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Summary 

The different clinical syndromes caused by frontotemporal lobar degeneration (FTLD) have 

highly heterogenous and overlapping features which complicate clinical and research practice. 

Behavioural impairments are associated with all FTLD syndromes, cause high morbidity and 

lack proven symptomatic treatments. Treatments for cognitive and behavioural impairment in 

other neurodegenerative diseases include restoration of neurotransmitter deficits. Deficits in the 

neurotransmitters glutamate and GABA occur in FTLD syndromes and are associated with 

behavioural disinhibition in other diseases. I propose that these neurotransmitter deficits 

contribute to behavioural change in FTLD syndromes. This thesis has two main aims. First, to 

develop a transdiagnostic approach to FTLD syndromes to facilitate a better understanding of 

aetiology, pathophysiology and in due course their symptomatic treatment. Second, to use this 

approach to test the hypothesis that glutamate and GABA deficits are associated with 

behavioural disinhibition in FTLD syndromes.  

 

In a cross-sectional epidemiological study, I examined 310 of 365 regional patients with a 

FTLD-associated syndrome, including behavioural variant frontotemporal dementia, the non-

fluent and semantic variants of primary progressive aphasia, progressive supranuclear palsy and 

corticobasal syndrome. Multivariate analyses of clinical features and brain morphometry 

identified components that showed considerable overlap across the diagnostic groups. The 

transdiagnostic components of clinical features predicted neuropathology better than the current 

FTLD diagnostic labels. Behavioural disturbance, including disinhibition, was associated with 

reduced functionally independent survival, irrespective of diagnosis. Next, I investigated the 

role of glutamate and GABA in behavioural disinhibition. Ultrahigh-field magnetic resonance 

spectroscopy was used to measure glutamate and GABA in the frontal cortex of 44 patients 

with a FTLD syndrome and 20 healthy controls. Bayesian modelling of a response inhibition 

task was used to quantify behavioural disinhibition.  Both neurotransmitters were reduced in 

the frontal cortex, but not occipital cortex, of patients compared to controls. Glutamate and 

GABA concentrations in the frontal cortex were inversely associated with behavioural 

disinhibition.  

 

In summary, the transdiagnostic approach provided new insights into the phenotypic 

heterogeneity in FTLD syndromes. Behavioural disinhibition, which can occur to a variable 

degree in all FTLD syndromes, was associated with reduced functionally independent survival. 

GABA and glutamate deficits in the frontal cortex are associated with behavioural disinhibition 

and are a potential target for future treatments. 
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Introduction 

 

Preface 

Part of this discussion is included in a review article I wrote with Professor Rowe (Murley and 

Rowe, 2018). 
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Neurodegenerative diseases are a major worldwide cause of morbidity and mortality. They are 

the commonest cause of dementia, a condition of progressive multidomain cognitive 

impairment that affects an individual’s ability to perform everyday activities (McKhann et al., 

2011; Erkkinen et al., 2018). The global burden of neurodegenerative diseases is worsening, 

due to increased life expectancy and more effective treatment of other age-related conditions 

such as ischaemic heart disease and cancer (Salthouse, 2004; Feigin et al., 2019). The global 

number of people living with dementia doubled between 1990 to 2016 and it is projected that 

over 100 million people will be living with dementia by 2050 (Nichols et al., 2019). The 

financial cost of caring for people with neurodegenerative diseases is estimated at over one 

trillion dollars (Wimo et al., 2017) and this does not reflect the even greater personal cost of 

these diseases to the affected individual and their family (Winblad et al., 2016). Currently, there 

are no effective disease modifying treatments for any neurodegenerative disease, although there 

are encouraging early stage results of some therapies (Sevigny et al., 2016; Boxer et al., 2019; 

Panza et al., 2019). These treatments, even if effective in large randomised trials, may only 

slow disease progression and would then need to be combined with effective symptomatic 

treatments to reduce overall disease burden (Winblad et al., 2016).  

 

In this thesis, I focus on the syndromes associated with frontotemporal lobar degeneration 

(FTLD). These diseases can present at any time in adulthood and are the third most common 

neurodegenerative cause of dementia after Alzheimer’s disease and Dementia with Lewy 

bodies (Harvey et al., 2003; Van Der Flier and Scheltens, 2005; Cairns et al., 2007). The 

severity and complexity of the rapidly progressive and life limiting cognitive, behavioural and 

motor symptoms associated with FTLD result in a high disease burden. The overarching aim 

of my PhD was to help progress towards better symptomatic treatments by improving our 

understanding of the neurobiology of behavioural impairments in FTLD syndromes. 

 

Introduction to frontotemporal lobar degeneration and associated 

clinical syndromes 

The rapidly evolving field of research into FTLD and its clinical manifestations has resulted in 

confusing definitions and diagnostic labels. In this thesis, I use the current consensus nosology 

for the main clinical and pathological diagnoses. Frontotemporal lobar degeneration (FTLD) 

refers to the neuropathological diagnosis (MacKenzie et al., 2010). The phrase “frontotemporal 

lobar degeneration syndromes” refers to the clinical diagnoses of syndromes known to be 

associated with FTLD neuropathology: behavioural variant frontotemporal dementia (bvFTD), 
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the non-fluent (nfvPPA) and semantic (svPPA) variants of primary progressive aphasia, 

progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). Although logopenic 

aphasia (lvPPA) is a form of primary progressive aphasia, it is closely associated with 

Alzheimer pathology (Sajjadi et al., 2012).  

 

Neuropathology and genetics of frontotemporal lobar degeneration 

Frontotemporal lobar degeneration (FTLD) is a pathologically heterogenous neurodegenerative 

disease that causes a spectrum of cognitive, behaviour and motor features (Figure 1-1). 

Macroscopically, FTLD results in disproportionate atrophy of the frontal and/or temporal lobes 

(Cairns et al., 2007). Many cases also have atrophy of the basal ganglia, brainstem and other 

subcortical structures (Cairns et al., 2007; Garibotto et al., 2011). Microscopically, FTLD is 

characterised by neuronal loss, microvaculation and accumulation of misfolded protein 

inclusions in neurons and glial cells (Cairns et al., 2007). There are three major FTLD subtypes, 

which are classified by either tau (FTLD-tau), TDP-43 (FTLD-TDP43) or FET (FTLD-FET) 

protein accumulation (Mackenzie and Neumann, 2016; Neumann and Mackenzie, 2019). 

Rarely, a case of FTLD does not have the typical features of any of these three subtypes and 

these cases usually contain ubiquitin positive inclusions (FTLD-U) (Roeber et al., 2008). The 

mechanistic link between protein aggregation and neurodegeneration is still not fully 

understood, as there is incomplete overlap between the intracellular protein aggregates, 

neuronal degeneration and cell death (Ross and Poirier, 2005). This suggests that the visible 

aggregates of insoluble protein fibrils represent the final stage of a molecular cascade, earlier 

steps of which, possibly soluble oligomers, are pathogenic rather than the insoluble fibrils 

themselves (Ross and Poirier, 2004; Brunden et al., 2008; Lee et al., 2012). 

 

Most cases of FTLD occur sporadically and have an unclear aetiology that is likely to be a 

combination of genetic (Chen et al., 2015; Yokoyama et al., 2017; Raffaele et al., 2019) and 

environmental (Litvan et al., 2016; Park et al., 2018) risk factors. Other are caused by a highly 

penetrant, autosomal dominant, genetic mutation (Rademakers et al., 2012; Raffaele et al., 

2019). The prevalence of these familial cases depends on the population, clinical syndrome and 

FTLD subtype (Moore et al., 2019). For example, progressive supranuclear palsy is very rarely 

associated with genetic mutations, which are even an exclusion criteria in the most recent 

diagnostic criteria (Höglinger et al., 2017). Behavioural variant frontotemporal dementia is 

associated with an autosomal dominant monogenic mutation in up to 40% of cases (Bang et al., 

2015). However, disease age of onset and clinical phenotype varies even within families with 

a familial FTLD syndrome (Boeve et al., 2005; Tuite et al., 2005; Borroni et al., 2011; Foxe et 
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al., 2018; Moore et al., 2019), suggesting there are other genetic and environmental risk 

modifiers (Van Blitterswijk et al., 2014; Zhang et al., 2018). Next, I introduce the primary 

FTLD pathological subtypes, FTLD-tau, FTLD-TDP43 and FTLD-FET and summarise their 

molecular and genetic characteristics. 

 

FTLD-Tau 

In health, the tau protein is present in high concentrations in the axons of neurons and in low 

concentrations in astrocytes and oligodendrocytes (Yoshiyama et al., 2013; Irwin et al., 2015). 

Normal tau supports neuron structure and intercellular transport by binding and stabilising 

microtubules (Lee et al., 2011c; Yoshiyama et al., 2013). Tau occurs in six isoforms due to 

alternative splicing of the tau gene, MAPT (Goedert et al., 1989).  Inclusion or exclusion of one 

tau gene exons during transcription results in either three- (3R) or four-repeat (4R) tau, 

depending on the number of microtubular binding repeats in the tau protein (Hong et al., 1998). 

In the healthy brain there is an equal ratio of 3R and 4R tau (Hong et al., 1998).  

 

In neurodegenerative tauopathies there is accumulation of misfolded, hyperphosphorylated tau, 

which takes the form of insoluble fibrils in neurons and glia (Ballatore et al., 2007, Lee et al., 

2011c). The classification of different tauopathies is complex, depending on the presence or 

absence of other abnormal proteins, the morphological appearance and distribution of tau, and 

imbalance in the 3R:4R tau ratio (Josephs, 2017). For example, Alzheimer’s Disease (AD) is 

classed as a secondary tauopathy, as it is characterised by both intracellular neurofibrillary 

tangles containing equal ratios of 3R and 4R tau and extracellular deposits of amyloid-β 

peptides in plaques (Hyman et al., 2012; Irwin, 2016). Frontotemporal lobar degeneration is 

associated with several primary tauopathies which differ in the ratios of 3R and 4R tau. These 

primary tauopathies include progressive supranuclear palsy, corticobasal degeneration, 

globular glial tauopathy and Pick’s disease.  

 

Pick’s disease is a 3R-tau predominant tauopathy characterised by Pick’s bodies, round, tau-

positive intranuclear inclusions which are seen in neurons and glial cells in the frontotemporal 

neocortex, white matter and basal ganglia (Irwin, 2016; Irwin et al., 2016). Brains with Pick’s 

disease have swollen, ballooned neurons, with tau pathology spread through superficial and 

deep layers of the neocortex (Irwin et al., 2016). Historically, Pick’s disease referred to a 

clinical syndrome of progressive behavioural and language decline that was first described by 

Arnold Pick in 1892 (Pick, 1892). Alois Alzheimer then reported the associated microscopic 

features of Pick’s bodies and ballooned cells (Alzheimer, 1911). The label of Pick’s disease 
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now refers to this specific tau pathology that is only associated with a small proportion of cases 

with frontotemporal dementia (FTLD-tau-PiD) (Perry et al., 2017a). 

 

Progressive supranuclear palsy is a 4R-tau predominant tauopathy associated with tau 

inclusions in brainstem, subcortical and cortical neurons. There are also fibrillary tau inclusions 

in astrocytes and these “tufted astrocytes” are a characteristic feature of FTLD-tau-PSP 

(Dickson et al., 2007). The term PSP is also used to describe the typical clinical syndrome of a 

vertical gaze palsy, axial rigidity and falls associated with FTLD-tau-PSP, which was first 

described by Steele, Richardson and Olszewski in 1964 (Steele et al., 1964). However, FTLD-

tau-PSP pathology can present with other behaviour, speech and motor symptoms (Respondek 

and Hoglinger, 2016) so this “typical” presentation is now labelled PSP-Richardson’s syndrome 

(PSP-RS) (Litvan et al., 1996c; Höglinger et al., 2017). The macroscopic appearance of the 

brain with FTLD-tau-PSP depends on the clinical syndrome, but at post-mortem most patients 

have severe atrophy in the midbrain and pons (Dickson et al., 2007; Sakae et al., 2019). 

Corticobasal degeneration (CBD) is 4R-tauopathy characterised by tau-positive diffuse 

astrocytic plaques and swollen, ballooned neurons in neocortical and limbic grey matter 

(Dickson et al., 2002; Irwin, 2016). The brainstem and basal ganglia contain large numbers of 

tau-positive inclusions (Dickson et al., 2002). Macroscopically, there is typically marked 

asymmetrical atrophy of the motor cortex (Dickson et al., 2002). Corticobasal degeneration can 

be difficult to distinguish from progressive supranuclear palsy pathology (Irwin, 2016) and 

there is an ongoing debate if these are separate entities (Höglinger, 2018; Ling and Macerollo, 

2018). Globular glial tauopathy is a 4R tauopathy associated with widespread tau-positive 

globular inclusions in oligodendrocytes and other glial cells that is more rarely seen in FTLD 

syndromes (Ahmed et al., 2013). 

 

FTLD-tau can be caused by an autosomal dominant genetic mutation. Over 50 mutations in the 

MAPT gene have been identified. (Ghetti et al., 2015). These mutations have autosomal 

dominant inheritance (Ghetti et al., 2015). Tauopathies due to MAPT mutations were 

considered a separate entity (FTDP-17), but more recent evidence suggests they are genetic 

forms of sporadic primary tauopathies (Forrest et al., 2018; Josephs, 2018). MAPT mutations 

can cause both 3R (Pick’s disease) and 4R (progressive supranuclear palsy, corticobasal 

degeneration and globular glial) tauopathies (Fujioka et al., 2015; Forrest et al., 2018). 

Interestingly, the neuropathology associated with specific MAPT mutation can vary, suggesting 

that there are additional modifying factors that are currently unknown (Ghetti et al., 2015; 

Forrest et al., 2018). Genome wide association studies have found variants in the MAPT gene 
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are associated with an increased risk of sporadic frontotemporal dementia, progressive 

supranuclear palsy and corticobasal degeneration (Houlden et al., 2001; Höglinger et al., 2011; 

Kouri et al., 2015; Chen et al., 2019).  

 

FTLD-TDP43 

In health, TDP-43 is a DNA/RNA-binding protein that is highly conserved and ubiquitously 

expressed in cells (Ratti and Buratti, 2016). Physiological TDP-43 has a wide range of roles, 

including regulating RNA metabolism and DNA repair (Ratti and Buratti, 2016). It is essential 

for neuronal survival and TDP43 knockout animal models are not viable (Kraemer et al., 2010). 

In FTLD-TDP43, normal neuronal TDP43 is depleted and there is abnormal aggregation of 

TDP43 in the cytoplasm. Microscopically, there are neuronal cytoplasmic and intranuclear 

inclusions and dystrophic neurites that are immunoreactive for TDP-43 (MacKenzie et al., 

2010; Neumann and Mackenzie, 2019). There is a strong association between the density and 

regional distribution of TDP-43 pathology and neurodegeneration (Drubach, 2009) but it is 

unclear if TDP43 mediates neurodegeneration through gain of toxic function, loss of normal 

function or both (Lee et al., 2012; Neumann and Mackenzie, 2019). 

 

Four TDP-43 subtypes are currently recognised (FTLD TDP43A-D), based on the 

morphological and distribution of the TDP-43 immunoreactive inclusions (Mackenzie et al., 

2011). Type A cases are characterised by short, thick dystrophic neurites and compact neuronal 

cytoplasmic inclusions in layer II of the neocortex of affected regions. Type B cases have 

diffuse granular cytoplasmic inclusions in all cortical layers, with relatively few neuronal 

inclusions and dystrophic neurites. Some cases have features of both TDP-43A and B, these 

tend to be associated with a C9orf72 hexanucleotide expansion, suggesting there may be an 

additional subtype specific to this mutation (Mackenzie and Neumann, 2017; Neumann and 

Mackenzie, 2019). TDP43 type C is characterised by abundant, long and thick dystrophic 

neurites in all cortical layers with few cytoplasmic inclusions. Type D is exclusively seen with 

VCP mutations, with lentiform nuclear inclusions and short dystrophic neurites in the 

neocortex.  

 

Several autosomal dominant genetic mutations associated with FTLD-TDP43 have been 

identified. A hexanucleotide GGGCC repeat expansion in the C9orf72 gene is the most frequent 

genetic cause of frontotemporal lobar degeneration and motor neuron disease in Europe and 

North America (DeJesus-Hernandez et al., 2011; Renton et al., 2011; Balendra and Isaacs, 

2018; Moore et al., 2019). C9orf72 expanded repeats are translated into dipeptide repeat 
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proteins which form neuronal cytoplasmic TDP43 inclusions (Mori et al., 2013, Rohrer et al., 

2015a). Most healthy individuals have less than eleven hexanucleotide repeats, greater than 

thirty is considered abnormal and patients with FTLD can have thousands of repeats 

(Rutherford et al., 2012). There is no correlation between the mutation size in blood and age of 

onset of disease, no clear evidence of intergenerational anticipation and the number of repeats 

varies among different somatic tissues (Rohrer et al., 2015a; Fournier et al., 2019). The 

penetrance of C9orf72 is unclear, given the wide variability in age of onset within families 

(Moore et al., 2019) and the finding of C9orf72 expansions in very elderly individuals without 

dementia (Galimberti et al., 2014).  

 

Mutations in the progranulin gene (GRN) on chromosome 17 also cause FTLD-TDP43 (Baker 

et al., 2006). Progranulin is a growth factor that regulates cell growth and survival (De Muynck 

and Van Damme, 2011). GRN mutations appear to cause disease by reducing levels of 

functional progranulin, but how this leads to TDP-43 aggregation is currently unknown 

(Neumann and Mackenzie, 2019). Mutations in the TARDBP gene, which encodes TDP-43, 

usually cause isolated motor neuron disease, but have been reported in FTLD (Borroni et al., 

2009a). VCP mutations cause a rare syndrome of frontotemporal dementia, inclusion body 

myositis and Paget’s disease of the bone, which is associated with TDP43 inclusions (Ju and 

Weihl, 2010). Other rare mutations have been identified in FTLD-TDP43 (Neumann and 

Mackenzie, 2019). 

 

FTLD-FET 

The FET family consists of the fused in sarcoma (FUS), Ewing’s sarcoma (EWS) and TAF15 

proteins. These proteins, first identified via oncogenes that causes specific cancers,  have 

widespread roles in DNA and RNA transcriptional regulation, processing and repair (Schwartz 

et al., 2015). The majority of FTLD without tau or TDP43 immunoreactive inclusions (5-10% 

of cases) have coaggregation of these three proteins (Neumann et al., 2009; Neumann and 

Mackenzie, 2019). Three FTLD-FET subtypes are currently recognised, again based on the 

morphological and distribution of the FET immunoreactive inclusions (Neumann and 

Mackenzie, 2019). The three subtypes are atypical FTLD-U (aFTLD-U), neuronal intermediate 

filament inclusion disease (NIFID) and basophilic inclusion body disease (BIBD) (Neumann 

and Mackenzie, 2019). FUS gene mutations have been found in patients with FTLD syndromes 

(Broustal et al., 2010) but no patients with this mutation have yet had neuropathological 

diagnosis post mortem (Neumann and Mackenzie, 2019). 
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Figure 1-1: The clinicopathological spectrum of frontotemporal lobar degeneration. The top section shows the 

prevalence of different cognitive and movement features in FTLD. *Not all patients have all the clinical features 

associated with each syndrome. The next row shows the syndromes associated with FTLD; colour coded by the 

proportion of cases associated with each FTLD subtype. bvFTD: Behavioural variant frontotemporal dementia. 

nfvPPA: Non-fluent variant primary progressive aphasia. svPPA: Semantic variant primary progressive aphasia. 

PSPRS: Progressive supranuclear palsy-Richardson’s syndrome. CBS: Corticobasal syndrome. lvPPA: Logopenic 

variant primary progressive aphasia. Clinicopathological correlation data from (Rascovsky et al., 2011; Alexander 

et al., 2014, Perry et al., 2017a; Spinelli et al., 2017; Gazzina et al., 2019; Sakae et al., 2019). Note that some 

patients with an FTLD-syndrome have Alzheimer’s disease pathology and some patients with FTD (logopenic 

variant primary progressive aphasia (lvPPA) are not associated with FTLD. Next row shows the neuropathological 

subtypes of FTLD. PSP: Progressive supranuclear palsy. CBD: Corticobasal degeneration. AGD: Argyrophilic 

grain disease. GGT: Globular glial tauopathy. BIBD: Basophilic inclusion body disease. NIFID: Neuronal 

intermediate filament inclusion disease. Idea for figure from Prof W Seeley, UCSF. 
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Clinical syndromes associated with FTLD 

The clinical syndromes associated with FTLD are currently categorised into behavioural variant 

frontotemporal dementia (bvFTD), the non-fluent (nfvPPA) and semantic (svPPA) subtypes of 

primary progressive aphasia, progressive supranuclear palsy (PSP) and corticobasal syndrome 

(CBS). However, the first case reports of the clinical presentation of FTLD described a 

combination of behavioural, language and motor features (Pick, 1892; Akelaitis, 1944; Kertesz, 

2007). Even at an early stage, FTLD syndromes have overlapping clinical features and patients 

diagnosed with one syndrome often develop features characteristic of others with disease 

progression (De Vivo and Johnston, 2003; Kertesz et al., 2005; Perry et al., 2019). This 

complicates clinical research and makes individual prognostication difficult. In this thesis, I 

argue for an alternative approach, taking a transdiagnostic approach to clinical features, brain 

morphometry, clinicopathological correlation, prognosis and neurotransmitter deficits. In the 

next section, I introduce each of the clinical syndromes associated with FTLD, describing their 

typical features but also the overlap with other syndromes associated with FTLD. 

 

Behavioural variant frontotemporal dementia 

Behavioural variant frontotemporal dementia (bvFTD) is characterised by a gradual onset and 

progressive decline in personality, behaviour and cognition (Piguet et al., 2011; Rascovsky et 

al., 2011) (Diagnostic criteria in  Appendix 1). The most prevalent symptom in bvFTD is 

apathy: a loss of goal directed behaviour, emotion, or social interaction (Robert et al., 2009; 

Rascovsky et al., 2011; Lansdall et al., 2017; Husain and Roiser, 2018). Other common 

symptoms include disinhibited, socially inappropriate and impulsive behaviour (González 

Sánchez et al., 2010; Mendez et al., 2014; Lansdall et al., 2017), loss of empathy and social 

cognition with diminished social interest (Rankin et al., 2006; Bertoux et al., 2012; Mendez et 

al., 2014; O’Callaghan et al., 2016), perseverative and stereotyped behaviour (Nyatsanza et al., 

2003; González Sánchez et al., 2010), and hyperorality. Hyperorality typically manifests with 

a sweet tooth and increased appetite (Ahmed et al., 2016a, b) but in some cases is associated 

with attempts to eat inedible objects (Ikeda et al., 2002). Most patients with bvFTD have limited 

insight into their illness (Le Ber et al., 2006; O’Keeffe et al., 2007; Rascovsky et al., 2011; 

Hornberger et al., 2014).  

 

Executive dysfunction is the most affected cognitive domain in bvFTD (Royall, 2001), with 

impaired planning and decision making (Seeley et al., 2008; Huey et al., 2009, Torralva et al., 

2009a; Hornberger et al., 2011), cognitive flexibility (Libon et al., 2007; Huey et al., 2009, 
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Torralva et al., 2009a; Stopford et al., 2012, Ranasinghe et al., 2016a), inhibition (Hornberger 

et al., 2008, O’Callaghan et al., 2013a; Hughes et al., 2015) and working memory (Hornberger 

et al., 2008; Libon et al., 2009, Ranasinghe et al., 2016a).  Patients are commonly proposed to 

have preserved episodic memory and visuospatial function (Neary et al., 1998; Possin et al., 

2011; Rascovsky et al., 2011). This may be true early in the disease (Ranasinghe et al., 2016a) 

but patients with bvFTD usually develop significant episodic memory deficits during the illness 

(Hornberger and Piguet, 2012, Ranasinghe et al., 2016a; Poos et al., 2018). Psychotic 

symptoms such as hallucinations and delusions are also increasingly recognised, especially 

when bvFTD is associated with genetic mutations such as the C9orf72 expansion (Shinagawa 

et al., 2014; Galimberti et al., 2015). 

 

The clinical presentation of bvFTD is highly variable and no one clinical feature is present in 

all patients (Rascovsky et al., 2011). Apathy is highly prevalent but not specific, as it occurs 

across many brain illnesses (Van Duijn et al., 2014; den Brok et al., 2015; Zhao et al., 2016; 

Radakovic and Abrahams, 2018; Worthington and Wood, 2018; Le Heron et al., 2019). Patients 

with bvFTD may present with either prominent apathetic/dysexecutive or disinhibited/socially 

inappropriate phenotypes (Le Ber et al., 2006; O’Connor et al., 2017). However, there is 

considerable overlap (Le Ber et al., 2006; Borroni et al., 2008) and in most patients apathy and 

impulsivity positively correlate, rather than form ends of a behavioural spectrum (Lansdall et 

al., 2017). This phenotypic variability in bvFTD extends beyond differences in behaviour; 

many patients develop language and/or motor impairments (Kertesz et al., 2005). Verbal 

semantic impairments are common and patients may have a language profile that is 

indistinguishable from semantic variant primary progressive aphasia (Hughes et al., 2011; Roca 

et al., 2013; Hardy et al., 2016). In contrast, other patients with bvFTD develop agrammatism 

and impaired syntactic comprehension, the characteristic features of non-fluent variant primary 

progressive aphasia (Peelle et al., 2007, 2008).  

 

Patients with bvFTD commonly develop motor impairments including parkinsonism and motor 

neuron disease. Parkinsonism, defined as rigidity, akinesia and gait disturbance, is the most 

common movement disorder in bvFTD and occurs in the majority of patients at some stage in 

their disease (Diehl-Schmid et al., 2007b; Padovani et al., 2007; Baizabal-Carvallo and 

Jankovic, 2016; Irwin et al., 2016; Rowe, 2019).  Prominent motor and other clinical features, 

including a supranuclear gaze palsy, dystonia, apraxia or cortical sensory loss, can develop with 

disease progression, resulting in a change in diagnosis to PSP or CBS (Kertesz and Munoz, 

2004; Hassan et al., 2012; Coyle-Gilchrist et al., 2016; Sakae et al., 2019). Patients without 
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overt signs of PSP may still have impaired oculomotor function on detailed testing (Garbutt et 

al., 2008). Parkinsonism is highly prevalent in familial bvFTD (Siuda et al., 2014; Baizabal-

Carvallo and Jankovic, 2016), including patients with MAPT (Hutton et al., 1998; Wszolek et 

al., 2006), C9orf72 (Boeve et al., 2012; Hsiung et al., 2012) and PGRN (Baker et al., 2006; 

Rademakers et al., 2007) gene mutations. Motor neuron disease (MND) occurs in 15% of 

bvFTD but up to a third of patients have neurophysiological evidence of anterior horn cell 

dysfunction (Lomen-Hoerth et al., 2002; Burrell et al., 2011). Conversely, the majority of 

patients with motor neuron disease have some degree of cognitive impairment, and in 

approximately 15% this is severe enough to meet the diagnostic criteria of behavioural variant 

frontotemporal dementia (Ringholz et al., 2005).  

 

A small proportion of patients present with behavioural change suggestive of bvFTD but have 

minimal or no progression of these symptoms over time and are labelled as “phenocopy” FTD 

(Davies et al., 2006; Kipps et al., 2008). These patients typically have no frontotemporal lobar 

atrophy on neuroimaging (Davies et al., 2006; Valente et al., 2019). It is unclear what causes 

this syndrome. Some patients do have slowly progressive variant FTLD, often associated with 

the C9orf72 mutation (Khan et al., 2012; Devenney et al., 2014). However, many phenocopy 

bvFTD patients do not have this mutation and have stable cognition, behaviour and 

neuroimaging over prolonged follow up (Devenney et al., 2018). The current consensus is that 

this is not a neurodegenerative disease and is likely to be a group of psychiatric, 

neurodevelopmental and functional disorders (Kipps et al., 2010; Gossink et al., 2016; 

McWhirter et al., 2019). Phenocopy cases are excluded from the main work in this thesis.  

 

Primary progressive aphasia 

Primary progressive aphasia (PPA) is the umbrella term for several syndromes associated with 

progressive language impairment with relative sparing of other cognitive domains (Mesulam, 

2003; Gorno-Tempini et al., 2011). The most recent diagnostic criteria for PPA defines three 

subtypes: non fluent variant (nfvPPA), logopenic variant (lvPPA) and semantic variant 

(svPPA). However, these variants often have more features in common with other FTLD 

syndromes, including bvFTD, PSP and CBS, than each other. 

 

Non-fluent variant primary progressive aphasia  

Non-fluent variant primary progressive aphasia (nfvPPA), formerly known as progressive non 

fluent aphasia (PNFA), is characterised by effortful, distorted and hesitant speech with signs of 

speech apraxia and agrammatism (Gorno-Tempini et al., 2011; Grossman, 2012). Speech 
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apraxia describes speech that is slow and effortful, with pauses between syllables and words 

and sound errors and distortions due to reduced articulatory agility (Josephs and Duffy, 2008; 

Josephs et al., 2012). Agrammatism refers to an impairment in the production and 

understanding of phrases and sentence structure (Thompson and Mack, 2014). The current 

diagnostic criteria require only one of these language impairments for a diagnosis (Gorno-

Tempini et al., 2011) (Appendix 1) and nfvPPA can be subdivided into agrammatic and apraxic 

variants (Josephs et al., 2012). However, many clinicians group these syndromes together due 

to their rarity (Coyle-Gilchrist et al., 2016) and because most patients with nfvPPA develop 

both speech apraxia and agrammatism with disease progression (Josephs et al., 2014). Patients 

with nfvPPA also have language comprehension deficits. This is often attributed to difficulty 

understanding syntactically complicated sentences (Thompson et al., 2013, Cope et al., 2017b), 

but may also be due to binary (e.g. yes/no) confusion (Warren et al., 2016) and true hearing 

impairment (Hardy et al., 2019).  

 

nfvPPA has a heterogenous clinical phenotype. There is variation in language presentation, as 

evidenced by the apraxic and agrammatic subtypes, but patients can also develop other 

cognitive, behavioural and motor impairments. The majority of patients have executive 

dysfunction, apathy and agitation (Knibb et al., 2009; Rohrer and Warren, 2010, Rohrer et al., 

2010c) and many patients develop loss of empathy, changes in eating habits, disinhibition and 

stereotyped behaviour (Singh et al., 2015; Van Langenhove et al., 2016; Hazelton et al., 2017). 

Parkinsonism is common in nfvPPA (Graff-Radford et al., 2012; Coyle-Gilchrist et al., 2016) 

and in some case series is seen in all patients within three years from symptom onset (Caso et 

al., 2014). nfvPPA can be the initial clinical phenotype of FTLD-tau-PSP (Mochizuki et al., 

2003; Respondek and Hoglinger, 2016; Gazzina et al., 2019) or FTLD-tau-CBD (Lee et al., 

2011b; Caso et al., 2014) and with disease progression many patients develop the typical 

clinical phenotype of progressive supranuclear palsy or corticobasal syndrome (Sánchez-Valle 

et al., 2006; Josephs and Duffy, 2008; Josephs et al., 2014; Santos-Santos et al., 2016). nfvPPA 

can also be associated with MND (Vinceti et al., 2019), especially when caused by a genetic 

mutation (Tan et al., 2019). 

 

Semantic variant primary progressive aphasia 

Semantic variant primary progressive aphasia (svPPA) is associated with fluent, empty speech 

and impaired semantic memory, underlying its former name of Semantic Dementia (Hodges 

and Patterson, 2007). Semantic memory deficits affect knowledge of objects and concepts 

(Rogers et al., 2004) meaning that patients have poor knowledge of what an object or concept 
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is, in addition to difficulty naming. This semantic impairment is typically proportional to the 

familiarity of the item in question. For example, patients with svPPA will lose semantic 

knowledge of an anteater or buffalo before a dog or cat. Typical findings on language 

examination include impaired single word comprehension and object recognition (Gorno-

Tempini et al., 2011). Repetition and grammar is preserved, although semantic impairment may 

complicate assessment (Meteyard and Patterson, 2009). Surface dyslexia, a difficulty 

pronouncing words with an irregular spelling or pronunciation, is common (Wilson et al., 

2009).  

 

SvPPA is associated with cognitive deficits beyond aphasia even at early stages, therefore the 

term “semantic dementia” may better reflect the widespread cognitive deficits and severe 

impact on activities of daily living associated with this illness (Hodges and Patterson, 2007). 

Behavioural impairments are common in svPPA and overlap with the typical features of bvFTD 

(Rosen et al., 2006). These include apathy, impulsivity, loss of social interest and impaired 

emotional recognition and changes in appetite and food preference (Seeley et al., 2005; Rosen 

et al., 2006; Hodges and Patterson, 2007; Lansdall et al., 2017). There is some evidence that 

the behavioural profiles of bvFTD and svPPA are distinct; compulsive behaviour and more 

restrictive, selective food preferences are more common in svPPA (Snowden et al., 2001). 

Patients often develop an intense, obsessive interest in word searches, Sudoku and other puzzles 

(Hodges and Patterson, 2007). SvPPA can occur with motor neuron disease (Tan et al., 2019; 

Vinceti et al., 2019) but parkinsonism is rare and is usually only seen in patients with dual 

neuropathology (Snowden et al., 2019). 

 

SvPPA is typically associated with severe bilateral, but asymmetrical left temporal lobe atrophy 

(Galton et al., 2001). However, some patients have disproportionate right temporal lobe atrophy 

(Chan et al., 2001). These patients have a different clinical phenotype, with more prominent 

behavioural disturbance, visuospatial deficits and prosopagnosia, an inability to recognise 

familiar faces (Chan et al., 2009; Kumfor et al., 2016). They may not have aphasia and the 

terms “right semantic dementia” or “right temporal variant FTD” are sometimes used rather 

than svPPA. 

 

Logopenic variant primary progressive aphasia 

Spontaneous speech in logopenic variant primary progressive aphasia (lvPPA) is slow and 

hesitant with frequent pauses (Gorno-Tempini et al., 2008). Unlike nfvPPA, there is no frank 

agrammatism or speech apraxia (Wilson et al., 2010). Patients with lvPPA have severe word 
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finding difficulties and impaired repetition (Gorno-Tempini et al., 2008, 2011). Single word 

repetition is usually preserved but repetition worsens as the length and complexity of the 

sentence increases (Raisner et al., 2005). Reading aloud is often more fluent than spontaneous 

speech (Harris et al., 2019). Patients with logopenic aphasia tend to develop global cognitive 

deficits faster than other PPA subtypes (Leyton et al., 2013) and the majority of patients have 

Alzheimer’s disease at post mortem (Spinelli et al., 2017). Logopenic aphasia is best considered 

as a language variant of Alzheimer’s Disease and not a syndrome associated with FTLD. 

 

Progressive supranuclear palsy 

The classical features of progressive supranuclear palsy (PSP), first described by Richardson, 

Steele and Olszweski (Steele et al., 1964),  are a vertical supranuclear gaze palsy, early postural 

instability and falls. This phenotype is now labelled Richardson’s syndrome (PSP-RS), as PSP 

pathology is associated with many other behavioural, cognitive and motor features (Respondek 

et al., 2014; Respondek and Hoglinger, 2016) (Appendix 1). Visual symptoms are common in 

PSP. At early disease stages, patients may have slow, irregular and curved, but unrestricted, 

vertical saccades (Shaikh et al., 2017) which then progresses to a conjugative gaze restriction 

that can be overcome by the vestibulo-ocular reflex (Anderson, 2015), termed a supranuclear 

gaze palsy. Square wave jerks are often present (Garbutt et al., 2004). Eyelid abnormalities 

include reduced blink rate (Bologna et al., 2009), blepharospasm (Grandas et al., 1988; Yoon 

et al., 2005) and apraxia of eyelid opening and closing (Golbe et al., 1989; Yoon et al., 2005; 

Phokaewvarangkul and Bhidayasiri, 2019). PSP causes postural instability and falls, typically 

within three years of symptom onset (Höglinger et al., 2017; Brown et al., 2020). Falls are 

multifactorial, due to visual impairments (Williams et al., 2006; Bluett et al., 2017) postural 

instability (Liao et al., 2008; Zwergal et al., 2011), akinesia (Williams et al., 2006; Bluett et 

al., 2017) and gait disturbance (Lindemann et al., 2010) but also impaired decision making 

(Kim et al., 2014), impulsivity (Burrell et al., 2014a, Rittman et al., 2016a) and loss of insight 

(O’Keeffe et al., 2007). Akinesia and rigidity is common but disproportionately axial, affecting 

the neck and torso more than limbs (Litvan et al., 1996a; Höglinger et al., 2017). Limb rigidity 

may develop as the disease progresses (Nath et al., 2003). This parkinsonism usually does not 

improve with levodopa therapy (Stamelou and Höglinger, 2016).  

 

Most patients with PSP have some degree of cognitive and behavioural impairments on detailed 

assessment (Brown et al., 2010, Burrell et al., 2014a; Kobylecki et al., 2015). These include 

profound slowness of thinking (bradyphrenia) (Dubois et al., 1988; Robbins et al., 1994) and 

other executive dysfunctions include impaired attention (Brown et al., 2010) set shifting 
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(Royall, 2001; Brown et al., 2010), decision making and problem solving (Robbins et al., 1994; 

Millar et al., 2006). The cognitive features of PSP overlap with those seen in bvFTD and tests 

of frontal lobe dysfunction, such as the frontal assessment battery (Royall, 2001), are not able 

to differentiate between the two syndromes (Stamelou et al., 2015). Patients have widespread 

social cognitive deficits, including impaired emotion recognition and theory of mind (Ghosh et 

al., 2009, 2012) which may partly explain a loss of empathy and interest in social interactions 

(Millar et al., 2006; Rankin et al., 2006; Gerstenecker et al., 2013). Other PSP-related 

behavioural changes include apathy and impulsivity (González Sánchez et al., 2010; 

Gerstenecker et al., 2013; Lansdall et al., 2017), abnormal eating habits (González Sánchez et 

al., 2010), stereotyped behaviour (Prioni et al., 2018) and loss of insight (O’Keeffe et al., 2007). 

Sleep disturbances are common and include reduced total  and REM sleep time, frequent 

waking, and restlessness (Aldrich et al., 1989; Gama et al., 2010; González Sánchez et al., 

2010; Abbott and Videnovic, 2014; Walsh et al., 2017). However in contrast to Parkinson’s 

Disease, REM sleep behaviour disturbance is uncommon in PSP (Nomura et al., 2012; Abbott 

and Videnovic, 2014). 

 

PSP is also associated with speech and language impairments (Peterson et al., 2018). Patients 

have characteristic speech, which is slow and dysarthrophonic, with hypokinetic, spastic and 

ataxic components (Kluin et al., 2001; Skodda et al., 2011; Rusz et al., 2015; Tykalova et al., 

2017). The most prominent language abnormality is reduced fluency (Rosser and Hodges, 

1994; Kaat et al., 2007; Peterson et al., 2018) but deficits in comprehension, naming and 

syntactic comprehension are also seen (Burrell et al., 2017).  

 

The heterogeneous, overlapping presentation of  cognitive, behavioural and language features 

in PSP are reflected in the new diagnostic criteria, which recognises eight PSP subtypes 

(Höglinger et al., 2017). A retrospective review of 100 autopsy-confirmed cases of PSP found 

only 24% of cases presented with the classical PSP-RS phenotype and the majority of the cases 

had overlapping phenotypes across PSP subgroups (Respondek et al., 2014). Many of these 

PSP syndrome subtypes relate closely to other FTLD syndromes, for example PSP-SL and 

nfvPPA, PSP-F and bvFTD and PSP-CBS and CBS (Appendix 1) 

 

Corticobasal syndrome 

Corticobasal syndrome (CBS) is a clinical diagnosis (Appendix 1), different from the 

neuropathological diagnosis of corticobasal degeneration (CBD), which is not associated with 

all cases of CBS (Gibb et al., 1989). The cortical and subcortical (or basal) features of CBS 
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typically present asymmetrically, often initially in one limb (Wenning et al., 1998). Cortical 

features include apraxia (Zadikoff and Lang, 2005), alien limb syndrome (Albrecht et al., 2019; 

Lewis-Smith et al., 2020) and cortical sensory loss. Apraxia can be present in the limbs; with 

loss of dexterity (limb-kinetic apraxia) or goal directed movement (ideomotor apraxia) (Pearce, 

2009), face (orobuccal apraxia) or eyes; affecting eyelids (apraxia of eye opening/closing) or 

eye movement (oculomotor apraxia). (Jacobs et al., 1999, Graham et al., 2003a; Zadikoff and 

Lang, 2005, Burrell et al., 2014b). Orobuccal apraxia is often associated with motor speech 

impairments, primarily speech apraxia (Buervenich et al., 2000; Josephs and Duffy, 2008). CBS 

is associated with visuospatial deficits (Graham et al., 2003b; Bak et al., 2006; Rittman et al., 

2013, Burrell et al., 2014a; Di Stefano et al., 2016), including simultagnosia (Mendez, 2000) 

and visual inattention (Julayanont et al., 2019).  

 

Subcortical features in CBS include dystonia, rigidity and akinesia. Dystonia is most common 

the upper limbs but can be cervical, lower limb or affect eyelid muscles causing blepharospasm 

(Grandas et al., 1988; Stamelou et al., 2012). Rigidity and akinesia do not usually respond to 

levodopa treatment (Armstrong et al., 2013a). Some patients may present with symmetrical 

limb involvement (Hassan et al., 2010), although this is only defined as possible disease under 

the current criteria (Armstrong et al., 2013a). Myoclonus is common in CBS and may be 

cortical (Thompson et al., 1994; Carella et al., 1997) or subcortical (Grosse et al., 2003) in 

origin.  

 

CBS and PSP overlap in both their clinical presentation and neuropathology (Höglinger, 2018).  

Patients with PSP-RS can develop CBS-like features, including limb dystonia (Barclay and 

Lang, 1997; Oide et al., 2002; Nath et al., 2003), apraxia (Pharr et al., 2001; Soliveri et al., 

2005) and alien limb syndrome (Barclay et al., 1999) during the disease course. Over 70% of 

patients with CBS develop a supranuclear gaze palsy and falls at some point during the illness 

(Rinne et al., 1994; Wenning et al., 1998). FTLD-tau-PSP pathology can cause corticobasal 

syndrome (Ling et al., 2014; Respondek and Hoglinger, 2016) and FTLD-tau-CBD can cause 

a PSP clinical syndrome (Ling et al., 2010).  

 

Other behavioural and language features are also seen in CBS. Changes in behaviour and 

personality, similar to those seen in bvFTD, are common (Burrell et al., 2014a). Patients who 

develop a corticobasal syndrome phenotype may initially be given a diagnosis of behavioural 

variant frontotemporal dementia due to prominent behaviour and personality change (Kertesz 

et al., 2007). Apathy, disinhibition and impulsivity, loss of empathy and stereotyped motor 
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behaviours are also frequently seen in CBS (Litvan et al., 1998; Kertesz and McMonagle, 2010; 

Lansdall et al., 2017). There may be an inability to accurately recognise emotional expressions 

(Kluger and Heilman, 2007). Speech disturbance due to orobuccal apraxia is common but CBS 

is also associated with language deficits (Peterson et al., 2018). Patients typically have severely 

impaired fluency (Bak et al., 2005; Rittman et al., 2013), impaired syntactic comprehension 

and sentence repetition (Cotelli et al., 2007) and make phonological errors (Graham et al., 

2003a). These language impairments overlap with those seen in nfvPPA, and many patients 

presenting with nfvPPA will develop a CBS-like clinical phenotype (Graham et al., 2003a; 

Peterson et al., 2018).  

 

Diagnostic criteria for FTLD syndromes 

The current consensus diagnostic criteria for syndromes associated with FTLD are shown in 

Appendix 1 (Gorno-Tempini et al., 2011; Rascovsky et al., 2011, Armstrong et al., 2013a; 

Höglinger et al., 2017). The criteria attempt the difficult balance between clinicopathological 

sensitivity and specificity: including only the classical syndromes may improve specificity but 

will miss the many atypical presentations. Many clinical features are caveated with “important”, 

“prominent” or “early”, which the authors acknowledge is subjective and varies depending on 

if the patient, relative or carer or clinician’s opinion is given most weight. This creates 

diagnostic ambiguity. For example, a patient may report language symptoms but not (due to 

reduced insight) the behavioural change that families think is more prominent. A patient may 

also meet several diagnostic criteria. For example, a 60-year-old presenting with a two year 

history of progressive language and personality change, behavioural disturbance and 

examination findings of executive dysfunction, asymmetric limb akinesia and rigidity and non-

fluent, agrammatic speech could meet the positive diagnostic criteria for bvFTD, nfvPPA, PSP-

SL and CBS-NAV. The diagnostic criteria may contain exclusion clauses, if for example a 

syndrome is better explained by a non-neurodegenerative cause, but usually do not state when 

one FTLD syndrome should be diagnosed above another. 

 

Clinicopathological correlation in FTLD syndromes 

One aim of diagnostic criteria is to maximise the correlation between clinical phenotype and a 

specific neuropathology. The ideal criteria would group all patients with one neuropathology 

into a clinical syndrome (high sensitivity) while at the same time excluding patients with a 

different disease (high specificity). There are currently no biomarkers that can identify different 

FTLD subtypes (Meeter et al., 2017) so accurate diagnostic criteria are often the only inclusion 
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criteria for clinical trials (Boxer et al., 2019). An autosomal dominant genetic mutation can, 

when present, accurately predict neuropathology (Raffaele et al., 2019). However, most 

patients with a FTLD syndrome do not have a monogenic mutation, these sporadic cases often 

only have weak clinicopathological correlations (Figure 1-1).  

 

Some syndromes have a much stronger endophenotype than others. Two FTLD syndromes, 

PSP-RS and svPPA, have good specificity for FTLD-tau-PSP and FTLD-TDP43C respectively. 

PSP-Richardson’s syndrome (PSPRS) has very high specificity (91-100%) but low sensitivity 

(30-50%) for PSP neuropathology (FTLD-tau-PSP) (Litvan et al., 1996b, a, 1997; Osaki et al., 

2004). FTLD-tau-PSP can present with other cognitive, behavioural and motor features 

(Respondek et al., 2014) that are phenotypically suggestive of bvFTD (Perry et al., 2017a), 

nfvPPA (Spinelli et al., 2017) or CBS (Tsuboi et al., 2005; Ling et al., 2014). FTLD-tau-PSP 

can also cause a levodopa-responsive asymmetric parkinsonism that may be indistinguishable 

from Parkinson’s disease (Williams et al., 2005; Williams and Lees, 2010). This was recognised 

in the MDS PSP diagnostic criteria with the PSP-F, PSP-NAV, PSP-CBS and PSP-P subtypes 

respectively (Höglinger et al., 2017). SvPPA has good specificity for FTLD-TDP43C (83-

100%) (Snowden et al., 2007; Spinelli et al., 2017). However, some cases have other TDP43 

subtypes, FTLD-tau or AD pathology (Hodges et al., 2004; Davies et al., 2005; Gefen et al., 

2018) and FTLD-TDP43C is also associated with bvFTD (Perry et al., 2017a). 

 

BvFTD, nfvPPA and CBS are neuropathologically more heterogenous. bvFTD can be 

associated with all major subtypes of FTLD-tau (20-50%), FTLD-TDP43 (30-50%), FTLD-

FUS (7%), and AD (10-17%) pathology (Kertesz et al., 2005; Forman et al., 2006; Hu et al., 

2007; Josephs et al., 2011, Perry et al., 2017a). Some clinical features can predict pathology. 

For example, patients with FTD-MND have FTLD-TDP pathology (Snowden et al., 2007; 

Josephs et al., 2011), and eye movement abnormalities or parkinsonism are more associated 

with FTLD-tau (Josephs et al., 2006b). However, even sophisticated algorithms trained on 

clinical phenotype, genetic results and brain imaging are only 60% accurate in predicting 

neuropathology (Perry et al., 2017a). The subset of patients with AD pathology reflects the 

phenotypic overlap between bvFTD and the behavioural/dysexecutive presentation of 

Alzheimer’s disease (Alladi et al., 2007, Ossenkoppele et al., 2015b). NfvPPA is most often 

associated with FTLD-tau (50-100%), but can be caused by FTLD-TDP or AD (Grossman, 

2010). The FTLD-tau can be Pick’s disease, PSP or CBD subtypes (Spinelli et al., 2017). 

Patients with speech apraxia are more likely to have FTLD-tau, but the subtype can still vary 

(Josephs et al., 2006a). It can be difficult to distinguish nfvPPA from the language presentation 
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of Alzheimer’s diseases, and even in expert centres a proportion of nfvPPA patients have AD 

pathology at post mortem (Grossman, 2012).  

 

CBS is neuropathologically heterogenous and only 20-60% of cases of this clinical syndrome 

have CBD neuropathology (Boeve et al., 1999, Hu et al., 2009a; Ling et al., 2010; Kouri et al., 

2011, Lee et al., 2011b; Alexander et al., 2014). Other neuropathologies associated with CBS 

are Alzheimer’s disease (15-30%), progressive supranuclear palsy (10-30%) and more rarely 

TDP-43, Pick’s disease, alpha synuclein or prion disease (Boeve et al., 1999, Hu et al., 2009a; 

Ling et al., 2010; Kouri et al., 2011, Lee et al., 2011b; Alexander et al., 2014). CBD can 

commonly present in life as nfvPPA, PSP, bvFTD or posterior cortical atrophy (Boeve et al., 

1999, Hu et al., 2009a; Ling et al., 2010; Kouri et al., 2011, Lee et al., 2011b; Alexander et al., 

2014).  

 

There are limitations to these reported clinicopathological correlations. First, older cases series 

do not use the most recent neuropathological criteria, for example TDP43 

immunohistochemistry only became available in 2006. Second, results depend on which 

clinical syndromes and pathological subtypes are included. For example, some 

clinicopathological series only include tauopathies, or limit clinical syndromes to bvFTD or 

PPA cases. Third, case series are usually published by specialists in academic centres, who 

often developed the diagnostic criteria being tested. Clinicopathological accuracy in the average 

cognitive or movement disorders clinic may be more variable. 

 

Neurotransmitter deficits in frontotemporal lobar 

degeneration 

One target for symptomatic treatments in FTLD syndromes is to reverse neurotransmitter 

deficits, similar to dopaminergic therapy of Parkinson’s disease or cholinergic therapy for 

Alzheimer’s disease. There are many safe, well tolerated and effective drugs that modulate 

neurotransmitter pathways in the central nervous system. This removes the need for drug 

development, meaning identifying neurotransmitter deficits associated with clinical symptoms 

in FTLD could quickly lead to clinical trials. In this section I review the current evidence on 

alterations in the major neurotransmitter systems, dopamine, noradrenaline, serotonin, 

acetylcholine, glutamate and gamma amino butyric acid (GABA), and their relationship to 

clinical phenotype. For a more comprehensive review see Murley et al 2018. 
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Dopamine 

Loss of dopaminergic neurons in the nigrostriatal pathway causes parkinsonism in 

frontotemporal lobar degeneration. Dopamine transporter levels (a marker of pre-synaptic 

neuron integrity) and dopamine receptors are reduced in the striatum in bvFTD (Rinne et al., 

2002; Sedaghat et al., 2007), PSP (Baron et al., 1986; Kim et al., 2002; Oyanagi, 2002; Im et 

al., 2006; Oh et al., 2012) and CBS (Sawle et al., 1991; Nagasawa et al., 1996; Laureys et al., 

1999; Klaffke et al., 2006; Pirker et al., 2015). The degree of this loss correlates with extra-

pyramidal symptom severity (Rinne et al., 2002; Sedaghat et al., 2007). In contrast to 

Parkinson’s disease, parkinsonism in FTLD typically does not respond well to dopaminergic 

therapy, possible due to loss of both dopaminergic neurons and receptors in the basal ganglia 

and cerebral cortex. 

 

Degeneration of the dopaminergic mesocortical pathway may contribute to behavioural 

symptoms. D2 dopamine receptors are reduced in the frontal lobes of patients with bvFTD 

(Frisoni et al., 1994), while dopamine levels in the CSF are reduced and correlate with 

behavioural disturbance (Engelborghs et al., 2008). In PSP, there is also degeneration of 

dopaminergic neurons in the ventral tegmental area (Murphy et al., 2008) and loss of dopamine 

receptors in the frontal cortex (Ruberg et al., 1985). 

 

Noradrenaline 

In PSP there is both tau deposition (Dickson, 1999; Arnold et al., 2013), and neuronal loss 

(Hauw et al., 1994; Mori et al., 2002; Dickson et al., 2010) in the locus coeruleus, the principle 

site of noradrenaline synthesis. This neuronal loss correlates with disease severity (Kaalund et 

al., 2020). A single post mortem study also found reduced levels of noradrenaline in the caudate 

and putamen (Hornykiewicz and Shannak, 1994). There is limited evidence for noradrenergic 

changes in frontotemporal dementia. Cell density in the locus coeruleus is relatively preserved 

with normal noradrenaline levels in the frontal lobe (Vermeiren et al., 2016),  despite the 

presence of pathological tau inclusions (Nagaoka et al., 1995; Yang and Schmitt, 2001; 

Brunnström et al., 2011; Irwin et al., 2016). However, there may be reduced noradrenaline 

catabolism and turnover (Vermeiren et al., 2016) which has been shown to correlate with 

disease severity (Engelborghs et al., 2008). 
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Serotonin 

Serotonin dysfunction is a significant contributor to the behavioural and cognitive symptoms 

seen in bvFTD (Huey et al., 2006; Hughes et al., 2015). 5HT1A and 2A receptors are reduced 

in the frontal and temporal lobes (Sparks and Markesbery, 1991; Francis et al., 1993; Procter 

et al., 1999; Franceschi et al., 2005; Lanctôt et al., 2007; Bowen et al., 2008). Pathological tau 

inclusions are found post mortem in the raphe nuclei with progressive supranuclear palsy 

(Revesz et al., 1996) while pre-synaptic serotonergic neurons are reduced in the caudate 

nucleus, frontal and temporal cortex (Chinaglia et al., 1993). There is neuronal loss and gliosis 

in the raphe nucleus in corticobasal degeneration (Gibb et al., 1989). A meta-analysis of 

selective serotonin reuptake inhibitors in frontotemporal dementia showed an improvement in 

behavioural disturbance, noting however that the evidence was mainly from small, non-placebo 

controlled trials (Huey et al., 2006). 

 

Acetylcholine 

Cholinergic pathways are affected in frontotemporal lobar degneneration but not to the same 

extent as in Alzheimer’s disease. Post mortem levels of choline acetyltransferase, a marker of 

pre-synaptic cholinergic neuron integrity, are reduced in the nucleus basalis of Meynert  and 

the hypothalamus but are normal in the frontal, temporal and parietal lobes (Wood et al., 1983; 

Hansen et al., 1988; Sparks and Markesbery, 1991; Procter et al., 1999). There is evidence of 

a cholinergic deficit in semantic dementia, with loss of muscarinic receptors in the temporal 

lobe (Odawara et al., 2003). Despite the possible cholinergic deficits in behavioural variant 

frontotemporal dementia and primary progressive aphasia, cholinesterase inhibitors do not 

improve cognitive function (Moretti et al., 2004; Mendez et al., 2007; Kertesz et al., 2008). 

There are marked cholinergic deficits in progressive supranuclear palsy, which may contribute 

not only to cognitive impairment but also postural instability via the pedunculopontine nucleus  

(Jellinger, 1988; Warren et al., 2005). Choline acetyltransferase is reduced in the nucleus 

basalis of Meynert , midbrain and pedunculopontine nucleus (Juncos et al., 1991; Javoy-Agid, 

1994; Kasashima and Oda, 2003). However, a randomised, placebo controlled crossover study 

found no benefit with donepezil (Litvan et al., 2001). 

 

Glutamate 

There is pre-clinical and clinical evidence that glutamate is important in the pathogenesis of 

frontotemporal dementia. Mouse models of FTLD have glutamate receptor dysfunction and 

behavioural impairment which is reversed with glutamate receptor agonists (Gascon et al., 
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2014; Warmus et al., 2014; Decker et al., 2016). In patients, glutamatergic pyramidal neurons 

are reduced in the thalamus, frontal and temporal cortex (Ferrer, 1999). Magnetic resonance 

spectroscopy of patients with frontotemporal dementia has found glutamate/glutamine levels 

are reduced in the frontal and temporal lobes (Ernst et al., 1997; Sarac et al., 2008). There is an 

inverse correlation between CSF glutamate levels and verbal agitation (Vermeiren et al., 2013). 

Glutamatergic neurons from the thalamostriatal pathway are reduced in the thalamus in PSP 

(Henderson et al., 2000). However the severity of this neuronal loss does not correlate with 

disease duration or severity (Henderson et al., 2000).  

 

Both ionotropic (NMDA and AMPA) and metabotropic glutamate receptors are reduced in the 

frontal and temporal lobes of patients with bvFTD (Francis et al., 1993; Procter et al., 1999; 

Bowen et al., 2008; Leuzy et al., 2016). Despite this, randomised placebo-controlled trials of 

memantine showed no benefit in bvFTD  (Boxer et al., 2013)  or PPA (Johnson et al., 2010). 

While there may be no true benefit, it remains possible that small treatment effects exist which 

would be amplified if other neurotransmitter deficits were also normalised, in particular GABA-

ergic impairments. The GABA-glutamate interaction is of particular relevance because it 

supports precisely tuned oscillatory dynamics of neural circuits for cognition (Bastos et al., 

2012).  

 

GABA  

There is limited evidence on GABA in FTLD. GABAergic neurons are reduced in upper 

neocortical layers of the frontal and temporal cortex  in bvFTD (Ferrer, 1999) and in subcortical 

regions in PSP (Levy et al., 1995). GABA concentrations are also decreased in the basal ganglia 

in behavioural variant frontotemporal dementia (Kanazawa et al., 1988). GABAA receptors are 

reduced in cortical (Foster et al., 2000) and subcortical regions (Landwehrmeyer and Palacios, 

1994; Suzuki et al., 2002) in PSP. There are case reports of GABA receptor agonists improving 

speech, eye movements, akinesia and rigidity in progressive supranuclear palsy (Daniele et al., 

1999; Cotter et al., 2010; Dash, 2013; Chang and Weirich, 2014), but this phenomenon is very 

uncommon and there are no randomised placebo controlled studies. GABAergic approaches to 

treatment of FTLD syndromes warrant further investigation, but evidence of their clinical 

efficacy is currently lacking. 

 

In summary, FTLD causes dysfunction of dopaminergic, serotonergic, noradrenergic and 

cholinergic pathways. There is some evidence that the relative alterations in these pathways is 

associated with clinical phenotype, including behaviour and motor impairments. There is some 
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evidence of both glutamatergic and GABAergic neuron loss but the functional consequence of 

their deficits is unclear. The importance of these neurotransmitters, which are the principal 

excitatory and inhibitory neurotransmitters in the brain, suggest restoring any deficit associated 

with clinical symptoms may be a potential therapeutic target. 
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Aims and hypotheses of this thesis 

There are overlapping clinical features and neuropathology in FTLD syndromes. Widespread 

cognitive and behavioural impairments occur in all these syndromes and all patients develop 

dementia at some stage in their illness. Therefore, the overarching aim of my PhD was to 

contribute to progress towards better symptomatic treatments for cognitive and behavioural 

impairment. The thesis has two subsidiary aims. First, to develop a transdiagnostic approach to 

FTLD syndromes in order to facilitate a better understanding of aetiology, pathophysiology and 

symptomatic treatments. I use term “transdiagnostic” to refer to research that investigates 

common clinical features (e.g. behavioural disinhibition) across multiple clinical syndromes. 

Second, to use this transdiagnostic approach to test the hypothesis that glutamate and GABA 

deficits are associated with behavioural disinhibition in FTLD syndromes. Specifically, the 

hypotheses of my thesis were: 

 

1. FTLD syndromes have heterogenous cognitive, behavioural and motor symptoms and 

exist on a clinical spectrum rather than as separate entities (Chapter 2). 

2. A transdiagnostic approach accounts for variation and overlap in the clinical features of 

FTLD syndromes (Chapter 2). 

3. The structural brain changes associated with FTLD relate to the spectrum of clinical 

features (Chapter 3). 

4. A transdiagnostic, spectrum-based approach to FTLD is superior to the current 

diagnostic criteria in predicting underlying FTLD neuropathology (Chapter 4). 

5. Prognosis, whether absolute survival or time to institutionalisation, can be predicted by 

clinical phenotype (Chapter 5). 

6. Behavioural disinhibition is seen across multiple FTLD syndromes (Chapter 6). 

7. Glutamate and GABA are reduced in the frontal, but not occipital, lobe of FTLD 

syndromes (Chapter 7). 

8. Glutamate and GABA concentrations are inversely associated with behavioural 

disinhibition in FTLD syndromes (Chapter 7). 
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Clinical phenotypes of frontotemporal 

lobar degeneration syndromes 

 

Preface 

This chapter forms part of manuscript which is in preparation (Murley et al., 2020a). The 

clinical assessments in this chapter were performed by Dr Ian Coyle-Gilchrist between 2013 

and 2015 and by me between 2016 and 2018. A large group of researchers (listed as co-authors 

on the above paper) at the Cambridge Centre for FTD and Related Disorders assisted with 

participant identification, recruitment and testing. I performed all the data analysis in this 

chapter. The text was written by me, with input from co-authors on the manuscript. 

 

Summary 

In this chapter I use a transdiagnostic approach to investigate the overlapping clinical 

phenotypes of frontotemporal lobar degeneration syndromes. These results form part of the 

PIPPIN study, an epidemiological cohort study of FTLD syndromes that I led during my PhD. 

Patients in this study underwent a detailed phenotypic assessment, enabling me to use 

multivariate analyses to show that FTLD syndromes are not discrete entities, but instead exist 

on a multidimensional spectrum of behavioural, cognitive and motor features. In a subset of 

patients with longitudinal data I show this phenotypic overlap increases with disease 

progression. This chapter provides the evidence for a transdiagnostic approach to FTLD, which 

I then use throughout the thesis. 
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Introduction 

The clinical disorders caused by frontotemporal lobar degeneration pathologies (FTLD) are 

highly heterogeneous in their pathology and phenotypes. (MacKenzie et al., 2010; Rohrer et 

al., 2011). Patients are typically diagnosed as having one of several principal syndromes, 

including behavioural variant frontotemporal dementia (bvFTD)(Rascovsky et al., 2011), 

primary progressive aphasia (with the non-fluent nfvPPA and semantic svPPA 

subtypes)(Gorno-Tempini et al., 2011), progressive supranuclear palsy (PSP)(Höglinger et al., 

2017) or corticobasal syndrome (CBS)(Armstrong et al., 2013a). The clinicopathological 

correlations of these syndromes are imprecise (Irwin et al., 2015). For example, bvFTD can be 

associated with Tau, TDP-43, or FUS protein inclusions or mixed neuropathology (Perry et al., 

2017a). Some clinical syndromes, such as PSP-Richardson’s Syndrome, have good correlation 

with the associated pathology (Gazzina et al., 2019), however the corresponding pathology may 

have diverse phenotypic expressions (Respondek et al., 2014). Recent revisions of diagnostic 

criteria recognise this heterogeneity  (Höglinger et al., 2017), and there may be future 

improvements in clinicopathological correlations by imaging or fluid-based biomarkers, aiming 

to optimise patient selection for disease modifying therapies (Irwin et al., 2015; Meeter et al., 

2017).  

 

In this chapter I propose that the effort to refine diagnostic segregation of FTLD syndromes has 

fundamental limitations. These are not merely due to the limits of a given test or biomarker but 

are biologically real constraints that can be informative about the nature of the disorders. 

Examining the phenotypic patterns across the broad spectrum of all FTLD-associated disease 

may allow a better understanding of aetiology and pathophysiology, and lead to more effective 

therapies. In particular, symptomatic therapies may benefit from such a transdiagnostic 

approach, selecting patients based on the presence of relevant symptoms, whichever their 

diagnostic label or proteinopathy (Husain, 2017; Fusar-Poli et al., 2019). 

 

A transdiagnostic approach is increasingly used in psychiatry, where it is recognised that there 

is considerable heterogeneity in clinical features and pathophysiology across different 

diagnostic criteria, as defined by the fifth edition of the Diagnostic and Statistical Manual of 

Mental Disorders (DSM-V) (del Barrio, 2004; Goldstein-Piekarski et al., 2016). This led to the 

development of the Research Dimension Criteria, which enables classification of mental 

disorders by dimensions of observed behaviour and neurobiological measures, irrespective of 

the underlying psychiatric diagnosis (Cuthbert, 2014; Kozak and Cuthbert, 2016). This 

approach has been used to identify subtypes of similar cognitive, behavioural and 
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neurophysiological features in patients with major depressive, panic or post-traumatic stress 

disorders (Grisanzio et al., 2018). It has also been used to investigate psychiatric treatments, 

including a universal cognitive behavioural therapy protocol across multiple diagnoses (Barlow 

et al., 2017; Fusar-Poli et al., 2019). 

 

A similar transdiagnostic approach may reveal common neurobiology in neurodegenerative 

diseases with overlapping phenotypes (Husain 2017). Neuropsychiatric symptoms including 

apathy and anhedonia occur across many disorders including Alzheimer’s (Zhao et al., 2016), 

Parkinson’s (den Brok et al., 2015) and Huntington’s diseases (Van Duijn et al., 2014), 

frontotemporal lobar degeneration syndromes (Lansdall et al., 2017), traumatic brain injury 

(Worthington and Wood, 2018) and vascular dementia and stroke (Staekenborg et al., 2010; 

Caeiro et al., 2013). A transdiagnostic approach may reveal common neurobiological 

mechanisms underlying one symptom in different neurological diseases (Husain and Roiser, 

2018).  

 

There are many overlapping symptoms and indistinct phenotypic boundaries between FTLD 

syndromes that may be clarified by a combined, transdiagnostic approach (Kertesz et al., 1999, 

2005). For example, executive dysfunction is a common cognitive impairment across FTLD 

syndromes (Burrell et al., 2014a, Ranasinghe et al., 2016a) and changes in behaviour and 

personality, while characteristic of bvFTD (Rascovsky et al., 2007), are also seen in PSP 

(Cordato et al., 2005; Gerstenecker et al., 2013), CBS (Huey et al., 2009) and the primary 

progressive aphasias (Rosen et al., 2006; Rohrer and Warren, 2010). Neuropsychiatric 

symptoms, including apathy and impulsivity, occur in multiple FTLD syndromes (Rohrer et al., 

2010d; Lansdall et al., 2017). The movement disorders typical of PSP and CBS can also develop 

in patients diagnosed with  bvFTD (Park et al., 2017) and nfvPPA (Santos-Santos et al., 2016). 

Language impairments are seen across all FTLD syndromes, including bvFTD (Hardy et al., 

2016), PSP and CBS (Peterson et al., 2018). 
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Aims and hypotheses  

The aim of this chapter was to use a transdiagnostic approach to assess the clinical phenotype 

of FTLD syndromes. I had two hypotheses. First, that FTLD syndromes are multidimensional 

clinical spectra, rather than discrete clinical entities. This is illustrated in the colour maps in 

Figure 2-1. Figure 2-1A symbolises the current most widely accepted approach, in which 

patients have a distinct clinical phenotype of a singular syndrome, represented by a discrete 

colour patch. For example, bvFTD (in red) is distinct from PSP (in blue) or svPPA (orange). 

My alternate hypothesis is that patients lie in a continuous colour-space, shown in in Figure 

2-1B. Intermediate phenotypes like PSP-F, CBS-NAV or svPPA with prominent behavioural 

disturbance, are readily placed within the continuous phenotypic space. I predicted that while 

classical syndromes of bvFTD, PPA, PSP and CBS exist, a data-driven approach would reveal 

phenotypic continuity without clear separation between phenotypes. 

 

 

Figure 2-1: Colour map of FTLD syndromes. A: Current consensus, that FTLD syndromes exist as separate 

entities. B: Colour map that visualises the hypothesis of this chapter, that FTLD syndromes exist as a continuous, 

multidimensional spectrum, and an individual can lie anywhere on this colour map.  

 

The second hypothesis is that with disease progression, clinical phenotypes merge by the 

development of new clinical features. The increasing overlap between syndromes is analogous 

to the move towards the centre of the colour map in Figure 2-1B. I tested these hypotheses using 

data from the epidemiologically-based PiPPIN study (Coyle-Gilchrist et al., 2016), which 

undertook a systematic behavioural, cognitive and imaging assessment of patients with 

syndromes associated with FTLD, in a region of 1.5 million people in the United Kingdom. 
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Methods  

The Pick’s Disease and Progressive Supranuclear Palsy Prevalence 

and Incidence (PIPPIN) study 

The Pick’s Disease and Progressive Supranuclear Palsy Prevalence and Incidence (PIPPIN) 

study was an epidemiological, cross sectional study of FTLD syndromes run by the Cambridge 

Centre for FTD and Related Disorders with Professor Rowe as the Chief Investigator. The 

PIPPIN study had two broad aims. First, to estimate the incidence and prevalence of all FTLD 

syndromes in Cambridgeshire and Norfolk. Second, to deeply phenotype the clinical, 

neuropsychiatric, imaging and genetic features of FTLD syndromes. The study first ran between 

2013 and 2015 and the initial epidemiology was reported in 2016 (Coyle-Gilchrist et al., 2016). 

A secondary analysis investigated apathy and impulsivity, finding these multifaceted 

neuropsychiatric symptoms are common across FLTD syndromes (Lansdall et al., 2017). 

Further work investigated the relationship between these neuropsychiatric constructs and grey 

and white matter abnormalities (Lansdall et al., 2017) and survival (Lansdall et al., 2019). In 

2016 I took over the day to day running of the study. I resumed active recruitment into the 

study, which continued from 1st January 2016 until 31st December 2018.  

 

The study protocol detailed how capacity should be assessed and how patients could give 

consent to participate in the study. All patients with a FTLD syndrome are likely to have some 

degree of cognitive impairment, even if it is not to the extent or severity of a dementia. Consent, 

as defined by the Mental Capacity Act 2005, pertains to a specific decision and requires an 

ability to understand, retain, weigh and communicate information relevant to the decision in 

question (Nicholson et al., 2008). Due to executive, language, visuospatial, behavioural or 

motor impairments many patients with more advanced disease did not have capacity to consent 

to the study. However, excluding these patients would have reduced the external validity of any 

results and deprive them of the opportunity to participate in research. A consultee process 

enabled them to participant in the study. A consultee, usually a spouse or other next of kin, were 

consulted and signed a consultee form. If a study participant did not want to participate in the 

study, or a part of it, their views were respected regardless of their capacity. Consent for the 

transfer of personally identifiable data and diagnosis to the study team was recorded locally by 

the referring team. The study was ethically approved by the Central Cambridge Research Ethics 

Committee (REC 12/EE/0475). 
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Recruitment was encouraged through multiple sources, aiming to recruit all patients with an 

FTLD syndrome in Cambridgeshire and Norfolk. First, all participants seen by the study team 

in the cognitive and movement disorders clinics at the research site (Cambridge University 

Hospitals NHS Foundation Trust) were invited into the study. Referrals from other neurological 

and psychiatric services in the region (including consultants and specialist nurses) were 

encouraged with regular visits and presentations by the study team. Self-referral from patients 

and their relatives was promoted through public engagement events run by the Cambridge 

Centre for FTD and Related Disorders and advertisements in charity publications, local media 

or specialist dementia nursing homes. The study also recruited patients via research databases 

including those run by Parkinson’s UK, The PSP Association and Join Dementia Research. 

 

The study had two tiers which are summarised in Figure 2-2. Tier 1 addressed the first aim of 

the study by recording basic demographic details to measure the incidence and prevalence of 

FTLD syndromes. All participants in Tier 1 were invited into Tier 2 for more detailed 

phenotyping. Tier 2 included a detailed clinical review, where a structured clinical assessment 

systemically recorded the presence or absence of all clinical features associated with FTLD. 

The structural clinical assessment (Table 2-1) included all clinical features in the diagnostic 

criteria of any of the FTLD syndromes (Rascovsky et al., 2007; Bensimon et al., 2009; Gorno-

Tempini et al., 2011, Armstrong et al., 2013a). The PSP diagnostic criteria were updated during 

the PIPPIN study to increase the number of PSP-related clinical features (Höglinger et al., 

2017). Patients’ nearest relative or, if no relative was available, carer completed a set of 

questionnaires; the Cambridge Behavioural Inventory - Revised (CBIR) (Wear et al., 2008), 

Frontotemporal Dementia Rating Scale (FRS) (Mioshi et al., 2010), Carer-Rated Apathy 

Evaluation Scale and Neuropsychiatric Inventory (NPI) (Cummings et al., 1994). An extended 

neuropsychological test battery included the Addenbrooke’s Cognitive Examination – Revised 

(ACER) (Mioshi et al., 2006), Frontal Assessment Battery (FAB) (Royall, 2001), Self-Rated 

Apathy Evaluation Scale (Guercio et al., 2015), Barratt Impulsivity Scale (BIS) (Patton et al., 

1995) and Beck Depression Inventory (BDI) (Beck et al., 1961). The magnetic resonance 

imaging is discussed in Chapter 3 of this thesis. A blood sample, including tubes for whole 

blood, RNA, serum and plasma, were taken and frozen at -80 degrees Celsius pending further 

analysis. The study was adaptable, participants did not have to commit to completing the full 

protocol and disease severity was not a contraindication. For example, a patient with severe 

aphasia or anarthria may be unable to complete the full neuropsychological battery but could 

participate in the clinical review, MRI scan and blood test. If participants were too impaired to 

travel to Cambridge the study team visited them at their home or care home for a clinical 
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assessment, neuropsychology and carer questionnaires. Transport was provided to facilitate 

patients travelling to Cambridge for an MRI scan.  

 

 

Figure 2-2: Schematic of PIPPIN study protocol. All patients in the region with a known diagnosis of an FTLD 

syndrome were recruited into Tier 1. Patients were then invited into Tier 2 for a more detailed phenotypic 

assessment to include clinical review, neuropsychology, carer questionnaires, an MRI scan and phlebotomy. 

 

Patients alive during both study periods (1/1/13-31/12/15 and 1/1/16-31/12/18) were invited to 

assessment in both periods. Their first visit was used for the cross-sectional analysis reported 

in this chapter and longitudinal analysis assessed the change in their clinical phenotype between 

the two assessments. 365 patients were identified in the catchment area (Tier 1), 310 of whom 

were met in person by the study team for phenotypic assessment (included in Tier 2).  

 

Data analysis 

First, I assessed each patient’s clinical phenotype against the diagnostic criteria for all FTLD 

syndromes (Rascovsky et al., 2007; Bensimon et al., 2009; Gorno-Tempini et al., 2011, 

Armstrong et al., 2013a; Höglinger et al., 2017). Each patient’s primary diagnosis was made 

according to these criteria, with reference to the dominant features at the time of presentation 

and assessment. Patients with a mixed primary progressive aphasia, who met the diagnostic 

criteria for PPA but not one of the three subtypes (Gorno-Tempini et al., 2011), were grouped 

with lvPPA, in view of the low numbers and the association of both phenotypes with 
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Alzheimer’s pathology (Sajjadi et al., 2012). For patients who met several sub-diagnostic 

criteria I grouped probable and possible diagnoses together, and classified by the dominant 

phenotype and formal Multiple Allocations eXtinction (MAX) rules where available (Grimm 

et al., 2019). I then re-applied the other diagnostic criteria to each patient to assess if he or she 

met the diagnostic criteria for any of the other FTLD syndromes (excepting the ‘mutual 

exclusivity’ clause included in several criteria). Many diagnostic criteria include imaging-

supported diagnoses (e.g. prominent anterior temporal lobe atrophy is supportive of a diagnosis 

of svPPA (Gorno-Tempini et al., 2011)). The imaging criteria were used to make the initial 

diagnosis of an FTLD syndrome but not when assessing which of the other FTLD criteria the 

patient met.  

 

Second, I examined the relationships between individual clinical features using distance 

measures and multidimensional scaling (Shepard, 1980). Multidimensional scaling is a method 

to visualise the similarity between individual variables (in this case clinical features) in a 

dataset. The pairwise Jaccard’s distances between clinical features were calculated, resulting in 

a dissimilarity matrix. Non-classical two-dimensional scaling was performed on this 

dissimilarity matrix. Non-classical multidimensional scaling produces a plot that reproduces 

the ranks of distances, rather than the original distances between clinical features which in this 

case are arbitrary. Pairwise distances and multidimensional scaling were calculated using the 

pdist and mdscale functions in MATLAB 2018b (MathWorks, USA). 

 

Third, I looked for patterns of covariation in the presence or absence of clinical features using 

principal component analysis. Principal component analysis (PCA) uses feature extraction to 

reduce the dimensionality of a dataset while preserving as much variation as possible (Jolliffe, 

2002; Ringnér, 2008). PCA produces latent variables, or principal components, each of which 

represents the results from a group of covarying features (Jolliffe, 2002). PCA has been used 

extensively in neuroscience research to identify latent variants from clinical features (Jorm et 

al., 1993, Perry et al., 2017a), neuropsychological tests (Lansdall et al., 2017; Grisanzio et al., 

2018; Schumacher et al., 2019) and structural (Yang et al., 2011; Khedher et al., 2015) and 

functional (Viviani et al., 2005) imaging data. To reduce the dimensionality of the dataset 

before PCA, I grouped the fifty binary ratings of clinical symptoms and signs into twenty-five 

groups, by summing the number of present features in each group. Clinical feature groups were 

defined a priori as those that were very closely related or were grouped together in the 

diagnostic criteria. For example, I grouped apathy and inertia into an “apathy” feature group. A 

full list of clinical symptoms and signs and their groupings is shown in Table 2-1. The clinical 
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feature group scores, ACER and CBIR results were standardised into z scores then entered into 

a principal component analysis. Six principal components were then selected using Cattell’s 

criteria (Cattell, 1966). To help interpret the PCA I performed varimax rotation on the six 

principal components. Varimax rotation rotates the PCA to try to associate each variable 

(clinical feature, ACER or CBIR subscore) to only one principal component. Principal 

component analysis was performed using the pca and rotatefactors functions in MATLAB 

2018b. 

 

Finally, I looked at longitudinal change in clinical feature component scores in the subset of 

patients (n=46) who were reviewed twice. I converted follow up participant scores into z scores 

based on the baseline data, by matching each score to the respective z score in the baseline data. 

This ensured follow up participants were matched to the cross-sectional dataset. I then 

multiplied these standardised follow-up z scores by the baseline principal component 

coefficients to get follow-up principal component scores.  

 

All patients had a clinical phenotypic assessment but other measures (Addenbrookes Cognitive 

Examination - Revised and CBIR) were subject to missing data. Such missing data (6.32% of 

the total dataset) were imputed using trimmed scored regression as part of a published 

MATLAB toolbox (Folch-Fortuny et al., 2016) using the partial dataset of that participant as 

predictors. In this multiple imputation method, a principal component analysis model is created 

from the dataset, initially with all missing data replaced with zeros. Missing values are then 

iteratively replaced using a regression model until the model convergences on an optimal 

solution (Folch-Fortuny et al., 2015). The final principal components are then used to estimate 

and replace missing data points. The advantage of this method is it uses the relationship of the 

missing values to all other variables, as part of the latent structure of the dataset. The toolbox 

provides many different options for multiple imputation, but trimmed scored regression is 

recommended as the default approach (Folch-Fortuny et al., 2016). 

 

All statistical and imaging analysis was performed in MATLAB 2018b (MathWorks, USA) 

apart from ANOVA and Chi squared tests which were performed in JASP (version 0.9.2). 
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Table 2-1: Clinical features recorded for each individual in the PIPPIN study (features not included in cluster 

analysis and PCA not shown here). Prior to PCA, features were grouped according to the first column.  

  

Clinical feature group (for PCA) Symptom/Sign recorded at PIPPIN study assessment 

Behavioural disinhibition/impulsivity Socially inappropriate behaviour 

Loss of manners or decorum 

Impulsive rash careless action 

Apathy Apathy 

 Inertia 

Loss of sympathy/empathy Diminished response to other people’s needs and feelings 

 Diminished social interest, interrelatedness or personal warmth 

Stereotyped/compulsive behaviours Simple Repetitive movements 

Complex compulsive or ritualistic behaviour 

Stereotypy of speech 

Hyperorality/dietary change Altered food preferences 

 Binge eating, increased ETOH or Cigarettes 

 Oral exploration of inedible objects 

Executive dysfunction Deficits in executive tasks  

 Relative sparing of episodic memory  

 Relative sparing of visuospatial skills  

Asymmetrical parkinsonism Asymmetric limb rigidity 

 Asymmetric limb akinesia 

Asymmetrical dystonia Asymmetric limb dystonia 

Asymmetrical myoclonus Asymmetric limb myoclonus 

Symmetrical parkinsonism Symmetric limb rigidity 

Symmetric limb akinesia 

Symmetrical dystonia Symmetric limb dystonia 

Symmetrical myoclonus Symmetric limb myoclonus 

Axial rigidity Proximal rigidity more than peripheral 

 Axial rigidity or akinesia 

 Abnormal neck posture 

Poor response to L-dopa Poor or absent response to L-dopa 

Orobuccal apraxia Orobuccal apraxia 

Limb apraxia Limb apraxia 

Cortical sensory deficit Cortical sensory deficit 

Alien Limb  Alien Limb Syndrome 

Visuospatial deficits Visuospatial deficits 

Postural instability Postural instability with tendency to fall 

 Frequent unprovoked falls within 3 years 

 Tendency to fall on the pull test 

 >2 steps backwards on pull test 

Supranuclear gaze palsy Vertical supranuclear gaze palsy 

 Decreased velocity of vertical saccades 

Agrammatic/apraxic speech Agrammatism in language production 

 Effortful halting speech with inconsistent sound errors (AoS) 

 Impaired comprehension of syntactically complex sentences 

Impaired semantics Impaired confrontation naming 

 Impaired single word comprehension 

 Impaired object knowledge 

 Surface dyslexia or dysgraphia 

Logopenic speech Impaired single word retrieval in spontaneous speech and naming 

 Impaired sentence repetition 

 Phonological errors in spontaneous speech 

Motor neuron disease Clinical signs of motor neuron disease 
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Results 

The study team assessed in person 85% (310/365) of the patients identified as living in the study 

catchment area with a FTLD syndrome. A detailed epidemiological assessment of FTLD in the 

study area has previously been reported (Coyle-Gilchrist et al., 2016). Further demographic 

details of the whole PIPPIN study cohort, including the later recruitment period, are shown in 

Table 2-2.  

 

First, I assessed each patient against all the diagnostic criteria for FTLD syndromes. Sixty-two 

percent of patients (n=194) met the core diagnostic criteria for more than one syndrome, with 

patients meeting the inclusion criteria for two (n=112), three (n=69) or four (n=13) diagnoses 

(Figure 2-3A and B). The most commonly overlapping syndromes were PSP and CBS (n=76), 

bvFTD and either PSP (n=60) or svPPA (n=38) and nfvPPA with either CBS (n=56) or PSP 

(n=51).  

 

 

 

Figure 2-3: Venn Diagrams of diagnostic overlap in FTLD syndromes. The numbers in each oval refer to the 

number of patients who met the diagnostic criteria for those syndromes. 
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Second, I used cluster analysis to investigate how closely clinical features related to each other. 

Multidimensional scaling of clinical features (across all patients) broadly recapitulated the 

phenotypic clustering as represented by the classical phenotypes of each syndrome (Figure 2-4). 

However, there were also close links between signs conventionally associated with distinct 

diagnoses. For example, progressive behavioural change, apathy, inertia and impulsivity 

(typical of bvFTD), were close to symmetrical parkinsonism, falls, axial rigidity and a 

supranuclear gaze palsy (typical of PSP). Other features suggestive of bvFTD (socially 

inappropriate and compulsive behaviour and stereotypy of speech), were close to features 

typical of svPPA features (impaired naming, single word comprehension and object 

recognition). PSP and CBS features were closely linked, while speech apraxia, agrammatism 

and impaired syntactic comprehension (indicative of nfvPPA) overlapped with limb apraxia 

(indicative of CBS).  

 

 

 

Figure 2-4: Cluster analysis and multidimensional scaling of behavioural, language and motor impairments in 

FTLD. Each feature is colour coded by FTLD subtype, based on the primary diagnostic criteria which the symptom 

contributes to: red=bvFTD, blue=PSP-RS, green=CBS, purple=nfvPPA, orange=svPPA, yellow=lvPPA. The size 

of each point is scaled based on its prevalence in the cohort (larger icons have a higher prevalence). Symptoms 

from each FTLD syndrome cluster together, but many features are also closely located to those from other 

syndromes. 
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Third, I identified latent syndrome dimensions using principal component analysis of the 

phenotypic data. Six principle components were extracted using Catell’s criteria (Figure 2-5), 

each representing a group of covarying features (encompassing symptoms, signs, ACER and 

CBI scores, Table 2-3). These six components explained 58.52% of the variance in the dataset 

(Kaiser-Meyer-Olkin test for sampling accuracy=0.86). 

 

 

 

Figure 2-5: Scree plot from principal component analysis. Six principal components were selected according to 

Cattell’s criteria  

 

 

Syndrome dimension 1 (Figure 2-6A) reflected clinician and carer ratings of behaviour and 

personality change, with executive dysfunction, impulsivity and disinhibition, loss of empathy, 

stereotyped behaviours, hyperorality and dietary change, apathy, endorsements of abnormal 

behaviour, altered eating habits and stereotypic and motor behaviour subscales. This 

“behaviour” dimension was expressed strongly by patients with bvFTD, but also a high 

proportion of PSP, CBS and svPPA patients. Some patients in these latter groups had 

weightings similar to bvFTD. The second syndrome dimension (Figure 2-6B) reflected global 

cognitive function, with negative loadings from ACER subscores. Carer ratings of everyday 

function and memory also had positive loading onto this component (higher CBI score, 

reflecting greater impairment). There was wide variation in this dimension’s weighting across 

all groups, with higher scores reflecting worse cognitive impairment. 
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The third dimension (Figure 2-6C) reflected axial rigidity, postural instability and a 

supranuclear gaze palsy (positive loading) in the absence of semantic language impairments 

(negative loading). Thus, patients with typical PSP and typical svPPA lie at opposite ends of 

this dimension spectrum, with high and low scores respectively. However other groups had a 

spread of scores, many patients with corticobasal syndrome had very high scores (PSP-like). 

Some bvFTD had high scores indicating a PSP-overlap, while others had low scores, implying 

the presence of semantic impairment.  

 

Positive scores on syndrome dimension four (Figure 2-6D) represented asymmetrical 

parkinsonism, dystonia and myoclonus with cortical features of apraxia, cortical sensory loss 

and alien limb syndrome. Patients with corticobasal syndrome and a subset of patients with PSP 

had high scores in this dimension.  Dimension 5 (Figure 2-6E) represented language 

impairments, agrammatic, apraxic and logopenic speech with motor features (myoclonus and 

limb apraxia). Patients with CBS, nfvPPA, logopenic variant and mixed PPA had high 

weighting on this dimension, as did a small subset of those with clinical diagnoses of PSP and 

bvFTD. Dimension 6 explained less variance than the other components and represented 

primarily carer ratings of mood and abnormal beliefs (Figure 2-6F).  
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Figure 2-6: Principal component analysis scores of clinical features in FTLD syndromes. Six principal 

components (4A-F) were selected. 4A: Syndrome dimension 1 - Clinician and carer ratings of behavioural 

impairment. 4B: Syndrome dimension 2 - Global cognitive impairment (all ACER subscores). 4C: Syndrome 

dimension 3 - Supranuclear gaze palsy, postural stability and symmetrical rigidity (positive loading) and semantic 

language impairment (negative loading). 4D: Syndrome dimension 4 - Asymmetrical parkinsonism, dystonia, 

myoclonus with limb apraxia, cortical sensory loss and alien limb syndrome. 4E: Syndrome dimension 5 - 

agrammatic, apraxic and logopenic language impairments. 4F: Syndrome dimension 6 - carer ratings of low 

mood and abnormal beliefs. 
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Syndrome 

Dimension 

1 

Syndrome 

Dimension 

2 

Syndrome 

Dimension 

3 

Syndrome 

Dimension 

4 

Syndrome 

Dimension 

5 

Syndrome 

Dimension 

6 

Disinhibition 0.7399 0.0774 -0.0790 -0.1423 -0.1576 0.1102 

Apathy 0.5486 0.0763 0.4276 0.1221 -0.1919 0.1450 

Loss of empathy 0.7022 0.1278 0.0044 -0.0981 -0.1278 0.0205 

Stereotypy/compulsion  0.5789 0.2890 -0.3103 -0.1798 -0.0536 0.2444 

Hyperorality 0.6234 0.0459 -0.2198 -0.1270 -0.0932 0.0705 

Executive dysfunction 0.5458 0.1440 0.1176 -0.0176 -0.0476 0.3155 

CBI - Abnormal behav 0.7497 0.1251 -0.0348 -0.0545 -0.0898 -0.3164 

CBI - Mood 0.5485 0.1013 0.0039 0.1709 -0.0077 -0.5067 

CBI - Eating habits 0.7647 0.0394 -0.0486 -0.0500 -0.0074 -0.2188 

CBI - Sleep 0.4569 -0.0259 0.2813 0.1776 -0.0488 -0.4043 

CBI - Motor behaviour 0.7056 -0.0161 -0.1997 -0.1174 0.0726 -0.2513 

CBI - Motivation 0.7075 0.2981 0.1511 0.0500 -0.1157 -0.1488 

ACER - Attention -0.1510 -0.9002 0.0922 0.0463 -0.0248 0.0724 

ACER - Memory -0.1124 -0.8258 0.3410 0.1746 -0.0440 0.0770 

ACER - Fluency -0.1784 -0.7576 0.1183 0.1772 -0.0744 -0.1227 

ACER - Language -0.0805 -0.8460 0.3405 0.1337 0.0314 0.0238 

ACER - Visuospatial -0.0532 -0.8299 -0.1642 -0.1818 -0.0460 0.1518 

CBI - Memory 0.4864 0.5544 -0.2152 -0.0392 0.0199 -0.3158 

CBI - Everyday skills 0.4086 0.5214 0.3309 0.3198 0.0727 -0.1291 

Sym parkinsonism 0.0127 -0.0415 0.7676 -0.3673 0.0655 -0.0362 

Axial rigidity -0.0156 -0.1158 0.8077 0.0425 -0.0231 0.0669 

Poor l-dopa response -0.1307 -0.1057 0.6757 0.0873 -0.0629 -0.0536 

Postural instability -0.0504 -0.1069 0.7719 0.1690 -0.0640 -0.0241 

Supranuclear gaze palsy -0.0938 -0.1144 0.8132 0.1045 -0.0473 0.0526 

CBI - Self care 0.3459 0.3996 0.4524 0.3626 -0.0628 -0.0775 

Impaired semantics 0.1510 0.3067 -0.5187 -0.2377 0.0353 0.1970 

Asym parkinsonism -0.0652 -0.0843 0.0700 0.8343 -0.0627 0.0202 

Asymmetrical dystonia 0.0282 -0.0673 0.0899 0.8300 -0.0550 0.1061 

Asym myoclonus -0.0340 -0.0148 -0.0493 0.6830 0.1012 0.0621 

Limb apraxia -0.1292 -0.0590 0.1252 0.5274 0.5056 -0.0233 

Cortical sensory loss -0.1462 -0.0201 0.0584 0.5635 0.2569 -0.2505 

Alien limb syndrome -0.0363 -0.0066 0.0504 0.5423 0.0749 -0.1367 

Sym myoclonus -0.0658 -0.0350 0.0044 -0.0093 0.5132 -0.3228 

Agram/apraxic speech -0.1224 0.1231 -0.0369 0.1137 0.7667 0.2703 

Logopenic speech -0.0659 0.0268 -0.1180 -0.0461 0.7752 0.0415 

CBI - Beliefs 0.1830 0.2358 0.0220 -0.0019 0.0093 -0.5919 

Symmetrical dystonia 0.1134 0.1176 0.3325 -0.1741 0.2010 0.0008 

Orobuccal apraxia -0.1225 -0.0170 -0.0012 0.2822 0.3727 -0.0267 

Visuospatial deficits -0.1863 0.1862 -0.0106 0.2386 0.3650 -0.2559 

Motor neuron disease 0.2615 -0.1304 -0.1584 -0.0617 -0.1683 0.0556 
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Table 2-3 (previous page): Rotated component matrix from principal component analysis. ACER: Addenbrookes 

Cognitive Examination – Revised. CBI: Cambridge Behavioural Inventory. Positive loadings indicate worse 

performance or presence of symptoms, except for ACER where negative loadings indicate worse performance. 

Factor loadings above 0.4 or below -0.4 shown in bold. 

 

The final analysis considered the longitudinal change in the forty-six patients who were alive 

and assessed in both 2013-2014 and 2017-2018. The mean time between assessments was 3.6 

years (standard deviation 0.87 years). I compared patients with follow-up to those without. At 

baseline, patients with follow-up were younger (mean 67.0 vs 70.9, t=2.8, p=0.005) but had 

similar sex ratio and disease duration. Patients with follow-up had lower scores on syndrome 

dimension three (t=3.55, p<0.001) because fewer had PSP (Chi squared=3.94, p<0.05). The 

other dimensions scores at baseline were not different between patients with and without 

follow-up. Between first and second assessments there was progression in all syndrome 

dimensions across all groups. At the second assessment there was greater overlap between 

diagnostic groups, across all syndrome dimensions (Figure 2-7). More patients met two or more 

sets of diagnostic criteria (after removing mutual exclusivity criterion) at follow up (n=42) 

compared to baseline (n=33) (Chi squared statistic with Yates correction 4.618, p=0.031). An 

alternative visualisation of the longitudinal results is shown in Figure 2-8. Multidimensional 

scaling of baseline and follow up data shows individuals with different FTLD syndromes 

coalesce over time. For example, patients with svPPA (orange) became more like patients with 

bvFTD (red). Patients with nfvPPA (purple) moved closer to CBS (green) or bvFTD (red). 

Some bvFTD patients moved closer to PSP (blue) and some PSP patients moved closer to 

bvFTD. 
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Figure 2-7: Longitudinal phenotype information. A subset of patients were assessed at two timepoints. Each 

circle shows the 95% confidence intervals of the syndrome dimension scores for each FTLD subgroup at 

baseline and follow up. At follow up there was greater overlap across all FTLD syndromes in all syndrome 

dimensions. 

Figure 2-8: Multidimensional scaling of clinical phenotype with disease progression. 7A: Baseline data, 

individuals colour coded by FTLD syndrome subtype. 7B: Follow up data, lighter points show baseline data and 

an arrow to darker point showing position of individual, relative to the cross sectional population, at follow up. 
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Discussion 

In this chapter I used a data-driven analysis on results from an epidemiologically based study 

to show that frontotemporal lobar degeneration syndromes are not discrete in their clinical 

features (Figure 2-1A), but instead exist as a multidimensional spectrum (Figure 2-1B), with 

many patients displaying the diagnostic features for multiple diagnoses (Figure 2-3C&D). The 

dimensions of behaviour, movement and language features occur to varying degrees across all 

the major diagnostic groups associated with FTLD. Differences between groups were expressed 

by different weightings along a spectrum rather than by distinctive clinical or imaging features.  

 

Despite the continuity among patient phenotypes, the clinical syndromes are not random 

associations. This analysis revealed close associations between sets of cognitive, behavioural, 

language and motor symptoms and signs which are reminiscent of the classical phenotypes 

(Figure 2-4). For example, syndrome dimension three, which represents a supranuclear gaze 

palsy, falls, akinesia and preserved semantics, is readily identified as a pattern typical of PSP-

Richardson’s syndrome. However, forty-four percent of CBS patients expressed this pattern to 

the same degree as PSP patients. The recognition of such overlap has contributed to the 

development of intermediate diagnoses like PSP-CBS (Höglinger et al., 2017) and CBS-PSP 

(Armstrong et al., 2013a) but these results indicate that such overlap is common rather than 

exceptional. However not all potential intermediate phenotypes occur. For example, a 

supranuclear gaze palsy, axial and symmetrical limb rigidity rarely coexist with semantic 

impairment, a combination which has only previously been reported in patients with mixed tau 

and TDP43 pathology (Snowden et al., 2019). 

  

I propose that this spectral approach is critical to understand the biological basis of the complex 

clinical syndromes and to appropriately target future therapies. Rather than focus on the 

determinants of disease or its treatment by diagnosis, one can focus on the determinants and 

treatment of the syndromic dimensions, in whichever disease ‘group’ these dimensions are 

expressed.  To do otherwise risks the misdirection of a treatment or the dilution of the effects 

of aetiological factors, whether genetic, environmental, or aggregate of pathogenic proteins. In 

other words, one could understand and potentially treat the “PSP-like” features whether they 

occurred in clinically diagnosed PSP-Richardson’s syndrome, or CBS or bvFTD groups. I do 

not suggest that the current diagnostic criteria are invalid. Instead, these results highlight the 

limitations of a categorical approach to diagnosis when the disorders are inherently multivariate 

spectra in their clinical features. Indeed, the symptom-based data-driven cluster analysis 



Clinical phenotypes of FTLD syndromes 

48 

broadly reproduced the diagnostic criteria. But, the relative weightings on such clusters were 

graded, which highlights the difficulties when applying diagnostic criteria to some patients.  

 

I did not differentiate features that are salient to a clinician (e.g. supranuclear gaze palsy) from 

those that are salient to a relative or carer (e.g. behavioural disturbance, non-fluent aphasia or 

falls). This difference in perspective is relevant to diagnostic labelling. For example, a patient 

with apraxia, akinesia, dystonia and non-fluent agrammatic speech might be diagnosed as CBS 

or nfvPPA according to the dominant clinical features, but whose opinion on dominance matters 

most, the patient, carer or clinician? This is complicated further by the change in insight 

associated with many FTLD syndromes (O’Keeffe et al., 2007). A further complication for the 

categorical approach to diagnosis is the evolution of behavioural, motor or language features 

over time which raises the question of whether the diagnostic label should be changed or 

complimented by a secondary, parallel diagnosis. My approach resolves this issue by taking a 

transdiagnostic approach, which I consider in the next section.  

 

This data-driven approach identified close clustering of the clinical features and six latent 

syndrome dimensions that demonstrated the high degree of overlap across FTLD syndromes. 

Behavioural features were closely clustered and loaded onto one syndrome dimension. 

However, they also clustered near cognitive and motor symptoms/signs. Apathy and 

impulsivity had a close link, reflecting the fact that they often coexist, rather than representing 

opposite ends of a hyper-hypo-kinetic spectrum (Lansdall et al., 2017). Most patients had 

apathy, which lay near the centre of the multidimensional scaling plot (Figure 2-4), suggesting 

that it is related similarly to other features across FTLD syndromes. The behavioural syndrome 

dimension was expressed across multiple groups and was not restricted to the subset of the 

cohort with bvFTD (Figure 2-6A). Interestingly, not all patients with bvFTD had very high 

scores on this behavioural syndrome dimension. Those with lower behaviour scores, but a 

clinical diagnosis of bvFTD, may represent bvFTD with prominent apathetic/dysexecutive 

symptoms (O’Connor et al., 2017), or reflect more advanced disease, when many of the more 

florid behavioural changes are less pronounced (O’Connor et al., 2016). A proportion of 

patients with PSP and CBS had high scores on this syndrome dimension. Behavioural changes 

in PSP and CBS are well recognised (Burrell et al., 2014a), but are often thought to be mild. 

My findings suggest that behavioural impairments in PSP and CBS can very prominent, in fact 

some patients with PSP and CBS had higher scores on syndrome dimension one than some with 

bvFTD. Importantly, no other clinical feature had negative loading coefficients on syndrome 

dimension one, suggesting that behavioural features can coexist with all other FTLD-related 
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features. Global cognitive impairment was represented by syndrome dimension two. All the 

Addenbrookes Cognitive Examination subscores and carer ratings of everyday skills and 

memory loaded onto this dimension. However, the reasons for low ACER scores may vary 

depending on which other symptom profiles are expressed: a low score on the ACER could be 

due to progressive dementia or caused by severe behavioural (syndrome dimension one) or 

language (dimension five) or motor (dimension three and four) impairment, all of which would 

interfere with the test session. There was agreement between clinicians and patients’ relative or 

carer in ratings of behavioural and cognitive impairments (syndrome dimensions one and two). 

  

My results are also relevant to the current nosology of primary progressive aphasias. Semantic 

impairments loaded onto a different syndrome dimension and clustered separately from the 

language impairments associated with non-fluent and logopenic primary progressive aphasia. 

This provides partial support for the current distinction between svPPA and other forms of PPA. 

However, nfvPPA and lvPPA were not readily distinguished by the data-driven analysis – as 

has been noted in a previous independent cohort (Sajjadi et al., 2012). In contrast, patients with 

svPPA were similar to bvFTD in many respects (Figure 2-4), compulsive behaviours, 

stereotyped speech and simple repetitive habits were closely linked to semantic language 

impairments, including object recognition and single word comprehension (Harris et al., 2016). 

Other language features, such as impaired syntactic comprehension, agrammatism and speech 

apraxia, were closely related to CBS-like motor features (syndrome dimension 3), in CBS, PSP, 

and nfvPPA groups - in keeping with the well characterised overlap of non-fluent (Rohrer et 

al., 2010d, a) and apraxic (Josephs et al., 2006a, 2012) speech with PSP and CBS (Armstrong 

et al., 2013a; Respondek and Hoglinger, 2016; Peterson et al., 2018). The PPA diagnostic 

criteria require that language impairments are the most prominent clinical feature and the 

principle cause of difficulty with ADLs. This may not be the case in some patients with svPPA; 

although clinicians may note prominent semantic impairments, co-existent behavioural 

impairment may be more conspicuous to relatives or carers and have a greater impact on 

independence and daily living.  In addition, I report the practical difficulties applying the current 

PPA diagnostic criteria. In this epidemiological-based cohort nineteen patients met criteria for 

primary progressive aphasia (Gorno-Tempini et al., 2011) but not one of the PPA subtypes. The 

current diagnostic criteria are stringent and require the presence and absence of multiple 

language features. Patients with language symptoms may have very isolated deficits (Josephs 

et al., 2012) or at the other extreme multiple impairments which span more than one PPA 

subtype, even at diagnosis (Utianski et al., 2019). 
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Longitudinal analysis in a subset of patients revealed that overlap between FTLD phenotypes 

increases with disease progression. A greater number of patients met the criteria for several 

FTLD subtypes compared to the first assessment and there was greater overlap between all 

syndrome dimensions (Figure 2-7). A transdiagnostic approach allows disease progression, 

manifesting as worsening clinical features, to be more accurately measured. Assessing FTLD 

syndromes in isolation, without reference to the whole FTLD syndrome spectrum, risks missing 

evolving signs of other FTLD syndromes and therefore underestimating disease severity. The 

time between the two phenotypic assessments was relatively long (mean 3.6 years) given the 

mean survival in FTLD syndromes (Coyle-Gilchrist et al., 2016); therefore these  results may 

be biased towards patients with more slowly progressive disease.  

 

A strength of these results is that they are embedded within an epidemiological cohort study 

which improves their external validity. Previous studies of these disorders may have been 

influenced by low sample sizes and selection bias, by focussing only on patients at earlier 

disease stages who are well enough to attend subspecialist research centres for detailed 

phenotypic assessment. The representativeness in the PIPPIN study may partly explain why 

many patients lay across diagnostic criteria.  

 

These results have several limitations. Applying multiple diagnostic criteria across all patients 

raises challenges. For example, the criteria can include an exclusion clause, that the illness is 

not better explained by another diagnosis. I lifted this criterion and applied the clinical features 

to the other positive and negative criteria. Patients may have symptoms or signs that do not 

quite reach the threshold needed to meet a diagnostic criterion. The PIPPIN study approach was 

to try to apply the same threshold in all groups, in asserting the presence of a symptom or sign. 

The assessment of clinical features was also cross sectional, rather than a retrospective estimate 

of presenting features. Some of the diagnostic criteria (e.g. for PPA (Gorno-Tempini et al., 

2011)) refer to the dominance of a symptom cluster (eg language disorder) at presentation. This 

sounds straightforward, but the time of presentation varies widely, is often late (Coyle-Gilchrist 

et al., 2016), and is partially dependent on variations in healthcare services, referral pathways 

and public awareness of symptoms’ significance (Bradford et al., 2009). These factors interfere 

with the ability of symptomatology to inform the diagnosis and likely pathology, especially in 

overlap syndromes such as CBS-NAV, or PSP-F. Genetic information could further inform the 

multivariate analysis of phenotype, mindful that while bvFTD has a strong genetic component, 

svPPA and PSP do not (Rohrer et al., 2009). This transdiagnostic approach to FTLD may not 

be appropriate in all situations, for example trials of treatments targeting at a specific 
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proteinopathy. Currently there are no robust biomarkers that can differentiate between, for 

example FTLD-tau and FTLD-TDP43 (Meeter et al., 2017; Bevan-Jones et al., 2018), and 

current trials focus recruitment on subsets of patients with strong clinicopathological correlation 

like PSP-RS (Boxer et al., 2019). However, this limits patient access to drug trials, given the 

poor clinicopathological correlation in the majority of FTLD syndromes. Emergence of more 

accurate biomarkers, whether PET, CSF or blood based (Meeter et al., 2017; Leuzy et al., 

2019), may allow a more transdiagnostic approach. This would facilitate accurate drug targeting 

while maximising power and generalisability of results.  

 

Another limitation is the missing data in my results. Some patients were missing an ACER or 

CBI, although this represented only a small percentage of the overall dataset (6.32%). The 

problem of missing data is common in large, observational cohorts like the PIPPIN study and 

no statistical solution is without limitations and risk of bias (Sterne et al., 2009). Missing data 

can be missing completely at random  (no systemic difference between missing and observed 

data), missing at random (systematic differences between can be explained by other observed 

variables) or missing not at random (systematic differences unexplained by observed data) 

(Sterne et al., 2009). I used imputation, which estimates and replaces missing data based on the 

relationship between variables in participants with a complete dataset. This approach risks bias 

if data is not missing at random. For example, if patients had missing data due to more severe 

cognitive impairment, then imputation will inaccurately overestimate their true result. The 

PIPPIN study team attempted to visit all patients irrespective of disease severity (including in 

care homes) to mitigate the risk of missing data occurring not at random. 

 

Research related to disease nosology often raises the issue of whether to ‘lump’ disorders 

together or to ‘split’ them into subtypes (Darwin et al., 1877; Scaravilli et al., 2005). There may 

be occasions where the decision to lump or split aids insight into the neurobiology of disease. 

But, lumping and splitting can also obscure insights. I propose an alternative approach, with 

data-driven spectral analyses, that neither lump nor split arbitrarily, but allow phenotypic and 

imaging variance to elucidate the pathogenesis of cognitive syndromes. Genetic information 

could further inform the multivariate analysis of phenotype, mindful that while bvFTD has a 

strong genetic component, svPPA and PSP do not (Rohrer et al., 2009). A final limitation is the 

potential for multiple pathologies, in which several pathogenic protein inclusions may co-exist 

and be synergistic in neurodegeneration (Robinson et al., 2018).  
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Patient categorisation and selection should depend on the study or question of interest (Husain, 

2017; Coulthard and Love, 2018), but for symptomatic treatment and the assessment of 

diagnostic biomarkers data-driven axes of disease may be more relevant outcomes. Whilst 

phenotypic variance is ‘noise’ in category-based analysis of disease and treatment effects and 

undermines the observation of effects, the same variance can be informative through 

multivariate analyses like PCA. The adoption of such a data-driven approach provides a 

comprehensive framework with which to understand disease progression and heterogeneity, 

analogous to the Research Dimension Criteria used in psychiatric diseases. 

 

In this chapter I have presented evidence from a transdiagnostic, data-driven approach to the 

clinical phenotypes in syndromes associated with FTLD. I show that the syndromes associated 

with frontotemporal lobar degeneration (FTLD) are not discrete in their clinical features but 

instead exist as a multidimensional spectrum. Patients often present diagnostic features of 

multiple disorders, while the dimensions of behaviour, movement and language features are not 

confined to specific diagnostic groups. 
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Brain morphometry of frontotemporal 

lobar degeneration syndromes 

Preface 

This chapter forms part of manuscript which is in preparation (Murley et al., 2020a). The 

clinical assessments in this chapter were performed by Dr Ian Coyle-Gilchrist between 2013 

and 2015 and by me between 2016 and 2018. A large group of researchers (listed as co-authors 

on the above paper) at the Cambridge Centre for FTD and Related Disorders assisted with 

participant identification, recruitment and testing. I performed all the data analysis in this 

chapter, with help from Dr Kamen Tsvetanov and Simon Jones. The text was written by me, 

with input from co-authors on the manuscript. 

 

Summary 

In this chapter, I use in vivo MRI imaging results from the PIPPIN study to investigate the brain 

morphometry of the frontotemporal lobar degeneration (FTLD) syndromes. Using source-based 

morphometry I identify patterns of co-varying brain atrophy that are represented across groups. 

Canonical correlation analysis of syndrome dimensions and imaging components show three 

key brain-behaviour relationships that reveal a continuous spectrum across the cohort, rather 

than discrete diagnostic entities. These results support a transdiagnostic, multidimensional 

approach to the FTLD syndrome spectrum by showing atrophy patterns are associated with the 

clinical syndrome dimensions reported in Chapter 2. 

 

  



Brain morphometry of FTLD syndromes 

54 

  



Chapter 3 

55 

Introduction  

Frontotemporal lobar degeneration pathology is associated with varying patterns of brain 

volume loss. Typically, FTLD causes grey and white matter atrophy in the frontal and temporal 

lobe but can also affect the parietal lobe and subcortical structures including the basal ganglia, 

thalamus and brainstem. Even within FTLD syndrome subtypes, the pattern and severity of 

brain atrophy varies. In this chapter, I investigate how this heterogeneity in brain morphometry 

relates to the heterogeneity in clinical phenotypes I reported in the previous chapter. 

 

Progressive brain volume loss from neuronal loss due to misfolded protein accumulation is a 

feature of all neurodegenerative disease, including frontotemporal lobar degeneration (O’Brien 

et al., 2001; Ridha et al., 2008). This atrophy, which can be measured in vivo with magnetic 

resonance imaging (MRI), correlates well with neuropathology disease severity and 

distribution, and can be considered a surrogate in vivo measure of neuropathology (Whitwell et 

al., 2005, 2008). MRI can therefore be used to understand the disease mechanisms underlying 

clinical phenotypes, as structural brain images can be correlated with a participant’s cognitive, 

behavioural and motor deficits at the time of the scan. MRI measures of brain volume are also 

well validated biomarkers of disease progression (Gordon et al., 2010, Whitwell et al., 2017a, 

2019; Staffaroni et al., 2019), and often used as secondary endpoints in clinical trials (Höglinger 

et al., 2014; Desmarais et al., 2019).  

 

There is significant variation, as with clinical phenotype, in brain morphometry within FTLD 

syndromes which reduces the accuracy of MRI as a diagnostic and prognostic biomarker. 

Within an FTLD syndrome subtype, the severity of atrophy varies widely across participants at 

the same temporal disease stage, which may explain differences in clinical phenotype 

(Ranasinghe et al., 2016b; Staffaroni et al., 2019). Recent studies have used volumetric MRI to 

explain mechanisms underlying phenotypic differences within FTLD syndrome subtypes 

(Whitwell et al., 2009b, Ranasinghe et al., 2016b; Jabbari et al., 2019) but there is limited 

evidence on how changes in brain volume across the FTLD syndrome spectrum relate to clinical 

phenotype. For example, midbrain atrophy is a useful biomarker for diagnosis and progression 

of PSP-RS. However, this may not be true for other clinical phenotypes associated with FTLD-

tau-PSP pathology (Jabbari et al., 2019). Using a transdiagnostic approach to the FTLD 

syndrome spectrum, as I suggested in the previous chapter, would be supported by 

understanding how brain morphometry varies across the FTLD syndrome spectrum.  
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Better understanding of the brain changes of FTLD, and how they relate to clinical phenotype, 

could help stratify patients and support development of therapeutic trials. 

 

Many structural MRI studies have already identified classical patterns of brain morphometry 

associated with FTLD syndromes. Most have investigated FTLD subgroups in isolation, or 

further fractionated them into smaller subsets based on different atrophy patterns. Combined 

studies of several FTLD syndromes have tended to focus on brain regions that separate FTLD 

syndromes, rather than looking for shared atrophy patterns. Behavioural variant frontotemporal 

dementia (bvFTD) is associated at early stages with bilateral frontal paralimbic and insula 

atrophy (Seeley et al., 2008, Whitwell et al., 2009a, Rohrer et al., 2015b) which over time 

progresses to involve bilateral frontal and temporal lobes (Pan et al., 2012; Canu et al., 2017; 

Meyer et al., 2017), the anterior cingulate cortex (Rosen et al., 2002; Schroeter et al., 2007) 

and subcortical structures including basal ganglia (Schroeter et al., 2007), thalamus (Bocchetta 

et al., 2018), habenula (Bocchetta et al., 2016) and cerebellum (Meeter et al., 2017, Chen et al., 

2018b). However, patterns of atrophy in bvFTD vary between individuals. Analysis of large 

cohorts of patients with bvFTD have identified several anatomical subtypes (Whitwell et al., 

2009b, Ranasinghe et al., 2016b) and different genetic mutations are also associated with 

distinct atrophy patterns (Whitwell and Josephs, 2012; Whitwell et al., 2012; Cash et al., 2018) 

For example, patients with MAPT mutations often have severe bilateral anterior temporal lobe 

atrophy (Whitwell et al., 2012; Ghetti et al., 2015), GRN mutations may cause asymmetrical 

cortical atrophy (Le Ber et al., 2008, Rohrer et al., 2010b) and C9orf72 is associated with 

symmetrical and global cortical, subcortical and cerebellar atrophy (Cash et al., 2018), which 

initially may be relatively mild (Devenney et al., 2014). Semantic variant primary progressive 

aphasia (svPPA) classically causes severe left anterior temporal lobe atrophy (Mummery et al., 

2000; Galton et al., 2001) but there is also atrophy in the orbitofrontal, insula and anterior 

cingulate cortices (Rosen et al., 2002). svPPA can be associated with severe asymmetric right 

temporal lobe atrophy which has a different clinical phenotype, with greater behavioural 

impairments, prosopagnosia and social cognitive deficits (Chan et al., 2009; Kumfor et al., 

2016). Patients with non-fluent variant primary progressive aphasia (nfvPPA) have relatively 

minimal atrophy at early disease stages, with atrophy confined to the left inferior frontal gyrus 

and insula (Raisner et al., 2005, Cope et al., 2017a). The typical structural MRI finding in 

progressive supranuclear palsy is midbrain atrophy, which correlates with disease progression 

(Dutt et al., 2016, Whitwell et al., 2017a, 2019) and results in the “hummingbird” sign due to 

atrophy of the dorsal midbrain (Mueller et al., 2018). Other subcortical structures affected by 
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PSP include the thalamus, basal ganglia and cerebellum (Cordato et al., 2002, Josephs et al., 

2008a; Stezin et al., 2017). However, PSP is also associated with cortical atrophy, especially 

the frontal lobes, including the premotor and prefrontal cortices (Cordato et al., 2002; Brenneis 

et al., 2004). The different PSP syndrome subtypes (eg PSP-RS, PSP-F, PSP-CBS) have 

different patterns of brain atrophy (Jabbari et al., 2019).   Atrophy in corticobasal syndrome is 

typically asymmetrical and affects both cortical and subcortical structures, including the frontal, 

temporal, parietal and occipital lobes, basal ganglia, thalamus and brain stem (Gröschel et al., 

2004; Arai, 2006; Boxer et al., 2006, Josephs et al., 2008a, 2010; Whitwell et al., 2010, Lee et 

al., 2011b; Dutt et al., 2016; McMillan et al., 2016; Upadhyay et al., 2016; Di Stasio et al., 

2019). The clinical phenotype heterogeneity, varying neuropathology and asymmetric atrophy 

in CBS can make it difficult to identify common regions of atrophy. 

 

Aims and hypotheses 

The aim of this chapter was to use a transdiagnostic approach to assess the brain morphometry 

of FTLD syndromes. I tested the hypothesis that the multivariate clinical spectrum of FTLD 

associated disorders, which I discussed in the previous chapter, can be mapped to multivariate 

regional structural brain change. Moreover, I predicted that clusters of symptoms would be 

associated with a specific pattern of brain atrophy, and the extent to which a patient has this 

atrophy pattern determines the severity of the associated symptoms. I hypothesised that the 

patterns of phenotype-atrophy associations would be spread across FTLD syndrome subtypes, 

instead of each FTLD syndrome forming discrete clusters. 
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Methods 

Data acquisition 

One hundred and thirty-nine patients (bvFTD n=28, nfvPPA n=15, svPPA n=5 PPA n=10, PSP 

n=53, CBS n=22) from the PIPPIN study were scanned at the Wolfson Brain Imaging Centre, 

University of Cambridge on a Siemens 3T system. Structural magnetic resonance imaging was 

performed using a T1-weighted magnetisation-prepared rapid acquisition gradient echo 

(MPRAGE) sequence (TR=2000ms,TE=2.93ms, TI=850ms, FA=8°, 208 slices, 1.1mm 

isotropic voxels).  Images were pre-processed using SPM12. First, images were segmented into 

grey and white matter except the “old segment” function, because during initial analysis I found 

the “new segment” function did not accurately segment the MPRAGE images. Grey and white 

matter segments were combined to make whole brain images for further analysis. The DARTEL 

pipeline was used to create a study specific template using all images.  Images were then 

transformed to MNI space with modulation and 8mm isotropic full width at half maximum 

Gaussian smoothing. An explicit mask was created from unmodulated images using the 

Masking toolbox with 50% consensus from 0.15 threshold (Ridgway et al., 2009). Age, sex and 

total intracranial volume (TIV) were included in a multiple regression and regressed out of the 

data. Source based morphometry was used on the residual images to identify covarying 

networks of grey and white matter atrophy, further details of this step are given in the statistics 

paragraph.  

 

Data analysis  

There are many methods that enable morphometric analysis of structural MRI images. The most 

widely used is voxel-based morphometry (VBM). VBM was first developed at the Institute of 

Neurology at University College London with the Statistical Parametric Mapping (SPM) 

software (Ashburner and Friston, 2000). In brief, VBM spatially normalises all brains in a study 

to the same space, segments and smooths grey and white matter images and then performs 

statistical analysis to localise between-group differences (Ashburner and Friston, 2000). VBM 

is a mass-univariate statistical technique, meaning the statistical test, a general linear model, is 

repeated for every brain voxel. The results are then corrected for multiple comparisons  and a 

map of statistical results is superimposed on an average brain image (Ashburner and Friston, 

2000). A commonly used alternative approach is to measure cortical thickness with the 

FreeSurfer software, which again uses a mass univariate technique to compare groups.  VBM 

is well validated but does have several limitations. It does not reveal any information on 
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relationships between voxels and will only reveal voxels for which there is a specified statistical 

result.  

 

An alternative approach, which I used in this study, is source based morphometry (SBM) (Xu 

et al., 2009). SBM is a multivariate, data-driven approach that uses independent component 

analysis (ICA) to identify covarying regions of atrophy (Xu et al., 2009; Tharwat, 2018). These 

patterns of brain atrophy can be used to look for group differences in brain structure or reveal 

brain mechanisms associated with different clinical phenotypes. SBM has been used to report 

the brain morphometry of neurodevelopment (O’Muircheartaigh et al., 2014), evolution (Hecht 

et al., 2019), ageing (Hafkemeijer et al., 2014), autistic spectrum disorders (Itahashi et al., 

2015), schizophrenia (Palaniyappan et al., 2015), multiple sclerosis (Steenwijk et al., 2016) and 

Parkinson’s (Rektorova et al., 2014), Huntington’s (Coppen et al., 2016) and Alzheimer’s 

(Willette et al., 2014) disease. 

 

I used the GIFT software package to perform source based morphometry (Xu et al., 2009). 

Source based morphometry was performed on the residual values from the pre-processed 

images (see data acquisition section for details). I extracted 15 independent components of 

covarying brain atrophy. ICASSO (Himberg and Hyvärinen, 2003) was performed 100 times 

to test the reliability of these components. Next, I looked at the relationship between clinical 

phenotype and brain atrophy. I used canonical correlation analysis (CCA) to identify canonical 

variates between the six principal components from the clinical feature data and the fifteen 

components from the imaging analysis (Tsvetanov et al., 2018). All inputs were standardised 

into z scores before CCA. Pearson’s correlations were corrected for multiple comparisons by 

estimating the false discovery rate using the mafdr function in MATLAB 2018b. 
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Figure 3-1: Schematic of data processing. First, patients were recruited from the study catchment area for 

phenotypic assessment and structural brain imaging. Second, a cluster analysis was performed on clinical features. 

Third, I performed a principal component analysis on all clinical features to find latent syndrome dimensions 

across FTLD. Fourth, I used source-based morphometry (independent component analysis on grey and white 

matter) created atrophy components. Finally, I then explored the relationship between phenotype (syndrome 

dimensions from the principal component analysis) and brain structure (source-based morphometry imaging 

components) using canonical correlation analysis. 
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Results 

A subset of one hundred and thirty-nine patients (bvFTD n=28, nfvPPA n=15, svPPA n=5 PPA 

n=10, PSP n=53, CBS n=22) in the PIPPIN study had an MRI scan. The scanned subset of 

participants was similar to the population without a scan, with no statistically significant 

differences in age (t=0.65, p=0.52), sex (X2=2.8, p=0.1), disease duration (t=0.69, p=0.49) or 

scores on syndrome dimensions 1,2,3,5, and 6 (all p>0.05 uncorrected). The differences in 

syndrome dimension 4 (t=2.41, p=0.016) indicated less severe global cognitive impairment in 

those who were scanned. Source based morphometry revealed fifteen significant structural 

components, each representing a pattern of covaried atrophy (Figure 3-2). The components had 

high stability across 100 ICASSO runs (mean=0.981, standard deviation=0.004).  

 

 All 

groups 
bvFTD nfvPPA svPPA PPA# PSP CBS p* 

Clinical phenotyping 

(n) 
310 64 36 25 16 101 68 ns 

MRI scan 

(n, % of phenotyped) 

133  

(43) 

28 

(44) 

15 

(41) 

5 

(20) 

10 

(62) 

53 

(52) 

22 

(32) 
ns 

Age 

(years, mean and SD) 

69.98 

(7.52) 

66.11 

(7.89) 

71.95 

(7.20) 

69.75 

(3.86) 

58.58 

(7.50) 

72.16 

(6.7) 

69.29 

(8.17) 
0.019 

Male/Female 60/70 14/14 5/9 0/5 6/4 22/29 13/9 ns 

Duration of symptoms 

(years, mean and SD) 

4.53 

(2.87) 

4.11 

(2.79) 

4.63 

(2.56) 

5.48 

(2.90) 

3.82 

(1.61) 

4.82 

(3.45) 

4.46 

(2.18) 
0.031 

Diagnosis to study 

(years, mean and SD) 

1.16 

(1.23) 

0.59 

(0.62) 

1.73 

(1.36) 

2.05 

(1.22) 

1.51 

(1.41) 

1.10 

(1.17) 

1.33 

(1.52) 
ns 

Table 3-1: Demographics of the sub-set of the study cohort who underwent MRI. #lvPPA n=7, mixed PPA n=9. 

*P values are the result of ANOVA or Chi sqaured test for each row on FTLD subgroups, ns= not significant 

(p>0.05). 

The loadings on these imaging components were not confined to single diagnostic groups 

(Figure 3-2). Imaging components one and two related to the frontal and prefrontal cortex; 

patients with bvFTD tended to have low scores on these components (i.e. atrophy), but many 

patients with nfvPPA, PSP and CBS also had low scores indicating a frontal cortical atrophy. 

Component three, with bitemporal atrophy, had very strong negative scores in all svPPA 

patients, but also many bvFTD patients. Component six represented atrophy in the motor cortex, 

with low scores in a subset of patients from all groups. Some participants with CBS, nfvPPA 

and PPA had negative scores on imaging component eight, which reflected biparietal atrophy. 

Only a few patients had significant atrophy in the occipital lobe, reflected by components nine 

and ten. Cerebellar atrophy, reflected by components eleven and twelve, was seen in some 

patients with bvFTD, PSP and CBS. Imaging component thirteen represented the volumes of 

corticospinal tracts and basal ganglia. Many patients with PSP, but also some patients with 

bvFTD, CBS and nfvPPA had low scores on this component. Component fourteen represented 

brainstem atrophy, with large negative scores in PSP and CBS but also some nfvPPA patients. 
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Figure 3-2: Source based morphometry of structural MRI images. Fifteen components were selected using the 

GIFT toolbox. Loadings for each voxel onto each component were standardised into z scores, thresholded at 1.96 

and plotted onto an average brain from all participants. Sagittal, coronal and axial sections are shown for each 

component. A scatterboxplot for each component shows the score for each participant, grouped by FTLD subtype. 

Negative scores represent low brain volumes for that participant in the region represented by that component. 

 

Next, I looked for structure-function correlations between the clinical and imaging components 

(Figure 3-3). Since both cognition and atrophy are intrinsically multivariate, I used canonical 

correlation analysis between the six cognitive dimension and fifteen atrophy components. Three 

canonical correlations were selected for further analysis (each p<0.05, rejecting the null 

hypothesis that the canonical correlation is zero). The first canonical correlation (R=0.81, 

p<0.001) represented the association between motor impairments (syndrome dimensions three 

and four) and relatively preserved cognition (syndrome dimension two) with motor cortex and 

brain stem atrophy (atrophy components six and fourteen). Patients with PSP, CBS and some 

patients with bvFTD had positive loadings, while patients with primary progressive aphasia 

(notably the svPPA subtype) and some with bvFTD had negative loadings (Figure 3-3).  Four 

of the six FTLD subgroups had significant correlations in this canonical correlation: PSP 

(Pearson’s  R:0.33, p:0.03), CBS (R:0.81 p:<0.001), bvFTD R:0.70 p:<0.001) and nfvPPA 

(R:0.74 p:0.03) .  
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The second canonical correlation (R=0.71, p<0.001) represented another spectrum of cognitive 

and motor phenotypes correlating with different patterns of brain atrophy (B). Positive loadings, 

most common in bvFTD, svPPA and a subset of PSP, were associated with behavioural 

impairment (syndrome dimension 1) correlating with atrophy in the frontal and temporal lobes 

(atrophy components 1 and 3). Negative loadings, predominantly seen in CBS and a few 

patients with nfvPPA and mixed PPA,  were associated with   global cognitive impairment, 

apraxia, cortical sensory loss and language impairments correlating with atrophy in the parietal 

cortex (atrophy components 7 and 8).bvFTD (R=0.49, p=0.02), nfvPPA (R=0.79 p=0.001) and 

CBS (R=0.7, p=0.001) most contributed to this canonical variate.  

 

The third canonical correlation (R=0.58 p<0.001) represented a combination of behavioural, 

cognitive and motor symptoms in association with atrophy in motor and parietal cortices, basal 

ganglia and brainstem (Figure 3-3). This canonical correlation had positive loadings across a 

wide range of diagnoses, with no clear group separation. This canonical variate was driven by 

CBS (R=0.62 p=0.005), PSP (R=0.54 p<0.001) and PPA (R=0.87 p=0.002) subgroups with a 

weaker contribution from svPPA (R=0.91, p=0.048). The three residual, unselected canonical 

covariates did not correlate in any FTLD subgroup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3 (on next page): Canonical correlation analysis of clinical (syndrome dimensions from PCA) and imaging 

(atrophy components from SBM) components. The left column shows the loading plots from each syndrome domain 

onto the first, second and third clinical canonical components respectively. The right column shows the atrophy 

component loadings onto the imaging canonical components. The middle plots show the correlations between the 

clinical and imaging components. The table shows the correlations for each subgroup. P values are false discovery 

rate corrected for multiple comparisons and p<0.05 highlighted in blue. 
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Discussion 

In this chapter, I used a data-driven analysis of frontotemporal lobar degeneration syndromes 

to confirm the hypothesis that individual atrophy patterns are not confined to specific diagnostic 

groups, but instead exist as a multidimensional spectrum that matches the spectrum of clinical 

phenotypes reported in the previous chapter.  

 

The imaging cohort was generally representative of the whole FTLD population, with similar 

weightings across five out of six dimensions and demographics. Participants who underwent 

MRI were less affected in the global cognitive impairment syndrome dimension, likely due to 

the practical difficulties of scanning participants with advanced dementia. Frontal lobe atrophy 

patterns were seen in participants from all groups, especially bvFTD and PSP. Subcortical 

atrophy was more prevalent in PSP and CBS but was also seen in bvFTD and PPA, and a 

majority of bvFTD patients had negative scores on the basal ganglia imaging component. This 

has been noted previously in symptomatic bvFTD and PPA (Schroeter et al., 2007; Bocchetta 

et al., 2018), and those at genetic risk of FTD (Rohrer et al., 2015b). Brainstem atrophy, while 

characteristic of PSP (Whitwell et al., 2017a), was also seen in some patients with CBS and 

nfvPPA, but this has previously been shown not to predict PSP pathology (Whitwell et al., 

2013).  The source based morphometry approach also revealed a group of patients who are not 

well accommodated in the current diagnostic criteria. Five patients with a nominal diagnosis of 

bvFTD had very low scores on the right temporal lobe imaging component, and these might 

better be called the right variant of semantic dementia, which causes a combination of 

behavioural and semantic impairments with prosopagnosia (Chan et al., 2009; Kumfor et al., 

2016). A subset of patients with CBS and mixed PPA had negative scores on component 8, 

indicating posterior cortical atrophy. These patients may speculatively be more likely to have 

Alzheimer’s Disease pathology (Lee et al., 2011b). 

 

Many studies have correlated clinical syndromes with structural change, using computational 

morphometry on volume, thickness, curvature or cortical diffusivity. Typically, these compare 

patient groups to each other or to controls, to reveal group-based patterns of atrophy in bvFTD 

(Schroeter et al., 2007; Whitwell et al., 2012, Ranasinghe et al., 2016b; Meeter et al., 2017, 

Perry et al., 2017a, Chen et al., 2018b; Illán-Gala et al., 2019), svPPA (Raisner et al., 2005; 

Schroeter et al., 2007; Kumfor et al., 2016), nfvPPA (Raisner et al., 2005; Schroeter et al., 

2007; Santos-Santos et al., 2016), PSP (Brenneis et al., 2004; Lagarde et al., 2013; Piattella et 

al., 2015; Dutt et al., 2016, Whitwell et al., 2017a, 2019) and CBS (Josephs et al., 2010; 

Whitwell et al., 2010; Dutt et al., 2016). However, these previous methods are limited by the 



Brain morphometry of FTLD syndromes 

68 

categorical approach to diagnosis. In order to reveal the associations between phenotypic 

features and structural change, across diagnostic groups, I used source based morphometry to 

identify regions of covarying atrophy patterns (Xu et al., 2009).  

 

I identified three significant canonical “structure-function” correlations in the cohort (Figure 

3-3). These represent the spectrums of anatomical change underlying behavioural, motor and 

language impairments. These structure-function correlations did not replicate classical 

nosological distinctions. Instead they provide an alternative data-driven approach with which 

to understand and target treatments for syndromes associated with FTLD. The first canonical 

correlation found an association between motor cortex and brainstem atrophy with PSP or CBS-

like motor impairments. Unsurprisingly, PSP and CBS had significant correlations between 

these canonical covariates but so did bvFTD and nfvPPA, reflecting the motor impairments that 

are seen in a subgroup of these patients. The second canonical correlation represented the 

spectrum between frontotemporal (positive scores) and posterior cortical atrophy (negative 

scores). This canonical covariate may differentiate FTLD from Alzheimer’s disease pathology, 

as negative scores on this imaging covariate resemble an AD-like atrophy pattern. The third 

canonical covariate was associated with significant correlations in all FTLD subgroups apart 

from bvFTD, and encompassed a range of cognitive, behaviour and motor clinical features 

associated with cortical and subcortical atrophy. 

 

There are several limitations with these results. First, the brain metrics I used are only crude 

measures of atrophy. Other brain measures, of brain elasticity , white matter tracts (Mahoney 

et al., 2015; Staffaroni et al., 2019), tau burden (Passamonti et al., 2017, Whitwell et al., 2017b; 

Bevan-Jones et al., 2020), synaptic density (Chen et al., 2018a), physiology (Hughes et al., 

2018a; Sami et al., 2018) and functional connectivity (Seeley et al., 2009; Rittman et al., 2019; 

Tsvetanov et al., 2019) may enrich the source based morphometric approach, integrating PET 

markers of pathology (Passamonti et al., 2019) or spectroscopic measures of the 

neurotransmitter deficits in FTLD (Kantarci et al., 2010; Murley and Rowe, 2018). Second, the 

syndrome dimensions used in the analysis are broad, for example syndrome dimension 1 relates 

to global behavioural disturbance and syndrome dimension 2 to global cognitive impairment. 

The syndrome-atrophy correlations in this chapter are similarly broad. Including more detailed 

neuropsychology would give greater information on the neurobiology of specific behavioural 

and cognitive deficits which may have greater relevance for targeted symptomatic treatments.  
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Another limitation is the potential for heterogeneous and/or multiple pathologies, in which 

several pathogenic protein inclusions may co-exist and be synergistic in neurodegeneration 

(Robinson et al., 2018). The results in this and the previous chapter would be strengthened by 

neuropathological results, to test the phenotype-pathology and atrophy-pathology correlations 

of FTLD. 
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Neuropathology of the frontotemporal 

lobar degeneration syndrome spectrum 

Preface 

The brain donation, tissue preparation and neuropathological assessment was performed by 

members of the Cambridge Brain Bank, including the lead neuropathologist Dr Kieran Allison. 

I performed all the data analysis and wrote all the text in this chapter. Some of the results shown 

here are included in supplementary materials of this manuscript in preparation (Murley et al., 

2020a) 

 

Summary 

In this chapter, I report the interim neuropathological results from the PIPPIN study, which 

replicate the clinicopathological correlations in other FTLD cohorts. I go on to show the 

neuropathological correlations of the syndrome dimensions, atrophy components and 

phenotype-atrophy correlations reported in the previous two chapters. I then look at the 

accuracy of classifiers (linear discriminant analysis and decision trees with leave-one-out cross 

validation) to predict the major neuropathology subtypes (FTLD-tau vs. FTLD-TDP43 vs. AD). 

The syndrome dimensions are marginally more accurate than current syndrome labels (overall 

accuracy 77% vs 67%).  
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Introduction 

The neuropathology of FTLD is heterogeneous and clinicopathological correlations are 

inconsistent. Some syndromes associated with FTLD have good specificity, for example PSP-

Richardson’s Syndrome (PSPRS) for FTLD-tau or svPPA for TDP43. However, syndromes 

with high specificity may have poor sensitivity if the same neuropathology causes other clinical 

phenotypes (Respondek et al., 2014; Gazzina et al., 2019). Trials of potential disease modifying 

therapies in FTLD typically require a syndrome with high specificity, to avoid including 

patients with a different pathology who are unlikely to benefit. This excludes patients with the 

same pathology but a different clinical phenotype (eg bvFTD or CBS due to PSP pathology) 

which reduces study power and external validity. The absence of effective biomarkers for FTLD 

pathology (Meeter et al., 2017) means that many FTLD syndromes are therefore unsuitable 

candidates for clinical trials. There is an urgent need to improve clinicopathological correlations 

in FTLD syndromes. 

 

In this chapter, I will test the predictive accuracy of the transdiagnostic, spectrum-based 

approach to FTLD syndromes that I used in the previous chapters. There have been previous 

attempts to refine clinical phenotyping to improve clinicopathological correlation, over and 

above FTLD subtype. For example, motor neuron disease, when seen in patients with FTLD 

syndromes,  is predictive of FTLD-TDP43 (Mackenzie, 2007; Josephs et al., 2011). However, 

no other clinical features can accurately distinguish FTLD-TDP43 from FTLD-tau in bvFTD 

(Perry et al., 2017a). Both semantic impairment and extrapyramidal features are seen in bvFTD 

with either pathology (Perry et al., 2017a). Corticobasal syndrome is most commonly 

associated with FTLD-tau or Alzheimer’s disease pathology (Alexander et al., 2014) and visual 

neglect, when seen in CBS, is more predictive of Alzheimer’s disease pathology (Lee et al., 

2011b). However, this is not a common feature of CBS and in most patients it is not possible 

to differentiate CBS-AD from CBS-CBD using clinical phenotype (Hu et al., 2009a, Lee et al., 

2011b). In summary, there is limited evidence that phenotypic variation within FTLD subtypes 

can predict pathology.  

 

Aims and hypotheses 

The aim of this chapter was to investigate the clinicopathological correlations in syndromes 

associated with FTLD, using the neuropathology results from the PIPPIN study. Specially, I 

hypothesised that a transdiagnostic, spectrum approach to FTLD clinical phenotype would 

better predict neuropathology than diagnostic subgroup. 



Chapter 4 

 

74 

Methods 

Brain donation and post-mortem assessment 

All patient participants in PIPPIN study were approached to consider brain donation. 

Participants consented to brain donation via a declaration of intent, with further assent from 

their next of kin after their death. All brain donation and neuropathological examination took 

place at the Cambridge Brain Bank at Cambridge University Hospitals NHS Foundation Trust. 

Brain removal took place as quickly as possible after death for processing. After removal, the 

brain was divided into two hemispheres along the sagittal midline. The left cerebral hemisphere, 

hemi-brainstem and cerebellum was fixed in 10% formalin for 2-3 weeks and the right side of 

the brain was frozen. Neuropathological diagnosis, and the results in this chapter, are from the 

left side of the brain. Dr Kieran Allison, lead neuropathologist at the Cambridge Brain Bank, 

assessed all brains from patients in the PIPPIN study while blinded to the patient’s clinical 

diagnosis. 

 

Neuropathological assessment followed a defined protocol. The whole brain was weighed and 

the left hemisphere was then assessed macroscopically. Macroscopic examination started with 

inspection of the leptomeninges and cerebral cortex for haemorrhage, exudate and/or volume 

loss. Coronal slices were then examined for ischaemic lesions and to assess ventricle size. Next, 

axial slices were used for macroscopic examination of subcortical structures such as the 

substantia nigra and locus coeruleus, assessing for atrophy and loss of pigmentation. 

Microscopic examination was performed on samples from the anterior prefrontal, inferior 

frontal, primary motor and premotor, primary somatosensory, parietal, fusiform, angular, 

middle and superior temporal gyri, entorhinal cortex, hippocampus, basal ganglia (putamen and 

globus pallidus), hypothalamus, thalamus, internal capsule, midbrain, pons and cerebellum. 

Silver and Nissl stains were used to assess neuronal density and morphology. 

Immunohistochemistry was used to identify the pathological protein aggregates tau (antibody 

to tau11/57 from 2010 to mid-2016 and AT8 from mid-2016 to date, MN1020, Thermo 

Scientific, USA), TDP43 (TIP-PTD-P02, Cosmo Bio Co Ltd, Japan), alpha-synuclein (SA3400, 

Enzo Life Sciences, USA) and beta-amyloid (Clone 6F/3D, M0872, Dako, Denmark). The 

hippocampus and entorhinal cortex were assessed first then other brain regions were stained as 

required, to make a diagnosis and to enable disease staging. The final neuropathological 

diagnosis, based on macro and microscopic neuropathological findings, was used for the 

analyses reported in this chapter. Mixed or combined neuropathology is increasingly recognised 
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in neurodegenerative diseases, but all patients in this study had a single predominant 

neuropathology to allow a single final diagnosis. 

 

Data analysis 

The demographic characteristics of patients in the brain bank were compared with the whole 

PIPPIN cohort with two tailed independent t tests for continuous variables and Chi squared test 

for categorical variables. Multivariate supervised pattern recognition was used to test the 

classification accuracy of either FTLD subtype (bvFTD, nfvPPA, svPPA, lv/mixed PPA, PSP 

and CBS) or FTLD syndrome dimensions (the six components from the clinical phenotype 

principal component analysis from Chapter 2) for FTLD neuropathology. I grouped 

neuropathological diagnoses into four groups: FTLD-tau (which included Pick’s disease, PSP 

and CBD), FTLD-TDP43 (all subtypes), Alzheimer’s Disease and Other.  

 

Different classification models were used for FTLD subtype, which is one categorical variable, 

and syndrome dimension, which has six continuous variables. A binary decision tree was 

trained for FTLD subtype. In decision tree analysis, a set of decisions rules is found that best 

explain the relationship between the predictor (FTLD syndrome subtype) and outcome (FTLD 

neuropathology) variables. This results in a “tree” of binary decisions that can intuitively be 

used for new participants (Myles et al., 2004). Decision tree models are appropriate for 

categorical data and are easily interpretable. However, they are less suitable for continuous and 

multivariate datasets because they force binary splits in the data and can only consider one 

variable at a time. Linear discriminant analysis was used for the syndrome dimension 

classification. This model finds a linear combination of features that separates groups 

(Balakrishnama and Ganapathiraju, 1998). Linear discriminant analysis is appropriate when 

class sizes are unequal and there are multiple continuous predictor variables. Both models were 

weighted by the relative prevalence of each disease group in the population, syndromes that 

were more prevalent in the brain bank than the population were down weighted and vice-versa  

( 

Table 4-1). 
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Table 4-1: Weighting to match brain bank to population prevalence for each FTLD syndrome in the PIPPIN 

catchment area. Population prevalence data taken from Coyle-Gilchrist et al, 2016, which first reported 

epidemiological results from the PIPPIN study. 

 

Classification techniques, including decision tree and linear discriminant analysis, are 

vulnerable to overfitting (Hawkins, 2004). Overfitting occurs when a classifier fits the data it is 

trained on too closely. An overfitted model is neither generalisable nor accurate when predicting 

new, unseen data. To prevent this, I used leave-one-out cross validation for both classifiers. 

Before training the classifier one participant is removed, the model is then trained on the 

residual dataset and then tested on the left-out participant. This is repeated so that every 

participant is tested. The model accuracy is determined from the mean accuracy of the 

predictions of all test cases. 

 

Finally, I looked at the neuropathological correlates of the brain morphology components from 

Chapter 3. Only a small number of patients had a complete dataset (clinical review, MRI and 

neuropathology) which prevented statistical analyses. All analysis was performed in MATLAB 

2018b (MathWorks, USA) with the standard functions. 

 

  

FTLD syndrome bvFTD nfvPPA svPPA PPA 

(lv/mixed) 

PSP 

(all) 

CBS 

Number in brain bank 7 4 4 1 14 9 

Relative brain bank 

prevalence 

0.1429 0.0816 0.0816 0.0204 0.2857 0.3878 

Population prevalence 38 25 21 11 48 38 

Relative population 

prevalence 

0.2099 0.1381 0.1160 0.0608 0.2652 0.2099 

Classifier weight 1.4696 1.6920 1.4213 2.9779 0.9282 0.5414 
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Results 

Forty-nine patients reviewed in PIPPIN study had a post-mortem pathological diagnosis by 1st 

November 2019. Demographic details of the patients in the brain bank are in Table 4-2. Patients 

in the brain bank had a similar age and gender distribution compared to the whole study 

population (p>0.05) but on average were assessed later in their illness (t=2.67, p=0.008). A 

breakdown of neuropathology results by FTLD syndrome subtype are shown in Table 4-3 and 

Figure 4-1. All patients with a clinical diagnosis of PSP had PSP pathology (n=14).  Most 

patients with svPPA had FTLD-TDP-43 Type C (n=3) but one had Pick’s disease. bvFTD was 

associated with FTLD-tau (Picks’ n=1, PSP n=1) or TDP43 (n=5). Three patients with bvFTD 

had motor neuron disease, all with TDP43 pathology. Most patients with CBS had either CBD 

(n=6) or Alzheimer’s disease (8). Two CBS patients had Multiple System Atrophy pathology 

and one had micro metastatic renal cell carcinoma and paraneoplastic cerebellar degeneration. 

Of the four patients with nfvPPA three had FTLD-tau and one had Alzheimer’s disease. The 

one patient with lvPPA had Alzheimer’s Disease pathology. 

 

 

 

Figure 4-1: Pie charts of clinicopathological correlations for each FTLD syndrome. This is a visual representation 

of the data shown in Table 4-3 
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In four patients a second neuropathology was included in the final neuropathological diagnosis. 

One brain with PSP pathology had alpha-synuclein deposition suggestive of Parkinson’s 

disease. This patient had an atypical clinical phenotype, with a 15-year history of symptoms, 

initially with a slowly progressive Parkinson’s disease-like phenotype that responded well to 

levodopa. Two years before death they developed a more rapidly progressive syndrome with 

cognitive impairment, falls, a supranuclear gaze palsy and asymmetrical apraxia and dystonia. 

Two patients, one with lvPPA and one with nfvPPA, had primary Alzheimer’s disease 

pathology (both Braak stage VI) with a secondary pathology of TDP43 confined to the medial 

temporal lobe. The final patient had a clinical diagnosis of corticobasal syndrome but at post-

mortem had Alzheimer’s disease (Braak stage VI), Lewy body disease (Braak stage III), 

temporal lobe TDP43 deposition and cerebrovascular disease. One patient with CBS had a post-

mortem diagnosis of paraneoplastic cerebellar degeneration and micro metastatic renal cell 

carcinoma throughout the cerebral and cerebellar white matter. He was diagnosed with renal 

cell carcinoma in life but had no evidence of metastatic disease for over 3 years until a lung 

metastasis was diagnosed shortly before he died. He had no detectable serum autoimmune or 

paraneoplastic antibodies during the workup of his corticobasal syndrome. 

 

First, I looked at the neuropathological diagnoses across the FTLD clinical syndrome 

dimensions, reported in detail in Chapter 2. Figure 4-2 shows the neuropathology results for 

each syndrome dimension, broken down by subgroup. Behavioural (syndrome dimension 1) 

and global cognitive impairment (dimension 2) did not help differentiate neuropathological 

subtypes. Two syndrome dimensions did help separate neuropathology. Syndrome dimension 

3, reflecting the opposing features of a supranuclear gaze palsy and symmetrical and axial 

parkinsonism (positive loading) with semantic impairment (negative loading) appeared to 

separate FTLD-tau (high scores) from FTLD-TDP43 (low scores). The one patient with bvFTD 

and PSP pathology had a high score on this domain and all patients with TDP-43 had low scores. 

One patient with corticobasal syndrome and PSP pathology had a low score, in contrast to most 

cases of PSP pathology. All patients with Alzheimer’s disease pathology, which manifested as 

CBS, nfvPPA or lvPPA syndromes, had positive scores on syndrome dimension 5. This 

dimension had high loadings from agrammatic, apraxic and logopenic speech, limb apraxia and 

myoclonus. 
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Figure 4-2: Boxplots of the participant scores on each syndrome dimensions reported in detail in Chapter 2. Scatter 

plots are colour coded by neuropathological diagnosis. Participants coloured grey were either still alive at the time 

of analysis or did not have a neuropathological diagnosis. 
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I then tested the clinicopathological accuracy of the FTLD syndrome dimensions and FTLD 

syndrome subtype. FTLD pathology subtypes were grouped into FTLD-tau, FTLD-TDP43, 

Alzheimer’s Disease and other neuropathology, due to low numbers in some groups. A decision 

tree model was used to test the accuracy of FTLD syndrome subtype in predicting 

neuropathology. This model had a leave-one-out cross validated accuracy of 67%. It used the 

diagnostic labels bvFTD and svPPA to predict FTLD-TDP43, CBS and mixed/lvPPA for 

Alzheimer’s disease pathology and PSP and nfvPPA to predict FTLD-tau (Figure 4-3). The 

confusion matrix, positive predictive values and true positive rates are shown in Figure 4-4. 

FTLD syndrome subtype had high positive predictive value for FTLD-tau (89.5%) but the true 

positive rate was low (63%). The positive predictive value and true positive rates were high for 

FTLD-TDP43 but low for Alzheimer’s disease pathology. 

 

 

 

Figure 4-3: Decision tree using FTLD syndrome subtype to predict pathology. 

 

A linear discriminant analysis was used to test the accuracy of the FTLD syndrome dimensions 

in predicting neuropathology. The overall leave-one-out cross validated accuracy of the FTLD 

syndrome dimensions in predicting neuropathology was slightly higher than FTLD subtype 

(77% vs 67%). Adding FTLD subgroup, in the form of dummy binary variables, to the FTLD 

dimension data did not improve classification accuracy. The confusion matrix, positive 

predictive values and true positive rates are shown in Figure 4-5. Compared to the decision tree 

model, the positive predictive value and true positive rates were high for FTLD-tau and 

Alzheimer’s disease, but lower for FTLD-TDP43. 
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Figure 4-4: Accuracy of decision tree model predicting FTLD pathology from syndrome subtype. A: Confusion 

matrix of accurate (green) and inaccurate (red) predictions from the decision tree. Numbers in each cell are the 

total number with the corresponding predicted (x axis) and true (y axis) neuropathology. B: True and false positive 

rates for each pathology. C: Positive predictive value and false discovery rate for each pathology. D: Posterior 

probabilities for each pathology. Each bar chart shows a true neuropathology, and the height of each bar shows 

the probability that the true neuropathology was given that pathological label.  
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Figure 4-5: Accuracy of linear discriminant analysis predicting FTLD pathology from syndrome dimension. A: 

Confusion matrix of accurate (green) and inaccurate (red) predictions from the model. B: True and false positive 

rates for each pathology. C: Positive predictive value and false discovery rate for each pathology. D: Posterior 

probabilities for each pathology.  

 



Chapter 4 

 

84 

The cross validation of each model creates a posterior probability for each tested participant 

(the “left out” participant in the leave-one-out cross validation). This is analogous to the 

confidence of the model in that prediction so gives further detail on the model accuracy. The 

mean posterior probabilities for each correct FTLD pathology in both the FTLD subtype and 

dimension models are shown in Figure 4-6.  

 

 

Figure 4-6: Bar plot of mean posterior probabilities. FTLD neuropathological subtype was predicted using either 

FTLD subtype (in blue) or FTLD syndrome dimension (in green). The posterior probabilities for the correct FTLD 

subtype are shown. More detailed plot showing the posterior probabilities for all FTLD subtypes is in 

supplementary materials. The posterior probability for FTLD-tau and TDP43 was similar between classifiers, but 

FTLD dimension had higher posterior probability for correctly identifying Alzheimer’s disease pathology. 

 

Only twenty-one patients had clinical phenotyping, imaging and neuropathology. This was too 

few to enable valid statistical analysis, so the following results are only descriptive. Volume 

loss in the brainstem was most associated with FTLD-tau-PSP pathology. Basal ganglia atrophy 

(imaging component 13) was associated with FTLD-TDP43 and FTLD-tau but not AD.  No 

other imaging components were associated with specific neuropathology (sample in Figure 4-7, 

all components in Appendix 2). For example, all FTLD pathological subtypes were associated 

with volume loss in the frontal lobe (components one and two). Parietal atrophy, reflected by 

low scores on imaging component 8, is typically associated with Alzheimer’s disease 

pathology. Both cases of Alzheimer’s disease had low scores, but so did cases with FTLD-tau 

and FTLD-TDP43. 
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Figure 4-7: Neuropathology of the imaging components from Chapter 3. Five representative 

components are shown here, all components in Appendix 3. 
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Finally, I looked at the distribution of neuropathology within the three canonical correlation 

component, which showed the multivariate relationships between clinical and imaging 

dimensions (Figure 4-8). In the first canonical correlation positive scores were associated with 

FTLD-tau-PSP and negative scores with FTLD-TDP43 and Alzheimer’s disease. Positive 

scores on the second canonical correlation were associated with FTLD-TDP43, and the three 

cases with AD pathology all had negative scores. The third canonical correlation did not 

separate FTLD pathological subtypes. 
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Discussion 

These results show that a transdiagnostic, multidimensional approach to clinical phenotype 

marginally increases the overall accuracy of clinicopathological correlation in FTLD 

syndromes. The numbers of patients with imaging and neuropathology results was too low to 

enable statistical analysis, but there was no clear association between neuropathology subtypes 

and patterns of brain atrophy. 

 

The clinicopathological correlations of the FTLD syndromes in my thesis are consistent with 

other studies. All clinical diagnoses of PSP were associated with PSP pathology (Osaki et al., 

2004; Gazzina et al., 2019). CBS was predominantly due to CBD or AD pathology (Kouri et 

al., 2011, Lee et al., 2011b; Alexander et al., 2014). All cases of bvFTD were associated with 

either Tau (3R or 4R) or TDP43 pathology (Josephs et al., 2011; Rascovsky et al., 2011, Perry 

et al., 2017a). Most patients with svPPA had TDP43 pathology (Grossman, 2010; Spinelli et 

al., 2017). The one patient with logopenic variant PPA had Alzheimer’s disease pathology 

(Spinelli et al., 2017). The incidence of bvFTD associated with TDP43 was higher in this study 

than in other studies (Rascovsky et al., 2011, Perry et al., 2017a). Three of these cases had 

bvFTD-MND had motor neuron disease, which confers a poorer prognosis and is strongly 

associated with TDP43 pathology (Lillo and Hodges, 2009; Coon et al., 2011). My results may 

be biased toward these rapidly progressive cases due to the short follow up time. Two patients 

with AD pathology had secondary TDP43 deposition in the medial temporal lobes. This pattern 

of TDP43 deposition, now called limbic-predominant age-related TDP43 encephalopathy 

(Nelson et al., 2019) is often associated with AD pathology in older individuals and is not an 

FTLD subtype (Josephs et al., 2019). One patient had coexistent PD and PSP pathology, and 

clinical features that were initially consistent with Parkinson’s disease then many years later 

changed to a PSP-RS phenotype. This is rare, but has previously been reported (Rigby et al., 

2015). 

 

These neuropathology results support the transdiagnostic multidimensional approach to FTLD 

proposed in this thesis. Many patients had clinical phenotypic, brain morphology and 

neuropathological results that spread across diagnostic boundaries. For example, one patient 

had prominent early semantic impairment and temporal lobe atrophy, resulting in a clinical 

diagnosis of svPPA but atypically post-mortem had Pick’s disease pathology. The 

transdiagnostic approach helps explain this, they had high loadings on syndrome dimension 1 

(behavioural impairment) and frontal lobe atrophy. Another patient was diagnosed in life with 
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bvFTD but also had a high score on syndrome domain 3 and brainstem atrophy, with a low 

score on imaging component 14. At post-mortem this patient had PSP pathology. These 

patients’ clinical diagnoses were not incorrect, they met the diagnostic criteria and their 

respective neuropathologies have been associated with these clinical syndromes (svPPA and 

Pick’s disease and bvFTD and PSP pathology) in other cohorts (Grossman, 2010, Perry et al., 

2017a; Spinelli et al., 2017). Instead, they are examples of limitations with the current 

diagnostic criteria, which force patients into discrete categories when instead they exist on a 

multidimensional spectrum. The transdiagnostic approach allows patients to span diagnostic 

labels, which in these cases helped predict their underlying neuropathology. 

 

The overall accuracy of linear discriminant analysis using FTLD syndrome dimensions was 

marginally higher than the decision tree using FTLD subtype. This is primarily due to higher 

positive predictive value for Alzheimer’s disease (AD) pathology. In the decision tree, any 

diagnosis of CBS or lv/mixed PPA was classified as AD and any cases of nfvPPA were classed 

as FTLD-tau. In reality, a significant proportion of CBS was associated with CBD, and a 

minority of nfvPPA was due to AD, which were all misclassified by the decision tree. In 

contrast, using a multidimensional transdiagnostic approach all cases of AD were associated 

with high scores on syndrome dimension 5 and most had low scores on syndrome dimension 4. 

This profile reflects cortical features of agrammatic, apraxic and logopenic language deficits 

with limb apraxia and symmetrical myoclonus and the relative absence of subcortical features, 

including asymmetrical parkinsonism and dystonia. Previous attempts to find isolated clinical 

features that predict AD pathology in CBS have mostly been unsuccessful (Lee et al., 2011b; 

Alexander et al., 2014) but this multivariate approach, which uses patterns of covarying clinical 

features, appears more accurate. However, the linear discriminant analysis could not 

differentiate cases of bvFTD due to FTLD-tau or FTLD-TDP43. This has not been possible in 

any clinicopathological study of bvFTD (Hodges et al., 2004, Perry et al., 2017a), and the 

relatively high positive predictive value for FTLD-TDP43 in the decision tree is due to the 

disproportionate number of TDP43 cases in my bvFTD cohort.  

 

The number of participants with clinical phenotyping, in-vivo imaging and post-mortem 

neuropathology was too low to enable statistical analysis but can still inform the relationship 

between FTLD pathological subtype and focal brain atrophy. Some FTLD pathological 

subtypes were associated with specific atrophy patterns, for example FTLD-TDP43 was 

associated with bitemporal atrophy and FTLD-tau-PSP with brainstem atrophy. However, 

overall there was limited relationship between a specific neuropathology and atrophy pattern. 
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The three phenotype-atrophy associations identified in chapter three did not separate 

neuropathological subtypes and cases with the same FTLD pathology had high or low scores 

within the same component. Most imaging components reflecting focal cortical atrophy in the 

frontal, parietal and occipital lobes did not isolate an individual neuropathology. For example, 

frontal lobe atrophy was seen in cases of Pick’s disease, PSP, CBD and TDP43 and 

parietooccipital atrophy was seen with PSP, CBD, TDP43 and Alzheimer’s disease. Selective 

vulnerability, both for cell type and brain region, is characteristic of all neurodegenerative 

diseases (Seeley, 2008; Fu et al., 2018). However, in FTLD this appears to be independent of 

pathology subtype in most brain regions. Von Economo neurons in the anterior cingulate cortex 

may be selectively vulnerably to FTLD, but this is seen with both FTLD-tau and FTLD-TDP43 

and across different genetic mutations (Seeley et al., 2006; Santillo et al., 2013; Santillo and 

Englund, 2014; Yang et al., 2017; Gami-Patel et al., 2019; Lin et al., 2019). In summary, 

different FTLD pathologies can be associated with similar selective vulnerability, brain atrophy 

and clinical phenotype. In addition, the same FTLD pathology can be associated with different 

clinical phenotypes, even in family members with the same genetic mutation (Boeve et al., 

2005; Benussi et al., 2015; Foxe et al., 2018). This pleiotropy suggests additional individual 

variables, environmental or genetic, may have a greater effect on selective vulnerability than a 

specific neuropathology.  

 

There are other limitations to the results reported in this chapter. First, I grouped 

neuropathology diagnosis by the major subtypes, FTLD-tau, FTLD-TDP43 and Alzheimer’s 

Disease. It is possible that treatments targeting a given molecular substrate of FTLD will be 

effective for all the subtypes within that molecule – whether Tau, TDP43 or other. For example, 

the same anti-tau treatment is being tested in primary 3R and 4R and secondary tauopathies 

(Boxer et al., 2019). However, this proposition is not yet proven and my method disadvantages 

syndrome labels with high clinicopathological correlations for specific FTLD subtypes (e.g. 

PSP-RS for FTLD-tau-PSP and svPPA for FTLD-TDP43-C). Even within the primary 

tauopathies, the ultrastructure and epitopes of tau vary (Falcon et al., 2018; Goedert, 2018; 

Arakhamia et al., 2020; Zhang et al., 2020), which may affect susceptibility to treatment. 

Second, the neuropathological results are limited to one diagnosis, with no information on stage 

or distribution. The location and severity of neuropathology is likely to influence clinical 

phenotype. For example, PSP with executive and behavioural impairment (PSP-F) or apraxia, 

cortical sensory loss or alien limb syndrome (PSP-CBS) is associated with greater cortical tau 

deposition in the frontal and parietal lobes respectively (Dickson et al., 2010; Ling et al., 2014; 

Sakae et al., 2019). The “subcortical” variants of PSP, with predominant gait freezing or 
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parkinsonism (PSP-PGF and PSP-P) have more pathological tau deposition in the basal ganglia 

and brain stem (Williams et al., 2005, 2007a, b). This variability in the distribution of 

neuropathology may explain more variation in clinical phenotype than proteinopathy (i.e. tau 

or TDP43). Third, I did not report comorbid pathology. This is increasingly recognised in 

neurodegenerative disease and may partly explain clinical phenotype (Robinson et al., 2018; 

Cornblath et al., 2019). Two patients in the PIPPIN cohort had primary Alzheimer’s disease 

pathology with secondary TDP43 disease confined to the temporal lobe. The co-occurrence of 

AD and TDP43 is well recognised, and has recently been relabelled as limbic-predominant age-

related TDP43 encephalopathy (Nelson et al., 2019). However, many other patients had early 

stage amyloid-beta and very limited age-associated TDP43 deposition. This may contribute to 

clinical phenotype in FTLD syndromes and requires further research. Another limitation is that 

the subset of patients in the brain bank had more advanced disease, as they were assessed at a 

later timepoint in their illness when compared to the whole PIPPIN cohort. This is unsurprising, 

given the relatively short follow up time between the data collection and preparing this thesis. 

In Chapter 1 I showed that over time the clinical phenotypes of FTLD syndromes merge and 

patients with more advanced disease often have features of several FTLD syndromes. Patients 

at an early disease stage may have a phenotype which could have better clinicopathological 

accuracy.  

 

My results add to the evidence that even very detailed phenotyping cannot select all cases 

associated with one FTLD pathology with high accuracy. Therefore, imaging or fluid-based 

biomarkers are required for an accurate, in vivo diagnosis of a specific neuropathology. There 

has been great progress in Alzheimer’s Disease and CSF and PET biomarkers for β-amyloid 

are increasingly used in clinical practice and to confirm eligibility for research trials 

(Ossenkoppele et al., 2015a; Olsson et al., 2016; Blennow and Zetterberg, 2018). Plasma-based 

assays for β-amyloid (Nakamura et al., 2018), tau (Foiani et al., 2018) and TDP43 (Suárez-

Calvet et al., 2014) are also in development and may soon be available for clinical research. 

First generation tau-PET ligands have strong affinity for the paired helical filament tau 

associated with Alzheimer’s Disease (Leuzy et al., 2019). However, the same ligands have less 

specificity in FTLD syndromes, with off target binding in syndromes such as svPPA that are 

only very rarely associated with tau pathology (Bevan-Jones et al., 2018). Second-generation 

ligands are in development, but at present there are no biomarkers that can different FTLD-tau 

and FTLD-TDP43 in vivo (Bevan Jones et al., 2016; Meeter et al., 2017; Bevan-Jones et al., 

2018). Fluid biomarkers are also in development, but are not yet available (Zetterberg et al., 

2019). In summary, clinical phenotyping is currently the most accurate and accessible method 
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of differentiating FTLD neuropathology, and a transdiagnostic, spectrum-based approach is 

more accurate than grouping patients into discrete entities. 
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Prognosis of frontotemporal lobar 

degeneration syndromes 

Preface 

This chapter is largely the same as a manuscript which is in preparation (Murley et al., 2020b). 

I performed all the data analysis in this chapter. The text was written by me, with input from 

co-authors on the manuscript. 

 

Summary 

In this chapter I test the prognostic value of a transdiagnostic, spectrum-based approach to 

FTLD syndromes. I show that behavioural disturbance is associated with reduced functionally 

independent survival even if patients with bvFTD are removed from the analysis. I then show 

that motor impairments were associated with reduced absolute mortality, even if patients with 

PSP and CBS are removed from the analysis. These results may help individualised 

prognostication and support a transdiagnostic approach to symptomatic treatments trials. 
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Introduction 

Prognosis in syndromes associated with frontotemporal lobar degeneration (FTLD) is highly 

variable and difficult to predict. Disease duration is not fully explained by the diagnostic 

categorisation to behavioural variant frontotemporal dementia (bvFTD), non-fluent (nfvPPA) 

or semantic (svPPA) variants of primary progressive aphasia, progressive supranuclear palsy 

(PSP) or corticobasal syndrome (CBS) (Hodges et al., 2003, 2010; Coyle-Gilchrist et al., 2016; 

Kansal et al., 2016; Agarwal et al., 2019). Better prognostic models would aid both trial design 

and clinical management.  

 

In the previous chapters, I showed that the syndromes caused by frontotemporal lobar 

degeneration (FTLD) have highly heterogenous and overlapping clinical features. In this 

chapter, I explore how these clinical features, represented across the spectrum of disorders, 

explain variation in functional independence and survival (Kertesz et al., 2005, Murley et al., 

2020a). I used the syndrome dimensions from chapter two to identify prognostic clinical 

features across the FTLD syndrome spectrum (Borroni et al., 2009b; Lansdall et al., 2019). 

Previous work has identified that features of motor neuron disease reduce life expectancy in 

bvFTD (Hodges et al., 2003, Hu et al., 2009b; Kansal et al., 2016), while dysphagia and 

cognitive impairment worsen prognosis in PSP-Richardson’s syndrome (Glasmacher et al., 

2017). Here I focus on all the cognitive, behavioural and motor features of the disease.  

 

Mortality is a definite endpoint in FTD, PSP and CBS. However, these disorders also increase 

dependency and caregiver burden (Riedijk et al., 2006; Cordner et al., 2010; Pekmezović et al., 

2015; Schmotz et al., 2017; Agarwal et al., 2019). Community-based studies suggest increased 

dependency, whether due to cognitive or physical disability, predicts care home admission (Tun 

et al., 2007; Rockwood et al., 2014). Many patients with FTLD syndromes are admitted to care 

homes as their illness progresses (Diehl-Schmid et al., 2017), so this could be used as an indirect 

outcome of loss of functional independence (Riedijk et al., 2006; Agarwal et al., 2019).  

 

Aims and hypotheses 

The aim of this chapter was to identify how the clinical phenotypes associated with FTLD are 

associated with prognosis. I had two hypotheses. First, behavioural impairments, represented 

by syndrome dimension one, increase risk of care home admission, over and above the FTLD 

syndrome diagnostic label. Second, motor impairments, represented by syndrome dimensions 

three and four, are associated with increased mortality. 
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Methods 

Survival data were collected for all participants in the PIPPIN study (Pick’s disease and 

Progressive Supranuclear Palsy Prevalence and Incidence), a cross-sectional epidemiological 

study, detailed methods of which are in Chapter 2 (Coyle-Gilchrist et al., 2016, Murley et al., 

2020a). I recorded dates of care home admission and death from each participant’s NHS 

Summary Care Record. This database includes information on the address and date of death of 

every UK resident, minimising loss to follow up. I defined a care home as an institution 

registered with the UK government to provide residential and/or nursing care. 

 

I used a Cox proportional hazards regression analysis to test the association between the six 

clinical syndrome dimensions reported in Chapter 2 and the time from clinical assessment to 

death (covariates of age, gender and disease group). This allows all participants to be included 

in the survival analysis, censoring participants who failed to reach the end point (death). The 

predictor variables (subject-weightings on each syndrome component) were z scored to aid 

interpretation. If a syndrome dimension closely resembled typical features of a specific 

diagnostic group, I repeated the Cox proportional hazards regression analysis without that 

group.  

 

Next, I tested the association between the syndrome dimensions and time to care home 

admission using logistic regression, with the binary outcome of care home admission by 2 years 

from study assessment. Patients in a care home at study assessment or those with incomplete 

follow up were excluded from this analysis. I used logistic rather than Cox proportional hazards 

regression for two reasons. First, to allow assessment of care home admission risk independent 

of mortality and second, because it could be argued that the risk of care admission does not 

remain constant over time (an assumption of Cox hazards regression). All analyses were 

performed in MATLAB 2018b (MathWorks, USA). Kaplan Meir curves were plotted using the 

MatSurv function (https://github.com/aebergl/MatSurv). 

  

https://github.com/aebergl/MatSurv
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Results 

At the censor date (1st August 2019), 169 FTLD patients (54.5%) had been admitted to a care 

home and 200 patients (64.5%) had died. Most patients were admitted to a care home before 

they died (131/200, 62.3%). Summary demographic and survival results are shown in Table 

5-1. 

Table 5-1: Demographics of the study cohort. *Subgroup of cohort with complete follow up. 6 patients were living 

in a care home at diagnosis. #12 patients with bvFTD had motor neuron disease. ##1 patient with nfvPPA had 

motor neuron disease. 

 

There was high variability in the time from diagnosis to care home admission or death in all 

groups (Figure 5-1). Life expectancy differed between groups (ANOVA, F1,5 =10.41, p<0.001). 

This was primarily due to longer life expectancy in svPPA compared to PSP (mean difference 

5.24 years, p<0.001), CBS (3.83 years, p<0.001) and bvFTD (2.69 years, p=0.047). PSP 

patients also had a worse prognosis compared to bvFTD (mean difference 2.55 years, p<0.001) 

and nfvPPA (2.54 years, p<0.001). Thirteen patients with FTD-MND had a lower mean time 

between diagnosis and death than the whole bvFTD cohort (2.67 vs 5.49 years). 

 All 

FTLD 
bvFTD nfvPPA svPPA 

PPA 

(lv/mi

xed) 

PSP CBS 

Clinical phenotyping 

(n) 
310 64# 36## 25 16 101 68 

Age (mean years) 

(SD) 

70.26  

(8.57) 

64.59 

(9.56) 

72.09 

(8.81) 

67.55 

(6.43) 

70.80 

(7.05) 

72.56 

(7.14) 

72.08 

(7.69) 

Gender 

(male/female) 

152/1

58 
33/31 15/21 14/11 7/9 56/45 27/41 

Symptom onset to 

study assessment 

(years, mean and SD) 

4.75  

(3.18) 

5.70 

(4.45) 

2.83 

(1.93) 

4.96 

(2.69) 

2.76 

(1.97) 

4.50 

(2.94) 

4.71 

(2.77) 

Diagnosis to study 

assessment 

(years, mean and SD) 

1.44  

(2.77) 

1.88 

(3.88) 

1.09 

(1.27) 

1.65 

(2.01) 

1.58 

(1.67) 

1.02 

(1.17) 

1.73 

(2.02) 

Symptom onset to 

death 

(years, mean and SD)* 

7.71 

(4.37) 

9.08 

(7.00) 

7.93 

(3.47) 

11.03 

(3.39) 

9.29 

(3.14) 

6.39 

(3.67) 

7.30 

(3.12) 

Diagnosis to care home 

(years, mean and SD)* 

2.94  

(2.43) 

2.26 

(2.90) 

4.43 

(1.75) 

5.31 

(1.86) 

4.44 

(2.48) 

1.69 

(1.20) 

3.13 

(2.28) 

Diagnosis to death 

(years, mean and SD)* 

4.40 

(3.25) 

5.49 

(5.06) 

5.50 

(2.62) 

7.95 

(2.61) 

5.74 

(2.19) 

2.78 

(2.7) 

4.12 

(2.35) 
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Figure 5-1: Survival in frontotemporal lobar degeneration syndromes. The bar plot shows disease duration in 

FTLD syndromes in patients with complete follow up from disease onset to death. Survival in each FTLD subgroup 

is shown grouped by care home vs no care home admission. The error bars are the standard deviation. The pie 

charts show proportion of each FTLD subgroup admitted to a care home during the disease course. 

 

Next, I tested the association between the FTLD syndrome dimensions (detailed in chapter two) 

and survival. An individual’s score on each dimension showed the extent to which they 

expressed that clinical phenotype. In summary, syndrome dimension 1 reflected clinician and 

carer rating of behavioural impairment. Syndrome dimension 2 reflected cognitive impairment, 

with contribution from all ACER subscales and carer ratings of memory and everyday skills. 

Syndrome dimension 3 mirrored a PSP-RS-like motor phenotype, with positive loadings 

reflecting symmetrical parkinsonism, falls and supranuclear gaze palsy. Negative loadings on 

this dimension reflected semantic language impairment. The fourth syndrome dimension 

represented asymmetrical parkinsonism, myoclonus and dystonia with cortical features of alien 

limb syndrome, apraxia and cortical sensory loss. Syndrome dimension five was driven by 

language impairments including speech apraxia, loss of syntactic comprehension and impaired 

repetition. Syndrome dimension six reflected carer ratings of low mood and abnormal beliefs. 

There was a spread of scores across FTLD subgroups onto these symptom domains. 

 

Cox proportional hazards regression indicated that syndrome dimensions 3 and 4 and age at 

clinical assessment, were associated with time to death (Table 5-2). Syndrome dimension 3 

remained a significant predictor of death after PSP was removed (HR 2.30, CI 1.50-3.52, 
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p<0.001). Absolute survival (time from assessment to death) differed between participants in 

high, medium and low severity tertiles for syndrome dimensions 3 (Figure 5-2B) and 4 (Figure 

5-2E) severity score. This result persisted after removing the highest scoring FTLD subgroups, 

PSP for syndrome dimension 3 (log rank p<0.001) and CBS for syndrome dimension 4 (log 

rank p<0.001). 

 
 

Hazard ratio Hazard ratio (CI) Coefficient SE P value 

Age 1.04 (1.02-1.06) 0.04 0.01 <0.01 

Gender 1.18 (0.87-1.59) 0.16 0.16 0.29 

Diagnosis 1 0.64 (0.23-1.80) -0.45 0.53 0.40 

Diagnosis 2 0.87 (0.48-1.57) -0.14 0.3 0.64 

Diagnosis 3 1.16 (0.53-2.54) 0.15 0.4 0.71 

Diagnosis 4 0.99 (0.5-1.97) -0.01 0.35 0.97 

Diagnosis 5 0.65 (0.25-1.64) -0.44 0.48 0.36 

Syndrome dimension 1 1.23 (0.98-1.55) 0.21 0.12 0.07 

Syndrome dimension 2 1.15 (0.99-1.35) 0.14 0.08 0.07 

Syndrome dimension 3 1.97 (1.41-2.75) 0.68 0.17 <0.01 

Syndrome dimension 4 1.31 (1.07-1.61) 0.27 0.1 <0.01 

Syndrome dimension 5 0.87 (0.73-1.03) -0.14 0.09 0.12 

Syndrome dimension 6 0.88 (0.75-1.03) -0.13 0.08 0.12 

Table 5-2: Cox proportional hazards model of time from study assessment to death. 

  

Next, I tested which syndrome dimensions predicted care home admission at two years with 

age, gender and disease group as covariates. Eighty-nine patients with a follow up of less than 

two years were excluded from this analysis. Syndrome dimension one, reflecting behavioural 

impairment, was associated with care home admission (OR 2.46, p<0.001) (Table 5-3). This 

remained a significant predictor of care home admission even after bvFTD, the subgroup with 

highest scores, was removed (OR 3.20 p=0.03). Independent survival (time from clinical 

assessment to care home admission or death) differed between participants in high, medium 

and low severity tertiles for syndrome dimension 1 severity score (log rank p=0.007) (Figure 

5-3C). This result persisted after removing the bvFTD group (log rank p<0.001). 
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Figure 5-2: Absolute survival (time to death) in frontotemporal lobar degeneration syndrome. 2A: Scatterboxplot 

of individual’s scores on syndrome dimension three, grouped by FTLD syndrome subtype. 2B: Kaplan Meier 

survival curve for high, medium and low scoring tertiles for syndrome dimension three. The p value is from a log 

rank test of the null hypothesis of no difference in survival between all groups. Vertical lines show censored data. 

2C: At risk table for the data shown in 2B. 2D: Scatterboxplot of individual’s scores on syndrome dimension four 

2E: Kaplan Meier survival curve for high, medium and low scoring tertiles for syndrome dimension four. 2F: At 

risk table for the data shown in 2E. 
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Odds ratio Coefficient t value p value 

Constant 0.10 -2.26 -1.17 0.24 

Age 1.02 0.02 0.79 0.43 

Gender 0.78 -0.25 -0.60 0.55 

Diagnosis 1 0.79 -0.23 -0.20 0.84 

Diagnosis 2 2.89 1.06 1.40 0.16 

Diagnosis 3 0.50 -0.70 -0.72 0.47 

Diagnosis 4 0.13 -2.02 -1.54 0.12 

Diagnosis 5 0.28 -1.28 -1.07 0.28 

Syndrome dimension 1 2.46 0.90 3.11 <0.01 

Syndrome dimension 2 1.42 0.35 1.60 0.11 

Syndrome dimension 3 1.13 0.12 0.28 0.78 

Syndrome dimension 4 0.99 -0.01 -0.03 0.98 

Syndrome dimension 5 1.08 0.08 0.36 0.72 

Syndrome dimension 6 0.77 -0.26 -1.20 0.23 

Table 5-3: Logistic regression of predictors of care admission by 2 years from clinical assessment. 

 

Figure 5-3: Independent survival (time to care home admission) in frontotemporal lobar degeneration syndromes. 

3A: Scatterboxplot of each participant’s score on syndrome dimension one. 3B: Kaplan Meier survival curve for 

high, medium and low scoring tertiles for syndrome dimension one. The p value is from a log rank test of the null 

hypothesis of no difference in survival between all groups. Vertical lines show censored data. 3C: At risk table for 

the data shown in 3B. 
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Discussion 

Clinician- and carer-rated behavioural disturbance is associated with shorter functionally 

independent survival and the presence of motor features (including parkinsonism, postural 

instability, supranuclear gaze palsy, dystonia and apraxia), is associated with reduced absolute 

survival. These associations are found across the spectrum of common syndromes associated 

with FTLD, even when groups classically associated with these clinical features (bvFTD, PSP 

and CBS respectively) are excluded. A transdiagnostic approach, that captures the clinical 

overlap and mixed phenotype, adds clinically relevant information for prognostication to that 

available from the diagnostic group label. 

 

Behavioural impairment, represented here by syndrome dimension one, was associated with a 

greater risk of care home admission. This complements previous findings in bvFTD (Agarwal 

et al., 2019), Parkinson’s and Alzheimer’s disease (Aarsland et al., 2000; Knapp et al., 2016). 

Syndrome dimension one reflects many behavioural impairments including apathy, impulsivity, 

socially inappropriate behaviour and hyperorality. More detailed neuropsychological tests and 

measures of carer burden could fractionate behavioural impairment to more closely determine 

which behavioural impairments have the greater effect on prognosis (Boutoleau-Bretonnière et 

al., 2008; Kaizik et al., 2017; Lansdall et al., 2019). The results of this chapter show correlation 

and not causation, and I lack data on the reasons given for care home admission. However, 

behavioural impairments in frontotemporal dementia and PSP are known to increase carer 

burden (Mioshi et al., 2009, Armstrong et al., 2013b) and there are no proven effective 

pharmacological treatments (Huey et al., 2006, Rittman et al., 2016a). Patients with more 

severe behavioural impairments may require continuous supervision which becomes difficult 

for spouses or families to sustain at home. Treating behavioural disturbance may delay the need 

for care home admission, with benefits to individual health and health-economics. 

Pharmacological strategies could include restoration of neurotransmitter deficits associated 

with behavioural change (Lebert et al., 2004; Hughes et al., 2015; Murley and Rowe, 2018; 

Desmarais et al., 2019).  

 

The relationship between cognitive impairment and prognosis is complex. Some studies show 

a clear association (Borroni et al., 2009b), but others do not (Garcin et al., 2009; Lansdall et 

al., 2019). This discrepancy may be due to the indirect contribution of behavioural and motor 

impairments to performance on ‘cognitive’ tests. For example, speech or constructional deficits 

in nfvPPA or CBS respectively may impair performance tasks that require spoken, written or 
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drawn response.  However, the separation of cognitive and motor deficits across the six 

dimensions argues against such a simple interference effect.  

 

The clinical phenotype reflected by syndrome dimensions 3 and 4 are classically associated 

with PSP Richardson’s syndrome and CBS respectively, but in this cohort was also expressed 

to a degree by many other patients except for those with svPPA (Figure 5-2A&D). PSP-RS 

typically has a worse prognosis than bvFTD (unless there is coexistent MND) and PPA (Chiu 

et al., 2010; Kansal et al., 2016) while FTLD-tau has a worse prognosis than FTLD-TDP43 if 

clinical MND cases are excluded (Xie et al., 2008). With disease progression many patients 

with nfvPPA develop the phenotype of progressive supranuclear palsy or corticobasal 

syndrome, which is an adverse prognostic sign (Sánchez-Valle et al., 2006; Josephs and Duffy, 

2008; Josephs et al., 2014; Santos-Santos et al., 2016). In keeping with these observations, 

previous survival analyses of frontotemporal dementia (bvFTD and PPA) have shown reduced 

letter fluency, motor cortex atrophy and brainstem hypoperfusion were associated with reduced 

survival (Roberson et al., 2005; Le Ber et al., 2006; Agarwal et al., 2019). My results go beyond 

these findings, suggesting that development of motor impairments, irrespective of diagnostic 

group, is an adverse prognostic sign. However, the correlation between syndrome dimensions 

3 and 4 and mortality does not prove causation. It is unclear if that these syndrome dimensions 

are indicative of a more aggressive disease or increased risk of complications, such as aspiration 

pneumonia due to dysphagia, sarcopenia and other aspects of frailty (Brunnström and Englund, 

2009; Landi et al., 2013). These complications could in turn increase mortality.  

 

These results have several limitations. The survival analysis only contained a limited number 

of covariates (age, gender and main diagnostic group). Medical and psychiatric comorbidities, 

marital status, social class, ethnicity and financial status are also known to influence rates of 

care home admission and death (Knapp et al., 2016; Harrison et al., 2017) and may explain 

some of the variance in prognosis. I attempted to recruit all patients with a designated syndrome 

associated with FTLD in the catchment area (Cambridgeshire and Norfolk). Most referrals 

came from secondary care, so survival rates could be overestimated if patients with rapidly 

progressively disease died before they could enter the study. However, average survival in this 

FTLD cohort was similar to those published previously (Kansal et al., 2016). I did not 

distinguish between residential or nursing care from basic demographic information. This was 

not differentiated in the demographic data because many institutions provide both levels of care 

at the same site. It is important to note that admission to a residential or nursing home is not a 

sign of inadequate home care and not inevitably associated with reduced quality of life. Patients 
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with FTLD often benefit from the skilled holistic care provided in these institutions (Patterson, 

2014). However, I argue that at a group level care home admission is a measure of reduced 

independence, and a potential study end point in trials. 

 

In summary, functionally independent and absolute survival in syndromes associated with 

frontotemporal lobar degeneration are predicted by a subset of clinical features, over and above 

the diagnostic label. Given these findings, and the overlapping clinical (Kertesz and Munoz, 

2004), structural (Whitwell and Josephs, 2012; Lagarde et al., 2013, Murley et al., 2020a), 

functional (Hughes et al., 2013; Sami et al., 2018), neuropathological (Seelaar et al., 2011; 

Irwin et al., 2015) and neurochemical (Murley and Rowe, 2018) features in these syndromes, I 

suggest a transdiagnostic approach to develop better treatment strategies. Effective treatments 

for behavioural and motor features could improve functionally independent survival and might 

ameliorate absolute mortality. 
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Behavioural disinhibition in 

frontotemporal lobar degeneration 

syndromes 

Preface 

I recruited and tested all the participants in this study with help from Matthew Rouse. The 

Bayesian analysis of the stop no-go task was a collaborative effort between me, Frank 

Hezemans, Claire O’Callaghan and Ron Ye. I performed the remaining analysis and 

interpretation and wrote the text. 

 

Summary 

In this chapter, I report the neuropsychological results from the second study of my PhD, which 

used a transdiagnostic approach to test if behavioural disinhibition was associated with 

glutamate and GABA neurotransmitter deficits in the frontal lobe of FTLD syndromes. I used 

a recently developed Bayesian modelling program to calculate the stop signal reaction time and 

trigger failure rate from a stop no-go task. I show that different neuropsychological tests of 

frontal lobe function and different carer questionnaires both have good inter-test reliability. 

However, the correlations and inter-test reliability between carer questionnaires and 

neuropsychology are weaker. I show that the stop signal reaction time is prolonged in both 

bvFTD and PSP and correlates with carer ratings of global behavioural impairment. I then show 

that attentional failures alone do not explain stopping impulsivity in FTLD, as the stop signal 

reaction time correlates better than the stop trigger failure with other measures of impulsivity. 

This chapter confirms that the stop signal reaction time is a useful quantitative measure of 

behavioural disinhibition and could be used to investigate the neurobiology of one aspect of 

disinhibited behaviour in FTLD. 
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Introduction 

In the previous chapters, I showed that behavioural disturbance is seen with all FTLD 

syndromes and associated with greater risk of care home admission. Better treatment of 

behavioural symptoms is likely to improve functionally independent survival and quality of life 

for patients and their families. Improved understanding of the aetiology of behavioural 

disturbance in FTLD, including structural (Lansdall et al., 2017, 2018), neurophysiological 

(Cotelli et al., 2018, Hughes et al., 2018a; Sami et al., 2018) and neurochemical (Huey et al., 

2006; Passamonti et al., 2018) alterations, may reveal targets for symptomatic treatments. 

However, it is important to carefully define what behavioural feature is of interest. Behavioural 

impairment in FTLD is multifactorial and includes disinhibition, apathy, loss of empathy, 

compulsions and hyperorality (Rascovsky et al., 2007).  These features overlap and correlate, 

as evidenced by them all loading onto the same principal component in chapter one, but this 

does not mean they have a common neural correlate (Rosen et al., 2005). In this chapter, I chose 

to focus on the neuropsychology of behavioural disinhibition, a common and disabling 

behavioural impairment in FTLD syndromes (Lansdall et al., 2017).  

 

Disinhibited behaviour encompasses a range of socially inappropriate and impulsive actions. 

Socially inappropriate behaviours include violations of social norms, for example kissing 

strangers, public urination or shoplifting, telling inappropriate or offensive jokes, poor table 

manners or queue jumping (Panchal et al., 2016). Impulsive behaviour describes decisions or 

actions that are premature and without foresight, poorly conceived and risky or inappropriate, 

for example reckless driving, spending excessive amounts of  money or the motor recklessness 

which causes many falls in PSP (Franken et al., 2008; Dalley et al., 2011; Dalley and Robbins, 

2017). It may not always be clear which of these factors contribute to a manifestly disinhibited 

behaviour. Consider for example a patient who eats food off a stranger’s plate (Aiello et al., 

2016): is this caused by a loss of awareness of social norms (Lough et al., 2006; Mendez et al., 

2014; O’Callaghan et al., 2016), a change in the relative reward value of food (Perry et al., 

2014; Bertoux et al., 2015), hyperorality due to hypothalamic dysfunction (Ahmed et al., 2015, 

2016a) insensitivity to negative consequences (Perry et al., 2017b), a failure to inhibit an 

environmentally-dependent action (Lansdall et al., 2017), or a combination of factors?  

Impulsive behaviours can be further fractionated into the waiting and stopping forms of 

impulsivity (Dalley and Robbins, 2017). Waiting impulsivity refers to an inability to wait before 

making an appropriate decision, either until enough information has been gathered or a signal 

is given. Stopping impulsivity refers to an inability to inhibit an action after it has been initiated, 

but before it is fully executed. Response inhibition enables suppression of inappropriate or 
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unwanted actions and is critical for many everyday tasks (Mostofsky and Simmonds, 2008). 

These impulsivity subtypes may occur together. However, in studies of both health and disease 

they are only partially correlated and are regulated by distinct brain regions, neurotransmitters 

and networks (Dalley et al., 2011; Green and Myerson, 2013; MacKillop et al., 2016; Dalley 

and Robbins, 2017). This fractionation of behaviour implies a differential response to 

symptomatic treatments. 

 

Impulsive behaviours are regulated by parallel neural networks between cortical and subcortical 

structures and modulated by several neurotransmitter systems. Waiting impulsivity is regulated 

by interactions between prefrontal regions, including the anterior cingulate, prelimbic and 

infralimbic cortices, and the hippocampus, amygdala and the nucleus accumbens core and shell 

in the ventral striatum (Basar et al., 2010; Dalley et al., 2011; Dalley and Robbins, 2017). 

Stopping impulsivity, or response inhibition, is closely associated with a network between 

motor and premotor cortex and inferior frontal gyrus with the dorsal striatum and subthalamic 

nucleus (Aron et al., 2003, 2004; Chambers et al., 2009; Dalley et al., 2011; Dalley and 

Robbins, 2017). The right inferior frontal gyrus is strongly associated with response inhibition 

(Aron et al., 2014). Loss of awareness for social norms is also associated with atrophy or loss 

of connectivity between orbitofrontal cortex, anterior cingulate, insula and right inferior frontal 

gyrus (Healey et al., 2015; Baez et al., 2016; O’Callaghan et al., 2016). Impaired response 

inhibition (Hughes et al., 2018a) and socially inappropriate behaviour (Melloni et al., 2016) are 

both associated with abnormal frontotemporal beta oscillation connectivity, which may be a 

common mechanism underlying these impaired behaviours in FTLD (Hughes et al., 2018b; 

Ibáñez, 2018). 

 

Frontotemporal lobar degeneration syndromes are associated with all forms of impulsive 

behaviour (González Sánchez et al., 2010, O’Callaghan et al., 2013a; Passamonti et al., 2018). 

The PIPPIN study included both patient and carer impulsivity questionnaires and 

neuropsychological tests of risk taking, waiting and stopping impulsivity. All impulsivity 

subtypes were more severe in one or more of the FTLD syndromes compared to healthy controls 

(Lansdall et al., 2017). However, the correlations between them were limited and different 

modes of impulsivity were associated with distinct patterns of brain atrophy (Lansdall et al., 

2017). This occurs in other neurodegenerative conditions, for example Parkinson’s disease 

(O’Callaghan et al., 2013b; Mosley et al., 2019; O’Callaghan, 2019).  
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There is evidence for the multifaceted nature of impulsivity in FTLD syndromes. Carer 

questionnaires report impulsive behaviours in bvFTD (Bozeat et al., 2000; Zamboni et al., 

2008, O’Callaghan et al., 2013a) and PSP  (Aarsland et al., 2001; González Sánchez et al., 

2010; Gerstenecker et al., 2013), with evidence of waiting impulsivity (Bertoux et al., 2015; 

Beagle et al., 2020) and risk-taking (Rahman et al., 1999) and impulse control disorders in 

bvFTD (Manes et al., 2010) and PSP (O’Sullivan et al., 2010). Response inhibition is impaired 

in both bvFTD (O’Callaghan et al., 2013b; Hughes et al., 2015) and PSP (Dubois et al., 2005, 

Zhang et al., 2016a). Some deficits in cognitive and inhibitory control, including the Stroop 

and Hayling tests, occur in bvFTD, PSP and also Alzheimer’s disease (Collette et al., 2007; 

Mariano et al., 2019). The new PSP diagnostic criteria reflects this behavioural overlap between 

bvFTD and PSP, with the PSP-F subtype, which describes patients who have behavioural and 

executive dysfunction and slow vertical saccades (Höglinger et al., 2017).  

 

Impulsivity can be measured via questionnaires to participants or their relatives, which tend to 

measure global behavioural impairment, or neuropsychological tests designed to elicit specific 

impulsivity subtypes, e.g. the stop-signal task. Self-ratings of impulsivity, using questionnaires 

such as the Barratt Impulsivity Scale (Patton et al., 1995), are often used. These have less utility 

in FTLD syndromes, which is associated with reduced insight into behaviour and personality 

change (O’Keeffe et al., 2007). Self-assessment questionnaires are often intended for healthy, 

working-age adults and include questions which are not readily applicable to patients with 

neurodegenerative diseases (eg “How often do you change job?” or “How often do you move 

house?”). Questionnaires for relatives or carers may be more appropriate and several scales, 

including the Cambridge Behavioural Inventory (Wear et al., 2008) and Neuropsychiatric 

Inventory (Cummings et al., 1994), have been validated in neurodegenerative disease. 

However, these questionnaires are not measuring impulsive behaviour in isolation and may be 

influenced by the carer’s own insight, personality and carer burden (Austin et al., 1998; Mioshi 

et al., 2013).  

 

Specific neuropsychology tests can be useful biomarkers in human studies of impulsivity. 

Although they lack the direct clinical relevance of clinician- or carer-ratings of symptoms, they 

can be designed for specific cognitive and motor processes. This enables targeted studies to 

determine the neurobiology underlying behaviour impairments, for example neurotransmitter 

deficits. Stop-signal and no-go tasks (Verbruggen et al., 2019) have been used to measure 

response inhibition associated with impulsivity in health (Bartholdy et al., 2016; Tsvetanov et 

al., 2018) and diseases such as attention deficit hyperactivity disorder (Lipszyc and Schachar, 



Behavioural disinhibition in FTLD syndromes 

110 

2010; Senderecka et al., 2012), obsessive compulsive disorder (Penadés et al., 2007; 

McLaughlin et al., 2016), addiction (Smith et al., 2014), schizophrenia (Hughes et al., 2012, 

Matzke et al., 2017a), Parkinson’s disease (Ye et al., 2015; Rae et al., 2016) and FTLD 

syndromes (O’Callaghan et al., 2013a; Hughes et al., 2015; Lansdall et al., 2017). I therefore 

chose the stop signal task to measure response inhibition in FTLD syndromes. 

 

Successful response inhibition requires sustained attention to stop in response to 

countermanding cues, in addition to inhibitory control (Badcock et al., 2002). Stop-signal task 

performance can be analysed to identify attentional (e.g. trigger failure rate) and inhibitory 

deficits (e.g. stop-signal reaction time). They show that trigger failures are frequent in health 

and disease (Badcock et al., 2002, Matzke et al., 2017b, Skippen et al., 2019b). Methods that 

fail to model trigger failures are liable to overestimate stop-signal reaction time, which then 

confounds the attentional and inhibitory impairments (Matzke et al., 2017a). This may account 

for the poor correlation between SSRT and other measures of impulsivity in some studies 

(Enticott et al., 2008; Shen et al., 2014; McLaughlin et al., 2016). In this study, I use a task that 

combines the stop-signal and no-go trials, to measure stopping impulsivity. I apply a recently 

developed Bayesian analysis to estimate both stop-signal reaction time and trigger failures. 

 

Aims and hypotheses 

I aimed to investigate the neurotransmitter changes associated with disinhibition (or stopping 

impulsivity) in FTLD syndromes. In this chapter, I report the basic demographics and 

neuropsychology of the study cohort. In the next chapter, I show the structural imaging and 

neurotransmitter results. I used the transdiagnostic approach to FTLD syndromes which I 

introduced in previous chapters. However, I limited recruitment to PSP and bvFTD as they 

showed the greatest behavioural impairment in the PIPPIN study and in particular targeted PSP 

patients with prominent behavioural impairments (PSP-F). 

 

The aim of this chapter was to use the stop no-go task to quantify behavioural disinhibition in 

FTLD syndromes, and to compare this with carer ratings of global behavioural impairment. 

Specifically, I tested four hypotheses:  

1. FTLD syndromes (bvFTD and PSP) are associated with behavioural disinhbition.  

2. Carer questionnaires and neuropsychological tests measure different facets of 

impulsivity and poorly correlate.  

3. Relative/carer questionnaires have high inter-test reliability and report multifacted 

disinhibition in FTLD syndromes.  
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4. The combined stop/no-go task identifies both disinhibited behaviour (stop signal 

reaction time) and attentional deficits (stop trigger failure) in FTLD syndromes. 
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Methods 

Participant recruitment 

Forty-four patients with bvFTD or PSP were recruited from the PIPPIN cohort, specialist 

cognitive and movement disorder clinics at the Cambridge Centre for FTD and Related 

Disorders and the “Join Dementia Research” patient database. All patients had a clinical 

assessment, including history, examination and carer interview, to confirm they met the 

diagnostic criteria for bvFTD (Rascovsky et al., 2011) and/or PSP-RS and/or PSP-F (Höglinger 

et al., 2017). Disease severity was assessed with the Clinical Dementia Rating scale modified 

for FTLD (Knopman et al., 2008, 2011) and Progressive Supranuclear Palsy Rating Scale 

(Golbe and Ohman-Strickland, 2007). Twenty age and sex matched controls with no history of 

a neurological or psychiatric illness were recruited from the Join Dementia Research database. 

All participants gave written informed consent. The study had ethical approval from the 

Cambridge Central Research Ethics Committee (REC 16/EE/0351 and 16/EE/0084). 

 

Cognitive and behavioural assessment 

Participants underwent a cognitive and neuropsychological assessment. This included an 

assessment of global cognitive function, the Addenbrooke’s Cognitive Examination-Revised 

(ACER) (Mioshi et al., 2006), and tests of executive function including the Frontal Assessment 

Battery (FAB) (Royall, 2001), Hayling Sentence Completion test (Burgess and Shallice, 1997) 

and INECO Frontal Screening test (Torralva et al., 2009b). Each participant’s closest relative 

completed questionnaires including the Cambridge Behavioural Inventory-Revised (CBI-R) 

(Wear et al., 2008), Frontotemporal Dementia Rating Scale (FRS) (Mioshi et al., 2010) and 

Cambridge Questionnaire of Apathy and Impulsivity. I report the Hayling A+B score instead 

of total, as this is a better measure of response inhibition than the total scaled score 

(O’Callaghan et al., 2013b; Martyr et al., 2019). A “CBI-Impulsivity” score was calculated 

using the abnormal behaviour, euphoria mood, eating habits and stereotyped and motor 

behaviour subscores of the CBI (Borroni et al., 2012; Hughes et al., 2015). 

 

Many carer questionnaires are not specific to the impulsive behaviours in FTLD syndromes, 

instead capturing global cognitive and behavioural impairments. Moreover, in PIPPIN, some 

carers found them hard to complete. Questionnaires are often long and susceptible to carer 

fatigue, which can result in repetitive box ticking without taking time to consider the questions 

individually (Edwards, 2010). I therefore designed, with input from Dr Luca Passamonti and 

Dr Claire O’Callaghan, a very short pragmatic questionnaire. It asked four questions on the 
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frequency of different manifestations of disinhibited behaviour typically reported in FTLD 

syndromes (Figure 6-1).  The questionnaire total was the sum of all the questions (never=0, 

monthly=1, weekly=2, daily=3, greater than daily=4). 

 

 

Figure 6-1: Proposed FTLD Impulsivity questionnaire. 

 

Missing data (2.94% of the total dataset) was replaced with trimmed scored regression (Folch-

Fortuny et al., 2016). A standardised Cronbach’s alpha was calculated to measure the internal 

consistency between tests of impulsive behaviour. Independent, two-sample t-tests were used 

to compare neuropsychology results between FTLD and controls, p values were Bonferroni-

corrected for multiple comparisons (Dunn, 1961). 

 

Stop No Go task data collection and analysis 

A combined stop-signal and no-go task was used to measure behavioural disinhibition. I used 

the same version of the “SNG” task used by the Cambridge Centre for Ageing and Neuroscience 



Behavioural disinhibition in FTLD syndromes 

114 

population-based study (CAMCAN) (Tsvetanov et al., 2018). Participants were presented with 

a series of trials consisting of either Go, No-go or Stop tasks and responded using a two-button 

box (Figure 6-2). On Go trials, participants pressed the left button when shown a left-pointing 

black arrow and pressed the right button when shown a right-pointing black arrow. On Stop 

trials, a black arrow was displayed and after a delay (the Stop Signal Delay, SDD), the arrow 

turned red and a beep sounded: participants were required to not make the response.  On No-go 

trials, a red arrow was displayed from the start of the trial (SSD=0) and participants were 

required to make no response. Participants were asked to respond as quickly and accurately as 

possible and told neither to slow down on Go trials nor wait for a possible Stop signal. I ran 

this task with all participants to avoid any inter-operator variability. 

 

The task consisted of 5 blocks of 120 trials. The Go task comprised 75% of all trials (n=450), 

the No-Go task 8.5% (n=51) and the Stop task 16.5% (n=99). On stop trials the delay between 

go and stop signals, the stop signal delay (SSD), was changed using a staircase algorithm to 

reach a cumulative stop accuracy of 50%. The starting SSD was calculated from twenty go 

trials at the start of each block (average Go RT minus 250ms, equivalent to a starting estimated 

SSRT of 250ms). Participants had a practice session of twenty trials prior to the first block. 
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Figure 6-2: Description of the Stop No-Go task. Each trial started with a fixation cross, then either a go (black 

arrow) or no-go (red arrow) or stop (black arrow followed by red arrow and beep) stimulus presented. The delay 

between the go and stop arrow on stop trials (the stop signal delay) varied in a staircase algorithm to target a 

cumulative stop accuracy of 50% 

 

The primary outcome of the task is the time required to successfully inhibit responses, called 

the stop-signal reaction time, SSRT. The task is conceived as a “race” between a go process, 

which is triggered by the go stimulus, and a stop process, which is triggered by the stop signal 

(Logan et al., 2014). If the stop process is faster than the go process, response inhibition is 

successful; and no response made (successful stop trial). If the go process is faster than the stop 

process, inhibition is unsuccessful and a commission error response is made (unsuccessful stop 

trial). The latency of successful stop trials is the primary end point but this cannot be measured 

directly, as successful response inhibition does not result in an observable response. Therefore, 

analysis requires calculation of the SSRT. The SSRT is an estimation of the speed of the 

unobserved stop process.  

 

There are several methods of calculating the SSRT (Verbruggen et al., 2019). I used the recently 

developed Dynamic Models of Choice (DMC), which uses parametric Bayesian hierarchical 

analysis of the stop-signal tasks (Matzke et al., 2013; Heathcote et al., 2019). This model has 

several advantages over other methods. First, it provides a probabilistic distribution, rather than 

a single mean, SSRT which may more accurately reflect disease-related disinhibition (Matzke 

et al., 2013). Second, the model quantifies attentional failures, which occur when a participant 

fails to react. These “trigger failures” are common in health (Matzke et al., 2017b) and diseases 
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such as schizophrenia (Matzke et al., 2017a), and if not modelled may cause overestimation of 

the SSRT (Matzke et al., 2019, Skippen et al., 2019b) . Third, the model can accommodate 

choice errors by including two Go processes, separately for left and right responses (Heathcote 

et al., 2019). Finally, hierarchical Bayesian methods regularise participant-level estimates 

according to group statistics, which enables reliable group-level inference and produces, on 

average, more accurate participant-level estimates (Millsap et al., 2012). 

 

I pre-processed the task results before the Dynamic Models of Choice analysis. Implausibly 

short (<250ms) or long (>4500ms) reaction time trials were excluded, as were any go reaction 

times that were greater than 2.5 standard deviations from the participant’s mean. The pre-

processing pipeline also created a figure for each participant that enabled quality assurance prior 

to modelling (example in Appendix 4).  

 

The model assumes a race between three independent processes: one corresponding to the stop 

process, and two corresponding to go process that match or mismatch the choice stimulus. A 

correct go response occurs when the matching go process finishes before the mismatching go 

process. Successful stop trials occur when the stop process finishes before either of the go 

processes. The model assumes that the finishing times of these processes follow an ex-Gaussian 

distribution, which is typical for reaction time data (Dawson, 1988; Heathcote et al., 1991; 

Whelan, 2008). The model estimates the mean μ, standard deviation σ and exponential decay τ 

of the ex-Gaussian distribution separately for each process. It also includes two attentional 

failure parameters that represent the probability that the go and stop processes fail to start 

(“trigger failure”).  

 

In Bayesian parameter estimation, the priors are updated with the observed study data, or 

likelihood, so as to give a posterior probability distribution. This posterior distribution cannot 

be derived analytically and is approximated with a differential-evolution Markov chain Monte-

Carlo (MCMC) algorithm (Turner et al., 2013). The prior probabilities were based on the 

reference priors provided by the model developers (Heathcote et al., 2019). The priors for mean 

Go and Stop RT were increased to 1000 and 1500ms respectively, because slow reaction times 

are a feature of both bvFTD and PSP (Dubois et al., 1988, Torralva et al., 2009a). MCMC 

sampling draws sequences of samples of the posterior distribution, which continues until 

equilibrium is reached between the multiple iterations of each chain. Initially I ran the model 

using 33 chains (i.e., three times the number of parameters), with thinning of every 10th sample 

and a 5% probability of migration for both the group and participant levels (Matzke et al., 
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2019). I then assessed convergence of the MCMC chains with visual inspection of the trace 

plots and the Gelman-Rubin statistic (Gelman and Rubin, 1992). After this, I obtained an 

additional 500 iterations for each chain to create a final posterior distribution of each parameter, 

to be used for further analyses. 

 

Separate models were run for patient and control participants. The hierarchical modelling uses 

information from the entire group to estimate population-level parameter estimates which are 

then used to improve individual-level parameter estimates. This assumes parameters from 

individuals in a group come from the same population distribution. Hierarchical estimates tend 

to be more precise and accurate than individual estimates, especially where there are a limited 

number of trials for each participant. In the current task, each participant completes a relatively 

small number of stop trials (16.5% of all trials, half of which are successful). The hierarchical 

modelling improves parameter estimates of the stop process (Matzke et al., 2017b).  

 

The Dynamic Models of Choice software was run using R (Version 3.6.1) on the High-

Performance Hub for Informatics computing cluster at the University of Cambridge. 

 

Statistical analysis 

I compared neuropsychology results between FTLD and healthy control participants with 

independent two-tailed t-tests. Inferred p-values were false discovery rate adjusted to correct 

for multiple comparisons (Benjiamini et al., 1995). For the results of the Dynamic Models of 

Choice analysis, a credible interval was defined as the 95% high-density interval (HDI) from 

each parameter posterior distributions. A between-group difference was reported if there was 

no overlap between the FTLD and control group-level 95% HDIs (Kruschke, 2018) . 
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Results 

Forty-four patients with an FTLD syndrome participated in the study. The primary diagnoses 

were evenly split between bvFTD (n=22) and PSP (n-22) but there was considerable overlap 

in patients meeting the diagnostic criteria for bvFTD, PSP-F and PSP-RS (Figure 6-3). Thirty-

six patients met the diagnostic criteria for probable bvFTD, nineteen patients met criteria for 

PSP-F and twenty-three patients met criteria for PSP-RS. Fifteen patients met the diagnostic 

criteria for all three of these FTLD syndromes. Two patients with bvFTD had parkinsonism 

but did not meet the diagnostic criteria for PSP. I therefore use a transdiagnostic approach 

when reporting these results and refer to all patient with bvFTD or PSP as “FTLD”. Twenty 

age and sex-matched healthy volunteers were recruited as controls (Table 6-1). 

 

 

Figure 6-3: Venn diagram of overlapping 

FTLD syndrome subtypes. Each number is the 

number of participants meeting the respective 

diagnostic criteria 

 

 

Table 6-1: Demographics of the study cohort.  

 
Control FTLD t  

value 

p 

value 

Number 20 44 
  

Age  

mean (SD) 

67.12 

(5.61) 

66.72 

(8.20) 

-0.044 0.965 

Sex  

(%male) 

65.00 71.43 0.263

* 

0.608 

Years of 

education 

14.95 

(2.95) 

12.30 

(3.14) 

3.19 0.002 

Onset to 

study 

NA 5.84 

(11.3) 

NA NA 

Diagnosis 

to study 

NA 1.08 

(1.48) 

NA NA 

     

The neuropsychology results are shown in Table 6-2. Patients had impairments in multiple 

cognitive domains, with reduced scores in the memory, fluency, language and visuospatial 

domains of the Addenbrooke’s Cognitive Examination compared to healthy controls (Table 

6-2). In particular, FTLD patients had impaired executive function, with lower scores on the 

Frontal Assessment Battery (FAB), INECO Frontal Screening and Hayling Sentence Repetition 

test (Table 6-2). A carer questionnaire, the Cambridge Behavioural Inventory Revised (CBIR), 

confirmed profound behavioural impairments across a range of domains, including self-care, 

mood, abnormal eating, stereotyped motor behaviours, motivation and everyday skills (Table 

6-2). Patients with FTLD also had high scores on the Cambridge Questionnaire of Apathy and 
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Impulsivity (CAMQUAIT), the CBI Impulsivity composite score (Borroni et al., 2012) and the 

FTLD impulsivity questionnaire designed for this study. Statistical comparison of the FTLD 

subgroups is in Appendix 3. There were differences between bvFTD and PSP on several 

measures, but not on a carer rating of impulsive behaviour (CBI Impulsivity composite). 

  



Behavioural disinhibition in FTLD syndromes 

120 

 

 

Test 
Control 

mean (SD) 

FTLD  

mean (SD) 
t value 

Mean 

difference 

(95% CI) 

p value 

CDR-FTLD SOB 0 (0) 9.81 (5.19) -8.42 (-12.1:-7.48) 9.39E-12 

PSPRS Total 0.1 (0.31) 23.1 (17.81) -5.75 (-31:-14.99) 3.21E-07 

ACER Attention 17.95 (0.22) 14.24 (5.16) 3.2 (1.4:6.03) 2.17E-03 

ACER Memory 21.3 (1.38) 15.93 (7.04) 3.37 (2.18:8.56) 1.34E-03 

ACER Fluency 12.85 (1.04) 4.33 (3.27) 11.32 (7.01:10.02) 1.57E-16 

ACER Language 25.5 (0.83) 20.1 (6.83) 3.51 (2.33:8.48) 8.50E-04 

ACER Visuospatial 15.8 (0.52) 12.14 (4.55) 3.57 (1.61:5.71) 7.16E-04 

ACER Total 96.2 (2.71) 68 (24.11) 5.19 (17.3:39.06) 2.61E-06 

FAB 17.45 (0.83) 11.14 (5.14) 5.43 (3.98:8.63) 1.09E-06 

Hayling (A+B score) 4.3 (7.12) 24.31 (19.58) -4.42 (-29.1:-10.9) 4.24E-05 

Hayling Total 18.45 (2.28) 11.26 (4.83) 6.31 (4.91:9.47) 3.72E-08 

INECO 25.78 (2.83) 14.2 (7.53) 6.63 (8.08:15.06) 1.06E-08 

FTLD Impulsivity 0.52 (0.85) 5.55 (4.13) -5.36 (-6.9:-3.15) 1.39E-06 

CBIR Memory 2.06 (2.01) 12.12 (8.43) -5.24 (-13.9:-6.22) 2.14E-06 

CBIR Everyday skills 0.15 (0.5) 9.33 (7.24) -5.64 (-12.4:-5.92) 4.87E-07 

CBIR Selfcare 0.02 (0.09) 5.12 (5.36) -4.24 (-7.5:-2.69) 7.90E-05 

CBIR Behaviour 0.72 (0.93) 6.38 (6.11) -4.1 (-8.42:-2.9) 1.25E-04 

CBIR Mood 0.86 (1.35) 3.4 (2.7) -3.97 (-3.82:-1.26) 1.93E-04 

CBIR Abnormal beliefs 0 (0) 1.21 (1.83) -2.96 (-2.04:-0.39) 4.42E-03 

CBIR Eating 0.3 (0.57) 6.07 (4.93) -5.2 (-7.99:-3.55) 2.55E-06 

CBIR Sleep 0.89 (1.28) 3.38 (2.53) -4.15 (-3.69:-1.29) 1.06E-04 

CBIR Motor behaviour 0.77 (1.21) 6.79 (5.8) -4.57 (-8.65:-3.39) 2.46E-05 

CBIR Motivation/apathy 0.58 (0.94) 10.81 (6.39) -7.09 (-13.1:-7.34) 1.77E-09 

CBIR Impulsivity 2.32 (2.73) 21.5 (16.57) -5.12 (-26.7:-11.7) 3.39E-06 

CBIR Total 6.35 (6.13) 64.62 (36.52) -7.06 (-74.8:-41.8) 1.98E-09 

FRS Total (Logit) 0.86 (0.3) 0.37 (0.28) 6.31 (0.33:0.64) 3.66E-08 

CAMQUAIT 34.25 (8.95) 56.83 (10.3) -8.41 (-28:-17.21) 9.91E-12 

Table 6-2: Neuropsychology of FTLD syndromes (bvFTD and PSP). CDR-FTLD SOB: Clinical Dementia Rating 

scaling sum of boxes modified for FTLD. PSPRS: Progressive Supranuclear Palsy rating scale. ACER: 

Addenbrooke’s Cognitive Examination-Revised. FAB: Frontal Assessment Battery. CBIR: Cambridge 

Behavioural Inventory Revised. FRS: Frontotemporal Dementia Rating Scale. CAMQAUIT: Cambridge 

Questionnaire for Apathy and Impulsivity. T and p values are from independent two-tailed t test for each test. P 

values in bold remain significant (p<0.05) after Bonferroni correction (1.85E-03).  

 

First, I investigated the correlations between the tests of executive function and impulsivity 

(Figure 6-4). Neuropsychological measures of executive function, the Frontal Assessment 

Battery (FAB), Hayling Inhibition Score and INECO frontal screening test, correlated. The 

FAB and the INECO, which have many questions in common, correlated strongly (R 0.87, 

p<0.001). The Hayling verbal inhibition test weakly correlated with the FAB (R-0.35, p<0.05) 
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and INECO (R -0.49, p<0.01). Overall, the inter-test reliability between the three tests was very 

low (standardised Cronbach’s alpha 0.026). There were stronger correlations between the carer 

measures of behavioural impairment, particularly the CBI Impulsivity composite score and the 

four impulsivity questions I created for the study (R 0.76, p<0.001). Overall, there was good 

inter-test reliability between the FTLD Impulsivity, CBI Impulsivity and CAMQUAIT 

questionnaires (standardised Cronbach’s alpha 0.866). Correlations between tests of executive 

function and impulsivity were generally weak, apart from between the CBI Impulsivity score 

and Hayling (R0.44, p<0.01). 

Figure 6-4: Correlation matrix of neuropsychology and carer questionnaires of behaviour. Values in each cell are 

Pearson’s R for each pairwise correlation. Cells are colour-coded by FDR-corrected p values, pairwise correlations 

with FDR-p>0.05 are coloured white. FAB: Frontal Assessment Battery. Hayling: Hayling inhibition score (A+B 

errors). FTLD Impulsivity is the score from the questionnaire devised for this study (Figure 6-1). 

 

Second, I used Bayesian hierarchical modelling of a stop no-go task to estimate the stop signal 

reaction time, a measure of response inhibition, and trigger failures, a measure of inattention, 

in FTLD. Data from eight FTLD participants was excluded, due to low number of completed 

trials (<50 stop trials). Remaining FTLD (bvFTD n=17, PSP n=18) and control participants 

completed a similar total number of trials (mean 663 vs 670 trials, Mann Whitney=300, 
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p=0.228) but FTLD participants made more go errors (Mann Whitney=185.5, p=0.003) and 

omissions (Mann Whitney=231.5, p=0.005). Results are summarised in Appendix 4.  

Markov chain Monte-Carlo (MCMC) sampling adequately estimated the posterior distribution 

of each parameter. Visual inspection of the trace plots showed good convergence of MCMC 

chains (Posterior likelihood for FTLD and Control in Figure 6-5, trace plots for all parameters 

in Appendix 5). The Gelman-Rubin convergence statistics, which test MCMC overlap, were 

less than 1.1 for all parameters (FTLD: mean=1.00 SD=0.00 Control: mean=1.00 SD=0.01).  

 

 

Figure 6-5: Trace plots of posterior likelihoods of DMC models for control and FTLD participants. Each line 

corresponds to one MCMC chain sampled from the model’s joint posterior distribution. These plots (together with 

those in Appendix 5) enable visual inspection of the MCMC chains to ensure common problems (e.g. too few 

samples, serial correlations between samples, diverging sample chains) have not occurred. The ideal plot (like 

those above) should look like hairy caterpillars, where all the lines overlap, explore a sufficiently broad sample 

space and are flat (i.e. not trending up or down towards a final value that has not yet been reached). 

 

The posterior estimates for the group and individual level go and stop reaction time distributions 

for FTLD syndromes and controls are shown in Figure 6-6. All control individual-level reaction 
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times were similar to the group-level distribution, with no evidence of strategic slowing. In 

FTLD, individual go reaction time distributions varied widely, some overlapped with the 

control distributions, but many were markedly longer (Figure 6-6A). There was similar 

variability in FTLD stop reaction time distributions (Figure 6-6C). There was a group-level 

difference in stop reaction time between FTLD and controls, with clear separation of the ex-

Gaussian distributions and no overlap in the 95% highest density intervals of the mean reaction 

time (Figure 6-6D). Go reaction time did not differ significantly between groups, as evidenced 

by the overlapping HDI boundaries (Figure 6-6B). 

 

 

Figure 6-6: Reaction time distributions for FTLD syndromes (blue) and healthy controls (red). Group-level result 

is the thick line, individual-level results are the thinner lines. A: Go reaction time distributions. B: Boxplot of 

highest density interval for the µ of the go reaction time. The boxes represent the 25th to 75th highest density 

interval, the whiskers the 5th to 95th highest density interval.  

 

The SSRT was longer in FTLD, indicating poor response inhibition (95% HDI 0.48-0.59 

seconds) compared to controls (95% HDI 0.35-0.39 seconds) (Figure 6-7A). The probability of 

stop trigger failures was also higher in FTLD compared to healthy controls (FTLD 95% HDI 
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0.03-0.12, Control 95% HDI 3.72x10-4-0.008) (Figure 6-7B). There was no association between 

stop signal reaction time and stop trigger failure in FTLD participants (Spearman’s rank 

correlation, R=0.17, p=0.33) (Figure 6-7C). The probability of go trigger failures was higher in 

FTLD, but the absolute trigger failure rate was very low in both groups (FTLD 95% HDI 

1.79x10-4-0.002, Control 95% HDI 4.92x10-6-7.79x10-5) 

 

 

Figure 6-7: Primary outcomes of the Bayesian hierarchical modelling of the stop no-go task. A: Boxplot of highest 

density interval of stop signal reaction time (SSRT) by group. The scatterplot shows results from the individual 

analysis, colour coded by FTLD syndrome subgroup.  B: Histogram of SSRT mean ratio (FTLD/Control) 

distribution. The 95% highest density interval (HDI) did not overlap with the pre-specified region of practical 

equivalence (ROPE) of -0.9 to 1.1. C: Boxplot of 95% highest density intervals for stop trigger failure probability. 

There was no overlap between the group 95% HDI trigger failure probability, suggesting there is a group 

difference. The scatterplot shows results from the individual analysis, colour coded by FTLD syndrome subgroup. 

For all boxplots the box shows the 50% highest density interval and the whiskers show the 95% highest density 

interval. D: Scatterplot comparing stop trigger failure and stop signal reaction time across all individuals. 

 

Finally, I tested the correlation between stop no-go task performance (SSRT and stop trigger 

failure rate) and the other cognitive tests, neuropsychology and questionnaires (Figure 6-8). The 

SSRT correlated with the fluency (R=-0.57) and visuospatial (R=-0.45) subscore of the 
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Addenbrooke’s Cognitive Examination, the Frontal Assessment Battery (R=-0.50) and INECO 

(R=-0.46). SSRT was also associated with higher scores on the total Cambridge Behavioural 

Inventory (CBI) (R=0.39) but not more specific questionnaires targeting impulsive behaviour 

(FTLD Impulsivity R=0.31, CBI Impulsivity R=0.18).  

 

Stop trigger failures correlated with severity of global cognitive impairment (ACER total R=-

0.41), including in attention (R=-0.44), memory (R=0.36) and visuospatial (R=-0.35) domains. 

There were weak correlations with executive function (FAB R=-0.39, INECO R=-0.35). There 

was no association between stop trigger failure and any carer ratings of behavioural impairment.  

 

 

 

Figure 6-8: Correlation matrix between SSRT (stop signal reaction time) and TF (stop trigger failure probability) 

and the other neuropsychological tests and carer questionnaires of impulsivity. Results are from only the FTLD 

participants. The numbers in each cell are the R value from a Pearson’s correlation between groups. Each cell is 

colour coded by the FDR (false discovery rate)-corrected p values. Cells with FDR-p <0.05 are white. 
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Discussion 

This transdiagnostic study of behaviour in FTLD syndromes has four main findings. First, it 

confirmed multifaceted disinhibited behaviours are prevalent in FTLD syndromes. Second, the 

tests of different facets of executive dysfunction and behavioural impairment do not correlate 

but carer ratings of global behavioural impairment have good intra-rater reliability. Third, 

response inhibition is worse in FTLD syndromes and correlates with carer ratings of global 

behavioural impairment. Fourth, attentional failures alone do not explain stopping impulsivity 

in FTLD, as the stop signal reaction time rather than the stop trigger failure correlates with other 

measures of impulsivity. This chapter confirms that the stop signal reaction time is a potentially 

useful quantitative measure of stopping impulsivity and could be used to investigate the 

neurobiological basis of this facet of disinhibited behaviour in FTLD. 

 

Carer ratings of global behavioural impairment were consistent. In contrast, there was limited 

association between neuropsychological tests of behaviour and executive function. The FAB, 

Hayling and INECO, all tests of executive function, correlated but had poor internal 

consistency. The strength of the correlation was associated with the number of questions in 

common between tests. The FAB and INECO, which share some questions (Royall, 2001, 

Torralva et al., 2009b), strongly correlated. The Hayling and FAB, which do not overlap, only 

weakly correlated. Stop signal reaction time and stop trigger failure rates, despite being both 

proposed as measures of stopping impulsivity (Skippen et al., 2019b; Verbruggen et al., 2019), 

do not correlate. This heterogeneous behavioural phenotype is seen in other studies, even in the 

way patients with FTLD answer a single question. The ability to make conceptual links when 

answering a question like “in what way are a banana and an orange alike?” is tested by the FAB. 

Patients with a FTLD syndrome typically make either linking or abstraction errors, but these 

do not correlate and are associated with atrophy in distinct regions (Lagarde et al., 2015; Garcin 

et al., 2018). The different cognitive processes associated with executive function and 

behaviour have distinct anatomical (Turken and Swick, 1999; Alvarez and Emory, 2006; Clark 

et al., 2008), neurophysiological (Neal and Gable, 2016; Mirza et al., 2018; Parr et al., 2019) 

and neuropharmacological correlates (Dalley and Roiser, 2012; Le Heron et al., 2018; 

Passamonti et al., 2018). This suggests that FTLD pathology simultaneously affects multiple 

brain networks, but to a variable extent across individuals 

 

Neuropsychology and carer ratings of similar cognitive processes typically correlated, albeit 

weakly. For example, the CBI, a carer questionnaire of behavioural impairment, correlated with 

neuropsychological tests of response inhibition such as the Hayling inhibition score and SSRT. 
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However, the shared variance is small. This confirms the results from the PIPPIN study 

(Lansdall et al., 2017). Importantly, it suggests that positive neuropsychology outcomes in pre-

clinical (Bari et al., 2009; Eagle et al., 2009) and human studies (Hughes et al., 2015; Rae et 

al., 2016) may not translate into trials with clinical endpoints, such as a carer rating of 

behaviour. In a clinical trial, it may be important to use targeted assessments of behavioural 

subtypes, in addition to carer-ratings of global behavioural impairment. 

 

Both SSRT and stop trigger failures were increased in FTLD syndromes but they did not 

correlate. The SSRT correlated with carer measures of behavioural impairment and stop trigger 

failure correlated with global, including attentional, cognitive impairment. In contrast, similar 

analyses in healthy volunteers (Skippen et al., 2019b, a) and attention deficit hyperactivity 

disorder (ADHD) (Weigard et al., 2019) found that impulsivity was associated with trigger 

failure, (i.e. attentional impairment) rather than SSRT (a measure of response inhibition). This 

may reflect a difference between trait impulsivity in healthy adults and ADHD (Chamberlain 

et al., 2018), and pathological impulsivity due to neurodegeneration (O’Callaghan et al., 2013a; 

O’Callaghan, 2019).   

 

The SSRT correlated with carer ratings of global behavioural impairment (CBI-total) and 

impulsivity (CAMQUAIT). Response inhibition has been proposed to reflect a “brake” on the 

expression of multiple motor and cognitive states (Hughes et al., 2018b). This can be considered 

in relation to disinhibited behaviour in FTLD syndromes. Consider again the example of eating 

food off other people’s plates (Aiello et al., 2016). The relative contribution of different 

behaviours outlined in the introduction may vary between patients but inhibitory control could 

be a final common pathway which, if impaired, fails to prevent the motor manifestations of 

disinhibition (Bari and Robbins, 2013, O’Callaghan et al., 2013a). If this hypothesis was 

correct, partially restoring response inhibition could be an effective treatment for many 

behavioural impairments in FTLD syndromes.  

 

This study used a transdiagnostic approach to impulsivity in FTLD syndromes, grouping 

bvFTD and PSP together. There were differences in many cognitive and behavioural measures 

between these FTLD syndrome subtypes. Patients with bvFTD tended to have greater cognitive 

impairment, executive dysfunction and behavioural impairment compared to the PSP group. 

This is because a proportion of PSP patients did not have severe cognitive and behavioural 

impairment, as evidenced by not meeting the criteria for PSP-F or bvFTD. However, fifteen 

patients with PSP met the diagnostic criteria for bvFTD, which is reflected in the overlap in 
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results between bvFTD and PSP. Interestingly, the CBI-behaviour and impulsivity composite 

score and the individual-level stop signal reaction time did not differ between bvFTD and PSP 

after correction for multiple comparisons. This, together with their shared structural (Lagarde 

et al., 2013), neurophysiological (Sami et al., 2018), neuropathological (Mackenzie and 

Neumann, 2016) and neurotransmitter (Murley and Rowe, 2018) deficits, justifies the 

transdiagnostic approach used in this study.  

 

This study has several limitations. Patients with very severe behavioural disturbance were either 

unable to take part in the study or found the neuropsychology too difficult.  Six patients were 

unable to complete the stop no-go task which requires sustained attention over 20 minutes. Any 

neuropsychological assessment of behaviour in FTLD syndromes may underestimate symptom 

severity at a population level. However, carer questionnaires are not limited by disease severity, 

and the CBI-R scores in this study were not different to the population-based PIPPIN study 

(bvFTD and PSP subgroups, t(43)=-0.08, p=0.93). SSRT only weakly correlated with carer 

ratings of behaviour, so any treatments that successfully shorten SSRT (i.e. improve response 

inhibition) may not have the same effect on carer ratings of behaviour. In this study, reaction 

times in the stop no-go task were recorded from button release rather that button press. That is 

likely to result in longer go and inaccurate stop reaction times and may disproportionately 

increase reaction time in individuals with akinesia. However, the critical SSRT estimation is 

unaffected. The hierarchical model used to estimate SSRT has many advantages, including the 

ability to account for trigger failures, produce a distribution of SSRT values and use group-

level results to inform individual-level results to reduce the effect of outliers. However, this 

modelling is more complex and computationally demanding that the mean subtraction or 

integration methods (Verbruggen et al., 2019).  

 

Clinical trials of treatments for behavioural impairment in dementia tend to use carer 

questionnaires as the primary endpoint (Cummings et al., 2014; Ballard et al., 2018) but these 

have limitations. Answers may be influenced by many carer factors that change their perception 

of behavioural impairments. These include carer empathy (Hsieh et al., 2013), resiliency (Jones 

et al., 2019), stress (Mioshi et al., 2009) and burden (Boutoleau-Bretonnière et al., 2008, 

Armstrong et al., 2013b). For example, an anxious, stressed, sleep-deprived spouse providing 

continuous care without respite is likely to have a different perspective on behavioural 

impairments to an adult child who lives separately and only sees their relative once a day. Using 

carer questionnaires as a study endpoint also raises ethical questions of who is being treated – 

the carer or the patient? This may be justified if, as the case with behavioural impairment in 



Chapter 6 

129 

FTD, carer ratings are associated with adverse patient outcomes such as increased care home 

admission. 

 

In summary, carer questionnaires can be useful measures of widespread and heterogenous 

behavioural impairments in FTLD syndromes. The stop signal reaction time correlates, albeit 

weakly, with carer questionnaires of global behavioural impairment, and offers a specific 

measure of stopping impulsivity and behavioural disinhibition. The response inhibition task 

was taken forward to relate to the neurotransmitter deficits associated with behavioural 

disinhibition, in the next chapter. 
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The role of GABA and glutamate in 

behavioural disinhibition in frontotemporal 

lobar degeneration syndromes 

 

Preface 

I recruited all the participants, performed the magnetic spectroscopy scans, analysed the data 

and wrote the text of this chapter. I had help from Matthew Rouse with participant recruitment, 

the radiographers at the Wolfson Brain Imaging Centre with the 7T MRI scanning and Simon 

Jones and Dinesh Deelchand with data analysis. Part of the discussion is included in a review 

article I co-authored (Murley and Rowe, 2018). 

 

Summary 

Neurotransmitter deficits associated with disease are a promising target for symptomatic 

treatments. In this chapter I use ultra-high-field magnetic resonance spectroscopy to measure 

glutamate and GABA in vivo in FTLD syndromes. I show that frontal lobe GABA and 

glutamate concentrations are reduced in vivo in FTLD, but there is a disproportionate 

GABAergic deficit that persists after partial volume correction. This neurotransmitter deficit is 

associated with disinhibition, as measured by the stop signal reaction time. 
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Introduction 

Impulsivity is a prominent symptom in FTLD syndromes but has few effective pharmacological 

treatments (Huey et al., 2006; Manoochehri and Huey, 2012). Improving our understanding of 

the neurobiology of impulsivity in FTLD may reveal new targets for symptomatic treatments. 

One strategy is to reverse any neurotransmitter deficits, which has been effective in other 

neurodegenerative diseases. For example, reversing the dopaminergic deficit in Parkinson’s 

disease improves motor symptoms (Cotzias et al., 1967; Bernheimer et al., 1973; Marsden and 

Parkes, 1977; Hornykiewicz, 2002) and partially restoring the cholinergic deficit in 

Alzheimer’s disease (Francis et al., 1999) slows cognitive decline and reduce rates of nursing 

home admission (Lopez et al., 2002; Birks, 2006). These positive results suggest that 

neurotransmitter deficits could be a tractable target for symptomatic treatments in FTLD 

syndromes (Huey et al., 2006; Murley and Rowe, 2018). 

 

Neurotransmitter deficits contribute to many symptoms and the phenotypic overlap in FTLD 

syndromes. For example, dopaminergic deficits in bvFTD are associated with a PSP-like 

parkinsonism (Rinne et al., 2002; Sedaghat et al., 2007) and cholinergic deficits in PSP 

contribute to cognitive impairment (Warren et al., 2005). The neurotransmitters glutamate and 

gamma-Aminobutyric acid (GABA) are associated with behavioural impairment in health and 

other neurological and psychiatric diseases but there is limited evidence on their role in FTLD.  

 

In this chapter I aimed to measure glutamate and GABA concentrations in FTLD syndromes 

and test their association with disinhibition. Glutamate and GABA are the primary excitatory 

and inhibitory neurotransmitters in the brain (DeFelipe, 1993; Markram et al., 2004). 

Neocortical micro networks consist of excitatory glutamate-producing (glutamatergic) neurons 

and inhibitory GABA-producing (GABAergic) interneurons (Tremblay et al., 2016; Schmidt-

Wilcke et al., 2018). Synchronised interaction between and within these neural networks 

generates oscillations which are thought to underlie complex brain functions such as 

consciousness, cognition and behaviour (Ward, 2003; Buzsaki et al., 2004; Bastos et al., 2012). 

Glutamate and GABA neurotransmission is critical to regulate and coordinate activity within 

these neural networks and disrupting the balance between glutamate and GABA levels has 

adverse effects on cognition and behaviour (Tremblay et al., 2016). For example, glutamate 

receptor (NMDA) antagonists impair attention, reaction time, processing speed and working 

memory (Malhotra et al., 1996; Newcomer et al., 2000) and exacerbate psychotic symptoms 

(Morgan et al., 2010; Gilmour et al., 2012) in healthy adults. Drugs that act on GABA receptors, 
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including alcohol (Krystal et al., 2006), barbiturates (Ito et al., 1996) and benzodiazepines (Tan 

et al., 2011), have widespread and well recognised effects on cognition and behaviour. 

 

Research into the neurobiology of impulsivity in health and disease has primarily focussed on 

monoamine neurotransmitters such as dopamine, serotonin and noradrenaline (Dalley et al., 

2011; Dalley and Robbins, 2017). However, there is evidence that GABA and glutamate have 

an important role (Hayes et al., 2014). In health, cerebrospinal fluid (Lee et al., 2009) and 

prefrontal cortex (Boy et al., 2011; Silveri et al., 2013; Hermans et al., 2018) GABA 

concentrations inversely correlate with disinhibition and risky decision making (Fujihara et al., 

2015). Magnetic resonance spectroscopy (MRS) has enabled in vivo measurement of glutamate 

and GABA in the human brain and has identified deficits in many diseases associated with 

impulsivity (Ende, 2015; Yasen et al., 2017). GABA deficits are seen in addiction to cocaine 

(Ke et al., 2004), opiates (Li et al., 2020), alcohol (Behar et al., 1999; Prisciandaro et al., 2017) 

and gambling (Mick et al., 2017), neurofibromatosis type 1 (Ribeiro et al., 2015), autism (Puts 

et al., 2017), attention deficit hyperactivity disorder (ADHD) (Edden et al., 2012; Ende et al., 

2016) and obsessive compulsive disorder (Zhang et al., 2016b). There is also an association 

between glutamate, measured in vivo with MRS, and self-reported impulsivity in healthy 

volunteers (Schmaal et al., 2012a; Coccaro et al., 2013), personality disorders (Hoerst et al., 

2010), ADHD (Naaijen et al., 2015; Ende et al., 2016) and addiction (Schmaal et al., 2012b). 

The direction of the relationship between glutamate, GABA and impulsive behaviour is 

complex and may depend on disease (Ende, 2015), brain region (Dharmadhikari et al., 2015; 

Naaijen et al., 2015) and receptor subtype (Lee et al., 2011a; Hermans et al., 2018).  

 

There is pre-clinical and clinical evidence of GABA and glutamate deficits in FTLD. In mouse 

models with pathological tau aggregates there is impairment of both glutamatergic (Gascon et 

al., 2014; Warmus et al., 2014; Decker et al., 2016) and GABAergic (Levenga et al., 2014; Li 

et al., 2017; Jiang et al., 2018) neuron function. In post mortem human studies, glutamatergic 

pyramidal neurons (Ferrer, 1999; Henderson et al., 2000) and receptors (Francis et al., 1993; 

Procter et al., 1999; Bowen et al., 2008; Gascon et al., 2014) are reduced in FTLD. GABAergic 

neurons are reduced in frontotemporal dementia (Ferrer, 1999) and progressive supranuclear 

palsy (Levy et al., 1995) with loss of GABAA receptors in some brain regions (Landwehrmeyer 

and Palacios, 1994; Suzuki et al., 2002). Post mortem GABA concentrations are decreased in 

the basal ganglia in bvFTD (Kanazawa et al., 1988).  There is also emerging evidence of in vivo 

glutamate deficits (Benussi et al., 2019). Magnetic resonance spectroscopy in FTD shows 

reduced glutamate/glutamine levels in the frontal and temporal lobes (Ernst et al., 1997; Sarac 
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et al., 2008) and there is an inverse correlation between CSF glutamate levels and verbal 

agitation (Vermeiren et al., 2013). PET studies have shown loss of glutamate and GABA 

receptors (Foster et al., 2000; Leuzy et al., 2016). 

 

Aims and hypotheses 

I aimed to measure in vivo glutamate and GABA concentrations in FTLD syndromes, using 

magnetic resonance spectroscopy (MRS), and to look for any association with behavioural 

disinhibition. Current MRS sequences measure glutamate and GABA in single brain regions, 

so regions of interest must be selected a priori. I chose the right inferior frontal gyrus as my 

experimental region of interest. The right inferior frontal gyrus has a critical role in response 

inhibition (Aron et al., 2004, 2014), as shown with structural (Aron et al., 2003) and functional 

studies (Swann et al., 2009; Levy and Wagner, 2011; Rae et al., 2015). Right inferior frontal 

gyrus GABA concentrations are also associated with impulsivity in healthy ageing (Hermans 

et al., 2018). In FTLD, loss of functional connectivity in the inferior frontal gyrus is associated 

with impulsivity (Hughes et al., 2015, 2018a). I measured neurotransmitters in a control region, 

the right occipital lobe, which is minimally affected by FTLD pathology (Riedl et al., 2014).  

 

The specific hypotheses for this chapter were: (1) GABA and glutamate levels are reduced in 

the frontal but not occipital cortex in FTLD compared to controls; (2) the in-vivo 

neurotransmitter deficits in the frontal lobe are associated with impulsivity, as measured by 

carer rating of impulsivity and the stop signal task, a neuropsychological measure of 

disinhibition. To test how neurotransmitter deficits relate to behaviour, one must account for 

atrophy. I hypothesised that frontal lobe grey and white matter volumes are reduced in FTLD 

and the severity of this atrophy is associated with disinhibition. I aimed to correct GABA and 

glutamate concentrations for the grey matter volume in the MRS region of interest. 
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Methods 

Participant recruitment 

The methods section in chapter 6 described the participant recruitment and neuropsychology 

test battery for this study. All participants who consented to the study and underwent 

neuropsychology were scanned on a Siemens MAGNETOM Terra 7T MRI scanner at the 

Wolfson Brain Imaging Centre, University of Cambridge. Participants were screened for 

contraindications before each scan. During piloting, I excluded participants with any metal 

implants or tattoos. With increasing awareness of the specific risks of 7T, published 

recommendations (Noureddine et al., 2015; Hoff et al., 2019) and communication with 

specialists at the Universities of Leiden and Minnesota this was relaxed. At the time of this 

study, the only contraindications, above 3T MRI, were dental implants, tattoos on the face or 

neck and any cardiac or neurological implanted devices. Participants were asked to abstain from 

alcohol, or ad hoc benzodiazepines and sleeping tablets for 24 hours prior to the scan. No 

changes were made to participants’ regular prescribed medication. All participants provided 

written informed consent. The study had ethical approval from the Cambridge Central Research 

Ethics Committee (REC 16/EE/0351 and 16/EE/0084). 

 

Structural imaging and analysis 

A MP2RAGE image was acquired on all participants (TR=4300ms, TE=1.99ms, TI1/ 

TI2=840/2370ms, FA1/FA2=5/6°, 224 slices, 0.75mm isotropic voxels). This sequence is an 

adaptation of the Magnetisation Prepared – Rapid Gradient Echo (MPRAGE) sequence that is 

the predominant 3D T1-weighted sequence on Siemens 3T MRI scanners. The MP2RAGE 

sequence differs in that two images are acquired, only with a short inversion time (840ms) and 

another with a longer inversion time (2370ms). These two images are combined, to cancel out 

T2* and B1 inhomogeneities and create a strongly T1-weighted imaging with improved grey 

to white matter contrast compared to conventional MPRAGE images (Marques et al., 2010).  

 

Voxel-based morphometry was performed with the standard settings in SPM12 as follows 

(Ashburner and Friston, 2000; Ashburner and Reg, 2010). First, MP2RAGE images were 

aligned to an average image in MNI space, cropped to a standard bounding box then segmented 

into six tissue probability maps: grey matter, white matter, CSF, bone, soft tissue and air. A 

study-specific template was created using diffeomorphic anatomical registration using 

exponentiated Lie algebra (DARTEL) on images from all participants. The tissue probability 

maps for each participant were then warped to this template. Next, the grey and white matter 
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templates were affine transformed to MNI space. This transformation was then applied to each 

participant’s tissue probability images. Smoothing was performed with an 8mm isotropic full 

width at half maximum Gaussian kernel. The total intracranial volume for each participant was 

calculated using the Tissue Volumes function in SPM12. Study-specific grey and white matter 

masks were created from voxels with a value of >0.15 in more than half of the images (Ridgway 

et al., 2009). An average of the all participants’ structural images was created to visualise 

thresholded cluster maps and spectroscopy voxels. After skull stripping, all images were 

normalised using the study specific DARTEL template, but with no smoothing or modulation. 

An averaged image was created using the AverageImages function in ANTS (Avants et al., 

2009). 

 

Grey and white matter volumes for each diagnostic group were compared with independent 

two-sample t-tests with age, sex and total intracranial volume as covariates of no interest 

(Barnes et al., 2010). The conjunction between bvFTD and PSP was tested on the combined 

pairwise contrasts (bvFTD vs control and PSP vs control) on an ANCOVA across all groups 

with the same covariates of no interest (Nichols et al., 2005). The association between 

impulsivity measures (CBI-Impulsivity composite score and stop signal reaction time (SSRT)) 

and brain volumes were compared with ANCOVA, with either CBI-Impulsivity or SSRT as the 

covariate of interest and FTLD subgroup, age, gender and total intracranial volume as 

covariates of no interest. Significant effects were identified using cluster-level statistics 

(p<0.05, family-wise error corrected for multiple comparisons) above a height threshold of 

p<0.001 (uncorrected).  

 

Magnetic resonance spectroscopic imaging and analysis 

Principles of Magnetic Resonance Spectroscopy 

Magnetic resonance spectroscopy (MRS) is a molecular imaging technique that enables the 

detection and quantification of molecules in the brain (Wilson et al., 2019). MRS is enabled by 

the principle of chemical shift. In any given molecule, the magnetic field experienced by 

protons is influenced by their surrounding electrons. The resonant frequency of nuclei (Lamour 

frequency) may be “shifted” if they are partially shielded from the magnetic field by their 

surrounding electrons. Different molecules have different “chemical shifts”, as the degree of 

shifting depends on the density of the electrons in the molecule (Govindaraju et al., 2000; Hajek 

and Dezortova, 2008). An MRS sequence output is a frequency spectrum from multiple nuclei, 

each peak of the spectrum comes from a different molecule. More complex molecules may have 

several peaks if their constituent protons resonant at different frequencies. The area beneath 
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each peak represents each metabolite’s concentration in the region of interest. Not all molecules 

are visible in the MRS spectrum, including those with very complex structures, high molecular 

weight, low concentrations or when bound to other large compounds (Hajek and Dezortova, 

2008; Tognarelli et al., 2015).  

 

Different spectroscopy sequences have been developed, each with advantages and 

disadvantages. MRS of GABA is difficult, as the GABA molecule is represented by three low 

amplitude peaks in the MRS spectrum, each of which overlaps with the peaks of other 

metabolites with much greater concentrations. Specific GABA MRS sequences, for example 

MEGA-PRESS, have been developed which use editing pulses to select the GABA signal from 

the whole frequency spectrum (Mullins et al., 2014). These sequences have limitations:  

participant movement can prevent accurate editing and macromolecular contamination may 

form a large proportion of the final “GABA” signal (Mullins et al., 2014). Ultra-high field MRS 

at 7T enables more accurate GABA measurement without these limitations, due to higher signal 

to noise and greater separation of individual metabolites in the MRS spectrum (Ladd et al., 

2018).  

 

Spectroscopy data acquisition 

Magnetic resonance spectroscopy was performed with single voxel short-echo semi-LASER 

sequence (TR/TE=5000/26ms,64 averages) (Öz and Tkáč, 2011; Deelchand et al., 2015). This 

sequence was developed by Gülin Öz and Dinesh Deelchand and was provided by the 

University of Minnesota. A 2x2x2cm voxel was placed over the region of interest. The voxel 

was aligned to the plane of the magnetic field and rotated in at most one dimension to avoid 

non-brain structures. My primary experimental region was the right inferior frontal gyrus (IFG) 

and control region was the right primary visual cortex. I attended all scans and placed all the 

voxels to avoid inter-operator variability in voxel placement. The order of the first two voxels 

was randomised between the right IFG and occipital cortex. A third MRS measurement, 

depending on time and patient tolerability, was acquired from the right superior temporal gyrus. 

Dielectric pads (Snaar et al., 2011) were not used, due to patient tolerability, multiple regions 

of interest and limited improvement in signal to noise ratio during piloting. 

 

I defined the inferior frontal gyrus as superior to the Sylvian fissure and anterior to the inferior 

aspect of the precentral sulcus. Within these limits, the voxel was placed over the gyri anterior 

and posterior to the diagonal branch of the Sylvian fissure. I defined the medial aspect of the 

control region as the longitudinal fissure. Within this limit, I placed the voxel over the calcarine 
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fissure and as posteriorly as possible, without including the skull or superior sagittal sinus. I 

defined the superior temporal gyrus as limited superiorly by the Sylvian fissure and posteriorly 

by an imaginary line connecting the Sylvian fissure with the preoccipital notch. 

 

Automated shimming was performed with first and second-order shim coils using the 

FASTESTMAP software (Gruetter, 1993; Gruetter and Tkáč, 2000). VAPOR water 

suppression and outer volume suppression pulses were used to remove the water signal and 

contaminating signals from outside the region of interest. A flip angle calibration sequence was 

included, but all flip angle calculations reached as ceiling of 300V, which was used as the 

transmitter voltage for all participants. A water calibration sequence was used to determine the 

optimal water suppression flip angle. The spectroscopy sequences then ran, which include two 

acquisitions for eddy current correction, two for water scaling and 64 water suppressed 

metabolite acquisitions.  

 

Spectroscopy data analysis 

The 64 individual spectra from each region of interest were eddy-current, phase, and frequency 

corrected then summed together using the MRspa software package (courtesy of Dr Dinesh 

Deelchand: www.cmrr.umn.edu/downloads/mrspa).  

 

All spectra were visually inspected and any very low-quality scans, where the model fit failed 

or signal to noise was very low (<10), were removed. Using these criteria, I excluded all voxels’ 

data from one participant and the temporal lobe voxel data from five other participants. GABA 

and glutamate levels were quantified, along with 17 other metabolites, using LCModel Version 

6.2-3 (Provencher, 1993). The basis set included simulated model spectra for 19 

neurochemicals and a experimentally obtained macromolecule spectra from four healthy 

subjects (Deelchand et al., 2015). Metabolite results were water scaled after correction for tissue 

water content, assuming the CSF contribution to the voxel to be zero. Absolute Cramer-Rao 

Lower Bounds were calculated by multiplying each metabolite value with its relative Cramer-

Rao Lower Bound (Kreis, 2016). 

 

Spectroscopy region of interest maps and atlas results (Figure 7-4A+C) were created by 

extracting the voxel coordinates from the spectroscopy header files, then transforming all 

images to MNI space. These images were overlaid on segmented tissue probability maps and 

the Hammer’s atlas of brain regions to get tissue composition and brain regions covered by each 

voxel. All analysis was performed using SPM12. 

http://www.cmrr.umn.edu/downloads/mrspa
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GABA and glutamate results were corrected for age, gender and tissue volume using a 

generalised linear model. The residuals from the generalised linear model (𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 =

𝛽(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) + 𝛽(𝑎𝑔𝑒) + 𝛽(𝑔𝑒𝑛𝑑𝑒𝑟) + 𝛽(𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟)) were used as the corrected 

results. A fourth covariate (𝛽(𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟)) was added to the glutamate correction, as 

glutamate is present in both grey and white matter (Kukley et al., 2007; Bakiri et al., 2009). 

The absolute Cramer-Rao lower bound, a measure of LCModel fit accuracy, was used to weight 

the linear model (Miller et al., 2017). Analysis of variance, with region of interest and 

neurotransmitter as within subject factors and diagnosis as a between subject factor, was used 

to compare neurotransmitter levels. All p values were corrected for multiple comparisons using 

the Tukey multiple comparison test. Analysis was performed in MATLAB 2018b (MathWorks, 

USA) apart from ANOVA which was performed in JASP (Version 0.11).  

 

Comparison between neurotransmitter concentrations and 

behavioural measures 

 I tested the association in FTLD participants between the right inferior frontal gyrus GABA 

and glutamate concentrations and the stop signal reaction time. A Spearman’s correlation 

coefficient was calculated for each value in the individual-level posterior distribution of stop 

signal reaction times. The region of practical equivalence was defined as a Spearman’s R 

between -0.1 and 0.1, corresponding to a negligible effect size (Cohen, 1992; Kruschke, 2018). 

The null hypotheses was rejected if the 95% highest density interval of R values did not overlap 

with the region of practical equivalence (Kruschke, 2018). 
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Results  

Forty-four participants with an FTLD syndrome (bvFTD n=22, PSP n=22) and twenty age and 

sex matched healthy controls had ultra-high-resolution magnetic resonance structural and 

spectroscopic imaging. The demographic, clinical and neuropsychological characteristics of the 

study participants were reported in the previous chapter.  

 

First, I compared grey and white matter volumes between FTLD and healthy controls using 

voxel-based morphometry. FTLD participants had reduced grey matter volume in the frontal 

and temporal lobes, basal ganglia, thalamus and cerebellum bilaterally (Figure 7-1A). There 

was corresponding white matter volume loss in frontostriatal and corticospinal tracts and 

brainstem (Figure 7-1B). Both bvFTD and PSP had reduced grey matter in the right 

orbitofrontal and anterior cingulate cortex, bilateral inferior frontal gyri, insula and motor 

cortices, as shown by a conjunction analysis (Nichols et al., 2005) (Figure 7-2A). This also 

revealed volume loss in subcortical structures including the caudate, putamen and globus 

pallidus and superior cerebellum. There was white matter volume loss in frontostriatal pathways 

(Figure 7-2B). 

 

Figure 7-1: Voxel based brain morphometry of FTLD (bvFTD and PSP combined). A: Grey matter B: White 

matter. Representative axial, coronal and sagittal slices are shown. More brain slices are in Appendix 6. 
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Figure 7-2: Conjunction analysis of bvFTD vs Control and PSP vs Control. The colourmap shows voxels that are 

significant in both groups, at a cluster-level of FWE p<0.05 above a height threshold of p<0.001. A: Grey matter. 

B: White matter. Representative axial, coronal and sagittal slices are shown. More brain slices are in Appendix 6. 

 

Second, I looked for atrophy associated with measures of behavioural impairment. In FTLD, 

no grey or white matter regions were significantly associated with the CBI-Impulsivity 

composite score or SSRT. There was a trend to an association between bilateral inferior frontal 

gyrus volume and SSRT (p<0.001 uncorrected) but this finding did not survive cluster 

correction (Figure 7-3). 

 

 

Figure 7-3: Voxel based morphometry of grey matter volume association with stop signal reaction time in FTLD. 

Colourmap shows voxels with p<0.001 uncorrected. More brain slices are in Appendix 6. 
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Third, I used magnetic resonance spectroscopy to measure glutamate and GABA concentrations 

in the right frontal, temporal and occipital lobes. All healthy volunteers and 42/44 FTLD 

participants underwent both the frontal and occipital sequences. Two FTLD participants had 

inadequate data for further analysis due to movement artefact and were excluded. Only 29/44 

patients completed the temporal lobe sequence and data was inadequate for analysis in an 

additional 25 participants (Controls n=9, FTLD n=16) due to inadequate model fitting. 

Therefore, the temporal voxel was excluded from further analysis and only results from the 

frontal and occipital voxels are reported. 

 

Spectroscopy voxel placement was consistent across participants in all brain regions (Figure 

7-4A+C). The frontal lobe voxel was primarily located in the inferior frontal gyrus, with a 

smaller proportion in the middle frontal gyrus and insular cortex. In the frontal voxel there was 

proportionately less grey and white matter in both bvFTD and PSP (Figure 7-4B). The control 

voxel, in the occipital lobe, was centred over the calcarine sulcus and included parts of the 

lateral occipital lobe, cuneus and lingual gyrus. There was no difference in grey or white matter 

volume between groups (Figure 7-4D). Spectral quality was good in the inferior frontal gyrus 

and occipital lobe (Figure 7-5). The Cramer-Rao Lower Bound, a general measure of fit 

accuracy, was less than thirty in most participants in both glutamate and GABA. The water 

linewidth, a surrogate measure of shim quality, was similar between groups however the signal 

to noise was lower in FTLD in the frontal and occipital regions. The mean correlation 

coefficients between all metabolites and both GABA and glutamate were greater than -0.3, 

suggesting both neurotransmitters were accurately distinguished from other metabolites 

(Provencher, 1993). 
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Figure 7-4: Spectroscopy voxel location and composition. A: Frontal voxel (sum of all participants) superimposed 

on a mean structural image of all participants. B: Grey, white and whole brain composition of the voxel by group. 

There was less grey and white matter, as a proportion of the voxel, in bvFTD and PSP compared to controls. C: 

Occipital voxel location. There was consistent voxel placement in all participants. D: Grey, white and whole brain 

composition of the occipital voxel. There was no difference in grey and white matter across the three groups. 
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Figure 7-5: Magnetic resonance spectroscopy data quality. A: Mean spectra from all participants showing the raw 

data, LCModel fit, baseline, residual (fit-raw data), glutamate and GABA fits. Classically the GABA fit has a 

triplet for each peak, this was present for individuals scans but was removed during spectral averaging. Spectrum  

for each individual are shown in Appendix 7. B: Signal to noise ratio for all participants by group. RIFG: right 

inferior frontal gyrus, ROCC: right occipital cortex. There was lower signal to noise in the FTLD group in the 

right inferior frontal gyrus and right occipital cortex. C: Water linewidth for all participants by group. There was 

no difference between groups for any region. D: Glutamate Cramer-Rao Lower Bound (CRLB). X: outlier of one 

Control ROCC CRLB 87. Boxplots show median and 25th and 75th quartiles, whiskers include all data not 

considered an outlier. 
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Neurotransmitter results are water scaled, then reported both with and without correction for 

partial volume, age and sex. Glutamate was reduced in right inferior frontal gyrus in FTLD 

compared to controls (F20.63, p<0.001) but there was no difference after regression of age, sex 

and grey and white matter effects (Figure 7-6). GABA was also reduced in the right inferior 

frontal gyrus in FTLD compared to controls (F23.37 p<0.001) and this difference remained 

significant after regression of age, sex and grey matter effects (F8.67, p=0.005) (Figure 7-7). 

Including white matter volume in the regression analysis did not change the result. The GABA 

deficit in the right inferior frontal gyrus was present in both FTLD subgroups (bvFTD t=2.52, 

p=0.036, PSP t=2.56, p=0.034). Glutamate and GABA concentrations did not correlate after 

partial volume correction (Spearman’s R=0.06, p=0.70). There was no difference in either 

neurotransmitter between groups in the right occipital lobe. 

 

 

Figure 7-6: MRS measurement of glutamate in FTLD. Top row: water scaled values with no partial volume 

correction for the right inferior frontal gyrus (IFG) and primary visual cortex (occipital) voxels. Bottom row: The 

same data after age, sex and partial volume (grey and white matter) correction. On each boxplot, the middle line 

is the median and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. Whiskers 

include any data not considered an outlier (within 2.7 standard deviations of the mean). Each dot represents the 

value from an individual participant, colour coded by group. ***=p<0.001 (after Bonferroni correction). 
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Finally, I tested the hypothesis that GABA and glutamate deficits in the right inferior frontal 

gyrus were associated with impulsivity. Both GABA and glutamate concentration in the right 

inferior frontal gyrus, after correction for partial volume, age and sex, inversely correlated with 

the stop signal reaction time. This association with impaired response inhibition was stronger 

for glutamate (95% highest density interval -0.38:-0.56) than GABA (95% highest density 

interval -0.13:-0.35) but both these credible intervals were outside the pre-specified region of 

practical equivalence (R 0.1:-0.1). Stop trigger failure probability was not associated with either 

GABA (95% HDI -0.13:0.18) or glutamate (95% HDI -0.01:0.31) concentration. There was no 

association between neurotransmitter concentrations in the right inferior frontal gyrus and carer 

ratings of impulsivity (glutamate R=-0.01 p=0.97, GABA R=-0.12 p=0.46).  

Figure 7-7: MRS measurement of GABA in FTLD. Top row: water scaled values with no partial volume 

correction for the right inferior frontal gyrus (IFG) and primary visual cortex (occipital) voxels. Bottom row: 

The same data after age, sex and partial volume (grey matter) correction. On each boxplot, the middle line is 

the median and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. 

Whiskers include any data not considered an outlier (within 2.7 standard deviations of the mean). Each dot 

represents the value from an individual participant, colour coded by group. **=p<0.01, ***=p<0.001 (after 

Bonferroni correction). 
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Figure 7-8: Correlation between neurotransmitters (GABA and glutamate) and stop signal reaction time (SSRT) 

result from Chapter 6. A: Histogram of R values for the Spearman’s correlation between glutamate, after corrected 

for grey matter, age and sex, and the posterior distribution of SSRT. Red lines show 95% highest density interval 

(HDI). Black bar shows region of practical equivalence (R -0.1:0.1). B: Scatter plot of mean SSRT and corrected 

GABA, values in brackets are 95% HDI. C: Scatter plot of mean SSRT and corrected glutamate. D: Histogram of 

R values for the Spearman’s correlation between glutamate and the posterior distribution of SSRT. 
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Discussion 

This chapter has two main findings. First, GABA and glutamate levels are reduced in the right 

inferior frontal gyrus in FTLD, but only the GABA deficit remains significant after correction 

for age, gender and partial volume. Second, glutamate and GABA concentrations in the inferior 

frontal gyrus correlate with disinhibition, as measured by the SSRT, but not a carer rating of 

behavioural impairment.  

 

The finding of a frontal lobe GABA deficit, as measured by magnetic resonance spectroscopy 

(MRS), is supported by other in vivo and post mortem evidence of GABAergic neuron loss in 

FTLD (Ferrer, 1999; Levenga et al., 2014). This GABAergic deficit may contribute to the 

abnormal functional connectivity associated with cognitive impairment in FTLD syndromes. 

GABAergic interneurons have widespread functions, beyond inhibition of excitatory neurons. 

They have a key role in the regulation of oscillatory dynamics, including their generation and 

regulation of magnitude and frequency (Owens and Kriegstein, 2002; Mann and Paulsen, 2007; 

Buzsáki and Wang, 2012). In health, increasing synaptic GABA levels increases gamma power 

during cognitive control tasks (Frankle et al., 2009) whereas inhibiting GABA receptors 

reduces gamma oscillatory power and impairs inhibition and working memory (Hines et al., 

2013). Gamma and beta oscillation frequency correlates with GABA concentration, as 

measured by MR spectroscopy, in the visual (Muthukumaraswamy et al., 2009), motor (Gaetz 

et al., 2011; Baumgarten et al., 2016) and dorsolateral prefrontal cortex (Kujala et al., 2015) 

while GABAA receptor density (measured by Flumazenil-PET) correlates with gamma 

frequency and magnitude (Kujala et al., 2015). Brain network connectivity is altered in the 

inferior frontal gyrus in FTLD during response inhibition paradigms (Hughes et al., 2015, 

2018a) and at rest (Seeley et al., 2009; Sami et al., 2018). This altered beta and gamma 

oscillation power and their associated cognitive deficits in FTD may be caused, at least partially, 

by GABAergic deficits and raises the possibility that correcting GABAergic deficits may 

restore functional connectivity and improve cognition and behaviour. 

 

Glutamate levels were low in the right inferior frontal gyrus, which replicates previous findings 

in other frontal lobe regions in FTLD syndromes (Ernst et al., 1997; Sarac et al., 2008). 

Interestingly, the non-competitive NMDA-inhibitor memantine has no beneficial effect in 

FTLD syndromes and worsened cognition in some patients. This would be explained by my 

results, which suggest a glutamatergic deficit in FTLD, rather than overactivation or excess 
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(Vercelletto et al., 2011; Boxer et al., 2013). There was no difference in glutamate 

concentration between FTLD and controls after correction for grey and white matter volume 

loss. However, it would be misleading to conclude there is no glutamatergic deficit in FTLD. 

Given the high density of glutamatergic neurons in the neocortex, grey matter atrophy typically 

correlates with the number of glutamatergic neurons in the remaining brain tissue (Harding, 

1998; Zarow et al., 2005). Correcting MRS measures of glutamate for atrophy may remove any 

disease effect and any glutamatergic difference between FTLD and controls.  

 

It is unclear how closely MRS measurements correlate with synaptic concentrations of 

glutamate and GABA (Stagg et al., 2011a). Both neurotransmitters are found at different 

concentrations within neurons, glia, the extra-cellular space and synapses (Martin and Rimvall, 

1993; Zhou and Danbolt, 2014). MRS cannot distinguish between these different pools, only 

measuring the total concentration of neurotransmitter within a large region of interest (8cm3 in 

my study). Some GABA and glutamate may be invisible to MRS, for example if bound to 

proteins or other macromolecules (Tognarelli et al., 2015). However, it is unlikely that MRS is 

just an indirect measure of neural density. Several research modalities have shown that MRS 

can detect within-subject neurotransmitter changes, suggesting that MRS is not just an indirect 

measure of neuronal populations (Stagg, 2014). Changes in MRS-measured GABA 

concentrations occur after drug administration (Sanacora et al., 2002; Milak et al., 2016), during 

visual (Frangou et al., 2018, 2019) and motor (Floyer-Lea et al., 2006) tasks and after 

transcranial magnetic simulation (Stagg et al., 2009, 2011b). There is less evidence of similar 

within-participant changes in MRS-measured glutamate. Unlike GABA, glutamate has many 

functions in the central nervous system beyond neurotransmission, including neuron and glia 

metabolism and protein synthesis (Hertz, 2013; Zhou and Danbolt, 2014). Only a small 

proportion of total glutamate acts as a neurotransmitter and only 0.05% of total glutamate is 

present in the extracellular space (Danbolt, 2001). Therefore, it is possible that MRS of 

glutamate is a measure of glutamatergic neuron density.  

 

There was no association between glutamate and GABA concentrations after partial volume 

correction. This is surprising, as glutamate and GABA are linked functionally and 

biochemically. Both are amino acids and form part of the Glutamine-Glutamate/GABA cycle 

(Walls et al., 2014). Glutamate, after release from excitatory glutamatergic neurons and binding 

to post-synaptic receptors, is removed from the synapse into astrocytes (Walls et al., 2014). 

Glutamate is then converted to glutamine by glutamine synthetase then transferred back to 

either excitatory neurons (where it is recycled back to glutamate) or inhibitory neurons where 
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it forms the precursor for GABA (Walls et al., 2014). The lack of a correlation between the two 

neurotransmitters in my study is further evidence that MRS-visible glutamate has a wide range 

of cellular functions, beyond neurotransmission. 

 

Both GABA and glutamate concentration in the right inferior frontal gyrus inversely correlated 

with response inhibition, as measured by the stop signal reaction time (SSRT). This 

complements results with other functional imaging modalities, including fMRI and 

electrophysiology, that show activation of the IFG during the stop signal task in healthy 

volunteers (Chambers et al., 2006, 2009; Levy and Wagner, 2011; Aron et al., 2014; Rae et al., 

2015). The IFG forms part of a cognitive control network which is activated during response 

inhibition and also includes the pre-supplementary motor area (preSMA) and subthalamic 

nucleus (Rae et al., 2015). GABA levels in this network, specifically the preSMA, inversely 

correlate with SSRT in healthy older adults (Hermans et al., 2018). This study, performed at 

3T with an edited MRS sequence, did not measure glutamate levels. One strength of my 7T 

MRS study is that both glutamate and GABA can be measured at the same time in the same 

brain region to show that both contribute to response inhibition in FTLD syndromes.  

 

There was no association between GABA and glutamate concentration in the IFG and carer 

ratings of global behavioural impairment. This may be because I only measured these 

neurotransmitters in one region and so only see a relationship between glutamate and GABA 

and a cognitive process associated with that region. Due to the heterogeneity in FTLD, it cannot 

be assumed that GABA and glutamate concentrations in the IFG are representative of the whole 

frontal lobe. Global behavioural impairment results from pathology in multiple brain regions 

and impairment in many disparate cognitive processes. New sequences that can measure 

glutamate and GABA across the whole brain may show correlation with other behavioural 

impairments in FTLD syndromes and are a promising area for future research (Moser et al., 

2019). In addition, deficits in other neurotransmitter pathways, including serotonin, dopamine, 

noradrenaline and acetylcholine also contribute to behavioural impairment in FTLD syndromes 

(Huey et al., 2006; Murley and Rowe, 2018). Ultimately, an effective treatment for behaviour 

symptoms in FTLD is likely to target multiple neurotransmitter pathways, including glutamate 

and GABA.  

 

It has been suggested that different symptoms in FTLD relate to specific neurotransmitter 

deficits. For example, apathy is due to reduced excitatory glutamatergic neurotransmission and 

impulsivity is due to reduced inhibitory GABAergic neurotransmission (Benussi et al., 2019). 
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This would be analogous to the extra-pyramidal motor symptoms’ association with 

dopaminergic neuron loss (Oyanagi, 2002; Murley and Rowe, 2018). This is likely to be too 

simplistic for several reasons. First, as the results from this chapter show, both neurotransmitters 

are associated with impaired response inhibition. Second, apathy and impulsivity positively 

correlate and are associated with atrophy in similar brain regions (Peters et al., 2006; Lansdall 

et al., 2017). Third, both glutamate and GABA are required to generate and regulate the neural 

oscillations that underlie many cognitive processes including apathy and impulsivity (Buzsáki 

and Wang, 2012, Hughes et al., 2018a; Zhu et al., 2019). 

 

Voxel based morphometry of the 7T structural images revealed grey matter atrophy in the 

frontal and temporal lobes, basal ganglia, thalamus and cerebellum with white matter atrophy 

of frontostriatal pathways and the brainstem in FTLD syndromes compared to healthy controls. 

Frontotemporal lobar atrophy is classically associated with bvFTD (Rosen et al., 2002), but 

also PSP (Brenneis et al., 2004; Lagarde et al., 2013), particularly in the PSP-F subtype 

(Cordato et al., 2002; Jabbari et al., 2019) which formed a large proportion of cases in this 

study. This volume loss in the regions is unlikely to be seen equally in all participants. For 

example, patients with PSP with limited cognitive impairment have less cortical grey matter 

atrophy (Jabbari et al., 2019). A conjunction analysis of the two t-tests of FTLD subtypes 

(bvFTD and PSP) compared to controls showed volume loss in the anterior cingulate cortex, 

bilateral inferior frontal gyri, insula and motor cortices and basal ganglia. Interestingly, many 

of these regions are activated as part of a cognitive control network during executive function 

tasks in fMRI studies (Aron et al., 2007; Cole and Schneider, 2007; Niendam et al., 2012). This 

is further evidence that impaired cognitive, and specifically inhibitory, control is a feature of 

both bvFTD and PSP. 

 

There was a trend to an association between bilateral IFG volume loss and increased SSRT, but 

this did not survive correction for multiple comparisons at a cluster-level. There was no trend 

to any association with brain volume and stop trigger failure or carer ratings of behavioural 

impairment. This may reflect the heterogenous patient population (bvFTD and PSP) with 

relatively low numbers in each group. Other studies, with greater sample sizes and less stringent 

statistical thresholds, do show an association between carer ratings of behavioural impairment 

and frontal, striatal and temporal regions (Hornberger et al., 2011; Lansdall et al., 2017; 

Passamonti et al., 2018). It is surprising that there was no association between the severe 

behavioural impairments and frontal lobe atrophy in the current study. This may reflect the 

phenotypical and morphological heterogeneity in FTLD syndromes. Alternatively, it is possible 
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that functional changes are more important cause of behaviour and cognitive impairment than 

volume loss (Rittman et al., 2019; Tsvetanov et al., 2019). If true, this would suggest that 

cognitive deficits could be ameliorated even in the presence of brain atrophy.  

 

There are many technical challenges to MRS which can reduce scan quality and limit metabolite 

measurement accuracy (Wilson et al., 2019). Metabolite concentrations are estimated from 

modelling of the MRS spectra. If the modelling fit of the experimental data is imprecise, which 

is more likely with low quality scans, then the resulting concentrations will be inaccurate. There 

are many measures of scan accuracy, with no consensus on how to determine acceptable scan 

quality, although recommendations have been recently published (Wilson et al., 2019). 

Magnetic field inhomogeneities, which are greater at 7T, change the resonant frequencies of 

molecules at different locations with the MRS voxel, broadening the MRS spectrum and making 

resolution of different metabolites more difficult (Tkac, 2010; Juchem and de Graaf, 2017). I 

used automated FASTESTMAP shimming to reduce magnetic inhomogeneity (Gruetter, 1993; 

Tkac, 2010). Water linewidth is a surrogate measure of the quality of magnetic field shimming 

(Juchem and de Graaf, 2017) and my results were similar to other 7T studies (Marjańska et al., 

2019; Wijtenburg et al., 2019), did not differ between groups and were below the recommended 

cut-off (Öz et al., 2020). Absolute Cramer Rao Lower-Bound values, a measure of model fit 

accuracy (Kreis, 2016), also did not differ between groups and were below the recommended 

threshold (Bonny and Pagès, 2019; Wilson et al., 2019). Signal to noise ratios were lower in 

the FTLD, likely due to brain atrophy, but adequate for accurate model fitting. Ineffective water 

suppression pulses can also prevent accurate measurement of low concentration metabolites, 

including GABA (Mitchell et al., 1945; Tkáč and Gruetter, 2005; Mcmaster et al., 2010; Wilson 

et al., 2019), so I ran two water suppression calibration sequences and a VAPOR water 

suppression pulse was included in the spectroscopy sequence (Tkac et al., 1999). I used a 

modified semi-LASER MRS sequence with proven test-retest and multisite reproducibility 

(Deelchand et al., 2015; van de Bank et al., 2015; Terpstra et al., 2016). Finally, each participant 

had an internal control region, the occipital lobe, where I expected to see no neurotransmitter 

deficit due to limited atrophy and FTLD pathology (Cairns et al., 2007). The absence of a group 

difference in the control region suggests the results in the inferior frontal gyrus reflect a true 

neurotransmitter deficit, and not an artefact of movement or another patient-related bias.  

 

This study has several other limitations. First, the spectroscopy regions of interest are may have 

varied between individuals, both in their anatomical location and proportion of brain included. 

Participants had different total brain volumes, but their MRS voxels remained the same size. 
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This was necessary to avoid a confound of varying signal to noise but means that the region of 

interest covers a different proportion of the brain between participants. In addition, MRS voxels 

were placed manually, using anatomical landmarks which vary between individuals. For 

example, the diagonal branch of the Sylvian fissure, a landmark of the inferior frontal gyrus, is 

not present in over half of healthy volunteers (Idowu, 2014). Voxel placement appeared 

consistent (Figure 7-4A+C) but there are likely to small between-participant differences in 

voxel placement. Second, brain volume within the MRS voxel was lower in the FTLD group. 

CSF GABA and glutamate concentrations are not high enough to be MRS-visible, therefore 

this partial volume effect must be considered when reporting MRS-results (Quadrelli et al., 

2016; Porges et al., 2017). One option is to report the relative concentration of the metabolite 

of interest to an internal standard, usually another metabolite such as creatine. This approach is 

common in MRS of healthy brains (Kolasinski et al., 2017; Frangou et al., 2019) but creatine 

is likely to also be abnormal in FTLD, which is associated with energy pathway impairments 

(Foster et al., 1988, Diehl-Schmid et al., 2007a; Pathak et al., 2013), so is an inappropriate 

reference for my results. Absolute metabolite concentration uses tissue water concentration to 

“water scale” metabolite results and some studies enter the voxel fraction of CSF at this stage 

of analysis. This does not account for voxel differences in grey and white matter volume, which 

have different GABA and glutamate concentrations (Choi et al., 2006; Gasparovic et al., 2009; 

Bhattacharyya et al., 2011). Therefore, I used a generalised linear model, weighted for CRLB, 

to independently model the effects of age, sex, grey and white matter and remove their effects 

from the results. This approach may still bias results if tissue volume closely correlates with 

metabolite concentration, which is likely with glutamate. Third, using a longer scan time, 

prospective motion correction and dielectric pads to reduce B1 inhomogeneity would improve 

MRS accuracy (Keating et al., 2010; Huang et al., 2018; Deelchand et al., 2019), but at the cost 

of reduced patient tolerability. All participants completed the frontal and occipital sequences 

but drop-out before or during the final temporal sequence was high (35%). Extending the 

sequence time or causing patient discomfort with mouthpieces or dielectric pads may have 

resulted in an even higher drop-out rate, causing missing data in the frontal and occipital results. 

 

Further research would strengthen and validate the results in this chapter. First, post mortem 

investigation of the glutamate and GABA concentrations, using high performance liquid 

chromatography (Buck et al., 2009), would validate the MRS-measured neurotransmitter 

deficits of my study. Many of the participants in this study have made a declaration of intent to 

donate their brain after death. In the Cambridge Brain Bank protocol, the right hemisphere is 

typically frozen, enabling neurotransmitter quantification in the same regions assessed with 
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MRS. Second, placebo-controlled, double-blinded studies testing the effect of altered GABA 

or glutamate levels on stop signal reaction time would strengthen my findings of an association 

between these neurotransmitter levels and behavioural disinhibition. Similar studies with 

serotonin and noradrenaline have shown an effect on SSRT in other neurodegenerative diseases 

(Kehagia et al., 2014; Hughes et al., 2015; Ye et al., 2016).  

 

The results in this chapter have two clinical applications. First, MRS has potential as an imaging 

biomarker of early cell loss in FTLD. In early FTD, there is selective vulnerability of 

glutamatergic Von Economo neurons in the anterior cingulate and frontoinsular cortex (Seeley 

et al., 2006; Kim et al., 2012). MRS, which could enable in vivo quantification of this 

glutamatergic deficit, would be an interesting adjunct to ongoing studies of presymptomatic 

carriers of FTLD-causative mutations (Rohrer et al., 2015b). Second, the association with 

neurotransmitter deficits and impaired response inhibition leads to the hypothesis that 

correcting these deficits can increase inhibitory control and behavioural disinhibition in FTLD 

syndromes.  
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Discussion 

 

Preface 

Part of this discussion is included in a review article I wrote with Professor Rowe (Murley and 

Rowe, 2018). 
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Discussion 

In this thesis, I have shown that the syndromes associated with frontotemporal lobar 

degeneration have heterogeneous and overlapping clinical features, brain morphometry, 

neuropathology and prognosis. I suggested that categorising patients by their predominant 

clinical features, as opposed to the current disease labels, will improve our understanding of the 

origin of symptoms, assessment of diagnostic biomarkers and development of symptomatic 

treatments. I then used this transdiagnostic approach to investigate the neurobiology of 

impulsivity in FTLD syndromes, showing that GABA and glutamate deficits are associated 

with behavioural disinhibition. Each chapter contained a discussion of its results, so here I 

discuss three general themes arising from the thesis, each of which has potential for future 

research. First, the phenotypic heterogeneity in FTLD, and the role of nosology in 

neurodegenerative disease. Second, the characteristics and aetiology of the selective 

vulnerability of different brain regions and networks in FTLD. Third,  neurotransmitters deficits 

in FTLD, their relationship to clinical phenotypes and their potential as targets for symptomatic 

treatments. 

 

Phenotypic heterogeneity in FTLD syndromes 

This thesis raises several questions; what is the fundamental purpose of a disease label and what 

is the most appropriate way to describe the presentation of patients with neurodegenerative 

disease? Diagnostic labels have several purposes including 1) optimising clinicopathological 

correlations, 2) concisely summarising disease phenotypes to aid communication between 

healthcare professionals, 3) guiding treatments and support for patients and their families and 

4) prognostication. I suggest that a transdiagnostic, combined approach to FTLD syndromes 

better addresses these aims compared to the current disease labels. Next, I discuss the nosology 

of FTLD syndromes, comparing a transdiagnostic approach to FTLD syndromes to the current 

diagnostic subtypes. 

 

In chapter four, I showed the clinicopathological correlations of the current syndrome labels 

are complex and inconsistent. I replicated previous results showing that some syndrome labels 

have high specificity but overall clinicopathology accuracy is low (Rascovsky et al., 2011; 

Alexander et al., 2014, Perry et al., 2017a; Spinelli et al., 2017; Gazzina et al., 2019; Sakae et 

al., 2019). The high specificity of some disease labels, for example PSP-RS for FTLD-tau-PSP, 

enable their use as inclusion criteria for trials of disease modifying therapies (Boxer et al., 

2019). However, their low overall accuracy would prevent their use clinically. If an effective 
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disease modifying therapy for FTLD-tau-PSP became available, restricting its use to patients 

with a PSP-RS phenotype will mean that up to half of patients with FTLD-tau-PSP would be 

ineligible. Including all patients with a syndrome possibly associated with FTLD-tau-PSP 

would mean a large majority of patients would be exposed to a potentially toxic and probably 

expensive treatment with no benefit. It has been argued that clinicopathological correlations 

could be improved by further refining the current diagnostic criteria, subdividing clinical 

syndromes by certain features most associated with a certain neuropathology (Josephs et al., 

2012). However, clinical phenotype is likely determined by the distribution of neuropathology, 

rather than molecular subtype (Dickson et al., 2010; Jabbari et al., 2019; Sakae et al., 2019). 

My thesis supports this theory. In chapter two I identified several core phenotype-atrophy 

correlations in FTLD that were not associated with different pathological subtypes, as shown 

in chapter four. This result is limited by the low sample size and requires replication after more 

participants have donated to the brain bank. If true, it suggests that FTLD syndrome 

classifications will never provide highly accurate clinicopathological correlations. Other 

biomarkers, whether imaging (Ossenkoppele et al., 2018; Leuzy et al., 2019) or fluid (Meeter 

et al., 2017; Lleó et al., 2018; Zetterberg et al., 2019)-based, will be needed to stratify patients. 

This approach would mirror those in other medical specialities. For example in oncology, 

patients are given a broad organ-specific diagnosis then extensively stratified based on the 

molecular and genetic characteristics of their tumour (Weigelt et al., 2008; Reis-Filho and 

Pusztai, 2011). This subclassification can continuously evolve to include advances in research 

and new treatments, while the overall disease label is unchanged. 

 

Given these limitations in clinicopathological accuracy, FTLD nosology must meet the other 

aims of a diagnostic label. There is extensive evidence of overlapping clinical features in FTLD 

syndromes, but this often results from pairwise comparisons between syndromes (Snowden et 

al., 2001; Boeve et al., 2003; Sánchez-Valle et al., 2006; González Sánchez et al., 2010, Rohrer 

et al., 2010a; Lagarde et al., 2013; Hardy et al., 2016; Harris et al., 2016). In chapter two, I 

compared all syndromes together to demonstrate the benefits of a transdiagnostic approach in 

capturing the clinical heterogeneity in FTLD. This has practical implications for both clinical 

and research practice, which I shall discuss next. Importantly, I am not suggesting all these 

diseases should be renamed, instead I suggest that increased emphasis is placed on their 

heterogeneity and overlap by considering them as a spectrum, rather than discrete entities. 

 

For clinical care, a transdiagnostic approach to FTLD syndromes has several advantages over 

the current diagnostic labels and in many specialist centres is already established practice. First, 
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it resolves the diagnostic confusion that occurs when a patient has features of several FTLD 

syndromes, either at first or subsequent clinic visits. In one large USA cohort, the initial 

diagnosis of some FTLD syndromes changed in over a third of patients during their disease 

(Perry et al., 2019). In some patients, the diagnosis was changed to another neurodegenerative 

or psychiatric illness disease, but in many the new diagnosis was another FTLD syndrome. This 

causes confusion for patients and their families; Was the first diagnosis incorrect? Has a new 

disease progress started? This confusion (for patients, families and healthcare professionals) 

can divert time and attention from focusing on treating symptoms. Second, it would simplify 

education of non-specialist doctors and healthcare professionals. In the UK, most patients with 

neurodegenerative diseases receive the majority of their healthcare in primary care (Greaves 

and Jolley, 2010; Meeuwsen et al., 2012). Resource limitations often mean that, outside of 

specialist centres with research funding, patients may not see a specialist after their initial 

appointment. The change in FTLD phenotype with disease progression may mean that 

treatments that are beneficial at early stages are harmful at later stages. For example, severe 

behavioural disturbance may be improved with an atypical antipsychotic, but the same drug 

will worsen parkinsonism and gait disturbance that may develop with disease progression. 

Doctors need to be aware of FTLD syndrome overlap and monitor patients closely for 

emergence of any new features that may change symptomatic management. Third, a combined 

approach to FTLD syndromes may improve support for patients and their families. In the UK, 

there is no patient charity for bvFTD, nfvPPA or svPPA. The charity for PSP, the PSP 

Association, also helps patients with CBS, who anecdotally often feel subordinate to patients 

with PSP (given the title and primary focus of the charity). One charity for all FTLD syndromes 

could improve patient support, fundraising and disease awareness. It might be argued that the 

breadth of different phenotypes across FTLD would be confusing – why does the person sitting 

next to me, with nominally the same illness, have different problems? I suggest that this is 

already the case, as the new diagnostic criteria for PSP already include presentations with 

predominant behavioural, language or motor features (Höglinger et al., 2017). Instead, a 

transdiagnostic approach would help patients and their families understand and manage changes 

in the nature and burden of symptoms with disease progression. 

 

A combined approach to FTLD syndromes would also benefit clinical research. I suggest trials 

of symptomatic treatments need careful stratification, selecting participants for their relevant 

symptoms rather than the diagnosis alone. For example, in a trial to demonstrate a clinical effect 

of serotonergic treatment on impulsivity in bvFTD, based on experimental medicines evidence 

(Hughes et al., 2015), participants should not merely have bvFTD by consensus criteria, but 
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also have impulsivity; noting that disinhibition is one of six criteria, only three of which are 

required for the diagnosis. Including patients with bvFTD who are not disinhibited is likely to 

reduce the power of a symptomatic treatment trial. Moreover, it may be better to include all 

patients with disinhibition arising from syndromes associated with FTLD in which disinhibition 

is common but not a diagnostic criterion (Lansdall et al., 2017). This would increase the power 

and relevance of the trial to a wider patient group (Figure 8-1). A transdiagnostic approach can 

also be helpful in trials of disease modifying therapies (Figure 8-1). Basket studies are clinical 

trials that recruit patients with a common molecular pathology, irrespective of their clinical 

phenotype (Tao et al., 2018). They are increasingly used in oncology trials that enrol patients 

with specific genetic mutations, irrespective of their tumour location (Hyman et al., 2015, 

2018). In neurodegenerative disease, they have been used to test anti-tau therapies in several 

tauopathies including Alzheimer’s disease, PSP, CBS, chronic traumatic encephalopathy, and 

FTD due to MAPT mutations (Panza et al., 2019; Tsai et al., 2019).  

 

 

Figure 8-1: Examples of potential basket trials in FTLD syndromes. Instead of selecting patients based on their 

disease label (top row), they are selected based on a symptom (I=impulsivity) or molecular (T=tauopathy) 

characteristic for the relevant trial (bottom row). Idea for figure from (Tao et al., 2018). 

 

The transdiagnostic, “basket trial” approach to research trials has limitations. First, it is 

important that the selected feature is the same across syndromes, otherwise an effective 

treatment for one may not work for another. For example, a basket trial for impulsivity in FTLD 

assumes that the neurobiology of impulsivity is the same across FTLD syndromes. This cannot 
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be assumed, impulsivity in PSP could be related to motor disinhibition, whereas in svPPA it 

may be caused by loss of knowledge of social norms. In this thesis, I showed glutamate and 

GABA deficits in the frontal lobes of both bvFTD and PSP and have similar impairments on a 

disinhibition task, which would support a basket trial approach to behavioural disinhibition. 

Similarly, a basket trial of an anti-tau therapy would be weakened if the molecular biology of 

FTLD-tau-PSP, CBD and Picks tauopathies were fundamentally different (Falcon et al., 2018; 

Goedert, 2018; Zhang et al., 2020). Interestingly, a recent transdiagnostic study that measured 

six key proteinopathies across multiple neurodegenerative diseases identified four data-driven 

clusters, each of which had different genetic and clinical profiles (Cornblath et al., 2019). FTLD 

cases clustered into one of two clusters, that corresponded broadly to tau and TDP43, supporting 

a combined approach to these pathology superfamilies. Further research on FTLD molecular 

biology and symptom aetiology is required, but this could be helped by secondary analysis of 

basket study results. Second, basket studies would need different disease outcome measures to 

those used for individual FTLD syndromes. Currently, disease outcome measures tend to be 

validated for one FTLD syndrome, for example the PSP-RS for PSP (Golbe and Ohman-

Strickland, 2007) or FRS for bvFTD (Mioshi et al., 2010). These scales tend to be heavily 

weighted on either behavioural, cognitive, language or motor features and may be insensitive 

to significant changes in symptoms or disease progression in the FTLD syndrome spectrum 

(Desmarais et al., 2019). Third, basket trials require alternative biostatistical designs to 

conventional clinical trials. Currently, many basket trials are designed as a series of independent 

studies for each subgroup (e.g. PSP, CBS, nfvPPA, FTD) run in parallel. This limits the benefits 

of a combined, transdiagnostic approach and risks type I error due to multiple hypothesis testing 

(Tao et al., 2018). 

 

Prognostication was also more accurate with a transdiagnostic approach. In chapter five, I 

showed that the presence of certain clinical features better predicts prognosis than the current 

disease labels. Irrespective of FTLD syndrome subtype, parkinsonism and other PSP-like motor 

features are associated with increased mortality and behavioural impairments are associated 

with greater risk of care home admission. This is relevant for two reasons. First, it helps counsel 

patients and their families. Individual prognosis can vary widely from the average patient with 

the same disease label. This variability is partly due other patient-specific factors such as age 

and comorbidities, but it also reflects the heterogeneity within disease labels. Second, it helps 

prioritise clinical and research care. Care in residential and nursing homes is very expensive 

and any intervention proven to reduce the impact of behavioural disturbance in FTLD, whether 



Discussion 

164 

increased community care, counselling for families and carers or more effective medication, is 

likely to be cost effective. 

 

I suggest that the overlap between FTLD syndromes is recognised in diagnostic criteria and 

disease classifications. Worldwide, the gold standard for disease classification is the 

International Classification Diseases (ICD). This provides the framework for public health 

planning, including allocation of healthcare and research funding, and the current (10th) revision 

was introduced in 1994 (Bramer, 1988). The syndromes associated with frontotemporal lobar 

degeneration are not well categorised in the ICD-10. For example, the label for bvFTD is 

“Dementia in Pick’s disease” which has not been used as a clinical diagnosis since the late 

1980s (Gustafson, 1987). This has practical implications for clinical and research practice. 

During the recruitment stages of the PIPPIN study, I tried to record the total number of patients 

with an FTLD syndrome known to our local tertiary hospital to determine the proportion 

recruited to the epidemiological arm of PIPPIN study. This proved challenging, as NHS hospital 

records use the ICD-10 classification system. The next version of the ICD (ICD-11) is due to 

be introduced in 2022. Pick’s disease has been corrected to frontotemporal dementia, but other 

syndromes associated with FTLD remain scattered across many different categories. For 

example, progressive supranuclear palsy is classed as a subtype of “atypical parkinsonism” and 

corticobasal syndrome is not mentioned at all. Interestingly, frontotemporal lobar degeneration 

is included in ICD-11, as subtype of “disorders with neurocognitive impairment as a major 

feature”. Using this term as a common code for all syndromes associated with FTLD, with 

appropriate syndrome subtypes, would help accurate diagnostic coding and improve clinical 

and research practice by supporting referral to specialist clinics and recruitment into research 

studies. 

 

Selective vulnerability in FTLD  

This thesis has replicated the widespread evidence that frontotemporal lobar degeneration 

causes selective, focal brain atrophy. In chapter three, I used source-based morphometry to 

identify regions of covarying grey and white matter volume loss. Each participant had varying 

weights on these atrophy components, or put another way each patient had focal atrophy but 

the topography of the atrophy varied between individuals. I replicated the classical patterns of 

atrophy associated with each FTLD syndrome, for example, between the PSP syndrome and 

brainstem atrophy and bvFTD and frontal lobe atrophy. However, the patterns of focal atrophy 

overlapped across FTLD syndromes. Individual participants from all disease groups had a 
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spread of scores across different components, reflecting the overlapping syndrome dimensions 

I reported in chapter 2. There was additional evidence of a close relationship between atrophy 

and phenotype, with three key phenotype-atrophy correlations identified by canonical 

correlation analysis. In chapter four I showed these atrophy patterns, which represent the 

topography of neurodegeneration, did not match closely with specific pathological proteins, 

suggesting poor correlations between specific proteinopathies and atrophy patterns. 

 

It is well recognised that one FTLD neuropathology can cause different clinical phenotypes. 

For example, FTLD-tau-PSP is associated with at least seven clinical phenotypes (Respondek 

et al., 2017). Clinical phenotype and age of onset varies widely even within families with the 

same genetic mutation (Boeve et al., 2005; Snowden et al., 2006; Rademakers et al., 2007; 

Benussi et al., 2015; Murphy et al., 2017; Foxe et al., 2018) and some gene carriers of putatively 

fully penetrant, autosomal dominant mutations remain asymptomatic even in old age (Munoz 

et al., 2007). Understanding what causes this selective vulnerability in some regions and 

selective resistance in others may open opportunities for novel disease modifying treatments.  

 

There is evidence that some neuronal subtypes are selectively vulnerable to FTLD pathology.  

Von Economo neurons (VEN) have a unique morphology and are restricted to the anterior 

cingulate and frontoinsular cortices. They are present in high numbers in humans (Nimchinsky 

et al., 1999) and to a lesser extent in other higher order mammals including great apes (Allman 

et al., 2010), old world monkeys (Evrard et al., 2012), elephants (Hakeem et al., 2009) and 

cetaceans (Butti et al., 2009) and may have a role in social and emotional cognition (Seeley et 

al., 2006). VENs are affected early in bvFTD, when caused by either FTLD-tau (Lin et al., 

2019) and FTLD-TDP43 (Yang et al., 2017; Gami-Patel et al., 2019) pathology (Seeley et al., 

2006; Santillo et al., 2013; Santillo and Englund, 2014). This selective vulnerability of VEN 

and anterior cingulate at the early stages of bvFTD has been confirmed by neuropathological 

studies of patients who died from MND with very mild bvFTD (Kim et al., 2012) and the  

incidental finding of presymptomatic, early Pick’s disease in the brain of a patient who died of 

other causes (Miki et al., 2014). VEN loss has been found in PSP and nfvPPA associated with 

MAPT mutations, but there is limited evidence on if they are reduced in sporadic PSP or other 

FTLD syndromes. It would be interesting to look if VENs were disproportionately reduced in 

all FTLD syndromes with behavioural impairment.  

 

Genetic factors predispose certain individuals to FTLD, either due to autosomal dominant 

monogenetic mutations or genetic polymorphisms identified by genome wide association 
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studies (GWAS) (Raffaele et al., 2019). Could genetic differences between individuals explain 

differences in selective vulnerability? A polymorphism in the TRIM11 gene, which is expressed 

in the basal ganglia and cerebellum and codes proteins in the ubiquitin proteasome system, may 

partially determine if patients develop the more rapidly progressive PSP-Richardson’s 

syndrome or other PSP syndrome subtypes (Jabbari et al., 2018). Regional differences in gene 

mutation and expression across the brain could also contribute to selective vulnerability of 

different neuronal populations. Somatic mutations occur postzygotically, either during the 

intensive cell division associated with brain development or due to the increasing cell 

vulnerability associated with ageing (Leija-Salazar et al., 2018). This genetic mosaicism is 

increasingly recognised in both healthy and diseased human brains (Baillie et al., 2011; Keogh 

et al., 2018; Wei et al., 2019). There are higher rates of somatic mutations in Alzheimer’s 

disease compared to control brains (Helgadottir et al., 2019; Park et al., 2019). Variability in 

gene expression is also associated with both focal atrophy (Altmann et al., 2019) and functional 

connectivity (Rittman et al., 2016b) in FTLD. Somatic mosaicism in the brain may explain both 

the diversity in phenotype and age of onset of genetic FTLD and the phenotypic heterogeneity 

across individuals with sporadic disease. Further research is required, and the PIPPIN study 

would be a useful resource to use, given many patients with detailed clinical phenotyping will 

donate their brains for research over the next few years.  

 

Other individual premorbid differences could contribute to syndrome heterogeneity. Some 

patients with FTLD-tau-PSP and CBD present with a nfvPPA phenotype. Developmental 

dyslexia or previous injury to the language network may predispose individuals who develop 

FTLD pathology to present with language symptoms (Rogalski et al., 2013). There is a higher 

prevalence of dyslexia in patients with PPA compared to bvFTD and controls (Rogalski et al., 

2008, 2013; Miller et al., 2013). PPA in later life has been reported in patients with mild left 

hemicranial hypoplasia due to childhood injury (Alberca et al., 2004). In the PIPPIN cohort 

there was one patient with a gradual onset, progressive nfvPPA phenotype who had an 

incidental finding of a left Broca’s area infarct on his MRI. There is a higher incidence of left-

handedness in svPPA, though the significance of this is unclear (Miller et al., 2013). Could the 

premorbid personality of patients with bvFTD influence which behavioural symptoms they 

develop? Anecdotally, some families report their relative’s bvFTD-related symptoms represent 

an exaggeration of premorbid personality traits, however this could reflect recall bias. There is 

limited and conflicting research on the influence of premorbid personality of clinical phenotype 

in neurodegenerative diseases (Lebert et al., 1995; Sevinçer et al., 2017; Rouch et al., 2019). 

Age at onset may influence FTLD syndrome phenotype (Baborie et al., 2012), though this is 
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likely to be due to differences in FTLD pathology subtype and comorbid neuropathology (Seo 

et al., 2018).  

 

The presence of multiple proteinopathies in the same brain is increasingly recognised and is 

likely to affect selective vulnerability, the topography of neurodegeneration and clinical 

phenotype. In chapter four, I reported comorbid neuropathology when the neuropathologist 

thought this was clinically significant. This was rare, but when present was associated with an 

atypical phenotype (chapter four). However, other patients may have had low levels of 

comorbid proteinopathies, including AD, tau, TDP43 and alpha-synuclein, and cerebrovascular 

disease. Recent reports suggest that “pure” FTLD is atypical, in one study a majority of both 

FTLD-tau-PSP and FTLD-TDP43 had comorbid proteinopathies (Robinson et al., 2018). 

Proteinopathies can act synergistically (Giasson et al., 2003; Clinton et al., 2010; Fang et al., 

2014) so a second protein may change the topography and spread of neurodegeneration, even 

when present at low levels. There is already evidence that comorbid pathology in other 

neurodegenerative diseases influences clinical phenotype. Alzheimer’s disease can be 

associated with TDP-43 deposition in the hippocampus and amygdala, now termed limbic-

predominant age-related TDP-43 encephalopathy (LATE) (Josephs et al., 2019; Nelson et al., 

2019). The combination of both AD and LATE is associated with greater medial temporal lobe 

volume loss and worse cognitive impairment (Josephs et al., 2008b; Chang et al., 2016). 

Similarly, the co-occurrence of tau and/or amyloid-beta is associated with more severe and 

rapidly progressive cognitive decline in Dementia with Lewy Bodies (Abdelnour et al., 2016; 

Gomperts et al., 2016; Coughlin et al., 2019). In contrast, there is limited evidence on the role 

of comorbid pathology in FTLD and how this contributes to disease severity and clinical 

phenotype. This is also a limitation of my thesis and requires further research.  

 

Finally, neuroinflammation may contribute to selective vulnerability of different brain regions 

and the distribution and spread of neurodegeneration. It is unclear if the neuroinflammation 

associated with frontotemporal lobar degeneration (Cagnin et al., 2004; Bevan-Jones et al., 

2020) and Alzheimer’s disease (Malpetti et al., 2019; Passamonti et al., 2019) is primary or 

secondary to protein aggregation nor if it is beneficial or harmful (Bright et al., 2019). 

Neuroinflammation can be imaged in vivo with PET ligands of activated microglia (Zhang, 

2015) which shows neuroinflammation precedes protein aggregation in a pre-symptomatic 

MAPT carrier (Bevan-Jones et al., 2019). Together, these results suggest neuroinflammation 

may influence protein aggregation, neurodegeneration and clinical phenotype in FTLD 

syndromes, but further research is required. 
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Neurotransmitter deficits as potential targets for 

symptomatic treatment in FTLD syndromes 

Impulsivity is an early feature in many FTLD syndromes, not just bvFTD (Rascovsky et al., 

2011; Gerstenecker et al., 2013, Rittman et al., 2016a; Lansdall et al., 2017) but in longitudinal 

studies, carer ratings of disinhibited behaviour improve with disease progression (Chow et al., 

2012; O’Connor et al., 2016). This may be because worsening apathy, global cognitive 

impairment, parkinsonism and/or gait disturbance masks impulsive behaviours. This non-linear 

change in behavioural impairments has important implications. Disease modifying therapies, 

when/if developed, are likely to be given early in the disease course and slow rather than reverse 

or halt disease progression, extending the duration of “early” stage disease and so increasing 

the overall prevalence of impulsivity. Symptomatic treatments therefore must be developed in 

conjunction with slowing progression of the underlying neurodegeneration to prevent a 

paradoxical increase in disease burden. 

 

Currently, all symptomatic drug treatments for FTLD syndromes aim to partially correct 

neurotransmitter deficits (Buoli et al., 2017). Serotonin dysfunction is a significant contributor 

to the behavioural and cognitive symptoms seen in FTLD syndromes (Huey et al., 2006; Murley 

and Rowe, 2018). There is loss of serotonergic neurons in bvFTD (Yang and Schmitt, 2001) 

and PSP (Chinaglia et al., 1993; Revesz et al., 1996) and serotonin levels are associated with 

behavioural impairment in some studies (Engelborghs et al., 2004). Several open label studies 

without placebo-control have shown improvement in behavioural symptoms with serotonergic 

drugs (Moretti et al., 2003; Anneser et al., 2007; Herrmann et al., 2012) but this has not been 

replicated in a placebo-controlled blinded study (Deakin et al., 2004). Antipsychotic 

medications with dopaminergic receptor affinity are often used to treat severe behavioural 

disturbance in FTLD but patients can be extremely sensitive to extra-pyramidal side effects due 

to nigrostriatal deficits (Oyanagi, 2002; Pijnenburg et al., 2003; Huey et al., 2006; Murley and 

Rowe, 2018). A meta-analysis of antidepressants in bvFTD showed a reduction in carer-ratings 

of behavioural impairment, noting, however, that the evidence was mainly from small, non-

placebo controlled trials (Huey et al., 2006). Trazodone does improve behavioural symptoms 

in bvFTD, based on a randomized control cross-over study (Lebert et al., 2004). Interestingly, 

trazodone is a multifunctional drug that acts on serotonergic, noradrenergic, dopaminergic and 

histamine pathways (Stahl, 2009). 
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In chapter six, I used a novel analysis of the stop no go task to measure behavioural disinhibition 

in bvFTD and PSP. In chapter seven, I showed both glutamate and GABA concentrations were 

reduced in the frontal lobe of both syndromes and this deficit was associated with behaviour 

disinhibition. Testing if GABA and glutamate replacement reduces behavioural disinhibition 

requires a randomised, double-blinded, placebo-controlled clinical trial. There are already 

approved medications that modulate synaptic GABA and glutamate, so pre-clinical and safety 

and tolerability studies would not be required. However, there are a several limitations of my 

results that mean further research is required before a large clinical trial can be justified. First, 

neurotransmitters only correlated with a neuropsychological stop no-go task and not carer 

ratings of behavioural impairment and daily function. Carer ratings reflect widespread 

behavioural and cognitive deficits and are confounded by motor and language impairments. 

Right inferior frontal gyrus neurotransmitter levels are unlikely to be associated with all these 

behavioural, cognitive, language and motor impairments. Also, the inferior frontal gyrus cannot 

be assumed to be representative of the whole frontal lobe, due to heterogeneity in FTLD brain 

morphometry (chapter three). Second, it is not known if MRS measures an extra-neuronal 

neurotransmitter deficit or is indirectly measuring glutamatergic and GABAergic neuronal loss. 

In healthy volunteers, a GABA reuptake inhibitor has no effect on 3T MRS of GABA (Myers 

et al., 2014) but this may be due to macromolecule contamination of the GABA spectra, a 

recognised complication of 3T edited spectroscopy (Harris et al., 2015). Ultra-high-field (9-11 

Tesla) MRS is sensitive to the effects of GABA and glutamate reuptake inhibitors in animal 

models (Waschkies et al., 2014; Rizzo et al., 2017) but this has not yet been replicated in 

humans. The loss of post-synaptic receptors in FTLD (Foster et al., 2000; Jiang et al., 2018; 

Murley and Rowe, 2018)  may mean increasing synaptic GABA and glutamate concentrations 

is futile. This already hampers the efficacy of other neurotransmitter treatments in FTLD, for 

example levodopa does not typically improve parkinsonism, possibly due to loss of D2 

receptors in the basal ganglia (Oyanagi, 2002; Murley and Rowe, 2018). Third, drugs that 

modulate neurotransmitter levels tend to have non-linear, inverted U-shaped responses. GABA 

and glutamate deficits were only seen in the frontal, not occipital lobes so drugs that increase 

neurotransmitter levels across the whole brain may restore a deficit in affected but “overdose” 

unaffected brain regions. This problem is well established in Parkinson’s disease, in the 

sometimes difficult balance between motor disability and impulse control disorders and 

cognitive impairment with dopaminergic treatments (Napier et al., 2015; Voon et al., 2017). 

The application of focal treatments to restore biochemical function, such as dopaminergic stem 

cell transplants or gene therapy to induce dopamine synthesis in striatal cells, can overcome 

some of the adverse consequences of systemic drug treatment in Parkinson’s disease. However, 
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such localized treatments seem even more challenging in a diffuse lobar cortical disorder and 

for the time being, systemic drug delivery is likely to be the mainstay of clinical therapeutics. 

These limitations mean that additional research is required to clarify the relationship between 

GABA, glutamate and clinical features of FTLD syndromes before a clinical trial can be 

justified.  

 

GABA may be a more tractable treatment target than glutamate as GABA reuptake inhibitors, 

such as tiagabine, have been approved for clinical use whereas glutamate reuptake inhibitors  

have only been used in animal models (Adkins and Noble, 1998; Dunlop, 2006). One advantage 

of magnetic resonance spectroscopy is that it could enable a personalised approach to a clinical 

trial, with drug-doses titrated to an individual’s neurochemical deficit. My results show that 

GABA levels vary widely between participants with FTLD, some patients have near normal 

levels whereas others have less than half the concentrations of healthy controls. The same dose 

of a GABA reuptake inhibitor is likely to have varying effects in different patients, even before 

accounting for pharmacokinetic differences. MRS could allow for titration of drug dose, with 

higher doses given to patients with greater GABAergic deficits. Interestingly, there are case 

reports of transient but significant symptomatic improvement with GABAA agonists in PSP 

(Daniele et al., 1999; Cotter et al., 2010; Dash, 2013; Chang and Weirich, 2014) but this has 

never been investigated systemically in a clinical trial and has not been replicated in most PSP 

patients. Selective serotonin reuptake inhibitors increase cortical GABA concentrations 

(Sanacora et al., 2002) which may partly explain the behavioural improvements associated with 

SSRI use in FTLD syndromes (Huey et al., 2006; Hughes et al., 2015). Together, these results 

suggest GABA is a promising target for symptomatic treatment in FTLD syndromes. 

 

Replacing neurotransmitter deficits will not slow FTLD progression but could act indirectly to 

delay symptom onset or improve life expectancy. Preserved functional connectivity despite 

progressive atrophy and neurodegeneration enables carriers of FTLD-related genetic mutations 

to maintain cognitive performance (Rittman et al., 2019; Tsvetanov et al., 2019). Brain network 

connectivity depends on glutamate and GABA neurotransmission (Fries, 2009; Buzsáki and 

Wang, 2012) so restoring these neurotransmitter deficits, if present in pre-symptomatic gene 

carriers, could delay disease age of onset. One cause of death in early and moderate stage FTLD 

is choking, causes of which include impulsive food cramming (Lewis et al., 2019). Treating 

impulsivity may prevent or reduce choking. This may not have an overall effect on survival at 

a group-level (Papapetropoulos et al., 2005), although the introduction of dopamine 

replacement improved life expectancy in Parkinson’s disease (Uitti et al., 1993).    
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Conclusion 

I have shown that a combined, transdiagnostic approach to the syndromes associated with 

frontotemporal lobar degeneration provides new insights into the clinical phenotypes, brain 

morphometry, neuropathology and prognosis of these diseases. The clinical phenotypes and 

brain morphometry in FTLD are heterogeneous and overlapping. But, the pattern of clinical 

features found across FTLD syndromes is a better predictor of neuropathology and prognosis 

than the current diagnostic labels. Frontal lobe GABA and glutamate deficits were associated 

with behavioural disinhibition in FTLD syndromes. Together, these results inform the 

development of symptomatic treatment strategies and design of future clinical trials. Such 

progress towards better treatments is urgently required to reduce the devastating burden of these 

diseases to patients and their families. 
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Appendix 1: Diagnostic criteria 

Behavioural variant frontotemporal dementia (Rascovsky et al., 

2011) 

Possible bvFTD 

Three of the following behavioural/cognitive symptoms (A-F) 

A. Early behavioural disinhibition (one or more of A1-A3) 

     A1. Socially inappropriate behaviour 

     A2. Loss of manners or decorum 

     A3. Impulsive, rash or careless actions 

B. Early apathy or inertia (one or more of B1-B2) 

     B1. Apathy 

     B2. Inertia 

C. Early loss of sympathy (one or more of C1-C2) 

     C1. Diminished response to other people's needs and feelings 

     C2. Diminished social interest, interrelatedness or personal warmth 

D. Early perseverative, stereotyped or compulsive behaviour (one or more of D1-D3). 

     D1. Simple repetitive movements 

     D2. Complex, compulsive or ritualistic behaviours 

     D3. Stereotypy of speech 

E. Hyperorality and dietary changes (one or more of E1-E3) 

     E1. Altered food preferences 

     E2. Binge eating/increased consumption of alcohol or cigarettes 

     E2. Oral exploration/consumption of inedible objects 

F. Neuropsychological profile (all of F1-F3) 

     F1. Deficits in executive tasks 

     F2. Relative sparing of episodic memory 

     F3. Relative sparing of visuospatial skills 

 
Probable bvFTD 

All of A-C must be present 

A. Meets criteria for possible bvFTD 

B. Significant functional decline 

C. Imaging results consistent with bvFTD (one of C1-C2) 

      C1. Frontal and/or anterior temporal atrophy on MRI or CT 

      C2. Frontal and/or anterior temporal hypoperfusion/metabolism on PET/SPECT 

 

Definite bvFTD 

A must be present and B or C 

A. Meets criteria for possible bvFTD 

B. Histopathological evidence of FTLD (biopsy or post-mortem) 

C. Presence of a known pathogenic mutation 

*Early typically refers to symptom presentation within the first 3 years 
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Exclusion criteria: Pattern of deficits better accounted for by a non-degenerative nervous 

system or medical disorder, cognitive disturbance better accounted for by a psychiatric 

diagnosis or biomarkers indicative of Alzheimer's disease or other neurodegenerative process 

 

Primary progressive aphasia (Gorno-Tempini et al., 2011) 

All of A-C must be present in all PPA subtypes 

A. Most prominent clinical feature is difficulty with language 

B. Language deficits are the principal cause of impaired activities of daily living 

C. Aphasia is most prominent deficit at symptom onset and initial disease phases 

Exclusion criteria 

Pattern of deficits better accounted for by a non-degenerative nervous system or medical 

disorder 

Cognitive disturbance better accounted for by a psychiatric diagnosis 

Prominent initial episodic or visual memory or visuoperceptual impairments 

Prominent initial behavioural disturbance 

 
Non fluent variant primary progressive aphasia 

At least one of A-B must be present 

     A. Agrammatism 

     B. Apraxia of speech 

A least two of C-E must be present 

      C. Impaired syntactic comprehension 

      D. Spared single-word comprehension 

      E. Spared object knowledge 

 
Semantic variant primary progressive aphasia 

Both A+B must be present 

     A. Impaired confrontational naming 

     B. Impaired single-word comprehension 

At least three of C-F must be present 

     C. Impaired object knowledge 

     D. Surface dyslexia/dysgraphia 

     E. Spared repetition 

     F. Spared grammar and motor speech 

 
Logopenic variant primary progressive aphasia 

Both A+B must be present 

     A. Impaired single word retrieval in spontaneous speech 

     B. Impaired sentence repetition 

At least three of C-F must be present 

     C. Phonological errors 

     D. Spared single word comprehension and object knowledge 

     E. Spared motor speech 

     F. Absence of frank agrammatism 

 
Definite diagnosis requires a clinical diagnosis and either histopathological 

confirmation or presence of a known pathogenic mutation 
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Progressive supranuclear palsy (Höglinger et al., 2017) 

All of A-C must be present for all diagnoses 

A. Sporadic occurrence 

B. Age greater than 40 at first symptom 

C. Gradual progression of symptoms 

 
Possible PSP-RS 

Both A+B must be present 

A. Slow velocity of vertical saccades 

B. More than two steps backwards on the pull test within 3 years of symptom onset 

 
Probable PSP-RS 

One of A-B must be present 

A. Vertical supranuclear gaze palsy 

B. Slow velocity of vertical saccades 

One of C-D must be present 

C. Frequent unprovoked falls within 3 years 

D. Tendency to fall on pull test within 3 years 

 
Probable PSP-F 

One of A-B must be present 

A. Vertical supranuclear gaze palsy 

B. Slow velocity of vertical saccades 

Three of C-G must be present 

C. Apathy 

D. Bradyphrenia 

E. Dysexecutive syndrome 

F. Reduced verbal fluency 

G. Impulsivity, disinhibition or perseveration 

 

Possible PSP-CBS 

One of A-B must be present 

A. Vertical supranuclear gaze palsy 

B. Slow velocity of vertical saccades 

One of C-E must be present (asymmetric or symmetric) 

C. Orobuccal or limb apraxia 

D. Cortical sensory loss 

E. Alien limb phenomena 

One of F-H must be present (asymmetric or symmetric) 

F. Limb rigidity 

G. Limb akinesia 

H. Limb myoclonus 
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Possible PSP-SL 

One of A-B must be present 

A. Vertical supranuclear gaze palsy 

B. Slow velocity of vertical saccades 

One of C-D must be present 

C. Meets criteria for non-fluent variant primary progressive aphasia 

D. Progressive apraxia of speech 

 

Definite PSP 

Neuropathological diagnosis with any clinical presentation 

 
Exclusion criteria 

There are 10 absolute and 25 relative exclusion criteria. See Höglinger et al. 2017 for 

details 

Important exclusion criteria include: 

A. Prominent episodic memory impairment suggestive of Alzheimer's Disease 

B. Prominent autonomic failure suggestive of multiple system atrophy of Lewy body 

disease 

C. Prominent, unexplained visual hallucinations or fluctuations in alertness 

D. Sudden onset or stepwise progression of symptoms suggestive of vascular aetiology 

 
There are eight PSP subtypes, each with possible and probable criteria, only a selection are 

shown here. See Höglinger et al. 2017 for details 

  
Patients may meet criteria for several PSP subtypes, in which case the Multiple Allocations 

eXtintion (MAX) rules criteria (Grimm et al. 2019) suggest that a diagnosis of PSP-RS 

and/or higher levels of diagnostic certainty are prioritised 
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Corticobasal syndrome (Armstrong et al., 2013a) 

 

Probable CBS 

Both A+B must be present 

A. Asymmetric presentation of two or more of A1-A3 

     A1. Limb rigidity or akinesia 

     A2. Limb dystonia 

     A3. Limb myoclonus 

B. Two or more of B1-3 

     B1. Limb or orobuccal apraxia 

     B2. Cortical sensory deficit 

     B3. Alien limb phenomena (more than simple levitation) 

 
Possible CBS 

Both A+B must be present 

A. Asymmetric or symmetric presentation of one or more of A1-A3 

     A1. Limb rigidity or akinesia 

     A2. Limb dystonia 

     A3. Limb myoclonus 

 
Definite Corticobasal degeneration (CBD) 

Neuropathological diagnosis 

 

  



 

240 

 



Appendix 2: Neuropathology of imaging components 

241 

Appendix 2: Neuropathology of imaging 

components 
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Appendix 3: Neuropsychology results by FTLD 

subgroup 

 

 

 



 

246 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 3: Neuropsychology by FTLD subtype 

247 

 

T
es

t 

C
o
n
tr

o
l 

b
v
F

T
D

 
P

S
P

 

F
 

p
 v

al
u
e 

b
v
F

T
D

 v
s 

C
o
n
tr

o
l 

P
S

P
 v

s 
C

o
n
tr

o
l 

b
v
F

T
D

 v
s 

P
S

P
 

m
ea

n
 

m
ea

n
 

d
if

f 
p
 v

al
u
e 

m
ea

n
 

d
if

f 
p
 v

al
u
e 

m
ea

n
 

d
if

f 
p
 v

al
u
e 

(S
D

) 

F
T

L
D

 C
D

R
 

S
O

B
 

0
 

(0
) 

1
2
.8

6
 

(4
.0

9
) 

7
.3

2
 

(4
.9

) 
6
1
.9

5
 

2
.0

5
E

-1
5
 

1
2
.8

6
 

2
.0

5
E

-1
5
 

7
.3

2
 

1
.0

0
E

-0
7
 

5
.5

5
 

2
.1

1
E

-0
5
 

P
S

P
R

S
 T

o
ta

l 
0
.1

 

(0
.3

1
) 

1
3
.9

5
 

(1
0
.9

8
) 

3
1
.4

5
 

(1
8
.5

9
) 

3
2
.3

8
 

2
.6

1
E

-1
0
 

1
3
.8

5
 

2
.6

1
E

-1
0
 

3
1
.3

5
 

1
.0

8
E

-0
9
 

-1
7
.5

 
6
.8

6
E

-0
5
 

A
C

E
R

 

A
tt

en
ti

o
n

 

1
7
.9

5
 

(0
.2

2
) 

1
2
.1

8
 

(6
.1

2
) 

1
6
.2

3
 

(2
.7

9
) 

1
1
.9

5
 

4
.1

9
E

-0
5
 

-5
.7

7
 

4
.1

9
E

-0
5
 

-1
.7

2
 

3
.4

1
E

-0
1
 

-4
.0

5
 

3
.4

1
E

-0
3
 

A
C

E
R

 

M
em

o
ry

 

2
1
.3

 

(1
.3

8
) 

1
2
.1

4
 

(7
.7

8
) 

1
9
.5

9
 

(3
.5

8
) 

1
9
.6

9
 

2
.5

2
E

-0
7
 

-9
.1

6
 

2
.5

2
E

-0
7
 

-1
.7

1
 

5
.2

5
E

-0
1
 

-7
.4

5
 

2
.4

9
E

-0
5
 

A
C

E
R

 F
lu

en
cy

 
1
2
.8

5
 

(1
.0

4
) 

3
.5

5
 

(3
.4

2
) 

5
 

(2
.9

4
) 

7
0
.4

5
 

1
.4

0
E

-1
6
 

-9
.3

 
1
.4

0
E

-1
6
 

-7
.8

5
 

9
.5

7
E

-1
0
 

-1
.4

5
 

1
.8

5
E

-0
1
 

A
C

E
R

 

L
an

g
u
ag

e 

2
5
.5

 

(0
.8

3
) 

1
6
.7

7
 

(7
.9

7
) 

2
3
.2

7
 

(2
.9

1
) 

1
7
.5

4
 

9
.5

8
E

-0
7
 

-8
.7

3
 

9
.5

8
E

-0
7
 

-2
.2

3
 

3
.2

6
E

-0
1
 

-6
.5

 
1
.7

6
E

-0
4
 

A
C

E
R

 

V
is

u
o
sp

at
ia

l 

1
5
.8

 

(0
.5

2
) 

1
2
.1

8
 

(5
.2

1
) 

1
2
.1

4
 

(3
.8

1
) 

6
.3

2
 

3
.1

9
E

-0
3
 

-3
.6

2
 

3
.1

9
E

-0
3
 

-3
.6

6
 

7
.5

9
E

-0
3
 

0
.0

5
 

9
.9

9
E

-0
1
 

A
C

E
R

 T
o
ta

l 
9
6
.2

 

(2
.7

1
) 

5
7
.6

8
 

(2
8
.1

) 

7
7
.9

1
 

(1
3
.1

7
) 

2
3
.3

6
 

2
.9

3
E

-0
8
 

-3
8
.5

2
 

2
.9

3
E

-0
8
 

-1
8
.2

9
 

5
.4

2
E

-0
3
 

-2
0
.2

3
 

1
.4

6
E

-0
3
 

F
A

B
 

1
7
.4

5
 

(0
.8

3
) 

9
.5

5
 

(5
.8

9
) 

1
2
.5

5
 

(3
.5

7
) 

2
0
.0

6
 

2
.0

1
E

-0
7
 

-7
.9

 
2
.0

1
E

-0
7
 

-4
.9

 
6
.8

8
E

-0
4
 

-3
 

4
.4

9
E

-0
2
 

H
ay

li
n
g
  

(A
+

B
 s

co
re

) 

4
.3

 

(7
.1

2
) 

3
3
.1

5
 

(1
5
.4

1
) 

1
5
.7

6
 

(1
9
.0

3
) 

2
0
.0

5
 

2
.0

3
E

-0
7
 

2
8
.8

5
 

2
.0

3
E

-0
7
 

1
1
.4

6
 

4
.0

6
E

-0
2
 

1
7
.3

8
 

7
.7

8
E

-0
4
 

H
ay

li
n
g

 T
o
ta

l 
1
8
.4

5
 

(2
.2

8
) 

8
.8

2
 

(3
.9

4
) 

1
3
 

(5
.1

4
) 

3
0
.3

8
 

7
.0

1
E

-1
0
 

-9
.6

3
 

7
.0

1
E

-1
0
 

-5
.4

5
 

1
.2

7
E

-0
4
 

-4
.1

8
 

2
.7

8
E

-0
3
 

IN
E

C
O

 
2
5
.7

8
 

(2
.8

3
) 

1
0
.4

4
 

(7
.4

9
) 

1
7
.4

5
 

(5
.7

) 
3
7
.3

9
 

2
.5

1
E

-1
1
 

-1
5
.3

4
 

2
.5

1
E

-1
1
 

-8
.3

3
 

4
.5

8
E

-0
5
 

-7
.0

1
 

4
.2

9
E

-0
4
 

 



 

248 

C
B

I 
M

em
o
ry

 
2
.0

6
 

(2
.0

1
) 

1
8
.2

7
 

(7
.1

4
) 

7
.1

8
 

(6
.4

4
) 

4
4
.0

8
 

1
.4

3
E

-1
2

 
1
6
.2

1
 

1
.4

3
E

-1
2
 

5
.1

2
 

1
.4

9
E

-0
2
 

1
1
.0

9
 

7
.6

1
E

-0
8
 

C
B

I 
E

v
er

y
d
ay

 

sk
il

ls
 

0
.1

5
 

(0
.5

) 

1
0
.6

8
 

(6
.5

1
) 

8
.6

4
 

(7
.9

) 
1
7
.8

1
 

8
.1

0
E

-0
7

 
1
0
.5

3
 

8
.1

0
E

-0
7
 

8
.4

8
 

7
.2

7
E

-0
5
 

2
.0

5
 

5
.0

1
E

-0
1
 

C
B

I 
S

el
fc

ar
e 

0
.0

2
 

(0
.0

9
) 

4
.8

2
 

(4
.4

4
) 

5
.6

4
 

(6
.2

) 
9
.5

 
2
.5

6
E

-0
4

 
4
.8

 
2
.5

6
E

-0
4
 

5
.6

2
 

4
.0

8
E

-0
4
 

-0
.8

2
 

8
.1

7
E

-0
1
 

C
B

I 
B

eh
av

io
u
r 

0
.7

2
 

(0
.9

3
) 

1
0
.8

6
 

(6
.7

9
) 

3
.0

5
 

(3
.1

8
) 

3
0
.7

2
 

5
.8

9
E

-1
0

 
1
0
.1

4
 

5
.8

9
E

-1
0
 

2
.3

3
 

2
.1

4
E

-0
1
 

7
.8

2
 

6
.2

0
E

-0
7
 

C
B

I 
M

o
o
d

 
0
.8

6
 

(1
.3

5
) 

4
.6

4
 

(2
.8

9
) 

2
.5

5
 

(2
.3

) 
1
4
.2

9
 

8
.1

5
E

-0
6

 
3
.7

7
 

8
.1

5
E

-0
6
 

1
.6

8
 

5
.3

4
E

-0
2
 

2
.0

9
 

1
.0

1
E

-0
2
 

C
B

I 
A

b
n
o
rm

al
 

b
el

ie
fs

 
0
 (

0
) 

1
.8

2
 

(2
.1

3
) 

0
.6

8
 

(1
.2

1
) 

8
.6

4
 

4
.9

7
E

-0
4

 
1
.8

2
 

4
.9

7
E

-0
4
 

0
.6

8
 

2
.8

1
E

-0
1
 

1
.1

4
 

2
.9

3
E

-0
2
 

C
B

I 
E

at
in

g
 

0
.3

 

(0
.5

7
) 

9
.1

8
 

(4
.4

3
) 

3
.6

8
 

(4
.2

1
) 

3
2
.7

8
 

2
.1

5
E

-1
0

 
8
.8

8
 

2
.1

5
E

-1
0
 

3
.3

8
 

9
.6

6
E

-0
3
 

5
.5

 
1
.1

8
E

-0
5
 

C
B

I 
S

le
ep

 
0
.8

9
 

(1
.2

8
) 

3
.7

7
 

(2
.5

1
) 

3
.1

8
 

(2
.5

4
) 

9
.8

1
 

2
.0

2
E

-0
4

 
2
.8

8
 

2
.0

2
E

-0
4
 

2
.2

9
 

3
.8

5
E

-0
3
 

0
.5

9
 

6
.5

1
E

-0
1
 

C
B

I 
M

o
to

r 

b
eh

av
io

u
r 

0
.7

7
 

(1
.2

1
) 

1
0
.2

7
 

(4
.9

9
) 

3
.8

6
 

(4
.7

9
) 

2
9
.4

7
 

1
.1

1
E

-0
9

 
9
.5

1
 

1
.1

1
E

-0
9
 

3
.1

 
4
.6

1
E

-0
2
 

6
.4

1
 

8
.2

6
E

-0
6
 

C
B

I 

M
o
ti

v
at

io
n
/a

p
at

h
y

 

0
.5

8
 

(0
.9

4
) 

1
3
.8

6
 

(4
.7

) 

8
.3

2
 

(6
.7

8
) 

3
9
.1

7
 

1
.1

4
E

-1
1

 
1
3
.2

8
 

1
.1

4
E

-1
1
 

7
.7

4
 

8
.9

3
E

-0
6
 

5
.5

5
 

1
.0

4
E

-0
3
 

C
B

I 
Im

p
u

ls
iv

it
y
*

 
2
.3

2
 

(2
.7

3
) 

3
3
.9

1
 

(1
6
.2

1
) 

1
1
.8

2
 

(1
0
.1

2
) 

4
3
.6

3
 

1
.7

3
E

-1
2

 
3
1
.5

9
 

1
.7

3
E

-1
2
 

9
.5

 
2
.3

0
E

-0
2
 

2
2
.0

9
 

5
.5

6
E

-0
8
 

C
B

I 
T

o
ta

l 
6
.3

5
 

(6
.1

3
) 

8
8
.1

8
 

(3
1
) 

4
6
.7

7
 

(3
3
.2

4
) 

4
8
.5

8
 

2
.4

0
E

-1
3

 
8
1
.8

3
 

2
.4

0
E

-1
3
 

4
0
.4

2
 

2
.4

8
E

-0
5
 

4
1
.4

1
 

1
.0

2
E

-0
5
 

F
R

S
 T

o
ta

l 
(L

o
g
it

) 
0
.8

6
 

(0
.3

) 

0
.2

3
 

(0
.1

6
) 

0
.4

8
 

(0
.3

1
) 

2
9
.3

 
1
.2

1
E

-0
9

 
-0

.6
2
 

1
.2

1
E

-0
9
 

-0
.3

7
 

7
.2

5
E

-0
5
 

-0
.2

5
 

7
.3

4
E

-0
3
 

 N
eu

ro
p
sy

ch
o
lo

g
ic

al
 t

es
ts

: 
N

eu
ro

p
sy

ch
o
lo

g
y

 o
f 

F
T

L
D

 s
y
n
d
ro

m
es

 (
b
v

F
T

D
 a

n
d
 P

S
P

).
 C

D
R

-F
T

L
D

 S
O

B
: 

C
li

n
ic

al
 D

em
en

ti
a 

R
at

in
g
 s

ca
li

n
g
 s

u
m

 o
f 

b
o
x
es

 m
o
d
if

ie
d
 f

o
r 

F
T

L
D

. 
P

S
P

R
S

: 
P

ro
g
re

ss
iv

e 
S

u
p
ra

n
u
cl

ea
r 

P
al

sy
 r

at
in

g
 s

ca
le

. 
A

C
E

R
: 

A
d
d
en

b
ro

o
k
e’

s 
C

o
g
n
it

iv
e 

E
x
am

in
at

io
n

-R
ev

is
ed

. 
F

A
B

: 

F
ro

n
ta

l 
A

ss
es

sm
en

t 
B

at
te

ry
. 
C

B
IR

: 
C

am
b
ri

d
g
e 

B
eh

av
io

u
ra

l 
In

v
en

to
ry

 R
ev

is
ed

. 
F

R
S

: 
F

ro
n
to

te
m

p
o
ra

l 
D

em
en

ti
a 

R
at

in
g
 S

ca
le

. 
*
C

B
I 

Im
p
u
ls

iv
it

y
 s

co
re

 

ca
lc

u
la

te
d

 f
ro

m
 a

ll
 i

te
m

s 
fr

o
m

 t
h
e 

d
is

in
h
ib

it
ed

, 
ch

al
le

n
g
in

g
, 

m
o
to

r,
 e

at
in

g
 a

n
d
 i

n
si

g
h
t 

su
b
sc

al
es

 a
n
d
 t

h
e 

eu
p
h
o
ri

a 
it

em
s 

fr
o
m

 t
h
e 

m
o
o
d
 s

u
b
sc

al
e
 

(B
o
rr

o
n
i 

et
 a

l,
 2

0
1
2
).

 P
 v

al
u
es

 i
n
 b

o
ld

 r
em

ai
n
 s

ig
n
if

ic
an

t 
(p

<
0
.0

5
) 

af
te

r 
B

o
n
fe

rr
o
n
i 

co
rr

ec
ti

o
n
 (

6
.6

x
1
0

-0
4
).

 



Appendix 4: Stop No-Go Task Results 

249 

Appendix 4: Stop No-Go Task Results 

 

Table of stop no-go behavioural results. Each cell contains mean and (standard deviation).  

 Control 

FTLD 

(bvFTD+PSP

) 

bvFTD PSP 

Total trials  

(n) 

670.05 

(92.36) 

663.14 

 (97.91) 

636.47 

(122.34) 

687 

(63.76) 

Go correct  

(n) 

520.7 

(68.56) 

489.00  

(81.90) 

467.77 

(99.91) 

508 

(57.99) 

Go incorrect 

(n) 

6.8  

(6.13) 

29.28  

(42.16) 

27.88 

(53.34) 

30.53 

(30.4) 

Go Omission  

(n) 

0.05 

(0.22) 

4.42  

(15.52) 

7.53 

(22.31) 

1.63 

(2.99) 

NoGo Correct  

(n) 

45.4 

(7.98) 

42.11  

(15.61) 

37.53 

(15.24) 

46.21 

(15.17) 

NoGo incorrect  

(n) 

2.1  

(3.6) 

6.08  

(9.06) 

6.88 

(10.21) 

5.37 

(8.12) 

Stop correct  

(n) 

41.45 

(8.78) 

30.64  

(10.43) 

31.47 

(12.02) 

29.9 

(9.04) 

Stop failed/incorrect 

 (n) 

53.55 

(8.19) 

61.61  

(11.66) 

57.41 

(11.95) 

65.37 

(10.29) 

Go correct reaction time  

(ms) 

641.77 

(124.3) 

1082.64 

(344.61) 

1023.6 

(335.87) 

1135.46 

(352.71) 

Go error rate 
0.01 

(0.01) 

0.06  

(0.09) 

0.07 

(0.12) 

0.06 

(0.06) 

NoGo error rate 
0.04 

(0.07) 

0.14  

(0.22) 

0.18 

(0.27) 

0.11 

(0.16) 

Stop accuracy rate 
0.43 

(0.04) 

0.33  

(0.09) 

0.35  

(0.1) 

0.31 

(0.08) 
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Example quality assurance plot for one FTLD participant. Top left: Cumulative accuracy (x axis: trial number, y 

axis: accuracy). Top right: Trial by Trial stop signal delay (SSD) (x axis: trial number, y axis: SSD). Middle left: 

Go reaction time distribution, unedited. Middle right: Go reaction time distribution after outliers removed. Bottom 

right: Trial-by-trial go responses (correct=blue, incorrect=red). Bottom right: Test of trial-by-trial violations, red 

line=SSD, blue line=stop failure reaction time- preceding go reaction time.  
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Appendix 5: Dynamic models of choice model 

fits 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

MCMC chains – FTLD model 

MCMC chains – Control model 
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Hyper-prior (red lines) and posterior (black peaked lines) distributions for the population 

means. 

 

  

Prior and posterior density plots 

FTLD 

Controls 
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Goodness of fit functions test if the model accurately represents the data by comparing 

experimentally acquired data to simulated results from the model. A: Response proportions 

(NR=non-response). B: Response time percentiles. The three lines correspond to the 10th, 

50th, and 90th percentiles. Dashed line and open points represent the data. Solid points 

represent medians of the model prediction. Error bars show the 95% credible intervals. The 

figures show average results over all participants. 

 

 

 

Goodness of fit results 
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Cumulative distribution probability functions. Thick lines represent the data, thin lines 

represent model predictions. Open points mark the 10th, 30th, 50th, 70th, and 90th percentiles. 

The clusters of gray dots represent the uncertainty in the percentiles from 100 randomly selected 

samples from the joint posterior 
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Appendix 6: 7T Voxel Based Morphometry 

Axial view of grey matter volume Control>FTLD 



 

256 

Axial view of white matter volume Control>FTLD 
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Axial view of grey matter volume conjunction of Control>bvFTD and Control>PSP. Voxels 

are p<0.001 uncorrected 
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Appendix 7: Individual MRS spectra 

 

All individual spectra from the right inferior frontal gyrus voxel. Top line is the whole fit, the 

middle line is the glutamate fit and the bottom line the GABA fit. 
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All individual spectra from the right inferior frontal gyrus voxel. Top line is the whole fit, the 

middle line is the glutamate fit and the bottom line the GABA fit. 
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Appendix 8: MRS results by FTLD syndrome 

subgroup 

 

 

 

  

MRS measurement of glutamate, results by FTLD syndrome subtype. bvFTD: behavioural variant frontotemporal 

dementia, PSP: progressive supranuclear palsy (including PSP-RS and PSP-F subtypes). Top row: water scaled 

values with no partial volume correction for the right inferior frontal gyrus (IFG) and primary visual cortex 

(occipital) voxels. Bottom row: The same data after age, sex and partial volume (grey and white matter) correction. 

On each boxplot, the middle line is the median and the bottom and top edges of the box indicate the 25th and 75th 

percentiles, respectively. Whiskers include any data not considered an outlier (within 2.7 standard deviations of 

the mean). Each dot represents the value from an individual participant, colour coded by group. *=p<0.05, 

*=p<0.05, **=p<0.01, ***=p<0.001 (after Bonferroni correction). 
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MRS measurement of GABA, results by FTLD syndrome subtype. bvFTD: behavioural variant frontotemporal 

dementia, PSP: progressive supranuclear palsy (including PSP-RS and PSP-F subtypes). Top row: water scaled 

values with no partial volume correction for the right inferior frontal gyrus (IFG) and primary visual cortex 

(occipital) voxels. Bottom row: The same data after age, sex and partial volume (grey and white matter) correction. 

On each boxplot, the middle line is the median and the bottom and top edges of the box indicate the 25th and 75th 

percentiles, respectively. Whiskers include any data not considered an outlier (within 2.7 standard deviations of 

the mean). Each dot represents the value from an individual participant, colour coded by group. 
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REVIEWARTICLE

Neurotransmitter deficits from frontotemporal
lobar degeneration

Alexander G. Murley1 and James B. Rowe1,2,3

Frontotemporal lobar degeneration causes a spectrum of complex degenerative disorders including frontotemporal dementia,

progressive supranuclear palsy and corticobasal syndrome, each of which is associated with changes in the principal neurotrans-

mitter systems. We review the evidence for these neurochemical changes and propose that they contribute to symptomatology of

frontotemporal lobar degeneration, over and above neuronal loss and atrophy. Despite the development of disease-modifying

therapies, aiming to slow neuropathological progression, it remains important to advance symptomatic treatments to reduce the

disease burden and improve patients’ and carers’ quality of life. We propose that targeting the selective deficiencies in neurotrans-

mitter systems, including dopamine, noradrenaline, serotonin, acetylcholine, glutamate and gamma-aminobutyric acid is an im-

portant strategy towards this goal. We summarize the current evidence-base for pharmacological treatments and suggest strategies

to improve the development of new, effective pharmacological treatments.
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Abbreviations: AMPA = a-amino-3-hydroxyl-5-methyl-isoxazolepropionic acid; bvFTD = behavioural variant frontotemporal
dementia; CBD = corticobasal degeneration; CBS = corticobasal syndrome; FTD = frontotemporal dementia; FTLD = frontotem-
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Introduction
Frontotemporal lobar degeneration (FTLD) causes diverse

clinical syndromes, including frontotemporal dementia

(FTD), progressive supranuclear palsy (PSP) and corticoba-

sal syndrome (CBS) (MacKenzie et al., 2010; Riedl et al.,

2014). In recent years there has been marked progress in

defining these syndromes in terms of their clinical diagnos-

tic criteria (Gorno-Tempini et al., 2011; Rascovsky et al.,

2011; Armstrong et al., 2013; Höglinger et al., 2017),

genetic association (Seelaar et al., 2011; Baizabal-Carvallo

and Jankovic, 2016), pathology (MacKenzie et al., 2010),

and clinical and imaging biomarkers (Whitwell et al., 2005;

Hughes et al., 2013; Skillback et al., 2014; Rohrer et al.,

2015b; Ranasinghe et al., 2016). These advances have sup-

ported the development of candidate disease-modifying

therapeutics (Boxer and Boeve, 2007; Tsai and Boxer,

2014; Stamelou and Höglinger, 2016). However, treat-

ments that slow or halt disease progression after symptoms

begin must be accompanied by more effective treatment of
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symptoms to reduce the overall burden of disease. One

strategy is to reverse neurotransmitter deficits, similar to

dopaminergic therapy of Parkinson’s disease or cholinergic

therapy for Alzheimer’s disease. Novel symptomatic drug

treatment would improve patients’ and their families’ qual-

ity of life.

Recent changes in the clinical and pathological character-

ization of the major clinical syndromes caused by FTLD

give anatomical and pharmacological insights that call for

a reappraisal of the neurotransmitter literature. We adopt

the clinical labels as set out in current consensus diagnostic

criteria for the behavioural variant FTD (bvFTD)

(Rascovsky et al., 2011), semantic variant of primary pro-

gressive aphasia (svPPA) (Gorno-Tempini et al., 2011),

logopenic variant of PPA (lvPPA) (Gorno-Tempini et al.,

2011), non-fluent agrammatic variant PPA (nfvPPA)

(Gorno-Tempini et al., 2011), CBS (Armstrong et al.,

2013) and PSP (Höglinger et al., 2017). However, older

studies may have used different terms or overlooked the

evolution of phenotype that obscures the boundaries be-

tween groups as the disease progresses (Coyle-Gilchrist

et al., 2016). Where these changes are relevant to the in-

terpretation of neurotransmitter effects, we make variations

from the current standard classification explicit, but other-

wise consider semantic dementia as semantic variant PPA

and progressive non-fluent aphasia as non-fluent agram-

matic variant PPA.

Here we review the pharmacological abnormalities asso-

ciated with FTLD in terms of regional changes in neuro-

transmitter synthesis, release, reuptake, catabolism, and

synaptic binding. We focus on the major neurotransmitter

systems, dopamine, noradrenaline, serotonin, acetylcholine,

glutamate and gamma aminobutyric acid (GABA) both in-

dividually (including their receptor subtypes) and the inter-

actions between them. Table 1 provides a summary of the

available evidence, with full information on references by

disease and by neurotransmitter in Supplementary Table 1.

Dopamine
Dopaminergic deficits are widely associated with Parkinson’s

disease but are also a common feature of FTLD. The ma-

jority of dopaminergic neurons originate in the ventral mid-

brain and form nigrostriatal, mesolimbic and mesocortical

projections (Fig. 1A). Nigrostriatal neurons from the sub-

stantia nigra pars compacta terminate in the striatum, reg-

ulating cortico-striato-thalamo-cortical loops for motor,

oculomotor and cognitive control (Rowe and Rittman,

2016). The motor circuit regulates movement, both in facil-

itating (via the direct pathway) and inhibiting (via the indir-

ect pathway) actions. Loss of dopaminergic neurons in the

nigrostriatal pathway causes parkinsonism in Parkinson’s

disease, but also in FTLD. Additional mesolimbic and meso-

cortical dopaminergic neurons from the ventral tegmental

area regulate reward, learning and motivation-related behav-

iour (Wise, 2004). The mesolimbic tract projects principally

to the nucleus accumbens in the striatum and to the amyg-

dala and hippocampus, affecting motivation, hedonia and

reward (incentive salience). Changes to the mesolimbic

tract may also exacerbate compulsion and impulsivity. The

mesocortical tract (which projects to the prefrontal, cingulate

and perirhinal cortices) regulates motivation, emotion,

reward and desire, including learning of the value of goal-

directed actions. Dopamine binds to five types of G protein

coupled receptors; D1-class (D1 and D5) and D2-class (D2,

D3 and D4), which differ in their response to dopamine

agonists and antagonists (Beaulieu and Gainetdinov, 2011;

Southan et al., 2016). The different receptor subtypes have

distinct distribution densities across brain regions and are

associated with different, although overlapping, effects on

cognition and movement (Beaulieu and Gainetdinov,

2011), and may be differentially affected by FTLD.

Frontotemporal dementia

There is clinical and experimental evidence of a nigrostria-

tal deficit in many cases of FTD, with loss of pre-synaptic

dopaminergic neurons, reduced dopamine levels, reduced

dopamine transporter binding, and abnormal dopamine re-

ceptor binding. Extrapyramidal symptoms of bradykinesia,

rigidity and gait dysfunction are seen in up to 70% of

patients at some stage during the disease course (Rinne

et al., 2002; Padovani et al., 2007; Kertesz et al., 2011;

Table 1 Summary of neurotransmitter deficits in FTLD

Neurotransmitter pathway FTD PSP CBS

Dopamine

Dopaminergic neurons ## ## ##

Dopamine receptors # ##
a

$

Noradrenaline

Noradrenergic neurons $ ## na

Noradrenergic receptors na na na

Serotonin

Serotonergic neurons ## # #

Serotonergic receptors ## " na

Acetylcholine

Cholinergic neurons $
b

## ##

Cholinergic receptors $/# $/# na

Glutamate

Glutamatergic neurons ## ## na

Glutamatergic receptors ## $ na

GABA na

GABAergic neurons # ## na

GABA receptors na # na

A more detailed table, including references, is included as Supplementary Fig. 1.

## = moderate/severe deficit; #= mild deficit; "/$/# = conflicting or inconsistent

results; $= no significant change; "= mild increase; na = no available evidence.
aIn PSP D2 receptors are reduced in the striatum and basal ganglia but D1 receptors

appear to be preserved.
bCholinergic neurons are reduced in the nucleus basalis but are preserved in the

cerebral cortex in bvFTD. In nfvPPA there is greater evidence of a cholinergic deficit

with atrophy of basal forebrain cholinergic nuclei.
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Figure 1 Dopamine deficits in FTD. (A) Schematic illustration of dopaminergic pathways. (B) Ioflupane SPECT scan showing loss of pre-

synaptic dopaminergic neurons in the striatum of FTD compared with normal scan. (C) Loss of dopaminergic neurons in the putamen (measured

by 11C-CFT-PET) correlates with severity of extra-pyramidal motor symptoms (Unified Parkinson’s Disease Rating Scale motor score). From

Rinne et al. (2002). Reprinted with permission from Wolter Kluwer. (D) Dopamine levels are reduced in the caudate, putamen and globus pallidus.

Graph of data from Kanazawa et al. (1988). Reprinted with permission from Elsevier. (E) There is loss of D2 dopamine receptors in the frontal

lobes (as measured by 123I-IBZM-PET). Graph of data from Frisoni et al. (1994). Reprinted with permission from Elsevier. (F) CSF DOPAC levels

(3,4-dihydroxyphenylacetic acid, a dopamine metabolite) correlate with behavioural disturbance. From Engelborghs et al. (2008). Reprinted with

permission from Elsevier.
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Gil-Navarro et al., 2013). In vivo imaging reveals that

dopamine transporter levels (a marker of presynaptic

neuron integrity in the striatum) are reduced in the caudate

and putamen (Fig. 1B) (Rinne et al., 2002; Sedaghat et al.,

2007). The degree of this loss correlates with extra-pyram-

idal symptom severity (Fig. 1C) (Rinne et al., 2002;

Sedaghat et al., 2007).

In bvFTD there are low levels of dopamine, measured by

high performance liquid chromatography, in the putamen,

caudate and substantia nigra (Kanazawa et al., 1988;

Nagaoka et al., 1995) (Fig. 1D). Parkinsonism is commonly

seen in bvFTD, especially when caused by certain genetic

mutations (Baizabal-Carvallo and Jankovic, 2016).

Mutations on chromosome 17, including in the MAPT

(Hutton et al., 1998) and PGRN (Baker et al., 2006)

genes, are associated with rigidity, akinesia and neuronal

loss in the substantia nigra, although symptom onset and

severity vary with each specific mutation (Foster et al.,

1997; Pickering-Brown et al., 2002; Le Ber et al., 2008;

Siuda et al., 2014; Baizabal-Carvallo and Jankovic,

2016). For example, an early PET study in three patients

with FTD associated with a chromosome 17 mutation

found severe reduction in presynaptic dopaminergic neu-

rons with normal D2 receptor levels in the striatum (Pal

et al., 2001). The hexanucleatide expansion in the C9orf72

gene on chromosome 9 is most typically associated with

FTD with amyotrophic lateral sclerosis (Rohrer et al.,
2015a), but up to half of patients have parkinsonism,

with decreased dopamine transporter levels in the basal

ganglia (Boeve et al., 2012; O’Dowd et al., 2012). Extra-

pyramidal symptoms are also seen with mutations in

CHMP2B, FUS, TARDBP, TREM2 and VCP (Siuda

et al., 2014; Baizabal-Carvallo and Jankovic, 2016). In

non-fluent agrammatic variant PPA, there is frequent loss

of dopaminergic neurons in the striatum (Gil-Navarro

et al., 2013), which underlies the frequent progression of

motor symptoms in this disorder, and its clinical overlap

with CBS and PSP (Rohrer et al., 2010). Parkinsonism in

bvFTD and non-fluent agrammatic variant PPA appears to

occur with all types of underlying pathology; tau (Hutton

et al., 1998), TDP-43 (Boeve et al., 2012) and FUS path-

ology (Deng et al., 2014) are all associated with motor

symptoms (Baizabal-Carvallo and Jankovic, 2016).

In addition to extrapyramidal motor features, degener-

ation of dopaminergic tracts, especially the mesocortical

pathway, could contribute to behavioural symptoms of

FTD. For example, D2 dopamine receptors are reduced in

the frontal lobes of patients with FTD (Frisoni et al., 1994)

(Fig. 1E), while CSF levels of dopamine and its metabolites

are reduced in some (Sjogren et al., 1998) but not all stu-

dies (Vermeiren et al., 2013). CSF levels of dopamine cor-

relate with agitation and caregiver burden in FTD (Fig. 1F)

(Engelborghs et al., 2008). However, these findings contrast

with a study that found higher dopamine levels in the pre-

frontal cortex at post-mortem (Vermeiren et al., 2016).

Such inconsistencies may result from technological or meth-

odological differences in tissue preparation or analysis, but

they may also reflect true heterogeneity in the FTD popu-

lation, especially in small post-mortem analyses.

Aggression, agitation and psychosis are distressing and

burdensome aspects of FTD. Antipsychotic medications

with dopaminergic receptor affinity are often used to treat

them but patients can be extremely sensitive to the extra-

pyramidal side effects due to pretreatment nigrostriatal def-

icits (Pijnenburg et al., 2003). Atypical antipsychotics such

as quetiapine, olanzapine or clozapine cause fewer extra-

pyramidal side effects (Moretti et al., 2003b) while noting

that there is less evidence for their efficacy in dementia.

In an open label, non-randomized study, olanzapine im-

proved behavioural fluctuations, wandering and irritability

(Moretti et al., 2003b). An alternative strategy using me-

thylphenidate, a noradrenaline and dopamine reuptake in-

hibitor, reduced risk-taking behaviour in a small double-

blind, placebo-controlled study, but without effects on a

wide range of cognitive tasks (Rahman et al., 2006).

There is a case report of improved behaviour with methyl-

phenidate and bupropion (another noradrenaline and dopa-

mine reuptake inhibitor) in one patient with FTD (Goforth

et al., 2004). In addition to the uncertainty over dopamin-

ergic strategies to treat cognitive and behavioural symp-

toms in FTD, systematic evidence is lacking of the

efficacy of levodopa or dopamine agonists to ameliorate

parkinsonism in FTD, with only case reports of benefit in

some patients (Chow, 2002; Tsai and Boxer, 2014).

Progressive supranuclear palsy

In vivo and post-mortem studies show that the extrapyr-

amidal features of PSP are associated with a severe loss of

dopaminergic neurons and changes in dopamine receptors,

particularly D2 receptors. Pathological tau aggregates,

including neuronal tangles and glial inclusions, develop in

areas with a high density of dopaminergic neurons includ-

ing the substantia nigra and striatum (Litvan et al., 1996;

Hardman et al., 1997). There is marked loss of pigmented

dopaminergic neurons in the substantia nigra pars com-

pacta on examination post-mortem (Hardman et al.,

1997; Oyanagi et al., 2001). There is also loss of both

dopaminergic neurons and dopamine receptors in the stri-

atum (Baron et al., 1986; Kim et al., 2002; Oyanagi, 2002;

Im et al., 2006; Oh et al., 2012). Dopamine transporter

binding is reduced in the caudate, putamen and globus pal-

lidus at post-mortem (Warren et al., 2007b) and in vivo

(Fig. 2A) (Seppi et al., 2006). Dopamine levels are reduced

in the putamen, caudate nucleus, substantia nigra and

globus pallidus at post-mortem (Fig. 2C) (Ruberg et al.,

1985; Hornykiewicz and Shannak, 1994). In vivo PET

and single photon emission computed tomography

(SPECT) studies indicate reduced levels of D2 receptors in

the basal ganglia (Fig. 2D) (Brooks et al., 1992; Arnold

et al., 2002; Oyanagi, 2002) while post-mortem studies

show corresponding loss of D2 receptors in the putamen,

caudate and substantia innominata (Ruberg et al., 1985;

Pierot et al., 1988; Pascual et al., 1992; Landwehrmeyer
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and Palacios, 1994). One study reported higher D2 recep-

tor binding in the striatum compared with controls

(Warren et al., 2007a), which might represent receptor

upregulation in response to loss of presynaptic dopamin-

ergic neurons. In contrast D1 receptors appear relatively

well preserved (Pierot et al., 1988). There is also evidence

that the mesocortical pathway is impaired in PSP, with

degeneration of dopaminergic neurons in the ventral teg-

mental area (Murphy et al., 2008) and loss of dopamine

receptors in the frontal cortex, measured post-mortem with
3H-spiperone (Fig. 2B) (Ruberg et al., 1985). This is espe-

cially relevant to the often profound change in motivation

and apathy in PSP.

In contrast to Parkinson’s disease, motor symptoms in

typical clinical presentations of PSP (increasingly known

as progressive supranuclear palsy-Richardson’s syndrome,

or PSP-RS, to distinguish it from other phenotypes of PSP

pathology) (Höglinger et al., 2017) typically do not re-

spond well to dopaminergic therapy. This may be because

in PSP there is loss of both dopaminergic neurons and re-

ceptors in the basal ganglia and cerebral cortex. This con-

trasts with Parkinson’s disease, in which predominant loss

of presynaptic nigrostriatal dopaminergic neurons is greater

than the relative preservation, or even upregulation, of

post-synaptic dopamine receptor densities (Olanow, 2004).

Corticobasal syndrome

CBS is caused by corticobasal degeneration (CBD) path-

ology in about 60% of cases, the remainder being due to

PSP, FTD, Alzheimer’s disease and other pathology (Boeve

et al., 1999; Alexander et al., 2014). Patients with CBD

have pathological neuroglial tau deposits, severe neuronal

loss and gliosis in the substantia nigra and striatum, typic-

ally with a history of extrapyramidal signs (Oyanagi et al.,

2001; Armstrong et al., 2013; Coyle-Gilchrist et al., 2016).

Despite this, the in vivo imaging evidence of dopaminergic

deficits is inconsistent. Fluorodopa PET indicates presynap-

tic dopaminergic reductions in the caudate, putamen and

frontal cortex (Sawle et al., 1991; Nagasawa et al., 1996;

Laureys et al., 1999; Klaffke et al., 2006; Pirker et al.,

2015), but with wide variation and surprisingly no correl-

ation with disease duration or severity (Cilia et al., 2011).

Indeed some patients with autopsy-confirmed CBD have

had a normal dopamine transporter SPECT scan despite

prominent parkinsonian features (Chaal and Rowe, 2013;

Figure 2 Dopamine deficits in PSP and CBS. (A) Ioflupane SPECT scan showing reduced pre-synaptic dopaminergic neurons in the striatum of

PSP and CBS compared to a normal scan. (B) Post-mortem dopamine receptor levels (measured by spiperone binding) are reduced in the frontal

cortex in PSP. Graph of data from Ruberg et al. (1985). Reprinted with permission from Wiley. (C) Dopamine levels are reduced in the caudate nucleus

and putamen in PSP. Graph of data from Ruberg et al. (1985). (D) D2 dopamine receptor levels (measured by 123I-iodobenzofuran SPECT) are reduced

in the striatum of PSP when compared with healthy controls and Parkinson’s disease. From Oyanagi (2002). Reprinted with permission from Wiley.
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Kaasinen et al., 2013), and D2 receptor levels can be un-

changed (Klaffke et al., 2006; Pirker et al., 2013). These

conflicting results may partly reflect the poor clinicopatho-

logical correlation of CBS with CBD (Boeve et al., 1999;

Cilia et al., 2011; Alexander et al., 2014). This is arguably

a greater problem in the older literature, which often used

CBD when referring to CBS, and therefore may include a

high proportion of Alzheimer’s disease in their cases. We

suggest that future studies of CBS need corollary patho-

logical or biomarker evidence to distinguish CBD and

non-CBD causes of CBS. The current evidence suggests a

complex and inconsistent relationship between nigrostriatal

dopamine deficiency and symptoms in patients with CBS,

but evidence is scarce in comparison to other disorders.

Noradrenaline
The locus coeruleus in the pons is the principle site of nor-

adrenaline synthesis in the brain and contains the soma of

noradrenergic neurons that project to the forebrain (Fig.

3A). Different subpopulations of neurons within the locus

coeruleus project to the orbitofrontal, medial prefrontal,

anterior cingulate and motor cortices (Chandler et al.,

2014). These noradrenergic pathways have an important

role in regulating the function of the prefrontal cortex

(McGaughy et al., 2008; Chandler et al., 2014), while in

contrast to dopamine, there is minimal noradrenergic in-

nervation of the striatum. Noradrenaline acts via a and b
G protein coupled receptor families, each of which com-

prise subtypes that have different responses to ligand bind-

ing (Sara, 2009). The effect of noradrenaline depends on

the relative densities of these receptors (Aston-Jones and

Cohen, 2005). For example, noradrenergic input to the

basal forebrain can promote arousal by activating cholin-

ergic neurons through a1 and b1 receptors and inhibiting

GABAergic neurons through a2 receptors (Schwarz and

Luo, 2015), while presynaptic auto-inhibitory a2 receptors

may paradoxically enhance noradrenergic transmission in

response to antagonists (Invernizzi and Garattini, 2004).

Noradrenaline is involved in regulating a range of behav-

iours including wakefulness, attention, memory and deci-

sion-making (Rowe et al., 1996; Sara, 2009; Dalley et al.,

2011; Aston-Jones and Waterhouse, 2016). In comparative

Figure 3 Noradrenergic deficits in FTD and PSP. (A) Schematic illustration of noradrenergic pathways. (B) MHPG/noradrenaline ratios,

indicative of catabolic noradrenergic turnover, are reduced in Brodmann areas 11, 22, 24 and 46 in FTD. From Vermeiren et al. (2016). Reprinted

with permission from the authors and IOS Press. The publication is available at IOS Press through http://dx.doi.org/10.3233/JAD-160320. (C)

Post-mortem brainstem tissue from control and PSP brains. There is a paler locus coeruleus suggesting loss of melatonin-containing noradrenergic

neurons. Courtesy of Kieran Allison, Cambridge Brain Bank. (D) Noradrenaline levels are reduced in the caudate (CN), putamen (PUT),

hippocampus (HTH) and parolfactory cortex (PAROLF). Serotonin levels are reduced in those areas as well as in the subthalamic nucleus (SN).

Dopamine levels are reduced in those areas as well as the globus pallidus externa (GPe) and interna (GPi). From Hornykiewicz and Shannak

(1994). Reprinted with permission from Springer.
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models, for example rats, limiting noradrenergic transmis-

sion results in impaired executive function (Newman et al.,

2008; Chandler et al., 2014) and increasing noradrenaline

levels reduces impulsivity (Robinson et al., 2008).

Computational and neurophysiological models suggest nor-

adrenergic pathways mediate salience and shift in attention

(Aston-Jones and Cohen, 2005).

Frontotemporal dementia

There is limited evidence for noradrenergic changes in FTD

but in many respects, the noradrenergic pathways appear

to be normal or near normal, relative to the marked deficits

seen in other neurotransmitter pathways. For example,

neuropathological studies of FTD suggest the preservation

of cell density in the locus coeruleus, and noradrenaline

levels are normal or even elevated in the frontal lobe

(Vermeiren et al., 2016), despite the presence of patho-

logical tau inclusions (Nagaoka et al., 1995; Yang and

Schmitt, 2001; Brunnström et al., 2011; Irwin et al.,

2016). However, there may be reduced noradrenaline ca-

tabolism and turnover. For example, one study found low

3-methoxy-4-hydroxyphenylglycol (MHPG) to noradren-

aline ratios, a proposed marker of noradrenergic turnover,

in the frontal and temporal lobes, anterior cingulate, amyg-

dala and hippocampus (Fig. 3B) (Vermeiren et al., 2016). In

contrast, several studies show normal levels of noradren-

aline and MHPG in CSF (Sjogren et al., 1998; Engelborghs

et al., 2008; Vermeiren et al., 2013). However, in one of

these studies there was a correlation between CSF levels of

noradrenaline and disease severity, even though overall

levels were unchanged (Engelborghs et al., 2008). The

enzyme monoamine oxidase, which metabolizes noradren-

aline, is reduced in some areas of the brain (including the

temporal lobe) although levels are unchanged in the frontal

lobe (Sparks et al., 1991). This anatomical heterogeneity

may be one reason for the inconsistent reports of MHPG/

noradrenaline levels. However, an alternative explanation

is that the locus coeruleus receives inhibitory serotoninergic

innervation from the upper raphe nuclei (Yang and

Schmitt, 2001) such that the major loss of serotonergic

projections in FTD (see below) serves indirectly to increase

noradrenaline signalling to the frontal lobe.

Idazoxan is an a2 adrenoceptor antagonist that increases

synaptic noradrenaline levels by antagonism of inhibitory

autoreceptors on noradrenergic neurons. Idazoxan im-

proved attention, planning and problem-solving in a small

group of patients with FTD (Sahakian et al., 1994; Coull

et al., 1996). Looking ahead to candidate symptomatic

therapies, selective noradrenergic reuptake inhibitors such

as atomoxetine and reboxetine, or combined serotonin and

noradrenaline reuptake inhibitors like venlafaxine and

duloxetine, may provide better tolerated augmentation of

noradrenergic neurotransmission in FTD building on the

evidence of their safety and efficacy in other disorders

(Wang et al., 2011; Cubillo et al., 2014; Kehagia et al.,

2014; Ye et al., 2015; Rae et al., 2016).

Progressive supranuclear palsy and
corticobasal syndrome

Evidence is emerging of an early noradrenergic deficit in

PSP, with loss of noradrenergic neurons and low noradren-

aline levels in the basal ganglia. There is significant path-

ology in the locus coeruleus with both tau deposition

(Dickson, 1999; Arnold et al., 2013), and neuronal loss

(Fig. 3C) (Hauw et al., 1994; Mori et al., 2002; Dickson

et al., 2010). A single post-mortem study also found

reduced levels of noradrenaline in the caudate and putamen

(Hornykiewicz and Shannak, 1994) (Fig. 3D), although

noradrenergic receptor density is normally low in the stri-

atum compared to cortex. These early and sometimes

severe noradrenergic changes may be directly linked to cog-

nitive and behavioural manifestations of PSP, such as rigid-

ity and impulsivity, analogous to the treatable

noradrenergic deficit underlying aspects of impulsivity in

Parkinson’s disease (Kehagia et al., 2014; Rae et al.,

2016). In keeping with this, a double-blind cross-over

study of the a2 antagonist idazoxan showed improvement

in motor function in PSP (Ghika et al., 1991). However a

larger study with a more potent a2 antagonist (efaroxan)

found no effect (Rascol et al., 1998). Atomoxetine has been

shown to reduce impulsivity and executive deficits in

Parkinson’s disease (Marsh et al., 2009; Kehagia et al.,

2014; Ye et al., 2015), but evidence is lacking in PSP.

Evidence is also lacking for noradrenergic changes in

CBS, although tau pathology is present in the locus coer-

uleus (Dickson, 1999).

Serotonin
Serotonin (5-HT) is synthesized mainly by two groups of

neurons in the raphe nuclei in the brainstem, which project

widely (Fig. 4A) (Charnay and Léger, 2010). The rostral

group, comprising 85% of serotonergic neuron cell bodies,

project to the cerebral cortex, thalamus, hypothalamus and

basal ganglia (Hornung, 2003). The caudal group project

mainly to the brainstem and spinal cord (Hornung, 2003).

With these widespread projections, serotonin regulates

many higher brain functions related to cognitive control,

learning, and affect (Harvey, 2003; Ciranna, 2006; Canli

and Lesch, 2007; Artigas, 2013). There are seven different

serotonin receptor families (5-HT1–7), which are neuromo-

dulatory G protein coupled receptors except for the 5-HT3

receptor family, which includes ligand-gated ion channels

(Barnes and Sharp, 1999; Southan et al., 2016). To add to

this complexity, genetic polymorphisms within a receptor

subtype (Barnes and Sharp, 1999) and presynaptic trans-

porter (Porcelli et al., 2012), influence serotonergic

function.

Serotonin receptors are among the most complex and

varied of neurotransmitter receptors, and while there is

clear evidence of serotonergic deficits in FTLD, studies to

date mainly lack a detailed breakdown of receptor

Neurotransmitter deficits from FTLD BRAIN 2018: 141; 1263–1285 | 1269



subtypes, or focus on 1A and 2A receptors. Serotonin has

important roles in synaptic plasticity and as a neuromodu-

lator of the direct effects of other neurotransmitters (Celada

et al., 2013). For example, serotonin inhibits dopamine re-

lease and modulates glutamate and GABA transmission

(Ciranna, 2006). In the hippocampus serotonin receptors

reduce glutamate and stimulate GABA from inhibitory

interneurons, reducing long term potentiation (Ciranna,

2006). In the frontal cortex glutamate release is inhibited

by serotonin whereas in the prefrontal cortex serotonin en-

hances glutamate transmission (Dawson et al., 2001;

Ciranna, 2006). This suggests that FTLD-induced serotonin

Figure 4 Serotonergic deficits in FTD and PSP. (A) Schematic illustration of serotonin pathways. (B) 5-HT1 and 2A receptor density is

reduced in the frontal and temporal lobe in FTD. Graph of data from Bowen et al. (2008). Reprinted with permission of the authors and Springer.

(C) Effect of 5-HTTLPR genotype on brain perfusion in FTD patients. Comparison of long (L/L) versus short (S/S) carriers at the same disease

stage showing reduced perfusion of some areas of the frontal lobe in L/L carriers. From Premi et al. (2015). Reprinted with permission from

Elsevier. (D) Presynaptic serotonergic neurons (measured by citalopram binding to post-mortem tissue) are reduced in the frontal and insular

cortices in PSP. Graph of data from Chinaclia and Landwehrmeyer (1993). Reprinted with permission from Elsevier. (E) 5-HT2A receptor PET

binding is increased bilaterally in the striatum and substantia nigra compared with controls. In the same study (F) disease severity positively

correlated with 5-HT2A binding potential in the striatum. From Stamelou et al. (2009). Reprinted with permission from Wiley.
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deficiency could cause widespread cognitive, motor and af-

fective symptoms, directly and through the disruption of its

modulation of other systems.

Frontotemporal dementia

Serotonin dysfunction is a significant contributor to the be-

havioural and cognitive symptoms seen in bvFTD (Huey

et al., 2006; Hughes et al., 2015). Reductions in serotonin

transmission or postsynaptic receptor densities are asso-

ciated with several symptoms seen in FTD including aggres-

sion, impulsivity, increased appetite and depression (Huey

et al., 2006). At post-mortem examination, 5HT1A and 2A

receptors are reduced in the frontal and temporal lobes and

the hypothalamus (Fig. 4B) (Sparks and Markesbery, 1991;

Francis et al., 1993; Procter et al., 1999; Bowen et al.,

2008). In vivo PET studies corroborate the post-mortem

findings with the 5-HT2A receptor binding potential

reduced in the midbrain and medial frontal cortex

(Franceschi et al., 2005) and the 5-HT1A binding potential

reduced across all cortical areas (Lanctôt et al., 2007).

Evidence for actual serotonergic neuronal cell loss is less

conclusive. One post-mortem study found loss of neurons

in the raphe nucleus and their projections to the cerebral

cortex, which correlated with disease duration (Yang and

Schmitt, 2001). There is also pathological tau deposition in

the raphe nuclei (Irwin et al., 2016). This contrasts with

other studies that report no change in imipramine binding,

proposed as a measure of presynaptic serotonergic

terminals (Sparks and Markesbery, 1991), while post-

mortem biochemical assays of serotonin are normal or ele-

vated in FTD (Bowen et al., 2008; Vermeiren et al., 2016)

and CSF measures of serotonin and its metabolites are un-

changed (Engelborghs et al., 2008). Nonetheless, CSF

homovanillic acid/5-hydroxyindoleacetic acid (HVA/5-

HIAA) levels (a proposed marker of the serotonergic modu-

lation of dopaminergic neurotransmission) correlate with

aggressive behaviour in FTD (Engelborghs et al., 2004,

2008). 5-HIAA/5-HT ratios (a proposed marker of seroto-

nergic turnover) are also lower in FTD compared to con-

trols in the frontal and temporal lobes (Vermeiren et al.,

2016). It is possible that these apparent inconsistencies be-

tween biochemical assays and receptor or neuronal markers

result from different stages of serotonergic cell loss and

downstream functional compensation. To test this hypoth-

esis would require the comparison of methods within the

same pathological cohort, preferably one that includes pa-

tients with a wide range of neurocognitive severity.

There appears to be an association between FTD and

length polymorphism in the gene promotor S(5-HTTLPR)

of the serotonin transporter gene (SLC6A4) which suggests

serotonin may be involved in the pathogenesis of FTD. A

short allele (5-HTTLPR-s) was associated with a greater

susceptibility to FTD in one study (Albani et al., 2008)

although this was not replicated (Yokoyama et al., 2015).

The 5-HTTLPR variant also affects brain atrophy in FTD.

Patients with a long 5-HTTLPR allele have correspondingly

greater atrophy and lower perfusion at equivalent disease

stages (Fig. 4C) (Premi et al., 2015) while the short allele is

associated with more atrophy in the left inferior frontal

gyrus and less in the right temporal lobe (Yokoyama

et al., 2015). The long allele may have a protective effect

on cognitive presentation but is not associated with better

prognosis (Borroni et al., 2010).

In bvFTD there are reduced neurophysiological markers of

inhibitory control and prefrontal cortical function, which are

restored with the selective serotonin reuptake inhibitor cita-

lopram in a placebo-controlled double-blind assessment

(Hughes et al., 2015). Several open label studies without pla-

cebo-control have shown improvement in behavioural symp-

toms with serotonergic drugs. For example, citalopram

reduced disinhibition, irritability and depression (Herrmann

et al., 2012) and improved Frontal Assessment Battery test

scores (Herrmann et al., 2012) and inappropriate sexual be-

haviour (Anneser et al., 2007). Paroxetine improved behav-

ioural symptoms in an open label study (Moretti et al.,

2003a) but this was not supported by a subsequent pla-

cebo-controlled blinded study (Deakin et al., 2004).

Trazodone may improve behavioural symptoms in bvFTD

based on a randomized control cross-over study (Lebert

et al., 2004). Interestingly, trazodone differs from selective

serotonin reuptake inhibitors (SSRIs): it is an antagonist of

a range of serotonin receptors apart from 5HT1A where it is

an agonist, and it inhibits the serotonin transporter. A meta-

analysis of antidepressants in FTD showed a combined mean

reduction of 15 points on the Neuropsychiatric Inventory,

noting, however, that the evidence was mainly from small,

non-placebo controlled trials (Huey et al., 2006).

Progressive supranuclear palsy and
corticobasal syndrome

Pathological tau inclusions are found post-mortem in the

raphe nuclei with PSP (Revesz et al., 1996) while presynap-

tic serotonergic neurons are reduced in the caudate nucleus,

frontal and temporal cortex (Fig. 4D) (Chinaclia and

Landwehrmeyer, 1993). Serotonin levels were not signifi-

cantly reduced in one post-mortem study (Hornykiewicz

and Shannak, 1994). PET and post-mortem studies have

both shown upregulation of 5-HT1B and 2A receptors in

the substantia nigra and striatum (Fig. 4E) (Castro et al.,

1998; Stamelou et al., 2009), which might represent com-

pensation for loss of presynaptic serotonergic neurons. This

upregulation correlated with severity of motor impairment

(Fig. 4F) (Stamelou et al., 2009), but information on the

correlation with cognitive, affective or associative functions

is also needed.

There have been case reports of patients with PSP show-

ing some improvements in motor function with an SSRI

(Miyaoka et al., 2002), and anecdotal reports of serotoner-

gic reuptake inhibition as an effective treatment for emo-

tional lability (Rittman et al., 2016). Overall there is not

strong evidence for the efficacy of serotonergic drugs in PSP
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(Stamelou and Höglinger, 2016). This lack of evidence may

be because studies have focussed on depression and anxiety

as outcomes of treatment, rather than impulsivity, disinhib-

ition or cognitive change (Rittman et al., 2016).

There is neuronal loss and gliosis in the raphe nucleus in

CBD (Gibb et al., 1989). However in vivo data are lacking

on the serotonergic pathways and receptor density in CBS,

and there are no systematic trials of serotonin reuptake

inhibitors.

Acetylcholine
Acetylcholine is neuromodulatory on many areas of the

forebrain (Everitt and Robbins, 1997), and influences a

wide range of cognitive functions including attention,

memory and emotion, but also motor control, through cor-

tical and subcortical transmission in the cortico-striato-tha-

lamocortical circuits (Picciotto et al., 2012). The major

cholinergic inputs to the cerebral cortex originate in the

nucleus basalis of Meynert and adjacent nuclei in the

basal forebrain (Fig. 5A) (Selden, 1998). Two other cholin-

ergic nuclei in the brainstem, the pedunculopontine and

lateral dorsal tegmental nuclei, project to the thalamus.

Acetylcholine acts on two main receptor classes in the

brain; muscarinic G protein coupled receptors (M1–5)

and nicotinic ligand-gated ion channels (Picciotto et al.,

2012). Cholinergic receptors can have excitatory or inhibi-

tory effects depending on their subtype and pre- versus

postsynaptic location (Picciotto et al., 2012).

Cholinergic drugs are in widespread use clinically, al-

though not specifically in FTLD. For example, anti-cholin-

ergic drugs reduce tremor and dystonia in movement

disorders (Rifkin et al., 1978), although they can cause

impairments in learning and memory (Everitt and

Robbins, 1997). The loss of cholinergic neurons and

reduced choline acetyltransferase in Alzheimer’s disease

(Francis et al., 1999) lies behind the widespread use of

cholinesterase inhibitors to enhance cholinergic transmis-

sion and thereby alleviate cognitive symptoms in

Alzheimer’s disease (Rogers et al., 1998). This cholinergic

hypothesis has led to research into the role of cholinergic

therapies in other dementias, including syndromes arising

from FTLD.

Frontotemporal dementia

Cholinergic pathways are affected in FTD but not to the

same extent as in Alzheimer’s disease. While there is some

loss of cholinergic neuronal markers in the nucleus basalis,

overall cholinergic pathways to the cortex appear un-

affected. Choline acetyltransferase, the enzyme for the syn-

thesis of acetylcholine, can be used as a marker of

presynaptic cholinergic neuron integrity. Post-mortem

levels of choline acetyltransferase are reduced in the nucleus

basalis of Meynert and the hypothalamus but are normal in

the frontal, temporal and parietal lobes (Wood et al., 1983;

Hansen et al., 1988; Sparks and Markesbery, 1991; Procter

et al., 1999). Acetylcholinesterase, which catalyses the

breakdown of acetylcholine, is predominantly located on

the presynaptic cholinergic neurons. Levels are reduced in

the nucleus basalis at post-mortem (Sparks and

Markesbery, 1991) but have been normal in the thalamus

and cerebral cortex when measured in vivo with 11C-MP4A

PET (Fig. 5B and C) (Hirano et al., 2010) or at

post-mortem (Meier-Ruge et al., 1984; Sparks and

Markesbery, 1991).

Studies are inconsistent on cholinergic receptors in

bvFTD. 123IQNB SPECT imaging of two patients with

Pick’s disease indicated reduced muscarinic receptor density

in the frontal and temporal cortex (Weinberger et al., 1991)

consistent with autoradiography in a case report (Yates

et al., 1980). In contrast two studies found no significant

change in muscarinic receptor density post-mortem (Wood

et al., 1983; Procter et al., 1999).

There is evidence of a cholinergic deficit in primary pro-

gressive aphasia. In patients with semantic dementia there

was loss of muscarinic receptors in the temporal lobe

(Odawara et al., 2003). Disproportionate atrophy of the

basal forebrain nuclei was identified in a high resolution

MRI study, most evidently in the semantic variant, and

to a lesser extent the non-fluent variant (Teipel et al.,

2016). This is relevant in view of the evidence that the

frontotemporal language networks of a healthy brain re-

ceive significant cholinergic inputs (Amunts et al., 2010).

The logopenic variant had minimal structural change, des-

pite its strong clinicopathological correlation with

Alzheimer’s disease.

Despite the possible cholinergic deficits in bvFTD and

PPA, cholinesterase inhibitors do not convincingly improve

cognitive function. An open label non-randomized study

found that behavioural changes improved with rivastig-

mine, in comparison to a group that took antipsychotics

and benzodiazepines (Moretti et al., 2004). In contrast

bvFTD patients taking donepezil had worsening disinhib-

ition and compulsive behaviour (Mendez et al., 2007).

A randomized, double-blind trial of galantamine versus pla-

cebo found no effect on cognitive function or activities of

daily living (Kertesz et al., 2008).

Progressive supranuclear palsy and
corticobasal syndrome

There are marked cholinergic deficits in PSP, which may

contribute not only to cognitive impairment but also pos-

tural instability via the pedunculopontine nucleus (Jellinger,

1988; Warren et al., 2005). There is loss of cholinergic

neurons and their presynaptic terminals in many subcor-

tical regions in PSP. Choline acetyltransferase is reduced

in the nucleus basalis of Meynert, midbrain nuclei and

pedunculopontine nucleus (Fig. 5D) (Juncos et al., 1991;

Javoy-Agid, 1994; Kasashima and Oda, 2003) as well as

the putamen, caudate and pallidum (Ruberg et al., 1985;
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Pierot et al., 1988; Javoy-Agid, 1994). Presynaptic acetyl-

choline transporters are reduced in the putamen and sub-

stantia nigra, while sparing the globus pallidus and cerebral

cortex (Fig. 5F) (Suzuki et al., 2002). 123I-IBVM SPECT,

which binds to acetylcholine transporters, reveals reduced

signal in the thalamus of PSP patients (Fig. 5E) (Mazere

et al., 2012) and PET studies show reduced acetylcholin-

esterase binding in the pons, basal ganglia and thalamus

(Shinotoh et al., 1999; Gilman et al., 2010; Hirano et al.,

2010).

There is loss of cholinergic projections from the brain-

stem (pedunculopontine and laterodorsal tegmental nuclei)

Figure 5 Cholinergic deficits in FTD, PSP and CBS. (A) Schematic illustration of cholinergic pathways. (B and C) 11C-MP4A PET, a

measure of acetylcholinesterase activity, in healthy controls, CBS, PSP and FTD. Cortical k3 (a measure of PET ligand binding) is reduced in CBS

and PSP but not FTD. Thalamic mean k3 is reduced in PSP but not CBS or FTD. From Hirano et al. (2010). Reprinted with permission from Oxford

University Press. (D) Quantitative estimation of choline acetyltransferase (ChAT) positivity rate (%) in the nucleus basalis of Meynert (nBM),

laterodorsal tegmental (LdtgN) and pedunculopontine tegmental (PptgN) nuclei. From Kasashima and Oda (2003). Reprinted with permission of

Springer. (E) SPECT of acetylcholine transporter. MNI = MRI template; HS = healthy subject. Specific binding in the striatum, thalamus and

pedunculopontine nucleus extracted by subtracting reference from region of interest binding. Binding is lower in the thalamus and pedunculo-

pontine nucleus. From Mazere et al. (2012). Reproduced with permission from the Radiological Society of North America. (F) Autoradiogram of

brain tissue from a healthy control (NC) and PSP. 3H-vesamicol binding to acetylcholine transporter (VAChT). There is reduction in binding in the

putamen (Put) and substantia nigra pars compacta (SNc). Rn = red nucleus. Image intensity converted to pseudocolour representation according

to key. From Suzuki et al. (2002). Reproduced with permission from Wolters Kluwer.
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to the thalamus (Hirsch et al., 1987; Jellinger, 1988;

Kasashima and Oda, 2003). The pedunculopontine loss is

especially relevant to the impairment of movement, gait

and muscle tone in PSP (Benarroch, 2013). Deep brain

stimulation of the pedunculopontine nucleus has been re-

ported to improve PSP motor symptoms in selected cases,

but definitive trials are lacking (Hazrati et al., 2012;

Servello et al., 2014). One study reported that acetylcholine

receptors are relatively well preserved in the striatum

(Ruberg et al., 1985) while other studies report a reduction

in muscarinic and nicotinic receptors in the striatum

(Landwehrmeyer and Palacios, 1994; Warren et al.,

2007b). With such small series, and variable methods, it

is unclear if technical or phenotypic differences account

for these inconsistencies.

There is also some limited evidence for cholinergic def-

icits in the cerebral cortex. Acetyltransferase levels are

reduced in frontal cortex of PSP patients compared with

controls both at post-mortem and with in vivo PET ima-

ging (Ruberg et al., 1985; Javoy-Agid, 1994; Hirano et al.,

2010). However, cortical muscarinic receptor levels appear

to be unaffected in PSP, with levels similar to controls in

PET studies (Ruberg et al., 1985; Asahina et al., 1998).

In clinical practice, cholinergic blockade with hyoscine is

sometimes used for sialorrhoea and drooling, but it may

worsen gait and memory in PSP (Litvan et al., 1994).

Despite this deleterious effect of anti-cholinergic medication,

the converse ‘pro-cholinergic’ treatment by cholinesterase

inhibitors is typically ineffective (Stamelou and Höglinger,

2016). A case series of rivastigmine in five patients found

that it improved working memory, memory and verbal flu-

ency but worsened motor function (Liepelt et al., 2010). A

randomized, placebo-controlled crossover study of donepe-

zil showed no effect on quality of life, Progressive

Supranuclear Palsy Rating Scale or global cognitive function

(Litvan et al., 2001). This study did find a slight improve-

ment in one memory task but also worsened motor activ-

ities of daily living (Litvan et al., 2001). Interestingly, the

syndrome of pure akinesia and gait freezing, now recog-

nized as a prodromal variant of PSP (Höglinger et al.,

2017) has been reported to improve after cholinesterase in-

hibition in an open case series (Kondo, 2006). Despite this

encouraging study, replication in a placebo controlled trial

is awaited.

In a post-mortem study of a single case of CBD the

number of cholinergic acetyltransferase positive neurons in

the nucleus basalis of Meynert was reduced (Kasashima and

Oda, 2003). This was replicated in vivo, with reduced

acetylcholinesterase levels in the frontal, parietal and occipi-

tal cortex (Hirano et al., 2010). There is insufficient data on

cholinergic treatment of patients with CBS, although it

should be noted that �20–40% of patients with CBS have

Alzheimer’s-type pathology not CBD (Boeve et al., 1999;

Alexander et al., 2014). It is plausible, but not proven,

that the Alzheimer pathology cases of CBS would respond

better to cholinesterase inhibitors despite appearing similar

to CBD cases in other clinical features. We therefore

anticipate that clinical trials of CBS will stratify treatment

according to biomarkers, such as amyloid PET imaging or

CSF, to distinguish CBD from Alzheimer’s disease aetiology.

Glutamate
Glutamate is the principle excitatory neurotransmitter in the

brain. Glutamate acts on fast, short acting ionotropic recep-

tors and slower but longer acting metabotropic glutamate

receptors (mGluR) (Meldrum, 2000). The three main iono-

tropic glutamate receptors are named after the selective

agonists N-methyl D-aspartate (NMDA), a-amino-3-hy-

droxyl-5-methyl-isoxazolepropionic acid (AMPA) and kain-

ite (Meldrum, 2000). Glutamate has an important role in

learning and memory formation. For example, NMDA re-

ceptors in the hippocampus regulate long term potentiation

(Morris et al., 1986; Rowland et al., 2005) while sustained

activation of the dorsolateral prefrontal cortex during work-

ing memory requires NMDA stimulation (Wang et al.,

2013). NMDA receptor antagonists impair attention, reac-

tion time, processing speed and working memory in healthy

humans (Malhotra et al., 1996; Newcomer et al., 2000),

and may exacerbate psychotic symptoms (Gilmour et al.,

2012). Glutamate signalling through NMDA receptors is

required to create and maintain gamma oscillations (Carlé

et al., 2011), which support many higher cognitive functions

(Lange et al., 1997; Bartos et al., 2007; Williams and Boksa,

2010; Gaetz et al., 2012; Gorelova et al., 2012).

While glutamatergic transmission is essential for cogni-

tion, excessive glutamatergic transmission may also be

harmful, promoting excitotoxic neuronal death (Mark

et al., 2001) that contributes to neurodegeneration in

models of Alzheimer’s disease (Danysz et al., 2000; Kalia

et al., 2008). It is possible that FTLD is similarly affected.

Functionally, continuous overactivation of NMDA recep-

tors alters the efficacy of information processing by redu-

cing the sensitivity of neural networks and impairing their

ability to detect a relevant signal from upstream neurons

(Danysz et al., 2000). Memantine is a low affinity NMDA

receptor antagonist and selectively blocks pathological

tonic NMDA receptor activation (associated with amyloid

plaques) without preventing NMDA-mediated synaptic

transmission. In addition to potential symptomatic effects

on cognition (Reisberg et al., 2003), it might therefore also

reduce chronic glutamatergic excitotoxicity (Danysz and

Parsons, 2012).

Frontotemporal dementia

There is preclinical and clinical evidence that glutamate is

important in the pathogenesis of FTD. For example, trans-

genic mice that express pathological human tau have repeti-

tive and disinhibited behaviour, coupled with NMDA

receptor hypofunction (Warmus et al., 2014). Treatment

with an NMDA agonist restores their behaviour.

Transgenic mice expressing mutations in the FTD-
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associated gene CHMP2B, have altered AMPA receptor

composition (Gascon et al., 2014), with impaired sociabil-

ity, which can be reversed if normal AMPA receptor com-

position is restored (Gascon et al., 2014). Mouse models

expressing pathological human tau suggest glutamate

mediated excitotoxicity could accelerate neuronal loss in

tauopathies such as FTD (Decker et al., 2016). These pre-

clinical studies raise the possibility that pharmacological

glutamatergic treatments might reduce symptom severity

and improve prognosis.

In patients, glutamatergic pyramidal neurons are reduced

in the thalamus, frontal and temporal cortex (Ferrer, 1999).

Magnetic resonance spectroscopy of patients with FTD has

found glutamate/glutamine levels are reduced in the frontal

and temporal lobes (Fig. 6A) (Ernst et al., 1997; Sarac

et al., 2008). There is an inverse correlation between CSF

glutamate levels and verbal agitation (Vermeiren et al.,

2013).

Both ionotropic and metabotropic glutamate receptors

are affected in FTD. For example, AMPA and NMDA

receptor densities are reduced in the frontal and temporal

lobes of patients at post-mortem (Francis et al., 1993;

Procter et al., 1999; Bowen et al., 2008), while AMPA

receptor composition is also abnormal (Fig. 6B) (Gascon

et al., 2014). Using the ligand 11C-ABP688, PET of pa-

tients with bvFTD found reduced availability of metabo-

tropic glutamate receptors (mGluR5) in the frontal and

temporal lobes, basal ganglia and thalamus (Leuzy et al.,

2016). However, one study found that post-mortem levels

of metabotropic glutamate receptors type 1 and 5

(mGluR1 and 5) are increased in the frontal cortex

(Dalfo et al., 2005).

A phase II randomized placebo-controlled trial of mem-

antine showed no benefit in patients with bvFTD (Boxer

et al., 2013). A double-blind placebo-controlled crossover

trial of memantine in PPA was also negative (Johnson

et al., 2010). However, these studies were not powered

to detect small treatment effects. While there may be no

true benefit, it remains possible that small treatment ef-

fects exist which would be amplified if other neurotrans-

mitter deficits were also normalized, in particular

GABAergic impairments. The GABA–glutamate inter-

action is of particular relevance because it supports pre-

cisely tuned oscillatory dynamics of neural circuits for

cognition (Bastos et al., 2012).

Progressive supranuclear palsy and
corticobasal syndrome

Loss of glutamatergic neurons in the basal ganglia may

partly explain why dopaminergic therapy is ineffective in

PSP. Glutamate modulates dopamine release and loss of

glutamatergic neurons may prevent patients compensating

for dopaminergic neuron loss (Lange et al., 1997).

Glutamatergic neurons from the caudal intralaminar

nuclei that form the thalamostriatal pathway are reduced

in PSP (Fig. 6C) (Henderson et al., 2000). However, the

severity of this neuronal loss does not correlate with disease

duration or severity (Henderson et al., 2000). In contrast,

NMDA receptor levels are preserved in the frontal and

temporal lobes and striatum (Holemans et al., 1991).

Glutamatergic over-activity is implicated in Parkinson’s

disease and by analogy has been considered a candidate

mechanism of accelerated neurodegeneration in PSP

(Lange et al., 1997). Amantadine is an NMDA receptor

antagonist that is often used to treat motor symptoms

(Kompoliti et al., 1998; Stamelou and Höglinger, 2016),

although there is no randomized controlled trial evidence

of efficacy in PSP. Gabapentin has complex pharmaco-

dynamics and in part acts by increasing GABA and redu-

cing glutamate levels (Sills, 2006). A randomized blinded

trial of gabapentin in 14 patients found no effect on motor

function but improved outcome in anti-saccade control

(Poujois et al., 2007), which is associated with frontal

lobe integrity (Mirsky et al., 2011; Perneczky et al.,

2011) and commonly impaired in PSP (Garbutt et al.,

2008; Zhang et al., 2016). There are no reports of post-

mortem or in vivo glutamate measurements in CBS.

Gamma-aminobutyric acid
GABA is the predominant inhibitory neurotransmitter in

the brain, formed by glutamate decarboxylase conversion

of glutamate to GABA in interneurons. There are two

classes of GABA receptors: GABAA ligand-gated ion chan-

nels and GABAB G protein coupled neuromodulatory re-

ceptors. GABAergic inhibitory neurons dampen and

balance excitation within neural circuits, but do more

than simply counteract excitatory glutamatergic neurons.

They have a key role in the regulation of oscillatory dy-

namics, including the generation of gamma oscillations and

regulation of the magnitude and frequency of these oscilla-

tions (Owens and Kriegstein, 2002; Mann and Paulsen,

2007; Buzsáki and Wang, 2012). This is essential for coor-

dinating information transfer and information processing in

the brain (Fries, 2009; Bastos et al., 2012). Increasing syn-

aptic GABA levels increases gamma power during cognitive

control tasks (Frankle et al., 2009) whereas inhibiting

GABA receptors reduces gamma oscillatory power and im-

pairs inhibition and working memory (Hines et al., 2013).

Gamma oscillations correlate with GABA concentrations

(as measured by magnetic resonance spectroscopy) in the

visual (Muthukumaraswamy et al., 2009), primary motor

(Gaetz et al., 2011) and dorsolateral prefrontal cortex

(Kujala et al., 2015) while GABAA receptor density (as

measured by flumazenil-PET) correlates with gamma fre-

quency and magnitude (Kujala et al., 2015). Impaired

GABA neurotransmission has been implicated in a
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number of brain disorders including schizophrenia

(Gonzalez-Burgos et al., 2011) and Huntington’s disease

(Reynolds and Sally, 1990) as well as the syndromes asso-

ciated with FTLD.

Frontotemporal dementia

The subgroup of GABAergic neurons that bind calbindin-

D28k are reduced in upper neocortical layers of the frontal

and temporal cortex in FTD (Ferrer, 1999), especially in

layers II and III (Fig. 6E) (Ferrer, 1999). However, in the

same study, the subgroup of GABAergic basket and chande-

lier neurons that bind parvalbumin were preserved (Ferrer,

1999). The superficial layers II and III are the main source of

cortico-cortical feedforward efferent projections and receive

feedback projections from deep layers. Gamma oscillations

and coherence are reduced between the frontal lobes of pa-

tients with bvFTD (Hughes et al., 2013), which may relate

to loss of cortical feedforward information processing and

cognitive decline (Mann and Paulsen, 2007). GABA concen-

trations are also decreased in the basal ganglia in bvFTD

(Kanazawa et al., 1988). GABAergic approaches to

treatment of FTD symptoms warrant further investigation,

but evidence of their clinical efficacy is currently lacking.

Progressive supranuclear palsy and
corticobasal syndrome

GABAergic interneurons are reduced in PSP. A post-

mortem study found a 50–60% decrease in the number

of GABAergic neurons (estimated from the number express-

ing glutamic acid decarboxylase mRNA, by in situ hybrid-

ization) in the caudate nucleus, putamen, ventral striatum

and pallidum (Fig. 6D) (Levy et al., 1995). Binding to

GABAA receptors is reduced in the globus pallidus but

preserved in the striatum (Landwehrmeyer and Palacios,

1994; Suzuki et al., 2002). A flumazenil-PET study

showed loss of GABAA receptors compared with controls

(Fig. 6F) (Foster et al., 2000).

There are case reports of GABA receptor agonists im-

proving speech, eye movements, akinesia and rigidity in

PSP (Daniele et al., 1999; Cotter et al., 2010; Dash,

2013; Chang and Weirich, 2014), but in the authors’

Figure 6 Glutamate and GABA deficits in FTD and PSP. (A) Mean metabolite concentrations using magnetic resonance spectroscopy.

Glutamine–glutamate concentrations are reduced in the frontal cortex of FTD. Graph of data from Ernst et al. (1997). Reprinted with permission

from the authors and the Radiological Society of North America. (B) Post-mortem glutamatergic receptor binding in FTD. Binding to NMDA and

AMPA receptors is reduced in the frontal and temporal lobes. From Procter et al. (1999). Reprinted with permission from S. Karger AG.

(C) Neuron number in two thalamic nuclei [parafascicular (Pf) and centromedian (CM)] that contain glutamatergic neurons is reduced in PSP

compared with controls. Adapted from Henderson et al. (2000), with permission from the authors and Oxford University Press. (D) Numbers of

GABAergic neurons (measured by glutamic acid decarboxylase mRNA expression) in the striatum and pallidum in controls and PSP patients.

There is significant reduction in striatal GABAergic neurons in patients. Graph of data from Levy et al. (1995), reprinted with permission from the

authors and Wolters Kluwer. (E) Calbindin immunohistochemistry of GABAergic cells in the frontal cortex of FTD and control brains. From

Ferrer (1999). Reproduced with permission from Karger. (F) 11C-flumazenil PET binding to benzodiazepine receptors in healthy controls (N), PSP

and the group difference in cortical and subcortical areas. From Foster et al. (2000). Reproduced with permission from Wolters Kluwer.
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experience this phenomenon is very uncommon and there

are no randomized placebo controlled studies. There are no

reports of post-mortem or in vivo assessments of GABA in

CBS.

Towards better symptomatic
treatment in frontotemporal
lobar degeneration
Despite their overlapping clinical phenotypes and patho-

logical features, the major clinical syndromes associated

with FTLD have different neurotransmitter deficits (sum-

marized in Table 1). Restoring these deficits, individually

or in combination, has the potential to improve cognitive,

behavioural and motor symptoms. However, the evidence

base for therapeutic effects is dominated by small, open-

label studies in unstratified populations.

To summarize the evidence for selective deficits, FTD

causes loss of serotonergic and dopaminergic neurons and

receptor densities, whilst noradrenergic and cholinergic

pathways are relatively preserved. There is loss of both

glutamatergic and GABAergic neurons but the functional

consequence of their deficits is unclear, in part because of

the complex and dynamic interaction between GABAergic

and glutamatergic neurons in cortical circuits. In PSP, the

most evident neurotransmitter deficits are dopaminergic,

noradrenergic and cholinergic, whilst serotonergic projec-

tions appear to be relatively preserved. There is evidence

of a glutamatergic and GABAergic deficit, which provide

potential avenues for non-dopaminergic therapy. There is

limited evidence on the neurotransmitter deficits in CBS,

with some evidence of deficits in both cholinergic and

dopaminergic pathways.

Although clinical trials and cases series have not shown

consistent benefits from the modulation of neurotransmit-

ters in FTLD syndromes, this may be due to weaknesses in

research methodology rather than a true lack of effect. For

example, many studies use what would now be considered

as outdated and inaccurate diagnostic criteria, which re-

duces the applicability to contemporary patient popula-

tions. Many clinical studies are open-labelled and in small

series, sometimes fewer than 10 patients, giving little power

to detect benefits, let alone guide therapeutic stratification.

There is a paucity of replication studies, and where studies

contain a ‘conceptual replication’, details in research meth-

odology confound the interpretation of seemingly conflict-

ing results. Much of the research comes from post-mortem

brain tissue, which has the advantage of providing concur-

rent pathological validation of the disorder. However, post-

mortem studies have tended to use small series (n510),

and by the nature of post-mortem material, they cannot

provide insights into the early or sequential changes in

neurotransmitter systems. Future work will benefit from

longitudinal and in vivo studies, exploiting advances in

PET ligands (Finnema et al., 2015), ultra-high field MRI

and spectroscopy (Agarwal and Renshaw, 2012), and CSF

biomarkers. Early PET studies of necessity used non-spe-

cific ligands, which may not correspond to the receptor

specificities of psychopharmacological agents. This is not

to criticise either body of work, but it does impair the

direct comparison of imaging and pharmacological studies,

even where comparable patient groups are studied.

Similarly, future preclinical studies would benefit from

within-sample comparisons of different methods, seeking

not only cross-validation of biochemical or receptor

assays, but also the relationship between different meas-

ures, for example neuronal loss, receptor density, and bio-

chemical turnover of a neurotransmitter. Such cross-modal

studies would provide a powerful resource to model disease

progression and functionally relevant compensatory

changes in FTLD.

Further research is required into the effect of FTLD on

different neurotransmitter receptors and their subtypes, not

only to guide candidate drug selection, but also to deter-

mine the progression of changes from early to late stage

disease. Without this detailed knowledge, there is a risk

that a given drug may be effective at one stage of disease

but be counterproductive at another. Such non-linear dose-

response effects are common in dopaminergic treatments of

Parkinson’s disease (Cools, 2006; Rowe et al., 2008), but

the principal of ‘U-shaped’ responses to drug treatment also

affect serotonergic (Macoveanu et al., 2013; Hughes et al.,

2015) and noradrenergic drugs (Ye et al., 2015). Where

drug effects follow a ‘U-shaped’ response, the focal nature

of FTLD presents a special challenge. Take the behavioural

variant of FTD as an example. If prefrontal and temporal

cortex are deficient in a given neurotransmitter (whether

neuronal density, receptor density, or afferent projections),

but motor, parietal and occipital cortex are not, then any

systemic treatment based on restoring that neurotransmitter

in frontal and temporal cortex will risk ‘overdosing’ the

unaffected areas. This problem is well established in

Parkinson’s disease, in the sometimes difficult balance be-

tween motor disability and impulse control disorders

(Napier et al., 2015). The application of focal treatments

to restore biochemical function, such as dopaminergic stem

cell transplants or gene therapy to induce dopamine syn-

thesis in striatal cells, can overcome some of the adverse

consequences of systemic drug treatment in Parkinson’s dis-

ease. However, such localized treatments seem even more

challenging in a diffuse lobar cortical disorder. Similarly,

the use of Designer Receptors Exclusively Activated by

Designer Drugs (DREADDs) to restore or enhance focal

and selective neurotransmitter systems is having a major

impact in drug discovery and systems neuroscience (Roth,

2016), but seems far from direct clinical applications. For

the time being, systemic drug delivery is likely to be the

mainstay of clinical therapeutics.

We suggest three steps to improve the likelihood of new

and effective pharmacological treatments. First, clarification

of the links between individual neurotransmitters and spe-

cific clinical end-points. We suggest that identifying the
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neurotransmitter deficits that correlate with clinical severity

is essential to guide treatment studies. This evidence may

draw on in vivo imaging and CSF studies and post-mortem

immunohistochemistry of cases that have been regularly

phenotyped during disease progression. This would be a

considerable undertaking, but possible if added to existing

longitudinal studies (Rohrer et al., 2015b; Woodside et al.,

2016).

Second, it is essential to implement stratification of pa-

tients in future trials, selecting participants for their rele-

vant symptoms rather than the diagnosis alone. For

example, in a trial to demonstrate a clinical effect of ser-

otonergic treatment on impulsivity in bvFTD, based on ex-

perimental medicines evidence (Hughes et al., 2015),

participants should not merely have bvFTD by consensus

criteria, but also have impulsivity; noting that disinhibition

is one of six criteria whereas only three are required for the

diagnosis. Including patients with bvFTD who are not dis-

inhibited is likely to reduce the power of a symptomatic

treatment trial. Moreover, it may be better to include all

patients with disinhibition arising from syndromes asso-

ciated with FTLD in which disinhibition is common but

not a diagnostic criterion (including semantic variant

PPA, CBS and PSP) (Lansdall et al., 2017). This would

increase the power and relevance of the trial to a wider

patient group.

Third, future clinical trials need careful selection of rele-

vant outcome tools, especially where drugs are repurposed

for new end-points. For example, selective serotonin reup-

take inhibitors are licenced for affective disorders but it

would be wrong to use a depression rating scale in

bvFTD or PSP where the expected effect is on impulsivity.

Similarly, cholinesterase inhibitors are licenced for

Alzheimer’s disease for their effect on cognition but cogni-

tive function scales would be inappropriate if the intended

effect in say PSP were on gait and balance.

For each of the disorders associated with FTLD, it is

likely that experimental medicines studies with biomarker

based surrogate end-points are needed before randomized

placebo controlled clinical trials are started. The evidence

presented in this review suggests that there are strong

grounds to pursue such experimental medicine studies,

drawing on the preclinical psychopharmacology models

and patient data, to minimize the risks of clinical trials.

There are many candidate end-points, to demonstrate

human target engagement and efficacy in the CNS. These

may be used singly or in combination, including functional

imaging; magnetic resonance spectroscopy (Cai et al., 2012;

Muthukumaraswamy et al., 2013); PET imaging of neuro-

transmitters receptors and occupancy; magneto-/electro-en-

cephalographic physiological indices of oscillatory

dynamics (Muthukumaraswamy, 2014), focal function

(Hughes et al., 2015) and network interactions (Moran

et al., 2011, 2013; Hughes et al., 2013; Gilbert et al.,

2016); CSF biomarkers; and neurocognitive batteries

(Kehagia et al., 2014).

This review has focused on the symptomatic benefits of

restoring neurotransmitters. However, some of these

agents, like trazodone, have wider effects on pathogenesis

and neuronal survival that may also lead to disease modi-

fication or slowing of disease progression (Halliday et al.,

2017). Even where the principal effect is symptomatic, this

may improve survival, such as the impact of dopaminergic

therapy in Parkinson’s disease after its introduction in the

late 1960’s (Uitti et al., 1993). Relief of apathy, disinhib-

ition, falls, and dementia in syndromes associated with

FTLD might therefore improve survival as well as interim

quality of life.

Finally, we note that there has been recent concern re-

garding international pharma investment in disorders of the

CNS (Fineberg et al., 2013). However, we suggest that

there is scope and grounds for optimism for progress to-

wards effective symptomatic pharmacological therapies.

Such treatments, based on restoring neurotransmitter def-

icits, would reduce the cost, social and health burden of

FTLD.
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Stamelou M, Höglinger G. A review of treatment options for progres-

sive supranuclear palsy. CNS Drugs 2016; 30: 629–36.

Stamelou M, Matusch A, Elmenhorst D, Hurlemann R, Eggert KM,

Zilles K, et al. Nigrostriatal upregulation of 5-HT2A receptors cor-

relates with motor dysfunction in progressive supranuclear palsy.

Mov Disord 2009; 24: 1170–5.

Suzuki M, Desmond TJ, Albin RL, Frey KA. Cholinergic vesicular

transporters in progressive supranuclear palsy. Neurology 2002;

58: 1013–18.

Teipel S, Raiser T, Riedl L, Riederer I, Schroeter ML, Bisenius S,

et al. Atrophy and structural covariance of the cholinergic

basal forebrain in primary progressive aphasia. Cortex 2016; 83:

124–35.
Tsai RM, Boxer AL. Treatment of frontotemporal dementia. Curr

Treat Options Neurol 2014; 16: 319.
Uitti RJ, Ahlskog JE, Maraganore DM, Muenter MD, Atkinson EJ,

Cha RH, et al. Levodopa therapy and survival in idiopathic

Parkinson’s disease: Olmsted County project. Neurology 1993; 43:

1918–26.

Vermeiren Y, Le Bastard N, Van Hemelrijck A, Drinkenburg WH,

Engelborghs S, De Deyn PP. Behavioral correlates of cerebrospinal

fluid amino acid and biogenic amine neurotransmitter alterations in

dementia. Alzheimers Dement 2013; 9: 488–98.

Vermeiren Y, Janssens J, Aerts T, Martin JJ, Sieben A, Van Dam D,

et al. Brain serotonergic and noradrenergic deficiencies in behavioral

variant frontotemporal dementia compared to early-onset

Alzheimer’s disease. J Alzheimers Dis 2016; 53: 1079–96.

Wang LE, Fink GR, Diekhoff S, Rehme AK, Eickhoff SB, Grefkes C.

Noradrenergic enhancement improves motor network connectivity

in stroke patients. Ann Neurol 2011; 69: 375–88.
Wang M, Yang Y, Wang CJ, Gamo NJ, Jin LE, Mazer JA, et al.

NMDA receptors subserve persistent neuronal firing during working

memory in dorsolateral prefrontal cortex. Neuron 2013; 77: 736–

49.

Warmus BA, Sekar DR, McCutchen E, Schellenberg GD, Roberts RC,

McMahon LL, et al. Tau-Mediated NMDA receptor impairment

underlies dysfunction of a selectively vulnerable network in a

mouse model of frontotemporal dementia. J Neurosci 2014; 34:

16482–95.

Warren NM, Piggott MA, Greally E, Lake M, Lees AJ, Burn DJ. Basal

ganglia cholinergic and dopaminergic function in progressive supra-

nuclear palsy. Mov Disord 2007a; 22: 1594–600.

Warren NM, Piggott MA, Lees AJ, Burn DJ. The basal ganglia cho-

linergic neurochemistry of progressive supranuclear palsy and other

neurodegenerative diseases. J Neurol Neurosurg Psychiatry 2007b;

78: 571–5.
Warren NM, Piggott MA, Perry EK, Burn DJ. Cholinergic systems in

progressive supranuclear palsy. Brain 2005; 128: 239–49.
Weinberger DR, Gibson R, Coppola R, Jones DW, Molchan S,

Sunderland T, et al. The distribution of cerebral muscarinic acetyl-

choline receptors in vivo in patients with dementia. A controlled

study with 123IQNB and single photon emission computed tomog-

raphy. Arch Neurol 1991; 48: 169–76.

Whitwell JL, Josephs KA, Rossor MN, Stevens JM, Revesz T, Holton

JL, et al. Magnetic resonance imaging signatures of tissue pathology

in frontotemporal dementia. Arch Neurol 2005; 62: 1402–8.

Williams S, Boksa P. Gamma oscillations and schizophrenia.

J Psychiatry Neurosci 2010; 35: 75–7.

Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci

2004; 5: 483–94.

Wood PL, Etienne P, Lal S, Nair NP, Finlayson MH, Gauthier S, et al.

A post-mortem comparison of the cortical cholinergic system in

Alzheimer’s disease and Pick’s disease. J Neurol Sci 1983; 62:

211–17.

Woodside J, Lamb R, Chelban V, Burn D, Church A, Gerhard A, et al.

PROSPECT: a UK-based longitudinal observational study of PSP,

CBD, MSA and atypical Parkinsonism syndromes [abstract]. Mov

Disord 2016; 31: S87–8.

1284 | BRAIN 2018: 141; 1263–1285 A. G. Murley and J. B. Rowe



Yang Y, Schmitt HP. Frontotemporal dementia: evidence for impair-
ment of ascending serotoninergic but not noradrenergic innervation.

Immunocytochemical and quantitative study using a graph method.

Acta Neuropathol 2001; 101: 256–70.

Yates CM, Simpson J, Maloney AFJ, Gordon A. Neurochemical
observations in a case or Pick’s disease. J Neurol Sci 1980; 48: 257–63.

Ye Z, Altena E, Nombela C, Housden CR, Maxwell H, Rittman T,

et al. Improving response inhibition in Parkinson’s disease with ato-

moxetine. Biol Psychiatry 2015; 77: 740–8.

Yokoyama JS, Bonham LW, Sturm VE, Adhimoolam B, Karydas A,
Coppola G, et al. The 5-HTTLPR variant in the serotonin trans-

porter gene modifies degeneration of brain regions important for

emotion in behavioral variant frontotemporal dementia Serotonin

transporter in bvFTD. Neuroimage Clin 2015; 9: 283–90.
Zhang J, Rittman T, Nombela C, Fois A, Coyle-Gilchrist I, Barker RA,

et al. Different decision deficits impair response inhibition in pro-

gressive supranuclear palsy and Parkinson’s disease. Brain 2016;

139: 161–73.

Neurotransmitter deficits from FTLD BRAIN 2018: 141; 1263–1285 | 1285


