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Abstract14

Three-dimensional geometries of silicate-hosted magnetic inclusions from the Harcus15

intrusion, South Australia have been determined using focused-ion-beam nanotomography16

(FIB-nt). By developing an effective workflow, the geometries were reconstructed for mag-17

netic particles in a plagioclase (162) and a pyroxene (282), respectively. For each inclusion,18

micromagnetic modelling using MERRILL provided averaged hysteresis loops and backfield19

remanence curves of 20 equidistributed field directions together with average Ms , Mrs , Hc ,20

and Hcr . The micromagnetic structures within each silicate are single-domain, single-vortex,21

multi-vortex and multi-domain states. They have been analyzed using domain-state diagnos-22

tic plots, such as the Day plot and the Néel plot. SD particles can be subdivided into groups23

with dominant uniaxial anisotropy (Mrs/Ms ∼ 0.5 and 10 < Hc < 100 mT) and mixed24

uniaxial/multiaxial anisotropy (Mrs/Ms ∼ 0.7 and 10 < Hc < 30 mT). Most single-vortex25

particles lie on a trend with 0 < Mrs/Ms < 0.1 and 0 < Hc < 10 mT, while others dis-26

play a broad range of intermediate Mrs/Ms and Hc values. Single-vortex and multi-vortex27

states do not plot on systematic grain-size trends. Instead, the multi-component mixture of28

domain states within each silicate spans the entire range of natural variability seen in bulk29

samples. This questions the interpretation of bulk average hysteresis parameters in terms30

of grain size alone. FIB-nt combined with large-scale micromagnetic simulations provides31

a more complete characterization of silicate-hosted carriers of stable magnetic remanence.32

This approach will improve the understanding of single-crystal paleomagnetism, and enable33

primary paleomagnetic data to be extracted from ancient rocks.34

1 Introduction35

A fundamental task in rock magnetism is to identify the magnetic domain states adopted36

by natural remanence carriers, because these control the remanence acquisition process, the37

stability of the remanent magnetization over geological time, and subsequently the reliability38

of the stored paleomagnetic information. Most rocks contain a mixture of magnetic minerals39

covering a broad range of particle sizes and shapes. Rock magnetism broadly classifies these40

particles into superparamagnetic (SP), stable single-domain (SD), pseudo-single-domain41

(PSD), and multi-domain (MD) states, with the boundaries between states originally based42

on experimental results [McNab et al., 1968; Dunlop, 1973; Dunlop and Bina, 1977; Soffel,43

1977]. Based on the magnetic material properties of magnetite, these observed boundaries44

could be related to theoretical calculations for regular particle geometries [Butler and Baner-45

jee, 1975; Argyle and Dunlop, 1984; Enkin and Dunlop, 1987; Enkin and Williams, 1994],46

although the influence of shape has been recognized [Stacey, 1961; Fabian and Hubert,47

1999; Witt et al., 2005]. Theoretical values for the SP-SD and SD-PSD transition sizes agree48

very well with the experimentally determined boundaries of 0.025-0.030 µm and 0.050-49

0.084 µm for crushed and grown magnetite crystals. Experimental studies are limited to syn-50

thetic or natural particle ensembles with high variability in size and shape with the exception51

of a study on synthetic samples generated by lithography, where monocrystallinity could not52

be ensured [Krása et al., 2009]. Magnetite particles directly above the upper SD limit as-53

sume an intermediate state in experimental and theoretical studies. Because they appear to54

be related to a stable and single-domain like experimental behavior, for which Stacey [1961]55

coined the notion of PSD remanence, they are commonly referred to as PSD particles. From56

a theoretical view such particles are intermediate between two characteristic length scales,57

the SD-limit of ≈ 7 λex , where λex =
√

2 A/(µ0 M2
s ) is the exchange length, and the domain58

wall width of ≈ 5
√

A/K1. Here A denotes the exchange constant, K1 the magnetocrystalline59

anisotropy constant, Ms the saturation magnetization, and µ0 the vacuum permeability. For60

magnetite the intermediate size range lies roughly between 0.070 µm and 0.200-0.300 µm,61

however, the formation of clearly defined homogeneously magnetized domains does not oc-62

cur below grain sizes of about 2 µm. Nagy et al. [2019] modelled grains up to the micron63

range and observed domain wall formation in unconstrained micromagnetic models. What64

is missing, is a comprehensive survey of magnetization states and predicted hysteresis prop-65
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erties for naturally occurring magnetite particles across, and beyond, the SD state. Here we66

develop a method to achieve such a survey based on FIB tomography combined with micro-67

magnetic modeling.68

To compare our model results to measurements on sized magnetite samples, we con-69

sider several isothermal measurements that have been developed to quantify the character-70

istic domain states of natural remanence carriers. The most common approach is based on71

the measurement of bulk average magnetic hysteresis parameters, such as saturation mag-72

netisation Ms , saturation remanent magnetisation Mrs , coercivity Hc , and coercivity of re-73

manence Hcr . Two intensely studied diagrams are the Day plot of Mrs/Ms versus Hcr/Hc74

[Day et al., 1977], and the Néel plot of Mrs/Ms versus Hc [Néel, 1955], which are based on75

bulk hysteresis parameters that can be quickly and easily measured in most rock magnetic76

laboratories [Dunlop, 2002; Tauxe et al., 2002]. It is well known that their interpretation is77

ambiguous without detailed knowledge of the underlying magnetic ensemble [Roberts et al.,78

2018]. To relate domain state to geometrical measurements, the theoretical diagram of But-79

ler and Banerjee [1975], and later revisions [Fabian et al., 1996; Muxworthy and Williams,80

2006], is commonly used to characterise the domain state of magnetic particles based on par-81

ticle length and axial ratio. This approach assumes that magnetic particles can be effectively82

approximated as prolate ellipsoids.83

Here we apply our workflow and method to magnetite particles within silicate-hosted84

magnetic inclusions. This setting is abundant and important for studying the Earth’s mag-85

netic field, magmatic evolution, geochemical interaction, stabilityand oxygen fugacity [Fein-86

berg et al., 2005; Tarduno et al., 2020]. Magnetite is the most significant Fe-oxide for paleo-87

magnetic studies, and magnetite i known to form as exsolved or included particles in silicates88

like plagioclase [Davis and Letters, 1981; Feinberg et al., 2005; Usui et al., 2015] and py-89

roxene [Fleet et al., 1980; Frandsen et al., 2004; Renne et al., 2002; Feinberg et al., 2004]90

within a wide range of geologic settings. Davis and Letters [1981] document that magnetite91

exsolves several micrometer long rods in 2-4 different directions in plagioclase from oceanic92

gabbros. The crystallographic relationship between magnetite needles and a plagioclase host93

was determined by [Wenk et al., 2011]. They observed a single set of magnetite needles ori-94

ented parallel to the [001] axis of plagioclase, with the needle elongation direction corre-95

sponding to the [110] direction of magnetite and the (111) planes of magnetite oriented sub-96

parallel to (120) and (1̄20) planes of plagioclase. Within pyroxene (CPX) iron oxide inclu-97

sions occur parallel to (010), where all inclusions are elongated and with the long axis sub-98

parallel to both [100] and [001] [Renne et al., 2002; Feinberg et al., 2004]. In orthopyroxene99

exsolved oxide lamellae are known from optical and transmission electron microscopy. Il-100

menite lamellae are present as coherent rods and blades where (001) ilmenite is epitaxially101

intergrown on (100) pyroxene, and the a-axis of ilmenite is parallel to the c-axis of pyroxene102

[McEnroe et al., 2004]. There the ilmenite contained hematite lamellae parallel to the (001)103

of the ilmenite. The incorporation of iron into the silicates is not confirmed, but suggested104

to occur at primary subsolidus mineral formation and exsolve magnetite well above its curie105

temperature [Feinberg et al., 2004; Fleet et al., 1980] for pyroxene. The exact process for106

exsolving magnetite in plagioclase is so far not established, but once the orientation relation-107

ship is established the phase boundary between plagioclase and magnetite can be established108

[Wenk et al., 2011].109

The advent of high-resolution focused-ion beam nanotomography (FIB-nt), combined110

with the development of powerful finite-element micromagnetic (FEM) software optimised111

for rock magnetic applications [Ó Conbhuí et al., 2018; Fabian and Shcherbakov, 2018], pro-112

vides a new opportunity to perform domain-state diagnosis from first principles. FIB-nt is113

performed on a dual-beam electron microscope that combines the high-resolution imaging114

capabilities of a field-emission gun scanning electron microscope (FEG-SEM) with the nm-115

precision slicing capabilities of a FIB [Fagerland, 2014; Brogden, 2015]. This technique is116

widely used to analyse biological samples [Beckwith et al., 2015; Guehrs et al., 2017; Mul-117

ders et al., 2006], alloys [Cao et al., 2009; Ding and Jones, 2011] and geological materials118
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[Einsle et al., 2016; ter Maat et al., 2020; Warr et al., 2014; Lascu et al., 2015]. The pro-119

cess is destructive, as the slicing destroys the prepared sample area. However, it has higher120

spatial resolution than comparable non-destructive methods of X-ray computed tomography,121

enabling the morphology of particles spanning the SD to MD range to be reconstructed in122

3D. Rather than attempting to solve the inverse problem of unmixing domain states from a123

series of magnetic hysteresis measurements, the combined FIB-nt-FEM approach enables124

forward models of domain states and hysteresis properties to be calculated from direct 3D125

observations of a representative particle ensemble. Evaluating magnetic signatures in geo-126

logic samples will always be challenging. The complexities of particle size, shape, spacing,127

chemical composition, stoichiometry and stress will generate unique mineralogical settings,128

and it is a fair question raised by Lascu et al. [2015] whether domain-state diagnosis might129

be an unachievable ideal? Here we show that FIB-nt-FEM is able to resolve domain-state130

ambiguities associated with the size, shape and spacing of particles. In combination with131

other techniques, such as energy-dispersive X-ray spectroscopy (EDS) and high-resolution132

electron backscattered diffraction (HR-EBSD), it has the potential to resolve ambiguities as-133

sociated with chemical composition, stoichiometry and stress in the future.134

2 Materials and Methods135

2.1 Samples136

This study focuses on two gabbroic norite samples obtained from drill cores of the137

Mount Harcus Intrusion, which is a part of the Giles Complex, South Australia. The sample138

names 311.5 and 109.3 in Figure 1 correspond to their depth in m. The Giles-Event intru-139

sions were emplaced into the Proterozoic Musgrave Province at about 1090-1040 Ma [Maier140

et al., 2015]. The Harcus intrusion is of interest because of its striking remanent magnetic141

anomaly and the potential for magmatic nickel sulphide mineralizations [Austin et al., 2014].142

The high-coercivity remanent magnetization is interpreted to be carried by single-domain143

magnetite [Church et al., 2016]. In reflected light the two thin sections in Figure 1 display144

a wide distribution of magnetite grain sizes, from large, discrete (> 100 µm) multi-domain145

magnetite with oxy-exsolution of ilmenite lamellae and spinel needles and blades. Reduc-146

tion exsolution of magnetite from ilmenite in the form of blades occurs in isolated ilmenite147

grains, and in some large ilmenite lamellae, which were first oxy-exsolved from magnetite148

[Church et al., 2016; Robinson et al., 2016]. Silicate-hosted micrometer- to nanometer-sized149

inclusions of magnetite are found in feldspars, pyroxenes and amphiboles (� 0.1 µm). Pri-150

mary silicates contain the highest concentrations of iron-oxide inclusions and were targeted151

for 3D imaging using FIB nanotomography. Both thin sections 311.5 and 109.3 are com-152

posed of plagioclase, pyroxene, amphibole, intragranular quartz and discrete iron-titanium153

oxides. Iron-oxide inclusions are present in primary plagioclase and pyroxene and secondary154

amphibole. Sample 311.5 has a high concentration of inclusions in plagioclase and amphi-155

bole. Metamorphic processes have possibly redistributed iron oxides in amphiboles. The156

intragranular quartz in association with amphibole also suggests the presence of fluids that157

may have mobilized Fe, and removed it from the system. Sample 109.3 has a lower amount158

of amphibole and iron-oxide inclusions in plagioclase balanced by an increase of iron-oxide159

inclusions in the pyroxene. For samples 311.5 and 109.3 the bulk natural remanent magne-160

tization (NRM) values are 34 A/m and 4 A/m, and their bulk magnetic susceptibility values161

are 0.06 (SI) and 0.10 (SI), respectively.162

2.2 Focussed-Ion-Beam Slice-and-View Nanotomography168

Raw data collection was performed using the Auto Slice & View 4 software on an FEI169

Helios G4 UX Dual-Beam Focused-Ion-Beam (FIB) microscope at the NTNU NanoLab in170

Trondheim, Norway. Polished thin sections were coated with 10 nm of Au and the regions171

of interest wereanalysed with EDSto confirm that the target iron oxide inclusions were mag-172

netite with minor (<1 wt%) Ti. At the optimal imaging settings for the selected minerals, the173
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Figure 1. Thin sections 311.5 and 109.3 with slice-and-view locations 1 (plagioclase) and 2 (pyroxene).
White arrows in (a) and (d) are aligned with the FIB slice-and-view milling direction (Z-axis). (b) and (e)
Ion-beam view of the milling volumes outlined by the platinum protective layer. (c) and (f) Electron-beam
view of the cross section (front face) of the milling volume. The electron beam is oriented at 52◦ to the ion
beam.

163

164

165

166

167

electron beam drift was about 500 nm an hour, which limited the size of the block volume174

that could be successfully imaged. A block volume of material measuring 12x14x12 µm (L-175

W-H), sliced with 30 nm increments, took, on average, 20 hours. With longer sessions, the176

failure rate increased substantially. Block volumes were also limited by hardness of the ma-177

terial and the ability to successfully prepare the trenches and clean the front face of the sliced178

volume. The extracted volume of pyroxene is therefore smaller than for plagioclase since the179

ion-beam has fewer issues with removing material.180

Sample preparation for slice-and-view was performed by manual instrument opera-181

tion, outside of the automated software. The selected area was first coated with 500 nm of182

Pt. Five 200 nm deep lines that extend the full depth of the milling area were cut into the Pt183

coating and then filled by carbon deposition using the ion beam. The selected area was then184

covered with a further 300 nm of Pt. The central three carbon rods were orientated parallel to185

the slice direction and used as image alignment references. The outside two carbon rods were186

oriented at an angle of ±60◦ to the slice direction and were used to calibrate the slice thick-187

ness and to enable alignment of images in the slice direction in cases where there are missing188

images, or if a milling session had to be restarted. The surface preparation was finalized with189

3 µm wide and 500 nm thick carbon rectangle, oriented parallel to the slice direction, and190

covered with an additional 300 nm of Pt. This carbon slab is used to keep the E-beam image191

aligned with the front face at all times. Trenches, 15 µm deep, 10-13 µm wide, and 10 µm192

long, were created to the left and right of the target volume, and a trench 20-25 µm wide and193

20 µm long was created in front of the target volume using a standard cross section milling194

routine at 30 keV and 20 nA. The front and sides were then polished with cleaning cross sec-195

tions, first at 1.2 nA and then with a final cleaning step at 0.75 nA. A Pt fiducial mark for ion196

beam alignment was placed on the thin section surface outside of the milled trenches as seen197

in I-beam and E-beam images in Figure 1.198

For slicing, the Ga-ion beam was kept at 30 keV and 0.75 nA and slice thickness was199

chosen between 10 and 30 nm. Electron-beam imaging applies a mirror detector for the200

Backscattered-Electron (BSE) signal in immersion mode at 5 kV and 0.8 nA. Tilt correc-201
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tion for the 52◦ angle between the ion- and electron-beam was performed in the FEI software202

with dynamic focus by activating the tilt-correction option. Each scan with 6144x4096 pixels203

at 10 µs dwell time, resulted in a 1535x1652 image with pixel size of 7.5 nm in the pyroxene,204

a 2037x2043 image with pixel size of 7.6 nm in plagioclase. Early trials included the auto-205

matic z-axis drift equal to the milling depth and used a fiducial mark outside the milling area206

for consistent E-beam alignment. However, because this instrument has a constant E-beam207

drift that is not accounted by the software, it was found to be much more efficient to use the208

carbon slab as a fiducial mark that remains inside the milling area. This approach reduced209

the need for additional automated focusing steps after each slice. The high contrast between210

platinum and carbon, reduces the risk of losing the fiducial mark as the project runs, and in-211

creases the success rate of the automated procedure.212

2.3 Image and object filtering213

The raster images of the milled front faces are provided in Tagged Image File Format214

(TIF) and were stacked in Fiji (ImageJ) and aligned with the stack alignment plugin [Tseng215

et al., 2011], using the cross-section of the three central carbon trenches as reference pattern.216

Using their high electron reflectivity and thus brightness, magnetite particles were extracted217

by gray scale thresholding and exported as binary images.Based on backscatter intensity and218

cross-referenced with the EDS analyses anything that we could not confirm as magnetite219

was segmented out. In the case of complex structures and overlapping threshold values, each220

slice was manually "cleaned" by going through the binary and image stack (side by side), re-221

moving any artifacts, or segmented threshold values that were not magnetite. For the pyrox-222

ene stack, the thresholding was particularly difficult because the bottom sections of each im-223

age had lower overall backscatter intensity than the upper parts. This image stack had to be224

treated with a non-local means filter, and was segmented using the Dragonfly software from225

ORS. After the binary segmentation, the stack was passed through 3x3x3 pixel 3D-mean and226

Gaussian-blur filters to smooth over the pixel boundaries, and to reduce sharp edges in ob-227

jects at the boundary of the originally cropped volume. Areas with objects in close proximity228

to each other were manually edited to prevent bridging artifacts when converted to a finite el-229

ement surface mesh. We excluded incomplete particles at the edge of the milled volume, and230

particles that are too small to be confidently distinguished from background and noise.231

2.4 Mesh generation232

The stack generated in Fiji was imported to Paraview [Ahrens et al., 2005], then resized233

based on pixel length, width and slice thickness to regenerate the actual size of the milled234

volume. A surface mesh of the magnetic particles was generated using a contour filter based235

on the magnetite brightness threshold. The resulting initial mesh was exported as a stere-236

olithography (STL) file. Both, Meshmixer [Schmidt and Singh, 2010] and Meshlab [Cignoni237

et al., 2008] were then used to improve the meshes. The quality of each object was evaluated238

individually. An object was discarded if it did not intersect at least two slices. This imposes a239

lower-size limit of approximately 30 nm for particles to be modeled in 3D using this method.240

For geological time-scales, this corresponds approximately to the superparamagnetic tran-241

sition size for magnetite. The geometric mesh quality for each object was checked, and any242

holes filled to generate a closed mesh surface. Surface mesh node-density was reduced to243

generate a more smoothed surface that minimizes the appearance of artificial steps reflecting244

the finite distance between the measured slices. After eliminating the voxel steps between the245

slices, mesh node-density was again increased to generate a now smoothed mesh with a tar-246

get edge length ≤ 8.9 nm, the exchange length of magnetite. Target edge length, mesh quality247

and volume were checked in meshlab. If the mesh still contained artificial sharp edges due to248

the object’s small size, it was remeshed and smoothed in Meshmixer to fit the original size.249

Iso2mesh and a Matlab script [Fang and Boas, 2009] were used to generated tetrahedral vol-250

ume meshes from the surface meshes. Also here a target edge length ≤ 8.9 nm was used. To251

keep the node density similar for each object, the edge length was reduced for smaller ob-252
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jects. The output file was converted to a Patran file using Git Bash (Windows computer) to253

call a shell script (Convert2Pat) [Ó Conbhuí et al., 2018]. The Patran file is then called by254

a script to be used by MERRILL for computing the magnetization structures. Aspect ratios255

of the final meshes were computed from the STL files based on the volume inertia tensor, by256

computing its eigenvalues and eigensystem by a Python routine. To ensure correct calcula-257

tions, the proportional relationship between the eigenvalues was tested by comparing it to the258

measured short and long axis of the same particles in Meshlab.259

2.5 Micromagnetic modelling260

Micromagnetic modeling uses the Micromagnetic Earth Related Rapid Interpreted261

Language Laboratory (MERRILL), a micromagnetics package optimized for rock magnetism262

[Ó Conbhuí et al., 2018; Fabian and Shcherbakov, 2018]. MERRILL applies finite ele-263

ment tetrahedral meshes to calculate local micromagnetic energies, and a boundary element264

method to calculate the demagnetizing energy and its gradient [Ó Conbhuí et al., 2018]. For265

each particle in our study, first an initial remanent domain state was obtained by minimizing266

the total micromagnetic energy starting from a state of fully randomised spins. Next, for each267

particle the upper branches of 20 hysteresis loops between the maximal fields of 350 mT and268

-350 mT was calculated in 5 mT steps. Each of these hysteresis loops was calculated for one269

of 20 directions chosen from a Fibonacci sphere to achieve an approximately homogenous270

axis distribution. Backfield remanence curves from 0 to -200 mT in 5 mT steps were calcu-271

lated for the same 20 field orientations starting from a positive saturation remanence state.272

While it is possible to run multiple MERRILL operations simultaneously, with the computer273

power available (Linux server with 20 cores and 128 GB memory) it was still necessary to274

limit the input file size because of the exponentially increasing time used for minimization.275

For file sizes < 20 MB an average hysteresis run took 15 min, and an average backfield curve276

required 35 min. It was possible to complete one hysteresis loop for 250 particles in two field277

directions within 24 hours. The total dataset presented in this paper equals to approximately278

8000 hysteresis loops and 8000 backfield curves. The numerical average of the hysteresis279

loops and backfield curves over the 20 field directions for each mesh geometry approximately280

represents a random spherical ensemble of equal particles. Values of Mrs , Hc and Hcr were281

extracted from the average curves. Visual presentation of the magnetization structures of in-282

dividual models was obtained using the open-source software ParaView (www.paraview.org)283

[Ayachit, 2015].284

3 Results285

3.1 Plagioclase286

One cube measuring 12.77 µm × 14.50 µm × 12.77 µm (L×W×H) was extracted from287

plagioclase (PLAG (1) Figure 1 and Figure 2). This volume was reconstructed from 421288

slices, each with a thickness of 30 nm. We extracted a total of 162 particles of magnetite289

and were able to run hysteresis loops for 140 of these. In this volume of plagioclase the mag-290

netite forms two different patterns differentiated by shape and size. The first and most notice-291

able are magnetite "rods" that are a few to several micrometers long and often extend beyond292

the milled volume. In Figure 2 we observe these rods oriented in two sets of parallel direc-293

tions. This observation suggests that these rods are crystallographically oriented, however,294

we would need to cross reference EBSD and magnetite long axis pole plots to confirm this.295

Cross sections show that these rods/needles either form flattened or prismatic shapes, with296

irregular gaps (red arrow in Figure 2) making most of these rods sequences of shorter pieces.297

The size and volume of these rods are too large to be run by MERRILL in a reasonable time298

(one smaller 6.6 µm × 0.2 µm magnetite rod was successfully minimized in zero-field from299

an initial state of randomised moments and shown in Appendix A.1). Figure A.1 show the300

general observation for magnetite rods that the magnetization aligns with the length of the301

rod and generates vortices at each end. The 140 smaller magnetite particles are a mix of302
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Figure 2. Magnetite inclusions in a 12.77 µm × 14.50 µm × 12.77 µm (L×W×H) volume of plagioclase,
observed as rods and smaller rather oblate particles. Red arrow highlights the irregular gaps in the magnetite
rods.

307

308

309

prolate, oblate and spherical particles with 0.71 median aspect ratio and 0.131 µm median303

equivalent sphere diameter (Figure 4). These are commonly associated with an unknown304

mineral with a lower backscatter intensity that was removed during electron reflectivity seg-305

mentation, as described in section 2.3 (Appendix A.2).306

3.2 Pyroxene310

The second volume is from pyroxene (PYR (2) in Figure 1) and measures 6.5 µm ×311

10.24 µm × 9.73 µm (L×W×H) (Figure 3). This volume is reconstructed from 647 slices312

with a slice thickness of 10 nm, which contained total of 282 magnetite particles of which313

hysteresis loops were calculated for 273. Magnetite in pyroxene forms elongated particles314

with a median 0.31 aspect ratio (Figure 4b) that are observed in three orientations. This315

silicate-oxide relationship is described by [Fleet et al., 1980; Frandsen et al., 2004; Renne316

et al., 2002]. For the small magnetite particles included in this pyroxene dataset the Ti con-317

tent is expected to be low. The largest object does show sections that contain higher Ti values318

and is excluded from this dataset. EDS overview maps for areas with small particles also319

contain trace amount (< 1 wt%) Ti, but there is no visible change in the backscatter inten-320

sity, nor any Ti peak in EDS spot analysis and we can therefor not confirm where the Ti is321

located. Due to the size of the smaller objects and the spot size of the SEM there is a possi-322

bility that the magnetite contain sections that are higher in Ti (ulvöspinel or ilmenite). TEM323

or Microprobe is needed to quantify the Ti content and confirm the mineral identification.324

Based on the cited papers above there is good confidence to identify these smaller inclusions325

as magnetite.326

Figure 4 and Appendix A.5 summarizes sizes (A) and aspect ratios (B) for the mod-329

elled particles in both plagioclase and pyroxene. The "equivalent sphere diameter" is calcu-330

lated from a sphere with equivalent particle volume. The aspect ratio was calculated using331

the ratio of min over max eigenvalues of the moment of inertia. The complete dataset pre-332

sented in Figure 4 is subdivided according to both the type of silicate host and the zero-field-333

minimized magnetic state (Figure 5 and Table 2). For SD particles we observe a median size334

difference between particles hosted by plagioclase (0.062 µm) versus pyroxene (0.107 µm).335

The plagioclase-hosted magnetite particles have a difference in shape, with median aspect336

ratios of 0.63 compared to 0.26 for pyroxene-hosted magnetite. The difference in shape is337
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Figure 3. Magnetite inclusions in a 6.5 µm × 10.24 µm × 9.73 µm (L×W×H) volume of pyroxene, ob-
served as mainly prolate shapes in three orientations.

327

328

also observed for SV particles, with median size and aspect ratio of 0.144 µm and 0.72,338

respectively, for plagioclase and 0.159 µm and 0.4, respectively, for pyroxene. The shape339

difference is not observed for MV particles, however, with median size and aspect ratio of340

0.247 µm and 0.24, respectively, for plagioclase and 0.214 µm and 0.26, respectively, for341

pyroxene. There are three particles characterized as having SW ("swirl") domain structure342

(Appendix A.3). This group refers to a distinct set of large grains with low aspect ratios (me-343

dian size of 0.370 µm, and aspect ratio of 0.2 that represents a particle 0.500 µm long and344

0.100 µm wide). These particles were observed only within pyroxene and, because of their345

large size we were only able to complete 20 hysteresis runs for these three particles. We were346

unable to complete backfield runs due to insufficient computer memory.347

3.3 Domain characterization351

Figure 5 shows the micromagnetic states of representative particles and how they were
categorized after minimizing their total magnetic energy from random initial moments. The
domain state estimations represent one of many possible local energy minima. The mini-
mization from random initial moments should ideally be repeated multiple times to catego-
rize the full range domain states, and potentially identify the global energy minimum state.
This is computationally expensive, but should be encouraged for future studies and as a part
of the FIB-nt method in general. Insets show the corresponding average hysteresis loop for
each particle. The arrows are color coded by their vertical (Mz) component where up = red
and blue = down. The vortex core is represented by contour surfaces (in green) enclosing
volumes with increased helicity of the magnetization field m defined by

hel m = m · (∇ ×m) .

352

Single domain (SD) particles have uniform magnetic moments aligned throughout the362

particle, although the spins may bend along the demagnetizing field lines at edges and cor-363

ners (flower state). The single vortex (SV) is a inhomogenous magnetization state with low-364

est total micromagnetic energy beyond the single domain limit [Hubert and Schäfer, 1998].365
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Figure 4. Box plots that show the relation of particle size (A) and aspect ratio (B), subdivided according to
the host silicate (plagioclase and pyroxene) and the modelled micromagnetic domain structure (single domain,
single vortex, multi vortex, swirl).

348

349

350

The net energy decrease is obtained by reducing the magnetic stray-field energy through flux366

closure at the expense of increasing exchange and anisotropy energy. Therefore this transi-367

tion can only occur when the decrease in demagnetizing energy overcompensates this in-368

crease. Visually, the single vortex core extends partially or fully through the particle. Rave369

et al. [1998a]; Hubert and Schäfer [1998] find that there is a transition from a simple vortex-370

state to a well-defined multi-domain state, where vortices are embedded features within the371

soft-magnetic Bloch walls. In this paper this transition is described as a multi vortex (MV)372

state from the zero-field minimization. The MV state is characterized by the presence of two373

or more well-defined vortex cores that create a continuously varying directional change in374

magnetization, as opposed to an abrupt angular change that would indicate a domain wall.375

Similar observations have been made in much larger (1.4 µm) pyramidal titanomagnetite376

particles [Khakhalova et al., 2018]. Particles with fully developed 90 ◦ domain wallswere377

in general too large for our server to minimize hysteresis and backfield curves in 20 field378

directions in MERRILL. Nagy et al. [2019] did model cuboctahedral magnetite from 0.03-379

2.7 µm equivalent sphere volume diameter and 0.03-1.5 µm magnetite spheres, studying the380

–10–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

Multi Vortex Singe Vortex Singe Domain

50 nm 50 nm 50 nm

50 nm50 nm50 nm

50 nm

50 nm

20 nm

20 nm

30 nm

10 nm

PYR-22 PYR-24 PYR-16

PYR-23 PYR-59 PYR-76

PLAG-46 PLAG-103 PLAG-48

PYR-107 PYR-215 PYR-266

Vol: 6.87x106 nm3 Vol: 7.78x106 nm3 Vol: 9.05x105 nm3

Vol: 9.68x105 nm3

Vol: 5.13x105 nm3 Vol: 1.27x105 nm3

Vol: 2.17x106 nm3Vol: 3.56x106 nm3Vol: 6.35x106 nm3

Vol: 3.27x106 nm3 Vol: 2.67x106 nm3

Vol: 2.27x106 nm3

Figure 5. Magnetic models that express the variability of magnetic signatures within each classification.
Insets show the simulated average hysteresis loop for each particle, with normalized moments and external
field from +350 to -350 mT. Arrow colors show the Mz component, red = up and blue = down. Green contour
(vortex core) represents areas of increased helicity of the magnetization field. Hysteresis, size and shape pa-
rameters for each individual particle are summarized in Table 1. Location of these twelve particles are marked
with bold text in the subsequent figures 7, 8, 9, 10 and 11.

353

354

355

356

357

358

evolution of domain structures in magnetite grains with different sizes. They observed the381

formation of primitive bloch-like 71◦ domain walls that separate uniform regions of magne-382

tization, similar to our observations in the three selected large particles in Appendix A.3. In383

these particles the magnetization pattern mainly consists of vortices or swirls that represent384

seeds of Bloch walls, but due to size constraints, cannot develop into conventional domain385

walls as they occur in well-developed multi-domain patterns [Fabian et al., 1996; Hubert386

and Schäfer, 1998]. Domain walls widths expected for MD magnetite are observed only in387

much larger particles (∼ 3 µm) and the SV structures are present until at least ∼ 1 µm [Nagy388

et al., 2019]. Due to the lack of a distinctive terminology, the intermediate sized magnetite389

structures are defined as "swirl" (SW) within this paper.390
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Table 1. Hysteresis(f=femto), diameter (equivalent sphere diameter) and aspect ratio parameters of the
average hysteresis loops for the individual particles inset in Figure 5 and highlighted with bold text in Fig-
ure 7, 8, 9, 10 and 11.

359

360

361

Particle Ms (fAm2) Mrs (fAm2) Hc (mT) Hcr (mT) Diameter (µm) Aspect ratio

PYR-16 0.43 0.223 92.7 115.3 0.120 0.19
PYR-22 3.30 0.281 3.35 20.6 0.236 0.21
PYR-23 3.05 0.157 32.4 41.8 0.230 0.16
PYR-24 3.74 0.326 8.8 44.4 0.246 0.34
PYR-59 1.71 0.789 18.9 32.7 0.189 0.28
PYR-76 1.04 0.519 76.7 94.3 0.161 0.13
PYR-107 1.09 0.114 9.53 26.6 0.163 0.44
PYR-215 0.246 0.120 15.3 29.0 0.099 0.47
PYR-266 0.061 0.028 26.7 42.8 0.062 0.69
PLAG-46 1.57 0.628 16.9 29.8 0.184 0.29
PLAG-48 1.28 0.644 23.7 34.6 0.172 0.31
PLAG-103 0.465 0.404 9.8 48.2 0.123 0.73

Table 2. Particles categorization of domain state that are hosted by their respective silicate.400

Silicate SD (green) SV (red) MV (blue) SW (purple) total

Plagioclase 29 108 3 0 140
Pyroxene 159 97 14 3 273

3.4 Hysteresis loops391

Hysteresis results for all simulated inclusions, from both plagioclase (circles) and py-392

roxenes (triangles), are summarised in Figure 6, Figure 7 (Day plot), Figure 9 (Néel plot),393

Figure 11 (Butler-Banerjee plot) and Appendix A.5. Each point represents the average hys-394

teresis data acquired from 20 different field directions and is colour coded according to the395

remanent domain state observed at zero field following energy minimisation from a random396

starting configuration (purple = SD, yellow = SV and turquoise = MV). Each symbol size is397

scaled according to particle size, defined as the diameter of a sphere with equivalent volume.398

The total number of particles adopting each remanent state is represented in Table 2.399

The two red markers (one for each silicate) in Figures 7 and 9 represent the average401

hysteresis properties for all of the modelled particles. Assuming the two volumes studied402

provide a representative sample of the silicate-hosted component of magnetic mineralogy,403

these two points provide an estimate of the hysteresis properties that would be obtained if404

we measured the bulk properties of plagioclase and pyroxene extracts experimentally. These405

’bulk’ hysteresis properties would normally be the only two points available to perform do-406

main state diagnosis. However, when deconstructed to individual particles, we observe the407

data for both volumes extends across the entire range of the common diagnostic diagrams408

and all regions designated to specific domain states. The location of these bulk average points409

also suggest the domain states are unevenly distributed between the silicates. The bulk av-410

erage for pyroxene is dominated by SD particles and for plagioclase is dominated by SV411

particles (Table 2). Figure 6 shows the distribution of particles between the domain states,412

host silicate and Mrs/Ms ranges. For SD there is a distinct separation, with tight clusters of413

Mrs/Ms ranges with pyroxene hosted particles at 0.5 and plagioclase hosted particles at 0.7.414

For SV particles there are Mrs/Ms values where particles form clusters. Within plagioclase415

SV particles cluster at Mrs/Ms values ≈ 6.1×10−2, but there are a few points that extend the416

range up to Mrs/Ms = 0.7. SV particles in pyroxene show a bimodal distribution (red boxes)417
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with clusters at Mrs/Ms values > 0.3 and < 0.3. MV particles show a similar tendency to418

form two separate clusters at Mrs/Ms values ≈ 0.1 and 0.4. This is most evident for particles419

hosted by pyroxene, but with only three particlesextracted from the plagioclase is an insuffi-420

cient sample size to indicate anything about specific Mrs/Ms ranges. What we have for now421

indicates that these particles cover the same Mrs/Ms ranges as MV magnetite in pyroxene.422

Three SW particles hosted by pyroxene did successfully complete minimizationof the hys-423

teresis loop. The spread in Mrs/Ms is from 0.12 to 3.44×10−4.424

Mr / Ms

M
r /

 M
s

Figure 6. Box plots for the statistics of individual magnetite Mrs/Ms in plagioclase, pyroxene and com-
bined total for the different modelled domain structures.

425

426

3.5 Day plot427

In Figure 7 the SD particles plot in the expected region at Mrs/Ms ≈ 0.5. SV particles428

span the whole range from SD to MD. MV particles tend to plot towards the upper left with429

Mrs/Ms values > 6.0×10−2 and Hcr/Hc < 7. The spread of points shows little regard for the430

particle size, highlighted by Figure 8, where particles with varying sizes and domain states431

coexist and even overlap. This observation is also evident throughout Figure 7. At Mrs/Ms432

values ≈ 0.5 the cluster of prolate particles is mainly hosted by pyroxene. SD particles hosted433

by plagioclase form a cluster at Mrs/Ms values ≈ 0.7.434

3.6 Néel plot439

In a Néel plot (Figure 9) we observe a dominating SD "central ridge" that extends from440

10 mT < Hc < 120 mT. The SD particles mainly hosted by pyroxene at Mrs/Ms ≈ 0.5 align441

with the uniaxial SD (USD) theoretical line. Axis ratios show the majority of these parti-442

cles are prolate in shape (Appendix A.4), and correspond to the median aspect ratio cluster443

of 0.26 (Figure 4b). The feldspar-hosted SD particles (higher median aspect ratio of 0.62 in444

Figure 4b) form a cluster at Mrs/Ms values ≈ 0.7 and 10 mT < Hc < 30 mT. These particles445

are oblate spheroids and the increase in Hc for these particles represents a general increase in446

particle oblateness/flatness (Figure 9A). The low-coercivity (< 10mT) region is dominated447

by SV and MV particles. With decreasing coercivities below 10 mT, there is also a decrease448

in Mrs/Ms . Particles with Mrs/Ms values < 0.3 form a distinct cluster that is dominated by449

SV states (Figure 10). This cluster has a well-defined trend for particles from both plagio-450

lase and pyroxene. While pyroxene-hosted particles are equally sized and evenly distributed451

in Figure 10, there is a decrease in particle size in plagioclase above Hc ≈ 9 mT. Particles452

below 9 mT and Mrs/Ms = 0.07 align with the theoretical "USD + SP". Those above 9 mT453
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Figure 7. Day plot with theoretical mixing curves of Dunlop [2002] and Parry [1982]. Regions for SD,
PSD and MD from Dunlop [2002]. Bold text indicates the positions of particles from Figure 5 and Table 1.
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demonstrate an increased upwards slope that follows the USD theoretical lines from Tauxe454

et al. [2002].455
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Figure 9. Néel plot with the location of particles from Figure 5 in bold and Table 1. Theoretical lines of
USD, USD+SP and CSD from Tauxe et al. [2002]. Inset (A) shows the increasing oblateness for the SD
particles at Mrs/Ms = 0.7 with increasing Hc .
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457

458

3.7 Butler-Banerjee plot461

The Butler-Banerjee plot in Figure 11 delineates a two-dimensional size-shape range462

for SD particles of magnetite and titanomagnetite [Butler and Banerjee, 1975]. Contrary to463

the Day and Néel plots, which interpret domain state from hysteresis parameters, the Butler-464

Banerjee plot predicts domain states based on the length of a particle’s long axis compared465

to its axis ratio. One is therefore able to characterize a particle’s domain state purely based466

on shape and size. The theoretical boundaries in the background were calculated either by a467

domain model [Butler and Banerjee, 1975] (dashed line) or by 3D micromagnetic modeling468

[Muxworthy and Williams, 2008] (solid lines). In Butler and Banerjee [1975] the particles469

have cuboidal shapes with 180◦ domain walls, while in Muxworthy and Williams [2008] the470

magnetic particles are SD or SV parallelepipeds arranged in chains to assess magnetostatic471

stabilization in chains of magnetosomes from magnetotactic bacteria. Our dataset defines472

a clear transition between SD and SV states that is in good agreement with the ’no interac-473

tion’ boundary identified by Muxworthy and Williams [2008] for isolated parallelepipeds.474

Our data in Figure 11 clearly reflect the influence of the silicate host mineral on the inclu-475

sion shape and subsequently its magnetic properties. While plagioclase-hosted magnetites476

(circles) plot predominantly at aspect ratios (AR) above 0.6, pyroxene-hosted magnetites (tri-477

angles) have AR less than 0.6. Particles that are able to adopt MV remanence states typically478

plot in the region with AR < 0.4 and long axis > 0.300 µm. The phase boundary between479

SD and SV/MV states in this region deviates from that of Muxworthy and Williams [2008],480

most likely reflecting the difference between the real particle geometries used here versus the481

ideal parallelepipeds used by Muxworthy and Williams [2008]. Figure 11 demonstrates that482
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Figure 10. Expanded area of Mrs/Ms < 0.25 and Hc < 14mT from Figure 9. Bold text indicates particles
from Figure 5, Table 1 and the bulk average for plagioclase. Particle PYR-07 is displayed in Appendix A.3.

459

460

MV and SW particles start to dominate over SV states with decreasing AR and increasing483

long axis length.484

4 Discussion489

As micromagnetics takes us beyond the SD theories that have been the foundation of490

rock magnetism since the pioneering work of Néel, the ability to obtain an accurate break-491

down of the different classes of magnetic behaviour that exist within a sample becomes in-492

creasingly important. One of the most striking results of this study is the shear range of mag-493

netic domain states and hysteresis properties that are observed within just two small ∼ 10µm3
494

volumes of silicate. The observed behaviour spans the entire range of popular domain-state495

diagnostic plots (Figures 7, 9 and 11). In contrast, bulk hysteresis measurements reduce this496

complexity to a single average data point (e.g. the red points in Figures 7, 9), discarding497

valuable information about the true nature of the underlying magnetic ensemble. Classify-498

ing a bulk sample as either ’SD’, ’PSD’, or ’MD’ on the basis of the Day diagram is clearly499

meaningless when particles in the SV state plot across the entire ’SD/PSD/MD’ range, and500

the largest MV particles plot much closer to the SD region than the MD region (Figure 7).501

Of the three diagnostic plots explored here, the most successful is the Butler-Banerjee plot502

(Figure 11). This diagram works well because it recognises the fundamental importance of503

particle size and shape as the dominant factors controlling the domain state of magnetite.504

However, our results also demonstrate that size and shape alone are often poor predictors505

of magnetic hysteresis properties. Generalised geometric information, such as equivalent506

spherical volume, is not sufficient to predict the magnetic properties – the specifics of indi-507

vidual particle geometries really do matter. Although time consuming and computationally508

intensive, the FIB-nt-FEM workflow presented here provides a route to rock magnetic char-509

acterisation that not only yields a quantitative breakdown of the domain states present, but510

a realistic estimate of the range of magnetic properties associated with the particle ensem-511

ble. As the database of magnetic properties linked to specific particle geometries expands,512

it will eventually become possible to use look-up tables and/or machine-learning approaches513

to translate 3D particle geometries into useful magnetic parameters (including, for example,514
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ticl (e.g. cube or sphere). Bold text indicates the position of particles visible in Figure 5 and Table 1, except
for particle PYR-07 which is displayed in Appendix A.3.

485

486

487

488

energy barriers for thermal switching) without the need to perform additional micromagnetic515

simulations. With increased automation, the experimental methods outlined here could in-516

deed become a routine feature of future rock magnetic characterisation workflows.517

The Néel plot (Figure 9) shows a distinct "central ridge" of SD particles along the USD518

line at Mrs/Ms ≈ 0.5. Tauxe et al. [2002] argue that the Hc increase for SD particles is pro-519

portional to an increase in the length to width (L/W) ratio. Figure 4a in Tauxe et al. [2002]520

shows that the increase from Hc = 30 mT to 70 mT for USD particles is caused by an in-521

crease in L/W from 1.3:1 to 2:1 While we do observe that particles with Hc >100 mT have522

high L/W ratio (> 10 : 1), for coercivities < 100 mT we do not find a clear correlation be-523

tween coercivity and aspect ratio, which may be due to the large spread of USD particle sizes524

(0.022-0.253 µm). Our data imply that the size of a USD particle is at least as important as525

its aspect ratio in determining the switching field, highlighting again the need for detailed526

geometrical information to produce an accurate prediction of the magnetic properties of an527

ensemble. Another interesting modeling result is that the characteristic coercivity range for528

SD magnetite particles predominantly covers the range 10 mT< Hc <100 mT, which is in529

line with experimental results [Church et al., 2016]. Without external stress, higher Hc val-530

ues appear to require very unusual particle geometry, while SD structures with Hc < 10 mT531

can occur only in a very narrow grain size and shape region.532

A cluster of feldspar-hosted SD particles with Mrs/Ms values of 0.7 (Figure 9 and 8)533

falls in between the theoretical values for cubic SD (Mrs/Ms = 0.83-0.87) [Joffe and Heuberger,534

1974; Tauxe et al., 2002] and uniaxial SD (Mrs/Ms = 0.5). This remanence ratio is similar to535

the value of Mrs/Ms = 0.75 calculated by Harrison et al. [2019] for particles with a combi-536

nation of uniaxial anisotropy (restricting moments to a basal plane) and hexagonal anisotropy537

(defining multiple easy axes within that basal plane). This cluster contains mainly oblate par-538

ticles (Appendix A.4), and therefore the intermediate value of Mrs/Ms is entirely consistent539
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Table 3. Individual particles with different magnetization structure that are all within the designated SD
area of the Day plot

544

545

Object Mrs/Ms Hc (mT) Hcr (mT) Aspect Ratio Sphere Diameter (µm)

PYR-137 SD 0.516 34.2178 46.4489 0.31 0.142
PLAG-146 SD 0.500 42.2442 50.9584 0.41 0.062
PYR-197 SV 0.519 19.1958 27.875 0.49 0.111
PLAG-135 SV 0.709 19.3504 25.7931 0.71 0.078
PYR-23 MV 0.516 32.3692 41.8226 0.16 0.229
PYR-21 MV 0.490 16.2453 22.2288 0.18 0.249

with these particles having a mixed uniaxial/multi-axial anisotropy. A positive correlation540

between coercivity and oblateness is observed (inset to Figure 9). This improved correla-541

tion may be a result of the smaller size variations within this oblate cluster (0.023-0.090 µm)542

compared to that of the pyroxene-hosted USD prolate cluster.543

The SV domain state is observed across a wide range of particle sizes and shapes, and546

produces correspondingly large ranges of Hc (0-88 mT), Mrs/Ms (0-0.7) (Figure 9) and547

Hcr/Hc (1.5-107) (Figure 7). The SV particles in Figure 6 belong to different shape clus-548

ters, where PLAG contains more oblate and PYR more prolate particles with respect to the549

shape classification in Appendix A.4. For a constant demagnetizing factor (N), one would550

expect a linear increase of Mrs/Ms with Hc with slope inversely proportional to N (Figure551

4.5 in Stacey and Banerjee [1974] and Figure 5.16 in Dunlop and Özdemir [1997]). The in-552

creased slope of the Mrs/Ms vs Hc plot for Hc > 9 mT (Figure 10) indicates, therefore, a553

smaller average demagnetizing factor for the smaller particlescompared to the larger particles554

with Hc < 9 mT (Appendix A.6).555

Another key result of this study is the observation of SV and MV particles that display556

hysteresis properties similar to those expected for much smaller SD particles (Table 3). The557

MV state is stable in large grains (median 0.225 µm) with low aspect ratios < 0.5 (Figure 4a558

and b). Despite their larger sizes, these particles plot more towards the upper left of a Day559

diagram (SD and PSD regions), rather than towards the MD region. Large, slightly flattened560

needle (a >> b > c) particles with low aspect ratio readily adopt MV states during zero-field561

relaxation from a random starting configuration (e.g. PYR-23 in Figure 5), but are forced562

into a uniformly magnetised remanence state after exposure to a saturating field. This pro-563

duces an apparent disconnect between the domain-state classification used in this study and564

the observed hysteresis properties. This disconnect becomes significant if, as intended, the565

zero-field relaxation state is more representative of a weak-field thermoremanent magnetisa-566

tion (TRM) state than the corresponding saturation remanence state. Such disconnects have567

been observed in dusty olivine by Lappe et al. [2013], where stable SV states were observed568

after acquisition of weak-field TRM but were converted to metastable SD states after appli-569

cation of a room-temperature saturating field. Our study raises the question of whether high-570

field hysteresis measurements are always a useful means to classify the potential weak-field571

remanence states adopted by a given particle geometry, especially for SV and MV states,572

which may well be the dominant carriers of remanent moment. Such ambiguities are avoided573

using the FIB-nt-FEM approach, ensuring that an appropriate combination of physical mod-574

els is always used for a given ensemble. A full theory of the remanence state adopted by such575

particles requires us to calculate the multitude of energy barriers between all possible rema-576

nent states. Although this is an active area of research, it is outside the scope of the current577

study. As discussed above, the state adopted will be highly dependent on the external field578

history. By introducing the energy barrier calculations, we would expect to see a better sep-579

aration line between the remanence states of all the particles, resulting in adjustments to the580

theoretical lines in Figure 11 from Butler and Banerjee [1975]; Muxworthy and Williams581

[2008].582
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The blue particles seen in Figure 9, 10 and 11 are large (0.370 µm median equivalent583

sphere diameter) oblate to prolate shapes (Figure 4a, b and Appendix A.4) which show a ten-584

dency to form domain walls when minimized in zero-field (Appendix A.3). The backfield585

curves were not able to be calculated on a reasonable timescale, and therefor are not plotted586

on a Day diagram (Figure 7). On a Néel diagram (Figure 9), two SW particles plot close to587

the origin, as would be expected for MD behaviour. One, however, displays similar proper-588

ties to MV particles, suggesting that they share many characteristics, and that the transition589

from MV to SW to MD is likely gradual onefor particles with this shape.590

In Figure 7 the theoretical Day plot SD-MD and SD-SP mixing lines show the mod-591

ified calculated binary curves Dunlop [2002] and the SD-MD mixing curve derived from592

natural magnetite mixtures in Parry [1982]. Because effects like thermal variations, stress,593

interactions, impurities or inclusions are not included in the models of this study, the hystere-594

sis properties of our modelled particles represent ideal magnetite crystals. When the entire595

data set is compared to theoretical mixing lines, the closest agreement occurs for the SD-MD596

mixing line from Parry [1982], that represents a grain-size trend of measured mixtures of597

SD and MD particles. The samples used by Parry [1982] were generated by crushing natu-598

ral MD magnetite and sieving for various grain sizes. Because crushing introduces internal599

stress anisotropy that may be larger than the magnetocrystalline anisotropy, the correlation600

with our dataset appears to be spurious, but based on the fact that our data consistently lie601

above the binary mixing lines from Day et al. [1977]; Dunlop [2002].602

It is unavoidable that the magnetic models presented here contain several uncertainties603

related to reconstruction artifacts, model assumptions, and unknown physical influence fac-604

tors. Shape uncertainty is directly connected to the extraction of selected mineralogy from605

the binary stack and the accuracy of the resulting finite-element meshes. The alignment of606

fiducial marks in the image stack to reconstruct the volume contributes to the shape uncer-607

tainty. The carbon rods are deposited from carbon gas reacting with the ion beam. As ob-608

served in the reassembled stack, there are irregular shifts in image placement that also im-609

pact the reconstructed shape, especially of the smallest particles. Evidence for this is seen in610

the meshes as irregular pinching in elongated particles, where images are shifted. Thresh-611

olding in FIJI is another uncertainty in reconstructing the true shape of particles. With the612

variation in size, the extraction of the smaller particles will become suppressed when se-613

lecting the threshold based on the median size. A simple calculation of the volume change614

when increasing the particle volume by adding a pixel in each direction leads to an estimate615

of up to 10-25% for the larger particles and 50-130% for the smaller particles (based on an616

increase in the representing sphere diameter of 7 nm pixel width). The true change in vol-617

ume is dependent on more complicated measures such as the particle orientation and the618

milling thickness. We were also concerned that variable amount of mesh smoothing would619

possibly change the hysteresis parameters and therefore the domain state. To test this we cal-620

culated average hysteresis properties for 3 particles of different sizes at 3 different stages of621

smoothness. First stage is where the particle shape is strongly voxelated (directly from the bi-622

nary image), second is at intermediate smoothing and the last where all sides are completely623

rounded (axis ratio is preserved in all stages). From the resulting hysteresis properties we624

did not observe any significant changes beyond the deviation expected for models starting625

with randomized moments. This is in agreement with a study by Rave et al. [1998b] that at626

resolutions below the exchange length, particle surface discretization does not influence mi-627

cromagnetic model results. Model assumptions that contribute to the overall uncertainty are628

the material parameters for magnetite that in the natural minerals can vary for example due629

to impurities. Physical unknowns are lattice orientations, related to the direction of the easy630

anisotropy axes, or internal stress [Hodych, 1990; ter Maat et al., 2020].631

This study presents a workflow for extracting the 3D geometry of a nanoscale mag-632

netic particle ensemble and calculating its micromagnetic properties. To date it is the most633

comprehensive micromagnetic data set of natural remanence carriers, and acts as a proof-of-634

concept study for obtaining statistical data on the magnetic domain state and hysteresis prop-635
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erties of silicate-hosted magnetic inclusions. This work is of particular relevence to single-636

crystal paleomagnetic studies, which offer the best possibility of extracting reliable primary637

paleomagnetic remanence data from ancient rocks with complex geological histories. The638

key challenge in such studies is targeting primary remanence carriers that are most likely to639

have escaped thermal, chemical or viscous remagnetization. In the case of the Harcus in-640

trusion, stable remanence carriers hosted in primary feldspar and pyroxene grains could be641

targeted directly, avoiding both remanence carriers hosted by secondary amphibole as well642

as interstitial MD magnetite that could carry a viscous overprint. The combination of FIB-643

nt and micromagnetic simulations provides a full statistical breakdown of the domain states644

present in a representative single crystal. Further studies will enable the range of local en-645

ergy minimum states adopted by the SD, SV, MV, SW and MD states, as well as the energy646

barriers that separate them, to be calculated, and the corresponding blocking/unblocking be-647

haviour during natural and laboratory cooling/heating cycles to be modelled. With that we648

would be one step closer to a comprehensive model of remanence acquisition that takes us649

beyond Néel’s SD theory. Ultimately this will increase both the reliability of single-crystal650

paleomagnetic studies and our confidence to interpret them, paving the way to unlocking651

hitherto inaccessible parts of the geomagnetic record.652

5 Conclusions653

1. FIB-nt protocols have been developed for 3D imaging of silicate-hosted magnetite654

inclusions down to the stable SD limit of 30 nm.655

2. Silicate-hosted magnetite inclusions in plagioclase and pyroxene span a wide range656

of domain state behaviours, including SD, SV, MV, SW and MD.657

3. In plagioclase, a dominant cluster of oblate SD particles is found with mixed uniaxial/multi-658

axial anisotropy and Mrs/Ms = 0.7. In pyroxene, SD particles are predominantly prolate659

with uniaxial anisotropy and Mrs/Ms = 0.5.660

4. The range of hysteresis properties observed in just two ∼ 650− 2300µm3 volumes of661

pyroxene and plagioclase, span almost the entire range of common domain-state diagnostic662

plots. This indicates that bulk average hysteresis parameters cannot predict a unique domain663

state, even for the particle ensemble inside a single exsolved silicate crystal.664

5. Because shape and size equally determine the hysteresis properties of natural mag-665

netite inclusions, the Butler-Banerjee plot performs best in terms of domain-state diagnosis,666

despite failing to account for MV states.667

6. The morphology of the magnetite inclusions highlights the need to extend Néel’s668

SD theory in the context of single-crystal paleomagnetism towards SV and MV magnetiza-669

tion states, as these may be dominant carriers of stable paleomagnetic remanence in silicates.670
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Figure A.2. Image of slice 227 in plagioclase showing mainly magnetite associated with an unknown
mineral that often occurs at an edge or coated around the magnetite.
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Figure A.5. Histograms showing the particle distribution of Mr/Mrs , Aspect ratio and Equivalent sphere
diameter.
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