
Institute of Astronomy & Clare College

University of Cambridge

June 2020

GALAXY-SCALE SIGNATURES

OF

SCREENED MODIFIED GRAVITIES

 3Y

 '8aaaaaaaaaaaaaaaaaaaaaV

 .ADVENTIST',,, a a a a a a a a a a a a 9.

 A23

 A:

 A, A

 > ?,

This content downloaded from 81.156.200.236 on Wed, 04 Mar 2020 15:33:27 UTC
All use subject to https://about.jstor.org/terms

ANEESH P. NAIK

This thesis is submitted for the degree of Doctor of Philosophy.

Illustration: Lord Rosse’s hand-drawing of M51, reproduced from Rosse (1850).



To the trees and birds of Cambridge and East Anglia, particularly:

the copper beech overhanging the river at Clare,

the avocets at Welney,

the giant redwood by the Observatory,

and the bluetits in my garden,

for whom this thesis is unlikely to be of the remotest consequence.



iii

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work

done in collaboration except as declared in the preface and specified in the text. It is not

substantially the same as any work that has already been submitted before for any degree

or other qualification except as declared in the preface and specified in the text. The use of

‘we’ instead of ‘I’ throughout various parts of this thesis merely reflects a stylistic choice.

Parts of this thesis are based on articles that have been published or have been submitted

for publication. These are:

• Chapter 2:

A. P. Naik, E. Puchwein, A.-C. Davis, C. Arnold

Imprints of chameleon f(R) gravity on galaxy rotation curves

MNRAS, Volume 480, Issue 4, November 2018, Pages 5211–5225

• Chapter 3:

A. P. Naik, E. Puchwein, A.-C. Davis, D. Sijacki, H. Desmond

Constraints on chameleon f(R) gravity from galaxy rotation curves of the SPARC sample

MNRAS, Volume 489, Issue 1, October 2019, Pages 771–787

• Chapter 4:

A. P. Naik, N. W. Evans, E. Puchwein, H. Zhao, A.-C. Davis

Stellar Streams in Chameleon Gravity

Submitted to PRD, preprint available at arXiv:2002.05738

I undertook the majority of the research presented in each of these chapters, and the dec-

laration at the beginning of each chapter explicitly outlines the contributions made by the

co-authors of the respective articles.

The Introduction (Chapter 1) does not present any original research.

The length of this thesis does not exceed the limit of 60,000 words specified by the Degree

Committee of Physics and Chemistry.

http://dx.doi.org/10.1093/mnras/sty2199
http://dx.doi.org/10.1093/mnras/stz2131
https://arxiv.org/abs/2002.05738


iv

Galaxy-Scale Signatures of Screened Modified Gravities

Aneesh Naik

Summary

In recent years, theories of gravity incorporating a scalar field coupled to gravity—‘scalar-

tensor’ theories—have been subject to increased attention. In these theories, the scalar

field mediates gravitational-strength ‘fifth forces’.

For such scalar fields to retain cosmological relevance while also evading stringent con-

straints from high-precision post-Newtonian tests of gravity, ‘screening mechanisms’ are

invoked, in which the fifth force is suppressed in regions of high density or deep gravita-

tional potential. One example of a screening mechanism is the ‘chameleon’ mechanism, in

which the scalar has a density-dependent mass, such that the mass becomes very large in

regions of high density, and the fifth force is exponentially suppressed as a consequence.

While the primary effect of screening mechanisms is to mask the effects of modified gravity

in the Solar System, they can nevertheless give rise to interesting astrophysical signatures

elsewhere, searches for which can serve as tests of screened modified gravity. These signa-

tures are the subject of this thesis.

The Introduction of this thesis in Chapter 1 presents some historical background and

scientific context, particularly in the fields of cosmology, the astrophysics of galaxies, and

screened modified gravity theories. Subsequently, Chapters 2, 3, and 4 present original

research regarding two galaxy-scale signatures of screened modified gravity: ‘upturns’ in

galaxy rotation curves and asymmetries in stellar streams.

If a galaxy is partially screened, it will have a ‘screening radius’, within which the fifth

force is suppressed. Outside the screening radius, the fifth force on a test particle will be

proportional to the mass enclosed in the shell between the test particle and the screening

radius. Thus, the fifth force will contribute to the galaxy’s rotation curve, but only outside

the screening radius. At the screening radius itself, there will be an upturn in the curve. In

Chapter 2, based on an article published in the Monthly Notices of the Royal Astronomical

Society (Naik et al., 2018), I give the first prediction of this effect, specifically in the con-

text of Hu-Sawicki f (R ) gravity, a widely-studied example of a chameleon theory. By post-

processing simulated galaxies of the Auriga Project using the f (R ) gravity code MG-Gadget,

I produce mock rotation curves for a range of galaxy masses and values of the key theory

parameter fR 0, forecasting competitive constraints on fR 0. In Chapter 3, also based on an

article published in the Monthly Notices (Naik et al., 2019), I turn to observational data.

Analysing the high-quality rotation curves of the SPARC sample, I find that in certain f (R )
parameter regimes there is a strong signal, but it is better explained with standard grav-

ity plus a ‘cored’ dark matter halo profile than with modified gravity plus a theoretically-

predicted ‘cuspy’ halo. I am thus able to place competitive constraints on f (R ) gravity, with
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the caveat that if cored haloes can not ultimately be motivated under the standard ΛCDM

cosmological paradigm, then screened modified gravity could feasibly ease the tension be-

tween observed cores and predicted cusps.

In Chapter 4, I consider the observable imprints of screening on stellar streams around

the Milky Way. For reasonable parameter regimes in chameleon theories, main sequence

stars will be screened, and thus neither source nor couple to the fifth force. Thus, a situation

can arise in which a dark matter dominated dwarf galaxy is unscreened, but the stars within

it are screened. If such a galaxy were to be tidally disrupted by the Milky Way, its stars would

be preferentially stripped into the trailing stellar stream rather than the leading stream. The

streams would therefore be asymmetric about their progenitor. Using a restricted N-body

method, I explore this effect for a variety of satellite orbits and modified gravity regimes.

Taking f (R ) gravity as a fiducial theory, I forecast some of the strongest constraints to date

from future data releases of the Gaia satellite. This chapter is based on an article submitted

to Physical Review D (Naik et al., 2020).

Finally, Chapter 5 gives some concluding remarks and a discussion of future prospects

in this field.
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Chapter 1

Introduction

1.1 The Cosmological Model

1.1.1 Background

Almost exactly a century before the submission of this thesis, on April 26th 1920, the ‘Great

Debate’ was held at the Smithsonian Museum of National History in Washington DC. The

subject of this debate was no less than the nature of our Universe.

The Debate was prompted by the question of the ‘spiral nebulae’. The first known ex-

ample of a spiral nebula was M51, now also known as the ‘Whirlpool Galaxy’ or NGC 5194,1

the spiral structure of which was revealed in 1845 by Anglo-Irish astronomer Lord Rosse,

using his recently completed 72-inch telescope (Rosse, 1850).2 Lord Rosse’s hand-drawn

depiction of M51 is shown on the title page of this thesis.

In the following years, many more of these spiral nebulae were discovered. The compo-

sitions of these objects were unclear, as was the cause of their spiral structure. The mystery

was deepened in the early twentieth century, when American astronomer Vesto Slipher ob-

served that the spectral lines of these nebulae were strongly shifted, in most cases towards

the red end of the spectrum (Slipher, 1917). These ‘redshifts’ implied large (mostly reces-

sional) radial velocities for these objects, possibly implying that they were situated outside

the Milky Way.

On one side of the Debate was American astronomer Harlow Shapley, expounding a the-

ory in which our home galaxy—the Milky Way (MW)—is an “enormous, all-comprehending

galactic system.”3 In other words, the Universe is composed of one very large galaxy and

everything observable is contained within it, including the mysterious spiral nebulae. This

1‘M’ and ‘NGC’ here respectively stand for Messier and New General Catalogue.
2The ‘Leviathan of Parsonstown’ remained the world’s largest telescope well into the 20th century.
3Quotation from Shapley’s correspondence with George Hale (Smith, 1982, p. 62).
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‘Milky Way Universe’ found supporters in various eminent astronomers of the time, such

as Sir Arthur Eddington, Henry Norris Russell, and George Hale. Indeed, in one form or

another, the Milky Way Universe had been the prevailing conception of the cosmos for the

preceding few centuries, since the time of Sir Isaac Newton, who conceived an infinite Uni-

verse uniformly populated with stars “so accurately poised one among another, as to stand

still in a perfect Equilibrium.”4

Shapley was opposed in the Debate by his compatriot Heber Curtis, who believed the

spiral nebulae to be distant from our galaxy, and to be ‘island universes’ in their own right,

of a similar size and structure to the MW. In this theory, the Universe is composed of a

large (possibly infinite) number of such galaxies, separated by large voids. Just as the idea

of the Milky Way Universe could trace a lineage back to Newton and beyond, the idea of

island universes also had some precedent. The term ‘island universe’ was first used by the

Prussian philosopher Immanuel Kant, who in 1755 imagined an infinite cosmos composed

of disc-like island galaxies floating in the vast sea of space. Kant was partly inspired by

his English contemporary Thomas Wright, who five years earlier had published his theory

of a Universe composed of infinitely many spherical Milky Ways.5 Thomas Wright’s own

depiction of his Universe is reproduced in Figure 1.1.

As an interesting aside, in Kant’s theory, the Universe would begin as a chaotic soup

of particles, the denser regions of which would attract material and slowly coalesce into

condensations. These condensations in turn would combine into larger structures, and so

on ad infinitum. This hierarchical process foreshadows more modern ideas of structure

formation, discussed later in this chapter (§ 1.2.2).

The Great Debate provides a telling insight into the status quo in cosmology in the early

decades of the twentieth century. New theoretical ideas were typically minor variations on

centuries-old Kantian or Newtonian themes, and the lack of a clear victor in the Debate

demonstrates that observations were not yet at a stage where theories were falsifiable.

The participants and audience at the Great Debate would scarcely have been aware in

1920 that they were on the eve of precipitous change. In the ensuing years and decades,

theoretical and empirical advances pursued each other rapidly, and our understanding of

the cosmos has inflated with commensurate speed. Now, a century later, cosmology ap-

pears to have arrived at a new consensus: the ΛCDM Big Bang cosmology. The remain-

der of § 1.1 describes the development, over the course of the twentieth century, of the Big

Bang cosmology and the ΛCDM model, while also outlining any necessary theoretical for-

malism. The section ends with a discussion of outstanding problems with the model. It is

these unanswered questions that motivate the search for signatures of screened modified

gravity (MG) described in this thesis.

4Quotation from Newton’s famous correspondence with Richard Bentley (Cohen, 1978, p. 278).
5The ideas of Kant and Wright have an ancient antecedent in the cosmology of Democritus and the atomistic

school, c. fifth century BCE, in which spherical, geocentric ‘world systems’ float in an infinite chaotic void.
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Figure 1.1: Thomas Wright’s 1750 depiction of the Universe. Each sphere is an ‘island universe’, as later de-

scribed by Immanuel Kant. The stars of each sphere, including the Sun within our own Galaxy, all inhabit the

thin outer shell, giving rise to the apparent Milky Way band across the sky. Reproduced from Wright (1750).
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1.1.2 General Relativity

Metrics and Geodesics

A key theoretical development that triggered the twentieth century revolution in cosmolog-

ical understanding was Albert Einstein’s 1915 theory of general relativity (henceforth GR;

Einstein, 1916).

In conceiving the theory, Einstein’s key insight derived from the curious fact that the

‘gravitational’ mass appearing in Newton’s law of gravitation appears to be identical to the

‘inertial’ mass appearing in Newton’s second law. As a consequence, test particles in a grav-

itational field will experience the same acceleration, regardless of their mass. This is known

as the equivalence principle (EP),6 and there is no reason, a priori, why this should hold true

for Newtonian physics.

Einstein’s realisation was that the EP stemmed from a deep relationship between grav-

itational acceleration and the geometry of space-time. To be precise, objects travel on

geodesics of spacetime,
d2 x α

dτ2
+ Γ αµλ

dx µ

dτ

dx λ

dτ
= 0, (1.1)

where x α is the position in spacetime of a given object,7 τ is its proper time, and Γ is the

Christoffel symbol, given by

Γ αµλ =
1

2
g αβ

�
∂ gµβ
∂ x λ

+
∂ gβλ
∂ x µ

− ∂ gµλ
∂ x β

�
. (1.2)

Here, the tensor gαβ is the metric tensor (and g αβ its inverse). The metric tensor encodes

the geometry of the underlying spacetime by specifying the line element

ds 2 = gµλdx µdx λ. (1.3)

Note that the metric tensor is symmetric, gµλ = gλµ, and so consists of 10 independent

components. For a flat (Minkowski) spacetime, gµλ =ηµλ ≡ diag (−1, 1, 1, 1). Consequently,

first derivatives of the metric vanish, Γ αµλ = 0, and the geodesic equation (1.1) reduces to

the equation for a straight line in spacetime. When a spacetime is curved, the Christoffel

symbols do not vanish, and geodesics are curved. This manifests as ‘acceleration’ due to

gravity.

6This is actually a statement of the Weak Equivalence Principle (WEP). The Einstein Equivalence Principle

(EEP) assumes the WEP is true, and states that the laws of special relativistic physics are always recovered

in a freely falling frame. The Strong Equivalence Principle (SEP) assumes the WEP and EEP, and generalises

them from test particles to small, gravitating test bodies. With the exception of a brief discussion of EP tests in

§ 1.1.5, the remainder of this thesis will generically use the term ‘EP’. However, it is worth noting that different

gravity experiments test different statements of the EP, and different modified gravity theories violate different

statements of the EP.
7 x α ≡ (c t , x , y , z ).
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Einstein’s Field Equations

The geodesic equation (1.1) gives a prescription for how objects move in a curved space-

time. This is the GR generalisation of the force law ẍ = −∇ΦN. To complete our picture

of GR, we need a prescription for how spacetime curves in the presence of mass, i.e. a GR

generalisation of Poisson’s equation ∇2Φ = 4πGρ.8 This is given by Einstein’s field equa-

tions,

G αβ =
8πG

c 4
T αβ . (1.4)

Note that the tensors appearing on each side are symmetric, so Eq. (1.4) represents ten

independent equations. A derivation of Eq. (1.4) is beyond the scope of this thesis, but can

be found in any standard GR textbook, e.g. Wald (1984). Nonetheless, each side of Eq. (1.4)

requires further explanation to give an intuition for the meaning of the equation. On the

left-hand side, the tensor G αβ is known as the Einstein tensor. This is built from first and

second derivatives of the metric tensor, and so encodes the curvature of spacetime. To

understand this, let us first define the Riemann curvature tensor,

Rλ
µαβ ≡ ∂αΓ λβµ− ∂βΓ λαµ+ Γ λαεΓ εµβ − Γ λεβ Γ εµα. (1.5)

Contractions of this tensor give the Ricci tensor and scalar,

Rαβ =Rµ
αµβ ; R = g αβRαβ . (1.6)

Finally, the Einstein tensor is given by

G αβ ≡Rαβ − 1

2
g αβR . (1.7)

Using symmetries of the Riemann tensor,9 it can be shown that the Einstein tensor satisfies

∇µG λµ = 0, (1.8)

regardless of the metric. This statement is more than a mere tensor identity; it carries some

physical significance. Eq. (1.8) reduces the number of independent equations in Eq. (1.4)

from ten to six; given six components of G λµ, the remaining four could be generated using

Eq. (1.8). The metric tensor gµν, however, still carries ten independent components. So,

the Einstein field equations (1.4) are not fully able to determine the metric tensor, and four

equations-worth of freedom remain. This freedom ensures the coordinate-independence

of the metric tensor. In other words, given a metric tensor gµν that satisfies Eq. (1.4), one can

write four arbitrary coordinate transformations x ′µ = f µ(x α), and the transformed metric

g ′µν will still satisfy Eq. (1.4).

8Throughout this thesis, 3-vectors are bold, e.g. x, while 4-vectors carry Greek indices, e.g. x α. Here x is

position, ΦN is Newtonian gravitational potential, and ρ is (mass) density.
9In particular, the Bianchi identity∇γRλµαβ +∇βRλµγα+∇αRλµβγ = 0
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On the other side of Eq. (1.4), T αβ is the energy-momentum tensor. For a perfect fluid

with rest-frame density ρ, rest-frame pressure P , and 4-velocity u ≡ dx/dτ, this is

T αβ =
�
ρ+

P

c 2

�
uαuβ +P g αβ . (1.9)

Thus, the right-hand side of Eq. (1.4) should be interpreted as the source term, containing

information about the density and kinematics of the gravitating matter. Eq. (1.4) can then

be understood as the required translation between matter and spacetime curvature.

Cosmological Constant

The cosmological constantΛ plays a central role in our current conception of the Universe.

The history and physical significance of the cosmological constant will be discussed in

§ 1.1.4, but for the present it is worth simply stating how it can be incorporated into GR.

Including an explicit cosmological constant term, the field equations (1.4) instead take the

form

Gαβ =
8πG

c 4
Tαβ −Λgαβ . (1.10)

However, the novel term can be ‘absorbed’ into the energy-momentum source term by

defining

T Λαβ =−
Λc 4

8πG
gαβ . (1.11)

Then, writing T new
αβ = T old

αβ +T Λαβ , the original formulation of the field equations (1.4) is re-

covered.

Note that T Λαβ is equivalent to a perfect fluid energy-momentum tensor (1.9), with den-

sityρ =Λc 2/8πG and P =−ρc 2. We will see later that this negative equation of state leads

to the late-time cosmic acceleration for which the cosmological constant is commonly in-

voked.

GR from Action Principles

Before considering modified theories of gravity, it will prove useful to have first outlined

a derivation of GR from action principles. The action underpinning GR—the ‘Einstein-

Hilbert’ action—is given by

SEH =
c 3

8πG

∫
d 4 x

p−g
1

2
R +Sm [gµν,ψi ], (1.12)

where g represents the determinant of the metric tensor gµν, R is the Ricci scalar (1.6), Sm is

the matter action, i.e. the action representing the various matter componentsψi . Extrem-

ising the above action with respect to the metric tensor yields Einstein’s field equations
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(1.4), with the energy-momentum tensor Tαβ arising from the matter action Sm via

Tαβ ≡− 2cp−g

δ
�p−gLm

�

δg αβ
, (1.13)

whereLm is the matter Lagrangian, related to the matter action by

Sm [gµν,ψi ] =

∫
d 4 x

p−gLm

�
gµν,ψi

�
. (1.14)

As Tµν stands uncoupled to any external fields, it is covariantly conserved: ∇µT µν = 0.

It can be shown that this conservation law leads to the geodesic equation of GR, which in

the Newtonian limit becomes the Newtonian equation of motion ẍ=−∇ΦN. We shall see

later that the fifth force present in modified gravity theories manifests as an extra term in

this equation of motion, arising ultimately from abandoning the T µν conservation law.

Note that no cosmological constant appears in Eq. (1.12). Including a cosmological con-

stant, the action takes the form

SΛ =
c 3

8πG

∫
d 4 x

p−g
�

1

2
R −Λ

�
+Sm [gµν,ψi ]. (1.15)

Now, extremising the action leads to the field equations with an explicit Λ term, Eq. (1.10).

The Geodesic Equation Revisited

Before moving on to cosmological applications of GR, it is worth noting that Eq. (1.8), taken

together with Eq. (1.4), implies ∇µT λµ = 0. This is a statement of the conservation of

energy-momentum. This conservation law can in turn be used to derive the geodesic equa-

tion (1.1). To see this, consider the case of perfect, pressureless dust, T αβ = ρuαuβ . Plug-

ging this into the conservation law gives

0=∇α
�
ρuαuβ

�
= uβ∇α

�
ρuα

�
+ρuα∇αuβ . (1.16)

Using the fact that gαβuαuβ =−c 2 so that∇µgαβuαuβ = 2gαβuβ∇µuα = 0, one can multiply

the whole of Eq. (1.16) by gγβuγ to show that∇µ
�
ρuµ

�
= 0. Eq. (1.16) then reads

0= uα∇αuβ = uα
�
∂αuβ + Γ βαγuγ

�
=

d2 x β

dτ2
+ Γ βαγ

dx α

dτ

dx γ

dτ
, (1.17)

where the first equality has used the definition of a covariant derivative.10 The geodesic

equation (1.1) has thus emerged from the conservation of energy-momentum, which in

turn arose from the coordinate-independence encoded within GR.

10For a contravariant vector,∇αV β ≡ ∂αV β + Γ βαγV γ.
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1.1.3 An Expanding Universe

Hubble’s Law

In the early decades of the twentieth century, an almost universally held belief was that our

Universe is (on average) static (Kragh, 2007). For instance, both cosmologies being argued

for in the Great Debate of 1920 assumed a static, eternal cosmos. This assumption came to

be overturned at the end of the 1920s, as a result of the meticulous observations of Cepheid

variable stars in the aforementioned spiral nebulae undertaken by American astronomer

Edwin Hubble at the Mount Wilson Observatory in California.

Cepheid variables11 are stars that exhibit periodicity in their brightness due to pulsa-

tions in their outer layers. In 1908, Henrietta Swan Leavitt observed nearly two thousand

Cepheid variables in the Magellanic Clouds and demonstrated that a clear relationship ex-

ists between the luminosities of these stars and the periods of their pulsations (Leavitt,

1908). This relationship is significant because it allows the distance to a Cepheid variable

to be inferred from observations of its apparent brightness and oscillation period. This en-

ables the measurement of cosmic distances far larger than those possible under previous

geometric approaches. As a consequence, Cepheid variables have played an immensely

important role in the development of modern cosmology.

In 1925, Hubble published the results of an observational study of Cepheid variables

in the nearby spiral nebulae M31 and M33 (respectively the Andromeda and Triangulum

galaxies; Hubble, 1925). For both of these, he inferred a distance of 285 kpc using Leavitt’s

period-luminosity relation. This is around a factor of three smaller than current estimates

of the distance to M31 (e.g. McConnachie et al., 2005), but was nonetheless around an order

of magnitude larger than the widely accepted size of the Milky Way; sufficiently large to

convince the vast majority of the astronomical community of the extragalactic nature of

M31 and M33. Whereas the Great Debate had ended inconclusively five years earlier, the

question of the spiral nebulae appeared to be settled: they are galaxies in their own right,

distant from—but similar to—our Milky Way.

As mentioned in § 1.1, Vesto Slipher had made the observation earlier in the century

that the majority of galaxies exhibited redshifts. The redshift z of an astronomical object

can be related to its motion via the formula for the relativistic (longitudinal) Doppler effect,

which states

z ≡ ∆λ
λ0
=

√√1+ v /c

1− v /c
−1≈ v

c
, (1.18)

where λ0 is the rest-frame wavelength of a given spectral line, ∆λ is the size of its spectral

11Named after the prototype δ Cephei, which was first discovered by English astronomer John Goodricke in

1784 (Goodricke, 1786). δCephei was actually the second known example of a variable star that would later be

classed as a classical Cepheid, the first being η Aquilae, the variability of which was identified by Goodricke’s

compatriot Edward Pigott one month earlier (Pigott, 1785).
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Figure 1.2: Hubble’s observed linear relationship between recessional velocity and distance for 24 ‘extra-

galactic nebulae’. The black points represent the 24 galaxies, and the solid line is their linear fit. The unfilled

circles (and their corresponding fit represented by the dashed line) result from subdividing the same sample

into 9 groups, according to mutual proximity. Despite Hubble’s reluctance to draw inferences from this result,

it was widely interpreted as proof that our Universe is expanding. Reproduced from Hubble (1929). © AAS.

Reprinted with permission.

shift, and v is the speed of the source away from the observer. A red spectral shift, i.e. a

positive value for z , then indicates that the source is receding. In the years following his

publication of the distance to M31/M33, Hubble turned his attention to why, as Eddington

phrased it, the galaxies “shun us like a plague”.12

Using the Cepheid method described above to measure the distances to a number of

galaxies for which Slipher’s redshifts were available,13 Hubble (1929) submitted a paper

in which he reported an approximately linear relationship between distance d and reces-

sional speed,

v =H0d . (1.19)

The constant H0 here is known as Hubble’s constant. The figure from Hubble’s paper show-

ing this result is reproduced in Figure 1.2. This relation is now known as Hubble’s law, and

the conclusion to be drawn from it is that the Universe is undergoing a uniform expansion.

As an aside, it is worth noting that Hubble’s original determination of H0 was around

12Quotation from Eddington (1928, p. 166).
13Some redshifts were also measured locally by Hubble’s collaborator Milton Humason. Humason’s career was

sufficiently unusual to warrant a remark. Humason left school in Minnesota at the age of 14, then held a suc-

cession of posts at the Mount Wilson Observatory, including the role of mule driver during its construction.

His knowledge of astronomy was largely autodidactic, but he nonetheless secured the position of assistant

astronomer in 1919 (North, 2008).
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500 km/s/Mpc, as is clear in Figure 1.2. This is a drastic overestimate based on a miscalibra-

tion of the Cepheid distance, and contemporary values are in the region of 70 km/s/Mpc.14

There was some hesitation to the idea of cosmic expansion. Astronomers had long be-

lieved in a static cosmos, and Hubble’s law seemed to beg a fundamental paradigm shift.

In the years following Hubble’s publication, a number of astronomers proposed alternative

interpretations of Hubble’s observed relation. As an example, the ‘tired light’ hypothesis,

first proposed by Swiss-American astronomer Fritz Zwicky (1929), supposed that photons

lose energy over the course of their intergalactic journeys, leading to a reddening of distant

galaxies. Hubble himself was famously wary of imposing a cosmological interpretation on

his observed relation. He insisted on using the term ‘apparent velocities’ in his paper, and

in a 1931 letter to Willem de Sitter, he wrote “We use the term ‘apparent’ in order to em-

phasize the empirical features of the correlation. The interpretation, we feel, should be left

to you and very few others who are competent to discuss the matter with authority.”15 This

reluctance notwithstanding, the idea of cosmic expansion was widely accepted by the early

1930s (Kragh, 2007).

There was some theoretical work that anticipated the discovery of cosmic expansion. Of

particular note is the work of Friedmann (1922) and that of Lemaître (1927), both of whom

constructed models of a homogeneous Universe undergoing uniform expansion (theoreti-

cal details will be covered below). Perhaps due to similar paradigmatic reasons as those dis-

cussed above, these works were largely ignored at the time of publication, and only gained

widespread recognition after Hubble’s discovery.

The Big Bang Cosmology

Over the centuries, the question of whether the Universe has a finite age has been asked

many times by cosmologists, astronomers, physicists, and philosophers. In the modern

period, debates on this question became especially active in the nineteenth century, when

advances in understanding of thermodynamics led many physicists to predict the ‘heat

death’ of the Universe.

Hubble’s discovery of the cosmic expansion appeared to impose an ‘arrow of time’ on

the Universe, which reignited such debates. In subsequent years and decades, arguably the

preponderance of cosmologists were unwilling to accept a finite age for the Universe, in

many cases because of its associated religious connotations (Kragh, 2007). Most famously,

English astronomer Sir Fred Hoyle and two Austrian-born Cambridge colleagues of his,

Hermann Bondi and Thomas Gold, propounded the idea of a ‘Steady State’ Universe, in

which the recession of galaxies is counteracted by the continuous creation of matter, such

that the overall mean density in the Universe remains constant (Bondi & Gold, 1948; Hoyle,

14The exact value of H0 is still not entirely uncontroversial; see § 1.1.5.
15Quotation from Smith (1982, p. 192).
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Figure 1.3: A full-sky map of temperature anisotropies of the cosmic microwave background (CMB) as ob-

served by the Planck mission, rendered using a Mollweide projection. The CMB is remarkably isotropic; the

colour scale spans ∆T = -300 µK to 300 µK, i.e. |∆T |/T ® 10−4. Credit: ESA and the Planck Collaboration

(2014).

1948). This theory was a realisation of the ‘perfect cosmological principle’, i.e. humanity

occupies a special place in neither space nor time.

On the other hand, theories of an expanding Universe with a finite age also began to

appear in these decades. The first such theory was the ‘primeval-atom’ theory of Lemaître

(1931), in which the Universe began in a violent radioactive flash, and has been expand-

ing ever since. Later, in the 1940s and early 1950s, Soviet-American cosmologist George

Gamow and his student Ralph Alpher worked on a detailed quantitative theory of a hot,

dense early Universe in which the heavy elements were synthesised, a process now known

as Big Bang Nucleosynthesis (Alpher, Bethe, & Gamow, 194816). Hoyle famously referred to

these theories as hypothesising a ‘Big Bang’, a term that is now common currency.

Even as late as the early 1960s, the Steady State theory was arguably the prevailing the-

ory among cosmologists (Kragh, 2007). However, the serendipitous 1964 discovery of the

cosmic microwave background (CMB) radiation dramatically turned the tide. Predicted by

Gamow and colleagues in the late 1940s, the CMB is faint, near-isotropic blackbody radi-

ation with temperature around 2.73 K that pervades all of space. Figure 1.3 shows a map

of CMB temperature as obtained by the Planck mission (Planck Collaboration, 2014; see

below).

Often described as ‘relic radiation’ from the Big Bang, the CMB is more accurately de-

16This paper is also known as the αβγ paper. According to Gamow (1952, p. 65), “it seemed unfair to the Greek

alphabet to have the article signed by Alpher and Gamow only, and so the name of Dr. Hans A. Bethe (in

absentia) was inserted in preparing the manuscript for print.”
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scribed as being relic radiation from the very early Universe, when baryonic matter was

in the form of an ionised plasma. Due to frequent Compton scatterings between photons

and the free ions, the Universe was macroscopically opaque. At the epoch of recombina-

tion, some 380,000 years after the Big Bang (scale factor a = 1/1100), the plasma neutralised

and the photons were released and embarked upon a (mostly) unimpeded journey to the

present.

The first large-scale CMB observation programme was the Cosmic Background Explorer

satellite launched in 1989 (COBE; Boggess et al., 1992, and references therein). The different

instruments aboard COBE facilitated a measurement of the CMB spectrum (Mather et al.,

1994), as well as one of the first detections of CMB anisotropy (Smoot et al., 1992).17 The

ensuing decades have seen a multitude of CMB experiments, including several based on

Earth (e.g. ACBAR: Reichardt et al. 2009; ACT: Das et al. 2011), several borne on balloons

(e.g. BOOMERANG: MacTavish et al., 2006), and further satellites (e.g. WMAP: Larson et al.,

2011). The most precise measurements to date were obtained by a mission falling in the

latter category. The European Space Agency’s Planck Satellite (Planck Collaboration, 2018a)

recently observed the whole sky in nine microwave frequencies, obtaining detailed maps

of the CMB (see Figure 1.3).

The CMB provides invaluable insights into the early Universe, and the cosmological

constraints attainable from it will be discussed further below. In addition, the CMB is seen

as one of the pillars of proof for the Big Bang cosmology, alongside the Hubble expansion

and the successful predictions of Big Bang Nucleosynthesis.

A Metric Tensor for the Universe

One of the central assumptions of modern cosmology is the ‘cosmological principle’: the

idea that on sufficiently large (¦100 Mpc) scales, the Universe is isotropic and homoge-

neous. The isotropy of the CMB serves as fantastic proof of the former, while large-scale

galaxy surveys seem to suggest the latter.

As mentioned above, Friedmann (1922) and Lemaître (1927) both worked on models

of an expanding Universe obeying the cosmological principle, even before the discovery of

the Hubble expansion. The metric tensor that describes such a Universe is the Friedmann-

Lemaître-Robertson-Walker (henceforth FLRW) metric, in which a line element is

ds 2 =−c 2dt 2+a 2(t )
�
dx 2+dy 2+dz 2

�
. (1.20)

17In fact, the oft-overlooked first detection of CMB anisotropy was reported earlier in the same year by Russian

scientists Strukov et al. (1992), who announced the detection of a CMB quadrupole with the Relikt-1 exper-

iment on board the Prognoz 9 satellite. This was a monochromatic experiment and the detection had very

large error bars, and as such was largely overshadowed by the multi-frequency high-precision detection from

COBE later that year.
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The quantity a is called the ‘scale factor’, a time-dependent quantity that determines the

expansion of the Universe. By convention, a = 1 today, so a region of flat space with phys-

ical size R today will have physical size a (t )R at time t . In a Big Bang cosmology, a < 1 at

all times in the past, and a → 0 as t → 0. It is important to note that this formulation of

the metric, in particular the Pythagorean appearance of the spatial part, assumes the Uni-

verse has a flat geometry. At present, the evidence (Planck Collaboration, 2018b) appears

to favour a flat geometry for the Universe,18 which will be assumed for the remainder of this

thesis.

The spatial coordinates x , y , z appearing in the FLRW metric (1.20) are ‘co-moving’ co-

ordinates, i.e. time-independent coordinates with the expansion ‘divided out’. Consider

two galaxies, A and B, situated on the x -axis. If peculiar motions can be neglected for both

galaxies, then the cosmic expansion will appear homogeneous and isotropic to observers

in either galaxy. The comoving distance separating the galaxies xAB is constant, but the

physical distance dAB = a xAB expands with the scale factor. The relative recession speed is

vAB = ḋAB = ȧ xAB =
ȧ

a
dAB =H dAB , (1.21)

where H is the Hubble parameter H ≡ ȧ/a . The value of the Hubble parameter at the

present time is Hubble’s constant H0, so evaluating Eq. (1.21) today yields Hubble’s ob-

served relation (1.19) between the recessional speeds and distances of distant galaxies.

As light travels between galaxies, the distance between successive wavecrests expands

with space. So, wavelength of light is proportional to the scale factor. If an observer in our

Galaxy today (t = t0) receives some light from a distant galaxy emitted some time in the past

(t = te ), then the redshift of the light is related to the scale factor at the time of emission

a (te ) by

1+ z =
1

a (te )
, (1.22)

taking a (t0) = 1.

For the FLRW metric (1.20), the only non-vanishing components of the Einstein tensor

(1.7) are the time-time and space-space elements,

G00 =
3

c 2

�
ȧ

a

�2

; Gi j =−a 2

c 2

�
ȧ 2

a 2
+2

ä

a

�
δi j , (1.23)

where a dot indicates a derivative with respect to cosmic time, and δi j is the Kronecker

delta. For a perfect fluid, the corresponding components of the energy-momentum tensor

(1.9) are

T00 =ρc 2; Ti j = a 2Pδi j . (1.24)

18Although see recent publications by Park & Ratra (2019); Handley (2019); Di Valentino et al. (2020), arguing

that evidence favours a closed geometry, and a response by Efstathiou & Gratton (2020).
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Thus, the Einstein field equations (1.4) lead to two useful equations,

H 2 =
8πG

3
ρ, (1.25)

ρ̇+3H
�
ρ+

P

c 2

�
= 0. (1.26)

The former is known as the Friedmann equation, while the latter is a continuity equation.19

We have derived two first-order differential equations with three unknowns: a ,ρ, and P . To

achieve closure, we can assume a polytropic equation of state linking density with pressure,

P =wρc 2, (1.27)

where w is a constant. Different choices for w lead, via Eq. (1.26), to different evolutions of

the density ρ over time. This in turn leads, via the Friedmann equation (1.25), to different

behaviours of the scale factor a over time. Non-relativistic matter is typically treated as

pressureless dust, w = 0. For relativistic matter (e.g. CMB photons, neutrinos), statistical

physics gives w = 1/3. Finally, for a cosmological constant, w =−1 as discussed in § 1.1.2.

In single-component universes of these types,

ρm ∝ a−3; a ∝ t 2/3; ä < 0. (non-relativistic matter) (1.28)

ρr ∝ a−4; a ∝ t 1/2; ä < 0. (relativistic matter) (1.29)

ρΛ = constant; a ∝ e H0t ; ä > 0. (cosmological constant) (1.30)

From this, it is clear that the composition of the Universe plays a key role in determining

the history (and future) of its expansion.

Before moving on to the somewhat more complicated picture of our own multiple-

component Universe, it will be useful to write down the Friedmann equation (1.25) in a

slightly different fashion. Expanding ρ =ρm +ρr +ρΛ and dividing by H0,

H 2

H 2
0

=
Ωm

a 3
+
Ωr

a 4
+ΩΛ, (1.31)

where the fractional density parameters Ω are defined by

ΩX ≡
8πGρX ,0

3H 2
0

, (1.32)

withρX ,0 the density of component X evaluated today. The threeΩparameters in Eq. (1.31)

sum to unity in a flat Universe, and their values give an indication of the importance played

by their respective components in the (present-day) cosmic expansion.

1.1.4 The ΛCDM Model

The ‘Concordance Cosmology’

The previous section developed a picture of how the cosmic expansion proceeds in vari-

ous single-component universes. In recent years, evidence has increasingly suggested that

19The continuity equation (1.26) could also be derived from the conservation of energy-momentum∇βT αβ = 0.
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Figure 1.4: The FLRW scale factor as a function of cosmic time in the ΛCDM Universe. Calculated by inte-

grating Eq. (1.31) using cosmological parameter values from Planck (Table 1.1), as well as a radiation density

Ωr = 9×10−5. The dashed lines indicate various key points in cosmic history: the present day (a = 1), the time

of matter-Λ equality (a = (Ωm/ΩΛ)1/3), the time of CMB last scattering (a ≈ 1/1100), and the time of radiation

matter equality (a =Ωr /Ωm ).

our own Universe is primarily composed of two components, the cosmological constant

(ΩΛ ∼ 0.7) and matter (Ωm ∼ 0.3), most of which is in the form of cold dark matter (CDM;

ΩDM ∼ 0.25, leaving an ordinary, baryonic matter component of Ωb ∼ 0.05). More precise

values, obtained from the CMB anisotropy measurements of the Planck satellite (Planck

Collaboration, 2018b), are given in Table 1.1. The cosmological parameters shown in the

table and the role of CMB measurements in constraining them will be discussed further

below.

In addition to the above, there is a small radiation component (Ωr ∼ 10−4). This includes

the CMB, as well as the cosmic neutrino background. While this is negligible today, the dif-

ferent scale factor dependences of the radiation (1.29), matter (1.28), andΛ (1.30) densities

result in the radiation component being more important in the past.

This cosmic inventory forms the basis for the ‘ΛCDM’ model of cosmology. Figure 1.4

shows the scale factor a as a function of time in the ΛCDM Universe, calculated by numer-

ically integrating the Friedmann equation (1.31). This procedure also gives a value for the

age of the Universe, ∼13.7 billion years, marked on the figure accordingly. Also shown are

the times of radiation-matter and matter-Λ equality, i.e. the times in cosmic history when

the two relevant components were of equal energy density. It is interesting to note that, at

least when viewed on a log-scale, the present day (a = 1) is very close to the time of matter-

Λ equality, i.e. the time when the Universe transitions from the a ∝ t 2/3 matter-dominated
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Parameter Symbol Planck Value

Hubble’s constant h 0.6727±0.0060

CDM density ΩDMh 2 0.1202±0.0014

Baryon density Ωb h 2 0.02236±0.00015

Scalar spectral amplitude ln
�
1010As

�
3.045±0.016

Scalar spectral index ns 0.9649±0.0044

Optical depth to reionisation τ∗ 0.0544+0.0070−0.0081

Table 1.1: ΛCDM cosmological parameters as obtained from the Planck TT+TE+EE+lowE data (Planck Col-

laboration, 2018b). The values stated are the maximum likelihood values and the errors give the 68% intervals.

Note that Hubble’s constant h is given in units of 100km/s/Mpc, and the two density parametersΩDM,b carry

factors of h 2. As and ns determine the power-law shape of the post-inflationary primordial power spectrum

(see the discussion of inflation at the end of § 1.1.4). The optical depth to reionisation τ∗ can be approxi-

mately understood as the average number of Compton scatterings, per CMB photon, undergone between

the present day and the ‘epoch of reionisation’: the time in the early Universe when the intergalactic medium

became macroscopically ionised shortly after the formation of the first stars and galaxies.

period to the a ∝ e H0

p
ΩΛt Λ-dominated period.20 The remaining label on the figure is the

time of ‘last scattering’ (z=1100), when the CMB photons decoupled from baryonic matter.

There is more to the ΛCDM model than the relative energy contents of its components.

Perhaps surprisingly however, not a great deal more. Flat ΛCDM is a rather economical

model and can be completely described using six parameters. Various parameterisations

are possible but one example is listed in Table 1.1; any hitherto undefined quantities are

given some physical explanation in the accompanying caption. The only observational

probe that can simultaneously constrain all six parameters is the anisotropy distribution

of the CMB.

The power spectrum of anisotropies from Planck is displayed in Figure 1.5, along with

the best-fitting ΛCDM model. The maximum likelihood parameter values, published in

Planck Collaboration (2018b), are reproduced in Table 1.1. This CMB inference is highly

consistent internally,21 i.e. the parameters inferred solely from the Planck temparature-

only (TT) power spectrum are able to fit the E-mode polarisation auto- and cross-spectra

(EE and TE respectively) with excellent accuracy. The Planck mission and the resulting

determination of the cosmological parameters to exquisite precision is rightly considered

to be among the chief triumphs of modern cosmology.

While CMB observations are arguably the most informative cosmological probe, it is

important to perform independent tests to obtain information from different times and

scales, in order to test the consistency of the cosmological model and search for evidence

for new physics. Indeed, a number of other cosmological probes are beginning to yield

constraints with comparable precision to those of Planck. Of particular note are various

20See discussion of the ‘coincidence problem’ in § 1.1.5.
21However, see the discussion of the lensing power spectrum amplitude AL in § 1.1.5.
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Figure 1.5: The data points give the temperature power spectrum of the CMB as measured by the Planck

satellite, while the line gives the maximum likelihood ΛCDM fit with parameter values as given in Table 1.1.

The vertical axis plots Dl ≡ l (l + 1)Cl /(2π), where l is the multipole (shown on the horizontal axis) and Cl is

to be understood as the angular analogue of the power spectrum P (k ) defined in Eq. (1.41), i.e. the power

spectrum of the spherical harmonic coefficients of the CMB temperature anisotropies depicted in Figure 1.3.

Reproduced from Planck Collaboration (2018a) using data from the Planck Legacy Archive.22

measurements that probe the large-scale distribution of matter in the late Universe. With

the exception of gravitational lensing, such probes are necessarily indirect, because the

greater part of the matter distribution (i.e. the dark matter) is unseen, and we must instead

rely upon biased tracers of the underlying distribution, such as galaxies or neutral hydro-

gen.

One of the most important large-scale structure probes is the baryon acoustic oscilla-

tion (BAO) feature. This is a preferred length scale imprinted on to the matter distribution

arising from acoustic oscillations in the pre-recombination photon-baryon fluid, and can

be observed as a peak in correlation functions and power spectra obtained from sufficiently

large galaxy surveys (Peebles & Yu, 1970; Eisenstein & Hu, 1998). It can be measured at

different redshifts in both the transverse and angular dimensions, giving geometric mea-

surements that lead to constraints on the various parameters that determine the expansion

history of the Universe (i.e., particular combinations of Ωm , ΩΛ, and H0). The BAO feature

was first measured around the same time in both the power spectrum of the Two-degree-

Field Galaxy Redshift Survey (2dFGRS; Cole et al., 2005) and in the real-space correlation

function of galaxies from the Sloan Digital Sky Survey (SDSS; Eisenstein et al., 2005), and

has most recently been measured by the Baryon Oscillation Spectroscopic Survey (BOSS)

22pla.esac.esa.int; accessed May 2020.

https://pla.esac.esa.int
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part of SDSS-III (Alam et al., 2017). Ongoing and future surveys/missions such as extended

BOSS23 (eBOSS; Dawson et al., 2016), Euclid (Laureijs et al., 2011), and the Dark Energy

Spectroscopic Instrument (DESI; DESI Collaboration, 2016a,b) are expected to obtain ex-

tremely precise measurements of the signal with unprecedentedly large galaxy samples, at

higher redshifts than those currently probed.

Another feature observable in spectroscopic surveys is the phenomenon of redshift-

space distortions (RSD), i.e. radial anisotropies in the 3D spatial distributions of galaxies as

inferred from redshifts, arising as a result of galaxy peculiar velocities and their consequent

Doppler enhancement/diminution of the cosmological redshift (Kaiser, 1987). This feature

is sensitive to the density-weighted growth rate f σ8.24 High-precision measurements of

redshift-space distortions were also recently obtained by BOSS (Alam et al., 2017).

A third effect worth mentioning is that of weak gravitational lensing; the distortion of

apparent shapes of galaxies due to gravitational lensing by the foreground matter distribu-

tion (see, e.g., Bartelmann & Schneider, 2001; Kilbinger, 2015, for reviews of weak lensing

and its applications to cosmology). Weak lensing gives rise to two related probes: the au-

tocorrelation of observed galaxy shapes (‘cosmic shear’) and the cross-correlation of lens

galaxy positions with source galaxy shapes (‘galaxy-galaxy lensing’). Because gravitational

lensing is induced by all matter rather than merely the visible matter, cosmic shear does not

suffer from the galaxy bias mentioned above. However, various other systematics make

the measurement difficult. Nonetheless, measurements of cosmic shear have been ob-

tained, most recently by a number of wide-field imaging surveys, including the Dark En-

ergy Survey (DES; DES Collaboration, 2018a,b, 2019), the Kilo Degree Survey (KiDS; Hilde-

brandt et al., 2017, 2020), and the Hyper Suprime-Cam Subaru Strategic Program (HSC-

SSP; Hikage et al., 2019) giving constraints on Ωm and the parameter combination S8 ≡
σ8 (Ωm/0.3)1/2.

In addition to these, there exist many other active fields of research in cosmology, such

as distance measurements of Type Ia supernovae (see the discussion below of the discov-

ery of the cosmic acceleration, also the review article by Goobar & Leibundgut (2011) and

recent cosmological constraints from Scolnic et al., 2018; Riess et al., 2019), galaxy cluster

cosmology (e.g. Bocquet et al., 2019), and the newly inaugurated cosmology of standard

sirens (i.e., gravitational waves; see, e.g., the measurement of Hubble’s constant from the

‘multi-messenger’ event GW170817: LIGO Scientific Collaboration et al., 2017a).

With the exception of a number of significant lingering tensions that will be enumer-

ated in § 1.1.5, all of these independent tests lead on the whole to mutually consistent con-

23Early data releases from eBOSS have already led to measurements of the BAO signal in both the quasar and

red galaxy subsamples (Ata et al., 2018 and Bautista et al., 2018 respectively).
24The growth rate of perturbations f (a ) is directly related to the matter content Ωm , while σ8 is the ampli-

tude of present-day density fluctuations smoothed in a sphere of radius 8h−1 Mpc and often replaces As in

parameterisations of ΛCDM adopted by low-redshift investigations.
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clusions, and parameter inferences that are consistent with the Planck ΛCDM cosmology

sketched above. Moreover, many of them are able to venture beyond estimating ΛCDM

parameters and additionally test some of the underlying assumptions of ΛCDM, such as

flatness (ΩK = 0) and the cosmological constant equation of state (w = 1). These tests have

also largely served to affirm ΛCDM. For example, a combined inference using BOSS and

Planck data leads to ΩK = 0.0003±0.0026 and w =−1.01±0.06 (Alam et al., 2017).

The six-parameter ΛCDM model is thus rather successful. As a phenomenological the-

ory, it ties together the various puzzling ‘dark sector’ observations described in the follow-

ing sections, while its parameters—relatively few in number—are determined by the CMB

measurements of Planck Collaboration (2018b) to exquisite precision. Also worth men-

tioning is the complementary role played by N-bodyΛCDM simulations, which are increas-

ingly able to accurately model the physics of non-linear scales and account for the observed

properties of galaxies (see § 1.2.2). As such, ΛCDM—sometimes dubbed the ‘concordance

cosmology’—has become the consensus view in recent years. Indeed, some months after

the 1998 discovery of the cosmic acceleration (see below), American cosmologists James

Peebles and Michael Turner participated in a debate with the title ‘Nature of the Universe

Debate: Cosmology Solved?’25 The debate was held at the Smithsonian Museum of Na-

tional History and was clearly designed to resemble the Great Debate, which took place in

the same auditorium some eighty years prior. Now, however, the subject of the debate was

rather different. As the title of the debate suggests, the advent of theΛCDM cosmology had

brought about the very real possibility that cosmology was ‘solved’, i.e. the twentieth cen-

tury efforts to understand the makeup and history of the Universe and the values of the key

cosmological parameters were at an end.

Such sentiments are undoubtedly somewhat premature, as ΛCDM still has a number

of outstanding questions to resolve. These will be discussed in § 1.1.5. First, however, it is

worth discussing the two primary ingredients of the model—dark matter and the cosmo-

logical constant—both of which are presently elusive, unknown quantities.

Dark Matter

Over the course of the twentieth century, evidence derived from a number of independent

sources increasingly suggested that the Universe hosts large amounts of matter other than

the visible, luminous matter that occupies the night sky. This ‘dark matter’ has not been ob-

served directly, but its existence has been inferred indirectly, due to its gravitational effects

on visible matter.

Influenced by earlier works by Kapteyn (1922) and Jeans (1922), one of the first such

25Both parties in the debate submitted papers to be published in the March 1999 issue of the Publications of the

Astronomical Society of the Pacific (Peebles, 1999; Turner, 1999). See also the article by Nemiroff & Bonnell

(1999) summarising the proceedings in the same issue.
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Figure 1.6: Rotation curves (i.e. rotational velocity versus galactocentric distance) of seven nearby galaxies,

obtained by Vera Rubin and colleagues using long-slit spectroscopy. The approximate flatness of the curves

at large distances implies that the galaxies host large amounts of unseen dark matter. Reproduced from Rubin

et al. (1978).

inferences was that of Dutch astronmer Jan Oort (1932), who demonstrated by dynamical

arguments that the mass density in the Milky Way disc plane is necessarily more than twice

that of the observable stars.26 The following year, Fritz Zwicky (1933) (familiar as the orig-

inator of the ‘tired light’ hypothesis; § 1.1.3) applied the virial theorem to the motions of

the Coma galaxy cluster and calculated a dynamical mass that was some fifty times larger

than the observed luminous mass. Three years later, American astronomer Sinclair Smith

(1936)—Hubble’s colleague at the Mount Wilson Observatory—published the results of a

similar study in the Virgo cluster, finding an even greater mass-to-light ratio of around one

hundred.

Another rich source of evidence for dark matter lay in the internal dynamics of exter-

nal galaxies. Studying the rotational motion of Andromeda (M31), American astronomer

Horace Babcock (1939) inferred a mass-to-light ratio comparable to Zwicky’s.27 For several

26As with many ideas and themes in contemporary astronomy and cosmology, antecedents for the idea of dark

matter can be found almost arbitrarily far back in the historical record. In the nineteenth century, Lord Kelvin

applied arguments derived from the kinetic theory of gases to the Milky Way and demonstrated that “many of

our thousand million stars, perhaps a great majority of them, may be dark bodies.”(Quotation from an 1884

Baltimore lecture; Kelvin, 1904, p. 274) A century earlier, English and French thinkers John Michell (1784) and

Pierre Simon Laplace (1796) speculated about the possible existence of invisible but gravitationally detectable

‘dark stars’, from which light is unable to escape (these ideas of course resurfaced in twentieth century, with

the postulation and discovery of black holes). Much earlier still, in the fifth century BCE, Pythagorean philoso-

pher Philolaus postulated the existence of a dark ‘counter-Earth’ or ‘antichthon’, orbiting the central fire in

opposition to the real Earth (Kragh, 2007).
27This was drastically different from mass-to-light ratios accepted at the time for the Milky Way, and Babcock

was consequently reluctant to publish his findings. This hesitation was apparently vindicated when, accord-

ing to North (2008, p. 746), “the critical reception Babcock was given at a meeting of the American Astronom-
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decades, the subject of dark matter lay largely dormant, but was picked up again in the

1970s, when independent theoretical studies performed by American and Soviet groups

determined that large quantities of dark matter were required for the stability of observed

disc galaxies (Ostriker et al., 1974; Einasto et al., 1974). Around the same time, the advent of

long-slit spectroscopy enabled American astronomers Vera Rubin and Kent Ford to mea-

sure the optical rotation curves of various galaxies in the local Universe. Like Babcock sev-

eral decades earlier, they inferred total masses of galaxies many times larger than implied

by their visible light. Furthermore, the flatness of the rotation curves implied that the dark

matter was much more spatially extended than the luminous matter (Rubin & Ford, 1970;

Rubin et al., 1978, 1980; also see Figure 1.6, which displays several of Rubin’s observed rota-

tion curves). These findings were supported by radio observations of the 21 cm line carried

out by Albert Bosma (1978), which allowed observations of neutral hydrogen kinematics to

much larger galactocentric distances. Thus, by the end of the 1970s, there began to ex-

ist a widespread understanding that galaxies are embedded within much larger and more

massive dark matter ‘haloes’.

These discoveries prompted a great deal of observational and theoretical work attempt-

ing to understand the nature of dark matter; a programme of investigation that continues

to the present day. Until relatively recently, a plausible candidate for dark matter was the

‘Massive Compact Halo Object’, or ‘MACHO’: an umbrella term including various known,

low-luminosity objects, mostly baryonic in composition. Examples of MACHOs are brown

dwarfs, planets, and black holes. While these objects emit little or no electromagnetic ra-

diation, they can still be inferred by their gravitational interactions. In particular, various

groups have performed systematic surveys searching for gravitational microlensing events

caused by large numbers of MACHOs inhabiting the Milky Way and its satellites (Alcock

et al., 2000; Tisserand et al., 2007). Such events have been detected, but not in sufficient

numbers. The current consensus is therefore that MACHOs alone are unlikely to account

for a significant proportion of dark matter.

It is worth noting that aside from the absence of large numbers of microlensing events,

there are independent reasons to expect dark matter to be largely non-baryonic in nature.

First, calculations of primordial nucleosynthesis suggest a low value for the present-day

baryon density. In particular, the abundance of deuterium is sensitive to the baryon den-

sity, and observed deuterium densities implyΩb ∼ 0.05 (Steigman, 2006). Secondly, baryon

acoustic oscillations in the CMB imply similar values forΩb (Planck Collaboration, 2018b).

Given that large-scale galaxy surveys and the CMB also give values for the overall matter

density of Ωm ∼ 0.3 (Planck Collaboration, 2018b; Alam et al., 2017), it appears that non-

baryonic dark matter necessarily plays a significant role. ThisΩb −Ωm discrepancy inferred

independently from nuclear abundances and baryon acoustic oscillations also serves as

proof of the existence of dark matter.

ical Society was such that he spent the rest of his career in solar astronomy.”
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For some time in the 1970s and 1980s, a popular non-baryonic candidate for dark mat-

ter was the neutrino. Whether neutrinos possessed mass was a matter of considerable

debate in that decade, but it was believed that if they did then they could well play the

gravitational role of dark matter (Szalay & Marx, 1976). This scenario is an example of a

‘hot dark matter’ theory. Here, the small assumed masses of the neutrinos ensured that

they moved with relativistic speeds throughout much of the history of the Universe. Con-

sequently, their ‘free streaming’ would wipe out any structures smaller than the largest,

super-cluster scales. These very large structures would subsequently fragment into pro-

gressively smaller structures. This top-down process of structure formation is the opposite

of the CDM picture, in which smaller structures continually merge and accrete into larger

structures. Observations of galaxies and small-scale structure at high redshift have largely

ruled out hot dark matter theories, and cold dark matter has been the consensus view since

the beginning of the 1990s (North, 2008).

Leaving the neutrino behind, particle theorists have proposed a phantasmagoria of hy-

pothetical dark matter candidates; typically new elementary particles beyond the Standard

Model of particle physics. Many of these particles additionally have motivations stemming

from unsolved problems in particle physics, and predict a variety of detectable signatures.

Attempts to detect such signatures have thus far been unsuccessful, but the search contin-

ues. An overview of dark matter particle candidates can be found in the review article by

Feng (2010).

As an example of a presently popular dark matter candidate, Weakly Interacting Mas-

sive Particles (WIMPs) form a generic class of particles that arise naturally in various ‘su-

persymmetric’ extensions of the standard model. Dynamically, WIMPs behave like CDM,

becoming non-relativistic and ‘freezing out’ of the baryon-photon plasma in the early Uni-

verse. Compellingly, for WIMPs with masses in the GeV-TeV range, the predicted cosmic

abundance of dark matter agrees well with the observed abundance: ΩDM ∼ 0.25 (e.g. Jung-

man et al., 1996).28

Other particle candidates for DM include QCD axions (Marsh, 2016) and fuzzy dark

matter (Hui et al., 2017), both incorporating light, bosonic scalars. The bosonic nature

of these particles leads to the formation of solitonic Bose-Einstein condensate ‘cores’. For

m ∼ 10−22 eV, these cores can be kpc-sized, leading to interesting phenomenology on galaxy

scales and possible solutions to some of the small-scale problems in ΛCDM (§ 1.1.5).

Primordial black holes are a non-particulate candidate for dark matter (Hawking, 1971;

Carr & Hawking, 1974). These are hypothetical black holes that formed in the very early

Universe, and have recently been the subject of much attention as a result of the unusually

large inferred masses of the black holes in the merger event observed at the Laser Interfer-

ometer Gravitational-Wave Observatory (LIGO; LIGO Scientific Collaboration & Virgo Col-

laboration, 2016). However, the expected event rate at LIGO would be significantly higher

28This agreement is known as the ‘WIMP miracle’.
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than observed if primordial black holes accounted for an appreciable fraction of dark mat-

ter (Sasaki et al., 2016; Ali-Haïmoud et al., 2017).

The remainder of this thesis assumes that cold dark matter haloes are composed of a

diffuse, particulate dark matter. If dark matter were instead comprised of compact objects,

the screening properties (§ 1.3.2) of dark matter would change, with self-screening much

more likely. In particular, primardial black holes would self-screen under the no-hair theo-

rem (Sotiriou & Faraoni, 2012). Consequently, the galaxy-scale fifth force phenomenology

described in this thesis would be altogether different if dark matter were entirely composed

of primordial black holes.

As a final note in this section, there are attempts to account for gravitational effects of

dark matter without introducing any unseen particles. Perhaps the most well-known of

these is Modified Newtonian Dynamics (MOND; Milgrom, 1983). First proposed by Israeli

physicist Mordehai Milgrom in 1983, MOND modifies Newton’s laws in the low acceleration

regime. In a nutshell, MOND is rather successful in reproducing the dynamics of galaxies,

but performs less well at the level of galaxy clusters (Clifton et al., 2012). In its initial for-

mulation, MOND was strictly a non-relativistic theory, inapplicable to cosmology, gravita-

tional lensing, or strong-field regimes. However, theories have since been formulated to

provide relativistic extensions of MOND (e.g. TeVeS; Bekenstein, 2004).

Cosmological Constant

The dominant component of the ΛCDM model is the cosmological constant, Λ. As shown

in Eq. (1.30), ä > 0 in aΛ-dominated universe; the cosmological constant, if real, is causing

the expansion of our Universe to accelerate.

The cosmological constant had a somewhat chequered history throughout the twenti-

eth century. According to the historical account of Λ by Earman (2001, p. 215), “it has been

alternately reviled and praised, and it has been counted out many times, only to stage one

comeback after another.”

In 1917, Einstein introduced the ‘cosmological term’ Λgαβ into his field equations (Ein-

stein, 1917). At the time, Einstein’s conception of the Universe was decidedly Newtonian;

he rejected the notion of the island universes, and believed in a Universe uniformly popu-

lated with stars. Most importantly, he believed this Universe was static, and he introduced

Λ to bring about this stasis.29

To understand this further, consider a Universe consisting of only pressureless mat-

ter and the cosmological constant, momentarily relaxing our assumption of a flat geom-

29Here also there is some historical antecedent. Some decades prior, German astronomer Hugo von Seeliger

(1895) and mathematician Carl Neumann (1896) had introducedΛ-esque repulsive terms into Newton’s laws

of gravitation, in order to try to resolve the apparent paradox that an infinite homogeneous cosmos would

collapse under gravity.
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etry. The Friedmann equation (1.25) can then be rewritten, expanding ρ = ρm + ρΛ =
ρm +Λc 2/8πG , as

H 2 =
8πG

3
ρm +

Λc 2

3
− k c 2

a 2
. (1.33)

The final term on the right-hand side is the curvature term, with k a constant describing

the cosmic curvature; k > 0 for a closed universe. Differentiating Eq. (1.33) and using the

continuity equation (1.26) gives a cosmic acceleration equation

3
ä

a
=Λc 2−4πGρm . (1.34)

A static solution (i.e. ä = 0, ȧ = 0, a = 1) to Eqs. (1.33) and (1.34) is given by

Λ= k =
4πGρm

c 2
. (1.35)

In addition to this desirable static solution, Einstein had two broader—perhaps more

metaphysical—reasons for constructing such a model. First, Einstein believed that the cos-

mological constant brought GR into greater accordance with Mach’s principle. According

to Einstein’s formulation of Mach’s principle, matter alone should determine the metric

structure of spacetime, and so no metric solutions to the field equations should exist if

Tαβ = 0. However, flat Minkowski spacetime exists as a solution in this case, unless the Λ

term is introduced. Second, the fact that the solution is spatially closed gave it additional

appeal in Einstein’s eyes: boundary conditions are not needed in a closed universe, and

he believed boundary conditions to be “contrary to the spirit of relativity.” (Einstein, 1917,

p. 183).

These motivations notwithstanding, Einstein was uneasy about Λ since its conception,

famously remarking that it was “gravely detrimental to the formal beauty of the theory.”

(Einstein, 1919, p. 351).30 His disquiet turned into open denunciation in the subsequent

decade, following three developments. First, shortly after Einstein’s publication of his cos-

mological solution, de Sitter (1917) published an alternative cosmology. A de Sitter uni-

verse is spatially flat, devoid of matter, and carries a positive cosmological constant. The

possibility of an empty-universe solution to his field equations in the presence of Λ greatly

devalued the Machian credentials of Λ in the view of Einstein. Second, Eddington (1930)

pointed out that Einstein’s solution was unstable. Inspecting Eq. (1.34), it is clear that a

perturbation that reducedρm would trigger a cosmic expansion that would reduceρm fur-

ther. Finally, the discovery of Hubble’s relation and its implied cosmic expansion of course

contradicted Einstein’s starting assumption of a static cosmos.

Much of the cosmological community followed Einstein in dropping Λ, but several in-

dividuals continued to champion it (Earman, 2001). For instance, Lemaître argued that Λ

30Einstein is also widely quoted as having later describedΛ as his “biggest blunder”. However, all attributions of

this remark lead ultimately to George Gamow, who is not unlikely to have been merely paraphrasing Einstein’s

actual sentiments (Earman, 2001).
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could help resolve the ‘age paradox’: the fact that the apparent ages of the oldest globular

clusters were greater than the age of the Universe as inferred from Hubble’s relation in the

absence of Λ. American physicist Richard Tolman, meanwhile, argued that the left-hand

side of the GR field equations (1.4) should host the most general divergence-free, rank-2

symmetric tensor built from the metric tensor and its first and second derivatives, and this

should include a term proportional to gαβ . The proportionality constant Λ should only be

set to zero if it was empirically determined to be so. Finally, Eddington argued that it was

worth keepingΛ because it would provide the Universe with a length scale to act as a ‘stan-

dard of comparison’.

Throughout the remainder of the twentieth century,Λmade a number of reappearances

under various guises. For instance, in the late 1960s,Λwas briefly repopularised as a possi-

ble explanation for the apparent overabundance of quasars at z = 2 (Petrosian et al., 1967;

Kardashev, 1967). Again, in the 1980s and early 1990s, several groups increasingly started

to consider the idea of a non-zero Λ, in part as a way to reconcile the variety of observa-

tions of a lowΩm with a flat Universe (e.g. Turner et al., 1984; Efstathiou et al., 1990; Ostriker

& Steinhardt, 1995). This time the idea did not die back, and instead hit the mainstream

towards the end of the 1990s, due to observations of Type Ia supernovae.

A Type Ia supernova is a highly luminous event, in which an accreting white dwarf det-

onates in a runaway nuclear fusion process. This takes place when the mass of the white

dwarf exceeds a fixed ceiling of approximately 1.44M�. The light curves of Type Ia super-

novae rise and fall rather quickly, and the timescales of these rises and falls are tightly cor-

related with the peak (absolute) luminosities of the supernovae. Therefore, the absolute

luminosity and luminosity distance31 of a Type Ia supernova are calculable from its light

curve. Type Ia supernovae are thus ‘standardisable’ candles not unlike Cepheid variables,

but probing much larger (¦100 Mpc) distances.

Writing luminosity distance as a function of redshift for a population of standard can-

dles, the relation is given, up to quadratic terms in z , by

dL ≈ c

H0
z
�

1+
1−q0

2
z
�

, (1.36)

where q0 is the ‘deceleration parameter’,

q0 ≡−
�

ä a

ȧ 2

�
t=t0

=Ωr +
1

2
Ωm −ΩΛ. (1.37)

The latter equality has used Eqs. (1.34) and (1.31). Thus, q0 < 0 for an accelerating expan-

sion, and Eq. (1.36) implies that luminosity distance will be greater for an object at fixed

31Because of the cosmic expansion, ‘distance’ is not a straightforward concept in cosmology, and several dis-

tance measures exist. For a standard candle of intrinsic luminosity L and apparent flux f , the appropriate

distance measure is the ‘luminosity distance’ dL , given by dL = (L/4π f )1/2. In the case of a flat Universe, this

relates simply to the time-independent co-moving distance x via dL = x (1+ z ).
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Figure 1.7: The top panel shows distance modulus, m −M = 5 log10(dL/10 pc), versus redshift for the Type Ia

supernova sample studied by Riess et al. (1998). The lines show the predicted relations in various cosmolo-

gies, as labelled. The bottom panel shows residuals given a fiducial cosmology withΩΛ = 0 andΩm = 0.2. The

authors found statistically significant evidence for q0 < 0 andΩΛ > 0, i.e. for an accelerated cosmic expansion.

Reproduced from Riess et al. (1998). © AAS. Reprinted with permission.

redshift than in the cases of coasting (q0 = 0) or decelerating (q0 > 0) expansion. This can

be understood by noting that if the expansion of our Universe is accelerating over time,

then the expansion will have been slower in the past and the ‘lookback time’ to an event at

a fixed redshift will be larger than would otherwise be the case, and greater lookback time

corresponds to greater distance.

Two supernova research groups, the Supernova Cosmology Project led by American
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Saul Perlmutter and the High-z Supernova Research Team led by Australian Brian Schmidt,

undertook surveys of Type Ia supernovae in the 1990s. Near the end of the decade, both

teams published the results of their surveys, finding significant evidence for q0 < 0 and an

accelerating expansion (Riess et al., 1998; Perlmutter et al., 1998). One of the key figures

from the Riess et al. (1998) paper is here reproduced in Figure 1.7.

It remains to discuss the physical meaning of Λ. While early interpretations of it re-

garded it as something akin to either a physical constant or a constant of integration (Kragh,

2007), from the late 1960s the work of various theorists—most notably Soviet Yakov Zel-

dovich (1967, 1968)—popularised an alternative interpretation of Λ: the energy density of

the vacuum. This idea remains popular today, but it is not unproblematic and will be dis-

cussed further in § 1.1.5.

Proof of an accelerating expansion does not equate to proof of a non-zero Λ. Λ is ar-

guably the simplest theory that can account for the acceleration (Amendola & Tsujikawa,

2010), but one could instead imagine a number of alternative mechanisms driving the ac-

celeration. As an example, in quintessence models (Fujii, 1982), a minimally coupled scalar

field with a slowly varying potential drives the acceleration. As a second example, modi-

fied gravity theories such as those studied in this thesis introduce to the action (1.12) var-

ious exotic components coupled to gravity. In some theories these components can ‘self-

accelerate’, but many others effectively rely on Λ terms in their potentials to drive the ex-

pansion (Wang et al., 2012). Generically, all such mechanisms fall under the umbrella of

‘dark energy’ theories.

In addition to the evidence from supernovae discussed above, there are several other

sources of evidence of dark energy. First, as Lemaître had correctly argued in the 1930s,

the calculated age of a universe without Λ is insufficiently large to account for the oldest

globular clusters in the Milky Way. Secondly, the positions of the acoustic peaks in the

CMB power spectrum shift in the presence of dark energy. Assuming a flat Universe and

that dark energy takes the form of a cosmological constant, analysis of the Planck CMB data

indicates ΩΛ = 0.6847±0.0073 (Planck Collaboration, 2018b), a clear demonstration of the

existence of dark energy. Furthermore, these same acoustic peaks are imprinted in the BAO

signature detected in large-scale galaxy surveys, giving an independent demonstration of

dark energy (Blake et al., 2011). Finally, probes of the large-scale structure of matter, such as

the z = 0 matter power spectrum, favour a cosmology with non-zero ΩΛ, as demonstrated

by Efstathiou et al. (1990) and the other groups in the early 1990s.

Inflation

As mentioned previously, the CMB serves as a remarkable demonstration of the isotropy

of the Universe. While this is a pleasing affirmation of the cosmological principle, it also

raises a troubling question: why should antipodal points on the CMB display the same
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statistical properties despite originating in regions of the Universe that have apparently

never been in causal contact? This is known as the ‘horizon problem’. To the put the prob-

lem on a more quantitative footing, the current physical distance to the last scattering sur-

face is around dLSS(t0) ≈ 14, 000 Mpc. At the time of last scattering, zLSS ≈ 1100, this corre-

sponded to a region of size dLSS(tLSS) = dLSS(t0)/aLSS ≈ 13 Mpc. On the other hand, the hori-

zon distance32 at tLSS—calculated naïvely from the FLRW metric (1.20)—is much smaller:

dhor(tLSS) ≈ 0.25 Mpc. This implies that the CMB is made up of a large number of causally

disconnected patches, a fact contradicted by its evident isotropy. The ‘initial conditions’ of

the Universe would require a high degree of fine-tuning to generate this isotropy.

Another problem is the ‘flatness problem’: a priori, there is no clear physical reason

to expect the Universe to have a flat spatial geometry, but it is nonetheless observed to

be flat or very close to flat, i.e. Ωtot ≡ Ωr + ΩΛ + Ωm ≈ 1 (Planck Collaboration, 2018b).33

Furthermore, the departure of Ωtot from unity grows with scale factor, so Planck bounds of

|Ωtot − 1| ® 10−3 become increasingly tight as they are extrapolated back in time. To take

this argument to its extreme, at the Planck time t ∼ 10−43, the flatness is required to be

|Ωtot−1|® 10−62. This is seemingly another fine-tuning problem.

A third problem is the ‘monopole problem’: an abundance of magnetic monopoles is

a generic prediction of Grand Unified Theories, but none have ever been observed. In the

early 1980s, it was the monopole problem that led American particle theorist Alan Guth to

the idea of the inflation: a period of extremely rapid exponential expansion in the very early

Universe (Guth, 1981).34

The inflationary epoch takes place within the first fraction of a second after the Big

Bang. If the scale factor at the beginning of the inflationary epoch is ai ≡ a (ti ), then at

its end the scale factor a f ≡ a (t f ) is given by

a f = e Hi (t f −ti )ai = e N ai , (1.38)

assuming a purely exponential growth, with Hubble parameter Hi . The second equality

defines N , the number of ‘e-foldings’ of inflation.

During the inflationary epoch any curvature is strongly suppressed, as |Ωtot(t )− 1| ∝
e −2Hi t , so |Ωtot(t f )−1|= e −2N |Ωtot(ti )−1|. In this way, inflation explains the present absence

of curvature, solving the flatness problem. If strong curvatures existed prior to inflation

(|1−Ωtot| ∼ 1), then some N ≈ 60 e-folds are required to be consistent with today’s observed

32The particle horizon distance dhor at a given time is the proper distance a photon has travelled from t = 0

to that time. This sets a limit to causal contact, as bodies separated by larger distances have had insufficient

time to exchange information.
33See Footnote 18 in this chapter.
34Similar ideas were earlier proposed by Soviet cosmologist Alexei Starobinsky (1980), but were not discussed

in terms of the horizon/flatness/monopole problems and did not initially gain widespread attention across

the iron curtain.
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flatness, allowing for the regrowth of curvature after the inflationary epoch. Similarly, infla-

tion solves the monopole problem by exponentially rarefying the number density of mag-

netic monopoles, n (t f ) = e −3N n (ti ).

Because of the exponential expansion, small, causally connected regions of the pre-

inflationary Universe correspond to larger regions of space today than would otherwise

be the case in a universe without an inflationary period. It is possible then to explain

the isotropy of the CMB if the last scattering surface originated from a region of the pre-

inflationary Universe small enough to be causally connected. In other words, horizon dis-

tance increases exponentially during the inflationary epoch, and it is therefore possible to

construct an inflation scenario in which dhor(tLSS) > dLSS(tLSS). Inflation can therefore also

solve the horizon problem.

It is clear from this discussion that inflation is a useful construction that solves a number

of problems, but as with dark matter and dark energy, a physical realisation remains to be

identified. A popular ad hoc model is that of a scalar ‘inflaton’ fieldφ with a shallow ‘slow-

roll’ potential. If (in natural units) φ̇2 � V (φ), then the inflaton acts as a cosmological

constant, i.e. w ≈ −1, driving an exponential expansion. However, the literature hosts a

vast smörgåsbord of variations on—and alternatives to—this idea, in addition to a range of

ideas for how to relate the inflaton to ideas from particle theory.

An early success for inflationary theory came about as a result of the Nuffield workshop

in Cambridge in 1982.35 Here, it was calculated that a generic prediction of inflation was

a (nearly) scale-invariant spectrum of density perturbations (Bardeen et al., 1983). These

perturbations arise from quantum fluctuations in the inflaton field which are then am-

plified during the inflationary epoch. It had previously been shown by Edward Harrison

(1970) and Yakov Zeldovich (1972) that the large scale structures of the present Universe

should have their ‘initial conditions’ in just such a spectrum of perturbations. This the-

oretical derivation of this Harrison-Zeldovich spectrum was widely seen as a triumph for

inflationary theory (Kragh, 2007).

A second triumph could well be on the horizon. Another generic result of inflationary

theories is the prediction of a primordial gravitational wave background (Starobinsky, 1979;

Rubakov et al., 1982). While a direct detection of this background is well beyond the sen-

sitivity level of current and planned gravitational wave detectors, an indirect detection is

possible through a ‘B-mode’ polarisation signature in the CMB (Kamionkowski et al., 1997;

Seljak & Zaldarriaga, 1997). This is a key goal of current and future CMB experiments, as

35This workshop was attended by many well-known names: as well as Guth and Starobinsky, participants in-

cluded Stephen Hawking, Gary Gibbons, Dennis Sciama, Martin Rees, Paul Steinhardt, James Bardeen, John

Barrow, Andrei Linde, and Michael Turner. With some exceptions (particularly within the local Cambridge

cohort), the majority of attendees came from a background of particle theory rather than cosmology (Lon-

gair & Smeenk, 2019). This is possibly a reflection of the origin of inflationary theory as a solution to the

monopole problem arising in Grand Unified Theories, which would have seemed irrelevant or abstruse to

many astronomers of the day (Kragh, 2007).
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it would provide a ‘smoking gun’ signature of inflation, as a well as a source of valuable

information about inflation (Kamionkowski & Kovetz, 2016).

Despite its unknown nature and controversies about its predictivity and falsifiability

(Rothman & Ellis, 1987; Ijjas et al., 201736), inflation is widely regarded today as a linchpin of

modern cosmology. Not only does it solve the monopole, flatness, and horizon problems,

it sows the seeds in the early Universe for all subsequent astrophysical structure.

1.1.5 Beyond ΛCDM?

The previous section discussed the ΛCDM model and its empirical successes; chiefly the

broad agreement between a number of independent cosmological probes. These successes

notwithstanding, a number of outstanding questions still exist under theΛCDM paradigm.

The biggest elephants in the room are the unknown natures of dark matter and dark en-

ergy.37 For dark matter, the problem lies in identifying a suitable candidate, whether a hy-

pothesised particle or otherwise. Efforts in this field were discussed in the previous section

and will not be mentioned further here. For dark energy, the problem is more complex.

Here, a candidate has been identified: the cosmological constant. However, there are sig-

nificant problems with usingΛ to drive the cosmic acceleration, and solving the dark energy

problem will require either solutions to these problems or a suitable alternative to Λ.

This section will discuss these issues surrounding Λ, as well as other outstanding ques-

tions underΛCDM, before closing with a discussion of our current understanding of gravity.

Problems with Λ

If the physical interpretation of Λ is that of a vacuum energy as described in § 1.1.4, then Λ

is in principle calculable. Summing zero-point contributions over all modes of an arbitrary

massive field and truncating the integral at the Planck scale, the expected vacuum energy

density is (in natural units) εΛ ∼ 1074 GeV4 (Amendola & Tsujikawa, 2010). By contrast, the

observed value of the cosmological constant from Planck is Λ= 1.1056×10−52m−2 (Planck

Collaboration, 2018b). Converting this to an energy density via εΛ =ρΛc 2 =Λc 4/8πG gives

36The latter reference, an article published in the popular science magazine Scientific American, made par-

ticularly provocative assertions, including that inflationary cosmology “cannot be evaluated using the sci-

entific method” (ibid., p. 39). This was especially remarkable given one of the authors was Paul Steinhardt,

one of the original architects of inflation. It prompted a response by several of the other architects: Guth,

Linde, David Kaiser and Yasunori Nomura, further co-signed by 29 other eminent scientists. This response,

along with a rebuttal by the authors of Ijjas et al. (2017), can be found on the Scientific American website

(blogs.scientificamerican.com/observations/a-cosmic-controversy; accessed April 2020).
37A tongue-in-cheek encapsulation of the status quo has been attributed to Durham cosmologist Tom Shanks:

“There are only two things wrong with ΛCDM: Λ and CDM.” (Bull et al., 2016, p. 89).

https://blogs.scientificamerican.com/observations/a-cosmic-controversy/
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εΛ ∼ 10−47 GeV4; a mammoth discrepancy of 121 orders of magnitude.38 This huge conflict

between theory and observation is known simply as the ‘cosmological constant problem’ or

‘vacuum catastrophe’, attention to which was first drawn by American cosmologist Steven

Weinberg (1989), even before the widespread acceptance of a non-zero Λ.39

Another problem to do with the observed value of the cosmological constant is the ‘co-

incidence problem’. This was first alluded to in § 1.1.4, where Figure 1.4 showed that the era

of matter-Λ equality is rather close to the present day. Given that ΩΛ ≈ 0 since the Big Bang

until relatively recently, andΩΛ ≈ 1 in the relatively near future and forever after, it is some-

what surprising that we inhabit the singular period in which matter and the cosmological

constant have comparable energy densities.

There exists a number of approaches to solving these problems. For instance, anthropic

arguments have been invoked as a possible solution to both problems (Efstathiou, 1995).

While such arguments are compelling, they are widely seen as somewhat unsatisfactory

and a measure of last resort (Bull et al., 2016). Alternatively, there is a myriad of dark energy

theories which postulate new dynamical degrees of freedom or modifications of gravity.

Overviews of these theories can be found in e.g., Amendola & Tsujikawa (2010); Clifton

et al. (2012); Joyce et al. (2015).

Small-scale Issues

Another bone of contention within the ΛCDM paradigm is a number of apparent discrep-

ancies between observation and prediction on small scales.40 An overview of these small-

scale issues can be found in the article by Bullock & Boylan-Kolchin (2017).

There are two ‘classic’ small-scale problems in particular that have been the subject of

intense study, the ‘core/cusp’ and ‘missing satellites’ problems, both of which have been

known since the early days of ΛCDM simulations.

A key prediction of DM-only ΛCDM simulations is that of ‘cuspy’ density profiles for

dark matter haloes, i.e. profiles with steep central slopes (Navarro et al., 1997), roughly

∝ r −1. On the other hand, some observations (Moore, 1994; Flores & Primack, 1994; Walker

& Peñarrubia, 2011; Oh et al., 2015), e.g., of galaxy rotation curves, have been found to sug-

gest flatter, ‘cored’ profiles in the inner regions of haloes. An example is given in Figure

1.8, which shows the rotation curve of the nearby dwarf galaxy NGC 3109, taken from the

38A slightly more sophisticated calculation than the one described here gives much lower values, in the region

of εΛ ∼ 108 GeV4 (Martin, 2012; Bull et al., 2016). Of course, this still represents an unacceptably large gap of

55 orders of magnitude.
39Weinberg (1989) was not equipped with an empirical value for Λ, but he did have an empirical upper bound,

so he could still pose the question: “why is Λ so low?”
40‘Small scales’ here meaning R ® 1 Mpc.
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Figure 1.8: The data points give the rotation curve of NGC 3109, taken from the SPARC sample. The green

curve is the maximum-likelihood model using a ‘cuspy’ NFW halo profile, while the purple is that for a

‘cored’ DC14 profile, both obtained using the methodology described in Chapter 3. This Figure illustrates

the ‘core/cusp’ problem described in the text.

Spitzer Photometry and Accurate Rotation Curves sample (SPARC; Lelli et al., 2016). Along-

side the observed data are two fits obtained using the procedure described in Chapter 3.

One incorporates the cuspy Navarro-Frenk-White halo profile (NFW; Eq. (1.45); Navarro

et al., 1996, 1997), and the other the cored halo profile of Di Cintio et al. (DC14; 2014). The

goodness-of-fit of the cored halo model is rather better than that of the cuspy halo. The

cuspy model puts far too much mass in the galactic centre, and is unable to reduce this

without a commensurate reduction in the overall halo mass, and consequently a reduction

in the predicted rotation speeds in the outer part of the galaxy, which it is already under-

predicting.

As a possible resolution, some simulations including the effects of baryonic feedback

have suggested that such mechanisms can induce cored central density distributions in

dark matter haloes (Mashchenko et al., 2008; Governato et al., 2010; Pontzen & Governato,

2012; Di Cintio et al., 2014). This is thought to happen when feedback, e.g. from super-

novae, pushes around large amounts of gas in the central region of a galaxy, and the re-

sulting fluctuation in the gravitational potential of the gas then also affects the dark matter

distribution. Other simulations, however, find no such effect (e.g, Bose et al., 2019). In ad-

dition, the recent work of Genina et al. (2018) found that the inference of a cored profile

from observations might be the result of an incorrect assumption of spherical symmetry,

and that observed galaxies are consistent with cusps, while Oman et al. (2015) argue that

the issue is better characterised as a problem of mass deficit in the inner regions of dwarf
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galaxy haloes rather than a core/cusp problem. The core/cusp debate thus remains far

from resolved.

Meanwhile, the missing satellites problem relates to the mismatch between the ob-

served number of satellite galaxies of the Milky Way and that expected from much larger

numbers of substructures in ΛCDM cosmological simulations (Moore et al., 1999; Klypin

et al., 1999). In particular, ΛCDM simulations predict thousands of satellites around the

Milky Way (Springel et al., 2008; Garrison-Kimmel et al., 2014; Griffen et al., 2016), while

the observed number is around fifty (Kim et al., 2018; Drlica-Wagner et al., 2020). There

are two possible mitigating factors, both of which likely play a role. The first is that ob-

servational catalogues are likely to be highly incomplete (Drlica-Wagner et al., 2020). Sec-

ond, baryonic processes may again be important. For instance, photoionising ultraviolet

background radiation would prevent the cooling of protogalaxies (Efstathiou, 1992), while

supernova feedback might expel their star-forming gas (Shen et al., 2014), in both cases pre-

venting the formation of observable galaxies. The real number of satellite galaxies would

then be lower than that predicted by DM-only simulations. Thus, by attacking the problem

from both ends, i.e. increasing the observed number and reducing the predicted number,

the problem might be solved. Indeed, Kim et al. (2018) apply a carefully calculated correc-

tion factor to the satellite counts from SDSS to account for their incompleteness, and in

doing so bring them into agreement with predicted numbers from state-of-the-art ΛCDM

abundance matching techniques. The authors thus claim to have solved the missing satel-

lites problem.

A third problem, the ‘too-big-to-fail’ problem (Boylan-Kolchin et al., 2011), is related

to the first two. ΛCDM simulations (e.g., those of Springel et al., 2008; Diemand et al.,

2008) suggest that the central densities (or central masses) of the brightest MW satellites

should be much higher than observed.41 If the classical MW satellites42 are associated with

simulated satellites of comparable central mass, then there should exist around ten satel-

lites with larger central mass (Bullock & Boylan-Kolchin, 2017). These subhaloes would

be sufficiently massive to resist the suppressive effects described above. In other words,

they would be ‘too big to fail’ to form a galaxy. Their apparent absence in the MW halo

is therefore somewhat puzzling. Rather than accounting for these missing galaxies, one

could instead approach the problem by associating the classical satellites with the largest

simulated satellites and attempting to explain the discrepancy in central masses. Here, one

could imagine baryonic effects being of greater assistance; they could act to reduce the pre-

41While the too-big-to-fail problem is often discussed in the context of MW satellites, the problem has also been

shown to exist in the Andromeda satellites (Tollerud et al., 2014) and in the field dwarf population (Kirby et al.,

2014).
42The ‘classical’ MW satellites are the collection of 11 brightest satellites of the Milky Way, and the only satellites

known before the turn of the millennium. Of these, the Large and Small Magellanic Clouds have been known

since prehistory, while the remainder are twentieth century discoveries: the Fornax, Carina, Sextans, Leo I,

Leo II, Sculptor, Ursa Minor, Draco, and Sagittarius dwarfs.
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dicted central densities, e.g. by inducing the formation of cores as described above. Indeed,

if the central densities of the highest-mass simulated subhaloes could be reduced in such a

way as to match those of the classical MW satellites, this could simultaneously address the

too-big-to-fail and core/cusp problems. On the other hand, it has been shown (Bullock &

Boylan-Kolchin, 2017) that even in simulations in which baryonic feedback processes in-

duce core formation, the mass scales at which this takes place are not those of most of the

classical satellites. Alternatively, environmental processes are often invoked (i.e. satellite-

MW interactions; Sawala et al., 2016; Tomozeiu et al., 2016; Wetzel et al., 2016), but these

do not solve the problem in the context of field dwarfs (see Footnote 41 in this chapter). As

with the core/cusp problem, it would be premature to claim that baryonic feedback pro-

cesses have solved the too-big-to-fail problem.

There have been other puzzling observations at small scales. For instance, the classical

MW satellites appear to approximately inhabit a great circle around the Milky Way (Kunkel

& Demers, 1976; Lynden-Bell, 1976; Pawlowski et al., 2014).43 Furthermore, galaxies exhibit

surprisingly consistent relations between their baryonic content and dynamical proper-

ties. One example is the ‘baryonic Tully-Fisher relation’, a simple scaling relation between

the baryonic masses of galaxies and the amplitudes of the flat parts of their rotation curves

(McGaugh et al., 2000). Another example is the radial acceleration relation (RAR), the tight

correlation between total dynamical acceleration (as inferred from rotation curves) and

acceleration due to the visible baryonic mass. These observations would not be naïvely

expected under the ΛCDM paradigm, and reconciling them with theory is a challenge, al-

though progress has been made on all fronts (Bullock & Boylan-Kolchin, 2017).

As discussed, baryonic physics provides a hope for resolving most of these small-scale

tensions under the ΛCDM paradigm. However, ‘new physics’ solutions also exist. For ex-

ample, ‘self-interacting’ (Spergel & Steinhardt, 2000) and ‘fuzzy’ (Hu et al., 2000) dark mat-

ter theories have both been proposed as resolutions to the core/cusp problem. Chapter 3,

based on Naik et al. (2019), will demonstrate that the screened modified gravity theories

discussed in § 1.3 could also alleviate the core/cusp problem, as predicted previously by

Lombriser & Peñarrubia (2015).

Parameter Tensions

A tension that has particularly been the focus of attention in recent years is the H0 tension.

Recent measurements of the Hubble constant as inferred from direct distance ladder mea-

surements (i.e. from the low-z slope of the redshift-distance relation in e.g. Figure 1.7) are

in the region of 74 km/s/Mpc (e.g. Riess et al., 2019). By contrast, the CMB-derived Planck

43This is sometimes known as the ‘Vast Polar Structure’, or ‘VPOS’. Compounding the mystery, Andromeda also

seems to host its satellites on co-planar orbits (the ‘Great Plane of Andromeda’ or ‘GPoA’; Conn et al., 2013;

Ibata et al., 2013).
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value for H0 is around 67 km/s/Mpc (Planck Collaboration, 2018b). The uncertainties on

both values are sufficiently small that this is a rather significant tension. Taking the value

of H0 from Riess et al. (2019), the discrepancy is at a level of 4.4σ.

A possible resolution is unaccounted-for sources of systematic error at either end. For

example, Rigault et al. (2015) argue that Type Ia supernovae in star-forming environments

are intrinsically dimmer than those in passive environments. A failure to allow for this bi-

modality when ‘standardising the candles’ could lead to systematic bias in the measure-

ment of H0. In particular, they find that the tension can be reduced to a level of ∼1σwhen

accounting for the effect.

On the other hand, another possibility is again that of new physics. Screened modi-

fied gravity theories can again serve as an example here. Desmond et al. (2019b) showed

recently that if the ‘calibration’ cepheids within the Milky Way are screened while cosmo-

logical cepheids are not, the resulting miscalibration would lead one to systematically over-

estimate H0. At the other end, the CMB-derived value for H0 is highly model-dependent;

it depends on the sound horizon at the time of recombination, and also on the angular di-

ameter distance to the last scattering surface. The former depends in turn on the energy

budget of the early Universe, while the latter depends on the expansion history of the late

Universe. The discrepant value of H0 assumesΛCDM, but one can instead imagine a num-

ber of alternatives toΛCDM in which either an altered expansion history or an altered early

Universe energy budget changes the inference of H0 from the CMB, and consequently alle-

viates the tension (for example, ‘early dark energy’; Mörtsell & Dhawan, 2018; Poulin et al.,

2019).

Other parameter tensions also exist. For instance, the Planck value of the amplitude of

the matter power spectrumσ8
44 is higher than that measured by various other experiments,

particularly those measuring matter fluctuations at late times, e.g. via surveys of weak lens-

ing (MacCrann et al., 2015; Raveri, 2016; Hildebrandt et al., 2017) or redshift-space distor-

tions (Macaulay et al., 2013). A second example is AL, the amplitude of the CMB lensing

power spectrum, by construction equal to unity for the best-fitting cosmological model.

If instead allowed to vary freely, it can be inferred from CMB data in two different ways:

from the lensing-induced smoothing of the temperature power spectrum, or by using the

maps to reconstruct the lensing potential. With Planck data, the value obtained from the

lensing reconstruction is consistent with 1, while the smoothing of the temperature power

spectrum gives AL= 1.243±0.095, a discrepancy of ∼3σ (Planck Collaboration, 2018b).

Gravity

One of the underpinnings of the ΛCDM model is GR, from which it ultimately derives.

Where ΛCDM has had a number of empirical successes, GR is arguably even more impres-

44See Footnote 24 in this chapter for a more precise definition ofσ8.
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Figure 1.9: The widely publicised image of the shadow of the super-massive black hole in M87. Details of the

observation were published in Event Horizon Telescope Collaboration (2019). Credit: Event Horizon Tele-

scope Collaboration.

sive, having effortlessly passed all tests since its conception more than a century ago.

Arguably the first success of GR was Einstein’s exact calculation of the anomalous pre-

cession of the perihelion of Mercury, then a long-known outstanding problem in astron-

omy. First described in Einstein (1915), this was one of the three ‘classical’ tests of GR that

Einstein described in his 1916 paper consolidating his numerous articles on GR from the

previous year (Einstein, 1916). However, the prediction of a new effect is perennially more

impressive than the explanation of a known one, and the other two tests were just such pre-

dictions. The first related to the gravitational deflection of light, the magnitude of which in

GR is twice that in Newtonian physics. The second prediction was that of gravitational red-

shift, i.e. the redshifting of light as it passes through (or is emitted from) from gravitational

wells.

The total solar eclipse of May 1919 provided an ideal opportunity to test the prediction

of gravitational deflection. The darkening of the sun allowed the measurement of appar-

ent positions of nearby stars, which could then be compared with their apparent positions

at other times of year, when their light does not pass in the close vicinity of the sun. Ein-

stein’s predicted deflection for light grazing the surface of the sun was 1.75 arcseconds. Two

British expeditions, organised jointly by the Royal Society (RS) and Royal Astronomical So-

ciety (RAS) and spearheaded by then Astronomer Royal Frank Watson Dyson, journeyed to

the island of Principe (in the Gulf of Guinea) and Sobral (Brazil) to observe the eclipse and

make the requisite measurements. The Principe exhibition was led by Eddington, while

the Sobral exhibition was led by A. C. Crommelin, from the Royal Observatory in Green-

wich.45 Upon their return, Eddington performed a great deal of data reduction and arrived

45The story of the expeditions and their historical context in the immediate aftermath of the First World War is

very interesting in its own right. Fascinating accounts are given in Crelinsten (2006) and Stanley (2003). The

latter work focuses in particular on the role and motivations of Eddington, for whom the expedition had a

socio-political dimension as well as its obvious scientific one. Guided by his Quaker beliefs in pacifism and

humanitarianism, he believed that a British expedition to verify a ‘German theory’ would do much to rebuild
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at a weighted mean deflection of 1.64 arcseconds, agreeably close to the GR value.46 The

announcement of this result at a joint meeting of the RS and RAS in November 1919 had an

immediate and prodigious effect on both the public at large and the scientific community,

where the main outcome was to convince the vast majority of scientists of the validity of

GR (Kragh, 2007).

The verification of the third prediction, that of gravitational redshifts, came some years

later. In 1924, Eddington predicted that light from the nearby white dwarf Sirius B would

be strongly redshifted due to its own deep gravitational potential. In correspondence with

American astronomer Walter Adams, Eddington predicted a redshift corresponding to a

radial velocity of 20 km/s (Holberg, 2010). Adams (1925a,b) then measured a redshift of

21 km/s, in excellent agreement with the prediction.47

Following this activity in the years immediately following the conception of GR, Will

(2014) describes a period of ‘hibernation’, spanning the years 1920-1960. There appears to

have been a loss of appetite in that period for testing GR, and expertise in GR more gener-

ally also seems to have decayed. Presumably this is because of an absence at the time of

observable regimes in which GR was relevant. This changed in the 1960s, with observations

of pulsars, quasars and the cosmic microwave background. These discoveries ushered in a

new ‘golden age’ of GR, spanning 1960-1980, in which opportunities to apply and test GR

in astronomy and cosmology proliferated. One notable example was the discovery of the

Hulse-Taylor binary (Hulse & Taylor, 1975), a pulsar-neutron star binary system in which

the observed decay of the orbital period agreed with the GR calculation of the energy loss

due to gravitational wave radiation.

During this period, the ‘Parameterised Post-Newtonian’ (PPN) formalism was devel-

oped (Nordtvedt, 1968a; Will, 1971; Will & Nordtvedt, 1972). Here, perturbations are added

to the weak-field Newtonian limit of GR to account for the lowest-order GR corrections.

bridges between the British and German academies. Such an objective flew counter to the prevailing views

in British society, even within the scientific community, much of which was in favour of a vindictive post-

war treatment of Germany, and a permanent exclusion of its scientists from international collaborations.

Incidentally, Eddington could well have missed the expedition had he been enlisted in the army following his

conscription hearing in 1918. His plan in this event had been to continue his conscientious objection, which

would have landed him in prison. Fortunately, Dyson successfully intervened and procured an exemption

for Eddington, arguing that Eddington’s role in the expedition was indispensable.
46Sadly, in the years and decades following the eclipse of 1919, an unflattering narrative has developed, in which

Eddington is thought to have somehow ‘fudged’ the data, downweighting some of the Sobral plates which

contradicted the GR prediction, presumably because of his sympathy for Einstein and his political agenda

(see e.g. Earman & Glymour, 1980). This idea, however, does not hold under quantitative scrutiny (Stanley,

2003).
47As it happens, both Eddington’s prediction and Adams’ measurement are equally wrong, by a factor of ∼4.

The agreement, and its vindication of GR, was therefore highly fortuitous. However, as noted by Holberg

(2010), Adams’ observation was also a milestone in the study of degenerate stars, and this underestimate of

the Sirius B redshift impeded progress in that field for several decades.
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There are a number of dimensionless PPN parameters—each of which carries some physi-

cal intuition—which can be experimentally constrained and compared to their GR expec-

tations (all either 1 or 0). For instance, the PPN γ parameter (= 1 in GR) quantifies the

space-time curvature generated by a unit mass at rest. This parameter is probed by experi-

ments such as the gravitational deflection and redshift tests described above. The strongest

constraint, however, comes from measurements of the ‘Shapiro time delay’: the apparent

time delay of light arriving at an observer after having passed through a gravitational well.

In 2003, Doppler tracking of the Cassini spacecraft as it passed very near to superior con-

junction with the Sun enabled a measurement of this time delay, which was found to be

very close to the GR expectation: γ− 1 = (2.1± 2.3)× 10−5 (Bertotti et al., 2003). A table of

other current PPN constraints—along with their experimental sources—is given in the re-

view article by Will (2014, Table 4). Most constraints come either from Solar System tests

such as those described, or from observations of pulsars. The constraints are all rather

stringent; indeed, the Cassini bound seems comparably lenient when juxtaposed with the

others.

Partly independent from these efforts, there have also been many tests of the validity

of different statements of the equivalence principle (EP; see 1.1.2, and Footnote 6 for def-

initions of the different statement of the EP). The most stringent constraints on the WEP

have come from the Eöt-Wash group at the University of Washington, who use rotating tor-

sion balances to measure relative accelerations towards the Earth of very small test masses

of different compositions. These experiments are conceptually similar to those conceived

and undertaken around the turn of the twentieth century by Hungarian physicist Baron

Roland von Eötvös (Eötvös et al., 1922), from whom the group take their name. Defining

the Eötvös parameter,

η≡ 2
|a1−a2|
|a1+a2| , (1.39)

where a1 and a2 are the accelerations of the two test bodies, the Eöt-Wash group findηWEP =
(0.3±1.8)×10−13 (Adelberger, 2001; Schlamminger et al., 2008; Wagner et al., 2012). Current

and future space-based experiments are forecast to give more precise constraints by up to

four orders of magnitude (Worden et al., 2000; Touboul et al., 2001; Nobili et al., 2012).48 In

the Solar System context, the Earth and Moon cannnot be treated as non-gravitating test

particles, so measurements of their relative accelerations toward the Sun test the SEP. Such

tests are carried out using ‘lunar laser ranging’ experiments which repeatedly measure the

Earth-Moon separation by reflecting laser light from mirrors on the lunar surface. Such

48Preliminary results from the MICROSCOPE satellite, in orbit from 2016 to 2018, already give constraints at the

level ofηWEP ® 10−14, an improvement of one order of magnitude, with a forecast of even stronger constraints

following a more complete analysis of systematic error (Touboul et al., 2017).
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experiments have given the constraint ηSEP = (−1.0±1.4)×10−13 (Williams et al., 2004).49,50

Baker et al. (2019) claim that the present times are a second golden age of GR. Indeed,

a number of observations have grabbed headlines and the public imagination. First, there

was the announcement in early 2016 of a direct detection of gravitational waves at LIGO,

generated during a merging event of two black holes (LIGO Scientific Collaboration & Virgo

Collaboration, 2016). Gravitational waves are a fundamental prediction of GR, but their di-

rect detection is only now possible using high precision laser interferometers such as LIGO

and Virgo. Another ground-breaking observation was announced in 2019 by the Event

Horizon Telescope collaboration, who had observed the nucleus of the galaxy M87 and

obtained the first direct image of a black hole shadow (see Figure 1.9; Event Horizon Tele-

scope Collaboration, 2019). For the purposes of testing gravity, perhaps the most important

event of recent years was the observation of the ‘multi-messenger’ event GW170817 (LIGO

Scientific Collaboration & Virgo Collaboration, 2017; LIGO Scientific Collaboration et al.,

2017b). Here, a neutron star merger generated a gravitational wave signal detected at LIGO

and Virgo, as well as an observed gamma-ray burst and cross-spectrum electromagnetic

afterglow. The coincidence of arrival times of the gravitational wave and gamma-ray burst

signals from a source around ∼40 Mpc away indicates that the propagation speed of grav-

itational waves is very close to that of light (|∆c |/c ® 10−15), greatly restricting the space of

allowed modified gravity theories (Baker et al., 2017; Creminelli & Vernizzi, 2017; Ezquiaga

& Zumalacárregui, 2017).

Another key recent development in the testing of gravity has been the advent of probes

of ‘precision cosmology’, such as Planck. At cosmological scales, there are a number of

probes that can test gravity, such as the expansion history as constrained by the CMB, BAO

and Type Ia supernovae, the late-time matter distribution as constrained by weak lensing

surveys, and the growth rate of structure as constrained by galaxy surveys. Investigations

into these cosmological probes of gravity have proliferated in recent years, and reviews can

be found in the articles by Clifton et al. (2012) and Ferreira (2019). Approaches have varied

from individual model tests to model-independent parameterised approaches, both at the

level of the background and at the level of linear perturbations, but a number of such pa-

rameterisations exist. One commonly used parameterisation is the pair of functionsµ(a , k )
and η(a , k ), respectively the modification to Poisson’s equation, and the anisotropic stress

49Note that a relative acceleration between the Earth and Moon due to a hypothetical SEP-violation is known

as the Nordtvedt effect, after the American astronomer Kenneth Nordtvedt, who conceived the experiment

(Nordtvedt, 1968b). Nordtvedt was also the originator of the PPN formalism described above.
50The PPN formalism assumes the WEP and EEP, so the Eötvös tests described here do not give any PPN

constraints. The lunar laser ranging tests, however, constrain a PPN parameter combination known as the

‘Nordvedt parameter’, ηN ≡ 4β − γ− 3− (10ξ+ 3α1 − 2α2 + 2β1 +β2)/3. Most ‘conservative’ alternative grav-

ity theories set all the PPN parameters to their GR values except β and γ (although ξ can sometimes be an

exception). Imposing this along with the Cassini bound on γ, constraints on ηN become constraints on β ,

the PPN parameter quantifying the non-linearity of the superposition principle. From Williams et al. (2004),

β −1= (1.2±1.1)×10−4.
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(e.g., Planck Collaboration, 2016, 2018b). Both functions are unity in GR. Using the Planck

data in conjunction with BAO and RSD data, the Planck team calculate constraints on µ

and η, finding no significant deviation from GR (Planck Collaboration, 2018b, Figure 31).

Compared to the PPN constraints described above, these are rather weak, O (1) constraints,

exemplifying cosmological constraints on gravity more generally. Nonetheless, cosmologi-

cal probes of gravity are tremendously valuable because they test gravity at markedly differ-

ent length scales and curvature scales than the (mostly Solar System) PPN tests. Such tests

check the validity of extrapolating our locally derived theory of gravity to vast cosmologi-

cal scales, and provide a much-needed observational ‘anchor’ at such scales. Furthermore,

future surveys such as those to be produced by Euclid, DESI, LSST (Legacy Survey of Space

and Time51; Ivezić et al., 2019), and SKA (Square Kilometre Array; Carilli & Rawlings, 2004)

are forecast to give significantly tighter constraints.

The history of alternative theories of gravity has largely paralleled that of GR, with a

flurry of activity in the former field accompanying each period of renewed interest in the

latter. One example of a well-studied alternative gravity theory from the early days of GR is

the ‘Kaluza-Klein’ theory. First conceived by German theorist Theodor Kaluza (1921) and

given a quantum mechanical interpretation by Swede Oskar Klein (1926), the Kaluza-Klein

theory was a 5D generalisation of GR. Alternative gravity theories were again resurgent dur-

ing the golden age of GR. A representative example from this period is Brans-Dicke gravity

(Brans & Dicke, 1961), the prototypical scalar-tensor theory (see § 1.3). Over the last two

decades, a renewed interest in modified gravity theories has again arisen, driven in part by

rapid developments in cosmology and the outstanding questions surrounding the ΛCDM

model. Compendia of modified gravity theories that are the subject of active research can

be found in, e.g. Amendola & Tsujikawa (2010); Clifton et al. (2012); Joyce et al. (2015);

Koyama (2016). A key development in this period has been the study of screening mech-

anisms (e.g. Khoury & Weltman, 2004; Hinterbichler & Khoury, 2010), whereby modifica-

tions to gravity can be rendered undetectable in dense regions such as the Solar System

while remaining active elsewhere. With these mechanisms, new dynamical fields can re-

tain cosmological relevance while also evading the stringent PPN tests described above.

Screening mechanisms are discussed further in § 1.3.2.

Given the numerous successes of GR described above, it is inevitable that one should

question the merit of devising and testing alternatives. This question becomes particularly

acute upon noting that GR is more than simply one theory in a field of competitors, GR is

special. This is formalised in Lovelock’s theorem: the only second-order, local gravitational

field equations derivable from an action containing solely the 4D metric tensor are the Ein-

51To many, the acronym ‘LSST’ will have the more familiar meaning of ‘Large Synoptic Survey Telescope’. The

observatory itself, currently under construction in Chile, was renamed earlier this year as the Vera C. Rubin

Observatory, to honour the pioneering astronomer discussed in Chapter 1.1.4. Concomitantly, the planned

survey to be undertaken there was named as the ‘Legacy Survey of Space and Time’, perhaps to avoid retroac-

tively invalidating the many existing literature references to ‘LSST’.
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stein field equations with a cosmological constant (Lovelock, 1971, 1972). In other words,

to modify GR one must, at the very least, introduce new fields or dimensions. Nonetheless,

a number of arguments for doing so spring to mind, the relative weightings of which are of

course highly subjective. One compelling argument is the discomfiting existence of a mys-

terious dark sector, along with its theoretical and observational difficulties as enumerated

above. All evidence for the dark sector is in some sense gravitational, so the idea that the

existence of a dark sector is a result of a misunderstanding of gravity on astrophysical and

cosmological scales is rather tempting and warrants investigation, especially if an alterna-

tive theory of gravity that obviates the need for the dark sector also explains some of the

other ΛCDM tensions, such as the small scale issues or the Hubble tension.

A more basic argument is that generating predictions from alternative theories of grav-

ity leads to novel ways to test GR. For example, § 1.3.5 lists a number of tests of screened

gravity theories. These tests have been devised as a result of recent research into screen-

ing mechanisms, and search for signatures of plausible, weak-field deviations from GR that

would not be captured in further PPN-style testing.

It is also relevant to consider the scales on which gravity has been tested. In terms of the

curvature ξ∼G M /r 3c 2, Baker et al. (2015)52 identify a large ‘desert’ of unexplored regimes

spanning the range ξ ∼ 10−30 − 10−50 m−2, between the PPN and cosmological probes re-

spectively. Considering instead the potential φ ∼ G M /r , no probes to date have directly

tested the ‘strong-field’ regime,φ ∼ c 2. These concerns are particularly relevant today; the

newly emerging fields of gravitational wave detection and black hole imaging will provide

the first probes of the strong-field regime. Similarly, the curvature desert is uniquely probed

by galaxy-scale tests of gravity. Upcoming galaxy surveys are unprecedented in their am-

bition, and will be able to place constraints on gravity within the curvature desert. For this

reason, Baker et al. (2019) have launched the ‘Novel Probes’ project, aimed at connecting

theorists with observers in order to devise galaxy-scale tests to probe this parameter regime.

Such galaxy-scale tests of screened modified gravity theories are the subject of this the-

sis, and screened modified gravity and its application at galaxy scales will be discussed

further in § 1.3. First, however, the next section gives a brief, general introduction to the

physics and astronomy of galaxies.

52More specifically, Baker et al. (2015) quantify the curvature using the Kretschmann scalar, which for the

Schwarzchild metric is ξ=
p

48G M /r 3c 2.
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1.2 Galaxies

1.2.1 Background

The previous section described how our conception of the cosmos was revolutionised sev-

eral times in the 1920s, first following Hubble’s confirmation of the extragalactic nature of

the spiral nebulae, and second after his discovery of a relation between their distance and

their recession speed, suggesting a cosmic expansion. Another effect of these discoveries

was an effective division of astronomy into Galactic and extragalactic subfields.

The former science has progressed prodigiously in the twentieth century. Around the

time of the Great Debate, the best empirical model of the Milky Way was that of Dutch as-

tronomer Jacobus Kapteyn, first published along with his student Pieter van Rhijn (Kapteyn

& van Rhijn, 1920). The model was constructed using measurements of proper motions,

and posited an ellipsoidal mass distribution for the Milky Way, with a radius of twenty kilo-

parsecs in the Galactic plane. Tellingly, the model was heliocentric.53 This is to be con-

trasted with the present day, where high-quality observations have led to a detailed under-

standing of the structure and composition of the Milky Way, e.g. Figure 1.13.

Extragalactic astronomy has also come along in leaps and bounds. Following the dis-

covery of the Hubble expansion, the application of the spiral nebulae to cosmology re-

mained a field of active research, as demonstrated by the collaboration between Hubble

and Tolman (e.g., Hubble & Tolman, 1935). However, the classification, distribution, and

formation of the new galaxies also became active research efforts which continue to this

day. Figure 1.10 shows Hubble’s widely cited map of around 4000 spiral nebulae observed

at Mount Wilson (reproduced from Hubble, 1934), to be contrasted with Figure 1.11, de-

picting a fraction of the huge galaxy sample from SDSS-III BOSS (Alam et al., 2017).

A more detailed overview regarding the current state of Galactic and extragalactic as-

tronomy is given below. First, however, it is worth linking galaxies to the cosmological

model described above by briefly describing how astrophysical structure forms in our Uni-

verse.

1.2.2 Cosmic Structure Formation

From Figure 1.11, it is clear that while the Universe might be homogeneous and isotropic

on its largest scales (¦100 Mpc), the picture is much richer on smaller scales, where an in-

tricate network of overdense nodes is connected by filaments and walls, interspersed with

underdense voids. This structure is known as the ‘cosmic web’. Its richness is seemingly

in stark contrast to the simplicity of the CMB (Figure 1.3), but in actuality the statistical

53To give full credit to Kapteyn, the final version of his model, published two years later, shifted the Sun to a

position around two kiloparsecs from the Galactic centre (Kapteyn, 1922).
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Figure 1.10: Hubble’s ‘distribution of extra-galactic nebulae.’ All marks represent numbers of galaxies in a

given patch of sky. Small dots represent a ‘normal’ number of galaxies (1.63 < x < 2.22, where x ≡ log10 N ),

while filled circles represent ‘excesses’ (2.22 < x < 2.52) and unfilled circles represent ‘deficiencies’ (1.33 <

x < 1.63). Crosses are superimposed on these circles for N beyond these ranges (i.e. x > 2.52 and x < 1.33).

Dashes represent no galaxies. The central region bounded by the solid line is the Galactic zone of avoid-

ance, in which dust obscuration prevented detection of any galaxies. The total galaxy sample depicted here

comprises around 4000 galaxies. Reproduced from Hubble (1934).

properties of present-day large-scale structure can be very well explained by using linear

perturbation theory to describe the temporal evolution of small primordial density fluctu-

ations against a homogeneous background. The CMB gives us a snapshot of the very early

Universe, before the fluctuations (visible in the CMB as temperature anisotropies) had un-

dergone any significant growth or collapse under gravity.

The following is a largely qualitative account of this process. A more detailed pertur-

bation theory calculation of structure formation can be found in many graduate-level cos-

mology textbooks, e.g. Dodelson (2003).

Linear perturbation theory holds in the ‘linear’ regime δ � 1, where δ is the (matter)

density contrast, defined as

δ(x)≡ ρm (x)− ρ̄m

ρ̄m
. (1.40)

The linear approximation breaks down when perturbations grow to the level of δ ∼ 1, at

which point structures start to collapse under the gravitational instability.

A useful statistical object in studies of large-scale structure is the matter power spec-

trum, given by

(2π)3P (k )δD (k
′−k)≡ 〈δ(k)δ∗(k′)〉, (1.41)

where δD is the delta function and the Fourier component δ(k) is obtained via Fourier
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Figure 1.11: A small slice of the final galaxy sample of SDSS-III BOSS (Alam et al., 2017). The total sample

consisted of ∼1.2 million galaxies between redshifts 0.2 and 0.75 covering around one quarter of the sky,

with accompanying spectroscopic information. Each dot in this image represents a galaxy and the colours

indicate redshift (yellow is z = 0.2 and purple is z = 0.75). Grey patches indicate regions without survey

data. The image represents roughly four percent of the survey sample (48,741 galaxies). Image credit: Daniel

Eisenstein and the SDSS-III collaboration.

transform of the density contrast,

δ(k) =
1

V

∫
δ(x)e ik.xd 3x. (1.42)

Note that the power spectrum depends only on k ≡ |k|, a reflection of the assumption of

isotropy.

In the discussion of inflation in § 1.1.4, it was mentioned that a key prediction of infla-

tionary theory was the form of the matter power spectrum at the end of the inflationary pe-

riod. Given a power law spectrum, P (k )∝ k n , n = 1 corresponds to a ‘scale-invariant’ spec-

trum, also known as a Harrison-Zeldovich spectrum (Harrison, 1970; Zeldovich, 1972). The

prediction from inflation is that of a nearly scale-invariant spectrum, i.e. n ≈ 1 (Bardeen

et al., 1983). This power spectrum of matter fluctuations can be taken as the effective ‘initial

conditions’ for subsequent growth of structure.

Considering only pressureless dark matter, during the initial radiation-dominated era
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perturbations on scales larger than the horizon k ® (c t )−1 grow while the growth of sub-

horizon perturbations is suppressed. After radiation-matter equality, this suppression is

ended and perturbations grow on all scales throughout the matter-dominated era.

For the baryons, the picture is somewhat more complicated. Prior to decoupling, the

baryons were tightly coupled to the photons in the baryon-photon plasma. The Jeans

length of such a fluid is very large, and any baryonic structure could not grow. After de-

coupling, however, the baryons were able to fall into the pre-existing gravitational wells of

the dark matter.

Once the density perturbations become non-linear, they undergo a process of gravita-

tional collapse, forming virialised haloes. With CDM, this happens at the smallest scales

first. This process of virialisation is a rather violent one, with baryonic clumps repeatedly

colliding and creating shocks that heat the gas. At the end of this process, the dark matter

is in the form of an approximately spherical ‘halo’. Meanwhile, the shock-heated gas—also

ending in a roughly spherical distribution—finds hydrostatic equilibrium, i.e. it is sup-

ported by pressure against further gravitational collapse. If this gas can cool efficiently (e.g.

via line radiation), it will collapse further into a dense, star-forming structure at the centre

of the dark matter halo: a galaxy.

The largest, most massive (and thus latest-forming) haloes host the hottest gas; above a

certain temperature (depending on metallicity, ∼107 K), the gas can only cool inefficiently

via bremmstrahlung radiation. For this reason, the most massive haloes in the Universe

(¦1015 M�) do not host correspondingly enormous galaxies, but instead continue to carry

large quantities of the shock-heated gas. These haloes also typically incorporate a number

of ‘subhaloes’, smaller dark matter haloes that formed earlier in the same region of space,

which do host galaxies. These galaxies occupy a negligible proportion of the overall mass

budget of the parent halo, but are nonetheless the most visible component optically. For

this reason, these largest of structures are known as galaxy clusters.

This process of virialisation and galaxy formation cannot be described using linear per-

turbation theory, but a number of analytic methods do exist, such as the spherical collapse

model (Gunn & Gott, 1972) and the related Press-Schechter formalism (Press & Schechter,

1974). However, these do not capture the full complexities of the physics involved. To that

end, an industry has developed in recent decades, aiming to understand the physics of

galaxy formation via N-body computer simulations: astrophysical experiments in silico

(see Figure 1.12). A major source of uncertainty in this field is the modelling of baryonic

processes, such as magnetic fields, radiative hydrodynamics, and feedback from super-

novae and active galactic nuclei (AGN; see § 1.2.3). Because of the finite resolution available

to simulators, many of these processes are necessarily incorporated using sub-resolution

implementations, models that aim to recreate the effects of the relevant physics in a coarse-

grained manner. These can sometimes be rather crude, such as mechanical injections of

energy. Nonetheless, galaxy formation simulations are nowadays able to create visually
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Figure 1.12: Image from the Illustris simulation (Genel et al., 2014; Vogelsberger et al., 2014a,b; Sijacki et al.,

2015), depicting a projection through the simulation volume at z = 0, centred on the most massive galaxy

cluster. The projection box is sized 15Mpc/h to a side, and the depicted quantity transitions from dark matter

density (left) to gas density (right). Image Credit: Illustris Collaboration.

realistic galaxies and reproduce a range of galaxy observables (e.g. Dubois et al., 2014; Vo-

gelsberger et al., 2014b; Schaye et al., 2015; Pillepich et al., 2018), and the field can be said

to have reached a stage of maturity (see, e.g., the review article by Vogelsberger et al., 2020).

1.2.3 Galaxies in the Universe

Galaxies are a fantastically diverse class of astronomical object. On the one hand, there

is the example of Messier 87 (M87; alternatively NGC 4486), mentioned earlier because of

the recent direct imaging of the shadow of its central black hole. M87 is one of the largest
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galaxies in the local Universe, several times more massive and more luminous than the

Milky Way (Murphy et al., 2011). At the other extreme, we could consider the example of

Segue 1, a faint satellite galaxy of the Milky Way. It has a detected membership of fewer

than 100 stars and a mass of ∼106 M�, some six orders of magnitude smaller than that of

the Milky Way (Simon et al., 2011). In addition to these stark contrasts in mass and lumi-

nosity, M87 and Segue 1 also differ greatly in their physical size, morphology, composition,

kinematics, formation history, and environment.

This large range of observed luminosities is encoded in the empirical Schechter lumi-

nosity function,

Φ(L )d L =Φ∗
�

L

L ∗

�α
e −L/L∗ d L

L ∗
, (1.43)

where Φ(L )d L gives the number density of galaxies in the luminosity range [L , L + d L ]
(Schechter, 1976). The normalisation Φ∗ is around 0.05 Mpc−3, the faint-end slope α≈−1,

and the characteristic luminosity L ∗ is typically quoted instead as an absolute magnitude,

M ∗ ∼ −20, comparable to that of the Milky Way (e.g. Cole et al., 2001). The exact values of

these parameters—and the goodness-of-fit of the functional form of Eq. (1.43)—vary de-

pending on the redshift, the wavelength band of observation, and the characteristics (en-

vironments, morphologies, etc.) of the population under consideration. Nonetheless, the

assumption of Eq. (1.43) as a universal luminosity function is certainly sufficient for illus-

trative purposes here.

The decreasing power-law form of Eq. (1.43) accords with our intuition of a hierarchical

Universe, with many small, faint objects and comparably fewer massive, luminous ones.

The reason for the exponential cutoff at the high-luminosity end is partly the inefficient

cooling discussed in § 1.2.2, and partly AGN feedback (e.g. Croton et al., 2006; also see

below).

A classic system for classifying the morphologies of galaxies is that of Hubble (1926), still

popular today albeit under altered and expanded forms, notably that of de Vaucouleurs

et al. (1991). Under these schemes, the two main classes of galaxies are ‘ellipticals’ (E)

and ‘spirals’ (S). Elliptical galaxies are rather featureless, smooth systems with contours

of equal brightness (isophotes) that are elliptical in shape. A given elliptical galaxy is sub-

classified according to the eccentricity of its isophotes. The subcategories are En , with

n ∈ {0, 1, 2, 3, 4, 5, 6, 7}, corresponding to axis ratio b /a = 1− n/10. In other words, an E0

galaxy is approximately spheroidal, while an E7 galaxy is rather elongated.54 M87 is a clas-

sic example of an elliptical galaxy (classification E0; Sandage & Tammann, 1981).

Spiral galaxies, such as the spiral nebulae discussed at the start of this chapter, have

prominent stellar discs exhibiting spiral arms of varying prominence. The spirals are sub-

54The axis ratio of a galaxy’s isophotes typically varies with radius. In this case, the axis ratio used for categorisa-

tion is taken at the isophote containing half of the galaxy’s total luminosity (Binney & Tremaine, 2008). Note

also that this subcategorisation scheme neglects any triaxiality of elliptical galaxies, although in fact this is

likely to be widespread.
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classified into groups Sa, Sb, Sc, and Sd according to how tightly their spiral arms are wound

around the centre of the galaxy, with Sa the most tightly wound. Intermediate cases be-

tween two subcategories are indicated by, e.g., Sab. Spiral galaxies also often have a central

‘bulge’, a concentrated system of stars at the centre of the galaxy, resembling a small ellipti-

cal galaxy. Sa-type galaxies have the most prominent bulges, while Sd-types typically have

no detectable bulges. In addition, many spiral galaxies have prominent ‘bar’ features in

their central regions. In the Hubble classification scheme, barred spirals are denoted SB,

i.e. SBa, SBb etc.

As well as these visually distinguishing features, spirals and ellipticals also vary in their

environments, compositions and kinematics. First, cluster galaxies are disproportionately

ellipticals while void galaxies are disproportionately spirals (e.g. Bamford et al., 2009). El-

liptical galaxies have older stars and very little star-forming gas in their interstellar media,

while the spiral arms of spiral galaxies are sites of present-day star-forming gas (e.g. Bell

et al., 2012). Finally, elliptical galaxies typically exhibit little rotation, while the discs of

spiral galaxies are rotationally supported. Various galaxy surveys have sought to further

understand the variation of such galactic properties with morphological type, such as the

Calar Alto Legacy Integral Field Area (CALIFA; González Delgado et al., 2015) and ATLAS3D

(Cappellari et al., 2011, and subsequent publications).

The rotation speed of a spiral galaxy as a function of distance from the galactic centre

is known as the ‘rotation curve’ of the galaxy. Assuming a circular orbit, the rotation speed

of a test particle is given by

v 2
circ =R

dΦ

d r
=a ·R, (1.44)

where R is the cylindrical radial coordinate of the particle (the corresponding cylindrical

radial vector isR),Φ anda are respectively the potential and acceleration due to the galaxy.

Eq. (1.44) can be used to connect the observed rotation curve of a galaxy to its potential

and thence to its mass distribution. Examples of the connection between rotation curves

and underlying mass distributions have already been exhibited in this Introduction. First,

rotation curves played a pivotal role in the discovery of dark matter (see Figure 1.6 and

accompanying discussion). Secondly, observations of rotation curves are among the key

sources of evidence for cored central density profiles in dark matter haloes (see Figure 1.8

and accompanying discussion). Rotation curves will also be the central object of study in

Chapters 2 and 3.

Recent photometric and spectroscopic galaxy surveys such as SDSS have led to an alto-

gether new classification scheme, based on ‘color-magnitude diagrams’, i.e. plots of colour

(e.g. U − V , where U and V are apparent magnitudes of a given galaxy in the U and

V bands) versus absolute magnitude for populations of galaxies. Colour-magnitude di-

agrams show a clear bimodality in galaxies, with a ‘blue cloud’ and a tight ‘red sequence’.

The galaxies in the blue cloud are assumed to be sites of active star formation, with the

excess blue radiation originating in young, hot stars. The red sequence galaxies, by con-
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trast, are largely ‘quenched’, i.e. their star formation is suppressed. There is a strong corre-

lation between this classification scheme and the Hubble scheme, with elliptical galaxies

predominantly on the red sequence and spirals in the blue cloud (Kauffmann et al., 2003;

Baldry et al., 2004; Hogg et al., 2004).

In addition to stars and gas, galaxies also host starlight-absorbing cosmic dust (com-

posed mainly of silicon, carbon, oxygen, and their compounds), and central black holes.

The black holes are described as ‘super-massive’, as their masses fall in the range 106 −
109M�. Accretion on to these black holes is believed to be the power source for extremely

luminous cross-spectrum radiation observed in many galaxies. These bright sources are

known as ‘active galactic nuclei’ (AGN), or in their most luminous manifestations, quasars.

As discussed in the description of structure formation above, galaxies are formed in dark

matter haloes, in which they continue to reside. While these haloes cannot be observed di-

rectly, their presence and properties can be inferred through indirect means, such as kine-

matic tracers or gravitational lensing. Dark matter haloes are often taken to be spherical,

and a canonical functional form assumed for the density profile is the simulation-derived

Navarro-Frenk-White (NFW) profile,

ρ(r ) =
ρ0

r

rs

�
1+

r

rs

�2 , (1.45)

where ρ0 and rs are respectively the scale density and scale radius (Navarro et al., 1996,

1997). The steep r −1 slope at small radii is the ‘cuspy’ profile that is possibly at odds with

some observations (see the discussion of the core/cusp controversy in § 1.1.5). In terms of

total mass, the dark matter halo is typically by far the dominant component of any galaxy.

This is particularly true of dwarf galaxies, the very high mass-to-light ratios of which suggest

they are very promising probes of dark matter (Mateo, 1998).

1.2.4 The Milky Way

Having detailed the properties of galaxies in the Universe, it is worth discussing how the

Milky Way (Figure 1.13), fits within that context. We are in the midst of a revolution in

understanding of the Milky Way, due primarily to the ESA mission Gaia, the ambitions and

possibilities of which are discussed below. First, however, a brief sketch of established facts

in Galactic astronomy at the dawn of the Gaia era, a much more detailed overview of which

can be found in the review article of Bland-Hawthorn & Gerhard (2016).

The Galaxy is a barred spiral, classified SBbc. Along with Andromeda (M31), it is one

of two large galaxies in the gravitationally bound Local Group, the remaining members of

the group being mostly satellites. The MW and M31 are scheduled to collide in roughly six

billion years (Cox & Loeb, 2008; van der Marel et al., 2012). The Local Group itself is situated
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Figure 1.13: Gaia’s all sky view of the Milky Way. Brightness indicates stellar density while hue indicates the

photometric colour of the starlight. Image Credit: ESA/Gaia/DPAC.

in a low-density filament of the cosmic web, proximate to the Virgo supercluster, in turn a

member of the larger Laniakea supercluster (Tully et al., 2014).

In some ways, the MW is an atypical specimen given its type and environment. For

instance, it is exceedingly rare for a galaxy of the MW’s luminosity to have two infalling

galaxies, both actively star forming (cf. the Magellanic Clouds; Robotham et al., 2012). It is

also the case that both the MW and M31 appear to inhabit the ‘green valley’, the relatively

sparsely populated region of the colour magnitude diagram inhabited by galaxies making

the transition from the blue cloud to the red sequence (Mutch et al., 2011). As such, the MW

is much redder and brighter than other galaxies of its morphological type (Licquia et al.,

2015). Finally, the mass of the Milky Way’s central black hole (given below) is also unusually

low (see, e.g., the compendium of central black hole masses of nearby galaxies collected by

Tremaine et al., 2002). These facts could be related to another MW anomaly: its unusually

quiescent merger history (e.g. Stewart et al., 2008; Deason et al., 2013; Ruchti et al., 2015).

On the other hand, various aspects of the MW are perfectly normal, such as its cold gas

fraction, stellar mass, and its position on the Tully-Fisher relation (the empirical relation

between maximal rotation speed and luminosity; de Rossi et al., 2009; Bland-Hawthorn &

Gerhard, 2016).

The MW hosts∼1011 stars, most of which—including the Sun—inhabit its disc (visible as

the central band in Figure 1.13). Upon closer inspection, the disc is found to be composed

of two subpopulations of stars: a ‘thick disc’ and a ‘thin disc’, distinct in their chemistries,
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ages, and vertical extents (Gilmore & Reid, 1983). Radially, both discs have exponentially

decaying density profiles, with scale radii of ∼2 kpc (Bland-Hawthorn & Gerhard, 2016).

Using SDSS star counts, Jurić et al. (2008) find that the Sun lies close to the disc midplane,

offset by 25±5 pc.

There are a number of methods of measuring the distance of the Sun from the galac-

tic centre (the ‘solar radius’, R0), such as direct measurements of the parallaxes or proper

motions of objects near the Galactic centre (e.g. Reid et al., 2009a,b), or indirect measure-

ments estimating the position of the centroid of stars in the Galactic bulge (e.g. Majaess,

2010). Bland-Hawthorn & Gerhard (2016) collect 26 independent measurements of R0 em-

ploying a range of such techniques, and find a carefully weighted consensus value of R0 =
8.2±0.1 kpc, noting that this is markedly below the International Astronomical Union stan-

dard of 8.5 kpc (Kerr & Lynden-Bell, 1986). Such Galactic centre astrometry can also lead to

precise measurements of the angular rotation speed of the Sun (e.g. Reid et al., 2009b). Cou-

pled with a value for R0, this gives a value for the velocity component of the Sun tangential

to the Galactic rotation, 248± 3 km/s. The Local Standard of Rest (LSR) is the name given

to the instantaneous inertial frame centred at the Sun and moving at speed v0 ≡ vcirc(R0)
in the direction tangential to the Galactic rotation, where vcirc is the circular velocity given

by Eq. (1.44). Stellar orbits are not perfectly circular, and stars in the solar neighbourhood

(including the Sun) have small peculiar velocities in the LSR frame, so v0 need not equal

the solar speed stated above (see, e.g., the discussion in Schönrich et al., 2010). In partic-

ular, the Sun has peculiar velocity (U , V , W )≈ (10, 11, 7) km/s,55 leaving v0 = 238±15 km/s

(Bland-Hawthorn & Gerhard, 2016).

The inner Galaxy contains a long bar (Hammersley et al., 1994, 2000), a ‘box/peanut’-

shaped bulge (McWilliam & Zoccali, 2010; Nataf et al., 2010; Wegg & Gerhard, 2013); likely

to be simply an edge-on view of the central part of the bar (Athanassoula, 2005), a nuclear

star cluster (Becklin & Neugebauer, 1968), and a super-massive black hole believed to be

associated with the radio source Sgr A*, taken to be the Galactic centre (see Reid, 2009, for

a review of evidence for the central black hole). The mass of the black hole can be inferred

from the orbits of stars within the nuclear star cluster. According to Gillessen et al. (2017),

M• = 4.28± 0.23× 106 M�. The Event Horizon Telescope is expected to produce a direct

image of the black hole shadow in Sgr A*, a local counterpart to their widely publicised

image from M87 (Figure 1.9; Event Horizon Telescope Collaboration, 2019).

As predicted by the theory of structure formation sketched above, the Milky Way is en-

sconced in a dark matter halo, the presence of which is indicated by the kinematics of stars

and stellar systems in the outer parts of the Galaxy. For the mass and size of the halo,

Bland-Hawthorn & Gerhard (2016) calculate a weighted mean of measurements from a

55The Galactic (U, V, W) coordinates are defined such that the positive values here for all three components

respectively indicate that the Sun is moving toward the Galactic centre, faster than the local rotation speed,

and toward the north Galactic pole. Because the Sun is already north of the Galactic disc midplane, the last

point means the Sun is currently receding farther from the midplane.
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number of stellar kinematic studies in the literature and arrive at a virial mass of Mvir =
1.3± 0.3× 1012 M� and a virial radius of 282± 30 kpc. This value for the virial mass is con-

sistent with more recent measurements, including those based on Gaia data (see below;

Callingham et al., 2019; Posti & Helmi, 2019; Watkins et al., 2019).

Another component of the galaxy worth mentioning is the stellar halo, the site of many

stellar streams and substructures. These are the wreckage of dwarf galaxies and globular

clusters that have fallen into and are being torn apart by the Milky Way’s tidal field. In the

past, such substructures have usually been identified as over-densities of resolved stars, as

in the ‘Field of Streams’ image (Belokurov et al., 2006). There, using multi-band SDSS pho-

tometry, the stellar halo of the Milky Way was revealed as being composed of criss-crossing

stellar streams, the detritus of satellite galaxies. However, streams and substructure re-

main kinematically cold and so identifiable in phase space long after they have ceased to

be recognisable in star counts against the stellar background of the Galaxy (Johnston, 1998).

The debris persists for a large fraction of a Hubble time,56 sometimes longer, so substruc-

tures in phase space remain to the present day. Searches in phase space for streams are

much more powerful than searches in configuration space.

Just as Baker et al. (2019) argued that we have entered a second golden age of GR, it is un-

doubtedly also the case we have entered a new golden age of observing and understanding

the Milky Way. In the past two decades, a variety of photometric and spectroscopic surveys

such as RAVE (RAdial Velocity Experiment; Steinmetz et al., 2006), VVV (VISTA Variables

in the Via Lactea; Minniti et al., 2010), SEGUE (Sloan Extension for Galactic Understanding

and Exploration; Yanny et al., 2009), and APOGEE (Apache Point Observatory Galactic Evo-

lution Experiment; Allende Prieto et al., 2008) have led to significant progress in the field.

However, the pivotal development has been the launch and early data releases of the Gaia

mission (Figure 1.13; Gaia Collaboration, 2016, 2018). The Gaia satellite (sometimes touted

as the ‘billion star surveyor’) is a scanning satellite of the European Space Agency that is

monitoring all objects brighter than magnitude G ≈ 20 around 70 times over a period of 5

years (though the mission lifetime has recently been extended). Its telescopes are provid-

ing magnitudes, parallaxes, proper motions and broad band colours for over a billion stars

in the Galaxy (≈ 1 per cent of the Milky Way stellar population) within the Gaia-sphere – or

within roughly 20 kpc of the Sun for main sequence stars, 100 kpc for giants.

In constructing this 3D map of an appreciable part of the Milky Way, a key science goal

of Gaia is to facilitate a greater understanding of the gravitational potential and underlying

matter distribution of the Galaxy. As alluded to above, several recent works have already

begun explorations in this direction, inferring the properties of the MW dark matter halo

using Gaia data (e.g. Wegg et al., 2019; Posti & Helmi, 2019; Watkins et al., 2019).

Detailed phase space information from Gaia has also led to the discovery of abundant

streams and substructures (Myeong et al., 2018; Malhan et al., 2018; Meingast et al., 2019;

56The Hubble timescale tHubble ≡ 1/H0 ≈ 14 Gyr is a first order approximation for the age of the Universe.
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Koposov et al., 2019). Streams discovered by Gaia are already being followed up spectro-

scopically to give six-dimensional (6D) phase space data (Li et al., 2019b). Bright tracers

such as blue horizontal branch stars or RR Lyraes can be seen out to distances of 250 kpc,

assuming Gaia’s limiting magnitude of G ∼ 20.5. Stars near the tip of the red giant branch

can be seen even further out to at least 600 kpc. In future, this should enable Gaia to pro-

vide astrometry for very distant streams, perhaps near the very edge of the Milky Way’s dark

halo.

If a stream were a simple orbit, then the positions and velocities of stars would per-

mit the acceleration and force field to be derived directly from the 6D data. Streams are

more complex than orbits (Sanders & Binney, 2013; Bowden et al., 2015), but the principle

remains the same – their evolution constrains the matter distribution and theory of gravity.

1.3 Screened Modified Gravity

1.3.1 Scalar Tensor Theories

Let us now consider the consequences of introducing a scalar field φ to the gravitational

sector. In the Einstein frame, the action for a general scalar-tensor theory is given by

Sφ =
c 3

8πG

∫
d 4 x

p−g
�

1

2
R − 1

2
∇µφ∇µφ−V (φ)

�
+Sm [g̃µν,ψi ]. (1.46)

Note that matter does not move on geodesics of the Einstein frame metric gµν, but of the

Jordan frame metric g̃µν. The two metrics are related via

g̃µν = A2
�
φ
�

gµν, (1.47)

where A2
�
φ
�

is some coupling function. As a result of its presence in the matter action,

the matter energy-momentum tensor Tµν is no longer covariantly conserved. One instead

finds

∇µT µν =
d ln A(φ)

dφ
T∇νφ, (1.48)

where T is the trace of T µν. Taking the Newtonian limit of (1.48), one finds an altered New-

tonian force law

ẍ+∇ΦN =−β (φ)c 2∇φ, (1.49)

where the coupling β is defined by

β (φ)≡ d ln A(φ)
dφ

. (1.50)

The novel term on the right-hand side of (1.49) is the ‘fifth force’, i.e. the weak-field modi-

fication to gravity that is the subject of study in the remainder of this thesis.
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Extremising the action (1.46) with respect to the scalar field, and assuming an energy-

momentum tensor for ideal, non-relativistic matter, one derives the equation of motion for

the scalar field,

�φ =
d V (φ)

dφ
+

8πGρ

c 2
β (φ), (1.51)

where ρ is the local non-relativistic matter density. As a consequence of the second term

on the right-hand side of (1.51), the dynamics of the scalar field are not governed by V (φ)
alone, but are also affected by the local matter environment, via ρ. Indeed, one can recast

(1.51) as

�φ =
d Veff(φ)

dφ
, (1.52)

which introduces an effective potential, defined as

Veff(φ)≡V (φ) +
8πGρ

c 2
ln A(φ). (1.53)

The dynamics ofφ are governed by this effective potential, which (viaρ) encodes informa-

tion about the local environment.

1.3.2 Screening Mechanisms

At this stage, it may not be obvious how the fifth force introduced in Eq. (1.49) could pass

unnoticed in laboratory and Solar System tests. For this, there exist ‘screening mecha-

nisms’, i.e. mechanisms that suppress the fifth force in dense environments like those of

our solar system, but (for interesting, testable theories) unleash it in other environments.

The focus of this thesis is essentially the phenomenology of screening. Chapters 2 and

3 consider the imprint of screening radii (discussed below) on galaxy rotation curves, while

Chapter 4 studies the manner in which EP violations arising from screening (also discussed

below) would impact the formation of stellar streams around the Milky Way.

One screening mechanism is the ‘symmetron’ mechanism, named for its Higgs-like ef-

fective potential. In this mechanism, the coupling β vanishes when φ = 0, which is the

minimum of the effective potential at high densities. The fifth force is therefore suppressed

in these environments. Below a critical density however, the potential minimum becomes

non-zero, and the fifth force is unleashed.

Another screening mechanism is the ‘chameleon’ mechanism. Here, V (φ) and A(φ)
are chosen such that the walls of the effective potential well are very steep in high density

regions. The mass of the scalar becomes very large in these regions, and the fifth force is ex-

ponentially suppressed as a result. The bulk of this thesis is framed in terms of chameleon

theories, but it should be noted that many of the predicted observable signatures would

also arise under other screening mechanisms.
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The Chameleon: An Example

Let us consider a simple example of a chameleon theory,

V (φ) =
V0

φ
; A(φ) = e βφ, (1.54)

where V0 is a constant, setting the energy scale of the scalar field. Note that the coupling

β is also assumed constant, and is equivalent to β (φ) as given by Eq. (1.50). According to

Eq. (1.53), the effective potential for this theory is

Veff(φ) =
V0

φ
+

8πGρ

c 2
βφ. (1.55)

The minimum of this effective potential is easily calculable, as is the Compton wavelength

of the scalar,

λC ≡V ′′
eff(φmin)

− 1
2 =

1p
2

V
1
4

0

�
c 2

8πGρβ

� 3
4

. (1.56)

Thus, the wavelength is a decreasing function of ambient density. The Compton wave-

length sets the range of the fifth force, so an extremely small wavelength would correspond

to an undetectable fifth force. Because many orders of magnitude separate cosmologi-

cal densities from those found within our Solar System, it is possible to construct a theory

wherein λ is undetectably small in a laboratory or space experiment, but relevant else-

where. This is the power of the chameleon mechanism.

Screened Fifth Forces

To understand screened fifth forces further, let us consider the different ways in which a

static, uniform, spherical object (density ρ = ρ̄+δρ, mass M , radius R ) embedded within

a static, uniform background (density ρ̄) can source a fifth force. In and around the object,

the scalar field equation of motion (1.51) becomes

1

r 2

d

d r

�
r 2 dφ

d r

�
=

d V (φ)
dφ

+
8πGρβ (φ)

c 2
. (1.57)

If the object is large and dense enough, the scalar field will minimise its effective poten-

tial nearly everywhere within the object, i.e., φ =φmin(ρ̄+δρ). The field gradients conse-

quently vanish, which in turn kills the fifth force, according to Eq. (1.49). Such an object

can be said to be ‘screened’. There will be a thin shell at the surface of the object where the

scalar field changes fromφmin(ρ̄+δρ) to φ̄ ≡φmin(ρ̄).

Conversely, one can instead imagine a smaller, less dense body, within which the scalar

field is unable to minimise its effective potential. Instead, the scalar field can be written as

a linear perturbation against the background: φ = φ̄+δφ. Then, subtracting background

terms from Eq. (1.57) yields

1

r 2

d

d r

�
r 2 dδφ

d r

�
=

1

λ̄2
C

δφ+
8πGβ (φ̄)

c 2
δρ+

8πGβ ′(φ̄)ρ̄
c 2

δφ, (1.58)
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where λ̄C is the Compton wavelength (1.56) evaluated at the background (ρ = ρ̄), and

quadratic terms have been discarded. Inside the object, the first term on the right-hand

side can be discarded because any cosmologically relevant theory will have R/λ̄C � 1,

where R is the characteristic size of the region of interest, taken to be much smaller than

cosmological scales. The third term on the right-hand side can also be discarded because

we require that β ′(φ̄)δφ� β (φ̄), i.e. β (φ) should depend only weakly on φ. This ensures,

via Eq. (1.50), that A(φ) is close to unity, which in turn ensures that a small metric pertur-

bation in the Einstein frame is also small in the Jordan frame (cf. Eq. 1.47). One can then

integrate to find the gradient of the scalar field

dδφ

d r
=

2β (φ̄)
c 2

G M (r )
r 2

; r ≤R , (1.59)

where M (r ) is the mass enclosed within radius r . Outside the object, however,δρ vanishes

so that the 1/λ̄2
C term in Eq. (1.58) can no longer be disregarded. The equation is then a

screened Poisson equation, with solution

dδφ

d r
=

2β (φ̄)
c 2

G M

r 2
e −(r−R )/λ̄C ; r >R , (1.60)

where Eq. (1.59) evaluated at r = R has been used as a boundary condition, as has the

requirement that δφ→ 0 as r →∞.

Equations (1.59) and (1.60), taken together with Eq. (1.49), give an expression for the

acceleration due to the fifth force,

a5 =





−2β (φ̄)2
G M (r )

r 2
; r ≤R .

−2β (φ̄)2
G M

r 2
e −(r−R )/λ̄C ; r >R .

(1.61)

The minus signs indicate that the fifth force is attractive, i.e. it acts to augment standard

gravity. An unscreened object thus exerts a fifth force equal to its standard gravitational

attraction multiplied by a coupling strength, and exponentially suppressed at distances

larger than the Compton wavelength of the scalar field.

We now have a picture of two extremes: screened objects which exert no fifth force, and

unscreened objects which enhance their standard gravity by a multiplicative O (1) factor.

However, there is an intermediate regime: partial screening. One can imagine an object in

which a central region is screened, but there is an extended region outside of this in which

scalar field gradients are non-vanishing. The radius of this central region is known as the

‘screening radius’, rscr, and is essentially the radius within which the linear approximations

made in Eq. (1.58) break down.

One can derive an expression for the fifth force exerted by a partially screened object

following the same procedure as above, now taking rscr as the lower limit of the integral
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Fully unscreened Partially screened Fully screened
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�
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R

∇φ

Figure 1.14: The top row shows the acceleration due to the fifth force (1.62) on a test particle (black circle)

at distance r from a large spherical body (mass M , radius R ) for a variety of screening regimes: unscreened

(left), partially screened (middle), or fully screened (right). Note that β ≡ β (φ̄) is taken as a constant, and it

is assumed that r � λC , so the exponential factor in Eq. (1.62) can be disregarded. The bottom row instead

considers acceleration due to the fifth force (1.64) on the spherical body itself, now situated in an externally

sourced field gradient (indicated by the arrows), for the same screening regimes. Note that in both rows, the

statement that a5 = 0 in the screened case is in reality an approximation, because the fifth force is sourced

and experienced by a thin shell at the surface of the sphere, in which φ traverses from its value inside the

sphere to its background value.

rather than r = 0. This leads to

a5 =





0; r ≤ rscr.

−2β (φ̄)2
G M (r )

r 2

�
1−M (rscr)

M (r )

�
; rscr < r <R .

−2β (φ̄)2
G M

r 2

�
1−M (rscr)

M

�
e −(r−R )/λ̄C ; r >R .

(1.62)

Thus, outside the screening radius, the fifth force on a test particle is sourced only by the

mass enclosed in the shell between the test particle and the screening radius. The upper

row of Figure 1.14 shows a visualisation of the fifth force on a test particle—Eq. (1.62)—for

a variety of screening regimes, from screened rscr =R to unscreened rscr = 0.

An implicit expression for the screening radius can be derived by integrating dδφ/dr

again, noting that δφ→ 0 as r →∞. This leads to

φ̄

2β (φ̄)
=

4πG

c 2

∫ ∞

rscr

δρ(r )r d r, (1.63)
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assuming φ̄�φ(rscr).

Note that the right hand side of this equation is equivalent to the absolute value of the

Newtonian potential of all mass outside the screening radius, divided by c 2. If the poten-

tial well of a given object is insufficiently deep, then no rscr will satisfy the equality, and

the object is unscreened. For any given theory, φ̄ and β (φ̄)will typically be input parame-

ters, so the left-hand side of Eq. (1.63) is often written as χ0, the ‘self-screening parameter’.

One can then gauge whether an isolated object will be screened in a given theory by com-

paring the potential depth of the object |ΦN |/c 2 with χ0. If |ΦN |/c 2 < χ0 the object will be

unscreened, otherwise it will be partially or fully screened. For instance, a MW-like galaxy

has |ΦN |/c 2 ∼ 10−6, so will be screened for theories with χ0 ® 10−6.

As will be demonstrated in Chapters 2 and 3, the situation is more complicated than this

for non-spherical or non-isolated objects. ‘Environmental screening’ is an effect whereby

objects that would be unscreened in isolation might be screened if they are in the presence

(i.e., within a Compton wavelength) of a larger, screened object.

Equivalence Principle Violation

In the above discussion, we derived an expression (1.62) for the fifth force on a test particle

due to an extended object. However, it is also interesting to consider how an extended

object responds to an external fifth force.

By integrating the momentum flux on the surface of a sphere around an object (position

x, mass M , radius R , screening radius rscr) embedded in external Newtonian potential ΦN

and scalar fieldφ, Hui et al. (2009) derive an expression for the acceleration of the object,57

ẍ+∇ΦN =−Qβ (φ̄)c 2∇φ. (1.64)

The right-hand side is the acceleration due to the fifth force. Comparing with Eq. (1.49),

the only difference is the appearance of the ‘dimensionless scalar charge’ Q, defined by

Q ≡
�

1−M (rscr)
M

�
. (1.65)

The effect of Q is to suppress the fifth force acting on an extended object if the object is at

all screened. If the object is fully screened rscr = R , then Q = 0 and the fifth force acting on

the object vanishes. Conversely, if the object is fully unscreened rscr = 0, then the object

falls at the same rate as an unscreened test particle. A visualisation of this is given in the

lower row of Figure 1.14.

Because objects of differing compositions (and thus screening levels) fall differently in

the same external field, the equivalence principle (EP) is violated. It is interesting to note

57The notation of Hui et al. (2009) differs somewhat from the notation here: their ‘α’ is here β , their ‘ε’ is here

Q , and their ‘Q ’ is here QβM , with M being the total mass of the object.
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that this EP-violation is not ‘encoded’ into the theory at the action level. Indeed, it can be

seen in the action (1.46) that all matter species are equivalent in their minimal coupling to

the Jordan-frame metric A2(φ)gµν. Instead, the EP-violation emerges at a ‘higher’ level, as

a consequence of differences in screening.

1.3.3 f (R )Gravity

Chapters 2 and 3 focus in particular on one species of chameleon theory: Hu-Sawicki f (R )
gravity (Hu & Sawicki, 2007). This section covers all of the relevant formalism of that theory.

f (R ) Action

First studied by Buchdahl (1970), f (R ) theories replace the Ricci scalar R in the Einstein-

Hilbert action (1.12) with a generalised R+ f (R ), allowing for the possibility of higher-order

curvature terms.58 The action is then given by

Sf (R ) =
c 3

8πG

∫
d 4 x

p−g
1

2

�
R + f (R )

�
+Sm [gµν,ψi ]. (1.66)

Note that the theory reduces toΛCDM, i.e. Eq. (1.15), if f (R ) =−2Λ. Extremising the action

with respect to the metric gives a set of modified Einstein field equations

Gµν+ fR Rµν− 1

2
f (R )gµν+ gµν∇α∇α fR −∇µ∇ν fR =

8πG

c 4
Tµν, (1.67)

where fR ≡ d f (R )/dR . Taking the trace of these field equations leads to

3� fR −R + fR R −2 f (R ) =−8πGρ

c 2
, (1.68)

adopting the energy-momentum tensor for non-relativistic matter (i.e., T αβ =ρuαuβ ).

Equation (1.68) can be interpreted as an equation of motion for the quantity fR , which

plays the role of the scalar field in this theory. Taking the Newtonian limit, one can simplify

the equation of motion and also derive a modified Poisson equation

∇2 fR =
1

3

�
δR − 8πG

c 2
δρ

�
, (1.69)

∇2Φ=
16πG

3
δρ− c 2

6
δR , (1.70)

58There is some variation in the literature regarding the definition of f (R ). In some places, the convention

adopted is R →R + f (R ), while elsewhere one finds R → f (R ). In this thesis, the former convention has been

adopted in order to remain consistent with Puchwein et al. (2013) and the internal workings of MG-Gadget,

the f (R ) simulation code used in Chapter 2.
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where δ signifies a perturbation of a quantity from its background value. Implicit in the

derivations of these equations is the assumption | fR | � 1 and the quasistatic approximation

|∇ fR | � ∂ fR
∂ t . The validity of this approximation is discussed in Sawicki & Bellini (2015).

To illustrate some of the physics encapsulated in the above equations, let us assume

that we have chosen a functional form of f (R ) that exhibits the chameleon mechanism,

and consider two regimes. In a screened region, the scalar field would minimise its effective

potential everywhere, leaving Eq. (1.69) unsourced, implying δR = 8πGδρ. Substituting

this into Eq. (1.70), one recovers the classical Poisson equation

∇2Φ= 4πGδρ. (1.71)

Conversely, far away from any overdensities, δR → 0. Substituting this into Eq. (1.70), one

recovers an enhanced Poisson equation

∇2Φ= 4πGeffδρ, (1.72)

with Geff =
4
3G . Thus, in f (R ) gravity, the unscreened fifth force has a strength 1/3 that of

standard gravity, or equivalently β =
p

1/6.

f (R )Gravity as a Canonical Scalar-Tensor Theory

Let us connect the f (R ) formalism above with the discussion of scalar-tensor theories of

gravity in previous sections, by transforming the f (R ) action (1.66) into a form equivalent

to Eq. (1.46).59 One can start by defining the scalar fieldφ via

fR ≡ f ′(R ) = e −
2p
6
φ −1, (1.73)

and rescaling the metric

g̃µν = e −
2p
6
φgµν. (1.74)

The action (1.66) can then be rewritten as

S =
c 3

8πG

∫
d 4 x

p−g̃
�

1

2
R̃ − 1

2
∇µφ∇µφ−V (φ)

�
+Sm [A

2(φ)g̃µν,ψi ], (1.75)

where

A(φ) = e
φp

6 ; V (φ) =
R fR − f (R )

2 fR
. (1.76)

The form of the action is now equivalent to the canonical scalar-tensor action (1.46). As

discussed in the introduction of screening mechanisms (§ 1.3.2), the theory can exhibit

chameleon screening if A(φ) and V (φ) are chosen such that φ gradients are strongly sup-

pressed in regions of high density. In the present context, this is achieved by choosing an

appropriate functional form for f (R ).

59The derivation here follows Brax et al. (2008).
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Using equations (1.73) and (1.76), one can find an expression for the force law (1.49)

now in terms of fR instead ofφ,

ẍ+∇ΦN =
1

2
c 2∇ fR . (1.77)

As before, the fifth force contribution is directly related to gradients in the scalar field fR .

Hu-Sawicki Model

A widely studied f (R )model known to exhibit chameleon screening is that of Hu & Sawicki

(2007, henceforth HS),

f (R ) =−m 2
c1

�
R

m 2

�n

1+ c2

�
R

m 2

�n , (1.78)

where m 2 ≡H 2
0 Ωm/c 2. The remainder of this thesis assumes n = 1, leaving two free param-

eters: c1 and c2. The model can recover an expansion history close toΛCDM if c2R/m 2� 1,

so that

f (R )≈−m 2 c1

c2

�
1+O

�
m 2

c2R

��
. (1.79)

Then, one recovers ΛCDM to first order, i.e. f (R )≈−2Λ, if

c1

c2
= 6
ΩΛ
Ωm

. (1.80)

With this, we are left with a free choice of just one parameter: either c1 or c2.

Differentiating Eq. (1.78), the scalar field fR is given by

fR =− c1�
c2R
m 2 +1

�2 ≈−
c1

c 2
2

�
m 2

R

�2

. (1.81)

Using the FLRW metric (1.20), one can get an expression for the background curvature

as function of scale factor a ,

R̄ (a ) = 3
m 2

a 3

�
1+4

ΩΛa 3

Ωm

�
. (1.82)

Combining equations (1.82) and (1.81), one can derive expressions for the background

scalar field f̄R , and the curvature perturbation δR ≡R − R̄ (a ),

f̄R (a ) = a 6 f̄R 0

�
1+4 ΩΛΩm

1+4ΩΛa 3

Ωm

�2

, (1.83)

f̄R 0 ≡ f̄R (a = 1) =− 2ΩΛΩm

3 (Ωm +4ΩΛ)
2

1

c2
, (1.84)

δR = R̄ (a )



√√√ f̄R (a )

fR
−1


 . (1.85)
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It was seen above that there is only one free parameter remaining in the model, either c1 or

c2. From Eq. (1.84), it is apparent that choosing c2 is equivalent to choosing the present-day

(a = 1) value of the background scalar field, f̄R 0. The ΛCDM+GR limit corresponds to the

limit f̄R 0 → 0 or c2 →∞. Many f (R ) studies, including later chapters of this thesis, quote

results in terms of constraints on f̄R 0, which is the key input parameter of the theory. It

is interesting to note that f̄R 0 ≈ −χ0 (see § 1.3.2), so that f̄R 0 plays a similar role as a ‘self-

screening parameter’, indicating which objects will be unscreened and which will be (fully

or partially) screened.

As a final note in this section, it will prove useful in Chapters 2 and 3 to rewrite the mod-

ified Poisson equation (1.70) in terms of an ‘effective density’ that encodes the modified

gravity contributions,

δρeff ≡
1

3
δρ− c 2

24πG
δR , (1.86)

so that the modified Poisson equation (1.70) can be rewritten as

∇2Φ= 4πG
�
δρ+δρeff

�
. (1.87)

1.3.4 Simulations

As withΛCDM, in order to generate observable predictions from modified gravity theories,

N-body simulations are an invaluable tool at non-linear scales where linear perturbation

theory no longer holds (see § 1.2.2). This is particularly the case for theories with screening

mechanisms, in which the phenomenology of screening would be expected to lead to non-

trivial imprints on exactly these scales. While greater attention has been paid in the last two

decades to the construction of simulations of ever finer resolution and ever greater realism

under ΛCDM, recent years have also seen a flurry of activity in the field of MG simulations.

Modified gravity simulations are significantly more computationally expensive than

ΛCDM ones, for one primary reason: non-linearity. To be precise, at each timestep a mod-

ified gravity simulation code needs to solve a modified Poisson equation, as well as some

equation of motion for the scalar field.60 In HS f (R ) gravity, these governing equations

are (1.87) and (1.69) respectively, supplemented by Eqs. (1.83), (1.85), and (1.86). All taken

together, these equations can be solved for the scalar field fR for a given density distribu-

tion δρ. For a screening mechanism to even exist, some non-linearity must be built into

the scalar field equation of motion. This is manifest in the f (R ) case upon substituting

Eq. (1.85) into Eq. (1.69), leading to a f −1/2
R term in the equation of motion for the scalar field

fR . As a result of this non-linearity, efficient methods such as Fast Fourier Transforms—

used widely in gravity solvers—can no longer be utilised. Instead, the non-linear scalar field

60Alternatively, one could solve the standard Poisson equation, and calculate the fifth force separately via gra-

dients of the scalar field, cf. Eqs. (1.49) and (1.77). However, one still needs to first solve for the scalar field via

some non-linear equations of motion.
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equations such as Eq. (1.69) are directly discretised and solved using relaxation methods.

In Chapter 2, the scalar field solver within the f (R ) N-body code MG-Gadget (Puchwein

et al., 2013) is used extensively, while Chapter 3 describes and employs a 1D analogue.61

The first simulations of screened modified gravity were the HS f (R ) gravity simulations

of Oyaizu (2008) (published in a three part series of articles, alongside Oyaizu et al., 2008;

Schmidt et al., 2009).62 Considering the matter power spectrum, the authors found a en-

hancement of power on all scales smaller than the Compton wavelength of the theory, as

had been predicted previously by Hu & Sawicki (2007). However, it was also demonstrated

here for the first time that screening suppresses this enhancement on the smallest scales.

Since then, MG simulation codes have abounded. A highly incomplete list of examples

could include the aforementioned MG-Gadget (Puchwein et al., 2013), ECOSMOG (Li et al.,

2012), and ISIS (Llinares et al., 2014). The review article by Llinares (2018) gives a more com-

plete overview of modified gravity codes, as well as a description of various commonly used

numerical techniques and optimising strategies such as ‘multigrid acceleration’ (Brandt,

1977). Many codes adopt Hu-Sawicki f (R ) gravity, taking it as a representative example

of a chameleon theory, while many alternatively or additionally adopt different theories

of gravity, incorporating different screening mechanisms. Winther et al. (2015) perform a

quantitative comparison of several of these codes, finding good agreement between their

predictions for key observables, such as the matter power spectrum.

One point worth noting is that a near-universal assumption in these MG codes is the

quasistatic approximation, i.e. the assumption that time derivatives of the scalar field can

be neglected, as was assumed in the derivation of Eqs. (1.69) and (1.70). The general va-

lidity of this approximation in modified gravity theories was discussed in Sawicki & Bellini

(2015), and tested explicitly in simulations by Winther et al. (2015) and Bose et al. (2015)

in the symmetron and HS f (R ) cases respectively. Both of these tests found the quasistatic

approximation to be valid for all practical purposes.

Following the trend established by Oyaizu et al. (2008), a key focus of MG simulation

works has been on statistics of the large-scale matter distribution such as power spectra,

mass and correlation functions, or the Lyman-α forest (Zhao et al., 2010, 2011; Li & Hu,

2011; Lombriser et al., 2013; Puchwein et al., 2013; Arnold et al., 2015; Cataneo et al., 2016;

Arnold et al., 2019a). On the other hand, several works have considered various other ob-

servables, such as the properties of voids (Zivick et al., 2015; Cautun et al., 2018; Paillas

et al., 2019; Davies et al., 2019) and clusters (Lombriser et al., 2012a,b; Arnold et al., 2014),

or imprints on galaxy/halo dynamics (Schmidt, 2010; Arnold et al., 2016). With some ex-

61And Appendix A describes and employs a 2D analogue.
62The simulations of Oyaizu (2008) were not, however, the first modified gravity simulations in general. Ear-

lier studies, such as those of Macciò et al. (2004); Kesden & Kamionkowski (2006a,b), typically employed

unscreened theories with non-universal couplings. The review article of Baldi (2012) contains a wealth of

information about the historical development of modified gravity simulations.
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Figure 1.15: Image of a galaxy from the SHYBONE simulations of Arnold et al. (2019b), showing the gas den-

sity in a thin slice in the galactic disc plane. The colour indicates the fractional strength of the fifth force. The

size of the plotted region is 72.5 kpc from the centre of the galaxy to the edge of the image. The central blue

region is the screened region of the galaxy. Reproduced from Arnold et al. (2019b). © Springer Nature 2019.

Reprinted with permission.

ceptions (e.g. Arnold et al., 2014; Hammami et al., 2015; Arnold et al., 2015, 2019a), most of

these studies have simulated only the dark matter and scalar field, with baryons absent.

A difficulty in using statistics of large-scale astrophysical structure to test gravity is that

the scales on which modified gravity might impart observable signatures are the very same

as those in which baryonic processes such as AGN feedback also play a role (Puchwein et al.,

2013; Arnold et al., 2019a). In particular, AGN feedback acts to suppress power where a fifth

force would enhance it. A degeneracy therefore exists: simplistically, modified gravity plus

strong AGN feedback could be mistaken for GR plus mild AGN feedback. In reality, the ef-

fects would not precisely cancel (e.g., Arnold et al., 2019a, find a ‘sweet spot’ at k ∼ 1Mpc−1

where the influence of AGN feedback on the power spectrum is significantly smaller than

that of modified gravity), but it is nonetheless important to have a thorough understanding

of them in order to generate predictions for the next generation of wide-field galaxy surveys
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such as LSST (LSST Science Collaboration, 2009) and Euclid. Moreover, the possibility of

a complex, non-linear interplay (a ‘back-reaction’) between the two effects means that to

gain this understanding, they ideally need to be simulated together. However, the com-

putational expense of modified gravity simulations makes this very difficult, and so this

milestone was only very recently passed for the first time.

Using the state-of-the-art baryonic feedback models of IllustrisTNG (Pillepich et al.,

2018), Arnold et al. (2019b) ran the first MG galaxy formation simulations: the SHYBONE

suite (Simulating HYdrodynamics BeyONd Einstein). Vindicating some of our assumptions

in Chapter 2, they demonstrate that disc galaxies are able to form under HS f (R ) grav-

ity, even when only their innermost regions are screened (see Figure 1.15). For the matter

power spectrum, they find that for f̄R 0 =−10−6, the power spectrum is actually very well es-

timated by a simple linear sum of the modified gravity enhancement and the AGN feedback

suppression, where each is calculated separately (and less expensively) from DM-only f (R )
simulations and ‘full physics’ ΛCDM simulations respectively. However, for f̄R 0 = −10−5,

the back-reaction becomes important and this is no longer the case. The reason for this

difference between the two cases is possibly to do with whether or not the central regions

of AGN-hosting haloes are screened in a given modified gravity scenario.

1.3.5 Galaxy-Scale Tests

Chameleon gravity theories have been subject to a number of tests on a variety of scales,

ranging from the laboratory to the cosmic microwave background. However, some of the

strongest constraints to date have come from weak-field galaxy-scale probes (e.g., the con-

straints of Desmond et al., 2018b, described below). At the same time, as I described in

§ 1.1.5, galaxy scales are actually among the least explored regions of parameter space for

tests of gravity in general, but will increasingly be accessible with upcoming datasets (cf.

the ‘Novel Probes’ project of Baker et al., 2019). The coming years therefore hold a great deal

of promise for the exploration of chameleon parameter space with galaxy-scale probes.

This section focuses on such galaxy-scale tests of chameleon theories. A more compre-

hensive review of tests and constraints would venture beyond the scope of this thesis, but

such works do exist in the literature. For example, the review article by Burrage & Sakstein

(2018) compiles constraints on chameleon theories from all conceivable sources. More-

over, the aforementioned work by Baker et al. (2019) and the review article by Sakstein

(2018) both describe a number of astrophysical probes of modified gravity theories in great

detail.

‘Galaxy-scale’ here means the scale of individual galaxies, or at most, the distances sepa-

rating a galaxy from its satellites and near neighbours. This section therefore excludes tests

based on galaxy clusters and tests based on intergalactic distance indicators, although both

of these regimes provide rather powerful probes of modified gravity.
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Interestingly, several of the observable signatures described below arise—directly or

indirectly—as a result of the effective EP-violation described in § 1.3.2. These signatures

often utilise the fact that for χ0 (or | f̄R 0|) ® 10−6, main sequence stars will be self-screened.

As illustrated in the lower row of Figure 1.14, these stars will not experience any external

fifth force. However, if their host galaxies are unscreened then the diffuse dark matter and

gas components will feel a fifth force, and interesting phenomenology can arise as a result.

For reasons of convenience, f̄R 0 is used in the descriptions below as a constraining pa-

rameter. However, it should be noted that several of these tests (and chameleon tests in

general) derive constraints in a two-dimensional β −χ0 space, or equivalent.

Screening Maps

As discussed in § 1.3.2, ‘environmental screening’ is a phenomenon whereby an object can

be screened by its environment. A galaxy that would be unscreened in isolation could be

partially or fully screened if instead it is situated in an overdense environment.

This is a significant hurdle to overcome for observational probes: if a galaxy shows no

significant modified gravity signal, it is first necessary to understand whether it is screened

by its environment before this can be translated into theory constraints.

In the chameleon context, it has been shown in simulations (e.g. Cabré et al., 2012)

that as a first approximation, the degree of environmental screening of a given galaxy can

be quantified by the gravitational potential due to external sources Φext within a Compton

wavelength of the galaxy. The Compton wavelength λC relates to f̄R 0 via the approximate

equation (Cabré et al., 2012)

λC ≈ 32

√√ | f̄R 0|
10−4

Mpc. (1.88)

For this very purpose of measuring the impact of environmental screening on tests of

gravity, two groups—Cabré et al. (2012) and Desmond et al. (2018c)—have constructed

‘screening maps’: 3D maps of Φext throughout the local Universe. Both maps convert ob-

served galaxy catalogues intoΦext maps using sophisticated techniques to estimate ‘unseen’

mass residing in the haloes of the observed galaxies, in unseen haloes, and in the smooth

intergalactic density field.

In Chapter 3, we use the screening map of Desmond et al. (2018c) which uses updated

techniques and catalogues compared to that of Cabré et al. (2012). Full details regarding

the construction of the map can be found in the original paper.

Galaxy Offsets

Consider a galaxy situated within an external fifth force field. If the galaxy is unscreened but

the stars within it are self-screened, then the gas disc will experience the fifth force while
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Figure 1.16: Posterior of the fifth force coupling∆G /GN (≡ 2β 2 in our notation), obtained by Desmond et al.

(2018b) from measurements of systematic offsets between gaseous and stellar components of galaxies. The

Compton wavelength λC here is 1.8 Mpc. The red histogram is the posterior in a chameleon model in which

galaxies are screened according to their Newtonian potential, and stars are self-screened against the fifth

force. The authors find 6.6σ evidence for a non-zero screened fifth force. The green histogram is a model in

which the galaxy screening is turned off, but stars nonetheless do not feel the fifth force. Reproduced from

Desmond et al. (2018b). © American Physical Society 2018. Reprinted with permission.

the stellar disc will not. Consequently, one would expect the stellar disc to be offset from

the gas disc, and the direction of this offset to align with the direction of the external fifth

force vector.

Desmond et al. (2018b, 2019a) use a large sample of ∼ 11,000 galaxies to search for this

offset signature, calculating an upper bound on | f̄R 0| of a few×10−8. These are the strongest

reported constraints on f̄R 0 to date. Away from f (R ) gravity (i.e. allowing for a varying β ),

the study finds a statistically significant signal at 2β 2 ≈ 10−2 and λC ≈ 2 Mpc, as shown in

Figure 1.16. However, the authors add the cautionary note that the signal could well be a

result of a number of other effects, including unaccounted-for galaxy formation physics.

The authors find that the signal vanishes when the offsets are artificially rotated in the

sky, demonstrating that the signal does indeed arise from a significant correlation between

the directions of the galaxy offsets and the calculated directions of the external fifth forces,

whether these fifth forces are real or not. The signal also vanishes when all mass is in-

cluded in the external fifth force calculation, rather than just unscreened mass. This model

is shown by the green histogram in Figure 1.16. This suggests that the tentative signal is

somehow connected to the complex dynamics of screening.

Galaxy Warps

If a stellar disc is offset from the halo centre as described above, then the stellar disc would

be expected to warp as a result of the potential gradient. Moreover, this warping should be
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maximised when the rotation axis of the disc aligns with the external fifth force field.

Desmond et al. (2018a) search for this signature in data from∼4000 galaxies of the NASA

Sloan Atlas. Tantalisingly, this study also finds support for a screened modified gravity with

2β 2 ≈ 10−2 and λC ≈ 2 Mpc, despite the independence of the dataset from that of the offset

study described above.

Rotation Curves

Galaxy rotation curves offer a number of observable signatures:

1. If stars are self-screened in an unscreened galaxy, the gas rotation curve will show

greater velocities than the stellar rotation curve. Vikram et al. (2018) searched for this

signal in the rotation curves of 6 low surface-brightness galaxies, yielding an upper

bound on | f̄R 0| of 10−6.

2. If the rotation axis of a galactic disc is perpendicular the external fifth force field,

the stellar-gas offset discussed above will result in asymmetries in the galaxy rota-

tion curves. This effect was studied by Vikram et al. (2013), who found no significant

deviations from standard gravity.

3. If a galaxy is partially screened, gas rotation curves will display an ‘upturn’ at the lo-

cation of the screening radius. This effect is the subject of Chapters 2 and 3.

Stellar Streams

Stellar streams arise from satellite galaxies and globular clusters being tidally disrupted by

the central host galaxy. If the Milky Way is partially screened, then a DM-dominated satel-

lite galaxy on an orbit outside the Milky Way screening radius will feel a fifth force. The

screened stars within it, however, will not feel the fifth force but will be dragged along by

the satellite’s halo. As the satellite is tidally disrupted by the Milky Way, the stars will be

preferentially disrupted into the trailing stream, rather than the leading stream, leading to

an asymmetry about the progenitor.

This effect was first predicted by Kesden & Kamionkowski (2006a,b) for an intrinsically

EP-violating “dark matter force.” Chapter 4 studies this effect in the context of chameleon

theories, where the EP-violation emerges as a result of screening.
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Chapter 2

Upturns in Simulated Rotation Curves

Summary

In this chapter, I use the kinematics of galaxies to constrain screened modified gravity the-

ories. I focus on HS f (R ) gravity and predict its impact on galaxy rotation curves and

radial acceleration relations. This is achieved by post-processing state-of-the-art galaxy

formation simulations from the Auriga Project, using the MG-Gadget code. For a given

galaxy, the surface dividing screened and unscreened regions adopts an oblate shape, re-

flecting the galaxy’s disc morphology. At the ‘screening radius’, where screening is trig-

gered in the disc plane, characteristic ‘upturns’ are present in both rotation curves and

radial acceleration relations. The locations of these features depend on various factors,

such as galaxy mass, concentration of the density profile, and the background field ampli-

tude f̄R 0. Self-screening of stars and environmental screening also play a role. For Milky

Way-size galaxies, models with | f̄R 0| = 10−7 result in rotation curves that are indistinguish-

able from ΛCDM, while for | f̄R 0| ≥ 2× 10−6 the galaxies are entirely unscreened, violating

Solar System constraints. For intermediate values, distinct upturns are present. I conclude

by predicting that with a careful statistical analysis of existing samples of observed rotation

curves, including lower mass objects, constraints on f (R ) gravity with a sensitivity down to

| f̄R 0| ∼ 10−7 should be possible.

This chapter is based on the article:

A. P. Naik, E. Puchwein, A.-C. Davis, C. Arnold

Imprints of chameleon f(R) gravity on galaxy rotation curves

MNRAS, Volume 480, Issue 4, November 2018, Pages 5211–5225

In § 2.2.2, we validate some of the assumptions underlying our post-processing approach by studying a suite

of f (R ) simulations. These simulations were run by Christian Arnold, one of the co-authors of the above

article. The remainder of the work presented in this chapter is my own, informed and guided by discussions

with the other authors.

http://dx.doi.org/10.1093/mnras/sty2199
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2.1 Background

The Introduction of this thesis included a section (§ 1.3) giving a general outline of screened

modified gravity theories, particularly their weak-field limit and applications to galactic

scales, as well as a discussion of the status quo in modified gravity N-body simulations.

Increasingly, such simulations are the tool of choice for predicting the observational signa-

tures of these theories on scales where non-linear effects (i.e., both baryonic physics and

screening phenomenology) are important. Winther et al. (2015) present an overview and

comparison of different simulation codes and find good agreement between the results of

different groups, indicating that the field has reached a significant degree of maturity. This

is best exemplified by the recent SHYBONE simulations of Arnold et al. (2019b), the first

galaxy formation simulations under modified gravity. When the article that forms the basis

for this chapter was first written, perhaps the most sophisticated modified gravity simula-

tions to date were those of Arnold et al. (2016): the first high resolution, dark matter-only,

zoom-in simulations of Milky Way-sized halos in f (R ) gravity. The work presented in this

chapter built upon that work by providing the first simulated galaxy rotation curves in f (R )
gravity for Milky Way-sized galaxies.

There is a key difference worth emphasising between the work of Arnold et al. (2016) and

this chapter. The former work provides fully self-consistent, DM-only simulations of f (R )
dark matter halos. The halos simulated therein are evolved under f (R ) gravity from high

redshift initial conditions in the linear regime to the present day. As discussed in § 1.3.4, the

extreme non-linearity of the governing equations of f (R ) gravity make these simulations

significantly more computationally expensive than in standard gravity. Nonetheless, dark

matter-only simulations such as those of Arnold et al. (2016) are significantly less compu-

tationally expensive than the ‘full physics’ simulations of, e.g., the SHYBONE suite, which

additionally incorporates the complex hydrodynamics and baryonic physics of galaxies at

high resolutions. So, in order to investigate the effects of chameleon f (R ) gravity in galax-

ies, we have not performed self-consistent f (R ) simulations, and instead calculated the

f (R ) effects in ‘post-processing’.

Taking galaxy mass distributions from the state-of-the-artΛCDM disc galaxy formation

simulations of the Auriga Project (Grand et al., 2017), the modified gravity solver aboard the

MG-Gadget code was then used to numerically compute the scalar fields and fifth forces

across these galaxies, leading to derivations of their rotation curves. Our models are thus

not full dynamical models encapsulating the evolution of f (R ) galaxies, but simply rotation

curves calculated for galaxies with mass distributions believed to be closely resembling

those of real galaxies. The basic underlying assumption—justified a posteriori by Arnold

et al. (2019b)—is that disc galaxies should have a rotationally supported disc component

even in the presence of modifications of gravity, so that the radial gravitational acceleration

in the disc plane can be inferred from measurements of gas and/or stellar velocities, which

allows the presence of a fifth force to be constrained.
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Galaxy r200 M200 M∗ v200 vpeak

[kpc] [1010 M�] [1010 M�] [km/s] [km/s]

Au1 192.09 77.38 3.61 159.44 197.19

Au2 260.51 193.01 11.19 184.02 246.64

Au9 232.25 104.69 6.26 149.87 261.36

Au11 212.45 149.28 8.67 179.93 241.95

Au13 239.14 122.03 7.30 158.59 282.63

Au20 223.59 127.58 5.89 162.43 219.51

Au21 226.93 146.53 9.13 169.01 252.30

Au22 237.64 91.74 6.20 144.70 284.38

Au24 203.31 147.29 8.11 177.37 239.34

AuL1 238.07 51.70 2.47 120.19 165.94

AuL4 168.67 52.39 2.52 111.91 143.13

AuL5 184.34 68.38 3.43 128.57 189.64

AuL8 197.83 84.52 5.36 140.34 223.09

Table 2.1: Basic properties of the simulated galaxies used in this work. Columns are 1) Auriga ID: the identi-

fying number of the galaxy in the Auriga Project, 2) r200: the virial radius, here taken as the radius enclosing

a region of average density equal to 200 times the cosmic critical density, 3) M200: the mass contained within

r200, 4) M∗: the total stellar mass within r200, 5) v200: the circular velocity in the disc plane at r200, and 6) vpeak:

the peak circular velocity.

This chapter directly foreshadows the next chapter, which turns to the observed rota-

tion curves of the SPARC sample (Lelli et al., 2016).

The remainder of this chapter is structured as follows. First, § 2.2 describes the method-

ology, describing both the scalar field solver that is employed and the simulated galaxies

that are analysed. Results are then presented in § 2.3 and discussed in § 2.4, followed by

concluding remarks in § 2.5.

2.2 Methodology

2.2.1 The Auriga galaxy formation simulations

The simulated galaxies studied in this work were not evolved ab initio using MG-Gadget,

but were instead formed in hydrodynamicalΛCDM simulations with state-of-the-art bary-

onic physics performed in the Auriga Project (Grand et al., 2017), and post-processed using

the scalar field solver of MG-Gadget. The validity of this post-processing approach is dis-

cussed in § 2.2.2.

The Auriga Project employed magnetohydrodynamics and a sophisticated galaxy for-

mation prescription—including sub-resolution implementations of radiative cooling, star

formation, chemical enrichment, supernovae and AGN feedback—to perform zoom sim-
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Figure 2.1: Projected gas (left), stellar (middle) and dark matter (right column) density of the Auriga galaxies

Au21 (top), Au13 (middle), and AuL8 (bottom row). For each object and component, face-on and edge-on

projections are shown. The mass distributions of these and other simulated galaxies were used as an input

for the MG-Gadget modified gravity solver.
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Figure 2.2: Density profiles of five dark matter haloes. The purple curves represent haloes from the full f (R )
simulations of Arnold et al. (2016), while the green curves are their ΛCDM counterparts from the original

Aquarius simulations of Springel et al. (2008). The corresponding dashed lines are NFW fits to the density

profiles. Density is multiplied by a factor of r 2 for improved readability.

ulations of 30 isolated MW-size galaxies using the moving mesh code AREPO (Springel,

2010).

The Auriga galaxies reproduce a range of observables of Milky Way-like galaxies, includ-

ing masses, sizes, rotation curves, star formation rates, and metallicities. Furthermore, the

simulated galaxies have clear Milky Way-like late-type morphologies, featuring bars and

spiral arms.

Thirteen such galaxies have been studied here, and an overview of their basic properties

is provided in Table 2.1. 9 of these galaxies are from the original Auriga Project (Au1, Au2,

Au9, Au11, Au13, Au20 Au21, Au22, Au24), a further 4 lower-mass galaxies (AuL1, AuL4,

AuL5, and AuL8) were taken from a follow-up project.

Projections of the various components, i.e. gas, stellar, and dark matter surface density,

of galaxies Au21, Au13, and AuL8 are shown in Figure 2.1. These 3 galaxies have been cho-

sen to represent a range of galaxy morphologies. Au21 is a grand design spiral galaxy, AuL8

has a prominent bar, and Au13 a slightly less well-defined disc.

The particle, and hence mass, distributions of these galaxies were extracted from the

Auriga simulation snapshots, and fed to MG-Gadget’s modified gravity solver, which is dis-

cussed in the following sub-section and computes the scalar field fR and the modified grav-

ity accelerations throughout the simulation volume.

2.2.2 Calculation of modified gravity effects

The modified gravity solver used in this work is part of the MG-Gadget simulation code

(Puchwein et al., 2013), which is itself based on the P-Gadget3 code (see the description

of its predecessor Gadget-2 in Springel, 2005), but incorporates a reworked gravity solver,
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which enables the simulating of models with highly non-linear force laws such as HS f (R )
gravity.

In the base P-Gadget3 code, gravitational accelerations are calculated using a ‘TreePM’

method: long-range forces are calculated using Fourier (Particle Mesh) methods, while

short-range forces are calculated using a hierarchical oct-tree, which gives higher spatial

resolution. MG-Gadget also utilises these methods to solve the modified Poisson equation

(1.87), but in addition the scalar field fR is computed and stored on a space-filling adaptive

mesh, which is constructed from the oct-tree structure. More precisely, fR is obtained by

solving Eq. (1.69) with a multi-grid accelerated, iterative Newton-Gauss-Seidel relaxation

method on the adaptive mesh. This allows calculating fR everywhere in the simulation vol-

ume, as well as the MG acceleration on each particle. A much more detailed description of

the algorithm can be found in the original code paper (Puchwein et al., 2013), while scien-

tific applications of the code are presented in, e.g., Arnold et al. (2014, 2015, 2016, 2019a).

See also § 1.3.4 for a discussion of modified gravity simulations more generally.

The modified gravitational forces are calculated in post-processing from ΛCDM simu-

lations, rather than by performing full galaxy formation f (R ) simulations, which would be

computationally much more expensive. This means that modified gravity effects on the

evolution of galaxies will not be captured. We assume that galaxies with rotationally sup-

ported discs are able to form under f (R ) gravity1, so that observed galaxy morphologies

are consistent with either ΛCDM or f (R ). Given also that the gas and stellar components

of the Auriga galaxies match observations well, they can thus be assumed to provide realis-

tic mass models for galaxies in either cosmological paradigm. The primary uncertainty is

therefore the dark matter, specifically whether the density profiles of the Auriga dark matter

haloes resemble those that would form in an f (R ) cosmology.

Arnold et al. (2016) investigated the effect of HS f (R ) gravity on the formation of dark

matter halos. In that work, computationally cheaper dark matter-only f (R ) gravity simu-

lations were performed using MG-Gadget in order to investigate the effects of f (R ) gravity

on Milky Way-mass dark matter halos. The simulations were performed from identical ini-

tial conditions to the Aquarius simulations (Springel et al., 2008). Figure 2.2 compares the

density profiles of five haloes in these full f (R ) simulations (for | f̄R 0| = 10−6) with those of

the corresponding haloes in the ΛCDM simulations. It can be seen in this figure that the

shapes of the density profiles from the f (R ) simulations are qualitatively similar to those

of the ΛCDM simulations. While the presence of the chameleon fifth force might change

the total mass and concentration of a given halo somewhat, it does not significantly affect

its morphology. In particular, the NFW profile (1.45) can fit both ΛCDM and f (R ) haloes

equally well. When fitting observed rotation curves along with measured stellar and gas

1Since the original undertaking of this research, Arnold et al. (2019b) have carried out the first galaxy formation

simulations in HS f (R ) gravity. One of the results of that work was to demonstrate that disc galaxies are indeed

able to form (see Figure 1.15), vindicating our earlier assumption.
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Figure 2.3: Circular velocity profiles for two Aquarius dark matter haloes, labelled A (left) and D (right). The

purple curves show the circular velocity calculated from particle accelerations in the full f (R ) simulations,

while the green curves are calculated analogously from their post-processed ΛCDM counterparts from the

original Aquarius simulations. In all cases, | f̄R 0|= 10−6. Solid lines include the fifth force contribution, while

the dashed lines ignore it.

densities, the mass and concentration of the dark matter halo would be free parameters,

so that changes in these parameters due to modified gravity would be captured.

Figure 2.3 shows rotation curves for two of the five haloes. These two were chosen by

virtue of being the only ones partially screened, rather than fully unscreened, for | f̄R 0| =
10−6. The purple curves show rotation curves from the original full f (R ) simulations, while

the green curves show post-processed rotation curves from the ΛCDM simulations. The

key point of this figure is that both sets of rotation curves are qualitatively the same, with

similar upturns2 at the screening radii. The differences in the heights of the curves and lo-

cations of the screening radii can be ascribed to the differences in halo mass and concen-

tration. That is to say, employing the fully self-consistent approach of full f (R ) simulations

would have changed the exact masses and density profiles of the galaxies, and therefore

the resulting rotation curves, but the qualitative features, particularly the upturns, would

still be present at the screening radii.

Another complication is the potential effect of baryonic feedback on the dark matter

density profile (see the discussion of the ‘core/cusp’ problem in the Introduction; § 1.1.5).

In the following we assume that such effects (e.g., the potential formation of a core) happen

in a very similar way under both f (R ) gravity and ΛCDM. This should certainly hold in

objects in which the central region, which is most prone to baryonic effects, is screened.

Using the assumption of similar baryonic effects, it is then possible to describe both f (R )

2See § 2.3.2 for a definition and further description of rotation curve ‘upturns’.
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and ΛCDM halo profiles with the same functional form.

In principle it would be interesting to test the effect of modified gravity on the baryonic

feedback. This is, however, very difficult due to the wide range of scales involved and due

to our limited understanding of the relevant astrophysics. As an example of how these pro-

cesses might differ under modified gravity, Davis et al. (2012) find that unscreened stars are

typically brighter in modified gravity scenarios, which implies higher supernova rates than

in ΛCDM.

It is also worth noting that baryonic feedback is typically implemented in galaxy forma-

tion simulations not via detailed models of all the relevant physics, but via strongly simpli-

fied subgrid models which need to be calibrated to observational constraints. Hence, even

when evolving such simulations fully under modified gravity, changes in the baryonic ef-

fects due to the fifth force would likely be partially offset by re-calibrating the model pa-

rameters to observations. Furthermore, as shown in Davis et al. (2012), these differences

between modified gravity andΛCDM feedback mechanisms can be expected to be negligi-

ble at the small field amplitudes considered in this work | f̄R 0| ≤ 10−6, at which many galactic

baryons inhabit screened regions. Thus, our assumptions should remain robust.

These considerations, together with the assumption that rotationally supported disc

components are present in both chameleon f (R ) gravity and in ΛCDM, suggest that our

post-processing approach is valid for illuminating the impact of fifth forces on galaxy ro-

tation curves. That is, qualitatively similar rotation curve upturns and radial acceleration

relation bumps would have been seen in the Auriga galaxies had they instead been simu-

lated fully self-consistently under f (R ) gravity. The exact location of the features might be

slightly different due to modified gravity effects on the dark matter density profiles. How-

ever, the parameters describing the dark matter profiles would be free parameters when

fitting observed rotation curves, so that these effects would be taken into account.

It is worth restating an assumption mentioned in the Introduction (§ 1.1.4): we assume

that dark matter is cold and diffuse, i.e. not comprising potentially self-screening compact

objects such as primordial black holes.

2.2.3 Rotation Curves

The rotation curves displayed in the following section are calculated from post-processed

simulation snapshots as follows.

Firstly, only particles in the disc plane are considered. In order to isolate these, the total

angular momentum vector of the galaxy (within a sphere of radius 30 kpc around the cen-

tre) is calculated, and the disc plane is then the plane perpendicular to this vector. Particles

within 0.5 kpc of this plane are admitted.

For each particle, the snapshot contains a standard gravity acceleration vector and a

separate fifth force acceleration vector. According to Eq. (1.44), taking the inner product
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Figure 2.4: Face-on (top) and edge-on (bottom) scalar field maps of galaxies AuL8, Au13, and Au21, for a

background field amplitude of | f̄R 0| = 8× 10−7. The black circle marks 0.05 R200. At the screening surfaces,

the field amplitude drops by many orders of magnitude. The edge-on views demonstrate that the screening

surface is typically compressed towards the disc plane, reflecting the density distribution of the galaxy. The

virial mass (M200) of each galaxy is labelled in each case, in units of 1010M�.

of the acceleration vector for a given particle (either including or excluding the modified

gravity contribution) with the radial vector then gives an estimate of the square of the cir-

cular velocity at the particle position. The particles are then divided into radial bins, and

the average circular velocity is calculated in each bin, giving the final rotation curve.

As a final note, the cosmological Compton wavelength in Hu & Sawicki f (R ) gravity (for

n = 1) is approximately given by Eq. (1.88). On scales larger than this, the fifth force would

be suppressed even if the chameleon mechanism is not triggered. However, even for the

smallest scalar field amplitude considered in this chapter, | f̄R 0| = 10−7, this wavelength is

approximately 1 Mpc, well beyond the size of any galaxy. Outside the screening radius, fifth

forces will thus affect the rotation curve out to the largest observed radii.

2.3 Results

2.3.1 Screening in Disc Galaxies

As described in § 2.2.2, we use the modified gravity solver from the MG-Gadget code to

post-process z = 0 simulation snapshots from the Auriga Project and calculate the scalar

field fR everywhere in the simulation volume. Figures 2.4 and 2.5 show examples of the

results of these calculations.

Figure 2.4 shows face-on and edge-on maps of the scalar field fR , calculated across

planes going through the galaxy centres, for galaxies AuL8, Au13 and Au21, and for | f̄R 0| =
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Figure 2.5: Left: Face-on (top) and edge-on (bottom) contour maps of the scalar field, for Au20 and a back-

ground field amplitude of | f̄R 0|= 10−6, evaluated in planes passing through the galaxy centre. Right: Face-on

and edge-on contours showing the location of the screening surface for three different values of the back-

ground field amplitude, | f̄R 0|: 10−6, 8×10−7, and 5×10−7. The screening surface is here defined as the surface

on which fR = 10−4 f̄R 0. The contours are superimposed on maps of the projected gas density.

8 × 10−7. As in Figure 2.1, these three galaxies are chosen to represent a range of galaxy

masses and morphologies. The resulting scalar field maps are qualitatively representative

of the sample. In Figure 2.4, it can be seen that in the outer regions of the galaxies (i.e.

R ¦ 10 kpc), the scalar field hovers roughly within an order of magnitude of the cosmic

background value f̄R 0. The scalar field in the innermost regions (i.e. R ® 5 kpc), however,

is suppressed by many orders of magnitude, with values as low as 10−16. These regions are

respectively the unscreened and screened regions.

A sharp transition can be seen between these regions at∼ 5 kpc for AuL8 and Au13, and

∼ 15 kpc for Au21, where | fR | drops precipitously by many orders of magnitude. This is the

screening radius of the galaxy, or more precisely its screening surface as there are clearly de-

viations from spherical symmetry. In the unscreened region outside the screening surface,

particles are subject to a sizeable fifth force, whereas in the screened region enclosed by the

screening surface, the gradients of the scalar field are sufficiently small that the fifth force

is suppressed, according to Eq. (1.77). Equivalently, the ambient density in the screened

region is sufficiently high, leading to an increased chameleon mass, which suppresses the

range of the fifth force.
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Interestingly, the disc-shaped mass distribution of the galaxy is reflected in the shape of

the fR field, which appears to be compressed into the galactic disc plane as can be seen in

the lower panels of Fig. 2.4. These effects can also be seen in the left-hand panels of Fig. 2.5,

where face-on and edge-on contour maps of the scalar field fR for | f̄R 0| = 10−6 are shown

for Au20, overlaid on gas density projections. These findings reflect those of Burrage et al.

(2015), who analytically investigated the chameleon profiles around ellipsoidal objects.

As we shall see in the following sections, the location of the screening surface depends

on a variety of factors: galaxy mass, galaxy density profile, environmental density, and f̄R 0.

The effect of changing f̄R 0 can be seen in the right-hand panels of Figure 2.5. The screen-

ing surfaces of Au20 (or more precisely the intersection of the screening surface with a plane

in or perpendicular to the disc plane) are shown as contours for three values of | f̄R 0|: 5×10−7,

8×10−7, 1×10−6, overlaid on gas density projections. Note that here, the screening surfaces

are defined as the surfaces at which fR = 10−4 f̄R 0. This was found to consistently fall inside

the narrow transition zone. In this figure, it can be seen that larger values of | f̄R 0| corre-

spond to smaller screening radii, and vice versa. For stronger background amplitudes of

the scalar field, i.e. | f̄R 0| ¦ 2× 10−6, all galaxies investigated are entirely unscreened. Con-

versely, for most galaxies, weaker values (∼ 10−7) lead to screening radii beyond the range

over which observed rotation curves are typically measured.

2.3.2 Rotation Curves

The presence of a screening surface and the emergence of a fifth force outside it have an

impact on the dynamics of galaxies. Figures 2.6 and 2.7 display the resulting effects on

the rotation curves and radial acceleration relations of the studied galaxies. We make the

assumption that the disc is rotationally supported everywhere.

The left-hand panel of Figure 2.6 shows the rotation curves calculated in the disc plane,

including the fifth force contribution, of Au9 for five different values of | f̄R 0|: 10−7, 5×10−7,

8×10−7, 10−6, and 2×10−6. In each case, the rotation curve beyond the screening radius3 is

enhanced by the additional presence of the fifth force.

As was found in the previous sub-section, the case of | f̄R 0|= 2×10−6 corresponds to the

galaxy being entirely unscreened and the rotation curve being enhanced with respect to the

standard gravity rotation curve throughout the galaxy. Conversely, the case of | f̄R 0| = 10−7

gives a screening radius larger than the range shown in the plot, and outside the typical

range spanned by observed rotation curves. Thus, the predicted rotation curve is identical

to that of standard gravity.

The intermediate cases, however, are the most interesting. At the screening radius, the

rotation curve shows an ‘upturn’ as it transitions between the screened and unscreened

3Note that in the remainder of this chapter and the next, screening radius refers to the distance of the screening

surface from the galaxy centre in the disc plane.
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Figure 2.6: Left: Rotation curves of Au9 for six different values of | f̄R 0|, as labelled. As described in the text,

vcirc is calculated from the full gravitational acceleration, including a potential fifth force. Right: Radial ac-

celeration relations for Au9, for the same | f̄R 0| values. The dotted line represents g tot = gbary, while the dashed

line represents the best-fitting function for observed radial acceleration relations from the SPARC sample.

g tot is based on the full gravitational acceleration, including a potential fifth force, while gbary is calculated at

each radius from the enclosed baryonic mass assuming spherical symmetry and standard gravity, i.e. using

gbary =G Mbary(<R )/R 2.

regimes. Here and throughout the remainder of the thesis, a rotation curve ‘upturn’ is de-

fined as the point where the modified gravity rotation curve diverges from the standard

gravity rotation curve, coinciding with the screening radius of the galaxy. In some cases,

such as those in Figure 2.6, the upturn manifests as a distinct kink in the rotation curve,

but in other instances (e.g. Figure 2.3) no such kink is predicted. However, even if a real

galaxy rotation curve in an f (R )Universe fell into this latter category, the upturn might still

be detectable if the dark matter and baryonic contributions to the rotation curve can be

accurately modelled. Subtracting these from the full rotation curve would then leave only

the fifth force contribution beyond the screening radius.

Studying the galaxies of the SPARC sample (Lelli et al., 2016), McGaugh et al. (2016)

found a remarkably tight relation between the total acceleration at each point inferred from

rotation curves, and the acceleration due to baryonic mass inferred from observed light

distributions. We have studied the effect of chameleon f (R ) gravity on this ‘radial acceler-

ation relation’. The results of this can be seen in the right-hand panel of Figure 2.6. Here,

the baryonic acceleration gbary is calculated at a given radius assuming spherical symmetry

and neglecting a fifth force, i.e. adopting G Mbary(< R )/R 2, while the total acceleration g tot,

which would be measured from rotation curves, is calculated from the actual gravitational

accelerations of the simulation particles, including the fifth force contribution.

Observed radial acceleration relations are typically smooth curves with only a small up-



CHAPTER 2. UPTURNS IN SIMULATED ROTATION CURVES 81

0 10 20 30 40

R [kpc]

50

100

150

200

250

v c
ir

c
[k

m
/s
]

ΛCDM

0 10 20 30 40

R [kpc]

f (R )

−11.5 −11.0 −10.5 −10.0 −9.5

log10(gbary) [m/s2]

−11.25

−11.00

−10.75

−10.50

−10.25

−10.00

−9.75

−9.50

−9.25

lo
g 10
(g

to
t)
[m
/s

2
]

−11.5 −11.0 −10.5 −10.0 −9.5

log10(gbary) [m/s2]

Figure 2.7: Rotation curves (top) and radial acceleration relations (bottom) for all 13 galaxies in the ΛCDM

(left)) and | f̄R 0| = 10−6 (right)) cases. As discussed in the text, galaxies Au21 and AuL1 are highlighted in all

panels. The dotted lines in the right-hand rotation curve panel shows the standard gravity rotation curves

for Au21 and AuL1, to enable more direct comparison with the f (R ) curves.

ward curvature. If no screening radius is present in the considered range, the simulation

predictions give almost straight lines in this log-log plot. Mirroring the rotation curves in

the left-hand panel, the strongest f̄R 0 values give lines that are consistently enhanced with

respect to the standard gravity case, while at the other end, the | f̄R 0|= 10−7 line is identical

to the standard gravity case. The intermediate cases, meanwhile, show marked bumps in

the relations, corresponding to the screening radii. This is a promising result: the absence

of these easily distinguishable bumps in observed radial acceleration relations could place

strong constraints on f̄R 0.

Also shown in the right panel of this figure is the best-fitting function for the radial ac-

celeration relation from the SPARC galaxies (equation 4 from McGaugh et al., 2016). As
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so that the effect of including / excluding stars is reduced. Therefore, the screening is less sensitive to self-

screening of stars in this regime.

can be seen here with the case of Au9, the Auriga galaxies are consistently to be found ly-

ing above this best-fitting relation. This mirrors the findings of other simulations, e.g. the

MassiveBlack-II simulations (Tenneti et al., 2018), and could be related to the central den-

sity profile of the dark matter halo.

Figure 2.7 shows the rotation curves and radial acceleration relations of all thirteen

galaxies studied, for ΛCDM and | f̄R 0| = 10−6. Galaxies Au21 and AuL1 are highlighted, in

order to illustrate two contrasting cases: the upper rotation curve, that of Au21, shows a

clearly distinguishable upturn at its screening radius, ∼ 10 kpc, in the upper right panel,

while AuL1 is unscreened throughout, yielding no such observable feature.

2.3.3 Stellar Self-Screening

Like all cosmological simulations, modified gravity N-body simulations have limited spa-

tial and mass resolution. Compact bodies such as stars are not resolved in cosmological

runs, and are instead treated using simulation particles that represent whole stellar popu-

lations.

Ordinarily, this is a sufficient approximation, but in the case of screened modified grav-

ity theories, one might expect some or all of the stars to be sufficiently dense so as to be

self-screened, and therefore neither source nor couple to the fifth force, depending on the
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Figure 2.9: Rotation curves (top) and radial acceleration relations (bottom) for the gas components of Au9,

Au21, and AuL8, including (solid) and excluding (dotted) the contribution of star particles to the fifth force.

The dashed lines ignore the fifth force contributions altogether and hence correspond to ΛCDM.

environment of a given star and the background amplitude of the scalar field (Davis et al.,

2012).

This is an effective violation of the EP, and gives rise to several of the galaxy-scale tests

of screened modified gravity listed in the Introduction (§ 1.3.5). These aside, another effect

would be that the fifth force in a given galaxy will be somewhat weaker than those calcu-

lated in the previous subsections if stars do not act as sources of the fifth force. In order to

quantify this effect, we have trialled an alternative method for post-processing the Auriga

simulations. The star particles in the snapshots are included in the calculation of the stan-

dard gravitational acceleration, but excluded from the calculation of the scalar field. This

corresponds to the extreme scenario, in which every star is fully self-screened, and thus not

coupling to the scalar field. In reality, the scalar field would be an intermediate between this

solution and the original solution of the previous subsections. In particular, for values of

| f̄R 0| ≥ 10−6 we would expect stars to start becoming unscreened and thus recovering our

original solution (Davis et al., 2012). However, performing this fully self-consistent calcu-

lation would be difficult in practice and we choose instead to show the maximal effect of

stellar self-screening.

Figures 2.8 and 2.9 show the results of this test. Figure 2.8 shows, for three different f̄R 0
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values, the ratio of the screening radii for all 13 galaxies in the new and original solutions,

as a function of halo mass. One immediately apparent point is that the effect of excluding

the stars from the scalar field calculation results in a shrinking of the screening radius. This

is to be expected, as the exclusion of stars results in an object of lower effective mass,4 that

has a correspondingly smaller screening radius.

Another point is that higher amplitudes for the background scalar field result in greater

differences between the two solutions. The reason for this is that, as seen in Figure 2.5,

higher values for | f̄R 0| give smaller screening radii. At smaller radii, the stellar population

becomes an increasingly dominant component of the overall density profile. Indeed, it is

typically the case in the Auriga galaxies that the stars dominate over the dark matter com-

ponent in the central few kpc, and are a significant component for a few kpc beyond. Thus,

the effect of excluding them from the scalar field calculation becomes more significant to-

wards the centre. It is also for this reason that lower mass haloes appear to show more of

a difference; the lower mass haloes tend to have smaller screening radii than their larger

counterparts for a given f̄R 0.

Figure 2.9 shows the effect of stellar self-screening on the rotation curves and radial ac-

celeration relations of the gas component for three galaxies, and three values of f̄R 0. As in

Figure 2.8, the effect is that of shrinking the screening radii, and thus shifting the locations

of the rotation curve upturns and the corresponding bumps in the radial acceleration rela-

tions. As before, the magnitude of the shift varies with the galaxy in question, and the value

assumed for f̄R 0. In the most extreme case, the shift in the rotation curve upturn is 2-3kpc.

This is a sizeable shift, but it should be borne in mind that this is the most extreme shift

caused by the most extreme assumption: that all stars are fully self-screened, and that the

screening radius of the galaxy is at a position where the density has a large stellar contribu-

tion. To test gravity, it might be preferable to use rotation curves at large radii, where the

stellar density contribution is small. Then the effect of stellar self-screening on the rotation

curve of the gas component is small as well, as seen for the | f̄R 0|= 5×10−7 model.

2.3.4 Environmental Screening

The environment of a galaxy is expected to play a role in its screening. For example, a galaxy

situated in a dense, group environment should have a larger screening radius than that of

a galaxy situated in an underdense void.

One can conceptualise this in the following way: from Eqs. (1.69) and (1.70) one finds

that for small perturbations in the unscreened (low-curvature) regime the scalar field per-

turbation is given byδ fR ≡ fR− f̄R 0 ≈−2/3Φ/c 2, whereΦ is the gravitational potential of the

considered mass distribution that obeys the modified Poisson equation (1.70). Screening

4Recall the definition of effective density, Eq. (1.86)
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Figure 2.10: Left: Screening radius as a function of mass for all 13 galaxies, calculated with | f̄R 0|= 5×10−7. The

colours of the circles indicate the ‘environmental density’ of the galaxy: the average density in a spherical shell

centred on the galaxy, with inner radius 5R200, and outer radius 20R200, in units of the cosmic mean matter

density. Right: For the same value of f̄R 0, rotation curves for Au11 and Au24. The ‘Au24t’ result was obtained

by transplanting Au24 into the environment of Au11 as discussed in the text. Solid lines include the fifth force

contribution, while the dashed lines ignore it. Au24 and Au11 were chosen for this test because of their similar

masses but differing environmental densities (see left panel).

is triggered approximately when δ fR ≈ − f̄R , as then fR ≈ 0 and its gradient which con-

trols the fifth force is also suppressed. Thus, the screening becomes effective roughly when

|Φ|/c 2 ¦ 3/2 | f̄R 0| (see, e.g., Hui et al., 2009; Arnold et al., 2014). If an overdense environment

contributes to the Newtonian potential at the position of a halo, the halo’s own potential

does not then have to be as deep to trigger screening.

Figure 2.10 shows the results of a preliminary investigation into the magnitude of this

effect. The left-hand panel shows the relation between screening radius and halo mass for

all 13 galaxies in our sample, for | f̄R 0|= 5×10−7. The colours of the filled circles encode the

‘environmental density’: the average density in a spherical shell centred around the galaxy,

with inner radius 5R200, and outer radius 20R200. The inner radius was chosen as we found

that for smaller radii the density profiles typically still follows the NFW profile, while the

outer radius is comparable to the cosmological Compton wavelength, so that the effect of

the environment on even larger scales on fR should be suppressed.

The left panel of Figure 2.10 indeed suggests that there might be a mild tendency of

halos in dense environments having larger screening radii at similar halo mass.

Taking two galaxies with reasonably similar masses but very different environmental

densities, Au24 and Au11, we investigated the effect of transplanting the former into the
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environment of the latter. A sphere of radius 5R200 was cut out from the simulation volume

of Au24 and placed into that of Au11, in the place formerly occupied by the galaxy Au11.

This modified snapshot was then post-processed with MG-Gadget as usual.

The results of this test are shown in the right-hand panel of Figure 2.10, which shows

the rotation curves of the three galaxies: the original Au11 and Au24, as well as the trans-

planted Au24, referred to as ‘Au24t’. As in the left-hand panel, | f̄R 0|= 5×10−7 was assumed.

The effect of the differing environments on the scalar field profiles is marginal. Only a small

part of the difference in screening radius between Au11 and Au24 is explained by the en-

vironmental density. At least in this case, differences in the self-screening, due to different

halo concentrations, largely dominate over differences in the environmental screening.

A major factor in the limited effect of environmental screening is likely that the galaxies

of the Auriga sample are isolated galaxies; this was a criterion for selecting the galaxies from

the parent simulation volume. Environmental screening would likely play a much larger

role in the scalar field profiles of cluster galaxies.

When performing observational tests of screened modified gravity with galaxy kinemat-

ics, isolated galaxies would also be preferable to those inhabiting dense environments, so

as to reduce the degeneracy between environmental screening and background field am-

plitude. The Auriga simulation sample should hence be a suitable testbed for such studies.

Residual environmental effects could likely be further mitigated by taking an estimate of

the density of a galaxy’s environment into account when using its rotation curve to con-

strain modified gravity.

2.4 Discussion

We have found in section § 2.3.2 that in HS f (R ) gravity galaxy rotation curves exhibit a dis-

tinct feature near the screening radius, namely an upturn in the circular velocity. A corre-

sponding bump can be seen in the radial acceleration relation. Here, we discuss the utility

of these features to constrain modified gravity models.

While features of the predicted size would be clearly visible in measured rotation curves,

great care must be taken in their interpretation. In particular, a potential astrophysical

origin of such features as, e.g., a substructure in the galaxy or a complex dynamical state

after a merger have to be ruled out.

However, if an observed upturn is indeed due to a screening radius plus fifth force, the

position of the upturn implies a specific value for f̄R 0,5 which in turn dictates the locations

of possible features in the rotation curves of other galaxies. If features are consistently

found at these predicted locations, this would lend strong support to f (R ) gravity. Con-

versely, if features are absent at these radii, that would suggest the original upturn was due

5Or, for chameleon theories more generally, the self-screening parameter χ0; cf. Eq. (1.63).



CHAPTER 2. UPTURNS IN SIMULATED ROTATION CURVES 87

to some other effect. Thus, the strongest conclusions can be drawn by performing fits to

large ensembles of rotation curves and testing whether a single f̄R 0 value allows good fits

for the whole sample. In this context, it is however worth considering the two potential

complications that we have investigated in Secs. 2.3.3 and 2.3.4, i.e. stellar self-screening

and environmental screening which could both affect the exact position of an upturn.

The effect of stellar self-screening on the overall scalar field solution has been neglected

in the bulk of the calculations throughout this work. This assumption is dropped in § 2.3.3,

where we instead consider the opposite extreme, in which all stars are assumed to be fully

self-screened, and not acting at all as source of the fifth force. This typically led to an in-

ward shift of the screening radius, in the most extreme cases by 2-3kpc. A safer option to

avoid uncertainties related to this might be to use observed rotation curves at large radii,

where the stellar contribution to the mass density is subdominant and a potential shift of

an upturn is much smaller.

In addition to potentially preventing stars from acting as a source of the fifth force, self-

shielding would also (partly) prevent them from feeling the acceleration by the fifth force.

This would result in different rotation curves for stars and gas, as the latter would not self-

screen. Rotation curves of the gas component at larger radii may, hence, be the most reli-

able probe of a fifth force. Alternatively, one can search for differences between stellar and

gas rotation curves. This approach has been adopted by Vikram et al. (2018), who anal-

ysed the gaseous and stellar rotation curves of dwarf galaxies. Rather than searching for

upturns, that work searches for differences in the normalisation between gaseous and stel-

lar rotation curves, caused by stellar self-screening, in galaxies that are likely unscreened

otherwise.

In § 2.3.4, it was found that the environment of a galaxy also plays a role in determin-

ing the scalar field solution. Galaxies in overdense environments have screening radii fur-

ther from their centre than they would have if the environmental density was equal to the

cosmic mean. Conversely, void galaxies have screening radii closer in. These environmen-

tal effects will therefore also alter the position of upturns in rotation curves. In the case

considered in § 2.3.4, the effect of environmental screening was nevertheless found to be

marginal. However, Au24 and Au11 are among the most massive galaxies in the sample,

and environmental screening might well play more of a role in lower-mass galaxies. The

effect of environmental screening should therefore be accounted for when performing a

quantitative fit to observed rotation curves. This could either be done statistically, with an

additional free parameter for the environmental density with a prior informed by simula-

tions, or by directly studying the environment of galaxies with measured rotation curves. A

step in the latter direction is the ‘screening map’ presented by (Cabré et al., 2012); a three-

dimensional map, covering a large portion of the sky, which employs large galaxy and clus-

ter catalogues in order to calculate, at each point, the Newtonian potential due to exter-

nal objects. If, for a given astrophysical object, Φext/c 2 � | f̄R 0|, then one can assume that
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self-screening of the galaxy dominates over environmental screening. Vikram et al. (2018)

have employed this screening map in their sample selection. Furthermore, Desmond et al.

(2018c) have built upon the above work by creating an updated screening map, featuring

more sophisticated techniques and a more complete sky map.

As an alternative to searching for upturns, one could also use completely smooth sec-

tions of rotation curves to rule out the presence of a screening radius in those regions. Using

such sections in a sample of galaxies of different masses should allow the ruling out of large

parts of the modified gravity parameter space.

For our roughly Milky Way-sized halos we find that the galaxies are typically screened at

the galactocentric distance of the Solar System of ∼ 8kpc for background field amplitudes

of | f̄R 0| ® 8× 10−7, suggesting that | f̄R 0| cannot be much larger than this value. Searching

for evidence of screening in rotation curves at larger radii and/or lower mass galaxies will

allow probing even smaller field amplitudes. In the SPARC sample, accurate rotation curves

have been measured for objects with rotational velocities down to ∼ 50 km/s, roughly four

times smaller than that of the Milky Way. The square of the circular velocity is expected to

be roughly proportional to the depth of the Newtonian potential. The latter can be used

to estimate the maximum background field amplitude at which chameleon screening is

triggered in an object (see Sec. 2.3.4). Together, this suggests that using rotation curves of

lower mass galaxies, it should be possible to constrain f (R )-gravity down to | f̄R 0| values of

∼ 10−7, which would be very competitive compared to other techniques.

2.5 Conclusions

We have studied the impact of HS f (R ) gravity on rotation curves and radial acceleration

relations of disc galaxies. To this end, we have post-processed state-of-the-art ΛCDM sim-

ulations of disc galaxy formation from the Auriga Project with the modified gravity solver

of the MG-Gadget code. This is numerically much cheaper than performing full physics,

galaxy formation simulations with f (R ) gravity, which remains very challenging. The va-

lidity of this post-processing approach is established in Sec. 2.2.2.

In addition to investigating the kinematic structure, we have studied the scalar field

morphology and the transition from the screened to the unscreened region. Our main find-

ings are:

• In HS f (R ) gravity, the scalar field iso-contours in disc galaxies inherit an oblate shape

from the mass distribution. This results in a discoid screening surface (rather than a

simple screening radius). This needs to be taken into account when predicting mod-

ified gravity effects on rotation curves.



CHAPTER 2. UPTURNS IN SIMULATED ROTATION CURVES 89

• At the position where the galactic disc penetrates the screening surface, a distinct

upturn is present in the rotation curve. The rotational velocity in the unscreened

region is enhanced by the fifth force by up to a factor ∼p4/3.

• A corresponding distinct bump is present in the radial acceleration relation.

• Lower values of the comic background scalar field, | f̄R 0|, lead to larger screening radii,

and therefore rotation curve upturns that are more distant from the galactic centre.

Conversely, more massive objects have smaller screening radii at fixed | f̄R 0|.
• Stellar self-screening and environmental screening can also affect the position of the

upturn in the rotation curve. The former effect is negligible for upturns at large radii

where the stellar contribution to the mass density is small. Environmental screening

is a sub-dominant effect for the Milky Way-sized galaxies considered here, but may

be more important in lower mass galaxies.

• Stellar self-screening will also result in different rotation curves of stars and gas. Since

the gas will not self-screen, its rotation curve might be easier to interpret.

• The predicted rotation curve upturns are qualitatively similar to upturns seen in at

least some observed galaxies. These signatures, provide a potentially promising av-

enue toward strong constraints on f (R ) gravity. However, as discussed in Sec. 2.4, a

careful statistical analysis of galaxy samples will be needed to unambiguously distin-

guish modified gravity effects from astrophysical effects on rotation curves and radial

acceleration relations.

• In the model with the smallest background scalar field amplitude, | f̄R 0|= 1×10−7, the

rotation curves and radial accelerations of all galaxies considered were indistinguish-

able from the ΛCDM case. Conversely, at the other end of the spectrum, all galaxies

were unscreened for | f̄R 0|= 10−5 and 2×10−6, and therefore their rotation curves were

enhanced with respect to ΛCDM throughout the entire disc. The intermediate val-

ues of f̄R 0 are hence the most interesting. It is at these values that rotation curves

and radial acceleration relations display upturns and bumps that would be visible in

observational data. Note, however, that lower mass galaxies will be sensitive to corre-

spondingly smaller | f̄R 0| values. Sensitivities down to | f̄R 0| ∼ 10−7 should be achievable

with existing data.

Our results indicate that rotation curves and radial acceleration relations can provide

constraints on screened modified gravity that are very competitive with constraints from

larger scales, e.g., employing the next generation of galaxy clustering and weak lensing sur-

veys. Furthermore, they are complementary to these surveys as they test gravity on differ-

ent scales. The following chapter presents an analysis of the observed rotation curves of

the SPARC sample, with a view towards searching for the upturn signature predicted in this

chapter and deriving such constraints.
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Chapter 3

Upturns in Observed Rotation Curves

Summary

The previous chapter demonstrated that in chameleon theories such as HS f (R ) gravity,

the fifth force will lead to ‘upturns’ in galaxy rotation curves near the screening radius. The

location of the upturn depends on the cosmic background value of the scalar field f̄R 0, as

well as the mass, size and environment of the galaxy. In this chapter, I search for this signa-

ture of modified gravity in the SPARC sample of measured rotation curves, using an MCMC

technique to derive constraints on f̄R 0. Assuming NFW dark matter haloes and with f̄R 0

freely varying for each galaxy, most galaxies prefer f (R ) gravity toΛCDM, but there is a large

spread of inferred f̄R 0 values, inconsistent with a single global value. Requiring instead a

global f̄R 0 value for the whole sample, models with log10 | f̄R 0| > −6.1 are excluded. On the

other hand, models in the range −7.5 < log10 | f̄R 0| < −6.5 seem to be favoured with respect

toΛCDM, with a significant peak at -7. However, this signal is largely a result of galaxies for

which the f (R ) signal is degenerate with the core/cusp problem, and when the NFW pro-

file is replaced with a cored halo profile, ΛCDM gives better fits than any given f (R )model.

Thus, I find no convincing evidence of f (R ) gravity down to the level of | f̄R 0| ∼ 6×10−8, with

the caveat that if cored halo density profiles cannot ultimately be explained within ΛCDM,

a screened modified gravity theory could possibly provide an alternative solution for the

core/cusp problem. However, the f (R )models studied here fall short of achieving this.

This chapter is based on the article:

A. P. Naik, E. Puchwein, A.-C. Davis, D. Sijacki, H. Desmond

Constraints on chameleon f(R) gravity from galaxy rotation curves of the SPARC sample

MNRAS, Volume 489, Issue 1, October 2019, Pages 771–787

The evaluation of the screening map at the locations of the SPARC galaxies (see § 3.3.3) was undertaken by

Harry Desmond, one of the co-authors of the above article. The remainder of the work presented in this

chapter is my own, informed and guided by discussions with the other authors.

http://dx.doi.org/10.1093/mnras/stz2131
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3.1 Background

The previous chapter demonstrated that the presence of a chameleon fifth force would lead

to observable imprints on galactic rotation curves. Specifically, there will be a ‘screening

radius’ beyond which the fifth force is active. Within the radius, standard gravity is restored.

This has the consequence that an ‘upturn’ appears in the rotation curve at this screening

radius, with a fifth force enhancement beyond the screening radius. The location of this

screening radius within a given galaxy depends on the global value of f̄R 0 and the environ-

ment of the galaxy, as well as its mass and size.

In this chapter, we use the Spitzer Photometry and Accurate Rotation Curves (SPARC;

Lelli et al., 2016) sample of high-quality rotation curve measurements to search for this sig-

nature. After several cuts to the sample, 85 galaxies remain, each of which we model with a

gaseous disc, a stellar disc, a dark matter halo, and where appropriate, a stellar bulge. Using

these components, we solve the f (R ) scalar field equations for the fifth force contribution,

thereby constructing a forward model for the galaxy’s rotation curve. With these models,

we then employ an MCMC technique to explore the posterior probabilities for the param-

eters for each galaxy, looking in particular at the inferred values for the background value

of the scalar field f̄R 0. We also perform model comparisons between f (R ) andΛCDM using

the likelihood ratios calculated for our best-fitting models.

Several recent studies have worked with the SPARC sample, e.g. McGaugh et al. (2016);

Desmond (2017a,b); Lelli et al. (2017); Li et al. (2018); McGaugh et al. (2018); Li et al. (2019a).

Of particular relevance to this chapter, however, is the study of Katz et al. (2017). In that

work, the SPARC galaxies were used to investigate the core/cusp problem (see § 1.1.5). The

authors found that fits to the rotation curves typically improved when cuspy ‘NFW’ haloes

(Navarro et al., 1997) were replaced with the cored ‘DC14’ haloes of Di Cintio et al. (2014),

derived empirically fromΛCDM simulations incorporating subgrid stellar feedback mech-

anisms.

We argued in Chapter 2 that the NFW profile provides not only a good fit to dark matter

haloes in ΛCDM simulations, but also in f (R ) simulations. In fact in f (R ) gravity, depend-

ing on halo mass, a higher concentration of the NFW profile is needed (e.g. Arnold et al.,

2019a). Thus, f (R ) gravity does not reduce the central densities of haloes and consequently

does not offer a direct solution to the core/cusp problem. However, Lombriser & Peñarru-

bia (2015) made an interesting observation: a chameleon fifth force in the outer regions of a

cuspy halo can mimic the observational signature of a cored halo profile in measurements

of the kinematics of galaxies. We will discuss this possibility further in § 3.4 and § 3.5.

Baryonic feedback mechanisms that could in principle lead to the formation of a halo

core, would likely be as able to do so under modified gravity as underΛCDM. We, therefore

explore the impact of a cored density profile by computing results both for NFW and DC14

haloes (similar to Katz et al., 2017). We utilise a model in which f̄R 0 is allowed to vary freely
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for each galaxy, as well as a grid of models covering a range of f̄R 0 values fixed for the whole

sample. In the former case, we analyse the marginal posteriors on f̄R 0 for each galaxy to

find any evidence of significant clustering around a single preferred value. In the latter

case, we are able to compare each model with ΛCDM, and thus search more directly for

any evidence of a globally preferred value for f̄R 0.

We also explore several different prescriptions for the mass-to-light ratios, and the im-

pacts of stellar and environmental screening.

All of the code, analysis tools, and plotting scripts used in this chapter have been made

publicly available.1

This chapter is structured as follows. § 3.2 describes the SPARC data set and § 3.3 de-

scribes our methodology. Results are then outlined in § 3.4, before discussion and conclud-

ing remarks in § 3.5.

3.2 Data

For this investigation, we have used the rotation curves from the SPARC sample (Lelli et al.,

2016). The SPARC sample consists of 175 high-quality HI/Hα rotation curves, along with

accompanying 3.6µm photometry from Spitzer. The sample is diverse, spanning 5 orders

of magnitude in mass, and encompassing a variety of morphologies. 3.6µm surface bright-

ness is believed to be a good tracer of stellar mass, so its pairing with rotation curve data

enables detailed modelling of the different components of a given galaxy.

For each galaxy, the SPARC sample includes a wealth of information. Most relevant

is vcirc(R ), the rotation speed as a function of radius, along with its corresponding error

bars. In addition to this, the photometry information is converted into contributions to the

rotation speed due to the stellar disc and stellar bulge, vdisc and vbulge. The bulge component

is only included for galaxies for which the photometry profile departs significantly from

an exponential disc profile in the central regions, a minority of the overall sample (13 of

our final 85 galaxies). The quantities vdisc and vbulge are based on a mass-to-light ratio of

1 M�/L�, and therefore need re-scaling for any other assumed ratio. Finally, for each galaxy,

gas surface brightness information has been converted into a gas contribution vgas. A more

detailed description of the data and the derivation of the velocity components can be found

in Lelli et al. (2016).

From the original sample of 175 galaxies, we make a series of cuts, yielding a final sam-

ple of 85 galaxies. The cuts are summarised below, along with numbers in parenthesis in-

dicating how many galaxies were removed at each successive cut.

We include galaxies for which:

1github.com/aneeshnaik/spam

https://github.com/aneeshnaik/spam
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Model Theory f̄R 0 Halo ρenv a5,∗ Υ Parameters

A ΛCDM - NFW - - 1 vvir, cvir, Υ ,σg

B f (R ) Varying NFW × × 1 f̄R 0, vvir, cvir, Υ ,σg

C f (R ) Varying NFW Ø × 1 f̄R 0, vvir, cvir, Υ ,σg

D f (R ) Varying NFW × Ø 1 f̄R 0, vvir, cvir, Υ ,σg

E f (R ) Varying NFW × × 0 f̄R 0, vvir, cvir,σg

F f (R ) Varying NFW × × 2 f̄R 0, vvir, cvir, Υdisc, Υbulge,σg

G ΛCDM - DC14 - - 1 vvir, cvir, Υ ,σg

H0-19 f (R ) Imposed NFW × × 1 vvir, cvir, Υ ,σg

I0-19 f (R ) Imposed DC14 × × 1 vvir, cvir, Υ ,σg

Table 3.1: Summary of the models investigated in this chapter. Columns are (1) Model: the alphabeti-

cal/alphanumerical ID corresponding to a given model, (2) Theory: ΛCDM or f (R ), i.e. whether or not a

fifth force contribution is included in the rotation curve model, (3) f̄R 0: for an f (R )model, f̄R 0 is either left as

a freely ‘varying’ parameter, or in the case of Models H0-19 and I0-19, imposed as a series of 20 fixed values

given in Table 3.2 (see discussion in § 3.3.1), (4) DM Halo: NFW or DC14 dark matter halo profile (§ 3.3.1), (5)

ρenv: whether a large-scale environment is added to the scalar field solver (§ 3.3.3). Note that in all models,

we take into account environmental screening effects with the final sample cut discussed in § 3.2, and this

additional test is merely to ensure that the remaining sample is largely unaffected by environmental screen-

ing. (6) Stellar Screening: whether the stellar component is excluded from sourcing a fifth force in the scalar

field solver (§ 3.3.4), (7) Υ : Whether the mass-to-light ratio is treated with one free parameter (using the same

ratio for disc and bulge),‘1’, two free parameters (allowing for different values for disc and bulge),‘2’, or as

‘fixed’ empirical values,‘0’ (§ 3.3.1), and (8) Parameters: a list of the free parameters for a given model (see

main text for details).

• There are ≥ 5 data points. (175−4= 171)

• Inclination i ≥ 30◦. (171−12= 159)

• Quality flag Q = 1, 2. This excludes galaxies with major asymmetries, for which Q = 3.

(159−10= 149)

• Information about the HI gas distribution is available. This excludes galaxies for

which the vgas contribution can only be estimated approximately. (149−2= 147)

• There is not a significant environmental screening effect. See § 3.3.3 for a more de-

tailed description of this cut. (147−62= 85)

3.3 Methods

3.3.1 Rotation Curve Models

In this study, we have experimented with a range of different models for galaxy rotation

curves, e.g., models with different dark matter halo profiles, fixed or varying f̄R 0, as well
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as different treatments of mass-to-light ratio, environmental effects and a potential self-

screening of stars. A summary of the models investigated can be found in Table 3.1. The

terms used in this table will be explained over the course of the following few subsections.

Following Eq. (1.44), we construct a circular velocity model vmodel for each galaxy, given

by

v 2
model(R ) = atotR = (aN +a5)R , (3.1)

where R is the distance in the disc plane from the centre of the galaxy, aN is the component

of the standard gravity (Newtonian) acceleration evaluated in the disc plane at radius R

and pointing radially inwards, and a5 is the analogous acceleration component due to the

fifth force.

The Newtonian acceleration aN is sourced by the various components of the galaxy: the

gas, stellar disc, stellar bulge, and dark matter. This relationship can be written as

aN(R ) =
v 2

gas+ v 2
DM +Υdiscv 2

disc+Υbulgev 2
bulge

R
, (3.2)

where vx is the contribution of component x to the overall velocity curve as a function of

radius R , and Υdisc and Υbulge are the mass-to-light ratios for the stellar disc and bulge. The

gaseous and stellar contributions (vgas, vdisc, and vbulge) have been calculated by the SPARC

team and are included within the SPARC data. Note also that the bulge term only applies

to galaxies for which the SPARC team have found evidence for a stellar bulge, and have

included a corresponding vbulge contribution in the data; this corresponds to 13 of the 85

galaxies in our final sample.

All that remains to complete the model is to calculate the dark matter contribution vDM,

the mass-to-light ratios Υ , and the acceleration due to the fifth force a5.

Firstly, we calculate the dark matter contribution vDM by modelling the dark matter halo

as a 2-parameter profile. We consider two different choices for the profile: the NFW profile

(1.45), as well as the ‘DC14’ profile of Di Cintio et al. (2014). The latter profile is derived em-

pirically from ΛCDM simulations incorporating baryonic feedback, and provides a more

‘cored’ profile than NFW for galaxies with a significant stellar component. It was found by

Katz et al. (2017) to provide a better fit to the SPARC galaxies than NFW. As indicated in Ta-

ble 3.1, Models A-F and H0-19 all use NFW haloes, while Models G and I0-19 employ DC14

haloes. Note that as in the previous chapter, we assume cold dark matter. However, it is

worth noting that cored halo profiles can also arise in other dark matter theories, such as

fuzzy dark matter (Hui et al., 2017). Furthermore, we again assume that dark matter is a

diffuse particle fluid.

In either case, the profile is determined by 2 parameters, which we adopt as free pa-

rameters in our models: the concentration parameter cvir and the virial velocity vvir. cvir is

defined by

cvir =
rvir

r−2
, (3.3)
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Model log10 | f̄R 0| Model log10 | f̄R 0|
H0 (or I0) -7.806 H10 -6.697

H1 -7.695 H11 -6.586

H2 -7.584 H12 -6.475

H3 -7.473 H13 -6.364

H4 -7.362 H14 -6.253

H5 -7.252 H15 -6.143

H6 -7.141 H16 -6.032

H7 -7.030 H17 -5.921

H8 -6.919 H18 -5.810

H9 -6.808 H19 -5.699

Table 3.2: Values of log10 | f̄R 0| used in Models H0-19 and I0-19. They form a sequence of values that are

uniformly spaced in the logarithm from log10

�
1.563×10−8

�
to log10

�
2×10−6

�
.

where rvir is the (spherical) virial radius, the radius enclosing a region of average density

93.6 times the cosmic critical density, and r−2 is the radius at which the logarithmic slope

of the halo density profile is -2, which in the case of NFW is the same as the scale radius.

The virial velocity, vvir is in turn given by

vvir =

√√G Mvir

rvir
, (3.4)

where Mvir is the virial mass: the mass contained within the virial radius. Details of the

translation between these parameters and vDM can be found in, e.g., the appendix of Katz

et al. (2018).

Secondly, we have experimented with three approaches for the mass-to-light ratiosΥdisc

and Υbulge. In the most general case, we treat them as two free parameters for each galaxy.

Alternatively, we treat them as a single free parameter (taking Υdisc = Υbulge), mirroring the

approach of Katz et al. (2017). The final option is to treat them as fixed values (Υdisc =
0.5M�/L� and Υbulge = 0.7M�/L�). This was the approach taken in McGaugh et al. (2016).

As indicated in Table 3.1, we mostly adopt the middle approach, that of a single free pa-

rameter (denoted as ‘1’ in the Υ column of Table 3.1). However, Model E takes the fixed

values for the mass-to-light ratios (denoted as ‘0’), while Model F treats them as two free

parameters (denoted as ‘2’). As mentioned previously, only 13 of the galaxies have a bulge

component. For the remaining 72 galaxies, Models F and B are identical.

Finally, the fifth force contribution a5 is given by gradients of the f (R ) scalar field fR

via Eq. (1.77). In order to compute this, the scalar field fR needs to be calculated across

the galactic disc by solving Eq. (1.69). For this purpose, we use a spherical 1D scalar field

solver, which takes as an input the mass distribution and the parameter f̄R 0. The details of

this solver are discussed in the next subsection.

We adopt two different, but complementary approaches for the parameter f̄R 0:
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• f̄R 0 is a free parameter in the fit of the rotation curve for each galaxy. The resulting

spread of marginal f̄R 0 posteriors values across the galaxies of the sample can then be

inspected for any significant clustering around a single preferred global value. This

option is denoted as ‘varying’ under the f̄R 0 column in Table 3.1, and is used for all

f (R )models except H0-19 and I0-19.

• By contrast, Models H0-19 and I0-19 take a log-space grid of 20 values of | f̄R 0|, ranging

from log10

�
1.563×10−8

�
to log10

�
2×10−6

�
. These values are given in Table 3.2. Each

of these 20 values are in turn globally imposed over the whole sample, for example

Model H17 imposes a global log10 | f̄R 0| value of -5.921. These 20 models can then be

compared with each other and with ΛCDM, providing constraints on f̄R 0.

3.3.2 Scalar Field Solver

This subsection describes the calculation of the scalar field fR for a given mass distribution

and cosmic background value f̄R 0. The technique is essentially a 1D version of the Newton-

Gauss-Seidel scalar field solver implemented in the f (R )N-body code MG-GADGET (Puch-

wein et al., 2013) which was used in the previous chapter.

Given the finding in the previous chapter that the scalar field profiles within galaxies

typically adopt a discoid shape, the spherically symmetric 1D approximation is not ideal

but is made for reasons of computational cost; the jump to 2D corresponds to roughly two

orders of magnitude in computational time, typically making it prohibitively expensive to

perform a sufficient number of iterations to achieve MCMC convergence.

On the other hand, an analytic calculation of the screening radius and fifth force for a

spherical body, such as Eqs. (1.62) and (1.63), would make the computation instantaneous.

However, this prescription was found to be too inaccurate and sensitive to the (somewhat

arbitrary) choice of outer limit of integration. Thus, the 1D numerical computation de-

scribed in this subsection represents a reasonably accurate and reasonably fast compro-

mise. The robustness of this 1D approximation is examined in detail in Appendix § A, where

a comparison to an axisymmetric 2D solver is presented.

To avoid unphysical positive values of the scalar field fR (e.g., due to finite numerical

step sizes), the calculation is performed in terms of the quantity u ≡ ln
�
fR/ f̄R (a )

�
. The

equation of motion for the scalar field (1.69) can then be written as

∇2e u +
1

3c 2 f̄R (a )

�
R̄ (a )

�
1− e −

u
2
�
+8πGδρ

�
= 0. (3.5)

Note that the curvature perturbation δR has been eliminated using Eq. (1.85).

The role of the scalar field solver is to solve Eq. (3.5) for fR across the galaxy, given an

input density profileδρ. This scalar field profile can then be used to calculate the fifth force

contribution to the rotation curve via Eq. (1.77).
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Equation (3.5) is discretised assuming spherical symmetry on a 1D radial grid. The

outer edge of the grid needs to be at a radius larger than the Compton wavelength of the

theory. For all of the f̄R 0 values within the bounded prior (see § 3.3.6), 5 Mpc is a suffi-

ciently large value. Finer resolution is required at smaller radii than at these large radii, so

it is appropriate to use logarithmically spaced grid cells, i.e. the radial gridlines are equally

spaced in the coordinate x ≡ ln r , with constant grid spacing hx . It was found that 175 cells

between rmin = 0.05kpc and rmax = 5Mpc gave sufficiently accurate, converged results.

Defining

Li ≡
�∇2e u

�
i
+

1

3c 2 f̄R (a )

�
R̄ (a )

�
1− e −

ui
2

�
+8πGδρi

�
, (3.6)

where the index i denotes the radial grid cells, Eq. (3.5) is then

Li = 0. (3.7)

This is solved, as in MG-GADGET, with an iterative Newton-Gauss-Seidel approach, where

at iteration n the scalar field is updated via

u n+1
i = u n

i −
L n

i
∂L n

i
∂ u n

i

. (3.8)

In order to do this, we need discretised expressions for the Laplace operator on our grid, as

well as the quantity ∂Li/∂ ui . The Laplace operator in the coordinate x ≡ ln r is given by

∇2 f =
1

r 3

∂

∂ x

�
r
∂ f

∂ x

�
, (3.9)

which is discretised as
�∇2 f

�
i
=

1

r 3
i h 2

x

�
ri+ 1

2
( fi+1− fi )− ri− 1

2
( fi − fi−1)

�
, (3.10)

where ri indicates the radial position of the cell centre of cell i , while ri− 1
2

and ri+ 1
2

are the

positions of the inner and outer cell boundaries. Finally, the quantity ∂Li/∂ ui is given by

∂Li

∂ ui
=

R̄ (a )

6c 2 f̄R (a )
e −

ui
2 − e ui

�
ri+ 1

2
+ ri− 1

2

r 3
i h 2

x

�
. (3.11)

Iterations of Eq. (3.8) are performed until ∆ui ≡ |u n+1
i − u n

i | < 10−7 at all grid cells i .

Through experimentation, this tolerance level has been found to give sufficiently accurate,

converged results.

All that remains now is to provide a density profileρi for Eq. (3.6). For a given galaxy, the

density profile depends on the parameter choices for the mass-to-light ratio(s) and the two

dark matter halo parameters. Density data for the baryonic components are not provided

with the SPARC data, so we have instead fitted vgas and vdisc with exponential disc profiles

and vbulge with a Hernquist profile. In the cases of the 2D exponential discs, we spherically

average the profiles for use in the 1D solver. These density profiles are then fed to the scalar

field solver (multiplied by the mass-to-light ratio in the case of the stellar disc and bulge),

along with the spherical dark matter halo profile, either NFW or DC14.
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3.3.3 Environmental Screening

The environment of an object plays a role in its scalar field profile. As verified in Chapter

2, a galaxy embedded within a large-scale overdensity experiences an effective | f̄R 0| that is

lower than the cosmic background value, and as a result will have a larger screening radius

than that of a galaxy occupying a region of cosmic mean density.

It has been shown in simulations (e.g. Cabré et al., 2012) that as a first approxima-

tion, the degree of environmental screening of a given galaxy can be quantified by the

gravitational potential due to external sources Φext. The Introduction (§ 1.3.5) described

the ‘screening maps’ of Cabré et al. (2012) and Desmond et al. (2018c): 3D maps of Φext

throughout the local universe, created for this very purpose of measuring the impact of en-

vironmental screening on tests of screened modified gravity. In this chapter, we use the

screening map of Desmond et al. (2018c) which uses updated techniques and catalogues

compared to that of Cabré et al. (2012). Full details regarding the construction of the map

can be found in the original paper, but it is worth noting that the value of Φext given by the

screening map at a given point in space depends on the adopted value for f̄R 0, because the

map sums contributions from all mass within the Compton wavelength λC of the consid-

ered point, which relates to f̄R 0 via Eq. (1.88).

We use the screening map of Desmond et al. (2018c) to findΦext for each of the 147 galax-

ies that remain in the sample after making the first four cuts described in § 3.2. The screen-

ing map uses a Bayesian methodology to reconstruct full posteriors on Φext at any point in

space within ∼ 200 Mpc, by propagating uncertainties on the various inputs. For each of

these galaxies, the posterior distribution for Φext is calculated for a log-spaced sequence of

20 values of f̄R 0, the same values used in Models H0-19 (see Table 3.2). This information is

then used in two ways.

First, we exclude from the sample any galaxy for which the 1σ upper bound on |Φext|/c 2

is greater than 3| f̄R 0|/2 (which is an approximate criterion for environmental screening, see

Cabré et al. 2012), for any of the 20 considered values of f̄R 0. This is tantamount to removing

from the sample any galaxies for which we believe environmental screening would be a

significant effect in an f (R )Universe. As indicated in § 3.2, this cuts 62 of the 147 remaining

galaxies once the other sample cuts have already been performed, leaving our final sample

of 85 galaxies.

Secondly, we investigate the effect of the environmental contribution to the scalar field

profile of the remaining galaxies in our sample. We consider a spherical top hat model,

with a radius equal to the Compton wavelength λC , and a gravitational potential equal to

the maximum posterior value of Φext. As indicated by the quantity ρenv in Figure 3.1, this

structure is added to the overall density profile before it is fed to the scalar field solver. As

shown in Table 3.1, this change is only made in the case of Model C, which is otherwise

identical to Model B, i.e. f (R )+varying f̄R 0+NFW. The results of Model C can be compared



100 CHAPTER 3. UPTURNS IN OBSERVED ROTATION CURVES

to those of Model B to check the robustness of our results against the residual effects of

environmental screening in our final sample. Note that because Φext is a function of f̄R 0,

and f̄R 0 is a free parameter in Model C, the mass and size of this large-scale structure needs

to be recalculated with each Monte Carlo realisation.

3.3.4 Stellar Self-Screening

An assumption underlying our analysis is that the scalar field fR is sourced by all of the mass

components: the dark matter, gas, and stars. However, in an f (R ) universe, one might

expect a significant population of stars to be ‘self-screened’, and thus neither source nor

couple to the fifth force (Davis et al., 2012). The impact of this effect on our rotation curve

signature was explored in the previous chapter (2.3.3). Furthermore, this effect was the

underlying principle for several of the studies mentioned in the Introduction (§ 1.3.5; e.g.

Vikram et al., 2018; Desmond et al., 2018a,b, 2019a) which searched for signals predicted

to result from this differential coupling of the fifth force to stars and gas.

For the purposes of this chapter, the expected effect of the stellar self-screening is that

for a given f̄R 0, the screening radius will be smaller than if the effect is ignored. This was

demonstrated in the previous chapter.

The contribution of a given star depends on its mass, radius, and environment. Thus,

performing a fully self-consistent calculation incorporating the detailed contribution of the

entire stellar population is difficult. We instead repeat the approach adopted in Chapter 2:

we implement the extreme scenario in which all stars are assumed to be fully self-screened,

and not sourcing the scalar field at all. In practice, this simply amounts to omitting the

stellar input to the scalar field solver.

As in the test for environmental screening in the previous subsection, we employ this

technique only for one model, Model D, which is otherwise identical to Model B, i.e. f (R )+
varying f̄R 0+NFW. The ‘true’ result should then be bookended by these two extremes, so the

results of Model D can be compared to those of Model B in order to gain an understanding

of the error induced in our inference by the effects of stellar self-screening.

3.3.5 Markov Chain Monte Carlo (MCMC)

We use an affine-invariant, parallel-tempered2 Markov chain Monte Carlo (MCMC) tech-

nique, using the publicly available Python package emcee (Foreman-Mackey et al., 2013)

to explore the posteriors of the free parameters of each model.

2Since the research presented in this chapter was first undertaken, emcee has changed significantly and the

parallel-tempering functionality has been deprecated. At the time of writing this thesis, I have made some

changes to my publicly available code such that the MCMC implementation works with the new version of

emcee, but the plotting and analysis scripts will require testing.
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Figure 3.1: Pipeline illustrating the calculation of the posterior probability P (θ |D ) for parameter values θ

and for a given galaxy with rotation curve data D . As indicated in the legend, white rectangles represent

free parameters, ellipses represent tools or models, lozenges represent observational data, and green rectan-

gles represent calculated quantities. The model illustrated here is an f (R ) model with varying f̄R 0, a single

mass-to-light ratio, an NFW halo and an added large-scale environment (i.e. Model C). Various details of the

pipeline would differ in other models. For example, the nodes labelled ‘ρenv’, ‘Φext’ and ‘screening map’ would

not be present in the case of Model B, which is identical to Model C but does not include a large-scale envi-

ronment in the scalar field solver. Another example is Model F, which is identical to Model B but has two free

parameters for the mass-to-light ratio, and would therefore also lose the environmental screening apparatus

and further replace the node marked ‘Υ ’ with two free parameter nodes: ‘Υdisc’ and ‘Υbulge’.
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Figure 3.2: Shown as an example, the rotation curve of NGC 3741 and corresponding fit. The black points

with errorbars show the observed rotation curve, while the purple curve gives the f (R ) (Model B) fit. The

grey textured lines show the contributions to the f (R ) fit of the various components: gas, stellar disc, dark

matter, and fifth force, as labelled. The galaxy does not have a bulge component, so there is no vbulge shown.

It should be noted that this fit is unrepresentatively good; it was chosen because there is a clear upturn-like

feature that is well fit with a screening radius and fifth force. As is shown in later figures, not all galaxies are

so well-fitted.

For a given galaxy with rotation curve data D , the posterior probability P (θ |D ) for a

given set of parameters θ is given by

P (θ |D )∝L (D |θ )π(θ ), (3.12)

whereL (D |θ ) represents the likelihood function, andπ(θ ) represents the prior probability

distributions for the parameters θ . The choices of priors will be discussed further in § 3.3.6.

The pipeline for calculating this posterior probability, for a given galaxy and a set of pa-

rameters θ , is illustrated heuristically in Figure 3.1. The diagram specifically illustrates the

pipeline for an f (R )model with freely varying f̄R 0 and an environmental contribution (i.e.

Model C); some of the details of the diagram would change for other models, and examples

of such changes are given in the accompanying caption.

Assuming that the errors σ on the data are Gaussian, the log-likelihood function for a

given SPARC galaxy is given by

lnL =−1

2

∑
j

��
vdata j

− vmodel(r j )

σ j

�2

+ ln
�
2πσ2

j

��
, (3.13)

where the sum is over the data points of an individual rotation curve.
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In addition to the observational errors provided with the data points, for each galaxy we

add in quadrature an additional constant error componentσg , i.e.,

σ2
j =σ

2
obs, j +σ

2
g . (3.14)

σg is then left as a free parameter in the fit for each galaxy. This additional error term is

included in order to account for galaxy features not included in the model, e.g. spiral arms

and other baryonic features, but a fit is penalised for adopting too large a value of σg , via

the second term in the log-likelihood Eq. (3.13).

For each MCMC run, we use 30 walkers, 4 temperatures, and 5000 iterations (after burn-

in). The chains have all been checked for convergence, both visually and by ensuring that

the Gelman-Rubin statistic (Gelman & Rubin, 1992)R is sufficiently close to 1. In particu-

lar, for the overwhelming majority of the fits, |R −1|< 0.01, apart from one or two galaxies

in some models, which exhibit some bimodality.

An example of a fit generated with this method is shown in Figure 3.2. The figure shows

the observed rotation curve of NGC 3741, along with the best-fitting (i.e. maximum a poste-

riori) rotation curve under the f (R )model with freely varying f̄R 0 (i.e. Model B). Also shown

are the various components: vdisc, vgas, vDM, which combine in quadrature via Eq. (3.1) to

give the model.

A fourth component is shown in Figure 3.2: v5. This is the contribution of the fifth force

to the rotation curve model, given by

v5(R ) =
Æ

a5(R )R . (3.15)

The only contribution to the model that is not a function of fit parameters is the gas

curve vgas, which is provided with the data as a fixed quantity. vdisc is also provided with

the data, but its overall normalisation is set by the mass-to-light ratio Υ . It can be seen in

the v5 curve that the fit places a screening radius at around 2 kpc. This results in a mild

upturn in the model rotation curve, which visibly appears to give a good fit to the data. It

should be noted that this rotation curve was chosen because of this ideal behaviour, and is

not necessarily representative of the sample at large.

3.3.6 Priors

As indicated in Table 3.1, different models have different free parameters. For the models

with a freely varying f̄R 0, we adopt a flat prior in log10 | f̄R 0|, between | f̄R 0| = 10−9 and | f̄R 0| =
2× 10−6. For even larger values of | f̄R 0| the model would struggle to screen the Milky Way

at the solar radius, while even smaller values would be of limited interest as most galaxies

would likely be fully screened.

For any given galaxy, we adopt a flat prior for σg , between 0 and twice the maximum

observed error for that galaxy.
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Figure 3.3: Left: Stellar mass-halo mass relation based on Moster et al. (2013) used as a log-normal prior. The

dark and light regions indicate the 1 and 2σ regions respectively, after broadening the relation to account

for f (R ) gravity effects (see text for details). The dashed lines indicate the 1σ region before the broadening.

Right: As with the left panel, but for the concentration-halo mass relation from Dutton & Macciò (2014).

The priors for the remaining parameters—the two dark matter parameters, cvir and vvir,

and where applicable, the one or two mass-to-light ratios Υ—are less agnostic. Using flat

priors was found to have the result that the fits are able to artificially inflate or deflate

their halo masses so as to have a screening radius within the radial range of the rotation

curve. As a consequence, unphysical vertical clustering features would appear in the stel-

lar mass-halo mass diagrams and concentration-halo mass relation diagrams of the best-

fitting models.

To avoid this undesirable behaviour, we follow the approach of Katz et al. (2017) and

use empirical stellar mass-halo mass and concentration-halo mass relations from Moster

et al. (2013) and Dutton & Macciò (2014) respectively as lognormal priors. These relations

are depicted in Figure 3.3. For a fixed mass-to-light ratio, these relations translate directly

to priors on vvir and cvir respectively. In the case of a freely varying Υ , there is an increased

freedom, as the stellar mass depends on the value of Υ .

It should be noted that these relations are derived from ΛCDM simulations, so their

applicability in an f (R )universe is not entirely clear. f (R )gravity simulations, such as those

of Mitchell et al. (2019) suggest that for | f̄R 0|¦ 10−6, halo concentrations are enhanced by 0.1

dex or so. Taking this into account, we increase the width of our adopted concentration-

halo mass relation by 0.1 dex; approximately equivalent to a doubling of the width. The

priors should then encompass the ‘true’ relations of both a ΛCDM and an f (R ) universe.

The impact of modified gravity on the stellar mass-halo mass relation is not yet known.

However, the work of e.g. Cataneo et al. (2016) suggests that the maximum increase to

the halo mass function at the level of | f̄R 0| ¦ 10−6 is small; approximately 10% or so. As-
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suming baryonic feedback mechanisms to have largely similar effects in an f (R ) universe,

one might then expect the stellar mass-halo mass relation to be changed by a similar de-

gree. Thus, a doubling of the width of the relation should also comfortably encompass the

‘true’ relation in the f (R ) paradigm. We approximately achieve this by adding 0.2 dex to the

width.

As a final note, we follow Katz et al. (2017) in imposing some additional constraints.

Firstly, we require that the baryon mass fraction is always less than the cosmological value.

Furthermore, log10 cvir, log10 vvir/ (1m/s), and log10Υ/ (1M�/L�) are constrained to lie within

the bounds (0, 2), (4, 5.7), and (-0.52, -0.1) respectively. The constraints on cvir and vvir are

rather loose, while the constraint on Υ is somewhat tighter, but informed by the stellar syn-

thesis models of Meidt et al. (2014); McGaugh & Schombert (2014); Schombert & McGaugh

(2014).

3.4 Results

3.4.1 Constraints on f̄R 0

A widely used tool for model comparison is the Bayesian Information Criterion (Schwarz,

1978), given by

BIC = ln(n )k −2 ln(L ), (3.16)

where n is the number of data points, k is the number of parameters of the model, andL
is the maximised likelihood of the model. The first term acts on behalf of Occam’s razor,

penalising overcomplicated models with too many parameters. Two models, 1 and 2, can

then be compared by calculating the difference in the BIC:∆BIC ≡BIC1−BIC2. A positive

(negative) value for this quantity indicates a preference for model 2 (1). We define values in

the range |∆BIC| > 2 as ‘mildly significant’, and values in the range |∆BIC| > 6 as ‘strongly

significant’ (Kass & Raftery, 1995).

Figure 3.4 shows a first comparison of an f (R )model with freely varying f̄R 0 and aΛCDM

model, in both cases using NFW haloes (i.e. Models B and A respectively). The cumulative

distribution function of ∆BIC ≡ BICB −BICA is displayed. Model B treats f̄R 0 as a free pa-

rameter and so has one more free parameter than Model A, for which it is penalised by the

first term in Eq. (3.16). Nonetheless, the majority of galaxies show some preference for f (R ),
with 64/85 galaxies having ∆BIC < 0. Perhaps more striking are the numbers of galaxies

that have mildly significant (|∆BIC| > 2) preferences either way, with 3 galaxies preferring

ΛCDM and 49 galaxies preferring f (R ). No galaxies have a strongly significant (|∆BIC|> 6)

preference for ΛCDM, while 27 galaxies do for f (R ). It is worth noting that the galaxies

with the strongest preferences for f (R ) also typically infer much lower values forσg under

Model B than under Model A;ΛCDM+NFW tries to compensate for a poor fit by increasing

the scatter.
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Figure 3.4: Cumulative distribution function of∆BIC =BIC f (R )−BICΛCDM across SPARC galaxies (total=85),

where BIC is the Bayesian Information Criterion, given by Eq. (3.16). The f (R )model here is Model B (freely

varying f̄R 0), while the ΛCDM model is Model A, both of which use NFW haloes and single mass-to-light

ratios. As indicated by the arrows at the top of the Figure, a negative value for ∆BIC indicates a preference

for f (R ), and a positive value for ΛCDM. The grey dashed lines mark the fiducial values of |∆BIC| = 0, 2, 6.

Corresponding numbers on the y -axis indicate numbers of galaxies below the lines. For example, 49 galaxies

have a mildly significant preference for f (R ), while 85− 82= 3 galaxies have a similar preference for ΛCDM.

This figure indicates that the majority of galaxies prefer some f (R )model, but it is worth noting that this does

not necessarily mean that they all prefer the same f̄R 0 value.

These numbers, and the preference for f (R ) implied by them, is perhaps unsurprising.

Given a freely varying f̄R 0, the fits are able to place a screening radius anywhere within the

radial range of the rotation curve, and are thus able to choose a favourable position such

that the fit is improved. It is only in a minority of cases that no such position can be found.

For these galaxies, a low | f̄R 0| is chosen such that the galaxy is fully screened. This results in

L f (R )/LΛCDM → 1 and thus ∆BIC→ ln(n ). For the SPARC galaxies, this will typically fall in

the range 2−5, and so it is impossible for a galaxy to have a ‘strongly significant’ preference

forΛCDM over an f (R )model with a freely varying f̄R 0. This just reflects the fact thatΛCDM

is contained within the f (R )model as a limiting case.

Of course, in an f (R ) Universe, f̄R 0 would not vary freely from galaxy to galaxy as we

have allowed it to here. Instead, there would be a single global value for f̄R 0. The natural

question then is whether the individually inferred values for f̄R 0 show any clustering around

a single global value. The upper panel of Figure 3.5 addresses this question, showing the

marginal posterior distributions for f̄R 0 across all the galaxies, fitting again with Model B

(freely varying f̄R 0+NFW). The overlaid coloured points show the values of f̄R 0 for the best-

fitting models, which typically coincide with the peaks of the marginal posteriors, except
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Figure 3.5: Top: For all 85 galaxies in the sample, the marginal posterior distributions for f̄R 0 under the f (R )
model with freely varying f̄R 0 and NFW haloes (i.e. Model B) are shown. Each individual posterior is a his-

togram with 200 bins, equally log-spaced between the edges of the f̄R 0 prior. The 85 histograms are then

vertically juxtaposed, and ordered by the position of the peak of the histogram. The colourscale is truncated

at a bin count of 2500 to allow sufficient contrast in less favoured regions, but actually reaches up to ∼ 30000

in some cases. The points show the f̄R 0 values of the best-fitting models, coloured according to the Hubble

classification of the galaxy, as indicated in the legend. The marginal posteriors do not appear to show any

significant clustering around a single value for f̄R 0. Bottom: For a series of 20 f (R )models with fixed f̄R 0 (i.e.

Models H0-19), the likelihood ratios lnL f (R )/LΛCDM , where the ΛCDM model used is Model A, and likeli-

hoods are calculated for the best-fitting models. This colourscale is also truncated, at a likelihood ratio of±5.

This panel conveys similar information to the top panel: different galaxies appear to prefer different ranges

of f̄R 0. However, as discussed in the text, the possibility remains of a single global value that is consistent with

all galaxies, particularly in the region | f̄R 0| ∼ 10−7, where many of the galaxies are fully screened and therefore

insensitive.

in cases where there is some multimodality or f̄R 0 is not well constrained.

The key result shown in this panel is that there does not appear to be any immediate

sign of clustering around a single value of f̄R 0. For most galaxies, f̄R 0 values in a reasonably

narrow range are preferred, but these inferred values are almost evenly spread across two

orders of magnitude, which is inconsistent with a single global value.

As an additional note, the Hubble types of the galaxies are indicated in the upper panel

of Figure 3.5. The classifications used are those that accompany the SPARC data, and match

the classification scheme of de Vaucouleurs et al. (1991): Sa-Sd types are spiral galaxies with

spiral arms of decreasing tightness, Sm and Im types are Magellanic spirals and irregulars,

and BCD types are ‘blue compact dwarfs’. There appears to be a correlation between in-
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ferred f̄R 0 and Hubble type. This is to be expected, as dwarf galaxies would be sensitive

to lower values of | f̄R 0|, for which larger galaxies would be entirely screened. Conversely,

larger galaxies would be sensitive to higher values, for which dwarf galaxies would be fully

unscreened.

This finding demonstrates an important caveat to the above result that there is no obvi-

ous global value for f̄R 0: different galaxies have different sensitivity ranges for f̄R 0, so there

would naturally be a spread in fitted f̄R 0 values when comparing across the whole sample.

Even in an f (R )Universe, only the galaxies with the true f̄R 0 within their sensitivity ranges

would fit this value, and the other galaxies would instead just choose the incorrect f̄R 0 val-

ues that most improved their fits.

It is important then to invert the question; rather than asking whether all galaxies are

consistent with one f̄R 0 value, we can ask whether one f̄R 0 value is consistent with all galax-

ies, i.e. whether a specific f̄R 0 value can be imposed globally that gives rotation curve mod-

els consistent with the observations of all galaxies, even if it is not the most preferred f̄R 0

value for a significant subpopulation of galaxies, possibly lying outside of their sensitivity

range.

To address this question, we consider a series of 20 f (R )models with globally imposed

f̄R 0, i.e. Models H0-19. The f̄R 0 values utilised are given in Table 3.2. For each of the 20 f̄R 0

values and each of the 85 galaxies, the lower panel of Figure 3.5 shows the likelihood ra-

tio lnL f (R )/LΛCDM, taking the best-fitting parameters under Models Hx and A. This panel

conveys similar information to the top panel; visually, there does not appear to be any ob-

vious global value for f̄R 0. However, there is additional information to be gleaned. In the

higher regions, log10 | f̄R 0| ¦ −6.5, there are several galaxies which prefer such values of f̄R 0.

However, there are also a great many galaxies for which these values provide a worsening

of the fit compared with ΛCDM. On the other hand, in the region log10 | f̄R 0| ∼ −7, there are

several galaxies which prefer such values, and the galaxies which prefer higher values are

indifferent towards it, as a result of being completely screened in this region of f̄R 0. This

region, therefore, appears to be the most promising within our sensitivity range.

A side-note is that the lower panel of Figure 3.5 also gives an understanding of the sensi-

tivity of the sample. Beneath the diagonal green region is a white region, where galaxies are

screened andΛCDM and f (R ) are indistinguishable. As we go to progressively lower values

of | f̄R 0|, more galaxies inhabit the white region. We define log10 | f̄R 0| ∼ −7.2 or | f̄R 0| ∼ 6×10−8

as the ‘sensitivity level’ of our sample, being the point at which roughly the half of the sam-

ple has become insensitive.

Rather than considering each galaxy individually, we can perform a model compari-

son across the sample as a whole. For each of the Models H0-19, we can perform an over-

all model comparison with ΛCDM by calculating the total likelihood ratio lnL f (R )/LΛCDM.

The log-likelihoods lnL are calculated with Eq. (3.13) taking the best-fitted (i.e. maximum

a posteriori) parameters for each galaxy, then summing the contributions of all galaxies
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Figure 3.6: Top: The coloured lines show model comparisons via the log-likelihood ratio lnL1/L2. The

dashed purple line shows the log-likelihood ratio for DC14+ΛCDM (Model G) versus NFW+ΛCDM (Model

A). The green solid line shows the log-likehood ratios for a range of fixed- f̄R 0 models with NFW haloes (Model

H) versus NFW+ΛCDM (Model A), while the purple solid line shows the ratios for another range of fixed- f̄R 0

models, this time with DC14 haloes (Model I), again versus Model A. The grey dashed line shows where the

log-ratio equals zero, i.e. where both models are equally favoured. Bottom: Rotation curves and fits of three

galaxies: DDO 161 (left), UGC 00891 (centre), and NGC 3109 (right). In each case, the observed rotation curve

is shown, as well as 3 fits: NFW+ΛCDM (Model A; grey dotted), DC14+ΛCDM (Model G; purple dashed), and

NFW+ f (R ) imposing log10 | f̄R 0|=−7.03 (Model H7; green solid). The latter is the model corresponding to the

peak of the green likelihood ratio curve in the top panel. The three galaxies chosen are those which contribute

the most to this peak. This figure shows the key result of the chapter: the galaxies which most favour f (R )
over ΛCDM are those for which NFW provides a poor fit, and using a cored halo profile under ΛCDM gives

a better fit to the rotation curves than cuspy haloes with f (R ) gravity. Furthermore, when cored haloes are

assumed, f (R ) gravity does not give any significant improvement in the agreement with the data, as can be

seen by comparing the purple solid and purple dashed curve in the top panel.

in our sample. A more fully Bayesian approach would be to marginalise over the full pa-

rameter space rather than taking the best-fitted parameters. The likelihoods then become

marginal likelihoods, and their ratios are known as Bayes factors. The calculation of these

Bayes factors, however, is notoriously expensive so we instead consider the more easily cal-

culable likelihood ratios, which are nonetheless robust tools for model comparison. The

green curve in Figure 3.6 shows the result of this likelihood ratio calculation for the 20 f̄R 0

values listed in Table 3.2.

Figure 3.6 shows that f (R ) is disfavoured for values log10 | f̄R 0|¦−6.1, reaching a decrease
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in log-likelihood of ∼ 30 at its most extreme. Note that at higher values still, the likelihood

for f (R ) starts to approach that of ΛCDM again. However, this corresponds to the extreme

and unphysical case in which every galaxy is fully unscreened, and so the rotation curve

models exactly resemble those of ΛCDM, but with an overall mass reduced to 3/4 of the

inferred ΛCDM mass, to account for the gravitational accelerations being 4/3 times that of

standard gravity.

At the opposite end of the spectrum, log10 | f̄R 0| ® −7.6, the likelihood ratios again ap-

proach identity. This corresponds to the regime in which every galaxy is fully screened, so

the fits are now exactly identical to those of ΛCDM.

At intermediate values of f̄R 0, f (R ) appears to be favourable compared to ΛCDM. The

peak of the signal is for the model with log10 | f̄R 0|=−7.03, where there is a rather significant

increase in the log-likelihood of around 66.

The lower panels of Figure 3.6 show the rotation curves and fits of the three galaxies

with the highest individual likelihood ratios for Model H7 (log10 | f̄R 0| = −7.03) compared

with Model A. In other words, the three galaxies that contribute the most to the peak in

the upper panel of Figure 3.6. These galaxies are DDO 161 (lnL f (R )/LΛCDM = 14.96), UGC

00891 (6.14), and NGC 3109 (6.13).

It is striking that the three galaxies are all rather similar; dwarf galaxies (Hubble types

all Im or Sm) with similar radial extents and maximum rotation speeds. Furthermore, in

each case, the behaviour of the fits is similar. The observed rotation curves are poorly fit

with cuspy NFW profiles, which place too much mass in the inner regions in order to fit the

velocity data in the outer regions. The reason the f (R ) fits provide a significant improve-

ment is that the presence of the fifth force in the outer regions allows a reduced mass in the

inner regions.

The DC14 profile for dark matter haloes Di Cintio et al. (2014) is empirically derived

from ΛCDM simulations incorporating stellar feedback. The inner slope of the profile de-

pends on the stellar content of the galaxy, giving a more cored profile to galaxies with in-

termediate (∼ 0.5 %) stellar mass fractions. Katz et al. (2017) found that fitting the SPARC

galaxies with a DC14 profile gives a consistent improvement compared to NFW, particularly

in cases such as the galaxies depicted in the lower panels of Figure 3.6, i.e. dwarf galaxies

requiring a cored profile. Indeed, the rotation curve of NGC 3109—and its dramatically im-

proved fit with a cored halo—was used as an example to illustrate the core/cusp problem

in the Introduction (Figure 1.8).

The upper panel of Figure 3.6 also shows a comparison of Models G and A (the dashed

purple line), i.e. a model comparison of ΛCDM models with DC14 and NFW haloes. The

increase in log-likelihood is nearly 300; a very significant improvement, and far more sig-

nificant than the increase in log-likelihood for any given f (R ) model with an NFW halo.

The reason for this improvement is readily apparent in the rotation curve fits in the lower

panels of Figure 3.6. Echoing the findings of Katz et al. (2017), the DC14 fits to the three
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galaxies give consistently better agreement with the data than NFW. We find that this holds

for both ΛCDM and f (R ) gravity.

The final model comparison shown in the upper panel of Figure 3.6 is between Models

I0-19 and Model A, i.e. a comparison of DC14+ f (R ) and NFW+ΛCDM. Model I does not

give a marked improvement to the fits compared to Model G. In other words, when cored

halo profiles are assumed, the f (R ) signal at log10 | f̄R 0| ∼ −7 largely disappears, so that mod-

els with a cored halo profile and a fifth force are not significantly better than those with a

cored halo profile and no fifth force.

All of this is not to say, however, that no galaxy prefers an f (R ) fifth force to a cored halo.

We repeat the analysis shown in Figure 3.4, i.e. the distribution of ∆BIC for a freely vary-

ing f̄R 0 model versus ΛCDM, but replacing the ΛCDM+NFW model with the ΛCDM+DC14

model (i.e. ∆BIC ≡BICB−BICG ). In this case, we find that it is now only a minority of galax-

ies that show some preference for f (R ), with 29/85 galaxies having∆BIC < 0, down from 64

in the NFW case. The numbers at the extremes have also shifted, with 14 galaxies showing

a strongly significant (|∆BIC|> 6) preference for f (R ) and 21 for ΛCDM, compared with 27

and 0 respectively in the NFW case. These numbers reinforce the idea conveyed by Figure

3.6: ΛCDM with a cored halo profile appears to be preferable over a cuspy halo and f (R )
for most of the galaxies in the sample.

Figure 3.7 shows rotation curve fits of the 3 galaxies with the most extreme preferences

for f (R ) over ΛCDM+DC14 (i.e. the three galaxies with the most negative values of∆BIC ≡
BICB −BICG ). These are UGC 11820 (∆BIC = −22.1), NGC 2403 (-31.2), and UGC 05253 (-

47.1). In the case of UGC 11820, it appears that the f (R )model does indeed do a markedly

better job of fitting the rotation curve. There is not a visible ‘upturn’ feature in the rotation

curve, but the overall shape of the rotation curve is much better described by an NFW halo

enhanced with a fifth force in the outer regions than by a cored dark matter halo. Indeed,

considering the goodness-of-fit in each case, the reduced chi-squared statistic χ2
ν, drops

from 13.4 to 0.8.

However, in the case of UGC 05253, it would appear that there are large-scale features

in the rotation curve, both in the central (magnified) region and in the outer stretches, that

are not adequately captured by our baryonic models. This picture is borne out by the val-

ues of χ2
ν: 17.7 for Model G, and 9.5 for Model B. The screening radius is being imposed to

markedly improve the quality of the fits, but in actuality neither model does particularly

well. NGC 2403 shows similar behaviour, although perhaps not quite so starkly. A signifi-

cant upturn feature at ∼ 4 kpc is clearly visible. Both models, with and without a screening

radius, approximate this feature. However, the baryonic models are unable to fully fit its

magnitude, so a screening radius is imposed to bridge the gap. Again, neither model per-

forms particularly well: χ2
ν drops from 5.5 to 2.6.

In addition to these caveats, it should be once again borne in mind that the galaxies

preferring Model B to Model G are not necessarily showing any preference for a single global
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Figure 3.7: Rotation curves and fits of UGC 11820 (left), NGC 2403 (middle), and UGC 05253 (right). These

are the three galaxies that have the strongest preference for an f (R ) model with an NFW halo and a freely

varying f̄R 0 (i.e. Model B) over a ΛCDM model with a cored DC14 halo (i.e. Model G). The Model B and G fits

are consequently the ones shown in the panels, with green solid and purple dashed lines respectively. To give

an indication of where the f (R ) fit is placing the screening radius, each panel also shows the contribution to

the f (R ) fit of the fifth force, i.e. v5, plotted as a green dotted line. The inset panels for NGC 2403 and UGC

05253 give magnified views of crowded areas of the rotation curves. UGC 11820 is a success for f (R ), which

gives a markedly better fit than the ΛCDM+DC14 model, both visually and formally. In the other two cases,

however, neither model does particularly well. From left to right, the best-fitting values of log10 | f̄R 0| are -7.07,

-6.57, and -6.19.

f̄R 0 value. In fact, the inferred values of log10 | f̄R 0| for the extreme galaxies shown in Figure

3.7 are rather discrepant: -7.07 for UGC 11820, -6.57 for NGC 2403, and -6.19 for UGC 05253.

As shown in Figure 3.6, no single, global f̄R 0 model with a NFW profile is in better agreement

with the data than a ΛCDM model with a cored DC14 profile.

3.4.2 Environmental Screening

As described in § 3.3.3, we investigate a model with freely varying f̄R 0, NFW haloes, and

an additional large-scale overdensity to account for the environmental contribution to the

scalar field profile. This is Model C, which is identical to Model B in every respect other

than the presence of this large-scale overdensity. For a given f̄R 0 as drawn in the Monte

Carlo sampling, the structure will have gravitational potential equal to Φext calculated from

the screening maps of Desmond et al. (2018c), and size equal to the Compton wavelength

calculated using Eq. (1.88).

Figure 3.8 shows a comparison of the f̄R 0 values inferred from the maximum of the pos-

terior of models Models B and C. Results for the 85 galaxies in our sample are shown, as well

as results for the 62 galaxies that were excluded from the sample because of their significant
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Figure 3.8: Best-fitting f̄R 0 values for an f (R )model excluding an external large-scale structure (i.e. Model

B; unfilled circles) and including one (Model C; filled circles). The two points for a given galaxy are joined

by a dashed line to indicate the change caused by including this environmental contribution. Green circles

represent the 85 galaxies from our final sample, while purple circles are the 62 galaxies that were cut from

the sample due to their overpopulated environment (see text for further details). The x -value for a given

point indicates the Φext calculated from the screening map of Desmond et al. (2018c) for that given galaxy

at the corresponding f̄R 0 value. This figure indicates that the effect of environmental screening is primarily

significant for galaxies that have been cut from the sample, while the environmental effects on our results are

small in the galaxies that constitute our final sample.

environmental contribution.

Upon including the environmental contribution, the majority of the galaxies in Figure

3.8 move towards higher | f̄R 0| and to higher Φext. This makes physical sense: for a given

fR 0, the addition of an overdense environment will move the screening radius of a galaxy

outward. For a rotation curve fit that is improved by a screening radius at a specific location,

this effect is compensated by a higher value of | f̄R 0|, hence the shift towards higher | f̄R 0|. The

shift towards higherΦext is due to the implicit relation between f̄R 0 andΦext: Φext is integrated

up to the Compton wavelength, which in turn is determined by Eq. (1.88). A higher | f̄R 0|will

therefore lead to a higher Φext (note that this is also the reason for the correlation between

inferred f̄R 0 and Φext evident in Figure 3.8). For these cases, this change is visually much

larger for the excluded (environmentally screened) galaxies than for the included galaxies.

There is however, also a subset of galaxies for which the jumps are rather large, and

these appear to be equally likely to be towards higher or lower | f̄R 0|. In these cases, fR 0 is

typically very poorly constrained and the marginal posteriors are rather broad, flat distri-

butions (both with and without the environmental contribution). In such scenarios, the

peak of the posterior can undergo quite large shifts (in either direction) between models,
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Figure 3.9: Best-fitting f̄R 0 values for all 85 galaxies, from a model with stellar self-screening (Model D; filled

circles) and without (Model B; unfilled circles), as a function of total stellar luminosity. As with Figure 3.8, the

small changes shown in this figure indicate that the effect of stellar self-screening on our results is small for

the vast majority of the galaxies in our final sample. See the text for a discussion of the few large outliers.

but the distributions are nonetheless mutually consistent.

The finding that the excluded galaxies exhibit a large change in inferred f̄R 0 (median

|∆ log10 | f̄R 0||= 0.37) gives a post hoc justification for their original exclusion from the sam-

ple. Meanwhile, the finding that the included galaxies typically do not change their inferred

f̄R 0 values significantly (median |∆ log10 | f̄R 0|| = 0.04) gives a post hoc justification for our

neglecting the environmental screening effect in most of our models (see Table 3.1).

3.4.3 Stellar Self-Screening

Figure 3.9 shows a comparison of the f̄R 0 values from the best-fitting models for all galaxies

under Models D and B, i.e. f (R )models with and without stellar self-screening, as a func-

tion of total stellar luminosity. In Model D, stars do not act as a source of the fifth force, as

would be expected if they self-screen completely. Self-screening would also prevent a fifth

force from accelerating stars, this is however not relevant here as the measured rotation

curves are based on observations of the gas component.

The mean (absolute) change in |∆ log10 | f̄R 0|| between Models D and B is 0.11, but this

number is dominated by a few outliers. In general, the change is not too large (median

|∆ log10 | f̄R 0||= 0.02), with a larger change taking place for more luminous galaxies.

The galaxies with the two largest changes in inferred f̄R 0 are UGC 05918 (|∆ log10 | f̄R 0||=
1.1) and UGC 07866 (1.7). In the case of UGC 05918, under both Models B and D, the best-

fitting models are those in which the galaxy is fully screened. In such a scenario, f̄R 0 is
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poorly constrained as any | f̄R 0| value below a certain threshold will fully screen the galaxy,

and all such values have equal posterior probability.

Meanwhile, in the case of UGC 07866, the posterior in both Models B and D is bimodal.

In one mode, the galaxy is fully screened, while in the other mode, the galaxy is fully un-

screened, and the mass of the halo and stellar components are renormalised by a factor of

3/4 to give a very similar rotation curve model. Sellar self-screening causes a slight shift

in the relative weights of the two modes, in turn causing the best-fitting model to sponta-

neously jump from one mode to the other.

Neither of these cases, nor indeed the other outliers with large changes in inferred f̄R 0,

should be causes for concern. In each of these cases, the best-fitting model either fully

screens or fully unscreens the galaxy. So, while the best-fitting values are different under

the two models, the marginal posterior distributions for f̄R 0 in both cases are wide, flat

distributions that are consistent with each other. The majority of galaxies, however, exhibit

the more typical behaviour, where a screening radius in a particular location is favourable,

which corresponds to a specific value of f̄R 0. For these galaxies, the required value of f̄R 0

is very similar for Models B and D, which is reassuring and justifies neglecting the effect of

stellar self-screening in most of the models listed in Table 3.1.

3.4.4 Mass-to-light Ratios

As described in § 3.3.1, Model B (as well as all other models considered besides E and F),

performs fits with a single freely varying Υ , which applies to both the bulge and disc com-

ponents. Model E instead fixes Υ to be equal to 0.5M�/L� for the disc and 0.7 for the bulge,

while Model F fits two freely varying ratios: Υdisc and Υbulge.

It should be noted that of the 85 galaxies in the sample, only 13 have a detected bulge

component. For the remaining 72 galaxies, Models B and F are identical, and should there-

fore give identical results.

Figure 3.10 shows a comparison of results from Models B, E, and F. For all 85 galaxies

in the sample, the figure shows the f̄R 0 value for the best-fitting model, for the B, E and F

models. The mean (absolute) change is |∆ log10 | f̄R 0|| = 0.14 between Models B and E, but

this is dominated by a few outliers, and the median change is 0.03. For Models B and F,

considering only the 13 galaxies with bulge components, the mean change is 0.07 and the

median is 0.01.

These results suggest that fixing the values of the mass-to-light ratios might be too crude

an approximation. Indeed, most of the visibly large changes in Figure 3.10 are due to Model

E. On the other hand, the reassuringly small changes between Models B and F imply that

taking the stellar disc and bulge to have the same mass-to-light ratio is a sufficient approx-

imation.



116 CHAPTER 3. UPTURNS IN OBSERVED ROTATION CURVES

0 20 40 60 80

Galaxy

−9.0

−8.5

−8.0

−7.5

−7.0

−6.5

−6.0

lo
g 10
|f̄ R

0
|

Single Υ

Fixed Υ

Double Υ

Figure 3.10: For each galaxy in the sample, f̄R 0 values from the best-fitting model, using three different treat-

ments of the mass-to-light ratio Υ (i.e., Models B, E, and F). Te darkest points show the results from the model

with one free parameter for Υ (Model B), while the two lighter colours represent Models E and F: models

with fixed empirical values, and with two free parameters (for bulge and disc) respectively. Grey dashed lines

show the changes in the f̄R 0 values between models for a given galaxy. This figure indicates that there is no

significant change to the results in going from two free parameters to one, but fixing the values as empirical

constants induces a more significant change.

3.5 Discussion and Conclusions

In this chapter, we have searched for the potential signatures of HS f (R ) gravity predicted

in Chapter 2 in the high-quality HI/Hα rotation curve measurements of the SPARC sample.

After several cuts to the sample, including an exclusion of all galaxies likely to be environ-

mentally screened, 85 of the original 175 galaxies remained.

Each galaxy is modelled as a stellar disc, gaseous disc, dark matter halo, and (where ap-

propriate) a stellar bulge. Then, for a given f̄R 0 value, we solve the f (R ) equations assum-

ing spherical symmetry, and calculate the implied fifth force contribution to the rotation

curve. Assuming a Gaussian likelihood, we are then able to use an MCMC technique to

explore suitable models and search for evidence of modified gravity.

Our main findings are:

• In models with an NFW halo and an f̄R 0 that is allowed to vary freely for each galaxy,

most of the galaxy sample (64/85) indicated some preference for f (R ), according to

the Bayesian Information Criterion. Furthermore, 27 galaxies showed a strongly sig-

nificant (|∆BIC|> 6) preference for f (R ).

• Looking at the marginal posterior distributions of f̄R 0 of all galaxies in our final sam-

ple, most galaxies have reasonably tight posteriors and f̄R 0 appears well constrained,



CHAPTER 3. UPTURNS IN OBSERVED ROTATION CURVES 117

but the spread of these inferred f̄R 0 values across the sample is very broad, spanning

roughly two orders of magnitude. This is inconsistent with a single global value for

f̄R 0.

• This finding is confirmed when analysing models with fixed, globally imposed f̄R 0 val-

ues. Models with log10 | f̄R 0|¦−6.1 are highly unfavourable compared toΛCDM. How-

ever, models with lower | f̄R 0| appear to be preferred over ΛCDM. This signal reaches

a peak at log10 | f̄R 0| ∼ −7, where the log-likelihood ratio lnL f (R )/LΛCDM ∼ 70.

• The galaxies that dominate this signal are dwarf galaxies, which have previously been

noted to exhibit the core-cusp problem.

• Modelling with cored DC14 haloes without a fifth force, the overall log-likelihood

shows an increase of nearly 300, far more significant than any f (R )-model with a sin-

gle, global f̄R 0 value.

• Modelling with cored DC14 haloes with a fifth force does not provide a significant

improvement over the case of DC14+ΛCDM, and the signal at | f̄R 0| ∼ 10−7 has largely

vanished.

• There are nonetheless some individual galaxies which show a preference for NFW +
f (R ) over DC14 + ΛCDM. However, for some of these galaxies it appears to be the

case that neither model performs particularly well, as a result of large-scale baryonic

features (e.g., due to prominent spiral arms) in the rotation curves inadequately cap-

tured by our baryonic models.

• These results appear to be robust to the effects of environmental screening. Having

removed a significant fraction of the galaxies for which environmental screening was

believed to play a significant role, the results of the f̄R 0 inference for the remaining 85

galaxies were not affected significantly when a large-scale environment was added to

the modelling pipeline.

• Similar analysis was performed to test for the effects of stellar self-screening and a

more general treatment of the mass to light ratio. It was also found here that the

results of our inference are robust to these effects.

We thus end by reporting an absence of convincing evidence of modified gravity down

to the sensitivity level of our sample at | f̄R 0| ∼ 6×10−8, as the improvements to the rotation

curve fits due to the f (R ) fifth force (which peak at around | f̄R 0| ∼ 10−7) are more readily

explained by galaxies having cored dark matter profiles than by a genuine signal of modified

gravity.

The only work, to our knowledge, that has previously addressed this degeneracy be-

tween cored dark matter profiles and screened modified gravity theories is that of Lom-

briser & Peñarrubia (2015), which considered the velocity dispersions of the classical MW
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satellites Fornax and Sculptor. The radial slopes of their velocity dispersions have previ-

ously been shown to be consistent with cored mass profiles (Walker & Peñarrubia, 2011),

and Lombriser & Peñarrubia (2015) show that they can alternatively be interpreted as being

due to a chameleon fifth force which is unscreened only in the outer parts of these dwarfs.

As discussed in the Introduction (1.1.5), the core/cusp debate remains unsolved. If

cored halo profiles ultimately cannot be explained under ΛCDM, we shown that screened

modified gravity theories could feasibly ease the tension. However, given that no single

f (R )model studied here is able to able to achieve the same likelihood increase as a cored

halo profile, it would be interesting to extend the remit of the work presented in this chap-

ter by investigating a wider range of screened modified gravity theories to investigate the

constraints that can be derived for them, and whether any such theory can bring cuspy

NFW profiles into good agreement with galaxy rotation curve data.
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Chapter 4

Asymmetries in Stellar Streams

Summary

If the stars of a Milky Way satellite are screened but the associated dark matter is not, the

resulting EP violation can lead to asymmetry between leading and trailing streams if the

satellite is tidally disrupted, as stars will be preferentially disrupted into the trailing stream.

This chapter provides analytic estimates of the magnitude of this effect for realistic Galactic

mass distributions, demonstrating that it is an even more sensitive probe than suggested

previously. Additionally, using a restricted N-body code, I simulate 4 satellites with a range

of masses and orbits, together with a variety of strengths of the fifth force and screening lev-

els of the Milky Way and satellite. I forecast constraints for streams at large Galactocentric

distances, which probe deeper into chameleon parameter space, using the specific exam-

ple case of HS f (R ) gravity. Streams in the outer reaches of the MW halo (r ∼ 100−200 kpc)

provide easily attainable constraints at the level of | fR 0| = 10−7. Still more stringent con-

straints at the level of 10−7.5 or even 10−8 are plausible provided the environmental screen-

ing of the satellite is accounted for, and screening of the outer halo by the Local Group is

not yet triggered in this range. These would be among the tightest astrophysical constraints

to date. I note three further signatures of chameleon gravity: (i) the trailing stellar stream

may become detached from the dark matter progenitor if all the stars are lost, (ii) in the

extreme fifth force regime, striations in the trailing tail may develop from stars liberated

at successive pericentric passages, (iii) if the satellite is fully screened, its dark matter is

preferentially liberated into the leading tidal tail.

This chapter is based on the article:

A. P. Naik, N. W. Evans, E. Puchwein, H. Zhao, A.-C. Davis

Stellar Streams in Chameleon Gravity

Submitted to PRD, preprint available at arXiv:2002.05738

The derivations of the β sensitivities presented in sections § 4.2.2 and § 4.2.3 were primarily undertaken by

N. Wyn Evans, one of the co-authors of the above article. These derivations are nonetheless included in this

thesis to preserve the completeness of the research project. The remainder of the work presented in this

chapter is my own, informed and guided by discussions with the other authors.

https://arxiv.org/abs/2002.05738
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4.1 Background

Stellar streams were introduced in the ‘Milky Way’ section of the Introduction (§ 1.2.4). To

recapitulate, stellar streams are the results of dwarf galaxies and globular clusters that have

been tidally disrupted by the Milky Way, and the Galaxy’s stellar halo is littered with such

structures (e.g. Belokurov et al., 2006). Recently, the wealth of data emerging from the Gaia

mission has been leading to the discovery and characterisation of abundant streams and

substructures (Myeong et al., 2018; Malhan et al., 2018; Meingast et al., 2019; Koposov et al.,

2019). In future, Gaia should be able to provide astrometry for very distant streams—at or

even beyond the edge of the Milky Way’s dark halo—using bright tracers such as stars near

the tip of the red giant branch.

The Introduction also discussed the utility of 6D streams data for constraining the ac-

celeration field of the Galaxy. As a result, streams are useful for understanding the under-

lying mass distribution of the Galaxy, and also for testing gravity. Although this idea has

been in the literature for some years, observational tests have been limited primarily by

the small number of streams with 6D data before Gaia. However, the field is ripe for further

exploitation in the Gaia Era.

Because of their different ages and different positions in phase space, different streams

may tell us different things about the theory of gravity. For example, Thomas et al. (2018)

show that streams from globular clusters are lopsided in Modified Newtonian Dynamics or

MOND because the ‘external field effect’ violates the strong equivalence principle. More

relevant for this chapter, Kesden & Kamionkowski (2006a,b) demonstrated that if a fifth

force couples to dark matter but not to baryons, this EP violation leads to large, observable

asymmetries in stellar streams from dark matter dominated dwarf galaxies. Specifically,

the preponderance of stars are disrupted via the outer Lagrange point rather than the inner

one, and the trailing stream is consequently significantly more populated than the leading

one.

In the years since the work of Kesden and Kamionkowski, the screened modified gravity

theories studied in this thesis have become the subject of increasing attention. For reason-

able parameter regimes in these theories, main sequence stars will have sufficiently deep

potential wells to self-screen against the fifth force. A diffuse dark matter or gaseous com-

ponent of sufficiently low mass, however, will be unscreened. As a result, the EP is effec-

tively violated. This EP violation was discussed in the Introduction (§ 1.3.2; Figure 1.14)

and leads to a number of distinct signatures, such as several of those listed in § 1.3.5.

This chapter explores the idea that the effective EP-violation of chameleon gravity (see

§ 1.3.2 and Figure 1.14 in particular) should give rise to the stellar stream asymmetries pre-

dicted by Kesden & Kamionkowski. We will show that tidal streams in the Milky Way, ob-

servable with Gaia, can provide constraints that are comparable to, or stronger than, other

astrophysical probes.



CHAPTER 4. ASYMMETRIES IN STELLAR STREAMS 121

−15 −10 −5 0 5 10 15

x [kpc]

−15

−10

−5

0

5

10

15

y
[k

p
c]

Dark Matter

−15 −10 −5 0 5 10 15

x [kpc]

−15

−10

−5

0

5

10

15

y
[k

p
c]

Stars

Figure 4.1: Left: Contour map of the effective potential for the dark matter Φeff,DM as given by Eq. (4.5). Right:

Contour map of the effective potential for the stars Φeff,∗ as given by Eq. (4.6). In both panels, the satellite

(marked by a small circle) is at the origin and the Galactic centre is at (0,−50, 0) kpc. The inner and outer

Lagrange points are marked by crosses. Note that the circular regions around the satellite centre in which no

lines are drawn are due to an artificial cutoff in the contour plotting. Parameters used are: M = 1012M�, m =
1010M�, and β = 0.5. The asymmetry of the Lagrange points for the stellar effective potential illustrates the

cause of the stream asymmetries under chameleon gravity.

All of the code, analysis tools, and plotting scripts used in this chapter have been made

publicly available.1 Furthermore, animations of various simulations depicted in § 4.6 will

be made available online as supplementary material accompanying the article that formed

the basis for this chapter: Naik et al. (2020).

The following section (§ 4.2) provides a new calculation of the magnitude of the effect,

extending the original work of Kesden & Kamionkowski (2006b). Next, § 4.3 describes the

Milky Way and satellite models that we use in our simulation code, the methodology and

validation of which are in turn described respectively in Sections 4.4 and 4.5. § 4.6 describes

results for a range of tidal streams, inspired by examples discovered recently in large pho-

tometric surveys or the Gaia datasets. Finally, § 4.7 gives some concluding remarks.

4.2 Stream Asymmetries

4.2.1 A Physical Picture

We begin with a physical picture of the cause of stream asymmetries. Consider a satellite

represented by a point mass m . For the moment, let us neglect any fifth forces and assume

1github.com/aneeshnaik/smoggy

https://github.com/aneeshnaik/smoggy
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that the Milky Way and can also be represented as a point mass M , so both satellite and the

Milky Way are moving on circular orbits with frequencyΩ0 around their common center of

mass.

We use a coordinate system whose origin is at the centre of the satellite. Then, a test

particle at position r moves in an ‘effective’ gravitational potential given by

Φeff(r) =−G m

r
− G M

|rMW − r| −
1

2
Ω2

0|r− rcm|2. (4.1)

where r is the position of the point mass representing the Milky Way and rcm is the position

of the centre of mass (e.g. Goldstein, 1951; Binney & Tremaine, 2008). We use the conven-

tion r = |r| to denote the modulus of any vector. The first two terms are the gravitational

potentials of the satellite and Milky Way respectively, while the final term provides the cen-

trifugal force due to the frame of reference, which is rotating about the centre of mass with

frequency Ω0, given by

Ω0 =

√√√G (M +m )
r 3

MW

. (4.2)

In practice, the mass of a typical satellite m is at least two orders of magnitude less than the

mass of the Milky Way, and so its contribution to the frequency can be neglected.

The stationary points of the effective potential Φeff are the Lagrange points or equilibria

at which the net force on a star at rest vanishes. In the circular restricted three-body prob-

lem, there are five Lagrange points. Matter is pulled out of the satellite at the ‘L1’ and ‘L2’

saddle points, henceforth the ‘inner’ and ‘outer’ Lagrange points. These are situated either

side of the satellite, co-linear with the satellite and Milky Way. Leading (trailing) streams

originate at the inner (outer) Lagrange points, which lie at

rL≈
� m

3M

�1/3

rMW, (4.3)

with respect to the satellite centre (see Section 8.3.1 of Binney & Tremaine, 2008).

Now consider how the system behaves if a fifth force acts on the dark matter. Neglecting

any screening, and assuming the satellite is dark matter dominated, the orbit will circle

more quickly with frequency given by

Ω′0 =

√√√G ′(M +m )
r 3

MW

≈
√√√G ′M

r 3
MW

, (4.4)

where G ′ ≡ (1+2β 2)G . The effective potential experienced by a dark matter particle in this

system is

Φeff,DM(r) =−
G ′m

r
− G ′M
|rMW − r| −

1

2
Ω′20 |r− rcm|2. (4.5)

This is tantamount to a linear rescaling of Eq. (4.1), and the locations of the critical points

are therefore unchanged relative to the standard gravity case. However, the effective po-

tential is different for a star which does not feel the fifth force, namely

Φeff,∗(r) =−G m

r
− G M

|rMW − r| −
1

2
Ω′20 |r− rcm|2. (4.6)
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This is not a linear multiple of Eq. (4.1), and the locations of the Lagrange points are con-

sequently altered. The two panels of Figure 4.1 shows contour maps of the effective po-

tentials for dark matter and stars, for M = 1012M�, m = 1010M�, rMW = 50 kpc, and β = 0.5.

Also indicated on the diagram are the locations of the inner and outer Lagrange points of

the potentials.

In the dark matter case, the points are approximately equidistant from the satellite cen-

tre. However, a significant asymmetry is visible in the stellar effective potential, with the

outer Lagrange point being much closer to the satellite and at a lower effective potential.

Thus, stars are much more likely to be stripped from the satellite at the outer Lagrange

point, and the trailing stream will consequently be more populated than the leading one.

Physically, we can understand this effect in terms of force balance. The stars are being

dragged along by the satellite, which is orbiting at an enhanced rotation speed due to the

fifth force. This enhanced speed means that the outward centrifugal force on the stars is

greater than the inward gravitational attraction by the Milky Way. The consequence of this

net outward force is that stars can be stripped from the satellite more easily if they are at

larger Galactocentric radii than the satellite, and less easily if they are at smaller radii. This

is reflected in the positions of the Lagrange points.

Stars unbound from the satellite will be on a slower orbit around the Milky Way than

their progenitor. If β is sufficiently large, then stars that are initially in the leading stream

can fall behind and end in the trailing stream.

4.2.2 Circular Restricted Three-Body Problem2

We now solve for the stream asymmetries in the circular restricted three-body problem, fol-

lowing and correcting Kesden & Kamionkowski (2006b). This is a useful preliminary before

passing to the general case. In Newtonian gravity, the forces balance at the inner and outer

Lagrange points, and so

− G M

(rMW − rL)2
+

G m

r 2
L

+
G (M +m )

r 3
MW

�
M rMW

M +m
− rL

�
= 0, (4.7)

− G M

(rMW + rL)2
− G m

r 2
L

+
G (M +m )

r 3
MW

�
M rMW

M +m
+ rL

�
= 0. (4.8)

We recall that the inertial frame is rotating about the centre of mass, and so the centrifugal

terms in Eqs. (4.7) and (4.8) depend on the distance of the Lagrange point to the centre of

mass, not the Galactic centre (cf. Eqs. (14) and (15) of Kesden & Kamionkowski, 2006b).

We now define u = rL/rMW and u ′ = r ′L/rMW for the inner and outer Lagrange points

2As stated at the beginning of this chapter, the calculations presented in this subsection and the next (§ 4.2.3)

were performed by my collaborator N. Wyn Evans.
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respectively, and obtain

u 3 =
m

M

(1−u 3)(1−u )2

3−3u +u 2
, (4.9)

u ′3 =
m

M

(1−u ′3)(1+u ′)2

3+3u ′+u ′2
. (4.10)

Solving, we find that

u ≈
� m

3M

�1/3 �
1− u

3

�
, (4.11)

u ′ ≈
� m

3M

�1/3
�

1+
u ′

3

�
, (4.12)

so the ‘natural’ asymmetry, i.e. the asymmetry of the inner and outer Lagrange points

around the satellite even in standard gravity, is

∆rnat = (u
′−u )rMW ≈ 2

3

� m

3M

�2/3

rMW. (4.13)

Now introducing a fifth force, the force balance equations for stars not directly coupling

to the fifth force become

− G M

(rMW − rL)2
+

G m

r 2
L

+Ω2
0(1+2β 2)

�
M rMW

M +m
− rL

�
= 0, (4.14)

− G M

(rMW + rL)2
− G m

r 2
L

+Ω2
0(1+2β 2)

�
M rMW

M +m
+ rL

�
= 0. (4.15)

Proceeding as before

u ≈
� m

3M

�1/3 1

(1+2β 2)1/3

�
1− u

3
+

2β 2

3

M

m
u 2

�
, (4.16)

u ′ ≈
� m

3M

�1/3 1

(1+2β 2)1/3

�
1+

u ′

3
− 2β 2

3

M

m
u ′2

�
. (4.17)

The last term on the right-hand side produces an asymmetry with opposite sign to the nat-

ural asymmetry. Note that as u∝ (m/M )1/3, the M /m factor makes this term actually the

largest. The condition for the asymmetry due to the fifth force to overwhelm the Newtonian

one is then just

2β 2 ¦ 31/3
�m

M

�2/3

, (4.18)

where only leading terms are kept. This result can be compared with Eq. (29) of Kesden &

Kamionkowski (2006b). Although the scaling is the same, the numerical factor is different

(remember on comparing results that 2β 2 in our paper corresponds to β 2 fR fsat in theirs).

In fact, the changes are very much to the advantage of the fifth force, as smaller values of β

now give detectable asymmetries.

The two most massive of the Milky Way dwarf spheroidals are Sagittarius with dark mat-

ter mass 2.8×108M� and Fornax at 1.3×108M� (Amorisco & Evans, 2011). These will allow

values of β 2 ¦ 2× 10−3 to be probed. For the smallest dwarf spheroidals such as Segue 1

with a mass of 6×105M�, then values of β 2 ¦ 2×10−4 are in principle accessible. It should

be noted that the Segue 1 is an ambiguous object, and it is not entirely clear if it is a dark

matter dominated dwarf or a globular cluster (Niederste-Ostholt et al., 2009).
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4.2.3 General Case

The circular restricted three-body problem is somewhat unrealistic, as the Galaxy’s matter

distributions is extended. In particular, there is a significant difference in the enclosed host

mass within the inner and outer Lagrange points and this plays a role in the strength of the

asymmetry. We now proceed to give a mathematical analysis of the general case.

The satellite is now moving on a orbit with instantaneous angular frequency Ω0. We

work in a (non-inertial) reference frame rotating at Ω0 with origin at the centre of the satel-

lite. A test particle at location r now feels the following forces: (i) a gravitational attraction

by the satellite, (ii) a gravitational attraction by the host galaxy; (iii) an inertial force be-

cause the satellite is falling into the host and so the reference frame is not inertial and (iv)

the Euler, Coriolis and centrifugal forces because the reference frame is rotating. Note that

(iii) was not necessary in our earlier treatment of the circular restricted three-body problem

because there we chose an inertial frame tied to the centre of mass.

The equation of motion for the test particle is

r̈=−G m (r )
r

r 3
−G M (|r− rMW |) (r− rMW)

|r− rMW |3
−G M (rMW)

rMW

r 3
MW

− Ω̇0× r−2Ω0× ṙ (4.19)

−Ω0× (Ω0× r),

Save for the assumption that the matter distributions in the satellite m (r ) and the host

M (rMW) are spherically symmetric, this expression is general.

We now assume that the test particle is following a circular orbit around the satellite

with orbital frequency Ω and that r /rMW� 1. By careful Taylor expansion, we obtain

r̈=−G m (r )
r

r 3
+G M (rMW)

(3−n )(r · rMW)rMW

r 5
MW

−G M (rMW)
r

r 3
MW

− Ω̇0× r−2Ω0× (Ω× r) (4.20)

+Ω0× (Ω0× r),

where n (rMW) is the logarithmic gradient of M (rMW).

To calculate the tidal radius, we now specialise to the case of a particle whose orbit

lies in the same plane as the satellite’s orbit. The orbital frequency of the satellite is Ω2
0 =

G M (rMW)/r 3
MW. The tidal radius is defined as the distance from the centre of the satellite at

which there is no net acceleration, i.e., the forces on the particle towards the host and the

satellite balance. This gives the tidal radius as

rL=
1

(1−n +2Ω/Ω0)1/3

�
m (r )

M (rMW)

�1/3

rMW. (4.21)
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When satellite and host are point masses, then n = 0 and Ω0 =Ω, and we recover the result

previously found in Eq. (4.3).

We now define u = rL/rMW and u ′ = r ′L/rMW for the inner and outer Lagrange points

respectively, and obtain

u 3 =
m (r )

M (rMW)
(1−u )2−n u

1− (1−u )2−n + (1−u )2−n u (2Ω/Ω0−1)
, (4.22)

u ′3 =
m (r )

M (rMW)
(1+u ′)2−n u ′

(1+u ′)2−n −1+ (1+u ′)2−n u ′(2Ω/Ω0−1)
. (4.23)

We now solve for the difference in the positions of the Lagrange points with respect to the

satellite centre u ′−u . This is the natural stream asymmetry

∆rnat ≈ (u ′−u )rMW =
�

m (r )
M (rMW)

�2/3 (2−n )(3−n )rMW

3(1−n +2Ω/Ω0)5/3
. (4.24)

In the restricted three-body problem, n = 0 and Ω0 = Ω, so we recover our previous result

in Eq. (4.13).

We wish to compare this asymmetry to the asymmetry produced by adding the modi-

fied gravity acceleration of the satellite to the equation of motion. We find the asymmetry

due to the fifth force is

∆r5 ≈− 4(2Ω/Ω0−1)
3(1−n +2Ω/Ω0)

β 2rMW. (4.25)

So, the requirement that the dark matter asymmetry overwhelms the natural asymmetry is

2β 2 ¦
(2−n )(3−n )

2(1−n +2Ω/Ω0)2/3

�m

M

�2/3 1

2Ω/Ω0−1
, (4.26)

which again reduces to Eq. (4.18) in the restricted three body case, as it should. For galactic

dynamics, a reasonable choice is n = 1, which corresponds to a galaxy with a flat rota-

tion curve, isothermal sphere. Assuming the stars in the satellite satisfy Ω = Ω0, then tidal

streams in galaxies with flat rotation curves are much more sensitive probes of the dark

matter asymmetry. As we move from n = 0 (the point mass case) to n = 1 (the isothermal

sphere), we gain an additional factor of ≈ 2.3 in sensitivity. The changes are again in our

favour. The asymmetries in tidal streams are therefore an even more delicate probe of the

fifth force than suggested by the analysis of Kesden & Kamionkowski (2006b).

4.3 Milky Way and Satellite Models

In our simulations, we follow the evolution of a large number of tracer particles, stripped

from a satellite galaxy and forming tidal tails. The test particles are accelerated by the grav-

ity field of both the Milky Way and the satellite, together with any fifth force contributions.

We begin by describing our models for the Milky Way and satellite.
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4.3.1 Milky Way Model

We model the Milky Way potential with a static bulge, disc, and halo. For the Galactic bulge,

we adopt a Hernquist sphere (Hernquist, 1990) with density-potential pair

Φ=− G Mb

r +ab
; ρ =

Mb ab

2πr (r +ab )
3 , (4.27)

and ab and Mb give the scale radius and total bulge mass respectively. The mass enclosed

in a given radius is

M (r ) =Mb

r 2

(r +ab )2
. (4.28)

For all of our simulations, we adopt the parameter choices of Law & Majewski (2010) and

set ab = 0.7 kpc and Mb = 3.4×1010M�.

For the disc, we use a Miyamoto-Nagai profile (Miyamoto & Nagai, 1975),

Φ=− G MdÈ
R 2+

�
ad +

Æ
z 2+ b 2

d

�2
, (4.29)

where R and z are cylindrical coordinates. Md , ad , and bd represent the total mass, scale

radius, and scale height respectively. For our Milky Way model, we again adopt the choices

of Law & Majewski (2010), specifically Md = 1011M�, ad = 6.5 kpc, bd = 0.26 kpc. The mass

enclosed with a given spherical radius r does not have an analytic form. When required

(see § 4.3.3), we calculate it numerically.

Finally, we adopt an NFW profile (1.45) for the dark matter halo,

Φ=−4πGρh r 3
h

ln
�
1+ r

rh

�

r
, (4.30)

whereρh and rh are the halo scale density and scale radius respectively. The enclosed mass

within a spherical radius r is given by

M (r ) = 4πρ0r 3
h

�
ln
�

1+
r

rh

�
−

r
rh

1+ r
rh

�
. (4.31)

We adopt the parameters Mvir = 1012M� and cvir = 12, which can be converted to values of

rh and ρh with

rh =
1

cvir

�
3Mvir

4π∆ρc

�1/3

,

ρh =
Mvir

4πr 3
h

�
ln(1+ cvir)− cvir

1+cvir

� .
(4.32)

So, at a given point, the acceleration on a test particle (neglecting any fifth forces for

the moment) due to the Milky Way is given by the sum of the accelerations due to the disc,

bulge and halo.
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4.3.2 Satellite Model

We model the satellite with a truncated Hernquist sphere with the density cut off at a radius

rt . The reason for this sharp truncation will become clear in the discussion of the fifth force

in § 4.3.3. Defining a reduced radius x ≡ r /as (thus xt ≡ rt /as ) where as is the scale radius

of the profile, the density-potential pair is given by

Φ(x ) =




−G m

rt

�
1+
(1+ xt )

2

xt

�
1

1+ x
− 1

1+ xt

��
; x ≤ xt .

−G m

r
; x > xt .

ρ(x ) =





A

x (1+ x )3
; x ≤ xt .

0; x > xt .

(4.33)

The density normalisation A is related to the total satellite mass m by

A =
(1+ xt )2

x 2
t

m

2πa 3
, (4.34)

The mass enclosed within a reduced radius x is then

m (x ) =





m
x 2(1+ xt )2

x 2
t (1+ x )2

; if x ≤ xt .

m ; otherwise.
(4.35)

For all satellites, we adopt truncation radii of rt = 10as , or equivalently xt = 10.

The acceleration on any given test particle due to the satellite can then be calculated

from the above relations. For self-consistency, the initial phase-space distribution of the

tracer particles is that of a truncated Hernquist profile. Of course, this self-consistency

is lost as the simulation advances in time, as many of the tracer particles are tidally re-

moved by the Milky Way, but our assumed satellite potential remains unchanged in mass

and shape. However, we will show in § 4.5 that this assumption of an unchanging satellite

potential is largely harmless.

4.3.3 Fifth Forces

In addition to gravity, the satellite and the tracer particles also experience accelerations due

to the fifth force. The satellite feels a fifth force sourced by the Milky Way, while the tracer

particles also feel a fifth force sourced by the satellite.

Fifth forces in screened modified gravity theories were described in § 1.3.2. In partic-

ular, Figure 1.14 illustrates how an extended body sources a fifth force and couples to an

external fifth for a range of given screening radii. We explore a range of screening regimes

for both the Milky Way and the satellite.
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In order to derive constraints in the chameleonβ/χ0 plane (or the f̄R 0 space for HS f (R )
gravity) from stellar streams around the Milky Way, we would need to adopt some prescrip-

tion to convertχ0 of f̄R 0 to Milky Way and satellite screening radii. Analytical formulae exist

in the case of an ideal, isolated spherical body, e.g. Eq. (1.63). However, as discussed in the

previous chapter, such a treatment is difficult to apply to realistic astrophysical bodies, as

it is sensitive to the arbitrary choice of outer integration limit, and would also neglect the

environmental contribution of the Local Group to the Milky Way’s screening, the environ-

mental contribution of the Milky Way to the satellite’s screening, and the impact of the

non-sphericity of the Milky Way. The calculation therefore requires numerical methods in

more realistic scenarios. This was the reason for implementing the 1D scalar field solver

in rotation curve modelling of the previous chapter. In this chapter, we instead take the

fifth force coupling strength β and the Milky Way and satellite screening radii, rscr,MW and

rscr,sat, as input parameters, thus saving the computational cost of using such a scalar field

solver. However, in § 4.6.4, we investigate the connection between fR 0 and rscr,MW in order

to forecast model constraints from future data.

For both the Milky Way and satellite, we assume spherical fifth force profiles. For the

satellite, this is consistent with its gravitational potential, although the sphericity of the

satellite may be distorted by its tidal disruption. For the Milky Way, the spherical symmetry

is inconsistent with the presence of the disc. The scalar field profiles of disc galaxies have

correspondingly discoid shapes (see Chapter 2). However, the scalar field profile is roughly

spherical when rscr,MW is much larger than the disc scale radius of 6.5 kpc (cf. Figure 4.13).

Even when this is not the case, it is unlikely that relaxing the assumption of spherical sym-

metry will have an appreciable qualitative impact on our results.

Eqs. (1.62) and (1.64) can be rewritten to give the expression for the modified gravity

acceleration due to the satellite on tracer particle i , situated at position x,

ai
5,sat(x) = 2β 2QiQsat(r )aN,sat(x), (4.36)

where β is the coupling strength of the fifth force (an input parameter of our simulations),

aN,sat is the Newtonian acceleration due to the satellite, and Qi and Qsat(r ) are the scalar

charges of particle i and the satellite respectively. The latter is given by

Qsat(r ) =





1−m (rscr,sat)
m ; if r ≥ rt .

1−m (rscr,sat)
m (r ) ; if rt > r ≥ rscr,sat.

0; otherwise.

(4.37)

Here, m (r ) is the satellite mass enclosed by radius r , and rscr,sat is its screening radius. Note

that the third case of 4.37 corresponds to the case in which the tracer particle is within

the screening radius of the satellite so the fifth force vanishes. If rscr,sat = rt , then Qsat = 0

in all cases and the satellite sources no fifth force anywhere. Also, we have assumed that

the Compton wavelength of the theory is much larger than relevant length scales, so the
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exponential damping factor in Eq. (1.62) can be neglected. Qi meanwhile differs between

the particle types. As we assume the stars are fully screened against the fifth force, Qi = 0

for the star tracer particles. On the other hand, we take Qi = 1 for the dark matter tracer

particles, which we assume to be a diffuse, unscreened component.

Similarly, the modified gravity acceleration due to the Milky Way on particle i (which

can now also represent the satellite) at x is given by

ai
5,MW(x) = 2β 2QiQMW(r )aN,MW(x), (4.38)

where the symbols have analogous meanings to those above. The scalar charge of the Milky

Way is given by

QMW(r ) =





1−M (rscr,MW)
M (r ) ; if r ≥ rscr,MW.

0; otherwise.
(4.39)

If particle i represents the satellite, then we take the limiting value of the satellite scalar

charge Qi =Qsat(r = rt ). This is valid as long as the Milky Way centre does not fall within

the truncation radius of the satellite centre, which does not happen in any of our simulated

orbits.

The formalism given in this subsection demonstrates the utility of truncating the mass

profile of the satellite. By so doing, we have made it straightforward to model the satellite

as being fully screened (rscr,sat = rt ), fully unscreened (rscr,sat = 0), or partially screened (0<

rscr,sat < rt ).

It is worth remarking that by putting in the Milky Way and satellite screening radii by

hand, we inevitably explore combinations that would not be realised in any actual physical

theories. Nonetheless, by exploring a large range of such combinations, we aim to capture

all possible phenomenology that would arise in these theories.

4.4 Methods

Approximate methods for quickly generating realistic streams by stripping stars at the tidal

radius of a progenitor are now well established (Lane et al., 2012; Küpper et al., 2012; Gib-

bons et al., 2014). The methods work as restricted N-body simulations, in which we follow

the orbital evolution of a large number of massless tracer particles. The stream particles are

integrated in a fixed Galactic potential, together with the potential of the moving satellite.

This method robustly reproduces the morphology of streams, in particular the locations

of the apocentres of the leading and trailing branches, yet provides two to three orders

of magnitude speed-up compared to conventional N-body experiments (Gibbons et al.,

2014). The main extension of our code here is that it incorporates an optional fifth force

due to the chameleon field.
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4.4.1 Tracer Particles

To generate the initial phase space distribution of N tracer particles, we use a Markov Chain

Monte Carlo technique to generate 2N samples from an equilibrium distribution function

for the Hernquist model. The code allows a choice between two possible distribution func-

tions. The first is the isotropic distribution function (Hernquist, 1990)

f (Ẽ ) =
1p

2 (2π)3 (G m ′as )
3/2

p
Ẽ�

1− Ẽ
�2


�1−2Ẽ

� �
8Ẽ 2−8Ẽ −3

�
+

3 sin−1
p

Ẽq
Ẽ
�
1− Ẽ

�


 , (4.40)

and the other is the radially anisotropic distribution function (Evans & An, 2006)

f (Ẽ ) =
3

4π3as

Ẽ

G L
. (4.41)

Here, E is the specific binding energy of a particle, as is the scale radius, m ′ = (1+xt )2m/x 2
t

is the untruncated mass of the satellite, while Ẽ = E as/G m ′ is the dimensionless binding

energy. The two distribution functions differ in the anisotropy of the velocity distributions.

Through experimentation, we find that our simulations show extremely similar results for

stream generation, irrespective of the choice of distribution function.

Given these 2N samples, we integrate the orbits of the particles in the satellite potential

(i.e. neglecting fifth forces and the Milky Way) for 1017 seconds (≈ 3 Gyr). At the end of this,

we randomly downsample N of these particles, excluding any particles for which the orbit

ever strayed beyond the truncation radius. This gives a suitable equilibrium distribution of

positions and velocities for the test particles in our simulations.

4.4.2 Orbit Integration

To calculate the trajectories of the various particles, we use a second-order leapfrog inte-

grator. Under such a scheme, the velocities v and positions x of the particles are updated

at each timestep i via
vi+1/2 = vi−1/2+a(xi )∆t ,

xi+1 =xi +vi+1/2∆t ,
(4.42)

where ∆t represents the timestep size, and a(x) represents the accelerations calculated

using the expressions given in § 4.3.1, § 4.3.2, and § 4.3.3. At the start of the simulation (i.e.

timestep i = 0), the ‘desynchronised’ velocities v−1/2 are obtained using

v−1/2 = v0− 1

2
a(x0)∆t . (4.43)

From here, Eq. (4.42) can be used repeatedly to advance the system in time.

Our method for choosing the timestep size∆t is as follows. During the relaxation phase

in which the orbits are integrated in the satellite potential for 1017 seconds, we calculate the
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ID x0 v0 as m tmax

(kpc) (km/s) (kpc) (108M�) (1017 s)

A (7.7, 0.2, 16.4) (-44, -117, -16) 0.01 0.0003 1

B (19.0, 2.7, -6.9) (230, -35, 195) 0.5 5 1

C (90, 0, 0) (0, 0, 80) 0.5 2.5 1.5

D (150, 0, 0) (0, 0 , 100) 1 5 2.5

Table 4.1: Parameters for each of the 4 progenitors. Here,x0 andv0 respectively give the position and velocity

of the satellite at the end of the simulations (see discussion in the text), as and m are the Hernquist scale

radius and total mass of the satellite, and tmax is the total time over which each simulation is run; the farther

orbits require more time to undergo an appreciable number of orbital periods. Note that 1017 seconds is ∼ 3

Gyr. The parameters for Satellite A resemble those of the Pal-5 stream, B the Sagittarius stream, C the Orphan

stream, and D a hypothetical stream at large distance.

total energies of all particles at the start and end. We repeat this, iteratively reducing the

timestep size, until the energies of all particles are conserved to within 2%. Through exper-

imentation, we found that energy conservation is a good proxy for numerical convergence

and this 2% criterion gives accurate, converged results. The final timestep size chosen by

this process is then used again for the main simulation. In practice, we find ∆t ∼ O (1011)
seconds typically.

4.4.3 Simulations

We simulate the generation of streams from 4 progenitors. Satellite A is inspired by the

Palomar 5 stream Pearson et al. (2017), B the Sagittarius stream Law & Majewski (2010), C

the Orphan stream Koposov et al. (2019), and D is a hypothetical stream at large Galacto-

centric distance, of the kind that is likely to be found in the later Gaia data releases. The

parameters for these 4 progenitors are given in Table 4.1.

Note that for each simulation, we integrate the orbit of the satellite alone backwards

in time starting at (x0,v0), then forwards again along with the tracer particles. Thus, the

simulations end with the satellite at (x0,v0). This is to reproduce the current observed

position of, e.g., the Sagittarius dwarf.

Figure 4.2 shows the evolution of the orbits over∼ 3 Gyr for each of the 4 satellites, under

standard gravity. Also shown are lines indicating the disc-plane Milky Way screening radii

for a range of values of fR 0. These calculations were performed using the scalar field solver

within the f (R ) N-body code MG-Gadget (§ 2.2.2) for the Milky Way model described in

4.3.1. We demonstrate later that significant stream asymmetries develop when the orbit is

mostly outside the Milky Way screening radius, so these lines give a preview of the modified

gravity constraints achievable.

For each satellite, we explore a variety of modified gravity scenarios by varying 3 input

parameters: the coupling strengthβ , the satellite screening radius rscr,sat, and the Milky Way



CHAPTER 4. ASYMMETRIES IN STELLAR STREAMS 133

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

Time [Gyr]

0

20

40

60

80

100

120

140

G
al

ac
to

ce
n

tr
ic

D
is

ta
n

ce
[k

p
c]

−6

−6.5

−7

−7.5

lo
g 10
|f R

0
|

A

B

C

D

Figure 4.2: For the 4 satellites described in Table 4.1, we show the orbital evolution over 1017 seconds (∼ 3 Gyr)

under standard gravity. The horizontal dashed lines indicate the Milky Way screening radii under Hu-Sawicki

f (R ) gravity for various different values of the theory parameter fR 0 (the values of log10 | fR 0| are shown at the

right hand side of the panel (see Section 4.4.3 for details about the calculation of these screening radii). This

Figure illustrates the range of distances probed by tidal streams, and gives an idea of the possible constraints

achievable for chameleon gravity theories.

screening radius rscr,MW. First, we consider 4 coupling strengths: β = {0.1, 0.2, 0.3, 0.4}. The

strength of the fifth force relative to gravity is given by 2β 2, so this corresponds to the range

from 2%−32%. The most extreme case can therefore be used as an approximate analogue

for f (R ) gravity, where the strength of the fifth force is 1/3 that of gravity.

For the satellite screening radius, we explore a range of regimes, from fully screened

to fully unscreened, and encompassing a variety of partially screened regimes in between.

Using the upper case of Eq. (4.37), we recast the screening radius rscr,sat as the scalar charge

Qsat, and consider a range of values of Qsat from 0 to 1 in steps of 0.1. We recall that Qsat = 0

corresponds to the fully screened case, so here rscr,sat = 10as , where as is the Hernquist scale

radius of the satellite in question. Qsat = 1 is the fully unscreened case, so rscr,sat = 0.

Finally, we consider a range of values for the Milky Way screening radius rscr,MW. As

the orbital distances of each satellite are different, it is useful to select a different range

of values for rscr,MW for each satellite. For each satellite, we define a maximum screening

radius rscr,max, approximately equal to the apocentric distance of the orbit under standard

gravity. These values are rscr,max = 20, 50, 90, 150 kpc for satellites A, B, C, and D respectively.

Then, we choose a range of 11 values such that rscr,MW/rscr,max runs from 0 to 1 in steps of

0.1.

Altogether, we run 485 simulations for each satellite: 4×11×11= 484 modified gravity

simulations plus one standard gravity (β = 0) simulation.
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4.4.4 Assumptions

The previous subsections have given details about the various parts of our code, but for

clarity we provide a list of all of our simplifying assumptions:

1. We neglect self-gravity between the tracer particles, both before and after they are

stripped from the satellite, as is typical in Lagrange stripping codes (Gibbons et al.,

2014; Bowden et al., 2015). In the context of tidal stream formation, such restricted N-

body approaches have previously been shown to accurately reproduce results from

full N-body simulations (Küpper et al., 2012).

2. We assume the gravitational attraction on the tracer particles due to the satellite can

be approximated as that due to a (truncated) Hernquist sphere, whose orbit is only

governed by the Milky Way potential.

3. We assume the depth and radial extent of the satellite potential well does not change

over time. While this assumption could be relaxed in the standard gravity case, it is a

greatly helpful one in the chameleon case. Thus, to allow a fair comparison between

results in the two cases, we make the assumption universally.

4. We assume a static, axisymmetric model for the Milky Way potential, composed of

a disc, bulge, and halo. Dynamical friction is therefore not modelled, and previ-

ous studies have found that the effect is negligible at these low mass ratios (Boylan-

Kolchin et al., 2008). We neglect any effects due to the Large Magellanic Cloud or

other Milky Way satellites (cf. Koposov et al., 2019).

5. We assume dark matter to be a diffuse particle fluid. If it were instead comprised of

compact objects, it might self-screen in a similar manner to stars.

6. While we typically sample equal numbers of stellar and dark matter particles, we as-

sume the mass profiles of our satellites to be dark matter dominated. So, the satellites

feel the full fifth force in the absence of screening.

7. The initial density profile and kinematics of the stellar and dark matter particles in

the satellites are assumed to be the same. This simplifies the fifth force calculation,

and allows us to ensure any difference in the stellar and dark matter streams is due

to the fifth force rather than initial conditions.

Assumptions (1)-(7) apply equally in the standard gravity and modified gravity simula-

tions. The following three assumptions, however, apply only in the simulations including

a fifth force.

8. We adopt spherical fifth force profiles around both the Milky Way and the satellite,

despite the Milky Way potential being non-spherical.
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9. Furthermore, we assume this spherical screening surface of the satellite remains fixed

throughout the satellite’s orbit. In reality, the radius would vary as the Galactocentric

distance of the satellite changes due to environmental screening, and the shape of

the screening surface (and surrounding fifth force profile) would likely become as-

pherical as the satellite approached the Milky Way’s screening radius and non-linear

effects warp the screening surface.

10. The Compton wavelength of the scalar field is assumed to be much larger than rel-

evant length scales, so that the exponential factor in e.g. Eq. (1.62) can be omitted

from our fifth forces calculations. In the context of HS f (R ) gravity, the Compton

wavelength is given by Eq. (1.88), so this assumption starts to break down at around

| f̄R 0| ∼ 10−8.

4.5 Code Validation

As validation, we compare the results of our code for the disruption of the Sagittarius dwarf

galaxy under standard Newtonian gravity with the results of Law & Majewski (2010). They

simulate the formation of the stream using a full N-body disintegration of the satellite in a

static Milky Way potential, so assumptions (1)-(3) in the list in § 4.4 are not made in their

work. In other words, the gravitational attractions of the satellite and stream are there

treated in fully self-consistent manner.

To set up this test, we adopt the Milky Way potential of Law & Majewski (2010), i.e. the

same Hernquist bulge and Miyamoto-Nagai disc described in § 4.3.1, but with a triaxial log-

arithmic dark matter halo replacing the spherically symmetric NFW halo. The parameters

and initial conditions for the satellite are the same as those for Satellite B, given in Table

4.1.

As a first test, we integrate the orbit of the satellite in this potential backwards for 2.5×
1017 seconds (∼ 8 Gyr). The distance of the satellite from the Galactic centre as a function

of time is shown in the left-hand panel of Figure 4.3. This shows excellent agreement with

Figure 7 from Law & Majewski (2010).

It is also desirable to check the morphology of the streams generated with our method.

As a second test, we integrate the orbit of the satellite backwards for 1017 seconds (∼ 3

Gyr), and then forwards again with 16000 tracer particles. The resulting leading and trailing

streams from this simulation are shown in the right-hand pair of panels in Figure 4.3. The

detailed morphologies of these streams closely resemble those of the streams depicted in

Figure 8 of Law & Majewski (2010), considering only the orange and magenta particles in

that figure (i.e., particles liberated within the last 3 Gyr).

This reassuring agreement between the results from our simplified code and those from

full N-body simulations validates our methodology, in particular the restricted N-body ap-
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Figure 4.3: Our reproduction of a simulation from Law & Majewski (2010). Top: Distance of the simulated

Sagittarius dwarf from the Galactic centre over 8 Gyr, to be compared to the results in Figure 7 from Law &

Majewski (2010). Bottom left and right: First wrap of the leading and trailing streams respectively, to be com-

pared to the results in the two left-hand panels of Figure 8 from Law & Majewski (2010). The curve represents

the orbital path of the satellite, culminating in the current position of the Sagittarius dwarf, represented by

the filled circle. The green points are the positions of the simulation particles. The satellite orbit has been in-

tegrated over 3 Gyr up to the present day, so the morphology of the streams should resemble only the orange

and magenta particles from the original figure. This successful reproduction of literature results serves as a

test of our code, and checks several of our simplifying assumptions.

proach. However, it is worth noting that the above comparison was standard gravity sim-

ulations, so the applicability of the restricted N-body approach in chameleon simulations

is not directly addressed.

Ultimately, the restricted N-body approach is a good approximation in the context of

stream formation because there is a clear hierarchy of energy scales. Defining Eorbit as the

energy scale of the MW-satellite orbit (i.e., the specific energy per particle), Etidal as the

energy imparted by tidal disruption, and Esat as the binding energy of the satellite, it can

be shown that Eorbit � Etidal � Esat, provided m/M � 1 (Kesden & Kamionkowski, 2006b).

Meanwhile, the binding energy of the stream Estream is negligible. For these reasons, the

only relevant influence on the motion of the stream particles is the attraction from the host
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galaxy, and the self-gravity of the stream can be neglected, as can the attraction from the

satellite (although we do not make this latter simplification here). With the introduction

of a fifth force, these energies would change by O (1) numerical factors, but the hierarchy

of energy scales would be preserved. Thus, it reasonable to expect a restricted N-body ap-

proach to be as valid under modified gravity as under standard gravity, so that the above

test serves as a more general validation.

On the other hand, several of the assumptions stated in § 4.4.4 are not addressed by this

test. In particular, this test does not validate the final three assumptions which pertain to

the implementation of the fifth force. However, the aim of the present work is to provide

a qualitative understanding of the effects of chameleon gravity on stellar streams. Future

work aiming to derive quantitative constraints from observational data will likely require

either a relaxation or a more careful justification of some of these assumptions.

4.6 Results

4.6.1 Standard Gravity

Figure 4.4 shows the images from the standard gravity simulations for all 4 satellites listed

in Table 4.1. Each of the four quarters of the Figure represents one of the satellites, as la-

belled in the top corner. The large subpanel in each quarter shows an image of the stream

particles at the end of the simulation. As the stellar and dark matter particles are sampled

from the same probability distribution initially (see assumption 7 in § 4.4) and there is no

EP-violation by a fifth force in these standard gravity simulations, the stars and dark mat-

ter particles are indistinguishable and are thus not plotted separately in this Figure. The

three smaller subpanels in each quarter show the average velocity along the stream, ve-

locity dispersion along the stream, and velocity dispersion perpendicular to the stream, all

as a function of stream longitude and all calculated in bins of particles along the stream.

The bins are created adaptively, such that each bin contains 25 particles, including only the

particles which have been stripped from the progenitor. Within each bin, the unit vector

giving the direction ‘along the stream’ is taken as the (normed) average velocity vector of

all particles in the bin. This Figure illustrates the diversity of our simulated streams, with a

variety of morphologies and Galactocentric distances represented.

4.6.2 Unscreened Fifth Force

First, we discuss the results from an unscreened, EP-violating fifth force coupling only to

dark matter (rscr,sat = rscr,MW = 0). This is the case studied by Kesden & Kamionkowski

(2006a,b). This case also applies in screened modified gravity with a (formally) univer-

sal coupling if stars self-screen, but screening is not triggered otherwise. In our work, the
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Figure 4.4: The simulated streams under standard gravity. The four quarters represent our 4 satellites: A

(upper left), B (upper right), C (lower left), and D (lower right). In each quarter, the largest subpanel shows an

image of all stream particles in the orbital plane, at the end of the simulation. No distinction is made between

star and dark matter particles. The colours differentiate leading and trailing streams, with the darker shade

being the trailing stream. For Satellite B, additional shades are used to distinguish multiple wraps. The black

cross shows the position of the centre of the Milky Way, while the filled circle shows the final position of the

Satellite, with an arrow indicating its instantaneous direction of travel. The side-panels show three quantities

calculated in bins of particles: average velocity along the stream, velocity dispersion along the stream, and

velocity dispersion perpendicular to the stream, all in km/s. Here again, the colours differentiate leading and

trailing streams. In every case, the orbital plane is defined such that the Satellite is on the x -axis, moving in

the positive y -direction.

strength of the fifth force relative to gravity is given by 2β 2, in keeping with the recent

modified gravity literature, whereas Kesden and Kamionkowski used β 2. Thus, the sim-

ulation depicted in Figure 4.6 for example (β = 0.2, F5/FN = 0.08), is most comparable to

the ‘β = 0.3’ (F5/FN = 0.09) simulation in Kesden & Kamionkowski (2006a,b).

Figure 4.5 shows the shape of Satellite B’s orbit for a variety of values ofβ . In the absence

of screening, the introduction of a fifth force as in Eq. (1.61) is tantamount to an overall

linear rescaling of the Milky Way mass or gravitational constant by a factor of 1+ 2β 2. As

a consequence, the orbital period of the satellite is shorter and the apocentric distance

smaller, as is apparent in Figure 4.5.

Figure 4.6 shows the positions of the dark matter and star particles in the simulation

with rscr,sat = rscr,MW = 0 and β = 0.2 for Satellite C, at 11 equally spaced snapshots over
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Figure 4.5: Satellite B’s orbit in its orbital plane, shown for a range of β with rscr,sat = rscr,MW = 0. The cross

indicates the Galactic centre and the filled circle shows the final position of the satellite, i.e. the current ob-

served position of the Sagittarius dwarf galaxy. This Figure illustrates the effect of an unscreened fifth force

on orbital shapes for a fixed final position.

time. The most striking feature is the asymmetry of the stellar stream. The preponderance

of star particles populate the trailing stream, rather than the leading stream. The enhanced

rotation speed of the satellite due to the fifth force means that the outward centrifugal ac-

celeration of the stars outweighs the inward gravitational acceleration by the Milky Way.

Consequently, stars are more likely to leave the satellite via the outer Lagrange point. Also,

even some of the stars which are disrupted from the inner Lagrange point can eventually

end up in the trailing stream, once sufficient time has passed for them to be overtaken by

the satellite. Meanwhile, the dark matter particles experience the same fifth force as the

satellite, and so there is (almost) no preferential disruption via either Lagrange point. The

dark matter stream that forms, is consequently almost symmetric around the progenitor.

These effects are also apparent in Figure 4.7, which shows the longitude difference∆Λ=
Λ−Λsat as a function of time for all particles in the simulations without screening withβ in-

creasing in strength from 0.0 to 0.4 in steps of 0.1 for all 4 satellites. Here, Λ is the longitude

in the instantaneous orbital plane of the satellite and increases in the direction of the satel-

lite’s motion, so particles in the leading stream have positive∆Λ. The dark matter particles

are stripped almost equally into the leading and trailing streams, leading to streams that

are nearly symmetric about the progenitor for all values of β . For the stars, however, as β

increases, the particles are increasingly disrupted into negative longitudes, i.e. the trailing

streams.

Sometimes, the satellite can be stripped completely of all of its stars. Then, the spatial
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Figure 4.6: The simulation depicted here is Satellite C with no screening and a fifth force coupling only to dark

matter withβ = 0.2. The large panel shows an image of the stellar (purple) and dark matter (green) streams at

the end of the simulation, while the smaller panels above show the evolution over time. The interval between

images is 1.5×1016 seconds (∼ 0.48 Gyr, as labelled). The cross and large filled circle respectively indicate the

positions of the Milky Way and satellite centres. In the large panel, 50 unbound particles have been randomly

chosen from each species, and arrows of the corresponding colour are shown indicating their velocities. This

Figure shows the formation of an asymmetric stellar stream over time.
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Figure 4.7: The longitude difference∆Λ= Λ−Λsat as a function of time for all 4 satellites without screening.

Each column shows a different fifth force coupling from β = 0 to 0.4 in steps of 0.1. Here, Λ is longitude in the

orbital plane of the satellite, increasing in the direction of the satellite’s orbit. For each simulation, lines are

drawn for 500 star and 500 DM particles (i.e., 1 in 20 particles are randomly sampled). Complementing Figure

4.6, this Figure shows the development over time of the asymmetry of the stellar streams, and the increased

magnitude of this effect with β .

separation between satellite and stream can be very large indeed, as no new stars become

unbound from the satellite in order to bridge the gap. This occurs in Satellite A for both

β = 0.3 and 0.4, as it loses all of its stars at its first pericentric passage. Satellite A, which is

significantly less massive than our other satellites, does not have a sufficiently deep poten-

tial well for its stars to remain bound under the enhanced centrifugal force from the Milky

Way. Some caution is needed because assumption 3, for example, may begin to break down

when the disruption of the satellite due to the Milky Way is so severe. However, all our

satellites are, by assumption, dark matter dominated. Even in the simulations where the

satellites lose all of their stars, they still retain a large fraction of their dark matter particles,
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Figure 4.8: Satellite B’s orbit in its orbital plane, shown for rscr,MW = 0, 15, 30, 45 kpc, and rscr,sat = 0,β = 0.4.

The dotted circles indicate the position of the screening radius in each case. The cross indicates the Galactic

centre and the filled circle shows the final position of the satellite, i.e. the current observed position of the

Sagittarius dwarf galaxy. This Figure illustrates the effect of a Milky Way screening radius on the satellite

orbital shapes.

and thus most of their assumed mass.

4.6.3 Chameleon Screening

We now show results from the chameleon simulations, i.e. the simulations with screen-

ing. Unlike the dark matter force investigated in the previous subsection, the fifth force

here is universally coupled. However, as discussed in the Introduction (§ 1.3.2), an effective

EP-violation arises because main sequence stars are self-screened against the fifth force in

parameter regimes of interest.

Figure 4.8 is the analogue of Figure 4.5, now showing the effect on the satellite’s orbit

of a varying Milky Way screening radius. In the case of the outermost screening radius

of 45 kpc, the entire orbit is situated within rscr,MW so this can be taken as equivalent to the

standard gravity case. Following along this orbit from plotted position of the progenitor, the

other orbits peel away one by one, in order of increasing screening radius. In other words,

once the orbit passes outside the screening radius, the fifth force becomes active and the

orbit starts to diverge from the standard gravity case. Recalling from Eq. (1.62) that the fifth

force is proportional to the mass between the test particle and the screening radius, the

divergences do not become noticeable as soon as the orbit passes out of a given screening

radius, but some time after, once this enclosed mass is large enough for an appreciable fifth
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Figure 4.9: The asymmetry parameter α ≡ Nlead/Ntrail, for all simulations with Qsat = 1. The 4 panels corre-

spond to the 4 satellites and the different textures of line correspond to different values of β . In each panel,

the shaded region indicates the radial range of the satellite’s orbit. As with the horizontal lines in Figure 4.2,

the vertical dashed lines here show the locations of Milky Way screening radii for various values of log10 | fR 0|.
This Figure shows the Milky Way screening radius can affect the stream asymmetry. Streams at larger Galac-

tocentric distances are sensitive to larger screening radii, and therefore weaker modified gravity regimes.

force.

Looking instead at the impact of the Milky Way screening radius on stream asymme-

tries, one observable quantity is the ratio of the number of stars in the leading to the trailing

stream,

α=
Nlead

Ntrail
. (4.44)

Figure 4.9 shows this quantity as a function of Milky Way screening radius for all satellites,

assuming Qsat = 1, i.e. fully unscreened satellites. To ensure a fair comparison between

simulations, α is computed in each case at the moment of the satellite’s third pericentric

passage. As the rscr,MW increases, the asymmetry is progressively reduced. This appears

to particularly be the case when rscr,MW lies between the pericentre and apocentre of the
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Figure 4.10: Left: An image from a simulation of Satellite A, β = 0.4, Qsat = 1, and rscr,MW = 10 kpc. Right: An

image from another simulation of Satellite A, β = 0.1, Qsat = 0, and rscr,MW = 4 kpc. This Figure shows some

interesting signatures of screened modified gravity other than the stellar asymmetry we have discussed in

previous figures.

orbit. This makes sense, as most tidal disruption occurs at and around pericentric passage.

Therefore, screening the pericentre has the consequence of reducing the asymmetry of this

disruption process. For all of our satellites, the streams are indistinguishable from those in

the standard gravity case once rscr,MW exceeds the apocentric distance.

We have observed in our simulations interesting signatures of chameleon gravity other

than the stellar asymmetry. Examples of these are depicted in Figure 4.10. First, in the

extreme (high β ) fifth force regime, the orbital paths of released stars around the Milky

Way differ appreciably from their progenitor. However, because stars are released from the

progenitor at different times, this also means that the liberated stars can be on different

Milky Way orbits from each other. If most releases occur at pericentric passages, this can

lead to a ‘striping’ effect, with neighbouring undulations of stars on the sky, corresponding

to streams of stars released at successive pericentric passages. This effect is visible in the

left-hand panel of Figure 4.10.

Secondly, if the satellite itself is fully screened or almost so (i.e. low Qsat), then it orbits

the Milky Way more slowly than the dark matter that has been released and inhabits un-

screened space. Then, we observe the opposite asymmetry to that of the stars: the dark

matter is preferentially disrupted into the leading stream rather than the trailing stream.

This effect is shown in the right-hand panel of Figure 4.10. While interesting, this effect is

of course not readily accessible to observations.
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Figure 4.11: The asymmetry parameter α≡Nlead/Ntrail for the unbound stellar particles in all simulations of

satellite D with screening, shown here as a function of Qsat and rscr,MW , with different panels corresponding to

different values ofβ . This Figure shows the effects of varying all of our parameters on the stream asymmetries.

4.6.4 Future Constraints

The later Gaia data releases will likely enable the discovery of stellar streams at large dis-

tances from the Galactic centre. As shown in Figure 4.9, such streams are able to probe

larger Milky Way screening radii, and therefore ‘weaker’ (more screened) regions of modi-

fied gravity parameter space, potentially down to the level at which screening by our Local

Group is triggered.

Figure 4.11 shows α evaluated for all of our simulations of satellite D, as a function of

rscr,MW, Qsat, and β . As with Figure 4.9, α is computed in each simulation at the moment of

the satellite’s third pericentric passage. This Figure illustrates many of our earlier points;

increasing β increases the magnitude of the asymmetry, but the asymmetry is reduced by

increasing rscr,sat (reducing Qsat) or rscr,MW. In the β = 0.4 case, approximately comparable

to f (R ) gravity, the asymmetries grow large when rscr,MW ® 100 kpc, assuming the satellite

is fully unscreened (Qsat = 1). Notably, this lies between the apocentre and pericentre of the

satellite’s orbit. Most tidal disruption occurs at pericentric passage, but here there is still

enough disruption outside the screening radius, and sufficient numbers of leading stars

lagging behind the satellite, that a large asymmetry develops anyway.

We can again use HS f (R ) gravity to give an indication of the kinds of constraints attain-

able here. Figure 4.12 shows how the Milky Way screening radius depends on the param-

eter fR 0. These calculations were performed using the scalar field solver from MG-Gadget

(§ 2.2.2), calculating the fifth forces in the Milky Way model described in 4.3.1. This fig-

ure should only be treated as approximate, as the environmental contribution to the scalar

field by our Local Group has been neglected.

We see that Satellite D is able to probe the region log10 | f̄R 0| ¦ −7.2. However, if the

satellite itself is partially screened, the sensitivity is greatly reduced. It is natural therefore

to wonder about the degree to which a satellite would be screened at these values of fR 0

and this region of the Milky Way’s halo.

Figure 4.13 shows the scalar field profile around the Milky Way for fR 0 = −10−7, again
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Figure 4.12: The disc-plane Milky Way screening radius as a function of log10 fR 0. The screening radius is

calculated with MG-GADGET, using the Milky Way model described in § 4.3.1.

inferred using MG-Gadget. A Hernquist sphere identical to Satellite D has been inserted at

Galactocentric (X = 100, Y = 0, Z = 100) kpc. There is a clear screened region in the centre

of the Milky Way halo, with rscr,MW ≈ 80 kpc. The satellite, however, is unscreened, except for

the self-screening of host stars. Therefore, in an f (R )Universe, this satellite would provide

very asymmetric streams. This is demonstrated in Figure 4.14, which shows a simulation

with a similar setup: Satellite D with β = 0.4, rscr,MW = 90 kpc and conservatively, Qsat = 0.5.

The left-hand panel shows the stream, while the right-panel shows a more sophisticated

observable signature than the asymmetry parameter: the cumulative number function of

stars in each stream as a function of longitude in the orbital plane of the satellite. The

difference in the two curves is rather striking, and should be clearly discernible in the data.

The examples shown in Figures 4.13 and 4.14 serve as proof of concept, demonstrating

that stellar streams in the outer reaches of our Galaxy’s halo are a sensitive probe of modi-

fied gravity. The observation of highly symmetric streams at large Galactocentric distances

would rule out sizeable fifth forces that couple differently to dark matter and stars in the

outskirts of the Milky Way. This in turn would provide sensitive constraints on screened

modified gravity theories. For instance, looking at Figure 4.12, symmetric streams at dis-

tances of ∼ 150− 200 kpc would require | fR 0| ® 10−7.5 or even ® 10−8 to avoid sizeable fifth

forces in that radial range. This would be among the tightest constraints on f (R ) gravity

achievable to date. However, we caution that environmental screening of the satellite may

play a more significant role at these levels, but Figure 4.11 suggests that only if the satellite

is fully screened does the signal disappear entirely. Even when Qsat = 0.1, i.e. 90% of the

mass is screened, there is still an appreciable signal. So, given the observation of a large

number of symmetric streams, and if there is little environmental screening by the Local

Group, then constraints down to these levels are feasible. In practice, the sensitivity may be
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Figure 4.13: Left: Edge-on particle density of galaxy+satellite system fed to MG-GADGET to calculate the

scalar field profile. The location of the satellite is indicated by the inset box. Right: Scalar field profile for

fR 0 = −10−7 corresponding to top panel. The Milky Way’s screened region is clearly discernible, while the

satellite is fully unscreened.

limited if the Local Group screens the whole Milky Way halo at larger | fR 0|. Detailed stud-

ies of the amount of environmental screening expected for the Local Group would be very

helpful in this context.

On the other hand, observations of highly asymmetric streams would strengthen the

case for screened modified gravity theories. It should be noted, however, that mild asym-

metries can arise due to dynamical effects. Indeed, an asymmetry between the leading and

trailing streams is expected from Eq. (4.24). This may be compounded by dynamical inter-

actions with dark subhaloes or other satellites (Erkal & Belokurov, 2015), asymmetries in the

stellar populations in the progenitor satellite (Peñarrubia et al., 2010; Bonaca et al., 2019),

effects of the Galactic bar (Pearson et al., 2017) and regions of chaos in the Galactic poten-

tial (Price-Whelan et al., 2016). Such effects would have to be carefully weighed before a

modified gravity interpretation could be seriously considered for such observations.

4.7 Conclusions

We have investigated the possible imprints of chameleon gravity on stellar streams from

dwarf galaxies around the Milky Way. While canonical chameleon theories are universally

coupled, an effective violation of the equivalence principle (EP) arises because of the self-

screening of main sequence stars, as noted by Hui et al. (2009).
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Figure 4.14: Left: An image of a simulation of Satellite D, with rscr,MW = 90 kpc, Qsat = 0.5, β = 0.4. The

dotted circle shows the location of the Milky Way screening radius, while the cross and filled circle show

the locations of the Milky Way and satellite centres respectively. The arrow shows the current direction of

motion of the satellite. Right: Cumulative number of stars in either stream, as a function of longitude in

the instantaneous orbital plane of the satellite. This Figure, taken together with Figure 4.13, shows that f (R )
gravity with fR 0 ∼ −10−7 should give a clear observational signature in stellar streams between 100 and 200

kpc.

As found by Kesden & Kamionkowski (2006a,b), an EP-violating fifth force that cou-

ples to dark matter but not baryons causes asymmetries to develop in stellar streams with

dark matter-dominated progenitors. The stars are preferentially disrupted via the outer

Lagrange points into the trailing streams. We have shown that these asymmetries can also

arise in chameleon theories, because of the effective EP-violation described above.

We have corrected and augmented the analytic calculations of Kesden & Kamionkowski

(2006b) for point masses so that they are also applicable to extended Galactic mass distribu-

tions like isothermal spheres. The effect of these changes is to make the test more sensitive

to EP-violating fifth forces. For the most massive dwarf spheroidals, like the Sagittarius or

Fornax, the criterion given in Eq. (4.26) suggests values of β 2 ¦ 10−3 can be probed. For

the smallest dwarf spheroidals such as Segue 1 with a mass of 6× 105M�, then values of

β 2 ¦ 10−4 are in principle accessible. As a rule of thumb for a satellite with mass m at a

location enclosing a Milky Way mass M , the form of the criterion suitable for a flat rotation

curve galaxy is

β 2 ¦ 2−5/3
�m

M

�2/3

. (4.45)

This asymmetry also occurs in the chameleon context, when screening radii are introduced

to the Milky Way and satellite, and with stars self-screening. The magnitude of the asym-

metry depends on the coupling strength β , the Milky Way screening radius, as well as the

degree of screening of the stream progenitor; large values of β give large asymmetries, but

these are reduced with increasing rscr,MW and rscr,sat.
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We have created a restricted N-body code, and used it to simulate the formation of tidal

streams from progenitors, with a variety of masses and Galactocentric distances. We con-

sidered a range of modified gravity scenarios (coupling strength, Milky Way screening level,

satellite screening level) in each case. Our simulations – the most comprehensive to date for

the formation of tidal streams under chameleon gravity – have revealed further interesting

effects. First, the trailing stellar stream may become detached from the dark matter progen-

itor if all the stars are exhausted by earlier pericentric stripping. As an example, this effect

is visible in Figure 4.7 and occurs for low mass satellites in the extreme fifth force regime.

Second, prominent striations in the stellar trailing tail may exist if stars are stripped at re-

peated pericentric passages by a strong fifth force. Thirdly, if the satellite is fully screened,

its orbital frequency is lower than that of its associated dark matter. This leads to strong

asymmetries in the dark matter distribution, which is preferentially liberated into the lead-

ing tidal tail.

Taking Hu-Sawicki f (R ) gravity with fR 0 = −10−7 as an example, we derive a Milky Way

screening radius of around 80 kpc. A massive dwarf spheroidal galaxy at a distance of ≈
150 kpc – such as Fornax – would be fully unscreened (except for self-screening stars) and

produce highly asymmetric streams under tidal disruption.

The ratio of the cumulative number function of stars in the leading and trailing stream

as a function of longitude from the satellite is computable from simulations, measurable

from the observational data and can provide a direct test of theories with screening mecha-

nism, like chameleon gravity. The later Gaia data releases may lead to discoveries of stellar

streams at distances ¦ 100 kpc from the Galactic centre. These streams will be a sensitive

probe of modified gravity; such highly asymmetric streams at these distances would be

tell-tale signatures of modified gravity.

On the other hand, if the data uncover a number of very symmetric streams, then con-

straints down to the level of fR 0 ∼ −10−8—the tightest constraints to date—could be at-

tainable if the screening of the satellite and other nuisance parameters are carefully taken

into account, and assuming that the Local Group does not yet environmentally screen the

whole Milky Way halo at these fR 0 values. Also, our assumption that the Compton wave-

length is much larger than relevant length scales begins to break down at such values of

fR 0, and Yukawa suppression will become appreciable below fR 0 ∼ −10−8. Of course, the

investigation need not be limited to Hu-Sawicki f (R ) gravity. Sensitive constraints will also

be attainable in the general chameleon parameter space, and we merely use f (R ) gravity

as a fiducial theory.

Finally, we note that other screened modified gravity theories can also be probed with

stellar streams. For instance, the symmetron screening mechanism has a simple density

threshold as a screening criterion (Hinterbichler & Khoury, 2010; Hinterbichler et al., 2011).

Consequently, there will necessarily be a region of parameter space in which the stars are

screened, but the surrounding diffuse dark matter component is not. In this regime, stream
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asymmetries will also be present and are worthy of future investigation.
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Chapter 5

Conclusions and Outlook

In this thesis, I have investigated two signatures of screened fifth force theories on galac-

tic dynamics. The first—upturns in the outer regions of rotation curves—is a novel idea,

studied for the first time in the two published articles that formed the basis for Chapters

2 and 3 respectively (Naik et al., 2018, 2019). The second signature—asymmetries in tidal

streams—is an older idea, first investigated by Kesden & Kamionkowski (2006a,b) in the

context of an EP-violating “dark matter force”. In Naik et al. (2020), this idea was revived

and the predicted effect reinvestigated in the context of screened fifth forces. That article

formed the basis for Chapter 4. This chapter briefly recapitulates the results and conclu-

sions of these investigations, followed by a discussion of possible future directions, before

ending with some final remarks.

Conclusions

Screened modified gravity theories are theories in which additional degrees of freedom

(typically scalar fields) couple to gravity in such a way that their mediated fifth forces are

suppressed in regions of high density such as our Solar System. In the chameleon screening

mechanism, this is achieved with a density-dependent effective mass for the scalar field.

An example of a chameleon theory is Hu-Sawicki f (R ) gravity, used throughout this thesis

as a fiducial theory.

In Chapter 2, I considered the behaviour of Hu-Sawicki f (R ) gravity in MW-size spiral

galaxies. Using the f (R ) N-body code MG-Gadget, I calculated the instantaneous scalar

field and fifth force profiles across a number of simulated galaxies, sourced from the Auriga

Project simulations. In these galaxies, the scalar field took on a discoid shape, reflecting

their mass distribution. In galaxies where screening was triggered in the central regions,

the boundaries between screened and unscreened region was an oblate surface.

Calculating the rotation curves of these galaxies in the disc plane, the fifth force contri-

bution beyond the screening radius (defined here as the distance in the disc plane of the
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screening surface from the galactic centre) led to upturns in the outer regions of the ro-

tation curves. For a given galaxy, the exact location of the upturn depends on the mass,

size, and environment of the galaxy, as well as the cosmic background value of the scalar

field, f̄R 0. This prediction of rotation curve upturns provides a novel signature of screened

modified gravity. Another related signature presented in Chapter 2 was found in the radial

acceleration relations of the galaxies: the relation, for a given galaxy, between total accel-

eration at each point in the disc as inferred from the rotation curve and the acceleration at

the same points due to baryonic mass inferred from the observed light distribution. Here,

kinks appeared in the radial acceleration relations, corresponding directly to the rotation

curve upturns.

At | f̄R 0| ® 10−7, the Auriga galaxies were fully screened, rendering them indistinguish-

able from ΛCDM. On the other hand, at | f̄R 0|¦ 2×10−6, the galaxies were fully unscreened,

suggesting an incompatibility with Solar System constraints if analogised directly with the

Milky Way. Chapter 2 thus ended with a predicted sensitivity level of this rotation curve test

of | f̄R 0| ∼ 10−7.

To search for the rotation curve signature in observed rotation curves, in Chapter 3 I

turned to the galaxies of the SPARC sample. The SPARC sample is a sample of 175 high-

quality HI/Hα rotation curves, spanning five orders of magnitude in galaxy mass. Following

a series of cuts to the sample, including a cull of galaxies for which environmental screening

was predicted (using ‘screening maps’ of the local Universe) to play a dominant role, 85

rotation curves remained.

Importantly, the SPARC sample pairs rotation curve measurements with 3.6µm surface

brightness profiles, tracing the galaxies’ stellar mass profiles. This facilitates the splitting of

dynamical models of the galaxies into their individual components: stars, gas, dark matter,

and the fifth force. Having constructed a detailed forward model of the rotation curves,

I scored the models against the data using a Gaussian likelihood function, and used an

MCMC technique to explore the f̄R 0 parameter space and compare the performance of f (R )
against ΛCDM+GR.

Leaving f̄R 0 as a free parameter for each galaxy, most galaxies showed some preference

for f (R ). Using the Bayesian Information Criterion to compare models, 64 of 85 galaxies

gave ∆BIC = BIC f (R )−BICΛCDM < 0. In many cases (27 of 85) this was a strong preference,

with∆BIC <−6. However, the preferred values of f̄R 0—tightly constrained for most individ-

ual galaxies—showed a large spread across the sample of around two orders of magnitude,

inconsistent with a single global value.

Globally fitting the sample with a single value of f̄R 0, f (R )models with log10 | f̄R 0|>−6.1

are disfavoured with respect to ΛCDM. On the other hand, f (R ) models with lower val-

ues of | f̄R 0| are favoured. The peak signal is at log10 | f̄R 0| ∼ −7, where f (R ) gives a huge

log-likelihood increase of 70 over ΛCDM. However, it would appear that this signal arises

primarily from a well-known problem in near-field cosmology: the core/cusp problem.
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The galaxies that dominate the signal are galaxies for which the assumed ‘cuspy’ NFW

halo model appears to provide a poor fit. In the absence of any fifth forces, an alterna-

tive ‘cored’ halo model gives a full-sample log-likelihood increase of 300 compared with

NFW+ΛCDM, much larger than any improvement provided by NFW+ f (R ). Furthermore,

adding fifth forces does not appear to add any appreciable further improvement to the

cored halo model. The tentative modified gravity signal is therefore much more readily

interpreted as a signal of cored haloes, and a greater understanding of dark matter halo

shapes under ΛCDM needs to be arrived at before a modified gravity interpretation can be

seriously considered.

In Chapter 4, I turned my attention to the stellar streams of the Milky Way’s stellar halo.

These streams are created when satellite stellar systems—such as dwarf galaxies or globu-

lar clusters—are tidally disrupted by the Milky Way, and stars are stripped from the satellite

via the L1 and L2 Lagrange points. Under standard gravity, approximately equal numbers

of stars are stripped via both Lagrange points, leading to streams that are approximately

symmetric about their progenitor. However, if a fifth force couples to dark matter in a

dwarf galaxy but not stars, the stars will lag behind the satellite centroid, and will be prefer-

entially disrupted via the L2 point, leading to an asymmetrically engorged trailing stream

and diminished leading stream. This effect was first described by Kesden & Kamionkowski

(2006a,b) in the context of a generic EP-violating “dark matter force”. It was later noted by

Hui et al. (2009) that although screened modified gravity theories are universally coupled,

an effective EP-violation arises when compact objects (e.g. stars) are screened within an

unscreened environment (the dwarf galaxy progenitors).

To my knowledge, Chapter 4 gives the first quantitative treatment of stellar streams un-

der chameleon gravity. The first key result was the extension of the calculation of Kesden

& Kamionkowski (2006a,b) from point masses to extended mass distributions, leading to

the conclusion that stellar streams are a significantly more sensitive probe of EP-violation

than originally suggested in that work. Using a realistic Milky Way model and a restricted

N-body code, a large number of streams were simulated under chameleon gravity, giving

an idea of the kinds of constraints attainable from Gaia data. The final part of the chapter

once again used the example of Hu-Sawicki f (R ) gravity, with f̄R 0 ∼ −10−7. Here, a stellar

stream in the Galaxy’s outer halo (between 100 and 200 kpc) would show an unambiguous

asymmetry in the numbers of stars along each stream: a smoking gun for modified grav-

ity. Conversely, highly symmetric streams at such distances would be able to place very

strong constraints on screened modified gravity theories (plausibly down to | f̄R 0| ∼ 10−8),

as they would require very large Milky Way screening radii or very weak coupling strengths.

An important caveat is that more work needs to be done to understand the Local Group’s

environmental contribution to the screening of the Galaxy; a factor neglected in Chapter 4.
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Outlook

The primary limitation of the rotation curve upturn test was the uncertainty regarding the

shapes of the density profiles of dark matter haloes. One way in which this issue could be

partially resolved would be via more accurate, higher (spatial) resolution rotation curves.

The degeneracy between cored haloes and fifth force upturns is not a true one; the strong

implication of Figure 3.6 is that the dark matter haloes of galaxies like UGC 00891 are cored,

but an incorrect cuspy halo fit can nonetheless be improved if a fifth force is added in the

outer regions, allowing the total mass of the halo to be reduced, thus lessening the dis-

crepancy in the halo centre. A higher resolution rotation curve here would help to deter-

mine whether this is the case, or if there is truly an upturn feature at around R ≈ 3 kpc, as

the f (R ) fit would require. One possible option would be to search for the signature us-

ing spatially resolved galaxy kinematics from an integral field spectroscopic survey such as

MaNGA (Mapping Nearby Galaxies at Apache Point Observatory; Bundy et al., 2015).

Ultimately, however, it will remain difficult to perform cast iron model comparisons

using this rotation curve test until the theoretical predictions for dark matter halo shapes

are better understood, under both ΛCDM and f (R ). Given the fast pace of progress in the

field of simulations (under both paradigms), this could well be realised soon.

The most obvious future research project suggested by this thesis is the stellar streams

test described in Chapter 4. That chapter particularly anticipated the upcoming third Gaia

data release which is predicted to lead to the discovery of streams in the outer halo of the

Milky Way. The strength of the predicted signal in e.g. Figure 4.14 suggests that even a

simple determination of asymmetry from stream observations would rule out significant

chunks of theory parameter space. To advance beyond this and achieve the full sensitivity

possible would likely necessitate a more detailed calculation, involving a careful determi-

nation of stream membership and accounting of selection effects.

As mentioned previously, if one is to use the outer regions of the Milky Way as a probe of

screened fifth forces, it will be necessary to understand exactly how theory parameters (e.g.

f̄R 0) translate to screening radii. The result of a crude calculation was displayed in Figure

4.12, but the Local Group will need to be accounted for, and uncertainties about the Milky

Way mass marginalised over.

Another idea worth pursuing after Chapter 4 is the measurement of stream asymme-

tries around other galaxies. Streams have already been observed around other galaxies (e.g.

Martínez-Delgado et al., 2008, 2010), and it seems likely that future wide-field surveys such

as LSST will be able to observe streams at large distances from their host galaxies. This,

combined with a calculation of the host galaxy screening properties (e.g. via the screen-

ing maps of Desmond et al., 2018c), could also be a sensitive probe of screened modified

gravity.

More generally, the coming years will provide ample opportunities for tests of gravity.
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As I noted in § 1.1.5, existing cosmological constraints on gravity, obtained from measure-

ments such as cosmic shear or the BAO scale, are rather weak. These constraints are ex-

pected to improve dramatically with data from ongoing and future galaxy surveys, such as

Euclid, DESI, and LSST.

In addition to their cosmological merits, these surveys will also improve the sensitiv-

ity of the various galaxy-scale tests listed in § 1.3.5. For instance, according to Desmond

et al. (2018b), a repeat of their search for gas-star offsets using the radio data of SKA will

have a sensitivity level of ∆G /G ∼ 10−9. This is comparable to Solar System tests of grav-

ity and will easily be able to confirm or rule out their tentative signal (depicted in Figure

1.16). As another example, the aforementioned MaNGA survey has already begun to pro-

vide spatially resolved kinematics of both stellar and gas components of a large numbers

of galaxies. The gas-star rotation curve test of Vikram et al. (2018) was primarily limited

by its very small sample size of six galaxies, but was nonetheless able to attain competitive

parameter bounds. It would therefore be interesting to apply a similar test—reformulated

into 2D kinematics—to MaNGA data.

Finally, the upcoming galaxy surveys mentioned above will improve our ability to iden-

tify ideal candidates for fifth force searches. Indirectly, their greatly increased completeness

compared with existing galaxy catalogues will aid the identification of unscreened regions

of the local Universe by greatly improving the accuracy of screening maps, which are pri-

marily limited by uncertainty about the distribution of ‘missing mass’. More directly, they

will dramatically increase the known number of faint, low mass galaxies in the more rar-

efied regions of the Universe. These galaxies will be a final frontier in the search for astro-

physical signatures of screened modified gravity.

Final Remarks

This thesis began with an account of the Great Debate that took place a century ago. To

the astronomers and natural philosophers of the day, the ‘big questions’ about our cosmos

regarded the extent and shape of the Milky Way, and whether the observed ‘spiral nebulae’

were ‘Milky Ways’ in their own right. The stasis and infinite age of the Universe were largely

unquestioned axioms. Today, the academic descendants of those thinkers ask an entirely

different set of questions. What is the physical reality of the observed dark sector? How

does one link general relativity to the quantum theory of fields? How exactly do galaxies

form?

Despite talk of a ‘concordance cosmology’, there is clearly much work to be done, and

the community is far from complacent. One imagines that a time will come when cosmol-

ogists will be grappling with an entirely new set of questions, our current questions having

all been either answered, rendered irrelevant, or demonstrated to have been ill-posed. I

can only hope that such a time will come to pass within my lifetime.
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Appendix A

1D Approximation

As discussed in § 3.3.2, when solving Eq. (1.69) to calculate the scalar field, we assume

spherical symmetry to reduce the computational cost. In Chapter 2, it was found that

the scalar field typically takes a discoid shape in galaxies, so assuming spherical symmetry

could potentially lead to our calculations differing from the ‘true’ scalar field profiles, intro-

ducing error into our inferences for f̄R 0. In particular, when a galaxy is partially screened,

a given f̄R 0 might correspond to an appreciably different location for the screening radius

when the assumption of spherical symmetry is introduced.

To test the robustness of this 1D approximation, we compare some of our results with

those that would have been obtained if the 1D solver was replaced with a 2D solver, in

which the assumption of spherical symmetry has been replaced with the assumption of

azimuthal symmetry. This 2D solver has been found to give galactic scalar field profiles in

excellent agreement with those calculated by the full 3D solver in MG-GADGET.

In the 2D solver that we use for comparison, Eq. (3.5) is discretised on a 2D grid in the

spherical polar coordinates r and θ . As in the 1D case, we use logarithmically spaced grid

cells for the coordinate r , i.e. the radial gridlines are equally spaced in x ≡ ln r , with con-

stant grid spacing hx .

For the polar angle θ , we adopt a linear grid, ranging from θ = 0 to θ = π, with nθ grid

cells and constant grid spacing hθ . Through experimentation, it was found that nθ ∼ 100

gave sufficiently accurate results.

Defining

Li j ≡
�∇2e u

�
i j
+

1

3c 2 f̄R (a )

h
R̄ (a )

�
1− e −

ui j
2

�
+8πGδρi j

i
, (A.1)

where i and j denote grid cells along the radial and polar directions respectively, we can

rewrite Eq. (3.5) as

Li j = 0. (A.2)

This is then solved, with the same Newton-Gauss-Seidel technique, Eq. (3.8). In order to

do this, we need discretised expressions for the Laplace operator on our grid, as well as the
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Figure A.1: Marginal posterior distributions of f̄R 0 for 10 randomly selected galaxies, calculated with both

the 1D solver used throughout Chapter 3 (upper panels), and the 2D solver described in this Appendix (lower

panels). The results of the two solvers are in remarkably good agreement, with the possible exception of the

missing modes associated with NGC 6015 and NGC 2841, which are more likely to be due to convergence

issues than the 1D approximation (each walker performed 5000 iterations in the 1D case, and 500 in the 2D

case; see discussion in the text).

quantity ∂Li j/∂ ui j . Writing sinθ as s , the Laplace operator in our coordinates x ≡ ln r

and θ is given by
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which is discretised as
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Finally, the quantity ∂Li j/∂ ui j is given by

∂Li j
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With a solution for fR everywhere, the fifth force is then given by Eq. (1.77), evaluating

the gradients of the scalar field in the disc plane, θ =π/2.
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We take 10 randomly chosen galaxies from our sample, and rerun our MCMC analysis

with this 2D solver for Model B, i.e. the f (R )model with freely varying f̄R 0, a single mass-

to-light ratio, and NFW haloes. As in the 1D case, we use 30 walkers operating at 4 tem-

peratures. With the 1D solver, the walkers each performed 5000 iterations after a burn-in

period of 5000 iterations, but here we limit the computation to 500 iterations after a burn-

in of 500, for reasons of computational cost. As a consequence, the convergence is more

uncertain: whereas the Gelman-Rubin statistic R was previously confined to the region

|R −1|< 0.01 for the vast majority of fits, the statistics for several of the galaxies are now in

the range 0.01< |R −1|< 0.05.

Figure A.1 shows the 10 marginal posterior distributions for f̄R 0, calculated with 2D and

1D solvers. There is remarkably good agreement between the two solvers, demonstrating

the validity of our 1D approximation. In two cases, NGC 6015 and NGC 2841, the poste-

rior is bimodal for the 1D solver, but unimodal for 2D. However, as the missing mode in

both cases falls within the fully unscreened regime, this is unlikely to be related to any dif-

ference between the scalar field solutions of the two solvers, but to the convergence issues

described above, which have likely prevented the 2D MCMC from finding the second mode.
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