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1 Using satellite imagery to estimate heavy vehicle volume for 
2 ecological injury analysis in India
3 Abstract
4 A major limitation of road injury research in low-and-middle income countries is the lack of 
5 consistent data across the settings, such as traffic counts, to measure traffic risk. This study presents 
6 a novel method in which traffic volume of heavy vehicles—trucks and buses—is estimated by 
7 identifying these vehicles from satellite imagery of Google Earth. For Rajasthan state in India, a total 
8 of ~44000 such vehicles were manually identified and geo-located on national highways(NHs), with 
9 no distinction made between trucks and buses. To estimate population living in proximity to NHs, 

10 defined as those living within 1km buffer of NH, we geocoded ~45000 villages and ~300 cities using 
11 Google Maps Geocoding Application Programming Interface (API). We fitted a spatio-temporal 
12 Bayesian regression model with the number of road deaths at the district level as the outcome 
13 variable. We found a strong Pearson correlation of 0.84 (P<0.001) between Google Earth estimates 
14 of heavy vehicles and freight vehicle counts reported by a national-level study for different road 
15 sections. The regression results show that the volume of heavy vehicles and rural population in 
16 proximity to highways are positively associated with fatality risk in the districts. These effects have 
17 been estimated after controlling for other modes of travel.
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49 1. Introduction
50 India has suffered a nearly continuous growth of road fatalities over the past few decades. Over the 
51 25-year period from 1980 to 2015, the number of road deaths grew 17 times, while the death rate 
52 rose 6 times, from 2.1 to 12 per 100,000 persons (NCRB, 2015; MoRTH, 2017). The analyses of crash-
53 level data in various settings of India have shown that the buses and trucks are involved in 50% to 75% 
54 of fatal crashes on highways and 40% to 52% in the cities (Mohan et al., 2016; Naqvi and Tiwari, 
55 2018). These shares are much higher than their share in total vehicles registered (~5%), though it is 
56 likely that travel distance per vehicle is much greater than for cars and motorised two-wheelers (Malik 
57 and Tiwari, 2017; Goel et al., 2016). In case of a crash, buses and trucks also have greater likelihood 
58 than cars to result in fatality, because of their much higher weight as well as the design of vehicle front 
59 (Paulozzi, 2005; Desapriya et al., 2010). Freight movement in India is also dominated by on-road 
60 modes, with up to 60% of the freight mass transported on roads (RITES, 2014). The movement of 
61 trucks is strongly linked with the economy (Tiwari and Gulati, 2013; Dhar and Shukla, 2015), which 
62 has been rapidly growing in India during this period. With a focus on constructing new highways and 
63 widening the existing ones, the propensity of freight to use the road is likely to increase even further 
64 (Datta, 2012). 

65 Given the strong evidence indicating heavy vehicle volume as a strong risk factor of road deaths in 
66 India and high likelihood of this volume to grow in the future, epidemiological research of traffic 
67 crashes needs to develop methods so that this risk factor can be adequately measured. Traffic volume 
68 is the traditional variable accounting for risk in accident prediction models (Elvik, 2011). However, 
69 data on freight movement in India is scarce. Vehicle-classified counts are usually conducted for a 
70 specific purpose such as planning a new road infrastructure, are restricted to a few locations, and 
71 often not in the public domain. Lack of any systematic efforts in traffic volume counts results in poor 
72 comparability across the settings. Vehicle registration data for freight vehicles can be misleading as 
73 their trips often span across multiple jurisdictions. For instance, in India, average distance travelled by 
74 on-road freight vehicles from origin to destination is 300 km (RITES, 2013). Censuses and travel surveys 
75 report data on passenger travel and have often been used in area-level accident prediction models 
76 (Schepers and Heinen, 2013; Aldred et al., 2018; Goel, 2018). However, these data sources lack any 
77 information on freight movement. Absence of a variable representing freight can potentially bring 
78 omitted-variable bias in the model results and significantly modify the effects of other variables (Mitra 
79 and Washington, 2012). For instance, in Goel (2018), effect of motorised two-wheelers on traffic 
80 fatality risk was overestimated by 70% when heavy-vehicle traffic measure was not accounted for in 
81 the model.

82 Researchers have successfully used commonly available geospatial data sources to fill data gaps in 
83 settings with lack of GIS data on built environment. In Goel et al. (2018), Google Earth and Google 
84 Maps were used to geocode the locations of traffic built-environment such as grade separated 
85 junctions, bus stops and traffic lights, as well as for mapping of built-up area. Further, satellite imagery 
86 has been used for mapping environmental variables for epidemiology of vector-borne diseases (Chang 
87 et al., 2009). Satellite images can also be used to detect traffic on the roads. There is a growing 
88 literature on developing machine learning methods for automatic detection of traffic using satellite 
89 imagery (Eikvil et al., 2009; Larsen et al., 2013; Cao et al., 2016; Tang et al., 2017). However, in these 
90 studies, there is much more focus on improving detection rates by the algorithms. Few studies have 
91 compared satellite-based estimation of traffic counts with ground-based data (Eikvil et al., 2009), and 
92 fewer still have shown application of such methods in the context of transportation research. 

93 In this paper, we aim to test the use of widely accessible geospatial data sources to overcome the lack 
94 data availability for road injury epidemiology in a low-income setting. We present the novel use of 
95 Google Earth satellite imagery to estimate heavy vehicle volume on highways for road safety 
96 epidemiology. In order to account for the population exposure to traffic injury risk, we present the 
97 use of Google Maps Application Programming Interface (API) for large-scale mapping of villages and 



98 towns. This will further demonstrate the use of a novel method to facilitate the development of 
99 geospatial dataset often unavailable in low-and-middle income settings (Hamilton et al., 2018). 

100 Finally, we present an ecological model using spatial regression methods to assess the relationship 
101 between road deaths and heavy vehicle volume. 

102 2. Data and Method
103 The study setting is Rajasthan, the north-western state of India (Figure 1). Geographically it is the 
104 largest state in India. In 2011, the state had a population of 68.6 million which is similar to that of 
105 France or the United Kingdom. Its surface area (342,000 km2) is comparable to that of Germany. 
106 Through road and rail, the state connects Delhi to its north-east, the capital city and an important 
107 commercial and industrial hub, with the seaports of Mumbai and Jawaharlal Nehru port (JNPT) on the 
108 western coast, and the latter is the largest container port in India. The state is also a major tourist 
109 destination with more than 30 million tourists per year (Rajasthan Tourism Department, 2014). The 
110 western half of the state, bordering Pakistan, is low-density desert region while the eastern half is 
111 where most population resides. 

112 The aerial units of analysis are the 33 districts that represent administrative divisions within the state, 
113 and are comparable to counties in many countries. We used district-level number of road deaths from 
114 2011 to 2016 reported by state police on their website (http://police.rajasthan.gov.in/default.aspx). 
115 Over the 6-year period, annual road deaths across the state increased from 9232 to 10465. In 2011, 
116 the death rate of the state was 13.5 per 100,000 persons compared with country-wide rate of 11.3, 
117 and it is one of the 10 states with the highest death rates in India (Mohan et al., 2016). We used 
118 district-level population from 2001 and 2011 Censuses to estimate population of each district from 
119 2012 through 2016 using linear extrapolation. For each district, the average death rates and 95% 
120 confidence interval (CI) using Poisson distribution over the six-year period are presented in Figure 1. 
121 The rate varies from 7.7 deaths per 100,000 persons to more than 21 deaths per 100,000 persons in 
122 two districts.

123 In the 2011 Census of India, mode of travel to work was reported for workers (Census-India, 2017). 
124 We used the number of workers travelling to work by different modes in each district to represent 
125 passenger travel patterns. The different modes included in this analysis are walk, cycle, motorised 
126 two-wheelers (m2w), car, intermediate public transport (ipt) modes such as three-wheeled auto 
127 rickshaws or tuk-tuks (Kumar et al., 2016), bus and train. Table 1 presents the descriptive statistics of 
128 all the variables. 

129 It is, unfortunately, common in India that highways pass through populated areas often with no 
130 frontage or service roads for the movement of local population, leading to population exposure to 
131 high-speed traffic on highways. In order to estimate the population exposed to highways, we accessed 
132 population of 44,572 villages and 296 cities from the 2011 Census. We geo-located all the villages and 
133 the cities using Google Maps Geocoding API 
134 (https://developers.google.com/maps/documentation/geocoding/intro). In the API, village/city name 
135 was supplied as an input along with its corresponding district name and the name of the state—
136 Rajasthan. 

137 We used a GIS shapefile of road network downloaded from OpenStreetMap (OSM; 
138 https://download.geofabrik.de/asia.html). In QGIS (v.2.18.14; QGIS, 2016), we imported Google Maps 
139 using ‘OpenLayers’ plugin. Next, we overlaid road network shapefile on the Google Maps in order to 
140 detect and correct any discrepancy between actual highway alignment and those mapped in OSM. For 
141 this, we also used the section-by-section description of the highways provided by National Highways 
142 Authority of India (NHAI) on their website (NHAI, 2017). The description includes the different towns 
143 and villages that the highways pass through. 

144 We created a buffer of 1 km along the national highways and the villages lying within the buffer were 
145 identified as those in proximity to the highways (see Figure 2). Cities are much larger in area than a 



146 village and therefore a point location is a limited way to measure its distance from the highway. We 
147 considered cities to be lying within 1 km of the road buffer if the distance of the edge of the built-up 
148 area to the highway was within 1 km. The built-up of the cities was visually identified using Google 
149 Earth imagery. The population of the villages and the cities lying within the buffer was calculated for 
150 each of the districts and the two variables are referred to as rural population and urban population, 
151 respectively. 

152 We used Google Earth satellite imagery to identify trucks and buses across the whole network of 
153 national highways (~430 km) in the state. In QGIS, the satellite imagery was imported using 
154 ‘OpenLayers’ plugin. Next, the GIS layer of national highways was overlaid on the imagery to guide the 
155 data collection. National highways are constructed and maintained by NHAI, a federally funded 
156 agency, and are intended for interstate long-distance connectivity. Therefore, long-distance heavy 
157 vehicles are more likely to move on those. A new point layer was created by geocoding every heavy 
158 vehicle identified (see Figure 2). This work was carried out by one researcher (RG). The buses and 
159 trucks are easily identified given that their size is much larger than other motorised modes in India 
160 such as cars, vans, and auto rickshaws. We did not attempt to differentiate between buses and trucks 
161 as this could have resulted in misclassification. The year of the imagery varied from 2015 to 2018, 
162 which is indicated in the lower right corner of the image. Therefore, observations of traffic across the 
163 state belonged to one of these four years.  Data collection was restricted to national highways and the 
164 abutting land-use (see Figure 3). 

165 Since satellite image is a snapshot and captures traffic across space, therefore, a greater number of 
166 vehicles will be detected in a district simply because that district covers a greater length of national 
167 highways. Therefore, a better measure of traffic is traffic density, defined as the number of vehicles 
168 per unit length of roadway, which is a traditional measure in traffic flow theory. Accordingly, we 
169 calculated the number of vehicles per unit length of national highway in the district. We refer to this 
170 variable as heavy vehicle density. To calculate this density, we assigned all the geocoded points to 
171 their respective districts. Next, for each district, we calculated heavy vehicle density by dividing the 
172 total number of geocoded heavy vehicles in a district by the total length of national highways in that 
173 district. 

174 2.1 Regression model
175 We modelled fatalities as Poisson-lognormal mixture using Bayesian hierarchical modelling. The 
176 regression modelling was done using R-INLA (Rue et al., 2009), an R package, which employs 
177 integrated nested Laplace approximations to estimate the posterior distributions. The package has 
178 been used for injury modelling by DiMaggio (2015) for census tracts in New York city, Goel et al. (2018) 
179 for wards in Delhi, and Goel (2018) for states in India. The hierarchical model is described as follows:

𝑦𝑛 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑓𝑛) (1)
log (𝑓𝑛) = log (𝑝𝑛) + β0 + βX𝑛 + μ𝑛 + δ𝑛 + φ𝑡 + γ𝑡𝑛 (2)

δ𝑛~𝑁(0,1/𝜏δ) (3)
)log (𝜏δ  ~𝑙𝑜𝑔𝐺𝑎𝑚𝑚𝑎(1,0.0005) (4)

180 where, are the observed annual fatality counts of all road users in district ,  are the expected 𝑦𝑛 𝑛 𝑓𝑛
181 count of fatalities,   represents a vector of explanatory variables,  is the population as an offset, X𝑛 𝑝𝑛
182  is the intercept,  is a vector of fixed effect parameters,  is the uncorrelated heterogeneity or β0  β μ𝑛
183 unstructured error, is the spatially structured error,  is the structured temporal effect, and  is  δ𝑛 φ𝑡 γ𝑡𝑛
184 the spatio-temporal interaction effect. Here has the intrinsic conditional autoregressive (CAR) δ𝑛 
185 specification as proposed by Besag et al. (1991) and is the first-order random walk-correlated φ𝑡
186 time variable. Further details can be seen in DiMaggio (2015) and Goel et al. (2018).
187  
188 We first fitted a frailty model with no covariates and with only spatially structured error ( , μ𝑛)
189 unstructured error (  and auto-correlated year effect ( ). The temporal trend ) term is shown in δ𝑛) φ𝑡 (φ𝑡
190 Figure 4, and shows that it has the least variation over the 3-year period from 2014 to 2016. These 



191 years are also closest to the satellite imagery (2015-2018) used for estimating heavy vehicle traffic. 
192 Therefore, for the regression analysis we included time series from 2014 to 2016 . We assume that 
193 the traffic movement does not vary greatly over the years, so that the mismatch between the time 
194 period of road fatality data and that of satellite imagery does not affect our analysis. All other variables 
195 were considered constant across this period. For sensitivity analysis, we used road deaths for the 6-
196 year period (2011 to 2016) in the regression analysis.

197 The covariates at the district level used in the regression model are presented in Table 1 and have 
198 been described in section 2. These include number of workers travelling to work by different modes 
199 of transport denoted as walk commuters, cycle commuters, m2w commuters, car commuters, ipt 
200 commuters, bus commuters, and train commuters. The other covariates include rural population and 
201 urban population which denote population living within 1 km of the national highways. Finally, heavy 
202 vehicle density denotes the heavy traffic volume. We fitted two sets of regression models, each with 
203 two models. In the first set, the two models include the model with only commuting-related variables 
204 (Model 1) and the second model (Model 2) with commuting-related variables and also controlling for 
205 rural and urban population. In the second set, the same two models were developed but the four 
206 variables walk commuters, bus commuters, train commuters, and ipt commuters were replaced by a 
207 new variable which combined walk with the three public transport modes (ipt, bus and train) and is 
208 referred to as walk+PT commuters. This variable represents all the walking-related modes given that 
209 in Indian context each public transport trip is likely to include at least two walking trips in the form of 
210 access and egress. The two models in the second set with and without controlling for rural population 
211 and urban population are referred to as Model 3 and Model 4.

212 3. Results
213 Using the observations from satellite images, we geolocated a total of 43,884 heavy vehicle. Heavy 
214 vehicle density on national highways vary from 43 to 1928 vehicles per km. To validate the estimate 
215 of heavy vehicle traffic, we used the freight tonnage reported for different national-highway sections 
216 as a part of nation-wide study conducted in 2007-08 (RITES, 2014). For the corresponding road 
217 sections reported in the study, we estimated the heavy vehicle density as described above. We found 
218 that the two variables (freight tonnage and heavy vehicle density) are strong associated with a Pearson 
219 correlation of 0.84 (P<0.001) (Figure 5). Although it should be noted that the tonnage data and Google 
220 Earth estimates of volume are separated in time by 7 to 8 years. Further, we estimated heavy vehicle 
221 traffic including both buses as well as trucks, while the comparison with the reported data is only for 
222 freight.

223 Figure 6 presents the relationship between heavy vehicle density and fatality rates. For this plot, 
224 fatality rates are the average over 2014–2016 period. The Pearson correlation between the two 
225 variables is 0.63 (P<0.001), and excluding the three highest values of heavy vehicle density, the 
226 correlation value is 0.45 (P<0.01). Figure 7 presents year-specific plot of fatality rates at the district 
227 level. There are some districts that have consistently high risk levels across the years. The districts 
228 highlighted in red lie along the major corridor that connects Delhi with the Mumbai port. 

229 The results of the four regression models are presented in Table 2 with mean and standard deviation 
230 (SD) of the posterior distributions of the coefficients. To compare the performance of Bayesian 
231 models, Deviance information criterion (DIC) is estimated which is a Bayesian version of Akaike 
232 information criterion (AIC). Similar to AIC, lower value of DIC implies higher predictive accuracy.
233
234 The most consistent finding across all the models is that heavy vehicle density and car commuters 
235 have positive associations with fatality risk, and combined walk and PT usage have a negative 
236 association. Further, the magnitudes of the effects of heavy vehicle density and car commuters are 
237 the highest, consistently across the models. Rural population living in proximity to highways has a 
238 positive association, while urban population has a negative association, though rural population has a 



239 much larger effect size than urban population. All these variables except urban population in proximity 
240 to highways also have strong statistical significance. 
241
242 The two variables, namely cycle commuters and walk commuters, show changing signs across the 
243 models and weaker statistical significance compared with other variables. Cycle commuters has a 
244 positive sign in models 1 and 2 and negative sign in models 3 and 4. Walk commuters has a negative 
245 sign in model 1 but a positive sign in model 2. The variable m2w commuters also show large variation 
246 across the models. This variable has a high magnitude in model 2 but its magnitude reduces to almost 
247 zero in model 3.

248 Comparison of model 1 and model 3 with their more controlled counterparts (models 2 and 4, 
249 respectively, including rural and urban population in proximity to highways) shows that the effect of 
250 heavy vehicles is weakened, both in magnitude, from 0.18 (model 1) to 0.13 (model 2) and from 0.17 
251 (model 3) to 0.15 (model 4), as well as in statistical significance. In contrast, the effect of car 
252 commuters is strengthened in both respects (magnitude: 0.24 to 0.32 and 0.22 to 0.24). In other 
253 words, the effects of trucks and cars are modified, though the direction of association remains the 
254 same, when the population directly exposed to highway traffic is accounted for in the models. 

255 To test the sensitivity of results to the inclusion of variable of heavy vehicle volume, we compared the 
256 results of model 1 and model 3 with their respective models without this variable (not shown in Table 
257 2). We found that in model 1, without the inclusion of heavy vehicle variable, the coefficient of cycle 
258 commuters increases by more than five times in magnitude (0.02 to 0.10), while that of bus 
259 commuters changes from negative to positive (-0.04 to 0.02). In model 3, the effect of m2w 
260 commuters also increases significantly in magnitude. Therefore, it seems that, in the absence of heavy 
261 vehicle variable, its effect is absorbed by other modes. We also present the results of the four models 
262 with data for the 6-year period (Table A1 in appendix). The results show only slight reduction in effect 
263 size of most variables while the direction of association remains the same for all. Therefore, the 
264 conclusions of the regression models are independent of the years for which road deaths data has 
265 been used.

266 Discussion
267 Statement of principal findings
268 We estimated heavy vehicle (buses and truck) volume on national highways using Google Earth 
269 satellite images. We found that the estimated volume correlate reasonably well with the traffic counts 
270 reported in a government study, with a Pearson correlation of 0.84 (P<0.001) We used Google Maps 
271 API for large-scale mapping of villages and cities to estimate population living in proximity to the 
272 highways. We further fitted a spatiotemporal regression model using Bayesian modelling framework 
273 with number of road deaths at the district level as the outcome variable. The model results indicate 
274 that heavy vehicle density has a positive association with road deaths. Rural population living in 
275 proximity to national highways has a positive association while urban population have a negative 
276 association. Among the passenger modes of travel, car is positive associated while combined walking 
277 and public transport usage has a negative association with road deaths. We also found that not 
278 accounting for heavy vehicle volume results in omitted variable bias in the model results. In our 
279 models, this was reflected in the effects of other modes of travel, which were biased upwards.

280 Strengths and weaknesses of the study
281 Traffic volume is an important factor contributing to traffic injuries (Elvik et al., 2009; Aldred et al., 
282 2018) and therefore essential for epidemiological investigation of traffic injuries. In countries such as 
283 India and other LMICs, there are no mechanisms to ensure systematic collection of traffic counts in 
284 the cities or highways. In accident prediction models, lack of such variables can result in omitted 
285 variable bias (Elvik, 2011; Mitra and Washington, 2012; Goel, 2018). This study presents a novel 
286 method to estimate traffic volume of heavy vehicles. This is the first study to use satellite-imagery 
287 based vehicle count at a large scale for epidemiological research. We also used Google API for large-



288 scale mapping of rural settlements. The methods presented here are easily replicable in virtually every 
289 setting in the world as both Google Earth and Google Maps API have a global coverage, and the use of 
290 former is free of cost while the cost of using the latter can be minimised with a limited daily use of the 
291 API. 

292 While this study presents an area-level analysis, these methods can potentially be replicated for micro-
293 level studies. Future studies should investigate the potential of satellite imagery to estimate traffic 
294 volume at the street level and investigate if these methods work at smaller scale. While the 
295 identification of vehicles in this study was limited to heavy vehicles, this method can be extended to 
296 include other motor vehicles of smaller size such as cars, vans, and three-wheeled auto rickshaws. 
297 However, with the given resolution of Google Earth for India, it is not possible to differentiate between 
298 these vehicles. Within Google Earth, there are variations in the resolution of the imagery across the 
299 countries. In India, the images are likely 15m resolution. In North America and western Europe, Google 
300 Earth images are often obtained through aerial data collection which includes photography using an 
301 aeroplane and such images can have resolution up to 0.15m. High-resolution images of 1m or lower 
302 can also be obtained through other satellites such as WorldView-2 or Quickbird, however, these are 
303 not available for free.

304 There are certain limitations in our work. In Google Earth, the year corresponding to the imagery was 
305 found to vary across the state, which is likely to bring spatial bias in the estimates of heavy vehicles. 
306 Further, heavy vehicle identification was restricted to only national highways. For two districts with 
307 high volume of heavy vehicle, we found that the volume of state highways is only a minor fraction of 
308 the volume of national highways, therefore, this is less likely to result in any bias. It is an ecological 
309 study and therefore has the limitation arising from modifiable area unit problem. A district comprises 
310 of cities as well as villages, and highways as well as urban streets. At an aggregate level, these 
311 differences are not accounted for. Further, the traffic volume estimates from Google Earth needs to 
312 be validated for other settings and road types.

313 Meaning of the study: possible mechanisms and implications for policymakers
314 The study results highlight the implications of freight policies on road traffic injuries. India has much 
315 higher share of its freight movement through road compared to other large countries such as the USA 
316 and China (McKinsey, 2009). In India, policy discussions of mode shift of freight in favour of railways 
317 often occur in the context of transport efficiency, energy use, greenhouse gas emissions or air quality 
318 (Dhar and Shukla, 2015). However, evidence from this study as well as from previous research (Mohan 
319 et al, 2015; Naqvi and Tiwari, 2018; Goel, 2018) highlights that on-road freight movement has 
320 significant implications for traffic injuries. Therefore, policy formulation around freight movement 
321 should account for traffic injuries as one of the externalities.

322 A positive association between rural population living in proximity to national highways and death 
323 rates has important implications. Highways in India often pass through the villages and towns or run 
324 in their vicinity (e.g. Figure 8). Since people in Indian villages predominantly travel by walking, cycling 
325 or use motorised two-wheelers (Census-India, 2017), their exposure to high-speed heavy traffic on 
326 highways results in serious injuries or deaths. As a result, the three road users contribute up to 60% 
327 of all road deaths victims on Indian highways (Naqvi and Tiwari, 2018). It is a remarkably high 
328 proportion given that highways are often thought of as being used exclusively by cars and trucks. Given 
329 the rapid growth of highway network in India (NHDP, 2019), it is important that future development 
330 of highways minimise proximity to the inhabited rural areas. In contrast to the rural population, the 
331 association of urban population in proximity to highways has a negative association with the fatality 
332 rates. It is possible that highways close to urban areas tend to be congested in the vicinity of urban 
333 areas, and as a result, tend to have lower rates of fatalities. We should note that the effect size of 
334 urban population in proximity to highways is much smaller than rural population.  

335 Unanswered questions and future research 



336 Google Earth is a freely available data source and covers the entire world. While the identification of 
337 vehicles in this study was limited to heavy vehicles, this method can be extended to include other 
338 motor vehicles such as three-wheeled auto rickshaws and cars. Further, distinction can also be made 
339 between trucks and buses. The possibility to detect pedestrians, cyclists and motorcycles from 
340 overhead satellite images is unlikely. 

341 Further, the potential application of this data is not limited to traffic safety epidemiology. These new 
342 data sources can be further applied to estimate travel patterns at the city level. While our study used 
343 manual annotation, this work can be scaled up by using machine learning based image recognition 
344 (Cao et al., 2016). The methods presented here can be replicated at the city level as well as scaled up 
345 for the whole country. 
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Table 1: Descriptive statistics of study variables for 33 districts
 Variable name Description Mean Standard Deviation Median Minimum Maximum
deaths Annual number of deaths 302 228 241 70 1446
population Population of district 2,157,713 1,168,779 1,968,516 672,008 7,289,051
walk commuters Walking 81,800 48,401 69,083 25,896 301,476
cycle commuters Cycling 28,910 24,059 19,669 3922 111,328
m2w commuters Motorised two-wheelers 49,851 61,547 26,433 8454 344,930
car commuters Car 7848 13,113 4614 477 77,872
ipt commuters Intermediate public transport modes 8585 6670 6912 947 26,459
bus commuters Bus 35,755 41,458 22,430 5073 236,423
train commuters

Number of 
commuters 
travelling 
to work by

Train 4705 5102 3088 225 24,739
Heavy vehicle density Heavy vehicle density on national highways 517 449 410 43 1928
rural population Rural population within 1km of national highways 194,870 126,510 172,180 7371 570,559
urban population Urban population within 1km of national highways 405,090 604,313 213,784 1 3,386,644



Table 2: Regression results
Mean (SD)

Variable Model 4 Model 3 Model 2 Model 1
Intercept -9.120(1.464) -8.525(1.311) -12.433(1.860) -9.167(1.427)
log(heavy vehicle density) 0.149(0.078) 0.170(0.072) 0.130(0.076) 0.177(0.077)
log(car commuters) 0.238(0.131) 0.218(0.127) 0.323(0.125) 0.243(0.130)
log(m2w commuters) -0.076(0.170) -0.004(0.151) -0.492(0.231) -0.100(0.182)
log(cycle commuters) -0.005(0.115) -0.062(0.098) 0.331(0.174) 0.019(0.130)
log(walk commuters) 0.087(0.195) -0.085(0.197)
log(train commuters) -0.195(0.079) -0.077(0.068)
log(bus commuters) -0.055(0.103) -0.042(0.111)
log(ipt commuters) 0.014(0.078) -0.002(0.085)
log(walk+PT commuters) -0.238(0.186) -0.222(0.182)
log(rural population) 0.094(0.096) 0.297(0.120)
log(urban population) -0.018(0.029) -0.058(0.031)
DIC 906.62 906.51 906.68 906.57



Figure 1: Map of India and location of Rajasthan state (top left), districts and national highway network with 
district census IDs in ellipses (bottom left) and six-year average (and 95% confidence interval) of road 

death rates of the districts (right) 



Figure 2: Snapshot of geocoded heavy vehicles and villages along with 1km buffer around National 
Highways 
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Figure 3: A Google Earth screenshot of the satellite imagery showing trucks on the highway and nearby 
land-use (source: Google Earth snapshot) 



Figure 4: Temporal effect of fatality rates 
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Figure 5: Observed freight tonnage and GE estimates of heavy vehicle density for selected road sections 



Figure 6: A scatterplot showing district-level death rates and heavy vehicle density on national highways 



Figure 7: Year-specific fatality rates of districts of Rajasthan state 
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Figure 8: A six-lane national highway passing through a village (Source: Google Earth snapshot) 



1 Appendix

2 Table A1: Regression model using fatality data for the 6-year period from 2011 to 2016

Mean (SD)
Intercept Model 4 Model 3 Model 2 Model 1
log(heavy vehicle density) -9.610 (1.381) -8.987 (1.243)  12.527 (1.745) -9.363 (1.350)
log(car commuters) 0.127 (0.074) 0.148 (0.068) 0.100 (0.071) 0.145 (0.073)
log(m2w commuters) 0.213 (0.123) 0.192 (0.120) 0.292 (0.117) 0.213 (0.123)
log(cycle commuters) -0.061 (0.161) 0.014 (0.143) -0.473 (0.217) -0.092 (0.172)
log(walk commuters) 0.024 (0.109) -0.036 (0.093) 0.351 (0.163) 0.048 (0.123)
log(train commuters) 0.054 (0.183) -0.112 (0.187)
log(bus commuters) -0.186 (0.074) -0.072 (0.064)
log(ipt commuters) -0.039 (0.097) -0.026 (0.105)
log(walk+PT commuters) 0.053 (0.074) 0.037 (0.080)
log(rural population) -0.211 (0.176) -0.194 (0.173)
log(urban population) 0.099 (0.091) 0.289 (0.113)
DIC -0.02 (0.028) -0.057 (0.029)
Intercept 1788.09 1788.05 1788.19 1788.1
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