yn), the variance of importance weights var

q(xn|x(i)
n−1,yn){ω̃

(i)
n } will be min-

imised. This conditional state posterior is termed “optimal kernel” [Doucet et al.,
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2000b; Liu, 2004] and can be obtained as

q(xn|xn−1,yn) = p(xn|xn−1)p(yn|xn)∫
p(xn|xn−1)p(yn|xn)dxn

= p(xn|xn−1)p(yn|xn)
p(yn|xn−1)

(2.33)

This proposal kernel should be used whenever it is possible and a discussion on
models for which this distribution can be obtained in a closed form can be found in
[Doucet et al., 2000b]. While it is in general difficult to obtain an optimal kernel
analytically, approximation methods, such as the local linearisation and the progressive
Gaussian approximation [Bunch and Godsill, 2013b], may be considered. Note also
that in some cases there may be a subset of xn whose optimal importance distribution
is available [Godsill and Clapp, 2001; Liang and Godsill, 2018].

Auxiliary particle filter

Keeping the idea that proposals for xn may be built in a smarter way by taking into
account the new measurement yn in mind and re-inspecting the importance distribution
in (2.22), a natural thought would be whether it is plausible to modify the proposal
for the past trajectories x0:n−1 such that

q(x0:n−1|y0:n−1)
yn−→ q(x0:n−1|y0:n)

This idea was firstly explored in [Pitt and Shephard, 1999] although here our presenta-
tion is based on [Cappé et al., 2007]. Suppose that a good empirical approximation
to p(x0:n−1|y0:n−1) has been obtained at tn−1, the sought density q(x0:n−1|y0:n) can be
written as

q(x0:n−1|y0:n) ∝
∫
p(yn|xn)p(xn|xn−1)p(x0:n−1|y0:n−1)dxn

≈
Np∑
i=1

ω
(i)
n−1δx(i)

0:n−1
(x0:n−1)

∫
p(yn|xn)p(xn|x(i)

n−1)dxn (2.34)

When the integration in (2.34) is not tractable, we can resort to approximation. For
instance, we may set p(xn|x(i)

n ) ≈ δ
µ

(i)
n

(xn) with µ(i)
n being the mean, the mode or a

draw associated with p(xn|x(i)
n ). As a result, the following discrete distribution can be

obtained

q(x0:n−1|y0:n) ∝
Np∑
i=1

p(yn|µ(i)
n )ω(i)

n−1δx(i)
0:n−1

(x0:n−1) (2.35)
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from which we can easily sample x0:n−1.
A modification to the above approximation is to use other sampling techniques such

as MCMC and rejection sampling with q(x0:n−1,xn|y0:n) as their target distributions,
as also suggested by [Pitt and Shephard, 1999]. This idea is also closely related to
the sequential MCMC framework [Pang et al., 2011b; Septier and Peters, 2016] in
which a joint MH sampling step is adopted to draw samples from the state posterior
p(x0:n−1,xn|y0:n), as will be discussed later in this chapter. For more details regarding
different usages and developments of auxiliary particle filters, see [Whiteley and
Johansen, 2010].

A more general SIR algorithm

According to (2.35), the weight for the past state sequence may be defined as

v
(i)
n−1 ∝ p(yn|µ(i)

n )ω(i)
n−1,

Np∑
i=1

v
(i)
n−1 = 1

such that

q(x0:n−1|y0:n) =
Np∑
i=1

v
(i)
n−1δx(i)

0:n−1
(x0:n−1)

Although here we have used the auxiliary particle filter as an example, the implication
is that we are free to design a proposal for x0:n−1 using a set of deliberately designed
weights {v(i)

n−1}1≤i≤Np . Accordingly, we can re-write the weight update equation in SIR
(i.e. (2.23)) as follows

ω̃(i)
n = p(x(i)

0:n|y0:n)
q(x(i)

0:n|y0:n)

∝ p(x(i)
0:n−1|y0:n−1)

q(x(i)
0:n−1|y0:n)

p(yn|x(i)
0:n,y0:n−1)p(x(i)

n |x(i)
0:n−1,y0:n−1)

q(x(i)
n |x(i)

0:n−1,y0:n)

= ω
(i)
n−1

v
(i)
n−1

× p(yn|x(i)
0:n,y0:n−1)p(x(i)

n |x(i)
0:n−1,y0:n−1)

q(x(i)
n |x(i)

0:n−1,y0:n)
(2.36)

Expression (2.36) covers many important variants of particle filters, including the
auxiliary particle filter discussed above, and hence it serves as a general weight update
formula. This paradigm was first proposed in [Godsill and Clapp, 2001]. A SIR
algorithm formalised in terms of this general weight expression is given in Algorithm 3.
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Likelihood evaluation

Another key feature of particle filter is its capability of providing an unbiased estimate
of the intractable likelihood p(y0:n) as a by-product. Specifically, the overall likelihood
can be factorised as

p(y0:n) = p(y0)
n∏
k=1

p(yk|y0:k−1) (2.37)

with
p(yk|y0:k−1) =

∫ ∫
p(yk|xk)p(xk|xk−1)p(xk−1|y0:k−1)dxk−1dxk

which can be computed approximately using the predictive filtering distribution as in
[Cappé et al., 2007; Doucet et al., 2000b]. Using (2.37), the overall likelihood can be
evaluated sequentially over time. This quantity is of great importance when it comes
to the estimation of system parameters θ because implicitly we have p(yk|y0:k−1) =
p(yk|y0:k−1, θ).
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for i = 1, 2, . . . , Np do
Sample x(i)

0 ∼ q(x0|y0);

Compute initial particle weights: ω(i)
0 ∝ p(y0|x(i)

0 )p(x(i)
0 )

q(x(i)
0 |y0)

;

end
for n = 1, 2, . . . , N do

for i = 1, 2, . . . , Np do
Select x(i)

0:n−1 with probability {v(i)
n−1};

Some common choicesa:

◦ v
(i)
n−1 = ω

(i)
n−1 leads to the standard resampling step as in Algo. 2;

◦ v
(i)
n−1 = 1

Np
leads to SIS;

◦ v
(i)
n−1 ∝ p(yn|µ(i)

n )ω(i)
n−1 leads to the auxiliary particle filter;

end
for i = 1, 2, . . . , Np do

Sample x(i)
n ∼ q(xn|x(i)

0:n−1,y0:n−1);

Weighting: ω̃(i)
n = ω

(i)
n−1

v
(i)
n−1

p(yn|x(i)
0:n,y0:n−1)p(x(i)

n |x(i)
0:n−1,y0:n−1)

q(x(i)
n |x(i)

0:n−1,y0:n)
;

Update state trajectories: x(i)
0:n = {x(i)

n ,x
(i)
0:n−1} ;

end
for i = 1, 2, . . . , Np do

Normalise weights: ω(i)
n = ω̃

(i)
n∑Np

j=1 ω̃
(j)
n

;

end
end

Algorithm 3: A general SIR algorithm

aFor algorithms that take future information into account when designing {v
(i)
n−1}, see [Lin et al.,

2013]
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2.3.5 Rao-Blackwellised Particle Filters

Standard particle filters (SIR filters) can be readily applied to non-linear and/or
non-Gaussian dynamical systems, but it should be noted that for high dimensional
systems a very large number of particles are usually required to deliver satisfactory
estimation results owing to high computational complexity. For example, [Snyder
et al., 2008] reported that there is an exponential relationship between the number of
particles (computational effort) and the state dimension for a non-sequential importance
sampling and resampling procedure. This necessitates many remedies for making the
basic filter more efficient and effective, among which the Rao-Blackwellisation [Doucet
et al., 2000b; Liu and Chen, 1998; MacEachern et al., 1999; Robert and Casella, 2004]
method stands out as one popular choice. The idea is that if some subset of a state
vector turns out to be conditionally tractable it can be marginalised out such that the
particle filter will only need to operate on a state space with reduced dimensionality.
It can be shown that the resulting importance weights will have smaller variances
[MacEachern et al., 1999] and improvements in terms of mean squared error may be
obtained [Casella and Robert, 1996]. Here the presentation will focus on an important
class of models which is termed conditionally linear Gaussian state space model.

Suppose the original state vector x = [x1, x2, . . . , xd]T can be partitioned into two
subsets

x =
 xN

xL

 (2.38)

where xN denotes the collection of non-linear state variables while xL is the linear
subset conditioned on xN . Then we may factorise the joint posterior distribution in
the following form

p(x0:n|y0:n) = p(xL0:n|xN0:n,y0:n)p(xN0:n|y0:n) (2.39)

From (2.39) one may readily recognise that if the conditionlly linear Gaussian component
p(xL0:n|xN0:n,y0:n) can be computed by Kalman filters and smoothers the nonlinear
component can be obtained as a result of marginalisation:

p(xN0:n|y0:n) =
∫
p(x0:n|y0:n)dxL0:n (2.40)

Consequently, (2.40) is the distribution which a particle filter targets. Because of
the marginalisation, Rao-Blackwellised particle filter (RBPF) is frequently referred to
as the marginalised particle filter. To see a concrete example of the method, consider a
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general model whose variants have been seen in [Hostettler and Särkkä, 2019; Lindsten
et al., 2016; Schön et al., 2005]:

xNn = a(xNn−1) + An(xNn−1)xLn + un (2.41)
xLn = b(xN0:n−1) +Bn(xN0:n−1)xLn−1 + νn (2.42)
yn = c(xN0:n) + Cn(xN0:n)xLn + ϵn (2.43)

where a(·), b(·) and c(·) represent model-dependent functions that may take the
non-linear state as their inputs while An(·), Bn(·), Cn(·) are matrices that may also
depend on xN . un, νn and ϵn are independent zero-mean Gaussian disturbances with
covariances Cu, Cν and Cϵ.

In the sequel, the illustration of the Rao-Blackwellisation method will be in a
probabilistic setting as per [Cappé et al., 2007]. Assuming that it is the marginal
distribution p(xN0:n,xLn |y0:n) at tn that is of interest and p(xN0:n−1,xLn−1|y0:n−1) is available
from last time instant tn. More precisely, suppose that we have, before receiving
measurement yn,

p(xN0:n−1|y0:n−1) ≈
Np∑
i=1

ω
(i)
n−1δxN,(i)0:n−1

(xN0:n−1) (2.44)

estimated by a particle filter and

p(xLn−1|x
N,(i)
0:n−1,y0:n−1) = N (xLn−1|µ

(i)
n−1|n−1, P

(i)
n−1|n−1) (2.45)

obtained from Kalman filters running on each particle. As the idea is to use only the
particle filter to target the posterior distribution of the non-linear state, it is intuitive
to think that a prediction-correction recursion similar to (2.17) and (2.19) needs to
be applied. However, because of the inclusion of xLn in the state-space equation of the
non-linear state (2.41) a transition density for xN independent of the linear part has to
be devised. Thanks to the linear dependency on xLn , this may be achieved analytically
via

p(xNn |xN0:n−1,y0:n−1) =
∫
p(xNn |xNn−1,xLn)p(xLn |xN0:n−1,y0:n−1)dxLn (2.46)

where the second density in the integral can be thought of as a predictive distribution
given by a Kalman filter. Note that the resulting transition density of xNn is no longer
Markovian, as in the first line of (2.17). Similarly, to update the posterior of xNn+1,
one has to compute p(yn|xN0:n,y0:n−1) instead of p(yn|xNn ). Owing to the conditionally
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linear Gaussian structure in (2.43), the desired quantity can be evaluated via

p(yn|xN0:n,y0:n−1) =
∫
p(yn|xN0:n,xLn)p(xLn |xN0:n,y0:n−1)dxLn (2.47)

Again, the second component in the above integral turns out to be a Gaussian and can
be obtained within the Kalman filtering framework. A detailed discussion regarding the
constructions of this density as well as the one in (2.46) can be found in the subsequent
derivations.

Taken together, the above results can be used to compute new unnormalised
importance weights at time tn

ω̃(i)
n = p(xN,(i)0:n )|y0:n)

q(xN,(i)0:n |y0:n)

= p(xN,(i)0:n−1|y0:n−1)
q(xN,(i)0:n−1|y0:n−1)

p(yn|xN,(i)0:n ,y0:n−1)p(xN,(i)n |xN,(i)0:n−1,y0:n−1)
q(xN,(i)n |xN,(i)0:n−1,y0:n)p(yn|y0:n−1)

∝ ω
(i)
n−1

v
(i)
n−1

× p(yn|xN,(i)0:n ,y0:n−1)p(xN,(i)n |xN,(i)0:n−1,y0:n−1)
q(xN,(i)n |xN,(i)0:n−1,y0:n)

(2.48)

with which the new posterior for the non-linear component, i.e. p(xN0:n|y0:n), can be
estimated. A bootstrap RBPF can thus be obtained by setting ωn−1 = vn−1 and
q(xNn |xN0:n−1,y0:n) = p(xNn |xN0:n−1,y0:n−1).

Now that we have shown how the inference on non-linear subset of the state can
be done using particle filters, an estimation scheme used to approximate the posterior
distribution of xLn will be given in the sequel. Recall that we have already obtained
p(xLn−1|xN0:n−1,y0:n−1) = N (xLn−1|µn−1|n−1, Pn−1|n−1) (with superscript (i) omitted for
the ease of presentation) for each particle, a predictive distribution can be readily
computed according to (2.42):

p(xLn |xN0:n−1,y0:n−1) =
∫
p(xLn |xLn−1,xN0:n−1)p(xLn−1|xN0:n−1,y0:n−1)dxLn−1 (2.49)

= N (xLn |µn|n−1, Pn|n−1)

where the mean and covariance µn|n−1 and Pn|n−1 are given by the standard Kalman
filter prediction step [Anderson and Moore, 1979]. This is also the distribution used to
obtain the transition density of xN in (2.46). However, when it comes to the correction
for the posterior distribution

p(xLn |xN0:n,y0:n) ∝ p(yn|xN0:n,xLn)p(xLn |xN0:n,y0:n−1) (2.50)
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and the evaluation of the likelihood function in (2.47), it should be noted that

p(xLn |xN0:n,y0:n−1) ̸= p(xLn |xN0:n−1,y0:n−1)

This implies that an additional update step is required in order to incorporate
xNn into the condition. This can be achieved by using (2.41) since this transition
equation can be regarded as a linear and Gaussian pseudo-measurement model for xLn
conditioned on xN0:n−1. Consequently, we have

p(xLn |xN0:n,y0:n−1) ∝ p(xNn |xNn−1,xLn)p(xLn |xN0:n−1,y0:n−1) (2.51)
= N (xLn |µ′

n|n−1, P
′
n|n−1)

with which the desired Kalman coorection step (2.50) can be performed:

p(xLn |xN0:n,y0:n) ∝ p(yn|xN0:n,xLn)p(xLn |xN0:n,y0:n−1)
= N (xLn |µn|n, Pn|n) (2.52)

Note again operations (2.49) - (2.52) have to be done for each particle. Now we
are in a position to estimate the posterior distribution of the linear state according to
the so-called Rao-Blackwellised estimation scheme [Robert and Casella, 2004]:

p(xLn |y0:n) =
∫
p(xLn |xN0:n,y0:n)p(xN0:n|y0:n)dxN0:n

≈
Np∑
i=1

ω(i)
n p(xLn |xN,(i)0:n ,y0:n)

=
Np∑
i=1

ω(i)
n N (xLn |µ(i)

n|n, P
(i)
n|n) (2.53)

Other than state estimation, RBPF is also useful for solving Bayesian identification
(parameter estimation) problems. This normally requires either parameters or the
hidden state to be linear and Gaussian such that a mixed linear/nonlinear state space
model to which RBPF can be applied may be formulated [Lindsten, 2011]. Another
usage of RBPFs can be found in inference problems on variable rate models [Christensen
et al., 2012; Morelande and Gordon, 2009; Zhang and Godsill, 2016]. A Langevin
dynamics based jump-diffusion model is considered in [Christensen et al., 2012] to
model the behaviour of high frequency asset price data. The authors design a RBPF to
estimate unknown jump times conditioned on which the model is linear and Gaussian.
In a similar spirit, [Zhang and Godsill, 2016] uses a RBPF to detect pitch periods of
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varying lengths in speech signals while [Morelande and Gordon, 2009] demonstrate the
effectiveness of a similar approach for target tracking applications where a target’s
motion is controlled by piecewise constant manoeuvres.

Furthermore, it is worth noting that despite of providing improved estimation
results, RBPF may require much higher computational power than the standard
particle filter since each particle is now associated with a Kalman filter. Therefore, in
practice a trade-off between the computational cost and the performance has to be
made. For a detailed complexity analysis about RBPFs, see [Karlsson et al., 2005].

2.3.6 Particle Smoothing

The introduction about particle filters has hitherto been focused on the joint filtering
distribution p(x0:n|y0:n) as well as its marginal distribution p(xn|y0:n); indeed, the
distribution p(x0:n|y0:n) can be thought of as a smoothing distribution [Kitagawa,
1996], but its efficacy is limited by the degeneracy problem. It is common that after
several resampling steps most particles will share the same ancestor, resulting in an
almost fixed smoothing trajectory. As a result, this smoothing distribution should
be considered mainly for time-critical applications or when a smoothing distribution
p(xn−L:n|y0:n) with small lag L is of interest.

Various particle smoothing algorithms have been proposed to better approximate ei-
ther the marginal smoothing distribution p(xn|y0:N ) or the joint smoothing distribution
p(x0:N |y0:N).

When the marginal distribution is targeted, a backward recursive algorithm can be
designed using the following Bayesian smoothing formula [Kitagawa, 1987]:

p(xn|y0:N) = p(xn|y0:n)
∫ p(xn+1|xn)p(xn+1|y0:N)

p(xn+1|y0:n) dxn+1 (2.54)

If the system is linear, the resulting algorithm will be the renowned Rauch-Tung-
Striebel (RTS) smoother (or Kalman smoother) [Rauch et al., 1965; Särkkä, 2013].
Otherwise, a weighted approximation of the desired marginal can be obtained based
on a forward particle filter. More specifically, by re-arranging (2.54) we have

p(xn|y0:N) =
∫
p(xn|xn+1,y0:n)p(xn+1|y0:N)dxn+1 (2.55)

where the first component in the integral can be estimated using the filtering distri-
bution p(xn|y0:n) = ∑Np

i=1 ω
(i)
n δx(i)

n
(xn) obtained at tn while the marginalisation can

be approached in a similar manner as in the prediction step of particle filter, i.e.
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(2.18). This forward-backward algorithm was firstly introduced in [Doucet et al., 2000b;
Hürzeler and Künsch, 1998]. Another popular solution to the same smoothing problem
is based on the “two filter” formula [Bresler, 1986; Briers et al., 2009; Fearnhead et al.,
2010; Kitagawa, 1994] where the smoothing density is normally factorised as

p(xn|y1:N) ∝ p(yn:N |xn)p(xn|y0:n−1) (2.56)

where the predictive density p(xn|y0:n−1) can be again provided by a particle filter
while the first term is found by an information filter running backwards in time.

As for the estimation of the joint smoothing distribution as a whole, consider
the following construction of the joint distribution [Godsill et al., 2004; Hürzeler and
Künsch, 2001]:

p(x1:N |y1:N) = p(xN |y0:N)
N−1∏
n=0

p(xn|xn+1:N ,y0:N)

= p(xN |y0:N)
N−1∏
n=0

p(xn|xn+1,y0:n) (2.57)

where the second line is achieved by assuming a Markov system (see Fig. 2.1).
This factorisation suggests that we may sample from the joint distribution using
the Forward-Filtering-Backward-Sampling (FFBS) technique [Carter and Kohn, 1994;
Frühwirth-Schnatter, 1994]. Sampling from the filtering distribution p(xN |y0:N) is
straightforward given the particle filter output at the last time step. However, in order
to draw the rest states we also need to sample from the conditional distributions. To
this end, factor the distribution according to the Bayes’ rule

p(xn|xn+1,y0:n) ∝ p(xn|y0:n)p(xn+1|xn)

This expression admits a similar form as that of the Bayesian filtering update step, with
the likelihood function p(yn|xn) replaced by the transition density. Consequently, a
weighted approximation for the conditional distribution can be obtained with adjusted
particle weights. The main issue with this FFBS based smoothing scheme is that Ns

repetitions, each for one realisation of the state trajectories, are required, which implies
a complexity of O(N ×Ns ×Np). Improvements over this method may be achieved by
using MCMC or rejection sampling in the backward pass, as in [Bunch and Godsill,
2013a; Douc et al., 2011]. Furthermore, Rao-Blackwellised smoother can be designed
based on this generic simulation scheme when the system have analytically tractable
substructures, see [Lindsten et al., 2016].
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Finally, note that the particle smoothing problem can also be tackled using particle
MCMC methods [Andrieu et al., 2010; Middleton et al., 2019] where the joint smoothing
distribution p(x0:n|y0:n) is targeted by MCMC samplers.

2.3.7 Mixing MCMC with IS

It is very likely in practice that the chosen importance distribution q(x0:n) is significantly
different from the target distribution p(x0:n|y0:n) and hence resampling procedures
need to be invoked frequently. This scenario is known as sample impoverishment,
which reflects the lack of diversity among the particle population (i.e. many particles
will share the same trajectory after resampling). One popular way for solving this
problem is to set p(x0:n|y0:n) as the stationary distribution of a Markov chain transition
kernel K(x∗

0:n|x0:n). In this way, identical particles can be moved to different positions
in the state space and thus improvements in terms of estimation accuracy can be
achieved. Based on this basic idea, many improvement schemes have been proposed, as
in [Berzuini et al., 1997; Gilks and Berzuini, 2001; Godsill and Clapp, 2001; MacEachern
et al., 1999; Marques et al., 2018]. Particularly, methods in which Markov chain moves
are conducted following a resampling step are normally referred to as “resample-move”
(RM), as introduced by [Gilks and Berzuini, 2001].

In fact, MCMC moves may be freely mixed with SIS at any interior stages. Suppose
{x(i)

0:n, ω
(i)
n }i=1,...,Np is the collection of particles and for each particle a new state

trajectory x∗
0:n is drawn from a MCMC transition kernel K(x∗

0:n|x0:n) with p(x0:n|y0:n)
as its stationary distribution. It is also assumed that the kernel satisfies Detailed
Balance condition. Consequently, we are working in an extended state space with
p̄(x∗

0:n,x0:n|y0:n) = p(x∗
0:n|y0:n)K(x0:n|x∗

0:n) [Moral et al., 2006] and the expectation of
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some function ϕ(·) of interest can be shown to be

E{ϕ} =
∫
ϕ(x∗

0:n)p(x∗
0:n|y0:n)dx∗

0:n

=
∫ ∫

ϕ(x∗
0:n)p̄(x∗

0:n,x0:n|y0:n)dx0:ndx∗
0:n

=
∫ ∫

ϕ(x∗
0:n)p(x

∗
0:n|y0:n)K(x0:n|x∗

0:n)
q(x0:n|y0:n)K(x∗

0:n|x0:n)q(x0:n|y0:n)K(x∗
0:n|x0:n)dx0:ndx∗

0:n

=
∫ ∫

ϕ(x∗
0:n)p(x0:n|y0:n)K(x∗

0:n|x0:n)
q(x0:n|y0:n)K(x∗

0:n|x0:n)q(x0:n|y0:n)K(x∗
0:n|x0:n)dx0:ndx∗

0:n

=
∫ ∫

ϕ(x∗
0:n)p(x0:n|y0:n)K(x∗

0:n|x0:n)dx0:ndx∗
0:n

≈
Np∑
i=1

ω(i)
n ϕ(x∗,(i)

0:n ) (2.58)

by noticing that the following joint distribution can be obtained within the same IS
framework

p(x0:n|y0:n)K(x∗
0:n|x0:n) ≈

Np∑
i=1

ω(i)
n δx(i)

0:n,x
∗,(i)
0:n

(x0:n,x∗
0:n) (2.59)

Equation (2.58) indicates that we may retain the computed importance weights
after moving particles around according to some MCMC kernels, as also reported by
[Bunch, 2014; MacEachern et al., 1999]. Alternatively, a re-weighting procedure before
the resampling stage may be carried out by introducing some artificial backward kernel
α(x0:n|x∗

0:n). This is known as the “move-reweighting” scheme as in [Marques et al.,
2018]. In the subsequent chapters, it will be shown that better inference schemes can
be designed by exploiting the complementary relationship between MCMC sampling
methods and particle filters.

2.4 MCMC-based Sequential Monte Carlo

Hitherto, the introduced SMC methods are mainly based on importance sampling (IS).
Provided the fact that MCMC algorithms is very powerful and flexible in contrast to IS
when dealing with systems of high dimensions and distributions of high complexity, we
have a good reason to develop sequential algorithms that take advantage of MCMC for
tracking evolving distributions, e.g. p(xn|y0:n) and p(x0:n|y0:n), as with particle filters.

One early attempt of this kind can be found in [Berzuini et al., 1997] where the
state posterior of interest is p(xn−1,xn|y0:n). The authors split the joint posterior into
two full conditionals, namely p(xn|xn−1,y0:n) and p(xn−1|xn,y0:n) (corresponding to
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π(Φt+1|ϵt, Et, Ft+1) and π(ϵt|Φt+1, Dt, Et, Ft+1) in the original paper), each of which is
targeted by a MH algorithm. The idea is to simulate both xn−1 and xn under the
guidance of the incoming observation yn. Because of the use of the MH algorithm for
sampling from the full conditionals which do not admit closed-form representations,
the resulting algorithm may be thought of as an example of “Metropolis-within-Gibbs”
[Casella and Robert, 1996; Müller, 1991, 1993]. The principle used here is also closely
related to that in the auxiliary particle filter (see Section. 2.3.4). In fact, the authors
of [Pitt and Shephard, 1999] did mention that instead of using approximations in the
SIR procedure, one may instead apply a MH kernel targeting g(αt+1, k|Yt+1), where
αt+1 corresponds to xn here while the auxiliary variable k is related to the selection of
xn−1 (or x0:n−1).

Another related approach is the aforementioned resample-move (RM) algorithm.
In that case, a MCMC move is applied to each resampled particle i with the stationary
distribution

p(xn,x(i)
0:n−1|y0:n) ∝ p(yn|xn)p(xn|x(i)

n−1)p(x
(i)
0:n−1|y0:n)

The resulting acceptance ratio can be shown as follows

ρRM(x∗
n,xm−1

n ) = 1 ∧ p(yn|x∗
n)p(x∗

n|x(i)
n−1)q(xm−1

n |x(i)
n−1)

p(yn|xm−1
n )p(xm−1

n |x(i)
n−1)q(x∗

n|x(i)
n−1)

(2.60)

with q the proposal and m the iteration index. Suggested by [Crisan and Doucet, 2002;
Gilks and Berzuini, 2001], for RM it is not necessary to have a burn-in period as in
most MCMC applications owing to the fact that the particle filter has already provided
a reasonable approximation to the true posterior.

While the approaches discussed so far are more or less focusing on using MCMC
moves to diversify particles within IS-based SMC methods, a MCMC-based particle
filter is presented in [Khan et al., 2004; Khan et al., 2005; Septier et al., 2009] for
tracking multiple targets. Specifically, by supposing that Xn = {xTn,1,xTn,2, . . . ,xTn,k}T

is a vector consisting of states of k targets, the joint distribution of interest at tn−1

can be represented by Np unweighted samples as follows,

p(Xn−1|y0:n−1) ≈ 1
Np

Np∑
i=1

δ
X

(i)
n−1

(Xn−1)
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According to the Bayesian filtering recursion, the predictive and the posterior distribu-
tion at the new time step are given by

p(Xn|y0:n−1) =
∫
p(Xn|Xn−1)p(Xn−1|y0:n−1)dXn−1 ≈ 1

Np

Np∑
i=1

p(Xn|X(i)
n−1)

p(Xn|y0:n) ∝ p(yn|Xn)p(Xn|y0:n−1)

Subsequently, a MH chain can be constructed readily with p(Xn|y0:n) as its stationary
distribution and the associated acceptance ratio can be obtained as

ρ(X∗
n, X

m−1
n ) = 1 ∧ p(X∗

n|y0:n)q(Xm−1
n |X∗

n)
p(Xm−1

n |y0:n)q(X∗
n|Xm−1

n ) (2.61)

It was shown in the papers that this scheme outperformed the IS-based SMC counterpart
in multiple target tracking scenarios, demonstrating the strong potential of the MCMC-
based sequential Monte Carlo methods. However, in this MCMC algorithm the
summation ∑Np

i=1 p(X∗
n|X(i)

n−1) needs to be computed every time a new proposal of X∗

is made, implying a complexity of O(Np) at each MCMC iteration. Hence, the authors
suggested at each iteration one may only update the state x∗

n,j of a particular target j
such that many terms in (2.61) remain unchanged and thus need not to be calculated.
Similar ideas were also explored in [Golightly and Wilkinson, 2006] where the authors
proposed to use a “simulation filter” based purely on MCMC to tackle the Bayesian
missing data problem in a sequential fashion. In their work, the stationary distribution
of the MH chain is set to

p(xn−1,xn, θ,X(tn−1,tn)|y0:n)
∝ p(xn−1, θ|y0:n−1)p(X(tn−1,tn)|xn−1, θ)p(yn|xn, X(tn−1,tn), θ)

with θ being the system parameters and X(tn−1,tn) the interpolated (missing) hidden
state values in the time interval (tn−1, tn). If the proposal for xn−1 and θ is made
according to the posterior distribution estimated from the last time step, it can be
shown that the resulting acceptance ratio is simplified to

ρ = 1 ∧
p(X∗

(tn−1,tn)|x∗
n−1, θ

∗)p(yn|x∗
n, X

∗
(tn−1,tn), θ

∗)
p(Xm−1

(tn−1,tn)|x
m−1
n−1 , θ

m−1)p(yn|xm−1
n , Xm−1

(tn−1,tn), θ
m−1)

×
q(xm−1

n , Xm−1
(tn−1,tn)|x∗

n, X
∗
(tn−1,tn))

q(x∗
n, X

∗
(tn−1,tn)|xm−1

n , Xm−1
(tn−1,tn))
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After making an enough number of draws, the posterior of interest, that is p(xn, θ|y0:n),
can be obtained easily by discarding X[tn−1,tn) in the resulting empirical distribution.

2.4.1 Sequential MCMC

Here a MCMC-based sequential Monte Carlo framework based on which sequential
Bayesian inference methods can be designed will be discussed, following the formulation
in [Mihaylova et al., 2014; Pang et al., 2011a, 2008, 2011b; Septier and Peters, 2016].
This framework incorporates the many useful, but previously separated, features of
the online MCMC schemes which are mentioned above. As a result, it is quite generic
and can be preferable when dealing with certain complicated state space models in
comparison to commonly used IS-based SMC algorithms. In the sequel, this framework
will be abbreviated as SMCMC. As in most filtering applications, at tn we would like
to estimate the joint distribution p(x0:n|y0:n) (or its marginal p(xn|y0:n)) for which
direct sampling is not possible. In contrast to IS-based SMC methods, the distribution
is approximated using a set of unweighted particles in SMCMC:

p(x0:n|y0:n) ≈ p̂(x0:n|y0:n)

= 1
Np

Np∑
i=1

δx(i)
0:n

(x0:n) (2.62)

In the most general case, SMCMC follows a mixture sampling based procedure that
selects a joint update with probability PJ which updates all states simultaneously and
refinement steps with probability 1 − PJ in which states are updated individually. For
detailed justifications on the use of such hybrid MCMC strategies, see [Tierney, 1994].

Joint Update

In a similar spirit to that of [Golightly and Wilkinson, 2006; Pitt and Shephard, 1999],
we may jointly update xn and x0:n−1 via a MH kernel with the following acceptance
ratio at the m-th iteration

ρjoint(x∗
0:n,xm−1

0:n ) = 1 ∧
p(x∗

0:n|y0:n)q(xm−1
n ,xm−1

0:n−1|x∗
n,x∗

0:n−1)
p(xm−1

0:n |y0:n)q(x∗
n,x∗

0:n−1|xm−1
n ,xm−1

0:n−1)
(2.63)

The joint update aims to move particles in the light of all observations up to tn. In this
way the probability mass of the posterior may be better approximated. Recall that in
the MCMC-based particle filter [Khan et al., 2005] the computational inefficiency arises
in the direct Monte Carlo computations at each iteration. This problem is avoided

38



2.4 MCMC-based Sequential Monte Carlo

here by targeting the joint distribution, leading to an more efficient online inference
algorithm. Moreover, this algorithm may be thought of as a MCMC implementation
of the auxiliary particle filter [Pang et al., 2011a].

To give a concrete (simple) example, consider a HMM where the intractable joint
posterior can be factorised as

p(x0:n|y0:n) ∝ p(yn|xn)p(xn|xn−1)p(x0:n−1|y0:n−1)

As with the classic bootstrap particle filter the state transition density p(xn|xn−1) can
be used as the proposal for xn while for the proposal of x0:n−1 the discrete empirical
distribution from the last time step is considered, that is,

q(xn|xm−1
n ) = p(xn|xm−1

n−1 )
q(x0:n−1|xm−1

0:n−1) = p̂(x0:n−1|y0:n−1)
(2.64)

In this case, the acceptance ratio (2.63) depends only on the observation density
function

ρjoint(x∗
0:n,xm−1

0:n ) = 1 ∧ p(yn|x∗
n)

p(yn|xm−1)

Individual Refinements

Coupled with the joint update, a series of individual refinement steps can be carried
out. The theoretical underpinnings are provided by the Gibbs sampling framework
where draws from a target distribution p(x0:n|y0:n) are generated by cycling over its
sub-conditionals. These refinement steps allow us to explore the structured state space,
which may increase the effectiveness of the algorithm. For the Markov system discussed
above, a simple configuration for such sub-conditionals can be:

p̂(x0:n−1|xmn ,y0:n) ∝ 1
Np

Np∑
i=1

p(yn|xmn )p(xmn |x(i)
n−1)δx(i)

0:n−1
(x0:n−1) (2.65)

p̂(xn|xm0:n−1,y0:n) ∝ 1
Np

p(yn|xn)p(xn|xmn−1) (2.66)

as suggested in [Godsill, 2019b]. Whereas sampling from the discrete distribution
(2.65) can be done exactly, we need to resort to Metropolis-within-Gibbs since direct
sampling from the full conditional (2.66) is not possible. The acceptance ratio for the
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Metropolis-within-Gibbs step can be expressed as

ρ(x∗
n,xm−1

n ) = 1 ∧
p(x∗

n|xm0:n−1,y0:n)q(xm−1
n |x∗

n)
p(xm−1

n |xm0:n−1,y0:n)q(x∗
n|xm−1

n ) (2.67)

Again, the use of the proposal in (2.64) can lead to a simplified expression for the
acceptance ratio in the refinement step. Note that we may consider using a MH
algorithm to draw samples from the conditional distribution p(x0:n−1|xn,y0:n) in cases
where it is expensive to obtain (2.65) (see [Pang et al., 2011a; Septier et al., 2009] for
examples). As mentioned before, this Gibbs-based refinement procedure is very similar
to that of [Berzuini et al., 1997], though in that case the authors did not employ a
mixture sampling scheme, i.e. the joint update step which can increase the mobility of
the algorithm is missing. Furthermore, it is worth noting that in multi-target tracking
applications the refinements may be conducted at a finer scale. More precisely, rather
than updating the state vector as a whole at a time instant we can progressively refine
subsets of the state vector that correspond to a single or multiple targets [Mihaylova
et al., 2014; Pang et al., 2011b].

Algorithm 4 gives the implementation steps of a generic SMCMC algorithm. Similar
to all MCMC algorithms, the first Nburn samples at each iteration will be discarded in
order to allow the chain to mix adequately. Additionally, chain thinning can be used
to reduce correlation between samples. This is achieved by discarding all but every
Nthin samples. Also, as with most probabilistic numerical methods, the use of log scale
is recommended when calculating acceptance ratios.
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Initialise particle set {x(i)
−1}

Np
i=1 ;

for n = 1, 2, . . . , N do
for m = 1, 2, . . . , Niter do

Sample u ∼ Unif(0, 1);
if u < PJ then

// Joint Update
Sample {x∗

n,x∗
0:n−1} ∼ q(xn,x0:n−1|xm−1

n ,xm−1
0:n−1) ;

Compute the MH acceptance ratio:

ρjoint = 1 ∧
p(x∗

0:n|y0:n)q(xm−1
n ,xm−1

0:n−1|x∗
n,x∗

0:n−1)
p(xm−1

0:n |y0:n)q(x∗
n,x∗

0:n−1|xm−1
n ,xm−1

0:n−1)
;

Accept {xmn ,xm0:n−1} = {x∗
n,x∗

0:n−1} with probability ρjoint;
else

// Refinements
Sample x∗

0:n−1 ∼ p̂(x0:n−1|xm−1
n ,y0:n) as in (2.65) ;

Accept xm0:n−1 = x∗
0:n−1 ;

Sample x∗
n ∼ q(xn|xm−1

n ) ;
Compute the MH acceptance ratio:

ρR = 1 ∧
p(x∗

n|xm0:n−1,y0:n)q(xm−1
n |x∗

n)
p(xm−1

n |xm0:n−1,y0:n)q(x∗
n|xm−1

n ) ;

Accept xmn = x∗
n with probability ρR ;

end
Keep every Nthin MCMC output x(i)

0:n = xm0:n to form the new particle set
after a burn-in period Nburn ;

Approximate the posterior: p̂(x0:n|y0:n) = 1
Np

∑Np
i=1 δx(i)

0:n
(x0:n);

end
end

Algorithm 4: A general sequential MCMC algorithm
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2.5 Summary

This chapter presents the basic idea of Bayesian inference and gives a thorough review
of SMC methods. In addition to a detailed introduction to IS-based SMC (or particle
filters) methods, a sequential Bayesian inference framework based purely on MCMC
methods is discussed. While particle filtering methods have proved to be very powerful
in solving non-linear/non-Gaussian filtering problems, sequential MCMC provides
a promising solution for state estimation in high-dimensional systems. It is worth
emphasising again that particle filtering methods and MCMC sampling schemes are
in many ways complementary. This important insight has led to many improvement
techniques for SMC methods over the last 25 years.
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Chapter 3

Bayesian Object Tracking: a Fixed
Rate Perspective

In a tracking problem we are typically concerned with the accurate extraction of useful
information, such as position, velocity and orientation, of a moving object over time
provided a set of noisy and possibly limited measurements. These measurements,
being the observed phenomena of hidden kinematic states in the physical world,
may be provided by sensors such as inertial measurement units (IMUs), odometers,
wireless signal receivers, radars and GPS units. Since most objects being tracked
are physical representations whose motion can be described by mathematical models,
the efficacy of a tracking algorithm is closely coupled with the choice of dynamical
models. Hence, an appropriately chosen motion prior which fits the target’s moving
pattern can be vital when designing a tracking algorithm, especially in challenging
scenarios like indoor positioning. Also, in practice not only are measurements made
continuously over time but they can also arrive asynchronously. This implies that
a continuous-time model is more suitable since it accommodates the continuity and
asynchronicity in a natural way. Moreover, the fixed rate setting where the state
process is assumed synchronised with the observation process has been widely adopted
in tracking applications over decades as it simplifies the modelling and implementation
procedure. While this prevalent assumption is also adopted throughout this chapter, in
the subsequent chapter a relaxation which allows the state process to be separated from
the observation process will be made. On the other hand, a tracking algorithm that
can effectively fuse information coming from multiple sources is essential and it can be
found that Kalman filter-based methods and SMC methods are possible (perhaps the
most popular) candidates. The intimate tie between the mathematical model and the

43



Bayesian Object Tracking: a Fixed Rate Perspective

data fusion algorithm indicates that to design a successful integrated tracking system
particular attention has to be paid to these two main ingredients.

In this chapter, a fixed-rate intrinsic frame state space model, based on curvilinear
motion models from kinematics, is considered. This model has appeared in a number
of publications since the late 90s [Best and Norton, 1997; Bunch and Godsill, 2013c;
Godsill and Vermaak, 2004, 2005; Godsill et al., 2007; Hostettler and Särkkä, 2016;
Li and Jilkov, 2003] and it is a natural model for representing turn motion. However,
due to the non-linearity in the state equations the use of this class of models is not as
widespread as other simpler models. Given the fact that in many applications such
as track cycling and vehicle monitoring inertial sensors are physically in the body
frame of the object, we show here that the combination of inertial measurements1

with the intrinsic dynamic model leads to linear equations, which can be incorporated
effectively into particle filtering as well as MCMC-based sequential estimation schemes.
The asynchronicity in measurements is accounted for by treating the state process in
continuous time and it will also be shown that the proposed Bayesian inference methods
offer a promising solution to multi-rate sensor fusion problems in which inertial and
occasional position measurements are available.

The tracking algorithms, without taking into account distance measurements, have
been published elsewhere [Liang and Godsill, 2018, 2019].

3.1 A Review of Models and Algorithms for Object
Tracking

3.1.1 Tracking Models

As stated, research in object tracking has been active over many decades and there is a
vast amount of literature focusing on the modelling of object motion. In general, these
existing mathematical models can be classified into two main categories, depending on
whether or not the model is coupled across the chosen spatial coordinates. It can be
shown that many target models can be conveniently formulated in continuous time
through stochastic differential equations (SDEs) [Särkkä, 2013; Øksendal, 2003]. Let
[x, y]T be the spatial positions of a point object in a 2-dimensional Cartesian coordinate

1not to be confused with the sensors in an IMU. By inertial measurements here we refer to all
possible sensors that are capable of giving direct (but noisy) information about the states on an
intrinsic coordinate, which is not limited to the IMU sensors.
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system, a SDE for the object motion along x-axis may be written as

dẋt = σxdB
x
t

where ẋ = dx/dt and Bx
t is a Brownian motion. When σx is set to a reasonably small

value, which means that only a small acceleration is allowed along x (or y) direction,
the object will move as if it has nearly constant velocities. Therefore, this tracking
model is known as the “nearly constant velocity” (CV) model. Note that the product
σxdB

x
t is normally referred to as the “diffusion” part of the SDE. If we prepare to

extend the state vector to include the accelerations, the basic SDE for one direction
can be revised as

dẍt = σxdB
x
t

where the acceleration is modelled as a Wiener process [Bar-Shalom and Li, 2001].
The resulting model is termed “constant acceleration” (CA) model. These two mod-
els have been widely adopted in tracking applications because of their simplicity
and mathematical tractability. As higher dimensional motions in these models are
obtained by cascading several 1-D processes, this class of models is referred to as
“coordinate-uncoupled” models [Li and Jilkov, 2003]. It is worth noting that such
random process based models can be easily modified to include further knowledge
regarding an object’s behaviour and the corresponding modifications may lead to im-
proved tracking/inference performance. For example, the acceleration may be modelled
as a zero-mean Ornstein–Uhlenbeck (OU) process:

dẍt = −λẍt + σxdB
x
t (3.1)

where λ is some positive damping factor controlling the strength of pull towards zero
acceleration. The usefulness of this model has been demonstrated in [Godsill, 2007]
in application domains such as object tracking and financial market; see also [Pang
et al., 2011b] where a similar idea is explored to model coordinating behaviours of
group targets and [Ahmad et al., 2016a] in which OU-type tracking models are used
for predicting the indented destination of an object.

As actual manoeuvring behaviours rarely have constant velocity or acceleration all
the time, standard random process based models may not accurately model physical
manoeuvres of an object. Also, we know from kinematics that the state of an object is
normally structured, meaning that it does not move with independent forces applied
on each coordinate. Consequently, there exists a necessity for the developments of
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models suitable for describing spatial trajectories of objects. Motion models based on
target kinematics are usually coordinate-coupled. As surveyed in [Li and Jilkov, 2003],
most kinematic models, including the intrinsic coordinate model we consider, follow
the basic equations of curvilinear motion:

ẋt = vt cosψt, ẏt = vt sinψt, v̇t = aT,t, ψ̇t = aP,t/vt

Here x, y are positions in a 2-D Cartesian coordinate system, v stands for speed and ψ
represents the heading angle with respect to x-axis, respectively. aT and aP are the
accelerations along the tangential direction and the perpendicular (normal) direction on
the motion plane, respectively. The majority of the existing work based on the above
equations relies heavily on a rough assumption of having known a constant turn rate
(i.e. ψ̇t = const.) as it leads to closed-form expressions for the state transition matrix
for both the corresponding continuous time and discrete time models. Therefore, a
model relying on this assumption is usually referred to as the “constant turn” (CT)
model (or “coordinated turn model” as per [Blackman and Popoli, 1999; Roth et al.,
2014]). The restriction of a known turn rate may be relaxed by modeling ψ̇t as a
random process as in [Gustafsson, 2000; Kastella and Biscuso, 1995; Maskell, 2004], but
discretisation and/or linearisation needs to be performed due to the lack of a tractable
solution for the resulting model.

The class of models that we are concerned with in this chapter, though still based
on the same curvilinear equations given above, differs from the CT models in the
way that it is constructed. It is a continuous time turn model which is based on an
intrinsic coordinate frame as in the particle filtering methods of [Bunch and Godsill,
2012; Gilholm et al., 2005; Godsill and Vermaak, 2005; Godsill et al., 2007]. It should
be noted that in the previous work the intrinsic model was mainly used in variable
dimensional state inference problems while here we preserve the standard fixed-rate
assumption. Another very similar model can be found in [Best and Norton, 1997]
where an interacting multiple model tracker is implemented for an intrinsic coordinate
frame. But the model relies on the assumption of zero perpendicular (cross track)
acceleration; see also a 3-D variation to the intrinsic coordinate model in [Pilté et al.,
2017], in which the dynamics of an aircraft is described based on Frenet-Serret formulas,
and [Hostettler and Särkkä, 2016] where a simplified intrinsic model for tracking of a
pedestrian is obtained by assuming zero tangential (along track) acceleration. Unlike
[Best and Norton, 1997] and [Hostettler and Särkkä, 2016], here we do not impose any
assumption of zero acceleration and in contrast to [Pilté et al., 2017] where the fusion
of inertial measurement is difficult we focus on the case of planar motion.
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In the following sections, it will be shown that while being powerful in terms of
modelling target manoeuvres accurately, the intrinsic model turns out to be also very
well adapted to the case of inertial measurements since it leads to a set of linear,
Gaussian equations for turn rate, ground speed, travelled distance and acceleration
measurements based upon which novel state space models can be constructed.

3.1.2 Tracking Algorithms

Closely coupled with the choice of a good model for target dynamics, inference algo-
rithms are of particular importance when developing successful tracking applications.
However, it is very common to see that state space models in tracking applications
comprise of varied degrees of non-linearity and/or non-Gaussianity. For instance, the
aforementioned CT model (with unknown turn rate) is a typical non-linear dynamic
model whereas many measurement models, including the radar models [Bar-Shalom
et al., 2011; Gustafsson et al., 2002] and the received signal strength index (RSSI)
based measurement models [Harle, 2013; Liu et al., 2007; Nurminen et al., 2015b], are
non-linear. Also, non-Gaussian noises are often employed for measurement models
affected by non-line-of-sight (NLOS) issues, see [Ahmad et al., 2017; Nurminen et al.,
2015a] for examples.

The inference of hidden state in systems exhibiting non-linearity and non-Gaussianity
can be accomplished either by using nonlinear Gaussian filtering techniques (e.g. ex-
tended Kalman filter or unscented Kalman filter) or by using simulation-based ap-
proaches such as the IS-based SMC approaches and the sequential MCMC (SMCMC)
reviewed in the previous chapter. Compared with the classical Kalman filter and
its variants, particle filtering methods have proved to be a powerful methodology in
dealing with non-linear and non-Gaussian problems [Ristic et al., 2003]. On the other
hand, SMCMC is becoming known as a strong competitor for the IS-based particle
methods in challenging scenarios. In contrast to IS-based SMC methods that can
perform poorly in high dimensions, SMCMC has shown stronger potential [Mihaylova
et al., 2014; Septier and Peters, 2016]. In this Chapter, novel tracking algorithms based
on IS-based filters and SMCMC will be presented and the effectiveness of them will be
demonstrated via a series of experiments.
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3.2 Models

In this section we describe the dynamic model, defined in terms of an intrinsic coordinate
system, to express the motion of manoeuvring object, as well as the corresponding
measurements processes for the inertial, speed, distance and position data.

3.2.1 Dynamic Model in an Intrinsic Coordinate System

The intrinsic coordinate model considered here is a continuous-time manoeuvring model
based on [Gilholm et al., 2005; Godsill and Vermaak, 2005; Godsill et al., 2007] and it
is similar to the curvilinear model as in [Li and Jilkov, 2003] and [Best and Norton,
1997]. An applied force acting upon an object can be decomposed into a tangential
component TT and a component TP perpendicular to the tangential vector. Let s
denote the distance travelled by an object represented as a point mass m along a
curved trajectory, and ψ the heading angle relative to a reference axis (e.g. x-axis in
Fig. 3.1). The tangential and perpendicular equations of motion are then given by:

TT = λ
ds

dt
+m

d2s

dt2
(3.2)

TP = m
ds

dt

dψ

dt
(3.3)

where λ is a positive damping factor. Assume that TT and TP are piecewise constant
between time τ and τ +∆τ . A 2-dimensional motion may be described by the evolution
of the tangential and perpendicular unit vectors for the object over time, see for
example Fig. 3.1, which illustrates their motion around a circular track.

Equation (3.2) may be solved directly as in [Godsill and Vermaak, 2005; Godsill
et al., 2007] to obtain an expression for speed v = ds/dt:

vn = vn−1e
− ∆τnλ

m + TT
λ

(
1 − e− ∆τnλ

m

)
(3.4)

with ∆τn being the time difference between tn and tn−1 (this may in practice be variable
for some sensor types), and the distance s can then be routinely obtained by further
integrating this expression:

sn = sn−1 + ∆τn
λ
TT + m

λ2

(
TT − λvn−1

)(
e− ∆τnλ

m − 1
)

(3.5)
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Fig. 3.1 2D curvilinear motion in an intrinsic coordinate system. êT and êP are unit
vectors on which TT and TP are applied respectively.

Now, using the result for speed, (3.3) can be solved for the heading angle:

ψn = ψn−1 + TP
TT

(
∆τnλ
m

− log
∣∣∣∣vn−1

vn

∣∣∣∣
)

(3.6)

Finally, the change in Cartesian position can be computed in closed form only for
the case λ = 0 (no resistance to motion) [Bunch and Godsill, 2012], so in general
the 2-D Cartesian position pn = [xn, yn]T can be obtained for example by Euler
approximation:

p(t+ δt) ≈ p(t) + δt · v(t) ·

cosψ(t)
sinψ(t)

 (3.7)

Speed transition density

If the tangential thrust is assumed to be drawn from a simple Gaussian distribution, say
TT ∼ N (µT , σ2

T ), (3.4) becomes a linear Gaussian state space model and the transition
density of speed is as follows:

p(vn|vn−1) = N
(
vn
∣∣∣e− ∆τnλ

m vn−1 + µT
λ

(
1 − e− ∆τnλ

m

)
,
σ2
T

λ2

(
1 − e− ∆τnλ

m

)2 ) (3.8)

Modelling the speed in this particular way allows the use of linear Kalman-style
updating when direct speed measurements are available. This is in contrast to the
commonly used white-noise driven models [Li and Jilkov, 2003] that usually leads to
non-linear speed measurement models.
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Heading (turn) rate transition density

Conditioned on the speed of the object, (3.3) can also be rearranged to give the dynamic
equation of heading rate ψ̇ = dψ/dt:

ψ̇n = TP
mvn

with vn ̸= 0. This is again a linear Gaussian model conditioning on vn. Now, under
the assumption that TP ∼ N (0, σ2

P ) we have

p(ψ̇n|vn) = N
(
ψ̇n
∣∣∣0, σ2

P

m2v2
n

)
(3.9)

Moreover, we propose to use a state variable αn = [ψ̇n, bn]T in which b is a gyroscope
bias term that is modelled as

dbt = σbdBt (3.10)

with Bt a Brownian motion. The state transition density for α is thus given by

p(αn|αn−1, vn) = N
(

αn|Aαn−1, C
)

(3.11)

with

A =
 0 0

0 1


C =

 σ2
P/m

2v2
n 0

0 σ2
b∆τn


As a final remark on the system model, note that sampling from (3.8) and (3.11) is

all we need to construct a trajectory of an object as it is clear from (3.2) - (3.4) that
TT (vn, vn−1), TP (ψ̇n, vn) and the other states (i.e. headings, travelled distances and
positions) are deterministic in the interval (tn−1, tn] given vn, vn−1 and ψ̇n.

3.2.2 Measurement Models

One of the main reasons here for choosing an intrinsic frame dynamic model is that the
body frames of inertial sensors (e.g. accelerometers, gyroscopes and speedometers) are
often aligned with the object’s intrinsic coordinate (body) frame. This results in linear
models for the kinematic states in the body frame connecting the dynamics to the
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inertial measurements, which later allows us to propose states effectively using Kalman
filtering-based methods. Below are the details of each considered sensor measurement
model.

Speed measurements Direct speed measurements are modelled by

v̂n = vn + ϵv̂,n (3.12)

where the measurement noise ϵv,n is additive, white Gaussian noise of the form ϵv̂,n ∼
N (0, σ2

v̂).

Turn rate measurements Provided direct noisy measurements of the turn rate of
the object on a 2D plane, ˆ̇ψn, and the random additive bias term bn, the observation
model for turn rate is given by:

ˆ̇ψn = ψ̇n + bn + ϵ ˆ̇ψ,n, ϵ ˆ̇ψ,n ∼ N
(

0, σ2
ˆ̇ψ

)
(3.13)

Note that the orientation of the IMU relative to an object can be arbitrary, depending
on the way how it is placed/mounted. Consequently, direct measurements of turn rate
may be unavailable as there can be a misalignment between the vertical axis of the
gyroscope and the normal vector of the plane of motion. In such cases, we could obtain
angular velocity on the plane of motion by rotating the gyroscope’s frame onto the
intrinsic frame, which is a future direction to extend the model. In this chapter however
we treat the problem as a purely 2D tracking model. As a result, angular speed from
the gyroscope’s vertical axis (i.e. the axis vertical to the ground) is considered as a
direct measurement of the heading rate. The bias term bn in our observation model
will then be considered to include a component both from the modelling error and the
true instrumentation bias of the device.

Acceleration measurements Similar to the treatment for turn rate measurements,
we here consider the case where direct measurements for tangential and perpendicular
accelerations are also available. Specifically, we use âT and âP to represent measure-
ments on the x-axis (forward) and the y-axis (leftward) of an accelerometer. To present
the models, re-arrange first the equation of tangential thrust with aT = d2s

dt2
:

TT = λ
ds

dt
+m

d2s

dt2
=⇒ aT = − λ

m
v + TT

m
(3.14)
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As for aP , the dynamic equation is simply

aP (t) = TP
m

= ψ̇(t)v(t), τ < t ≤ τ + ∆τ (3.15)

and from (3.4) we have

TT (vn, vn−1) = λ

1 − e− ∆τnλ
m

(
vn − e− ∆τnλ

m vn−1
)

(3.16)

Note that combining (3.11) and (3.14) - (3.16), the joint state transition density can
be simplified to

p(vn,αv, aT,n, aPn|vn−1, αn−1, aT,n−1, aP,n−1)
= p(vn|vn−1)p(αn|vn, αn−1)p(aT,n|vn−1:n)p(aP,n|vn, αn)
= p(vn,αn|vn−1,αn−1)

owing to the deterministic nature of the model. Now, we are in a position to give the
measurement models for the acceleration components at time tn:

âT,n = λ

m

e− ∆τnλ
m

1 − e− ∆τnλ
m

(vn − vn−1) + ϵâT,n (3.17)

âP,n = ψ̇nvn + ϵâP,n (3.18)

with ϵâT,n ∼ N (0, σ2
âT

) and ϵâP,n ∼ N (0, σ2
âP

). Note that the right hand side of (3.17),
excluding the noise term, is obtained by substituting (3.16) into (3.14).

Distance measurements According to (3.5), distance travelled along the curved
path in the time interval (tn−1, tn] can be written as

dn = sn − sn−1

= ∆τn
λ
TT (vn−1, vn) + m

λ2

(
TT (vn−1, vn) − λvn−1

)(
e− ∆τnλ

m − 1
)

(3.19)

and the corresponding measurement model is given by

d̂n =
( ∆τn

1 − e− ∆τnλ
m

− m

λ

)
vn +

(
m

λ
− ∆τne− ∆τnλ

m

1 − e− ∆τnλ
m

)
vn−1 + ϵd̂,n (3.20)

with ϵd̂,n ∼ N (0, σ2
d̂
).
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Position measurements In addition to inertial, speed and distance measurements,
the model for intermittent (not necessarily) position information is given by

p(p̂n|pn) = N (p̂n|g(pn),Σp̂) (3.21)

with p̂n given by (3.7), g(·) some linear or nonlinear mapping function and Σp =
diag([σ2

x, σ
2
y]).

3.3 State Estimation

Since we are dealing with a tracking problem with non-linear dynamic models, there is
no closed-form analytic solution for the whole problem. Therefore, we consider using
sequential Monte Carlo (SMC) methods, including IS-based SMC (i.e. particle filters)
as well as MCMC-based SMC (i.e. SMCMC), to sequentially estimate the target states
under a Bayesian framework.

More specifically, in this section two approaches for improving performance are
presented: the first cascades locally optimal proposal kernels together, seeking to
reduce the mismatch between prior predictive distribution and the posterior distribution
conditioned on new measurements, and the second provides a sequential batch inference
procedure based on the idea of forward-filtering-backward-sampling (FFBS) [Carter
and Kohn, 1994; Frühwirth-Schnatter, 1994]. In particular, for the latter we will show
that efficient section-wise FFBS-based kernels can be constructed and implemented
by IS-based SMC filters and SMCMC and the resulting tracking algorithms provide
effective alternative solutions for multi-rate sensor fusion problems.

3.3.1 IS-based SMC Filter with Locally Optimal Proposals

Owing to the particular design of our models, we can sample states from efficiently
constructed locally optimal proposal kernels. Specifically, for speed we suggest an
importance distribution q(·) in the following form, using (3.8), (3.12), (3.17) and (3.20):

q(vn|vn−1, v̂n, âT,n, d̂n) = p(vn|vn−1, v̂n, âT,n, d̂n)
= N (vn|m̃v, σ̃

2
v) (3.22)

The values of m̃v, σ̃2
v and some others which are corresponding to different combination

of sensors are given in Appendix 3.A.1. This distribution is the “optimal kernel” for the
speed in the sense of [Doucet et al., 2000b] conditioned upon the observations directly
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linked to it. Similarly, we suggest an importance distribution for αn as follows:

q(αn|αn−1,
ˆ̇ψn, âP,n, vn) = p(αn|αn−1,

ˆ̇ψn, âP,n, vn)
= N (αt|m̃α, P̃α) (3.23)

This is still a locally optimal kernel conditioned upon the speed s
(i)
t , the heading rate

measurement and the acceleration measurement (see details in Appendix 3.A.2).
By construction, sequential importance sampling and resampling (SIR) can be

applied to obtain samples from the target distribution

p(v0:n,α0:n|v̂0:n,
ˆ̇ψ0:n, âT,0:n, âP,0:n, d̂0:n, p̂0:n) (3.24)

and the update equation for the unnormalised importance weight w̃(i)
n is given by

ω̃(i)
n = p(v(i)

0:n,α
(i)
0:n|v̂0:n,

ˆ̇ψ0:n, âT,0:n, âP,0:n, d̂0:n, p̂0:n)
q(v(i)

0:n,α
(i)
0:n|v̂0:n,

ˆ̇ψ0:n, âT,0:n, âP,0:n, d̂0:n, p̂0:n)

∝ ω̃
(i)
n−1 × p(v(i)

n ,α
(i)
n |v(i)

n−1,α
(i)
n−1)p(v̂n, ˆ̇ψn, âT,n, âP,n, d̂n|v(i)

n−1:n,α
(i)
n )

q(v(i)
n |v(i)

n−1, v̂t, âT,n, d̂n)q(α(i)
n |α(i)

n−1,
ˆ̇ψn, âP,n, v(i)

n )
p(p̂n|v(i)

0:n,α
(i)
0:n)

∝ ω̃
(i)
n−1 × p(v̂n|v(i)

n−1)p( ˆ̇ψn|α(i)
n−1, v

(i)
n )p(âT,n|v(i)

n−1, v̂n)p(âP,n| ˆ̇ψn, α(i)
n−1, v

(i)
n )

× p(d̂n|v(i)
n−1, v̂n, âT,n)p(p̂n|v(i)

0:n,α
(i)
0:n) (3.25)

where the likelihood terms, except for the position related one, are computed as side
products when constructing the optimal kernels (see Appendix 3.A). Note that in a
more challenging scenario where position-related measurements are not available at
every time instant (i.e. a multi-rate sensor fusion case where the position observations
do not have the same sampling rate as that of inertial sensors) we can compute the
likelihood p(p̂n|v(i)

0:n,α
(i)
0:n) only when the object receives a position fix - at all other

times this term is omitted from the weight update. When position measurements are
present, the likelihood is computed as p(p̂n|α(i)

0:n, s
(i)
0:t) = p(p̂n|p(i)

n ) as in (3.21) and p(i)
n

is the Cartesian location of the i-th particle, obtained using (3.7). More generally,
as the intrinsic dynamic model we adopt is a continuous-time model the position
measurement can arrive asynchronously with the inertial measurements. In such cases,
we can propose states in terms of their priors and update the weights using the position
likelihood.
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3.3.2 IS-based SMC Filter with Section-wise Optimal Propos-
als

Here we introduce a scheme that performs section-wise backward smoothing, aimed at
improving the retrospective performance of the scheme and enhancing the proposed
state sequences. The scheme is operable over any interval desired and thus it is well
adapted to any tracking problems with asynchronous position and inertial measurements.
To simplify the presentation, we first re-define the measurement models at time tn for
v and α as:

yα,n =
 ˆ̇ψn
âP,n

 = Bα,nαn + ηα,n (3.26)

yv,n =


d̂n

âT,n

ŝn

 = Bv

 vn

vn−1

+ ηv,n (3.27)

with

Bα,n =
 1 1
vn 0



Bv =


∆τn

1−e− ∆τnλ
m

− m
λ

m
λ

− ∆τne− ∆τnλ
m

1−e− ∆τnλ
m

λ
m

e− ∆τnλ
m

1−e− ∆τnλ
m

− λ
m

e− ∆τnλ
m

1−e− ∆τnλ
m

1 0


ηα,n ∼ N (0,Σα), Σα = diag([σ2

ˆ̇ψ
, σ2

âP
])

ηv,n ∼ N (0,Σv), Σv = diag([σ2
d̂
, σ2

âT
, σ2

v̂ ])

Subsequently, we may factorise the posterior distribution as follows, with batch size
k ≥ 1 defined as the section length between two consecutive position measurements,

p(v0:n,α0:n|yα,0:n,yv,0:n, p̂0:n)
∝ p(v0:n,α0:n|yα,0:n,yv,0:n, p̂0:n−k)p(p̂n|α0:n, v0:n)
∝ p(v0:n−k,α0:n−k|yα,0:n−k,yv,0:n−k, p̂0:n−k)

× p(vn−k+1:n|yv,n−k+1:n, vn−k)p(yv,n−k+1:n|vn−k)
× p(αn−k+1:n|yα,n−k+1:n, vn−k+1:n,αn−k)p(yα,n−k+1:n|vn−k+1:n,αn−k)
× p(p̂n|α0:n, v0:n) (3.28)
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The dependency on states at time n− k is a direct result from the Markovian assump-
tion. This particular factorisation of the target distribution is based on the observation
that the speed states are jointly Gaussian conditioned on the speed related measure-
ments, i.e. p(vn−k+1:n|yv,n−k+1:n, vn−k) is a k-variate Gaussian that may be sampled
using standard forward-filtering-backward-sampling (FFBS) methods, see [Carter and
Kohn, 1994; Frühwirth-Schnatter, 1994]. This arises because of the linear Gaussian
state-space structure of (3.8) and (3.27). Similarly, the linear Gaussian structures
of (3.9), (3.10) and (3.26) means that the turn rate and bias have a jointly Gaus-
sian distribution conditioned on sampled speeds and heading related measurements,
p(αn−k+1:n|yα,n−k+1:n, vn−k+1:n,αn−k), which may also be drawn jointly using FFBS.
These proposals can be considered as section-wise batch versions of the locally optimal
proposals from the previous section. Therefore, the proposed method also applies to a
strictly sequential case where k = 1. In this case the proposals degenerate to locally
optimal kernels conditioned on new measurements and previous states. Suppose it is
now possible to draw a joint sequence of speeds from the local optimal distribution

q(vn−k+1:n|vn−k) = p(vn−k+1:n|yv,n−k+1:n, vn−k)

using FFBS and then propose a sequence of α states conditionally upon that proposed
sequence of speeds according to

q(αn−k+1:n|αn−k) = p(αn−k+1:n|yα,n−k+1:n, vn−k+1:n,αn−k)

the weight updating equation for the particle filter is given by

ω̃(i)
n = p(v(i)

0:n,α
(i)
0:n|yα,0:n,yv,0:n, p̂0:n)

q(v(i)
0:n,α

(i)
0:n|yα,0:n,yv,0:n, p̂0:n)

∝ ω̃
(i)
n−k × p(yv,n−k+1:n|v(i)

n−k)p(yα,n−k+1:n|v(i)
n−k+1:n,α

(i)
n−k)p(p̂n|α(i)

0:n, v
(i)
0:n) (3.29)

Section-wise proposal for v

In the following, we show how to sample from the proposals as well as to compute
the likelihood terms in the weight updating equation, based on the idea of FFBS.
Specifically, for speed the forward filtering (FF) step updates p(vn−1:n|yv,n−k+1:n, vn−k)
to p(vn:n+1|yv,n−k+1:n+1, vn−k) in the light of a new measurement yv,n+1 recursively.
More precisely, as a starting point assume the distribution

p(vn|yv,n−k+1:n, vn−k) = N (vn|µv,n|n, σ
2
v,n|n)
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3.3 State Estimation

which is a Gaussian, has been obtained. At time tn+1, in the FF prediction stage a
joint Gaussian distribution can be obtained as

p(vn:n+1|yv,n−k+1:n, vn−k) = p(vn+1|vn)p(vn|yv,n−k+1:n, vn−k)
= N (vn|avvn−1 + bv, σ

2)N (vn|µv,n|n, σ
2
v,n|n)

= N
( vn

vn+1

 ∣∣∣∣µ̃v,n+1, P̃v,n+1

)
(3.30)

with

µ̃v,n+1 =
 µv,n|n

avµv,n|n + bv


P̃v,n+1 =

 σ2
v,n|n σ2

v,n|nav

avσ
2
v,n|n a2

vσ
2
v,n|n + σ2


Note that av, bv and σ2 have been defined in (3.48). This predictive distribution can
then be corrected when new measurements become available:

p(vn:n+1|yv,n−k+1:n+1, vn−k) ∝ p(yv,n+1|vn:n+1)p(vn:n+1|yv,n−k+1:n, vn−k)

= N
(

yv,n+1

∣∣∣∣Bv

 vn

vn+1

 ,Σv

)
N
( vn

vn+1

 ∣∣∣∣µ̃v,n+1, P̃v,n+1

)

= N
( vn

vn+1

 ∣∣∣∣µ̆v,n+1, P̆v,n+1

)
(3.31)

where

µ̆v,n+1 = µ̃v +K(yv,n+1 −Bvµ̃v,n+1)
P̆v,n+1 = (I −KBv)P̃v,n+1

K = P̃v,n+1B
T
v (Σv +BvP̃v,n+1B

T
v )−1

Note also that the distribution needed for the next time instant can be obtained as a
marginal of (3.31).
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Backward sampling (BS) is applied to proposing samples from the joint Gaussian
distribution conditioned on all observations recursively:

p(vn−k+1:n|yv,n−k+1:n, vn−k) = p(vn, vn−1|yv,n−k+1:n, vn−k)

×
n−k+1∏
l=n−2

p(vl|vl+1,yv,n−k+1:l+1, vn−k) (3.32)

Here the component in the product is the conditional of a joint Gaussian (i.e. (3.31)):

p(vl|vl+1,yv,n−k+1:l+1, vn−k) ∝ p(vl, vl+1|yv,n−k+1:l+1, vn−k)

which is again a Gaussian and can be routinely obtained as per [Bishop, 2006]. At
last, the likelihood term p(yv,n−k+1:n|vn−k) can be calculated via Prediction Error
Decomposition (PED) [Harvey, 1989], that is,

p(yv,n−k+1:n|vn−k) = p(yv,n−k+1|vn−k)
n∏

j=n−k+2
p(yv,j|yv,n−k+1:j−1, vn−k) (3.33)

with

p(yv,j|yv,n−k+1:j−1, vn−k) =
∫
p(yv,j|vj−1, vj)p(vj−1, vj|yv,n−k+1:j−1, vn−k)dvj−1dvj

= N (yv,j|Bvµ̃v,j+1, BvP̃v,j+1B
T
v + Σv)

Section-wise proposal for α

Owing to the linear and Gaussian state space models in (3.11) and (3.26), the FF stage
for α follows the standard Kalman filtering recursions [Ho and Lee, 1964; Kalman, 1960].
Supposing that p(αn|yn−k+1:n, vn−k+1:n,αn−k) = N (αn|µα,n|n, Pα,n|n) is the output
from a Kalman filter, we can compute the term p(αn|αn+1,yn−k+1:n, vn−k+1:n, ,αn−k)
as below

p(αn|αn+1,yn−k+1:n, vn−k+1:n, ,αn−k) = p(αn+1|αn)p(αn|yn−k+1:n, vn−k+1:n,αn−k)
p(αn+1|yn−k+1:n, vn−k+1:n,αn−k)

∝ N (αn+1|Aαn, C)N (αn|µα,n|n, Pα,n|n)
= N (αn|µα,n|n+1, Pα,n|n+1) (3.34)
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with

µα,n|n+1 = µα,n|n + Pα,n|nA
T (APα,n|nA

T + C)−1(αn+1 − Aµα,n|n)
Pα,n|n+1 = Pα,n|n − Pα,n|nA

T (APα,n|nA
T + C)−1APα,n|n

Now, we can firstly draw αn given the speed sequence vn−k+1:n and the measurements
yn−k+1:n firstly and then work backwards in time drawing state using the backward
smoothing recursions:

p(αn−k+1:n|yα,n−k+1:n, vn−k+1:n,αn−k) (3.35)

= p(αn|yα,n−k+1:n, vn−k+1:n,αn−k)
n−1∏

l=n−k+1
p(αl|αl+1,yα,n−k+1:l, vn−k+1:l,αn−k)

Similarly, the second likelihood term in (3.29) can be also computed using PED:

p(yα,n−k+1:n|vn−k+1:n,αn−k)

= p(yα,n−k+1|vn−k+1,αn−k)
n∏

j=n−k+2
p(yα,j|yα,n−k+1:j−1, vn−k+1:j,αn−k) (3.36)

where

p(yα,j|yα,n−k+1:j−1, vn−k+1:j,αn−k)

=
∫
p(yα,j|αj, vj)p(αj|yα,n−k+1:j−1, vn−k+1:j,αn−k)dαj

=
∫

N (yα,j|Bα,jαj,Σα)N (αj|µα,j|j−1, Pα,j|j−1)dαj

= N (yα,j|Bα,jµα,j|j−1, Bα,jPα,j|j−1B
T
α,j + Σα)

with the predictive distribution N (αj|µα,j|j−1, Pα,j|j−1) provided by a Kalman filter .

Resample-move (RM)

In the section-wise batch formulation, sampling highly correlated states from a high
dimensional sample space can exacerbate the problem of sample degeneration and
impoverishment. To mitigate this issue, we consider using Resample-move (RM)
technique [Gilks and Berzuini, 2001] to rejuvenate degenerated particles after the
resampling stage so as to improve the empirical approximation obtained by the particle
filter. Conditioned on the states up to time instant tn−k and all measurements, the
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invariant distribution of the MCMC move in the RM step is set to be

p(vn−k+1:n,αn−k+1:n|v0:n−k,α0:n−k,yv,0:n,yα,0:n, p̂0:n) (3.37)
∝ p(v0:n,α0:n|yv,0:n,yα,0:n, p̂0:n)

For each resampled particle, a Metropolis-Hastings (MH) [Robert and Casella, 2004]
kernel can be designed to propose {v∗

n−k+1:n,α
∗
n−k+1:n} from the target distribution

with proposals the same as those introduced above, that is,

qRM(vn−k+1:n) = p(vn−k+1:n|yv,n−k+1:n, v
(i)
n−k)

qRM(αn−k+1:n) = p(αn−k+1:n|yα,n−k+1:n, v
(i)
n−k+1:n,α

(i)
n−k)

It is then easy to show that the resulting acceptance ratio has the following form

ρRM =

1 ∧
p(yα,n−k+1:n|v∗

n−k+1:n,α
(i)
n−k)

p(yα,n−k+1:n|v(i)
n−k+1:n,α

(i)
n−k)

p(p̂n|v(i)
0:n−k,α

(i)
0:n−k, v

∗
n−k+1:n,α

∗
n−k+1:n)

p(p̂n|v(i)
0:n,α

(i)
0:n)

(3.38)

Since each selected particle, that is {v(i)
0:n,α

(i)
0:n }, before being moved, is already

approximately distributed according to p0:n, the usual burn-in period for MCMC is
not necessary, see [Gilks and Berzuini, 2001].

3.3.3 SMCMC with Section-wise Optimal Proposals

SMCMC has shown great potential in breaking the curse of dimensionality from
which the IS-based SMC methods usually suffer. This can be a desirable property
when developing algorithms for sequential batch inference. Hence, we propose to use
SMCMC for state estimation, aiming at providing effective alternative approaches for
the tracking of an object with inertial sensors. The adopted SMCMC algorithm, as
detailed in Chapter 2, follows a mixture sampling based procedure that selects a joint
draw action with probability PJ which updates all states simultaneously and refinement
steps with probability (1 − PJ) in which {v0:n−k,α0:n−k} and {vn−k+1:n,αn−k+1:n} are
updated individually.

Joint Update of {v0:n,α0:n}

To make a joint draw with a target distribution defined in (3.28) at the m-th MCMC
iteration, two steps are required: first draw past state trajectories {v∗

0:n−k,α
∗
0:n−k}
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using the empirical particle representation obtained at time tn−k:

q(v0:n−k,α0:n−k|vm−1
0:n−k,α

m−1
0:n−k) = p̂(v0:n−k,α0:n−k|yα,0:n−k,yv,0:n−k, p̂0:n−k) (3.39)

This is then followed by the proposal of {v∗
n−k+1:n,α

∗
n−k+1:n} conditioned on the states

drawn in the first step:

q(vn−k+1:n,αn−k+1:n|αm−1
n−k+1:n, v

m−1
n−k+1:n)

= p(αn−k+1:n|yα,n−k+1:n, vn−k+1:n,α
∗
n−k)p(vn−k+1:n|yv,n−k+1:n, v

∗
n−k) (3.40)

According to (3.39)-(3.40) the acceptance ratio for a MH kernel is obtained as
follows,

ρ1 = 1 ∧ p(v∗
0:n,α

∗
0:n|yv,0:n,yα,0:n, p̂0:n)

p(vm−1
0:n ,αm−1

0:n |yv,0:n,yα,0:n, p̂0:n)
q(vm−1

0:n ,αm−1
0:n |v∗

0:n−k,α
∗
0:n−k)

q(v∗
0:n,α

∗
0:n|vm−1

0:n−k,α
m−1
0:n−k)

= 1 ∧
p(yα,n−k+1:n|v∗

n−k+1:n,α
∗
n−k)

p(yα,n−k+1:n|vm−1
n−k+1:n,α

m−1
n−k )

p(yv,n−k+1:n|v∗
n−k)

p(yv,n−k+1:n|vm−1
n−k )

p(p̂|α∗
0:n, v

∗
0:n)

p(p̂n|αm−1
0:n , vm−1

0:n )
(3.41)

Refinements of {v0:n−k,α0:n−k} and {vn−k+1:n,αn−k+1:n}

Coupled with the joint proposal, a series of Metropolis-within-Gibbs steps can be
carried out to refine states respectively. More specifically, we first refine the estimate
of {v0:n−k,α0:n−k} using a MH kernel with the following target distribution:

p(v0:n−k,α0:n−k|vn−k+1:n,αn−k+1:n,yv,0:n,yα,0:n, p̂0:n) (3.42)

=
p(v0:n,α0:n|yv,0:n,yα,0:n, p̂0:n)

p(vn−k+1:n,αn−k+1:n|yv,0:n,yα,0:n, p̂0:n)

and a proposal identical to that given by (3.39). {v∗
0:t−k,α

∗
0:t−k} is then accepted

according to the following ratio:

ρ2 = 1 ∧
(
p(αm−1

n−k+1|α∗
n−k, v

m−1
n−k+1)

p(αm−1
n−k+1|αm−1

n−k , v
m−1
n−k+1)

p(vm−1
n−k+1|v∗

n−k)
p(vm−1

n−k+1|vm−1
n−k )

×
p(p̂n|v∗

0:n−k,α
∗
0:n−k, v

m−1
n−k+1:n,α

m−1
n−k+1:n)

p(p̂n|vm−1
0:n−k,α

m−1
0:n−k, v

m−1
n−k+1:n,α

m−1
n−k+1:n)

)
(3.43)

where p(αn−k+1|αn−k, vn−k+1) and p(vm−1
n−k+1|vn−k) are just the state transition densities

given in (3.11) and (3.8). The next step is refining {vn−k+1:n,αn−k+1:n}. To this end,
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set the target distribution of the MH kernel to be

p(vn−k+1:n,αn−k+1:n|v0:n−k,α0:n−k,yv,0:n,yα,0:n, p̂0:n) (3.44)

and propose states from the section-wise proposal kernels constructed above. As a
result, we obtain an acceptance rate similar to that used in the RM step (note the
change of indexing notation):

ρ3 = 1 ∧
p(yα,n−k+1:n|v∗

n−k+1:n,α
m
n−k)

p(yα,n−k+1:n|vm−1
n−k+1:n,α

m
n−k)

p(p̂n|vm0:n−k,α
m
0:n−k, v

∗
n−k+1:n,α

∗
n−k+1:n)

p(p̂n|vm0:n−k,α
m
0:n−k, v

m−1
n−k+1:n,α

m−1
n−k+1:n)

(3.45)

Also note that after any acceptance event all likelihood terms need to be updated
accordingly. The pseudo code of the above procedure, for a single batch, is given in
Algorithm 5.

3.3.4 Parallel SMCMC

Generic SMCMC algorithms can still be inefficient when dealing with highly correlated
variables in high dimensional systems. To account for this, we propose an intuitive
but effective solution which runs multiple Markov chains in parallel. The idea is to
provide greater diversity and to avoid the situation in which we only have one chain
and it gets stuck at one ancestor trajectory. As a result, this algorithm introduces a
new design parameter, which is the number of parallel chains NChain.

We would like to note that in the proposed parallel SMCMC scheme we do not
combine multiple chains into one chain at the end of each section/batch. A simple
mixing scheme, in which past state trajectories {v0:n−k,α0:n−k} are drawn uniformly
from a combined chain, has been experimented with and the results indicate that its
performance is not comparable with the scheme running multiple independent chains.
One possible reason for this outcome is that the negative effects from one or multiple
poorly mixed chains may be exacerbated in such a simple combination scheme.
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In a batch defined by consecutive position measurements p̂n−k and p̂n:
for m = 1, 2, . . . , Niter do

Sample u ∼ Unif(0, 1);
if u < PJ then

// Joint Update
Sample {v∗

0:n−k,α
∗
0:n−k} according to (3.39) ;

Sample {v∗
n−k+1:n,α

∗
n−k+1:n} according to (3.40) ;

Compute the MH acceptance ratio ρ1 according to (3.41) ;
Accept {vm0:n,α

m
0:n} = {v∗

0:n,α
∗
0:n} with probability ρ1;

else
// Refinement step 1
Sample {v∗

0:n−k,α
∗
0:n−k} according to (3.39) ;

Compute the MH acceptance rate ρ2 according to (3.43) ;
Accept {vm0:n−k,α

m
0:n−k} = {v∗

0:n−k,α
∗
0:n−k} with probability ρ2 ;

// Refinement step 2
Sample {v∗

n−k+1:n,α
∗
n−k+1:n} according to (3.40) ;

Compute the MH acceptance rate ρ3 according to (3.45) ;
Accept {vmn−k+1:n,α

m
n−k+1:n} = {v∗

n−k+1:n
,α∗

n−k+1:n
} with probability ρ3 ;

end
Keep every Nthin MCMC output {v(i)

0:n,α
(i)
0:n} = {vm0:n,α

m
0:n} to form the new

particle set after a burn-in period Nburn ;
Approximate the posterior:
p̂(v0:n,α0:n|yα,0:n,yv,0:n, p̂0:n) = 1

Np

∑Np
i=1 δv(i)

0:n,α
(i)
0:n

(v0:n,α0:n);
end

Algorithm 5: SMCMC algorithm (single batch)
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3.4 Experimental Results

3.4.1 Synthetic Data

The proposed inference methods are firstly tested on 100 Monte Carlo realisations (i.e.
100 trajectories generated according to the intrinsic model, each with N = 300 data
points) of the problem. The parameters used in the simulation are given in Table 3.1
whilst the abbreviated names of the algorithms are defined in Table 3.2. Here fs is the
sampling rate for inertial, speed and distance measurements while the time of arrival
of position signals is governed by a homogeneous Poisson process with intensity λPOI .
The state estimation is based on the basic smoothing scheme as in [Kitagawa, 1996],
which estimates the entire state trajectory p(v0:N ,α0:N |yv,0:N ,yα,0:N , p̂0:N) using the
final filtering approximation.

In our first evaluation, we examine the performance of the algorithms in challeng-
ing tracking scenarios, where regular inertial measurements and occasional position
measurements are available, with varied number of particles/MCMC iterations. A
Poisson intensity λPOI = 1/6 is used, which corresponds to the case where there are
on average 50 position measurements arriving randomly during 300 seconds. The
estimation performance is evaluated by computing the position RMSE, which for a
single dataset is defined as

RMSEp =

√√√√ 1
N

N∑
i=1

∥pn − ptrue,n∥2 (3.46)

The total number of iterations (including burn-in period) used in MCMC-based al-
gorithms is set to be the same as the particle number used in FFBS, FFBS-RM and
OPT (see Table 3.3 for a detailed algorithm parameter specification). This is to obtain

Table 3.1 Model parameters (synthetic data)

Symbol Value Symbol Value
µT 15 σv̂ 1
σT 30 σâT 0.5
σP 220 σd̂ 1
σb 0.5◦ σâP 0.5
m 200 σ ˆ̇ψ 18◦

λ 3 σx 5
fs 1Hz σy 5
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Table 3.2 Tracking algorithms

Tracking algorithm Name
SIR w/ locally optimal proposals OPT
SIR w/ section-wise optimal proposals FFBS
SIR w/ section-wise optimal proposals and resample-move FFBS-RM
SMCMC w/ section-wise optimal proposals SMCMC
Parallel SMCMC w/ section-wise optimal proposals P-SMCMC

Table 3.3 Algorithm Parameter Specification

Algorithm Parameter Symbol case 1 case 2 case 3
# of particles/MCMC iterations Np/Niter 500 1000 2000
# of RM steps NRM 1 1 1
Burn-in period NBurn 25 100 200
# of parallel chains NChain 4 4 4

roughly equal running time for the considered algorithms. The results of the average
position RMSEs and their associated standard deviations are shown in Fig. 3.2a,
from which it is clear that the proposed P-SMCMC algorithm improves the tracking
performance compared to the generic SMCMC. It also gives the best estimates with
enough iterations. However, the performance of SMCMC based algorithms drops
significantly when not running the chains for long enough time. As each parallel chain
is run for just a quarter of the total number of iterations, P-SMCMC gives poor results
with 500 iterations. Although FFBS-RM turns out to be more robust compared to the
other IS-based methods, it actually requires more computational power as it has to do
MCMC one or multiple times (NRM ≥ 1) for each resampled particle. A bootstrap
SIR filter, in which states are proposed from their priors, is also implemented for
comparison. However, the poor performance of the filter (mean of position RMSEs:
16.17m; standard deviation of position RMSEs: 13.64m) renders it unsuitable to be
included in the figure.

A further experiment, in which we vary the number of received position mea-
surements by adapting the values of λPOI , is conducted to assess the capabilities of
the proposed algorithms. Position RMSE is again used to quantify the comparison.
Fig. 3.2b shows that while the best performance is achieved by IS-based SMC filters
(OPT and FFBS-RM) provided frequent position observations, P-SMCMC is able to
accommodate more challenging scenarios. This can be attributed to the fact that
MCMC-based scheme is more efficient when sampling from high-dimensional posterior
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(a) Tracking performance of different algorithms on data syn-
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Fig. 3.2 Simulation results on 100 trajectories.
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Fig. 3.3 Bike-mounted IMU orientation: Z+ is aligned to the surface normal with the
bike being held still on the flat ground

(corresponding to a long waiting period between two consecutive position measure-
ments). This result can serve as a guideline for algorithm selection in different tracking
applications.

3.4.2 Manoeuvring Object Tracking: Track Cycling

The proposed methods are also evaluated in an on-line localisation/tracking scenario
where the aim is to track a fast-moving bicycle in an indoor velodrome environment
using inertial sensors and occasional position measurements provided by timing lines on
the velodrome track. To be in accordance with the actual circumstance, it is necessary
to introduce the sensor system used in our experiments.

Bike sensors Firstly, direct speed data are available so that the speed measurement
model, as per (3.12), can be used. An IMU is mounted at the bottom bracket shell
of the bike frame, with its orientation relative to the bike shown in Fig. 3.3. When
cycling around a velodrome track, direct measurements of turn rate may be unavailable.
This is because the geometry of the track and the bike sway prevent the vertical axis of
gyroscope (i.e. Z+ in Fig. 3.3) from being aligned with the normal vector of the plane
of motion. However, recall that this chapter is mainly concerned with 2D tracking
model we still adopt (3.13) as our turn rate measurement model. Consequently, angular
speed from the gyroscope’s Z-axis is treated as a direct measurement of the rate of
heading. We do not use acceleration measurements given by the accelerometer in this
test since the sensor measures not only the acceleration caused by the cyclist but also
the gravitational acceleration. Without an accurate modelling of the bike tilt angle,
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the extremely high readings from the accelerometer, caused by the gravity, are useless
to tracking algorithms. Furthermore, direct distance measurement is not available,
either.

Position measurements Unlike outdoor sports where it is possible to take ad-
vantage of global navigation systems to help localise an object, we need additional
positioning systems for indoor track cycling. Here, two additional systems are available
for providing position information:

(a). There are 9 lines (0m, 25m, 50m, 100m, 115m, 125m, 150m, 200m and 240m)
across the velodrome track, see Fig. 3.4, and the crossing times for these lines
can be measured. Such measurements are treated as a Gaussian measurement of
the true position, p̂n, at the measured crossing time tn, truncated to lie within
the track width:

p(p̂n|pn) ∝ N (p̂n|pn,ΣTL) (3.47)

where p̂n and ΣTL are respectively centred on and aligned with each timing line
(TL). When accurate position information is not available, ΣTL would be set very
wide along the timing line. Fig. 3.4 shows the positions of timing lines along the
track and the corresponding Gaussian distributions for two of the timing lines.

(b). For certain timing lines along the straights (i.e. 0m, 100m, 115m, 125m and
240m) a camera system measuring lateral distance to the track’s inner black
line has been deployed around the velodrome, see [Carey et al., 2017]. In these
cases the same truncated Gaussian is employed, but with a narrower covariance
function centred on the measured lateral position.

On-track detection In addition to the above measurements, we also possess point
cloud data acquired by laser scanning. This geometry information allows us to determine
whether or not a particle stays physically within the track width. We can then assign
zero weight to an out-of-track particle and resample particles when, for example,
the effective sample size (ESS) is lower than a pre-defined threshold. Currently this
detection mechanism is implemented only for OPT in which it is easy to detect whether
a particle will go off-track at the next time epoch. For schemes with section-wise
proposal kernels, we will not know whether a particle is moving off-track until the
backward sampling step is completed. This more elaborate constraint enforcement is
left as a topic of future exploration.
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Fig. 3.4 Left: top view of the track with timing lines plotted in black. Yellow contours
represent the edges of a velodrome track. Right: truncated Gaussian distributions on
25m and 50m timing lines.

Results on Synthetic Track Cycling Data

As the ground truth for the real data is not available, we synthesise several different
datasets, each of which mimics a 2D cycling trajectory on the same velodrome track.
By doing this, we could test and validate the tracking performance of our methods. Our
idea of synthesising track cycling data is to run particle filters on the measurements
acquired during the time when a cyclist cycled around a track for several laps. Then
we adopt the output of the filters as our ground truth for further use. The parameters
we use to generate the synthetic data are given in Table 3.4. Also note that the sensor
measurements are logged every 0.1 seconds in order to be in line with the actual
scenario. In total, there are 5 datasets, each corresponding to a 2- or 3-lap on-track
trajectory.

As noted above, there is a difficulty in designing effective on-track detection mecha-
nisms to accommodate the geometry constraint for the sequential batch algorithms.
Although a simple solution, in which a point-by-point examination is conducted after
the generation of a whole section, may be adopted, it is prone to be inefficient. For
MCMC-based methods, this implies that a long period of time has to be waited until
a satisfactory number of in-track paths are obtained. As a result, for this on-line
application we decide to mainly focus on OPT as well as its equivalent bootstrap SIR
filter (SIR). The section-wise scheme FFBS is still implemented for comparison while
the other algorithms are left out.
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Table 3.4 Parameters used for generating synthetic cycling data

λ m µT σT σP σb σv̂ σ ˆ̇ψ fs

1 100 0 50 3000 0.5◦ 0.5 18◦ 10Hz

Table 3.5 Testing results across 5 datasets (10 runs for each algorithm). Particles used
in OPT, FFBS and SIR are 2000, 5500 and 2000, respectively. Numbers given are
means (and standard deviations) of position RMSEs.

Algorithms w/ corner position? Position RMSE [m]

OPT no 0.681 (0.071)
yes 0.526 (0.055)

FFBS no 0.997 (0.274)
yes 0.811 (0.097)

SIR no 3.992 (0.781)
yes 3.993 (0.568)

Now we are in a position to present performance comparison based on position
RMSE values between different algorithms. Two testing scenarios are considered:
one is in line with the practical situation where only timing information is available
when a cyclist reaches one of the corner timing lines (i.e. 25m, 50m, 150m and 200m)
whereas the other assumes that the relative distance between the bike and the black
measurement line can be observed on these lines. In the first scenario, constrained
Gaussian distributions with very large covariance are placed on the corner timing lines,
showing no preference for particles that are able to get to one of the lines in time.
Smoothed state estimate is used for computing the RMSEs as in the previous section.

The overall results are given in Table 3.5 from which it is clear that having lateral
position measurement at corner lines helps reducing the tracking error. While being
sufficiently robust in coping with less informative measurements, OPT outperforms
both of the other two methods in the two testing scenarios. The lack of an on-track
detection mechanism has rendered FFBS less effective than OPT. The bootstrap SIR
filter has the worst performance as it uses state transition density as its proposal kernel.
Drawing samples from the Gaussian prior results in more diverse heading rates and
thus worse tracking performance. It is common that in the bootstrap SIR filter many
particles fail to get to timing lines in time, which further degrades the performance of
the filter. In contrast, the proposed methods perform better as the mismatch between
prior predictive distribution and posterior distribution is mitigated.
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A better visualisation with respect to the tracking performance for each algorithm
can be found in Fig. 3.5 where the time evolution of the position errors and the
corresponding empirical cumulative density functions with respect to one run on one of
the datasets are plotted. The blue and red vertical lines on the left denote the timings
of crossing corner and straight timing lines, respectively. It can be seen from the top
left graph that the proposed schemes can keep the estimation errors at low levels when
corner position measurements are provided. In this case, 85% of the position errors of
the OPT are below 0.601m while the same percent of the errors in the FFBS lie below
0.845m. As for the case where only timing information is provided around the corner,
the OPT scheme still keeps 85% of the errors under 0.896m. And it becomes more
clear that without the on-track constraint and the corner position measurements, the
performance of the FFBS scheme decreases.
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Fig. 3.5 Left: position errors over time, with(top left)/without(bottom left) corner
position measurements. Blue vertical lines: timings at the corner timing lines; Red
vertical lines: timings at the timing lines on the straights. Right: empirical CDFs of
position errors, with(top right)/without(bottom right) corner position measurements.
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Preliminary Results on Real Data

In practice, neither lateral position measurements at corner timing lines nor ground
truth is available. To get a sense of the performance of the proposed algorithms under
this circumstance, we ask a cyclist to follow a pre-defined trajectory on the track,
which is defined as below:

1. from 115m timing line to 35m line, the cyclist stays on the black measurement
line.

2. at 35m line, the cyclist starts a vector from the black measurement line and end
up being around 220cm (slightly below the blue line which is 250cm away from
the black measurement line) at 50m timing line.

3. from 50m timing line on, the cyclist dips down and cycles on the red line.

4. from 110m line (i.e. between 100m and 115m timing line) to 115m timing line,
the cyclist drops again from the red line to the black line.

5. repeat for a few laps.

Lateral position measurements and timing measurements are synchronised with
the on-bike sensor measurements whose sampling rate is 10Hz. Our methods is then
tested on a collected dataset. As shown in Fig. 3.6, the smoothing trajectory obtained
from OPT matches the defined trajectory well. We also plot 95% confidence ellipses
along the filtered trajectory (not shown) occasionally. From the magnified area 2-3
(i.e. corresponding to the step 2 and 3), it can be seen that the ellipse becomes smaller
because just a subset of the particles get to the line in time. As the particles are
moving between the 50m line and the 100m line, the uncertainty becomes gradually
larger as the model relies only on the IMU and speed measurements. However, owing
to the optimal kernels and the on-track constraint the ellipses can still cover the red
line around which the rider is positioned. This guarantees that the tracking model
can use the accurate lateral position measurements to get back to the correct path
when the rider arrives at the 100m timing line. As to FFBS, although there are more
uncertainty due to the unconstrained particle motion it can still follow the pre-defined
path. The example trajectory obtained by FFBS is not plotted here as it is visually
very similar to that of OPT.
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3.4 Experimental Results

Fig. 3.6 A 1-lap smoothed trajectory estimated by OPT, with 95% confidence ellipses
in red. Track (velodrome) description: yellow lines depict the edges of the velodrome;
Blue line is the stayer’s line; red line between the blue and the black line is the sprinter’s
line; black line is the measurement line.
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Table 3.6 Parameters (ground vehicle tracking)

Symbols Values
µT , σT , σP , σb 10, 30, 1000, 0.005◦

σv̂, σâT , σâP , σ ˆ̇ψ, σx, σy 1, 2, 2, 15◦, 2, 2
m,λ, fs 200, 3, 10Hz

Np, Niter, NRM , Nchain, Nburn 2000, 2000, 1, 4, 2

3.4.3 Manoeuvring Object Tracking: Vehicle Tracking

KITTI [Stiller and Urtasun, 2013] ground vehicle datasets are chosen to test our
algorithms as they contain high precision RTK-GPS measurements which can be
treated as ground truth. Because the IMU is fixed in the intrinsic frame of the ground
vehicle, data from accelerometer can be used here. The idea is to test the algorithms in
GPS-denied (very infrequent) scenarios and hence intermittent position data are again
simulated according to a Poisson process. Relevant parameters are given in Table 3.6.

Fig. 3.7 shows tracking results of different methods on a 66-second dataset, given
random initial heading angle (uniformly in [0, 2π]) and λPOI = 1/5. The red shaded
area along the RTK trajectory represents the precision of the ground truth position
measurements. The relatively poor performance of OPT, especially when it is around
the area without position measurements, highlights the fact that it is a ‘one-shot’
sequential algorithm. It cannot ‘look ahead’ to use coming position measurements as a
guidance, which is a main difference between it and the other algorithms. Although
enhancement may be achieved by running a particle smoother backwards for an
adequate number of repetitions, it is computationally expensive. On the contrary,
FFBS-RM, SMCMC and P-SMCMC improve the proposed states and the retrospective
performance while running in a sequential batch sense and maintaining relatively low
computational cost. This characteristic becomes more prominent as in Fig. 3.8.
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3.5 Summary and Conclusions

In this chapter, novel Bayesian inference methods are proposed for the fusion of inertial
(accelerometer, gyroscope, speedometer and distance) and asynchronous position mea-
surements, based on an intrinsic coordinate model. The proposed modelling allows an
improved use of the model structure, leading to enhanced performance compared to the
basic particle filtering scheme in challenging tracking scenarios. While the experimental
results on the synthetic and real vehicle data reveal that a novel parallel chain based
modification to the generic SMCMC has great potential in unconstrained, GPS-denied
tracking scenarios, the results on cycling data show that a particle filter with the
locally optimal kernels and an appropriate track edge detection mechanism can be
desirable in a constrained tracking environment. Moreover, the good performance of
the parallel SMCMC algorithm encourages further exploration on the effects of using
different numbers of parallel chains and introducing more deliberate interaction among
independent chains. As noted in Section 3.1.1, the use of continuous-time intrinsic
coordinate dynamic model in a fixed rate tracking setting has been largely limited
to approximations such as discretisation and linearisation, it is our hope that the
introduction of the efficient proposal kernels as well as the corresponding inference
algorithms will help shed more light on this class of models.

75



Bayesian Object Tracking: a Fixed Rate Perspective

Fig. 3.7 Two independent runs (occasional GPS data are generated randomly in each
run.) on the KITTI dataset (“2011_09_26_drive_0117_sync”).
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Fig. 3.8 Another KITTI dataset (“2011_09_26_drive_005_sync”), with merely 4
position observations.
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Appendix

Appendix 3.A Locally Optimal Kernels

3.A.1 Speed Proposal Kernels

Here we show how to build the proposal kernel for v with the coming speed measurement,
according to (3.8) and (3.12):

q(vn|v̂n, vn−1) = p(vn|v̂n, vn−1)

= p(v̂n|vn)p(vn|vn−1)
p(v̂n|vn−1)

∝ N (v̂n|vn, σ2
v̂)N (vn|avvn−1 + bv, σ

2)
= N (vn|mv, σ

2
v) (3.48)

with

mv = avn−1 + b+ σ2
v(v̂n − avvn−1 − bv)/(σ2 + σ2

v̂)
σ2
v = σ2 − σ4/(σ2 + σ2

v̂)
av = e−∆τnλ/m

bv = µT (1 − e−∆τnλ/m)/λ
σ2 = σ2

T (1 − e−∆τnλ/m)2/λ2

and the normalising constant used for updating importance weights

p(v̂n|vn−1) =
∫
p(v̂n|vn)p(vn|vn−1)dvn

= N (v̂n|avvn−1 + bv, σ
2 + σ2

v̂) (3.49)
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Routinely, acceleration measurement âT,n can be incorporated based on (3.48) and
(3.17):

q(vn|vn−1, v̂n, âT,n) = p(âT,n|vn, vn−1)p(vn|v̂t, vn−1)
p(âT,n|v̂n, vn−1)

∝ p(âT,n|vn, vn−1)p(vn|v̂n, vn−1)
= N (âT,n|c(vn − vn−1), σ2

âT
)N (vn|mv, σ

2
v)

= N (vn|m⋆
v, (σ⋆v)2) (3.50)

where

m⋆
v = (σ⋆v)2

(
mv

σ2
v

+ c · (âT,n + c · vn−1)
σ2
âT

)

(σ⋆v)2 =
( 1
σ2
v

+ c2

σ2
âT

)−1

c = λ

m

e− ∆τnλ
m

1 − e− ∆τnλ
m

and

p(âT,n|v̂n, vn−1) = N
(
âT,n|c · (mv − vn−1), σ2

âT
+ c2σ2

v

)
(3.51)

Finally the speed proposal taking travelled distance information into consideration can
be obtained via (3.50) and (3.20):

q(vn|vn−1, v̂n, âT,n, d̂n) = p(d̂n|vn−1, vn)p(vn|vn−1, v̂n, âT,n)
p(d̂n|vn−1, v̂n, âT,n)

∝ p(d̂n|vn−1, vn)p(vn|vn−1, v̂n, âT,n)
= N (d̂n|ad1vn + ad2vn−1, σ

2
d̂
)N (vn|m⋆

v, (σ⋆v)2)
= N (vn|m̃v, σ̃

2
v) (3.52)
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with

m̃v = σ̃2
v

( m⋆
v

(σ⋆v)2 + ad1

σ2
d̂

(d̂n − ad2vn−1)
)

σ̃2
v =

( 1
(σ⋆v)2 + a2

d1
σ2
d̂

)−1

ad1 = ∆τn
1 − e− ∆τnλ

m

− m

λ

ad2 = m

λ
− ∆τn

1 − e− ∆τnλ
m

e− ∆τnλ
m

and
p(d̂n|vn−1, ŝn, âT,n) = N (d̂n|ad1m

⋆
v + ad2vn−1, σ

2
d̂

+ a2
d1(σ⋆v)2) (3.53)

3.A.2 Turn Rate Proposal Kernels

In a similar fashion, in terms of (3.11) and (3.13) the proposal for α conditioned on
the speed and the turn rate measurement is given by

q(αn| ˆ̇ψn,αn−1, vn) = p(αn| ˆ̇ψn,αn−1, vn)

∝ p( ˆ̇ψn|αn,αn−1, vn)p(αn|αn−1, vn)

= N ( ˆ̇ψn|Bαn, σ
2
ˆ̇ψ
)N (αn|Aαn−1, C)

= N (αn|mα, Pα) (3.54)

where

mα = Aα
(i)
t−1 + CBT (BCBT + σ2

ˆ̇ψ
)−1( ˆ̇ψt −BAα

(i)
t−1)

Pα = C − CBT (BCBT + σ2
ˆ̇ψ
)−1BC

B =
[
1 1

]
and

p( ˆ̇ψn|αn−1, vn) =
∫
p( ˆ̇ψn|αn,αn−1, vn)p(αn|αn−1, vn)dαn

= N ( ˆ̇ψn|BAαn−1, BCB
T + σ2

ˆ̇ψ
) (3.55)
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When the measurement of perpendicular acceleration is available, the desired proposal
kernel is obtained as follows, using (3.18) and (3.54):

q(αn|αn−1, vn,
ˆ̇ψn, âP,n) = p(αn| ˆ̇ψn, âP,n,αn−1, vn)

∝ p( ˆ̇ψn|αn)p(âP,n|vn,αn)p(αn|αn−1, vn)

∝ p(âP,n|vn,αn)p(αn| ˆ̇ψn,αn−1, vn)
= N (âP,n|Mαn, σ

2
âP

)N (αn|mα, Pα)
= N (αn|m̃α, P̃α) (3.56)

with

m̃α = mα + PαM
T (MPαM

T + σ2
âP

)−1(âP,n −Mmα)
P̃α = Pα − PαM

T (MPαM
T + σ2

âP
)−1MPα

M = [vn, 0]

and the normalising constant

p(âP,n| ˆ̇ψn,αn−1, vn) = N (âP,n|Mmα,MPαM
T + σ2

âP
) (3.57)
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Chapter 4

Bayesian Object Tracking: a
Variable Rate Perspective

4.1 Introduction and Related Work

We may recall from Chapter 3 that in standard tracking applications a modelling
assumption that state arrival time is synchronised with that of measurements is typically
imposed. While being adequate to accommodate many tracking scenarios, this fixed
rate premise can be a limiting factor for building more realistic models. For examples,
when there exist abrupt changes (e.g. sharp manoeuvres of a fast moving target [Bunch
and Godsill, 2012; Davey et al., 2016; Godsill et al., 2007; Whiteley et al., 2011] and
price jumps in financial markets [Christensen et al., 2012; Johannes et al., 2009]) in
the state process, it is not desirable to assume that their locations (in time) need to be
in accordance with measurement time instants. Instead, if a state process whose state
arrival time is typically unknown and not necessarily synchronised to the measurement
process is considered, we will obtain a more natural class of models which is called
“variable rate models” [Bunch and Godsill, 2012; Bunch and Godsill, 2013c; Christensen
et al., 2012; Godsill and Vermaak, 2004; Godsill et al., 2007; Whiteley et al., 2011].
In this chapter, we turn our focus on the development of a variable rate manoeuvring
model and the corresponding Bayesian inference methods.

Studies related to the inference problems on variable rate models can be traced
back to the work by [Page, 1954] where it was referred to as a changepoint detection
problem and the aim was to infer model parameters with variable dimensionality.
Later, thanks to the rapid growth in computational power Markov chain Monte Carlo
(MCMC) methods were extensively applied to similar model determination problems,
as in the representative work by [Chib, 1995; Godsill, 2001; Green, 1995]. These works
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mostly focused on changepoint detection in which the main objective is to estimate
changepoint locations as well as the corresponding parameters rather than to jointly
infer both the changepoint and the hidden state. While it is not the case for model
uncertainty problems, a large body of work dedicated to the joint estimation for both
hidden state and changepoints can be found in communities such as target tracking
[Godsill et al., 2007; Mazor et al., 1998], control [Costa et al., 2013] and economics
[Blair Jr. and Sworder, 1975; Christensen et al., 2012]. For instance, in tracking
applications of Interactive Multiple Models (IMMs) [Mazor et al., 1998; Xie et al., 2018]
a target is allowed to switch its dynamics according to a finite set of candidate models
capturing different types of motions (rectilinear, curvilinear and etc.). A known finite
state Markovian transition matrix acting on dynamical models is usually assumed. As
a result, an indicator variable that specifies which dynamical model is currently in use
needs to be estimated jointly with the hidden state. There is also another standalone
class of methods known as Markov Jump Systems (MJSs) [Costa et al., 2013; Shi and
Li, 2015] which shares similar modelling principles with IMMs. However, most IMMs
and MJSs are based on the assumption that changepoints must arrive at the same
time instants as measurements. This is one of the essential differences between these
switching hybrid systems and the variable rate models where changepoints are allowed
to appear freely in their own time horizon.

It has been shown by [Bunch and Godsill, 2012; Godsill et al., 2007; Whiteley et al.,
2011] that conditioning on an unknown sequence of changepoints, continuous-time
dynamical models can be used to capture varied degrees of manoeuvrability of a target.
Compared with [Bunch and Godsill, 2012; Godsill et al., 2007] where intrinsic coordinate
dynamic models are considered, [Whiteley et al., 2011] adopts a coordinate-decoupled
model assuming independent accelerations acting along each Cartesian coordinate. To
solve the state and changepoint estimation problem associated with these variable rate
models, general particle filtering methods which are referred to as variable rate particle
filters (VRPFs) have been developed [Godsill and Vermaak, 2005; Godsill et al., 2007].
Apart from being useful in the field of object tracking, applications of variable rate
models can be found in financial markets. In [Christensen et al., 2012], the jumps in
market prices are treated as a sequence of changepoints that is estimated by a VRPF
while the price itself is tackled by a Rao-Blackwellised estimation scheme because of
the existence of a conditionally linear Gaussian structure. Other related work includes
(but not restricted to) the Rao-Blackwellised VRPF developed for pitch estimation in
audio applications [Zhang and Godsill, 2016] and the SMC samplers framework [Moral
et al., 2006].
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In contrast to the fixed rate model introduced in Chapter 3, here we consider an
intrinsic coordinate model formulated within a variable rate framework. The fact that
the intrinsic model has a closed form solution when piecewise-constant driving forces
are provided has made it a natural variable rate model in which the states evolve in a
deterministic manner conditioned on a sequence of changepoint times and manoeuvre
parameters. The variable rate intrinsic model is more realistic compared to its fixed
rate counterpart as it is able to capture both short- and long-term dependencies in the
state trajectory. More importantly, the model to be introduced can be regarded as a
generalisation to those in [Gilholm et al., 2005; Godsill and Vermaak, 2004; Godsill
et al., 2007] and it offers a convenient way to fuse information from various sources
under a variable rate particle filtering framework.

The proposed model also leads to an alternative effective solution to the problem of
fusing asynchronous data, which is a common issue associated with real world tracking
applications owing to different characteristics of sensors. A typical example is that the
sampling rate of inertial measurement units (IMUs) is usually different from that of
GPS units. Data fusion algorithms designed to deal with the asynchronicity present
in sensor measurements can be found in various fields ranging from vehicle tracking
[Hostettler and Djurić, 2015], target monitoring in wireless sensor networks [Safari
et al., 2014; Zhu et al., 2014] to general object tracking applications [Schön et al., 2007].
Whereas most of the work relies on either conducting discretization for the state space
model or imposing constraints on the sampling rate ratios between sensor systems, it
should be clear that a continuous-time state space model along with a particle filter
offers a more natural way to solve asynchronisity when the system is non-linear and/or
non-Gaussian. In this chapter we will show that better estimation results can be
obtained for certain challenging tracking problems by using a continuous-time dynamic
model and by exploiting the model structure related to high frequency data (e.g. those
from an IMU). Note that a more relevant work can be found in [Schön et al., 2007]
where a linear and Gaussian measurement model is assumed to be available for partial
measurements whose sampling frequencies are higher than the others. Consequently,
a standard particle filter is used to approximate the state posterior when a lower
frequency measurement is received, whereas the state estimation is handled by a set
of Kalman filters between the receiving times of two consecutive slow measurements.
However, the estimation for intermediate states in the paper is based on point estimates,
which is in contrast to the sampling-based strategies taken in our work. Moreover,
the approach is still based on the premise that the state arrival time needs to be
constrained by the observation interval (i.e. a fixed rate setting).
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In the following sections, we introduce the generalised version of the intrinsic
coordinate model according to which data from inertial and other sensors can be
easily fused. Based on the variable rate formulation of the proposed model, we show
how variable rate particle filters with better performance compared to its bootstrap
counterparts may be designed in the presence of asynchronous measurements. A variant
of the simulation smoother [de Jong and Shephard, 1995] tailored to variable rate
models is designed in order to overcome the difficulty in sampling from degenerated
linear Gaussian state transition models. Also, we present an improvement scheme based
on Reversible Jump Markov chain Monte Carlo [Green, 1995] moves for the resulting
filtering framework. Algorithm performance is then demonstrated using synthetic and
benchmark data. Furthermore, in the second last section we present solutions based
on particle Markov chain Monte Carlo methods [Andrieu et al., 2010] to the joint state
and parameter estimation problem.

4.2 Models

4.2.1 Variable Rate Models

The state in a variable rate model is defined as {xk}k∈N = {τk,uk}k∈N ∈ R+ × E with
τk the changepoint occurrence time (τ0 < τ1 < · · · < τn ≤ ∞, τk < τk+1 if τk < ∞),
uk the vector of variables offering a complete and parsimonious description for the
state process and E the state space of uk. It can be also viewed as the element in a
Marked Point Process (MPP) where τk represents the event time at which a certain
random event occurs while uk denotes the type or mark of the event [Jacobsen, 2006].
If a Markovian assumption (can be relaxed) is imposed, the variable state transition
density may be of the following form:

xk ∼ p(xk|xk−1)
= p(uk|uk−1, τk, τk−1)p(τk|uk−1, τk−1) (4.1)

From a Bayesian inference perspective, it will be of particular importance to obtain
the joint density p(x0:Kn) of a sequence of variable rate states in the time interval
[0, tn), with {t0 = 0, t1, . . . , tn} the times at which observations y0:n are made and
Kn = |{k : ∀τk < tn}| the number of states arriving before tn. It has been shown in
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[Bunch and Godsill, 2013c; Whiteley et al., 2011] that this density is given by

p(x0:Kn) = S(xKn , tn) × p(x0)
Kn∏
k=1

p(xk|xk−1) (4.2)

where the survival function S(xk, t) = 1 −
∫ t
τk
p(ξ | uk, τk)dξ gives the probability of the

next jump arriving after t conditioned on xk. It should be noted that Kn is a random
variable itself whose value is deterministic given a sequence of variable rate states and
time tn. Furthermore, if the state process is piecewise-deterministic, an interpolated
state ŭn = h(xKn:Kn+1) at tn, with h(·) being some deterministic function, can be
defined. This function then serves to connect variable rate states to observations that
are regularly sampled. Accordingly, the observation density can be written as p(yn | ûn)
if independent observations are assumed. See [Godsill et al., 2007; Jacobsen, 2006] for
detailed justifications regarding the existence of such a density. As a consequence, the
joint probability of variable rate states and measurements up to time tn, denoted as
p(x0:Kn ,y0:n), is given by

p(x0:Kn ,y0:n) = S(xKn , tn) × p(x0)
Kn∏
k=1

p(xk|xk−1)
n∏
i=0

p(yn|ŭn) (4.3)

4.2.2 Variable Rate Models for an Intrinsic Coordinate Sys-
tem

Now we will focus on the development of a continuous-time state-space representation
associated with the intrinsic coordinate model. Building upon this, different tracking
algorithms, either operating on a fixed-rate basis or a variable-rate basis, can be applied
with minimal work of adaptation. Without the loss of generality the formulation
presented is done in terms of a variable-rate setting where state arrival times are
not necessarily synchronised with those of observations. Nevertheless, it will be
straightforward to transform the model into a fixed-rate manner by setting the variable
timings of state process to be identical to those of measurement process. To begin
with, first recapitulate the following basic equations of curvilinear motion [Greenwood,
2006]:

dψ

dt
= TP
mv

,
dv

dt
= TT

m
(4.4)

where ψ is the heading angle relative to the x-axis, v is the speed, m is the mass
of the target and aP is the centripetal acceleration perpendicular to the tangential
acceleration aT . Considering the fact that a target, such as a car, a vessel or a bike, does
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not manoeuvre continuously, it is reasonable to assume the applied forces tangential
to (TT ) and perpendicular to (TP ) the motion to be piecewise constant over the time
interval (τk, τk+1]. If a resistance term whose value is proportional to the speed of the
object in the tangential direction is included into (4.4), as in [Gilholm et al., 2005;
Godsill et al., 2007], (4.4) can be re-written as

TT,k = λ
ds

dt
+m

d2s

dt2
(4.5)

TP,k = m
ds

dt

dψ

dt
, t ∈ (τk, τk+1] (4.6)

with s being the travelled distance/arc length along the path and λ the coefficient of
resistance. As accelerations are of interest in most tracking applications instead of
manoeuvring forces, accelerations aT and aP are directly included in our state vector.
The state process presented here also falls into the category of piecewise deterministic
processes (PDPs) since the states, as will be seen later, will evolve deterministically in
continuous time before a random jump in the forces occurs. Note also (4.5) and (4.6)
are in the same forms as (3.2) and (3.3), except that we now allow the forces to be
piecewise constant within intervals defined by changepoint arrival times.

In the sequel, the variable rate intrinsic coordinate model will be introduced in
terms of its tangential and perpendicular components, respectively. The state vector is
expanded to be x = {θ,α, τ} where θ and α stands for tangential and perpendicular
components. Furthermore, we define τ+

k , τ−
k to be the times right after/before a

manoeuvre at τk respectively and will use

{xk,xτk ,xτ+
k

}

interchangeably in the subsequent sections.

Tangential components

The following ordinary differential equation (ODE) can be constructed according to
the tangential equation (4.5):


ṡ

v̇

ȧT

 =


0 1 0
0 − λ

m
0

0 0 − λ
m



s

v

aT

+


0
TT
m

0


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As TT,k is assumed piecewise constant, integrating the ODE from τk to τk + ∆τ and
noticing that aT = − λ

m
v + 1

m
TT lead to the following solution


sτk+∆τ

vτk+∆τ

aT,τk+∆τ

 =


1 m

λ
(1 − e− ∆τλ

m ) 0
0 e− ∆τλ

m 0
0 e− ∆τλ

m (− λ
m

) 0



sτk
vτk
aT,τk



+


∆τ
λ

− m
λ2 (1 − e− ∆τλ

m )
1
λ
(1 − e− ∆τλ

m )
1
m
e− ∆τλ

m

TT,k (4.7)

Now, define θ = [s, v, aT ]T such that (4.5) becomes

TT,k =
[
0 λ m

]
θτ+

k
(4.8)

Substituting (4.8) into (4.7) we get

θτk+∆τ = Lθ(∆τ)θτ+
k

(4.9)

with

Lθ(∆τ) =


1 ∆τ m∆τ

λ
− m2

λ2 (1 − e− ∆τλ
m )

0 1 m
λ

(1 − e− ∆τλ
m )

0 0 e− ∆τλ
m


This means that, right after a change of the applied force, θ follows a deterministic
transition before another changepoint arrives at a future time (beyond τk + ∆τ).
Note that (4.9) holds under the assumption that s and v are continuous at τk (i.e.
vτk = vτ−

k
= vτ+

k
and sτk = sτ−

k
= sτ+

k
). Accordingly, the transition equation from τ−

k to
τ+
k (i.e. at the changepoint) can be written as

θτ+
k

= Aθθτ−
k

+ hθTT,k

where

Aθ =


1 0 0
0 1 0
0 − λ

m
0

 , hθ =


0
0
1
m


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If it is further assumed that the underlying distribution of the tangential force is
Gaussian (i.e. TT ∼ N (µT , σ2

T )), one will obtain the transition density at τk as

p(θτ+
k

|θτ−
k
, τk) = N

(
θτ+

k
|Aθθτ−

k
+ mθ, Qθ

)
(4.10)

with

mθ = [0, 0, µT/m]T

Qθ = diag([0, 0, σ
2
T

m2 ])

We now have the following transition densities according to which θ will evolve:

(a). From right after the changepoint (τ+
k ) to some future time τk + ∆τ before a new

changepoint arriving:

p(θτk+∆τ |θτ+
k
, τk) = δ(Lθ(∆τ)θτ+

k
)

with δ(·) being the Kronecker delta function.

(b). At the changepoint: (4.10).

(c). From right after the previous changepoint (τ−
k ) to right before the current

changepoint (τ+
k ):

p(θτ−
k

|θτ+
k−1
, τk, τk−1) = δ(Lθ(τk − τk−1)θτ+

k−1
)

As a result, a Gaussian state transition density for θ from τ+
k−1 to τ+

k can be obtained:

p(θτ+
k

|θτ+
k−1
, τk, τk−1)

= N (θτ+
k

|Aθ(Lθ(τk − τk−1)θτ+
k−1

) + mθ, Qθ)

= N (θτ+
k

|Tθ(τk − τk−1)θτ+
k−1

+ mθ, Qθ) (4.11)

where

Tθ(∆τ) = AθLθ(∆τ) =


1 ∆τ ∆τm

λ
− m2

λ2 (1 − e
−∆τλ
m )

0 1 m
λ

(1 − e
−∆τλ
m )

0 − λ
m

e
−∆τλ
m − 1


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It should be noted that if ∆τ = τk − τk−1 equals the fixed time interval between
successive observations (4.11) will become a fixed-rate state transition equation as in
standard tracking models.

Perpendicular components

Recall that the second row of (4.7) depicts how speed changes in the time interval
t ∈ (τk, τk+1] given a constant applied force. Based on this result, (4.6) can be solved
for the change in heading angle as in [Godsill et al., 2007]:

ψτk+∆τ = ψτk + TP,k
TT,k

(∆τλ
m

− log
∣∣∣∣ vτk
vτk+∆τ

∣∣∣∣)

with ∆τ ≤ τk − τk−1. Accordingly, a transition equation for heading angle from τ+
k−1

to τ+
k can be expressed as

ψτ+
k

= ψτ+
k−1

+ f(θτ+
k−1:k

, τk−1:k) × aP,τ+
k−1

(4.12)

where

f(θτ+
k−1:k

, τk−1:k) = m

λvτ+
k−1

+maT,τ+
k−1

((τk − τk−1)λ
m

− log
∣∣∣∣vτ+

k−1

vτ+
k

∣∣∣∣)

In applications where gyroscope data is available a bias terms is often included to
capture instrumental bias/modelling error associated with measured angular velocities.
The fact that this bias term varies very slowly over time has led to tracking applications
where this term is treated as a constant variable, such as those in [Huang et al., 2010;
Solin et al., 2018]. However, for long-term robustness sometimes a time-varying setup
for the bias is preferred [Klein and Drummond, 2004].

The bias term b in this chapter is also assumed to be piecewise constant. It has
the same underlying “sojourn” times as those of applied forces. Alternatively, if the
bias is modelled as a continuous-time conditionally linear Gaussian process, a Rao-
Blackwellised estimation scheme [Robert and Casella, 2004] may be adopted. Since the
bias term is closely related to the heading angle, the state vector for perpendicular
components is designed as

α = [ψ, aP , b]T
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with b being the bias term. The corresponding transition model is then given by

ατ+
k

= Tα(θ, τ)ατ+
k−1

+ hαTP,k + hbJk (4.13)

where

Tα(θ, τ) =


1 f(θτ+

k−1:k
, τk−1:k) 0

0 0 0
0 0 1


hα =

[
0 1

m
0
]T

hb =
[
0 0 1

]T
Jk ∼ N (0, σ2

b )

In the same manner of designing TT , we assume the perpendicular force is also a
Gaussian TP ∼ N (0, σ2

P ) and thus a linear Gaussian state space model can be obtained
by conditioning on θτ+

k−1:k
and τk−1:k:

p(ατ+
k

|ατ+
k−1
,θτ+

k−1:k
, τk−1:k) = N (ατ+

k
|Tα(θ, τ)ατ+

k−1
, Qα) (4.14)

with Qα = diag([0, σ
2
P

m2 , σ
2
b ]). When there is no changepoint between τk and τk + ∆τ

the state transition equation is

p(ατk+∆τ |ατ+
k
,θτ+

k
,θτk+∆τ , τk, τk + ∆τ) = δ(Lα(θ, τ)ατ+

k
) (4.15)

with

Lα(θ, τ) =


1 f(θτ+

k
,θτk+∆τ , τk, τk + ∆τ) 0

0 1 0
0 0 1


In the sequel, subscripts of θ and τ in the condition will be removed for notational
brevity. Note further that another feasible formulation may include heading rate ψ̇
instead of perpendicular acceleration aP within α, as in the last chapter. These two
formulations are actually interchangeable given the speed, according to (4.6).
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Position

For the intrinsic model based upon (4.5) and (4.6), a closed form solution for the
Cartesian position p = [px, py]T will not be available unless the damping factor λ equals
zero [Bunch and Godsill, 2013c]. However, numerical approximation, such as Euler
approximation, may be used to obtain the position over time via

pt+δt ≈ pt + [δpx, δpy]T (4.16)

where δpx = vt cos(ψt)δt, δpy = vt sin(ψt)δt and δt controls the accuracy of the
numerical approximation. Note that it is optional to include the position p in the state
vector as it can be deterministically computed given the entire sequence of the variable
states, namely p(p0:n|û0:n) = δ(h(x0:Kn)) at time tn.

4.2.3 Measurement Models

Tangential components

Noisy observations of travelled distance ŝ, speed v̂ and tangential acceleration âT can be
considered to be in a linear relationship with θ when the body frames of inertial sensors
coincides with target’s intrinsic coordinate frame. As θ will evolve in a deterministic
manner conditioned on the most recent changepoint at τk, a measurement model for
an augmented observation yθ = [ŝ, v̂, âT ]T is given by

yθ,τk+∆t = Mθ(Lθ(∆t)θτ+
k

) + νθ,τk+∆t, νθ,τk+∆t ∼ N (0, Rθ) (4.17)

with

Mθ = I3

Rθ = diag([σ2
ŝ , σ

2
v̂ , σ

2
âT

])

and ∆ti the time difference between τk and the observation time. Note that depending
on the available sensors the measurement matrix Mθ can vary. It is also useful to group
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multiple observations such that an aggregate model is obtained as

Yθ,k =


yθ,τk+∆t1

...
yθ,τk+∆tN

 =


Bθ(∆t1)

...
Bθ(∆tN)

θτ+
k

+ wθ

= Zθθτ+
k

+ wθ (4.18)

with Bθ(∆ti) = MθLθ(∆ti), wθ ∈ R2N a zero-mean additive white noise satisfying
wθ ∼ N (0, blkdiag(Rθ, · · · , Rθ)) and {∆ti}Ni=1 the time differences between changepoint
τk and the observations associated to it. To conclude, (4.11) and (4.18) form the state-
space models for the tangential component vector θ.

Perpendicular components

Similarly, noisy measurements related to α can be denoted as yα = [ ˆ̇ψ, âP ]T with ˆ̇ψ the
angular velocity measured with respect to the axis of gyroscope that is perpendicular to
the moving plane and âP the side-way linear acceleration measured by accelerometers.
Again, given the speed a conditionally linear Gaussian measurement model can be
obtained as:

yα,τk+∆t = Bα(θ, τ)ατ+
k

+ να,τk+∆t, να,τk+∆t ∼ N (0, Rα) (4.19)

where

Bα(θ, τ) =
0 1

vτk+∆t
1

0 0 1


Rα = diag([σ2

ˆ̇ψ
, σ2

âP
])

and by stacking the observations we have,

Yα,k =


yα,τk+∆t1

...
yα,τk+∆tN

 = Zα(θ)ατ+
k

+ wα (4.20)

with

Zα = [Bα(θ, τ), · · · , Bα(θ, τ)]T

wα = blkdiag(Rα, · · · , Rα)
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Position Measurements

The generic form of position measurement density at time tn can be denoted as

p(yp,n | x0:Kn) = p(yp,n | pn) (4.21)

If the measurement noise is assumed to be additive and white, we will have

p(yp,n | pn) = N (yp,n | g(pn), Rp) (4.22)

with g(·) a linear or non-linear mapping function and Rp = diag([σ2
px , σ

2
py ]). While the

inertial measurements and speed measurements can be made with an identical sampling
rate it is common that the position-related measurements, which may be provided by a
GPS unit or other measurement units such as Doppler Radar and Laser scanner, may
have a different (normally smaller) arrival rate. This issue of asynchronicity will be
accounted for in our proposed algorithms.

4.3 Inference

4.3.1 Variable Rate Particle Filters

Many models of practical interests, including the models considered in this chapter,
are of non-linear and/or non-Gaussian nature, and thus state estimations need to be
carried out via non-linear filtering techniques such as particle filters [Cappé et al., 2007;
Doucet et al., 2001; Godsill, 2019b; Gordon et al., 1993]. As mentioned earlier, a variant
of particle filters that is tailored for variable rate models, termed variable rate particle
filter (VRPF) [Bunch and Godsill, 2013c; Godsill and Vermaak, 2004; Godsill et al.,
2007; Morelande and Gordon, 2009], has been introduced in order to accommodate
the variable dimensionality of the hidden state sequence which is not known a priori
within a given time interval. Typically, based on Bayes’ rule the intractable posterior
distribution of the hidden state sequence up to time tn can be expressed as

p(x0:Kn|y0:n) ∝ p(yn|ŭn)p(xKn−1+1:Kn|x0:Kn−1)p(x0:Kn−1|y0:n−1) (4.23)
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where

p(xKn−1+1:Kn|x0:Kn−1) = p(x0:Kn)
p(x0:Kn−1)

= S(xKn , tn)
S(xKn−1 , tn−1)

×

 ∏
∀j:tn−1≤τj<tn

p(xj|xj−1)
 (4.24)

is the joint distribution of changepoints that occur within [tn−1, tn). Note if there is
no new changepoints occurring between tn−1 and tn, we have Kn−1 = Kn (i.e. the
next changepoint will arrive after tn). VRPF now approximates the distribution
(4.23) at time tn via a set of weighted particles {x(i)

0:Kn}1≤i≤Np whose normalised
weights (∑Np

i=1 ω
(i)
n = 1) are determined by sequential importance sampling (SIS). More

specifically, to compute the importance weights at tn for each particle we start with
constructing an importance distribution q(·) of the entire state sequence as

q(x0:Kn | y0:n) = q(x0:Kn−1 | y0:n)q(xKn−1+1:Kn|x0:Kn−1 ,y0:n) (4.25)

Similar to Section 2.3.4 of Chapter 2, we also intentionally impose the dependency on
yn in the proposal of past path x0:Kn−1 to allow the design of better proposals that take
future information into account, under the variable rate setting. This means that instead
of drawing samples from the empirical distribution represented by normalised particle
weights {ω(i)

n−1}1≤i≤Np from last time instant, we may propose particles according to
weights {ν(i)

n−1}1≤i≤Np that are chosen in the light of a new measurement yn:

x(i)
0:Kn−1 ∼

Np∑
i=0

ν
(i)
n−1δx(i)

0:Kn−1
(x0:Kn−1) (4.26)

An auxiliary sampling scheme (or “auxiliary particle filter”) [Pitt and Shephard, 1999]
based on this rationale has been proven very successful. For a thourough review on
different look-ahead strategies that explore similar ideas, we refer interested readers to
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[Lin et al., 2013]. Now the weight update equation at tn for VRPF can be shown as

ω̃(i)
n = p(x(i)

0:Kn|y0:n)
q(x(i)

0:Kn|y0:n)

∝
p(x(i)

0:Kn−1|y0:n−1)p(yn|û(i)
n )p(x(i)

Kn−1+1:Kn|x(i)
0:Kn−1)

q(x(i)
0:Kn−1 |y0:n)q(x(i)

Kn−1+1:Kn|x(i)
0:Kn−1 ,y0:n)

= ω
(i)
n−1

ν
(i)
n−1

×
p(yn|ŭ(i)

n )p(x(i)
Kn−1+1:Kn|x(i)

0:Kn−1)
q(x(i)

Kn−1+1:Kn|x(i)
0:Kn−1 ,y0:n)

(4.27)

with ω̃(i)
n being the unnormalised importance weight of the i-th particle. Note that

(4.27) is akin to the general SIR formulation discussed in Chapter 2.3.4. As a result,
different choices of selection weights νn−1 will result in different versions of particle
filters. For instance, by setting νn−1 = ωn−1 at each iteration the standard resampling
scheme used in the original bootstrap filter [Gordon et al., 1993] is obtained. More often,
one may choose νn−1 = ωn−1 when an effective sample size (ESS) based resampling
criterion is met and νn−1 = 1/Np when it is not.

Note that for the rest of this chapter, except for the full system inference section, a
biased resampling scheme as in [Godsill et al., 2007] will be adopted. The main idea
behind this scheme is to preserve low weight particles which may turn out good in the
future. More specifically, at the beginning of the selection stage Ni replicas of the i-th
particle are firstly produced, with Ni determined by

Ni = max(1, ⌊Npϱ
(i)
n−1⌋)

where ⌊·⌋ is the floor function while ϱ(i)
n−1 is the selection weight. Note that in the

following experiments where this selection scheme is used, we set ϱ(i)
n−1 = ω

(i)
n−1. Now

replicas (offsprings) of the same particle will be assigned a modified selection weight
ν

(ij)
n−1 ∝ Ni, based on which the first stage weight for the j-th offspring of particle i can

be computed as
ω

(ij)
n−1

ν
(ij)
n−1

∝ ω
(ij)
n−1
Ni

(4.28)

with j = {1, . . . , Ni}. This scheme will result in a varied number of particles after the
selection stage and hence in a fixed budget implementation a pruning step is introduced
to keep Np particles with the highest weights after the weighting stage.
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4.3.2 Bayesian Fusion of Asynchronous Sensor Data

Denote all measurements made at times {t0, . . . , tn} as Y0:n = {Yθ,Yα,yp}0:n, the
state vector as x0:Kn = {θ,α, τ}0:Kn and L ≥ 1 as the time lag between two consecutive
slow (position in our case) measurements arriving at tn−l and tn. Essentially, L indicates
the asynchronicity among position and the inertial measurements. Now we are in
a position to factorise the posterior distribution at tn, which is the timing when a
position observation arrives, as

p(x0:Kn|Y0:n) ∝ p(x0:Kn−L|Y0:n−L)
× p(Y{α,θ},n−L+1:n−L+r|x0:Kn−L)p(yp,n|x0:Kn)
× p(αKn−L+1:Kn|Yα,n−L+r+1:n, {α, τ}Kn−L , {θ, τ}Kn−L+1:Kn)
× p(θKn−L+1:Kn|Yθ,n−L+r+1:n, {θ, τ}Kn−L , τKn−L+1:Kn)
× p(Yα,n−L+r+1:n|{α, τ}Kn−L , {θ, τ}Kn−L+1:Kn)
× p(Yθ,n−L+r+1:n|θKn−L , τKn−L:Kn)

× S(xKn , tn)
S(xKn−L , tn−L)

∏
∀j:tn−L≤τj<tn

p(τj|τj−1) (4.29)

with r being the number of inertial and speed measurements observed within the
time interval (tn−L, τKn−L+1). This can be seen as a variable rate equivalent to the
fixed rate sequential batch formulation given in Chapter 3. It should be noted that
position measurements {yp,0:n} can have equal or less number of components (≤ n)
compared with those of Yθ,0:n and Yα,0:n (= n), although for the sake of notational
brevity here we use the same subscripts “0:n”. We have also assumed that the latest
position measurement yp,n arrives synchronously with inertial measurements at tn.
Again, it does not have to be the case in practice. The above formulation in general
is operable given any interval defined by [tn−L, tn]. Furthermore, while any other
reasonable densities may be considered, in the sequel we choose a shifted gamma
distribution for the interarrival times between changepoints, as per [Godsill et al.,
2007]:

τj ∼ τj−1 + τmin + G(ατ , βτ ), τmin ≥ 0 (4.30)

with ατ and βτ being the shape and the rate parameters, respectively.
Under this particular factorisation, the problem of fusing inertial measurements

with other asynchronous measurements can be effectively tackled by exploiting the
linear/conditionally linear Gaussian models on which Kalman-type methods can be
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used. More precisely, instead of proposing state sequences θKn−L+1:Kn and αKn−L+1:Kn

from the prior distribution given in (4.24), we would like to draw these sequences from
more informative proposals

q(θKn−L+1:Kn|Yθ,n−L+r+1:n, {θ, τ}Kn−L , τKn−L+1:Kn) (4.31)

and

q(αKn−L+1:Kn|Yα,n−l+r+1:n, {α, τ}Kn−L , {θ, τ}Kn−L+1:Kn) (4.32)

where information in observed data are used. Simulating from these smoothing densities
may be done by using the forward-filtering-backward-sampling (FFBS) technique
[Carter and Kohn, 1994; Frühwirth-Schnatter, 1994] in which a joint draw from a
smoothing density is carried out recursively given multiple subdraws from a bunch
of conditional densities. However, here the components in state θ (also applies to α)
cannot be varied independently of each other due to their deterministic relationships
enforced by the piecewise constant force. Therefore, transition models defined by (4.11)
and (4.14) are degenerated ones because their process noise covariance matrices Qθ

and Qα are not positive definite. This is not uncommon in tracking applications where
people deal with degenerated dynamical models, see [Ahmad et al., 2018; Gustafsson
et al., 2002; Li and Jilkov, 2003; Maskell, 2004; Zhang et al., 2018] for examples. While
the degeneracy will not cause any problems when considering only sequential forward
filtering, it renders backward simulation approaches such as FFBS not applicable
unless mechanisms capable of tackling degeneracies are introduced. One of such
mechanisms can be found in [Bunch and Godsill, 2013c] where the authors manage to
do backward samplings on piecewise deterministic trajectories by introducing extra
degrees of freedom in their dynamical model.

To address the issue of sampling from a degenerated model backwards, here we
adopt an alternative multi-state sampler termed Simulation Smoother (SS) [de Jong
and Shephard, 1995; Koopman, 1993] in which it is the disturbances η instead of the
states that are sampled:

p(η0:n|Y1:n) = p(ηn|Y1:n)
0∏

j=n−1
p(ηj|ηj+1:n,Y1:n) (4.33)

As a complete state trajectory can be constructed forwardly using sampled disturbances
η0:n given an initial state, problems associated with singular matrix inversions and
disjoint deterministic state trajectories can be avoided.
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Although it will be relatively straightforward to design a SS for fixed-rate models
by supposing that the occurrence of changepoints coincides with that of observations
(i.e. τ ≜ tn − tn−1 and the disturbances will be piecewise constant in the time interval
(tn−1, tn]), it will be necessary to adapt SS such that it can work on variable-dimensional
cases. To this end, consider first the following state space model:

Yk = Zkak +Gknk (k = 1, 2, . . . , K) (4.34)
ak+1 = Tkak + mk +Hknk (k = 0, 1, . . . , K) (4.35)

with known mk and independent variable nk ∼ N (0, σ2Id) ∈ Rd whose dimension d

is of variable length at different time τk. It can be readily recognised that models
represented by (4.11), (4.18) and (4.14), (4.20) fall into the above general model. Note
again ak = aτk = aτ+

k
. Subsequently, disturbance ηk can be obtained as

ηk = Fknk (4.36)

where Fk is an arbitrary design matrix whose choice depends on the dimension of nk,
namely d, and positions of disturbances in a dynamical model. Now, forward filtering
can be done by running a Kalman filter forwardly. During the run, quantities such as
innovation ek, scaled innovation covariance Dk and Kalman gain Kgain,k will be stored
over time (k = 1, 2, . . . , K):

ek = Yk − Zkµk|k−1 − mk

Dk = ZkPk|k−1Z
T
k +GkG

T
k

Kgain,k = (TkPk|k−1Z
T
k +HkG

T
k )D−1

k

(4.37)

where the mean and the covariance of predictive distribution p(ak+1|Y0:k) = N (µk+1|k, Pk+1|k)
are given by [Anderson and Moore, 1979]:

µk+1|k = Tkµk|k−1 + mk +Kgain,kek
Pk+1|k = TkPk|k−1L

T
k +HkJ

T
k

(4.38)

with

Lk = Tk −Kgain,kZk, Jk = Hk −Kgain,kGk

When there is no observation between τk and τk+1 we set ek = 0, Dk = ∞ and
Kgain,k = 0.
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A backward sampling run, starting with rK = 0, UK = 0, can then be conducted
from τK to τ1:

Ck = Fk(I −GT
kD

−1
k Gk − JTn UkJk)F T

k

Vk = Fk(GT
kD

−1
k Zk + JTk UkLk)

ηk ∼ N
(
Fk(GT

kD
−1
k ek + JTk rk), σ2Ck

)
rk−1 = ZT

k D
−1
k ek + LTk rk − V T

k C
−1
k ϵk

Uk−1 = ZT
k D

−1
k Zk + LTkUkLk + V T

k C
−1
k Vk

(4.39)

with ϵk ∼ N (0, σ2Ck). If η0 is needed to be sampled, it can be obtained by setting
G0 = 0. As a result, η0:K is a joint draw from (4.33) building upon which the sequence
of a1:K , with an initial state a0 provided, can be constructed recursively via

ak+1 = Tkak + mk + [0, 0, . . . , ηTk ]T (4.40)

Also note that (4.37)-(4.39) can be simplified by assuming uncorrelated process and
measurement noises (i.e. HkGk = 0). More specifically, when ak = θk ∈ R3 we have
σ = σθ = σT

m
, mk = mθ and the following variable dimensional matrices

Hθ,k =


0 0
0 · · · 0
0 1

 ∈ R3×d

Gθ,k =


G1,θ · · · 0 0

... . . . ... ...
0 · · · G1,θ 0

 ∈ R(d−1)×d

G1,θ =


σŝ
σθ

0 0
0 σv̂

σθ
0

0 0 σâT
σθ


Fθ,k =

[
0 0 . . . 1

]
∈ R1×d

The dimension of nθ,k in this case is d = 1 +Nk with Nk being the dimension of vector
Yθ,k. The disturbance of interest in this case is ηθ = TT . It should be noted that
G1,θ, along with G2,α introduced below, are measurement-specific matrices. As for
the perpendicular state component, ak = αk ∈ R3, σ = σα = σP

m
, mk = 0 and the
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corresponding matrices are as below

Hα,k =


0 0 0 0
0 · · · 0 1 0
0 0 0 σbm

σP

 ∈ R3×d

Gα,k =


G1,α · · · 0 0 0

... . . . ... ... ...
0 · · · G1,α 0 0

 ∈ R(d−2)×d

G1,α =
σ ˆ̇ψ
σα

0
0 σâP

σα


Fα,k =

0 . . . 0 1 0
0 . . . 0 0 σbm

σP

 ∈ R2×d

with d = 2 + Nk and ηα = [TP , J ]T owing to the fact that we have an additional
disturbance introduced by the bias term.

We can now run SS from the beginning of each batch, with initial states a0 = θKn−L

and a0 = αKn−L respectively, to propose sequences θKn−L+1:Kn and αKn−L+1:Kn from
the aforementioned proposal kernels. Together with the changepoint timings drawn
from the prior and x0:Kn−L from the weighted particle representation of the posterior
distribution at time tn−L, the weight update equation for target distribution (4.29) can
be shown as

ω̃(i)
n = p(x0:Kn|Y0:n)

q(x0:Kn|Y0:n)

∝ ω
(i)
n−L

ν
(i)
n−L

× p(Y{α,θ},n−L+1:n−L+r|xKn−L)p(yp,n|x0:Kn)

× p(Yα,n−L+r+1:n|{α, τ}Kn−L , {θ, τ}Kn−L+1:Kn)
× p(Yθ,n−L+r+1:n|θKn−L , τKn−L:Kn) (4.41)

The first likelihood in (4.41), which consists of inertial and speed observations related
to xKn−L after time tn−L, can be easily computed via (4.18) and (4.20) assumed
independence between tangential and perpendicular observations while the position-
related likelihood is evaluated by using (4.21). Attributed to the conditionally linear
Gaussian models of θ and α, the last two likelihood terms can be approached via
Prediction Error Decomposition (PED) [Harvey, 1989] which allows us to sequentially
evaluate the likelihood function within the Kalman filtering framework. Specifically,
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the tangential component of the likelihood function, with the changepoint timings
τKn−L:Kn omitted in the condition for simplicity, can be computed as

p(Yθ,n−L+r+1:n|θKn−L) = p(Yθ,Kn−L+1|θKn−L)

×
Kn∏

k=Kn−L+2
p(Yθ,k|Yθ,Kn−L+1:k−1,θKn−L) (4.42)

with

p(Yθ,k|Yθ,Kn−l+1:k−1,θKn−l)

=
∫
p(Yθ,k|θk) × p(θk|Yθ,Kn−l+1:k−1,θKn−l)dθk

Note the first component in the integral is given by (4.18) while the second component
is the predictive distribution provided by the Kalman filtering step (4.38) in SS. The
same procedure can be applied to computing the likelihood for α, after which the
unnormalised particle weight ω̃(i)

n in (4.41) can be obtained accordingly.

4.3.3 State Rejuvenation

In a similar spirit to the resample-move algorithm as in [Gilks and Berzuini, 2001] and
Chapter 3, we would also like to mix MCMC moves with variable rate particle filters
so as to mitigate the issue of particle impoverishment. The idea is to move particles
from their current positions to some new positions which are more diverged after the
particle selection stage. In this way, resampled particles whose weights are identical can
now have different trajectories and thus improved estimation results may be obtained.
Further, instead of moving the whole trajectory as in [Gilks and Berzuini, 2001], for
algorithm efficiency here we only move partial (recent) trajectories, i.e. xKn−L+1:Kn ,
using the following conditional distribution as target distribution:

p(xKn−L+1:Kn|x0:Kn−LY0:n) = p(x0:Kn|Y0:n)
p(x0:Kn−L|Y0:n) (4.43)

Due to the intractability, a reversible jump Metropolis-Hastings (MH) kernel is utilised
with (4.43) as its invariant distribution. The validity of such a MH setp for variable
rate models has been established by [Green, 1995]. Note again that MCMC steps
may be blended into a particle filter at any stage legitimately, as per [MacEachern
et al., 1999]. If samples x∗

Kn−L+1:Knare drawn according to 1) the prior distribution
for changepoint times as per (4.30), 2) the weighted distribution p̂(x0:Kn−L|Y0:n), 3)
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the section-wise proposal of tangential components (4.31) and 4) the proposal for
perpendicular components (4.32), the acceptance ratio of a reversible jump MH kernel
for particle i can be shown to be

ρRM = 1 ∧

p(Yα,n−L+r+1:n|{α, τ}(i)
Kn−L

, {θ, τ}∗
Kn−L+1:Kn)

p(Yα,n−L+r+1:n|{α, τ}(i)
Kn−L

, {θ, τ}(i)
Kn−L+1:Kn)

p(yp,n|x(i)
0:Kn−L

,x∗
Kn−L+1:Kn)

p(yp,n|x(i)
0:Kn)

×
p(Yθ,n−L+r+1:n|{θ, τ}(i)

Kn−L
, τ ∗
Kn−L+1:Kn)

p(Yθ,n−L+r+1:n|{θ, τ}(i)
Kn−L

, τ
(i)
Kn−L+1:Kn)

 (4.44)

After the selection step NRM reversible jump MCMC moves can be applied to each
selected particle for increasing the diversity within the particle collection. Particle
weights will remain unchanged after these moves, as noted in Chapter 2.

4.4 Simulations

4.4.1 Manoeuvring Object Trajectories from Intrinsic Model

In our first experiment, the performance of the methods are assessed by 50 ran-
dom realisations of the problem, each with 500 observations. Full set of sensors
(ŝ, v̂, âT , ˆ̇ψ, âP ,yp) are assumed to be available, where the sampling period for inertial,
speed and travelled distance measurements is set to 1 second while the arrival time of
position measurements is Poisson distributed with intensity λPOI = 0.1 (i.e. average
number: 50). Moreover, direct Cartesian position observations with additive white
noises are considered, i.e. setting g(pn) = pn in (4.22). All related parameters used in
the experiment are summarised in Table 4.1 and an example trajectory is shown in
Fig. 4.1.

The tracking performance of the proposed VRPFs, examined in terms of position
RMSE, are given in Table 4.2, where the results obtained by running a standard

Table 4.1 VRPF parameters for computer simulations

Symbols Values
µT , σT , σP , σb 3, 3, 100, 0.5◦

τmin, ατ , βτ 0, 5, 1
σŝ, σv̂, σâT , σâP , σ ˆ̇ψ, σpx , σpy 3, 0.5, 1, 1, 8◦, 5, 5

m,λ, fs, λPOI 100, 0.3, 1Hz, 0.1
N,NRM 500, 1
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Fig. 4.1 One of the 50 realisations, showing the scale of the tracking problem, the
locations of changepoints (magenta stars), the arrival times of occasional position data
(red circles) and the arrival times of measurements from other sensors (500 blue dots).

bootstrap VRPF are also included for comparison. Also note that we use the smoothing
state trajectory that is estimated from the final filter approximation to compute
the position RMSE values. The difference in performance between the VRPF with
simulation smoother (VRPF-SS) and the standard bootstrap VRPF (VRPF) confirms
that the use of more effective proposals allows the former to draw samples in the light
of measurements and hence reduces the mismatch between the predictive distribution
and the posterior distribution. The best estimate is given by VRPF-SS with a state
rejuvenation procedure (VRPF-SS-RM), from which we can see that the regeneration
of both the changepoint timings as well as the kinematic states leads to a significant
improvement in tracking performance over the other algorithms. Further enhancement
can be achieved by using a larger value for NRM , but apparently a trade-off between
computational complexity and performance has to be made.
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Table 4.2 Mean and standard deviations of position RMSEs (in meters) across 50
realisations

Algorithms 100 Particles 300 Particles 500 Particles
Mean SD Mean SD Mean SD

VRPF 294.5 123.3 317.1 160.5 258.4 145.3
VRPF-SS 126.1 71.1 87.6 46.4 71.2 39.6
VRPF-SS-RM 59.2 32.8 45.6 33.0 42.6 33.6

4.4.2 Benchmark Object Trajectory

In the second experiment we adopt one of the benchmark trajectories presented in [Blair
et al., 1998] to evaluate the proposed methods. This trajectory has been extensively
used for benchmarking purpose in a large number of publications, see [Bunch and
Godsill, 2012; Godsill et al., 2007; Lindsten et al., 2016; Masoumi-Ganjgah et al.,
2017; Roth et al., 2014; Seah and Hwang, 2011]. Instead of the Cartesian position
measurement model, a 2D radar model is used in which the observation vector and the
corresponding function are

yp,n =
rn
ξn


g(pn) =

∥pn − pradar∥
arctan

(
py,n
px,n

)
with r and ξ being the range and bearing measurements, respectively. pradar = [0, 0]T

is the radar location. Again, independent measurements are assumed and hence the
measurement noise covariance is Rp = diag([σ2

r , σ
2
ξ ]). Similar to the first experiment,

inertial, speed and distance measurements are simulated based on the models described
in Section 4.2.3. The tracking performance of the proposed algorithms are firstly tested
on two challenging scenarios: one assuming radar measurements arriving occasionally
while the other using the same radar measurement model but with a regular (but slower
than that of inertial measurements) sampling rate. Moreover, we vary the Poisson
intensity and the sampling rate in order to give a more comprehensive comparison of
the algorithms. For all filters, 500 particles are used and their headings are initialised
arbitrary (i.e. uniformly in [0, 2π]). Common parameters used across both test cases
are summarised in Table. 4.3. Again, the simple smoothing state estimate as per
[Kitagawa, 1996] will be used in the calculation of position RMSE values.
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As shown in Table 4.4, while the performance of a standard bootstrap VRPF drops
significantly when only a small quantity of radar observations is made (see the results
corresponding to λPOI = 0.1 and L = 15, respectively), VRPF-SS and VRPF-SS-RM
are robust to the deterioration of position measurements. This is because these two
algorithms not only make a better use of local information (on-board sensors) but
also take “future” global information (position) into account. It can be also seen
from the table that although the number of radar measurements in the case λ = 0.1
(average number: 185 · 0.1 = 18.5) is roughly the same as that of the case L = 10,
there is a obvious difference in algorithm performance. This can be attributed to the
Poisson observation process: sometimes the gap between two radar measurements may
be extremely large, thus causing severe degeneration for all methods; at other times
(more frequent) the interarrival times of radar measurements can be very close to each
other, rendering the proposed method ineffective. In Fig. 4.2, the effect of having a
large gap between radar measurement can be seen clearly. In contrast to the standard
VRPF which easily fail to stay on the right track, our proposed VRPFs offer greater
potential to combat such problems. When the position-related measurements arrive
regularly and frequently, the performance of the standard VRPF can be comparable
with VRPF-SS; see Fig. 4.3 for an example. In all the tests VRPF-SS-RM gives the
best performance in terms of the averaged position RMSE values. Recall that similar
performance characteristics of algorithms have been presented in Chapter 3 under a
fixed-rate modelling assumption. Indeed, the methods proposed here are essentially
the variable rate counterparts to those introduced previously.

Finally, position measurements with decreased accuracy are used to examine the
robustness of the proposed algorithms. Whilst the same scenarios with regular and
occasional position observations are considered again, the radar measurement model is
now replaced by a Cartesian position measurement model in order to illustrate the
change of uncertainty in a linear scale. Specifically, in each test case the value of
the measurement noise parameter, σpos = σpx = σpy , is raised from 100 m to 1000
m, corresponding to gradually increasing uncertainty in position measurements. All
algorithms were run using 500 particles and the RMSE is computed for 10 independent
runs for each σpos. The box plots given in Figure 4.4 show that the performance
across the proposed algorithms and the bootstrap VRPF degrades as the position
measurements become less informative when position measurements are received
regularly. It is also obvious that VRPF-SS-RM is more robust compared to the others.
Note that the results from the bootstrap filter comprise several outliers whose locations
are distant from the boxes and hence they are not displayed for better visualisation.
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When it comes to the test case with occasional position measurements, a similar
conclusion regarding the performance of the proposed methods can be drawn based on
Figure 4.5. Also, the observation that the effectiveness of all algorithms drops to some
degree is consistent with the results shown in Table 4.4. Overall, the results from the
above experiments demonstrate that compared to an off-the-shelf (bootstrap) VRPF
the inference algorithms introduced not only offer improved tracking performance but
also show great robustness in certain challenging tracking problems.

Table 4.3 VRPF parameters for the benchmark trajectory data

Symbols Values
µT , σT , σP , σb 1800, 1800, 3000, 0.5◦

τmin, ατ , βτ 0, 1, 0.4
σŝ, σv̂, σâT , σâP , σ ˆ̇ψ, σr, σξ 100, 100, 15, 15, 20◦, 150, 0.05◦

m,λ, fs 100, 3, 1Hz
N,Nparticle, NRM 185, 500, 1

Table 4.4 Tracking performance on the benchmark trajectory. Numbers given are
means (and standard deviations) of position RMSE (km), each of which is computed
for 10 independent runs.

Algorithms Poisson Intensity (λPOI)
0.1 0.2 0.3

VRPF 5.95 (8.18) 3.24 (2.38) 1.82 (1.73)
VRPF-SS 1.73 (0.55) 1.89 (1.14) 2.92 (2.31)
VRPF-SS-RM 1.34 (0.74) 0.61 (0.23) 0.60 (0.25)

(a) With occasional radar measurements.

Algorithms Regular Lag (L)
15 10 5

VRPF 11.20 (9.33) 3.49 (4.24) 1.04 (0.81)
VRPF-SS 2.03 (1.18) 0.94 (0.54) 0.91 (0.46)
VRPF-SS-RM 1.23 (0.48) 0.84 (0.29) 0.37 (0.12)

(b) With a fixed time lag (L) between consecutive radar measurements.
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(a) Smoothed trajectories (i.e. obtained using the final filter approxi-
mation)
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(b) filtered trajectories with 95% confidence ellipsoids

Fig. 4.2 Tracking with occasional radar measurements (λPOI = 0.2).
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(a) Smoothed trajectories (i.e. obtained using the final filter approxi-
mation)
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(b) Filtered trajectories with 95% confidence ellipsoids

Fig. 4.3 An example of tracking results with occasional radar measurements (L = 5).
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Fig. 4.4 Tracking results with regularly spaced Cartesian position measurements and
varied noise parameter σpos = {100, 300, 500, 1000}. Fixed time lags used: (a) L = 5
(b) L = 10 (c) L = 15. Outliers (grey dots), medians (red horizontal lines).
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Fig. 4.5 Tracking results with occasional Cartesian position measurements and varied
noise parameter σpos = {100, 300, 500, 1000}. (a) λPOI = 0.3 (b) λPOI = 0.2 (c)
λPOI = 0.1. Outliers (grey dots), medians (red horizontal lines).
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4.5 Particle Gibbs Samplers for Full System Infer-
ence

In addition to state trajectories, we seek to design an effective sampling scheme
for the inference of the system parameters. Denote βI = [µT , σT , σP , σb]T and
βM = [σŝ, σv̂, σâT , σâP , σ ˆ̇ψ, σpx , σpy ]

T as parameter vectors for the intrinsic model and
measurement models, respectively. The objective is to simulate hidden states and
constant parameters from the full joint posterior distribution p(x0:KN ,βI ,βM |Y0:N)
which can be decomposed as

p(x0:KN ,βI ,βM |Y0:N) = p(x0:KN |βI ,βM ,Y0:N)p(βI ,βM |Y0:N) (4.45)

Intuitively, one may consider drawing samples from this distribution using a Metropolis-
Hastings (MH) sampler with its invariant distribution set to be (4.45). When a proposal
distribution of the form

q(x∗
0:KN ,β

∗
I ,β

∗
M) = p(x∗

0:KN |β∗
I ,β

∗
M ,Y0:N)q(β∗

I ,β
∗
M |β(m−1)

I ,β
(m−1)
M ) (4.46)

is used, the acceptance ratio of the MH algorithm can be shown as follows

ρMH = 1 ∧ p(Y0:N |β∗
I ,β

∗
M)

p(Y0:N |β(m−1)
I ,β

(m−1)
M )

p(β∗
I ,β

∗
M)

p(β(m−1)
I ,β

(m−1)
M )

q(β∗
I ,β

∗
M |β(m−1)

I ,β
(m−1)
M )

q(β(m−1)
I ,β

(m−1)
M |β∗

I ,β
∗
M)

with m being the iteration index. Note that to obtain the ratio we have utilised
the fact that p(x0:KN ,βI ,βM |Y0:N ) ∝ p(Y0:N |βI ,βM )p(βI ,βM )p(x0:KN |βI ,βM ,Y0:N ).
Despite its elegance, it is impossible to compute the above acceptance ratio in our
case since the likelihood function p(Y0:N |βI ,βM) is not available in closed form.
Nevertheless, it has been shown by [Andrieu et al., 2010] that an exact MH sampler,
termed particle marginal Metropolis-Hastings (PMMH) sampler (also known as pseudo-
marginal sampler as in [Andrieu and Roberts, 2009]), can still be constructed provided a
non-negative and unbiased estimate of the likelihood term, denoted as p̂(Y0:N |βI ,βM ).
The key to the construction of such an sampler lies in working with a target distribution
which is defined on an extended state space including all the random variables associated
with a generic particle filter. It can be shown that the acceptance ratio for a standard
PMMH update is given by (we refer readers to Section 4 and Appendix B of [Andrieu
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et al., 2010] for a very detailed derivation):

ρPMMH = 1 ∧ p̂(Y0:N |β∗
I ,β

∗
M)

p̂(Y0:N |β(m−1)
I ,β

(m−1)
M )

p(β∗
I ,β

∗
M)

p(β(m−1)
I ,β

(m−1)
M )

q(β∗
I ,β

∗
M |β(m−1)

I ,β
(m−1)
M )

q(β(m−1)
I ,β

(m−1)
M |β∗

I ,β
∗
M)

where the likelihood term p̂(Y0:N |βI ,βM) can be obtained as a side product of par-
ticle filter. Furthermore, as the intrinsic model is driven by Gaussian disturbances
parametrized by βI (see (4.11) and (4.14)), it will be straightforward to sample from
p(βI |x0:KN ,Y0:N ,βM ) using appropriately chosen conjugate priors. A similar principle
can be adopted for proposing βM from p(βM |x0:KN ,Y0:N ,βI), assuming the observa-
tion process is also disturbed by additive white Gaussian noises. If we replace the
parameter proposal q(β∗

I ,β
∗
M |β(m−1)

I ,β
(m−1)
M ) with the full conditionals of parameters,

the PMMH acceptance ratio becomes

ρ′
PMMH

= 1 ∧ p̂(Y0:N |β∗
I ,β

∗
M)

p̂(Y0:N |β(m−1)
I ,β

(m−1)
M )

p(Y0:N ,x0:KN (m− 1)|β(m−1)
M )

p(Y0:N ,x0:KN (m− 1)|β∗
M)

p(x0:KN (m− 1)|β(m−1)
M )

p(x0:KN (m− 1)|β∗
M)

However, the fact that ρ′
PMMH depends on the state trajectory x0:KN (m− 1) obtained

from the last iteration implies that the resulting chain can be extremely sticky in
practice. In fact, our preliminary results also showed that the PMMH samplers
described above gave very poor performance (i.e. the resulting chain retained the same
value for very long periods).

While PMMH samplers cannot work efficiently here, we resort to the particle
Gibbs (PG) sampler since sampling exactly from p(βI ,βM |x0:KN ,Y0:N) is possible in
our scenario. The PG sampler, as in [Andrieu et al., 2010], provides a valid particle
approximation to a Gibbs sampler targeting p(x0:KN ,βI ,βM |Y0:N ). The key element of
a PG sampler is the so-called conditional sequential Monte Carlo (SMC) update which
maintain a pre-specified state trajectory x0:KN throughout the standard particle filtering
procedure. In order to present a conditional SMC update, it is necessary to introduce
B0:N = {B0, B1, . . . , BN} which specifies the indices of the ancestor particles of x0:KN

at each time instant, i.e. {x(B0)
0 ,x(B1)

K0+1:K1 , . . . ,x
(BN )
KN−1:KN}. With the introduction of

B0:N , a standard conditional SMC algorithm tailored to the variable rate setting is
summarised in algorithm 6 (see Andrieu’s paper for a fixed rate equivalent of this
algorithm). Note also that to establish a valid PG sampler with p(x0:KN ,βI ,βM |Y0:N )
as its invariant distribution the biased selection/resampling scheme used in the previous
section will be replaced by a multinomial resampling scheme in the conditional SMC

114



4.5 Particle Gibbs Samplers for Full System Inference

// Initialisation
Specify a state trajectory x0:KN = {x(B0)

0 ,x(B1)
K0+1:K1 , . . . ,x

(BN )
KN−1:KN} ;

∀i, i ̸= B0, sample x(i)
0 ∼ q0(x0|y0) ;

Compute particle weights ω(i)
0 according to (4.27) ;

for n = 1, 2, . . . , N do
// Multinomial Resampling
∀i, i ̸= Bn−1, select indexes j(i) with Pr(j(i) = k) = ω

(k)
n−1;

Reset ω(i)
n−1 = 1/Np ;

// Propagation
∀i, i ̸= Bn−1, sample x(i)

Kn−1+1:Kn ∼ q(xKn−1+1:Kn|x0:Kn−1 ,y0:n) ;
Update state trajectories: x(i)

0:Nn = {x(i)
0:Nn−1 ,x

(i)
Nn−1+1:Nn} ;

// Weighting
Compute particle weights ω(i)

n according to (4.27) ;
end
Output p̂(x0:KN |y0:N) ≈ ∑Np

i=1 ω
(i)
N δx(i)

0:KN
(dx0:KN ) ;

Algorithm 6: Conditional SMC Update (Variable Rate)

update (though more sophisticated procedures such as the systematic and residual
resampling are also qualified [Chopin and Singh, 2015]).

The conditional variable rate SMC update targets p(x0:KN |βI(m − 1),βM(m −
1),Y0:N) conditional on {x0:KN (m − 1), B0:N(m − 1)} drawn at the (m − 1)-th PG
iteration. For completing the PG sampling algorithm, we also need to be able to sample
from p(βI ,βM |x0:KNY0:N}. Provided the state trajectory x0:KN and the measurements
Y0:n, now we show how to obtain the conditional distributions for parameters of the
intrinsic model. First, from the tangential state transition density (4.11) we have

aT,k = − λ

m
vk−1 +

(
e

−∆τλ
m − 1

)
aT,k−1 + ϵT,k, ϵT,k ∼ N

(µT
m
,
σ2
T

m2

)
which leads to the following likelihood function:

p(zT |µT , γT ) =
KN∏
k=1

p(zT,k|µT , γT ) =
KN∏
k=1

N
(
zT,k

∣∣∣µT
m
,
σ2
T

m2

)
(4.47)
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where

zT,k = aT,k + λ

m
vk−1 −

(
e

−∆τλ
m − 1

)
aT,k−1

γT = 1
σ2
T

and KN is the number of changepoints arrving before tn, as defined in Section 4.2.1.
Note again that here we have formalised the distribution in terms of the precision γT .
By choosing a conjugate normal-gamma prior, defined as

p(µT , γT ) = N G(µT , γT |µT0, κT0, αT0, βT0)
= N (µT |µT0, (κT0γT )−1)G(γT |αT0, βT0) (4.48)

the full conditional for the mean and the precision can be shown to be a normal-gamma
distribution of the form

p(µT , γT |x0:Kn ,Y0:n,βM ,βI\T ) = p(µT , γT |zT ) (4.49)
∝ p(zT |µT , γT )p(µT , γT )

∝ N
(
µT |µKN ,

(
(κT0 +KN)γT

)−1
)

G
(
γT |αKN , βKN

)
where

µKN = κT0µT0 +KNϖ

κT0 +KN

αKN = αT0 + KN

2

βKN = βT0 + 1
2

KN∑
k=1

(mzT,k −ϖ) + κT0KN(ϖ − µT0)2

2(κT0 +KN)

ϖ = m

KN

KN∑
k=1

zT,k

and βI\T denotes the set of intrinsic model parameters excluding µT and γT . Con-
veniently, sampling from this joint distribution can be done using the method of
composition. With regard to the parameter related to the perpendicular force, i.e. σP ,
we note from (4.14) that

aP,k = ϵP,k, ϵP,k ∼ N
(
0, (m2γP )−1

)
(4.50)
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with γP = 1/σ2
P being the precision. As this is a Gaussian distribution with unknown

precision, a Gamma prior p(γP ) = G(γP |αP0, βP0) is adopted. Consequently, the full
conditional distribution of the precision is given by

p(γP |x0:KN ,Y0:n,βM ,βI\P ) = p(γP |zP ) (4.51)

∝ p(γP )
KN∏
k=0

p(zP,k|γP )

= G
(
γP |αP0 + KN + 1

2 , βP0 + m2

2

KN∑
k=0

zP,k

)

with zP,k = aP,k. Similarly, the system model for the bias term can be also extracted
from (4.14):

bk = bk−1 + ϵb,k, ϵb,k ∼ N (0, γ−1
b ) (4.52)

Equipped with a gamma prior p(γb) = G(αb0, βb0), the conditional posterior for γb is
then obtained as

p(γb|x0:KN ,Y0:n,βM ,βI\b) = p(γb|zb) (4.53)

∝ p(γb)
KN∏
k=1

p(zb,k|γb)

= G
(
γP |αb0 + KN

2 , βb0 + 1
2

KN∑
k=0

zb,k

)

with zb,k = bk − bk−1.
As for the update of measurement model parameters βM , the assumption of additive

white Gaussian noises and independence among different sensor systems has also led
to straightforward constructions of corresponding full conditionals. More specifically,
recall that in a general case, where we observe all possible data at some tn (i.e.
Yn = {ŝn, v̂n, âT,n, âP,n, ˆ̇ψn,yp,n}) and the measurement models are those defined in
Section 4.2.3, the joint observation density is given by

p(Yn|ŭn) = p(ŝn|sn)p(v̂n|vn)p(âT,n|aT,n)p(âP,n|aP,n)p( ˆ̇ψn|aP,n, vn, bn)p(yp,n|pn)
= N (ŝn|sn, γ−1

ŝ )N (v̂n|vn, γ−1
v̂ )N (âT,n|aT,n, γ−1

âT
)N (âP,n|aP,n, γ−1

âP
)

× N ( ˆ̇ψn|aP,n
vn

+ bn, γ
−1
ˆ̇ψ

)N (p̂x,n|g(px,n), γ−1
px )N (p̂y,n|g(py,n), γ−1

py )

with ŭn = h(xKn:Kn+1) = {sn, vn, aT,n, ψn, aP,n, bn,pn} depicting the state values deter-
ministically interpolated at the time and g(·) being some known mapping function.
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Here variances are again converted into precisions, i.e. γ = σ−2, in order to use Gamma
distributions as conjugate priors. Also note that in cases where there are correlations
between measurements, a Wishart distribution may be placed over the precision matrix.
Since the observation densities are all Gaussian, a general form of the measurement
model of a sensor, denoted as p(yn|xn, γ) = N (yn|xn, γ−1), is considered here. As a
result, the full conditional distribution of γ is given by

p(γ|x0:N , y0:N) ∝ p(γ) ×
N∏
n=1

p(yn|xn, γ)

which is again a gamma distribution when a gamma prior p(γ) = G(α0, β0) is considered:

p(γ|x0:N , y0:N) = G
(
γ
∣∣∣ α0 + n+ 1

2 , β0 + 1
2

N∑
n=0

(
yn − g(xn)

)2
)

= p(γ|x0:KN ,Y0:N ,βI ,βM\γ) (4.54)

While being akin to the procedure of deriving the full conditionals for γP and γb, the
change of the upper limit (from the number of changepoints KN to that of observation
timestamps N) in the summation should be noted.

Having obtained all the necessary ingredients, Algorithm 7 summarises the PG
sampler which is suitable for use with the considered conditionally deterministic variable
rate model.

// Initialisation
Set βI(0) and βM(0) arbitrarily ;
Run a standard VRPF from t0 to tN :
Sample x0:KN (0) ∼ p̂(x0:KN |βI(0),βM(0),y0:N) ;
// Particle Gibbs Sweeps
for m = 2, . . . , Niter do

Sample βI(m) according to (4.49), (4.51) and (4.53) ;
Sample βM(m) according to (4.54) ;
// Conditional SMC update
Run Algo. 6 (conditional on {x0:KN (m− 1)}) from t0 to tN :
Sample x0:KN (m) ∼ p̂(x0:KN |βI(m),βM(m),y0:N) ;
Keep every MCMC output after a specified burn-in period Nburn ;

end

Algorithm 7: Particle Gibbs (PG) Sampler
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Table 4.5 Experiment setup for the full system inference

Hyperparameters Values
m,λ, fs 100, 0.3, 1Hz

τmin, ατ , βτ 0, 3, 1
N,Nparticle, Niter, Nburn 250, 2000, 150, 15
Parameters to be learnt True Values

βI : µT , σT , σP , σb 5, 15, 150, 0.2618 rad
βM : σŝ, σv̂, σâT , σâP , σ ˆ̇ψ, σpx , σpy 10, 0.5, 5, 5, 0.2618 rad, 5, 5

(a) System and filter configuration

Parameters Conjugate piror Hyperparameters
µT , γT Normal-gamma N G(·) µT0 = 0, κT0 = 0.01, αT0 = 1, βT0 = 0.5
γP / γb Gamma G(·) αP0 = 1, βP0 = 5 × 104 / αb0 = 1, βb0 = 0.5

γ in (4.54) Gamma G(·) α0 = 1, β0 = 0.5

(b) Prior hyperparameters, with precisions γ = σ−2.

4.5.1 Numerical Results

The proposed sampler is now tested on a trajectory simulated from the variable rate
intrinsic model. Two test cases are considered: one having regular (frequent and
synchronised) inertial and position measurements and the other a reduced number
of position measurements (obtained by downsampling the position measurements in
the first case with a fixed lag of 5). Figure 4.6 shows the example trajectory under
these two different experimental setups. Table 4.5a gives details about the true system
parameters as well as the configuration of the sampler while Table 4.5b shows prior
hyperparameters used in the experiments. All the parameters to be learnt are initialised
arbitrarily from Unif(1, 1000).

For the first experiment, a standard bootstrap VRPF modified according to Algo-
rithm 6 is used within the PG sampler (PG-VRPF) since all the measurements arrive
regularly and synchronously. To facilitate the resulting conditional VRPF, at the end
of each time step changepoint times will be regenerated according to p(τk|τ (i)

k−1, τk > tn),
as in [Godsill et al., 2007]. The idea is to increase the particle diversity while avoiding
the re-evaluation of likelihood terms. In the second evaluation where position data is
limited, the inference performance of a PG sampler equipped with the section-wise
inference algorithm introduced in Section 4.3 (PG-VRPF-SS-RM) is examined. Note
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Fig. 4.6 (a) The simulated trajectory, with regular position data. (b) The same
trajectory with occasional (L=5) position data.
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Fig. 4.7 Inference results over 150 MCMC iterations. Left: mean trajectories and error
ellipses estimated by the introduced PG samplers, with burn-in samples discarded.
Right: position RMSEs over MCMC iterations (including the burn-in period).

that due to the use of a multinomial resampling scheme at each timestamp the state
rejuvenation step in the filter has now become the resample-move method as in [Gilks
and Berzuini, 2001], although the formula of the acceptance ratio remains unchanged.
We also apply the PG sampler with the conditional bootstrap VRPF in this testing
scenario for comparison purposes. Moreover, as the only difference between the two
testing cases is the number of position measurements, the results of the two experiments
will be presented together.

The mean trajectories (E{p0:N |y0:N}) estimated by the PG samplers, along with the
associated 95% confidence ellipses, are given in Figure 4.7. The ellipses are intentionally
spaced for better visualisation. From the figure it can be seen that state trajectories
obtained from the samplers under different testing scenarios can fit the ground truth
well after the burn-in period. It is obvious that PG-VRPF sampler delivers the best
tracking performance when it receives position measurements regularly. This is not
surprising since the sampler is provided with the full information in this case. However,
when it comes to the scenario in which the number of position measurements is reduced,
the PG-VRPF-SS-RM sampler outperforms the PG-VRPF sampler in terms of the
position estimation accuracy. A similar conclusion can be drawn based on the right-
hand side of the figure, where the position RMSEs over all MCMC iterations are
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plotted. The rapid drop in position RMSE in the right figure also indicates how quickly
the samplers explore the state space.

While Figure 4.7 illustrates the efficacy of the PG samplers in inferring the latent
state, Figure 4.8 and 4.9 shows the inference results for the system parameters. We
first look at the case where enough position measurements are provided. It can be
found from the figures that all the marginal posterior distributions approximated by
the PG-VRPF sampler are able to concentrate around the true values. The sample
autocorrelation functions (ACFs) decrease to zero very fast, indicating the Markov
chain mixes well. The ACFs also show that low correlation among samples can be
attained by the introduced PG-VRPF sampler. As for the second testing case with
downsampled position data, the performance of the PG-VRPF degrades as expected.
Notably, the PG-VRPF sampler find it difficult to estimate the parameters related
to the position measurements (i.e. σx and σy), albeit being capable of inferring the
rest of parameters fairly accurately. This is directly linked to its relatively poorer
performance in terms of the trajectory estimation. Conversely, the PG-VRPF-SS-RM
sampler appears to be able to better capture the true position measurement parameters.
This leads to a better tracking performance as shown before. It is noted that the
PG-VRPF-SS-RM sampler tends to become trapped in some local modes for σŝ and σv̂.
This can be attributed to the fact that the contribution from the position measurements
overtakes that from the distance and speed measurements. The parameter estimation
results from the PG-VRPF-SS-RM sampler regarding the bias term and the turn rate
measurement also differ slightly from their true values. The differences are reasonable
because the bias term can be regarded as a relaxation term and we have only limited
observations. Nonetheless, combining the parameter estimation results with the state
inference results shown in Figure 4.7, a conclusion with respect to the PG-VRPF-
SS-RM sampler may be drawn for the moment: this sampler is capable of delivering
accurate tracking results with inertial measurement data, limited position data and
unknown parameters. This feature can be very useful in practice since it implies that
the filter (VRPF-SS-RM) is more robust to model mismatch (i.e. not requiring the
parameters to be set exactly). On the other hand, when accurate parameter estimation
is sought and sensory information is rich, the PG-VRPF sampler should be considered
instead.

Finally, there is still scope for further improvements. For instance, the gamma
parameters related to changpoint arrival times, i.e. ατ and βτ , may be also learnt
within the same framework. However, a MCMC or rejection sampling step needs to be
implemented as there is no conjugate prior in this case, see [Miller, 2019; Son and Oh,
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2006] for examples. It is worth stressing the inference schemes are also applicable to
the fixed rate setting, since a fixed rate model can be obtained readily by enforcing
τ = tn − tn−1.

4.6 Summary and Conclusions

In this chapter, the problem of object tracking is investigated from a more natural
modelling perspective. By decoupling the timings of manoeuvres from those of ob-
servations, a realistic model is obtained. The intrinsic coordinate dynamic model is
formalised under the variable setting and we show the modelling leads to a convenient
incorporation of different sensory data. The resulting data fusion problem is then
tackled within a Bayesian inference framework. Effective and efficient particle filtering
schemes are introduced and the experimental results on challenging tracking scenarios
show significantly improved tracking performance over a bootstrap variable rate particle
filter. Furthermore, two particle Gibbs samplers are presented to perform full system
inference under the conditionally deterministic model and their effectiveness has been
illustrated using synthesised data.
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Fig. 4.8 Inference results for intrinsic dynamic model parameters βI over 150 MCMC
iterations, with (a) showing density curves fitted based on histograms (after the burn-in
period), (b) showing the trace plots (after the burn-in period) and (c) the ACFs. ¦ true
values on the histograms; true values on the trace plots; PG-VRPF;

PG-VRPF (L = 5); PG-VRPF-SS-RM (L = 5).
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Fig. 4.9 Inference results for measurement-related model parameters βM over 150
MCMC iterations, with (a) showing density curves fitted based on histograms (after
the burn-in period), (b) showing the trace plots (after the burn-in period) and (c)
the ACFs. ¦ true values on the histograms; true values on the trace plots;
PG-VRPF; PG-VRPF (L = 5); PG-VRPF-SS-RM (L = 5).
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Chapter 5

Bayesian Intent Prediction

5.1 Introduction

While the previous chapters are primarily concerned with the accurate tracking of
an moving object, this chapter addresses the problem of predicting the intended
destination of an tracked object within a Bayesian framework. Since the destination
may have a long term influence on the object’s motion, knowing this information at an
early stage can not only offer vital information on intent, enabling smart predictive
functionalities and automation, but also facilitate more accurate state estimations,
i.e. destination-aware tracking [Baccarelli and Cusani, 1998; Castanon et al., 1985;
Duan and Li, 2013; Zhou et al., 2020]. It has various application areas such as smart
navigation and trajectory planning for robots in the presence of other agents [Best and
Fitch, 2015; Chiang et al., 2015; Kitani et al., 2012], intelligent interactive displays
[Ahmad et al., 2017], revealing potential conflicts, patterns or anomalies in surveillance
[d’Afflisio et al., 2018; Krishnamurthy and Gao, 2018; Millefiori et al., 2016; Uney et al.,
2018], driver assistance systems [Bando et al., 2013; Völz et al., 2018], to name but a
few.

5.1.1 Bayesian Intent Prediction in Object Tracking

Different from the standard tracking applications where it is usually the hidden state
xn ∈ Rs, which may comprise of an object’s position, velocity and higher order
kinematics, that is of interest, the main objective here is to carry out destination
inference. Let D = {Di : i = 1, 2, ..., ND} be the set of ND nominal endpoints (e.g.
harbours where a vessel can dock or selectable on-display icons) of a tracked object
(e.g. vessel or pointing apparatus); each can be an extended region. The objective is to
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sequentially calculate the probability of each of Di ∈ D being the intended destination,
thus p(D = Di | y0:n), i = 1, ..., ND. The noisy sensor measurements at the time instant
tn are y0:n = {y0,y1, ...,yn} pertaining to the consecutive instants {t0, t1, ..., tn}.

A Gaussian Linear Time Invariant (LTI) formulation is adopted below since provided
relatively accurate measurements an approximate motion model that enables inferring
the object’s destination, rather than exact motion modelling, suffices for our purpose
here. The state space model of xn is given by

xn = F (τ)xn−1 +M(τ) + ϵn (5.1)

with ϵn ∼ N (0, Q(τ)) a Gaussian process noise. Matrices F and Q as well as vector M ,
which define the system model, are functions of the time difference between consecutive
observations τ = tn − tn−1. Equation (5.1) encompasses any Gaussian LTI model,
including those widely used in object tracking, e.g. the (nearly) Constant Velocity
(CV), as well as mean reverting ones based on an Ornstein-Uhlenbeck (OU) process.
Recall that the latter can be described by the following linear SDE:

dxt = Λ (µi − xt) dt+H(σ)dwt

which can be solved exactly, as per [Särkkä and Solin, 2019; Øksendal, 2003]. Its
integration over time interval [tn−1, tn] produces (5.1) where vector M is a function of
the process mean µi. Matrix Λ contains parameters controlling the reversion strength
while wt is a s-dimensioned Brownian motion. The process noise scaling factor σ in
matrix H(σ) is assumed identical for brevity, though it should be clear that its value
can be varied across different coordinates. Observation yn ∈ Rm is modelled by

yn = Gxn + νn (5.2)

where G is the observation matrix linking the hidden state to the observed measurement
and noise component νn ∼ N (0, Vn). A Gaussian distribution Di ∽ N (ai,Σi) is
assumed here to model an endpoint. The mean ai and covariance Σi represent the
centre and orientation-extent of Di, respectively. This is to maintain the linear Gaussian
structure of the overall system.
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5.1.2 Related Work

Whilst the bridging distributions (BD) approach was introduced in [Ahmad et al.,
2015; Ahmad et al., 2018], a concise overview of its key results, including schemes for
estimating future state and arrival time, was presented in [Ahmad et al., 2019]. BD
in [Ahmad et al., 2019, 2015; Ahmad et al., 2018] captures the influence of endpoint
Di on the object motion by prescribing that the motion model in (5.1) has a terminal
state xN at arrival time tN = T equal to that of Di, i.e. xN ∼ N (ai,Σi). Thereby, it
constructs N bridged models, each with an extended state vector zn = [xn,xN ]′. This
implies that xN and the initial state x0 at t0 are independent, that is,

p(x0,xN) = N
(µ0

µN

 ,
Σ0 0s

0s Σi

)

where 0s is a s-by-s zero matrix. Although this can be approximately true in many
scenarios, especially for t0 ≪ T , it is inconsistent with the Markov nature of (5.1)
which dictates the transition density p(xN |x0) and p(xN ) =

∫
p(x0)p(xN |x0)dx0. Here,

we introduce a different approach to [Ahmad et al., 2019, 2015; Ahmad et al., 2018]
in which the destination point is considered to be a ‘pseudo-observation’ rather than
a terminal state xN of the system. Consequently, the mathematics of the dynamical
model and observation process are made consistent with the Markov state process, in
contrast with [Ahmad et al., 2019, 2015; Ahmad et al., 2018]. This new interpretation
leads to two new destination prediction algorithms that can substantially reduce the
computational complexity of the inference routine for all Gaussian LTI motion models
in (5.1), e.g. by over 65% with Algorithm 1 in some cases (see Section 5.2.3).

Early studies in object tracking area considering the incorporation of, often known,
destination information for improving the state estimation accuracy can be found in
[Baccarelli and Cusani, 1998; Castanon et al., 1985], where destination-aware trackers
are designed based on the premise that the arrival time at destination is known.
This particular assumption allows the construction of a state transition distribution
dependent on the future destination information and hence enables constrained state
estimation. While these methods require additional timing information to build
the condition on destination, OU processes provide an alternative solution in which
the destination information is modelled inherently. Provided a priori learnt means
(destination-related information), tracking algorithms based upon an OU model have
been shown to reliably model and estimate vessels motion in maritime surveillance
[d’Afflisio et al., 2018; Millefiori et al., 2016; Uney et al., 2018] and to effectively
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extract object’s intended destination as in [Ahmad et al., 2016a; Gan et al., 2019].
It is worth noting that mean-reverting processes impose a prior which dictates that
the farther away the object is from the process mean value (e.g. Cartesian location
of the destination) the stronger restoring force it will experience. This feature can
result in the problem of model mismatch in some scenarios and hence special attention
should be paid when using OU model to describe the motion of an object. As for the
BD approach considered here, it incorporates the desired destination information via
the use of pseudo-observation and hence can be combined with any suitably chosen
dynamic model. Note also that pseudo-observations (or ‘pseudo-measurements’) have
been widely used for constrained state estimation owing to its simplicity, as in [Doran,
1992; Duan and Li, 2013; Zhou et al., 2020]; such measurements are usually obtained
from linear or nonlinear equality constraints associated with the problem. For instance,
in [Zhou et al., 2020] the pseudo-observations arise from the linear constraint that
the object motion is subject to an unknown straight line. Notably, in the paper
an augmented state vector is also considered, enabling the tracking of the intended
destination on the line. This is in a similar spirit to that of [Ahmad et al., 2018] and
thus the inconsistency issue still exists in the resulting model.

Discretised state-space models based on reciprocal processes or other models from
natural language processing are proposed in [Fanaswala and Krishnamurthy, 2015;
Krishnamurthy and Gao, 2018] to recognise the object intent. They stipulate that the
target should pass through a finite number of predefined spatial grid cells to reach
its endpoint. The proposed approach in this chapter aims to predict the unknown
destination D, not estimate xn, and has notably lower complexity compared with those
in [Fanaswala and Krishnamurthy, 2015; Krishnamurthy and Gao, 2018]. It utilises
continuous-time state space models to treat asynchronous measurements and capture,
via a Markov bridge, the long term underlying dependencies in the object trajectory as
dictated by the intended endpoint.

Finally, various data driven prediction-classification methods rely on a dynamical
model and/or pattern of life learnt from previously recorded data, e.g. [Bando et al.,
2013; Chiang et al., 2015; Kitani et al., 2012; Völz et al., 2018]. Whilst such techniques
typically require substantial parameters training from extensive data sets (not always
available), a probabilistic model-based framework is adopted here. It uses known
dynamical and measurements models, with a few unknown parameters [Bar-Shalom
et al., 2011; Haug, 2012]. Subsequently, an efficient inference approach, which requires
minimal training, is introduced.

The inference approach has been published elsewhere [Liang et al., 2019].
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5.2 Bayesian destination Inference

Within a Bayesian framework, for each candidate endpoint Di ∈ D, the following
posterior distribution is sought:

p(D = Di|y0:n) ∝ p(y0:n|D = Di)p(D = Di)

=
( ∫

p(y0:n|D = Di, T )p(T |D = Di)dT
)
p(D = Di) (5.3)

where p(D = Di) is the prior on the i-th destination while T depicts the arrival
time at the location. This prior can normally be attained from relevant contextual
information or learnt pattern-of-life; in cases where such information is not available, a
non-informative prior may be considered. The objective of the inference module at tn
is hence to estimate the likelihoods p(y0:n|D = Di), i = 1, 2, ..., ND. The key challenge
here is to capture the influence of endpoint Di on the object behaviour while utilising
the dynamic models (5.1) and measurement models (5.2). To this end, in the sequel a
novel bridging formulation that facilitates introducing the conditioning on Di in (5.3)
will be described.

5.2.1 Pseudo-observation Formulation

The trajectory of the tracked object must end at the intended destination at arrival
time T , albeit the exact path being random as per (5.1). A Markov bridge from tn to
T for Di ∈ D can be built to capture the influence of intent on the object motion by
defining the pseudo-observation ỹiN at tN = T ,

p(ỹiN = ai|xN ,D = Di) = N (ỹiN = ai | G̃xN ,Σi) (5.4)

Pseudo-observation matrix G̃ depends on the information available on the ith endpoint
Di ∽ N (ai,Σi). The design of pseudo-observations depends on what elements the state
vector contains and what information is available at a given destination. For instance,
in a CV model ỹiK may contain both position and velocity information at the endpoint.
For brevity of notation D = Di is replaced by Di henceforth. Based on (5.4), we can
express the likelihood conditioned on the arrival time T at time instant tn by

p(y0:n|Di, T ) = p(y0|Di, T )
n∏
l=1

p(yl|y0:l−1,Di, T ) (5.5)
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such that ỹiN introduces the conditioning on the endpoint Di since p(y0:n|Di, T ) =
p(y0:n|ỹiN = ai, T ). While the likelihood p(y0:n−1|Di, T ) pertaining to the previous time
instant tn−1 is available at tn, estimating the arrival-time-conditioned Prediction Error
Decompositions (PEDs) [Harvey, 1989], i.e. p(yn|y0:n−1,Di, T ), suffices to sequentially
calculate the likelihood in (5.5).

Since T is unknown, it is treated as a random variable in our formulation. In
practice, a prior distribution on T can be assumed based on the context, e.g. uniform
where p(T | Di) = U(ta, tb) within the time window T = [ta, tb]. The arrival time can
then be integrated out via

p(y0:n | Di) =
∫
T∈T

p(y0:n | Di, T )p(T | Di)dT (5.6)

to obtain the likelihood in (5.3). Since it is a one dimensional integral, a numerical
approximation can be efficiently applied [Davis and Rabinowitz, 2007], e.g. Simpson’s
rule. This requires q evaluations of the arrival-time-conditioned PEDs p(y0:n|Di, Tn),
for all Tn ∈ {T1, T2, ..., Tq} which are drawn from the prior p(T |Di).

5.2.2 Proposed Predictors

In this section, we present two algorithms for estimating the desired destination-
dependent likelihood. The condition of the unknown arrival time T will be made
implicit to simplify the notation in the derivations when confusion is not possible. It
will be shown that the proposed methods lead to an efficient Kalman-filtering-type
routine for the prediction of D.

Algorithm 1

At time instant tn, the PED conditioned on the i-th endpoint and a given arrival time
T can be written as

p(yn|y0:n−1,Di) = p(yn|y0:n−1, ỹiN = ai)

=
∫
p(yn|xn)p(xn|y0:n−1, ỹiN = ai)dxn

=
∫
p(yn|xn)p(xn|y0:n−1)p(ỹiN = ai|xn)

p(ỹiN = ai|y0:n−1)
dxn (5.7)

which can be computed by parts and is dubbed Algorithm 1. Given the linear Gaussian
nature of (5.1) and (5.2), the state posterior at the previous time instant tn−1 is given
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by
p(xn−1|y0:n−1) = N (xn−1|µn−1|n−1,Σn−1|n−1) (5.8)

where the mean µn−1|n−1 and covariance Σn−1|n−1 are the filtering outputs of a Kalman
Filter (KF), which are optimal in the mean squared error sense [Haug, 2012]. Under
the standard rules for marginalisation of a joint Gaussian [Bishop, 2006], the predictive
distribution in the KF can be obtained as follows:

p(xn|y0:n−1) =
∫
p(xn|xn−1)p(xn−1|y0:n−1)dxn−1

= N (xn|µn|n−1,Σn|n−1) (5.9)

with

µn|n−1 = F (τ)µn−1|n−1 +M(τ)
Σn|n−1 = F (τ)Σn−1|n−1F (τ)T +Q(τ)

and τ = tn − tn−1. Based on the pseudo-observation density (5.4) and state transition
density (5.1), the pseudo-observation conditioned on the state at time tn is given by

p(ỹiN = ai|xn) =
∫
p(ỹiN = ai|xN)p(xN |xn)dxN

=
∫

N (ỹiN = ai|G̃xN ,Σi)

× N
(
xN |F (T − tn)xn +M(T − tn), Q(T − tn)

)
dxN

= N (ỹiN = ai|µỹ,Σỹ) (5.10)

where

µỹ = G̃
[
F (T − tn)xn +M(T − tn)

]
Σỹ = G̃Q(T − tn)G̃T + Σi

By utilising the following Gaussian identity

N (x;µ1,Σ1)N (µ2;Lx,Σ2) ∝ N (x;µ3,Σ3)
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with Σ−1
3 = Σ−1

1 + LTΣ−1
2 L, µ3 = Σ3(Σ−1

1 µ1 + LTΣ−1
2 µ2) and the matrix inversion

lemma (Woodbury formula), the second component in the integral in (5.7) is given by

p(xn|y0:n−1, ỹiN = ai) ∝ p(xn|y0:n−1)p(ỹiN = ai|xn)
= N (xn|µ∗,Σ∗) (5.11)

with

µ∗ = µn|n−1 + L∗
[
ai −B∗µn|n−1 − G̃M(T − tn)

]
L∗ = Σn|n−1B

T
∗

[
B∗Σn|n−1B

T
∗ + G̃Q(T − tn)G̃T + Σi

]−1

Σ∗ =
(
I − L∗B∗

)
Σn|n−1

B∗ = G̃F (T − tn)

Now the individual PED in (5.7) can be readily obtained as

p(yn|y0:n−1,Di) =
∫
p(yn|xn)p(xn|y0:n−1, ỹiN = ai)dxn

=
∫

N (yn|Gxn, Vn)N (xn|µ∗,Σ∗)dxn

= N (yn|µy,Σy) (5.12)

with µy = Gµ∗ and Σy = GΣ∗G
T + Vn. Since the condition of the arrival time has

thus far been imposed implicitly in our derivations, the likelihood computed at this
stage is actually

p(y0:n|Di, T ) = p(yn|y0:n−1,Di, T )p(y0:n−1|Di, T ) (5.13)

where the first term in the right hand side is obtained by plugging the arrival time back
into the condition while the second term is obtained at the last time instant. Hence,
the condition on the arrival time must be integrated out based on (5.6) in order to
obtain the desired likelihood p(y0:n|Di). As already noted in Section 5.2.1, this may be
accomplished via any valid numerical approximation schemes. Apart from this, the
standard Kalman correction step needs to be performed to calculate the new posterior
p(xn|y0:n) = N (xn|µn|n,Σn|n) ready for the PED estimation at the next step tn+1.
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Algorithm 2

An alternative interpretation of endpoint inference using pseudo-observations can
be achieved by re-writing the Bayesian smoothing (fixed-interval) equation, termed
Rauch-Tung-Striebel smoother in linear Gaussian cases [Rauch et al., 1965],

p(xn−1|y0:n−1, ỹiN = ai)

=
∫ p(xn−1|y0:n−1)p(xN |xn−1)

p(xN |y0:n−1)
p(xN |y0:n−1, ỹiN = ai)dxN

=
∫ p(xn−1|y0:n−1)p(xN |xn−1)

p(xN |y0:n−1)
p(xN |y0:n−1)p(ỹiN = ai|xN)

p(ỹiN = ai|y0:n−1)
dxN

∝ p(xn−1|y0:n−1)
∫
p(ỹiN = ai|xN)p(xN |xn−1)dxN

∝ N (xn−1|µn−1|n−1,Σn−1|n−1)N (ỹiN = ai|µỹ,Σỹ)
= N (xn−1|µ̃, Σ̃) (5.14)

with {µỹ,Σỹ} and {µ̃, Σ̃} obtained similarly to those in (5.10) and (5.11). The PED
can then be easily shown to reduce to

p(yn|y0:n−1,Di)
= p(yn|y0:n−1, ỹiN = ai)

=
∫ ( ∫

p(xn−1|y0:n−1, ỹiN = ai)p(xn|xn−1, ỹiN = ai)dxn−1

)
p(yn|xn)dxn

= N (yn|µy,Σy) (5.15)

with

µy = G

[
F (τ)µ̃ +M(τ) + Ly

[
ai − G̃

(
F (T − tn)

(
F (τ)µ̃

−M(τ)
)

+M(T − tn)
)]]

Σy = G
[
AyΣ̃ATy + (I − LyBy)Q(τ)

]
GT + Vn

Ly = Q(τ)BT
y

[
ByQ(τ)BT

y + G̃Q(T − tn)G̃T + Σi

]−1

Ay =
(
I − LyBy

)
F (τ)

By = G̃F (T − tn)
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It should be noted that the state transition density in the inner integral of (5.15) needs
to be modified to incorporate the information from destination since

p(xn|xn−1, ỹiN = ai) ̸= p(xn|xn−1)

The pseudo-code for the proposed algorithms, which use (5.11)-(5.12) and (5.14)-(5.15),
respectively, has been summarised as below. The arrival-time-conditioned likelihoods
are computed recursively as in (5.5) and marginalisation of T in (5.6) is approximated by
numerical quadrature. We also define Li,qn = p(y0:n|Di, Tq) for the ease of presentation.

// Initialisation
Set Kalman mean µ0|0 and covariance Σ0|0 according to a prior;
Set likelihoods Li,q0 = 1 for all Di ∈ D and q = 1, . . . ,M ;
Set Flag = true/false (Algorithm 1 / Algorithm 2);
// Sequential inference
for n = 1, 2, . . . , N do

// at each time instant
Standard Kalman prediction: p(xn|y0:n−1) = N (xn|µn|n−1,Σn|n−1);
Standard Kalman correction: p(xn|y0:n) = N (xn|µn|n,Σn|n);
for i = 1, 2, . . . , ND do

// for each candidate destination
for q = 1, 2, . . . , ND do

// for each quadrature point
if Flag then

// Algorithm 1
Compute µ∗ and Σ∗ via (5.11);
Compute li,qn = p(yn|y0:n−1,Di, Tq) via (5.12);

else
// Algorithm 2
Compute µ̃ and Σ̃ via (5.14);
Compute li,qn = p(yn|y0:n−1,Di, Tq) via (5.15);

end
Update Tq likelihood Li,qn = Li,qn−1 × li,qn ;

end
Approximate P i

n ≈ p(y0:n|Di) via numerical quadrature;
end
Obtain at tn: p(D = Di|y0:n) ≈ P in×p(D=Di)∑

j∈ND
P jn×p(D=Di)

end

Algorithm 8: Sequential Intent Inference with Pseudo-observations
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5.2.3 Computational Complexity Analysis

The computational complexity is analysed here by counting each floating-point multi-
plication followed by one addition, i.e. a “flop” as in [Axelsson, 1996]. Let l be the
dimension of the pseudo-observation vector, whilst s and m are the dimensions of the
state and measurement vectors, respectively. The computational cost of a Kalman
filter at tn is given by [Willner et al., 1976]:

CKF(m, s) = 3
2(s3 + s2) +ms

(3
2(s+m) + 3

)
+ 2

3(m3 −m) (5.16)

Since the original BD in [Ahmad et al., 2018] runs one KF per endpoint with an
augmented state of dimension 2 × s (i.e. endpoint state xN is also included in the state
vector) and q points to approximate (5.6), its computational cost at a one time step,
assuming l = s, is

CBD(m, s) = qNΓBD (5.17)

where

ΓBD = 41
2 s

3 + 19
2 s

2 − 2s+ 3ms(2s+m+ 2) + 2
3(m3 −m)

Following a similar counting procedure, the complexities of the proposed Algorithms 1
and 2 are

C1(m, s) = qN
(
Γ1(m, s) + CKF(m, s)

)
(5.18)

C2(m, s) = qN
(
Γ2(m, s) + CKF(m, s)

)
(5.19)

respectively, where

Γ1(m, s) = 43
6 s

3 + 9
2s

2 − 2
3s+ms(s+ 1

2m+ 3
2)

Γ2(m, s) = 52
3 s

3 + 12s2 − 4
3s+ms(s+ 1

2m+ 3
2)

This is for all models in (5.1), including those dependent on Di such as OU-type
models in [Ahmad et al., 2018]. For models independent of Di, e.g. CV, the introduced
algorithms run one KF for all nominal destinations unlike the original BD. Their costs
thereby reduce to:

C1(m, s) = qNΓ1(m, s) + CKF(m, s)
C2(m, s) = qNΓ2(m, s) + CKF(m, s)
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Table 5.1 Complexity of BD methods as function of s; c = 1.5s3.

Model (5.1) Algorithm 1 Algorithm 2 Original BD
With Di O(8.7qNs3) O(18.8qNs3) O(20.5qNs3)
Without Di O(7.2qNs3 + c) O(17.3qNs3 + c) O(20.5qNs3)

Table 5.1 shows the complexity order O(·) of all methods as a function of the state
dimension s; complexity order for m or any other parameter can be similarly attained
from (5.18) and (5.19). As well as (5.17)-(5.19), the table clearly illustrates that the
proposed formulation is significantly more efficient compared with the original BD.
Algorithm 1 can reduce the computational complexity of the destination inference
routine by approximately 57.5%; 65% for motion models independent of Di. As for
l < s, i.e. only partial knowledge of the destination state is available, the computational
complexity is further reduced. In [Ardeshiri et al., 2017], a bridging-based method
was also proposed to reduce the inference complexity. However, it: a) uses the same
formulation as in [Ahmad et al., 2018] which leads to inconsistencies, b) utilises crude
approximations with unknown impact on the predictions quality, and c) only applies
to models that are independent of Di. Conversely, the methods presented here offer a
consistent and efficient solution to the prediction problem without any approximations
and it is applicable to any model in (5.1).

5.3 Experimental Results

5.3.1 Maritime Surveillance

First, the performance of the proposed algorithms is compared with that of the original
BD in [Ahmad et al., 2018] using a maritime surveillance example. The aim is to predict
a vessel endpoint, out of ND = 6 possible harbours in a bay, from noisy observations of
its 2-D position, e.g. AIS-based. Vessel trajectories are generated synthetically from a
bridged CV model as per [Ahmad et al., 2018], each starting from a rendezvous area
off the coast. For the three predictors, we employ a continuous-time CV model whose
state vector is 2-D per coordinate xn = [ξ, ξ̇]′. The corresponding F (τ), M(τ) and
Q(τ) in (5.1) are given by

F (τ) =
1 τ

0 1

 , M(τ) = [0, 0]T , Q(τ) = σ2

 τ3

3
τ2

2
τ2

2 τ


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with σ being the process noise parameter. The 2-D motion of the vessel is then
obtained by cascading two independent 1-D processes. For the measurement model,
the observation matrix in (5.2) is given by G = [I2, 02]. The measurement noises are
assumed to be uncorrelated and hence Vn = σ2

mI2. Simpson’s quadrature scheme with
q = 15 from a uniform prior p(T |Di) = U(80mins, 150mins) is adopted to numerically
marginalise over the possible arrival times. A non-informative prior is placed on
the harbours, i.e. p(D = Di) = 1/6 for Di ∈ D. Note that for each Di ∈ D, ai is
the location of the centre of the ith harbour while Σi = diag[5I2, 0.1I2] describes its
region. We adopt maximum a posteriori (MAP) estimation for inferring the intended
destination of a vessel

D̂n = argmaxDi∈D p(D = Di|y0:n) (5.20)

based on which the prediction success is defined by Sn = 1 if D̂n = Dtrue and Sn = 0
otherwise (for all tn ∈ {t0, t1, . . . , tN = T}). Consequently, the portion of each vessel
trajectory (in time) for which correct predictions are made can be computed as
1
N

∑N
k=n Sk.

The top panel of Figure 5.1 shows six synthetic tracks with the prediction results
for the true destination, i.e. p(D = Dtrue|y0:n), while the bottom panel gives the
proportion of each trajectory for which the true destination is correctly inferred using
MAP estimate. Specifically, in Figure 5.1a the uncertainty diminishes as the target
moves towards its endpoint and vice versa, showing the effectiveness of the proposed
BD approach in predicting D. This is closely related to the intent prediction results
shown in Figure 5.1b. It should be noted that there is no limitation on the total
travelling time T , the speed of identifying the most likely destination depends more on
the followed trajectory, as can be seen in Figure 5.1a and 5.1c. For instance, the intent
of the tracked object heading to D1 is revealed significantly earlier than that heading
to D4. Moreover, from Figure 5.1b and 5.1c it can be seen that the difference between
the outcome of the proposed formulation and that of the original BD is small whereas
the results of the two introduced algorithms are nearly identical.

The inference performance of the algorithms is also evaluated based on 100 synthetic
vessel tracks. The process noise parameter of the bridged CV for the simulations is
set to 0.2. Figure 5.2 depicts the averaged portions of correct predictions output by
all algorithms, with different process and measurement noise parameters (i.e. σ and
σm). More specifically, Figure 5.2a shows that provided accurate measurements the
prediction performance of all predictors is robust against the mismatch between the
simulation model and the actual model while Figure 5.2b illustrates that provided
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Fig. 5.1 Six synthetic vessel trajectories showing the intend prediction results. (σ =
0.1, σm = 0.1) (a) Shows y0:N coloured by the prediction probability against true
destination p(D = Dtrue|y0:n) from Algorithm 1. (b) Shows p(D = Dtrue|y0:n) for all
algorithms; Dk (k = 1, . . . , 6) indicates the corresponding track. (c) gives the portion of
each vessel path for which correct destination predictions are made via MAP estimate.
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(a) σm = 0.1, σ = {0.2, 0.5, 1, 5, 10}
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(b) σ = 0.2, σm = {0.1, 1, 5, 10, 20}

Fig. 5.2 Portions of correct predictions averaged over 100 synthetic tracks. (error bars
are one standard deviation)
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correct modelling all methods maintain their performance at a satisfactory level (> 60%)
with increasingly noisy measurements. It is also visible that in the figures that the
proposed algorithms yield better results than the original BD with regard to the portion
of correct prediction. Apart from the ability to deliver as many correct predictions as
possible in each dataset, it is crucial that the predictors can identify the true intent of an
object at an early stage. To examine the algorithms in terms of their ability to achieve
early intent recognition, the times at which the predictor successfully assigns the highest
probability to the intended destination (i.e. {tk | tk ∈ {t0, t1, . . . , tN = T}, D̂k = Dtrue

}) are recorded for each trajectory. Based on these timings, the average classification
success against the percentage of the total travelling time (100 × tn/tN) is plotted in
Figure 5.3. According to this figure, all algorithms can make successful predictions in
the first 30% of the voyage time in 60% of the cases, and this rate increases to about
90% when the vessel travels into 60% of the total time.

Furthermore, the run-times of MATLAB implementations of the three predictors are
recorded for the above 100 tracks (System: Intel(R) Core(TM) i7-4790 CPU@3.60GHz,
8GB RAM ). Algorithm 1 (mean run-time is 2.62ms at each tn) shows a reduction of
around 65% compared to the original BD (mean 7.42ms); Algorithm 2 has mean run-
time of 5.36ms. This confirms the complexity analysis in (5.17)-(5.19) with parameters
{m, s, q,N} = {2, 4, 15, 6} and demonstrates the potential of the proposed efficient
methods for real-time implementations.
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Fig. 5.3 Percentage of destination successful prediction, averaged over 100 tracks.
(σ = 0.2, σm = 0.1)
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Fig. 5.4 Three examples of the recorded pointing trajectories; coloured circles are the
intended destinations.

5.3.2 Freehand Pointing Data

Now, we apply the three examined predictors to real data, namely 95 freehand pointing
trajectories in 3-D. They were collected in an instrumented car with a vision-based
gesture tracker (identical to the prototype used in [Ahmad et al., 2018; Ahmad et al.,
2016a]) during driver/passenger interactions with the in-car touchscreen, at an average
rate of ≈ 50 Hz. There are 21 selectable circular icons on the screen which are
approximately 2 cm apart from each other, see Figure 5.4 for the touchscreen layout as
well as three typical finger pointing trajectories captured by the gesture tracker. The
objective is to predict, early in the pointing task, the intended on-display icon.

The inference performance is again assessed by the percentage of pointing time
during which the true destination assigned the highest estimated probability to the
intended icon Dtrue using MAP decision criterion; and the averaged proportion of
successful predictions against that of completed pointing gesture (in time). Moreover,
in order to demonstrate the performance of the proposed BD methods, their inference
results are compared with those obtained from the original BD (with CV) algorithm,
the OU-based intent prediction algorithms, i.e. Equilibrium Reverting Velocity (ERV)
model and Mean Reverting Diffusion (MRD) model as in [Ahmad et al., 2016a], and
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the benchmark methods, i.e. Nearest Neighbor (NN) and Bearing Angle (BA) (see
[Ahmad et al., 2016a] again for more details).

A CV model is used across all three BD algorithms, with the process noise parameter
σ = 0.65 m s−2/3 and the measurement noise parameter σm = 3 mm. As for the pseudo-
observation on the i-th icon, ai is the 3-D Cartesian position of the icon centre whereas
in the covariance matrix Σi = diag(σ2

ξI3, σ
2
ξ̇
I3) we set σξ = 1.5 mm and σξ̇ = 0.1 m s−1.

q = 30 quadrature points are placed uniformly within the time interval [0.1sec, 2sec].
Note that design parameters in the comparison algorithms have also been adjusted
manually to produce the best possible results.

As shown in Figure 5.5a, the proposed predictors give the best estimates compared
to the other methods in terms of the overall correct predictions. Though having a
slightly lower average correction rate than the pseudo-observation based BD methods,
the original BD algorithm still exceeds the OU-based and the benchmark methods.
On the other hand, the average successful prediction rate against the percentage of
pointing gesture time is shown in Figure 5.5b, where the bridging-distribution based
methods achieve the earliest successful intent predictions most of the time. Although
the NN method delivers high success rate as the finger tip is close to the screen, its
performance is extremely poor at the early stage. This is not desired in time-critical
applications such as the intelligent interactive display considered here. Excluding the
NN method, BD-based approaches consistently outperform the others (except at 10%
and around 40% the results of ERV are slightly better) and there is no significant
performance difference between them. It should be emphasised that the superiority of
the proposed BD formulation not only lies in its ability to achieve the highest accuracy
and early predictions, but also in the fact that it significantly reduces the complexity
and leads to a more computationally efficient inference procedure in comparison to the
original BD.

Finally, the sensitivity of the BD methods to model mismatch is analysed. As
the mismatch can arise from various sources such as dynamical model parameters,
measurement model parameters and destination prior, two experiments are conducted
in which the first test addresses the sensitivity to the dynamical and measurement
models is examined with fixed destination prior parameters (i.e. σξ and σξ̇) while
the second one is concerned with the sensitivity to the destination prior (with fixed
σ and σm). It can be seen from Figure 5.6a that reasonable changes to the CV
dynamic noise, e.g. σ ∈ [0.3 1.5], maintains a correct prediction rates of 60 − 65% for
all BD approaches when accurate measurements are available; values outside these
ranges degrade the prediction accuracy since they represent more extreme deviations
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Fig. 5.5 Inference performance over 95 freehand pointing trajectories. (a) depicts the
average aggregate correct predictions (error bars are one standard deviation). (b) shows
the average proportion of successful predictions against the percentage of completed
pointing task.

145



Bayesian Intent Prediction

in pointing velocities. Although the performance of the algorithms decreases with
increasing measurement noise level, it is observed that good prediction accuracies
(≥ 60%) can still be maintained when the system model matches the underlying
dynamics of the finger movement. It should be noted that changing the destination
information Σi has a very limited impact on the prediction performance, except for
extreme values where the regions of all destination as captured by Σi overlap heavily
(e.g. setting σξ = 20 mm while the icons are approximately 2 cm apart.). This
is depicted in Figure 5.6b. Overall, the testing results suggest that the inference
framework is relatively robust against reasonable/moderate changes in the modelling
parameters.

5.4 Summary and Conclusions

The proposed approach not only resolves the consistency issue with the previous bridging
distributions construct but also substantially reduce the computational complexity
of predicting the target destination. Similar to BD in [Ahmad et al., 2019, 2015;
Ahmad et al., 2018], it however requires prior knowledge of the location of all nominal
endpoints, considers Gaussian linear set-ups and treats targets singly, even if they are
a group. These can be addressed by extending the BD framework in future work.
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(a) σξ = 1.5 mm, σξ̇ = 0.1 m s−1

(b) σ = 0.65 m s−2/3, σm = 3 mm

Fig. 5.6 Average correct predictions over 95 pointing tracks as (a) the dynamical model
(σ) and measurement model (σm) noise parameters are varied or (b) the destination
prior parameters σξ and σξ̇ are varied.
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Chapter 6

Conclusions

Object tracking and intent prediction are important research topics as they meet
the needs of various application domains. The ultimate goal of the former topic
is to estimate kinematic states as accurately as possible under noisy and limited
measurements obtained from multiple sensors, while for the latter it is to extract the
intent information of a moving object efficiently and accurately. These goals were
pursued in this thesis. In this chapter, we summarise and discuss the approaches and
results presented earlier and provide recommendation for future work.

Chapter 3 The fixed rate modelling assumption, which leads to dynamic systems
in a Markovian state space form, has been widely adopted when designing tracking
algorithms. In this chapter, we stuck to this assumption and developed analytic
structure for the inertial, speed and distance measurements based on a continuous-time
intrinsic coordinate model. Consequently, the state space models are (conditionally)
linear and Gaussian and thus allow for the construction of efficient sequential and
section-wise proposal kernels which can be effectively incorporated into sequential
Monte Carlo (SMC) methods. While the well-established Importance Sampling (IS)
based particle filtering methods were considered for use with both the sequential and
section-wise batch proposals, sequential Markov Chain Monte Carlo (SMCMC) was
adopted when designing sequential batch inference algorithms since it has a strong
potential to deal with high-dimensional systems. We also showed that the performance
of the SMC methods can be further improved by blending MCMC moves with the IS-
based SMC filters and using parallel independent chains in the SMCMC methods. The
experimental results on synthetic and real data suggest that the proposed algorithms
provide effective alternative solutions for tracking problems with inertial sensors and
infrequent position/timing measurements.
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Conclusions

The performance gains we obtained can be attributed to the use of a motion
model capable of accurately modelling the object dynamics, the design of proposal
kernels which take advantages of inertial measurements in the recent and/or more
distant past and the use of the powerful SMC framework. The model, as well as the
inference methods tailored to it, can serve as a guideline for others to develop their own
algorithms for tracking applications with inertial sensors and degraded position signal.
Also, the proposed model can be useful in describing the movement of an autonomous
flight vehicle which normally travels in a horizontal plane. In order to obtain more
accurate information regarding the turn rate, we could track the 3-D orientation of the
object. Moreover, the promising results obtained via the use of parallel independent
chains in the generic SMCMC encourage further exploration on effects of using different
numbers of chains and introducing interaction between independent chains.

Chapter 4 In this chapter we investigated the use of a more realistic class of models,
which removes the restriction that the state process is synchronised with the observation
process, for the tracking of a manoeuvring object. We saw how the existing variable rate
intrinsic model can be generalised to accommodate multi-sensor multi-rate tracking
problems. The difficulty of sampling from the resulting degenerated models was
overcome by adapting the simulation smoother to a variable dimensional case, allowing
us to propose states effectively using Kalman-filtering-type methods. When tested
on the synthetic data and a benchmark trajectory, our variable rate particle filtering
algorithms achieve better tracking performance in terms of accuracy and robustness
over a standard bootstrap variable rate particle filter. Furthermore, two particle
Gibbs samplers were introduced to perform full Bayesian inference for the variable rate
intrinsic model. Numerical results were presented to demonstrate the ability of the
developed methods to infer both the latent state and system parameters.

A 3-D model for piece-wise planar motion can be readily obtained from the current
model by introducing a binormal vector vertical to the plane formed by the tangential
and perpendicular vector, as in [Bunch and Godsill, 2012]. As the linearity is preserved
piecewisely, the efficient simulation smoother based proposal kernels can be used again
and it would be interesting to see experiment results in such cases. Note that the same
idea of modelling the change of motion plane using a jump process can also be applied
to the Markovian state space model presented in Chapter 3. Moreover, it is worthwhile
to extend the full Bayesian sampling scheme such that it can accommodate unknown
jump time parameters.
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Chapter 5 We turned our attention to the problem of inferring the intended desti-
nation of a moving object in a timely and accurate manner in this chapter. Instead of
extending the latent state vector to incorporate the terminal state, the influence of the
candidate destinations on the object state is modelled via pseudo-measurements. We
have shown that this construction made the mathematics of the dynamical model and
observation process consistent with the Markov state process and results in novel intent
prediction algorithms which are capable of giving similar prediction performance to
the state-of-art methods but with reduced computational effort. Notably, for general
Gaussian linear time-invariant motion models, the proposed Algorithm 1 can at least
reduce the computational complexity by approximately 57.5%, and by 65% for the
non-destination-reverting models. Results on maritime surveillance and real finger
pointing data revealed that the proposed methods are not only able to provide fast
and accurate prediction of the object intent, they are also robust to model mismatch.

The methods can be readily extended to non-linear and/or non-Gaussian set-ups,
allowing the modelling of more complicated dynamic systems and terminal points of
non-ellipsoidal shapes. In such cases, particle filters can be used to approximate the
sequential likelihood terms p(yn|y0:n−1,Di, T ) required for the intent prediction task.
The use of numerical approximation methods will inevitably increase the computational
cost and hence it can be useful to analyse different bridging distribution based methods
in terms of their computation complexity in more general settings. The proposed
approaches can also be applied to multiple target tracking. For example, the inference
of group structure may be improved by incorporating intent information.
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