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Structural mechanics of a plate with multiple dimples

Daniel T Eatough

Thin plates, sheets and shells are an important category of structural components, and
while commonly used, they are often only utilised in simplistic geometries. An increased
understanding of the geometric and structural behaviour of more sophisticated geometries
allows for the optimisation of performance. This thesis considers a thin plate which has (or
has been given) out-of-plane depth or texture: a dimpled sheet. By developing new methods
of analysis for these types of modified plate geometries, increases in performance can be
sought and quantified. Compared to flat plates, corrugated sheets have an increased bending
stiffness in one direction, whilst dimpled sheets have an increase in bending stiffness in both
orthogonal directions. Comparing dimpled to corrugated sheets, a “second moment of area”
approach might be used; however, this thesis will show that such an analysis is unsuitable.
Instead a wholly new approach is developed to describe and quantify the structural behaviour
of a dimpled sheet, with the key observation being the treatment of each dimple as an
elastic inclusion. Theoretical analysis is carried out which confirms the applicability of
representing a single dimple as an elastic inclusion, and which quantifies the relationship
between dimple geometry and the effective stiffness of the inclusion. The applicability of
this representation is also confirmed though use of relevant finite element analysis. Analysis
of the overall performance of a plate with a pattern of inclusions is subsequently carried
out. A theoretical formula is derived that accurately predicts the smeared overall elastic
modulus of an inclusion patterned plate, and the suitability of this formula is backed-up
by extensive finite element analysis. This formula also compares favourably to existing
“rule-of-mixtures” approaches, although it is superior to existing rules due to its incorporation
of Poisson’s ratio terms. Practical experiments on perforated strips explore the behaviour of
plates which have inclusions of zero stiffness, with favourable agreement to the derived theory.
By combining the analyses of the previous sections, the overall performance of a dimpled
sheet is investigated. Making suitable adjustments to the effective inclusion representing
each dimple, due to the proximity of adjacent dimples, a complete theoretical prediction of
the structural performance of a dimpled sheet is derived. Finite element analysis is used to
validate that the theoretical model is suitable for predicting and accurately capturing both
the increase in bending stiffness of a dimpled sheet, as well as the reduction in stretching
stiffness. Furthermore, practical experiments on physical dimpled sheet specimens confirm
the increased bending stiffness which is obtained from dimpled sheets, as compared to
identical specimens without dimpling.
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Chapter 1

Introduction

Thin plates, sheets and shells are an important category of structural components with a wide
range of applications, including in automotive and aircraft engineering [1], and in building
construction, for example in roof structures, however they are often utilised in only simplistic
geometries [2]. An increased understanding of the functional and physical behaviour of more
sophisticated geometries would allow enhanced optimisation of their structural properties.

A thin plate or shell is a structural element possessing one dimension much smaller than
its others. In the limiting case, the thin through-thickness dimension may be negligible,
such that the local geometry of the plate or shell-wall can be represented analytically as a
two-dimensional surface. In this work the term ‘plate’ is used to describe a flat planar surface,
whereas a ‘shell’ has curvature in at least one direction. The through-thickness of a shell
is assumed to be much smaller than the principle radii of curvature. Just as a beam can be
considered a one-dimensional structural component, with overall properties dependent on
its local geometry and cross-section, so too a sufficiently thin plate can be considered as a
two-dimensional structural element, with known overall structural properties.

Plates and shells with thin, but finite, through-thickness are useful in lightweight structures
because of their high tensile stiffness and strength per unit weight. However, thin plates and
shells have very poor bending resistance. The bending stiffness (D) of a plate depends on its
thickness (t) cubed:

D =
Et3

12(1−ν2)
(1.1)

For this reason, some analyses of thin plates and shells may neglect the bending stiffness
altogether (the membrane hypothesis). However, when thicker plates or shell-thicknesses are
considered, bending stiffness must be taken into account, increasing the analysis complexity.

In many practical applications plates will possess significant through-thickness, and be
required to have a finite bending stiffness. For example, the grid plates of a nuclear reactor
must hold the weight of a heavy nuclear core, which will induce a bending moment in the
plate [3].



2 Introduction

Fig. 1.1 A cross-section of the Pantheon in Rome, which demonstrates the hemispherical
nature of its dome.

Plates which are initially flat may be deflected to form shells; and for some plates the
resultant large displacements may allow the applied forces to be carried with ‘in-plane’
stresses rather than with bending stresses. This can also be the case for shell structures which
have an initially curved geometry. So, for example a simply supported beam may carry a
central point load with bending stresses, whereas arches or domes by virtue of their geometry
can carry the same loading via in-plane stresses.

The structural benefits afforded by a hemispherical dome, especially for roof construction,
have been appreciated for millennia. The Roman author Vitruvius, writing around the first
century AD, says of domed roofs: “The proportions of the roof . . . should be such that the
height of the rotunda, excluding the finial, is equivalent to one half of the diameter of the
whole work.” [4]. The Pantheon in Rome, which dates from the time of the Emperor Hadrian,
demonstrates well the principle of using hemispherical domes in roof construction, Fig. 1.1,
and remains the largest unreinforced concrete dome in the world [5].

Of predominant interest in this present thesis however is not the behaviour of large indi-
vidual domes, but rather the structural behaviour of dimpled sheets, which can be envisaged
as containing an array of dome-like structures. Just as a single dome is geometrically a more
structurally efficient shape than a flat plate, so a single dimple will be locally stiffer than the
surrounding material. However it is the global structural performance of a sheet containing
many dimples which will be of predominant interest here.

Dimpling of plate or shell surfaces is likewise a technique already used in ancient times,
as illustrated by the Romano-British pot shown in Fig. 1.2a of a type manufactured in
the Cambridge area early in the first millennium AD; and the medieval thimble shown
in Fig. 1.2b, wherein the smooth surface of the shell is distorted out-of-plane to produce



1.1 Research aims and objectives 3

(a) (b)

Fig. 1.2 (a) A first millennium Romano-British pot showing decorative dimpling. (b) A
medieval thimble.

localised indentations or dimples. Adding this change in local geometry to the structure
need not affect the global geometry, and thus dimpling can be seen as texturing of the shell.
Dimpling in the historical examples shown, was most plausibly implemented for decorative
or functional, rather than structural, reasons. However it is known from modern analyses that
dimpling of a thin plate can affect the global structural properties in unusual ways beyond the
basic considerations introduced above. States of self-stress induced by dimpling can cause
global bi-stability of the plate [6]. Low, or even negative Poisson’s ratios have been observed
[7], and there may also be an increase in the overall bending stiffness of the plate [8]. It is
the last of these properties to which the following chapters are primarily devoted.

1.1 Research aims and objectives

Motivated by the possibility of increasing the bending stiffness of a plate without adding
additional material, see Fig. 1.3, the main research objective of this thesis is to analyse,
characterise and allow optimisation of the structural behaviour of a dimpled sheet. In
particular, this research aims to derive analytical equations to calculate the initial linear
stiffness of a dimpled sheet under bending and under tension.
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(a) (b)

Fig. 1.3 (a) A plain flat sheet deflects under an imposed bending load (b) A dimpled sheet, of
the same material and thickness, deflects less under the same bending load.

1.2 Scope and approach

The scope of this thesis is summarised below with a breakdown by chapter. A literature
review summarising relevant material is given in specific background sections at the start
of each chapter. After considering and subsequently dismissing a “second moment of area”
method for analysing a dimpled sheet, the overall approach is to first understand the behaviour
of a single dimple, both by itself and when included within an infinite plate, then establish an
equivalence between an dimple and an elastic inclusion, derive an equation for calculating
the overall stiffness of an inclusion patterned plate and finally combine the previous two
stages to arrive at an analytical equation for the overall behaviour of a dimpled sheet.

In Chapter 2, the influence of dimples on the bending stiffness of a plate is analysed by
comparison with corrugated sheets, which likewise utilise out-of-plane geometry to increase
the bending stiffness of thin sheet material. In a corrugated sheet, material is moved away
from the neutral axis, which increases the second moment of area. In a similar way, dimpling
moves material away from the mid-surface of the plate, and so initially, dimpled plates
are here analysed by considering the second moments of area. In this chapter, through
comparison with practical testing of dimpled sheets, it will be shown that this initial analysis
is flawed. Given the inadequacy of the second moment of area method the subsequent
chapters of this thesis are therefore devoted to developing a new method of considering and
analysing dimpled sheets.

As a first step towards understanding the effects of a pattern of dimples on a plate,
Chapter 3 will examine the structural behaviour of a single dimple. Though dimples can be
manufactured in a variety of shapes, axisymmetric dimples are a useful class for analytical
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exploration. Such dimples have axisymmetric symmetry with a radial profile swept around
360° to form the three dimensional geometry, i.e. a shell of revolution. The plan outline of
an axisymmetric dimple is thus circular. For the purposes of this thesis, attention will be
focused exclusively on axisymmetric dimples.

Compared to a flat disc, the geometry of a dimple allows the same volume of material to
have a higher bending stiffness. A key idea within this thesis is the proposal that the dimple
can be treated as a circular disc of material which is stiffer in bending than the surrounding
plate, i.e. the dimple can be treated like a stiff elastic inclusion. Modelling an elastic inclusion
is easier than modelling the three dimensional geometry of a dimple – both analytically,
and also when modelling using finite element analysis (FEA). An analytical approach to
modelling a single dimple is examined and developed and the equivalence of a dimple and
an inclusion is analytically justified. This provides a method of calculating the stiffness of
the equivalent inclusion based on the dimple geometry.

Where sheets are patterned with numerous dimples, the concept of treating each dimple as
an elastic inclusion provides further analytical benefits. The three dimensional problem of a
dimpled sheet can be reduced to the two dimensional problem of a plate with many inclusions.
Chapter 4 therefore considers the problem of analysing the structural performance of plates
which contain patterns of multiple inclusions. By appealing to a macroscopic view of an
inclusion-patterned plate, an overall homogenised stiffness is sought. While traditionally
homogenisation approaches are normally used in the fields of materials and composites [9],
some previous research has considered homogenisation on a structural level [10], treating
corrugated sheets as orthotropic plates. In this work, starting from the elastic analysis of
a single inclusion in a plate, a new method is devised for calculating a “rule-of-mixture”
which captures the overall stiffness of an inclusion-patterned plate. This theoretical analysis
is subsequently verified by FEA, and an excellent agreement is seen over a wide range of
Young’s moduli ratios and Poisson’s ratios. Remarkably an independence of homogenised
stiffness with the type of pattern is observed. The new rule-of-mixture derived here is also
applicable to other homogenisation problems, and in Chapter 4, it is shown to compare
favourably to other existing rules-of-mixtures. Due to the elastic stress analysis derivation,
the new rule-of-mixtures can account for differing Poisson’s ratios, whereas many previous
homogenisation techniques cannot.

Having demonstrated that dimples can be satisfactorily represented as elastic inclusions,
and having developed a homogenisation technique to capture the structural performance of
inclusion patterned plates, Chapter 5 combines these analyses in order to present a theoretical
method for calculating the overall structural performance of a dimpled sheet. This theoretical
understanding allows the optimisation of both the dimpling pattern and the dimple geometry.
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Comparisons to FEA of dimpled sheets in Chapter 5 show the effectiveness and validity of
the new method.



Chapter 2

Introduction to dimpled sheets

2.1 Summary

A dimpled sheet is similar in some respects to a corrugating a sheet; in that material is moved
further away from the datum plane and the bending stiffness increases while the stretching
stiffness decreases. The increase in bending stiffness of a corrugated sheet can be modelled
satisfactorily through a second moment of area analysis, and so here a dimpled sheet is
analysed in a similar manner. Taking multiple cross-sections through a dimpled sheet allows
a second moment of area distribution along the length of the sheet to be calculated, and
by averaging appropriately an estimate of the overall bending stiffness of the sheet can be
made. The influence of different patterns of dimpling, different shapes of dimples and having
dimples in both upward and downward directions is considered.

Experimental testing of a number of dimpled sheets with various patterns of dimples,
dimple shapes and sheets with upward and downward dimples is undertaken. The experimen-
tal method, as well as the method of manufacturing dimpled sheet specimens is described.
The experimental results show that while the bending stiffness of a dimpled sheet is increased
compared to a flat plate, the proportional increase is an order of magnitude lower than
predicted by the second moment of area analysis. The experimental results also provide
evidence against some of the other trends predicted by the second moment of area analysis.
This chapter concludes that analysing a dimpled sheet via a second moment of area analysis
is inadequate and therefore indicates the need for an new theoretical analysis to understand
the behaviour of dimpled sheets.

2.2 Introduction

A thin plate or shell is a structural element characterised by having one dimension much
smaller than its others. This thin, through-thickness, dimension is typically so small that the
geometry of the shell can be considered to be a two-dimensional surface. In much the same
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way that a beam can be considered a one-dimensional structural component, with its overall
structural properties dependent on its local geometry and cross-section, so too can a shell be
considered as a two-dimensional structural element, with known overall structural properties.

Thin plates and shells have a wide variety of applications: they are often used in
lightweight structures because of their good tensile strength and stiffness, particularly when
considering tensile strength and stiffness per unit weight. However, plates and shells often
have very low bending stiffness, due to their thinness. The bending stiffness of a shell, D,
depends on the thickness cubed, and is given by:

D =
Et3

12(1−ν2)
(2.1)

Given this relationship the analysis of very thin shells often neglects the bending stiffness
all together (the membrane hypothesis [11] ). However, when thick shells are considered, the
bending stiffness must be taken into account, and this increases the complexity of analysis.

Shells which are initially flat are referred to as plates. While shells are often assumed
to have zero bending stiffness, thin plates are usually required to have have some bending
stiffness. For example, the grid plates of a nuclear reactor must hold the weight of the nuclear
core, which induces a bending moment in the plate. The curvature of a thin shell often allows
an applied load to be carried with in-plane stresses rather than in bending. Consider that
a beam uses its bending stiffness to carry a central point load, whereas an arch or a dome
uses its geometry to carry the same loading via in-plane stresses. Therefore, because of the
globally flat geometry of a plate, the bending stiffness of a plate is of greater importance than
for a globally curved shell.

Dimpling shells or plates is a process in which the smooth surface of the shell is distorted
out-of-plane in localised indentations or dimples. Early examples of dimpling date from
many centuries ago, see Fig. 1.2, however the analysis of dimpled sheets has only been
considered relatively recently [8, 12, 13]. Adding this change in local geometry does not
need to affect the global geometry, and thus dimpling can be seen as effectively texturing
the shell. Dimpling a thin plate is known to affect the global performance of plate in some
unusual ways. States of self-stress can cause global bi-stability of the plate [14, 6]. Low, or
even negative Poisson’s ratios, have been observed [12, 7], and there is an increase in the
bending stiffness of the plate [12].It is the last of these properties to which the following
chapters give predominant attention.

In this chapter, the influence of dimples on the bending stiffness of a plate is analysed by
comparison to corrugated sheets, which also use geometry to increase the bending stiffness
of thin sheet material. In a corrugated sheet, material is moved away from the neutral axis of
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the plate, and this increases the second moment of area. In a similar way, dimpling moves
material away from the mid-surface of the plate, and so this chapter first analyses dimpled
plates by considering the second moments of area. With comparison to practical testing of
dimpled sheets, this initial analysis is shown to be flawed.

The subsequent chapters are therefore devoted to developing a new way of considering
dimpled sheets. Chapter 3 focuses on the behaviour of a single dimple, and how a single
dimple behaves when it is surrounded by a flat plate. Chapter 4 considers the behaviour of a
plate which is patterned with elastic inclusions. Chapter 5 then combines the analysis of the
two preceding chapters, developing the theory and comparing against FEA results of dimpled
sheets. Although the primary motivation for this research is the increase in bending stiffness
of a dimpled sheet, this new analysis also captures the associated reduction in stretching
stiffness which also occurs.
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2.3 Background

2.3.1 Dimples and dimpled sheets

A dimple is an out-of-plane geometric feature which can be introduced within a thin plate or
shell. Often formed by an indentation process in which an initially flat sheet is plastically
deformed, the resulting self-stresses generated can allow dimples to be independent bi-stable
features [6, 15, 14]. Each dimple may be “popped through” and therefore exist in two stable
equilibrium states, popped up or popped down. Patterning many dimples onto a larger sheet
or plate creates dimpled sheets (Fig. 2.1), which are known to exhibit several interesting
properties. The self-stress due to the indentation formation process of each dimple can give
the overall dimpled sheet a significant curvature and plastically rolling the sheet in orthogonal
directions can even facilitate bi-stability of the sheet as a whole [12]. Furthermore, due to
work hardening effects during dimple formation the yield strength in uniaxial tension of a
dimpled sheet is seen to be increased compared to an equivalent flat sheet [16] as well as
the yield strength in bending [13]. However, disregarding the effects of self-stress, many
interesting and unusual properties of dimpled sheets are the result of their geometry alone.
Previous studies have noted that compared to a flat sheet, an increase in bending stiffness
[12], a reduction in stretching stiffness [16], and a decrease in (and sometimes even negative)
Poisson’s ratio in both bending and stretching [12, 7] can be achieved for dimpled sheets. An
increase in heat transfer [17], improved impact response and reduced vibration compared to
a flat sheet have also been noted [8].

The large number of interesting and unusual properties makes dimpled sheets an attractive
choice for a wide range of practical applications. The increased surface area and potential
to pass coolant between two adjacent layers make dimpled sheets attractive for use as heat
exchangers and also for thermal insulation when multiple layers of these panels are bonded
together, multi-wall dimpled panels are of interest in applications such as space shuttles
[18] for example. On account of the superior heat transfer properties of dimpled sheets,
pressure vessels can be made with dimpled jackets [19], which can be added as additional
facade welded to the pressure vessel. Such dimpled jackets increase heat transfer due to
turbulence created as the air passes over the dimpled surface, which is of particular use
for reactions which produce heat, such as fermentation. The design of dimpled jackets for
pressure vessels is codified by ASME regulations [20]. On account of their visual appeal,
dimpled sheets also find practical application in architectural cladding, facades and sculpture,
as well as in decorative functions around the domestic home in kitchens and bathrooms
particularly [21]. Additionally dimpled sheets are used widely in construction of various
industrial flooring, catwalks and platforms, where the surface texture can provide practical
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Fig. 2.1 Two dimpled sheets manufactured from copper beryllium: each has a different
pattern of dimples.

benefits underfoot by providing enhanced grip [22]. While current applications of dimpled
sheets are predominately used for their additional properties, in many cases an increased
understanding of the structural properties would allow for more efficient use of dimpled
sheets. For example, when dimpled sheets are used as thermal protection on space shuttles
these panels are added as an additional facade layer to the outside of the craft. An improved
theoretical understanding of the behaviour of a dimple plate might allow the dimpled sheet
to function not only in its role as a thermal insulator, but also form part of the structural skin
of the space shuttle, or pressure vessel. The same can be applied when used architecturally,
allowing the dimpled sheet to be used structurally as well as aesthetically. Given the load-
bearing nature of a platform or catwalk, the structural properties of a dimpled sheet, its
stiffness and its strength, are of safety critical importance. While bespoke FEA calculations
can be made, or potentially redundant additional supports added beneath such platforms, an
analytical understanding of the behaviour of dimpled sheets has the potential to allow for
safe and efficient use of dimpled sheets in such applications.

Previous studies of dimpled sheet behaviour have experimentally demonstrated such novel
properties of dimpled sheets and confirmed these with numerical computational simulations
using FEA. There do not appear to have been attempts to analytically predict the effect of
dimpling on the overall elastic performance of a sheet under tension or bending. Of particular
merit is the increase in bending stiffness of a dimpled sheet, and this is suggested to be
worthy of detailed consideration.

2.3.2 Plates and shells

Although it is their defining feature, the thin depth of plates and shells can make them
undesirable in some structural applications, especially those where bending moments are
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required to be carried. From first principles it can be seen that the second moment of area of
a beam is dependent on the thickness cubed: thus plates and shells, with their characteristic
thin depth, have very low bending stiffness. It is possible to build up larger sections from thin
plates: large bridge deck sections can be made as such, and box sections and girders are often
of this form, utilising the efficiency and economy of thin plates, and the moment-bearing
capacity of deep cross-sections [23]. Even in this capacity, the very thin depth of the plates
can cause problems due to out-of-plane local buckling [24]. Again this is fundamentally
caused by the small values of second moment of area that plates and shells exhibit in the
directions perpendicular to the thickness. It would therefore be beneficial in many load-
bearing situations if the second moment of area of a thin plate could be increased. This
would be desirable not only in situations where the plate forms part of a larger section, but
also where a single plate is required to be load-bearing. The classic example of the latter
would be corrugated sheets (Fig. 2.2a), which are often used in roofing. Here a thin plate is
bent out of plane, to increase its structural depth. By adding this undulating profile in one
direction, material is moved further away from the neutral axis and thus the second moment
of area, and hence the stiffness and strength of the sheet are dramatically increased in this
direction. While the bending stiffness in this direction has greatly increased, the stretching
stiffness in the perpendicular direction has greatly decreased. Stretching in this direction no
longer directly strains the sheet, but rather simply unbends the corrugations. The trade-off
between stretching and bending stiffness will become a recurrent theme.

The structural properties of corrugated sheets have been researched previously. Linear
elastic analysis has been used to treat a corrugated sheet as a thin equivalent orthotropic
shell of uniform thickness and analytical expressions have been developed for the equivalent
stiffnesses in both bending and stretching [10, 25]. Such homogenisation based techniques
have been compared favourably with FEA [26, 27], and recent improvements to the analytic
expressions for stiffness properties are more accurate still [28]. One limitation of simple
corrugations is that they only increase the bending stiffness substantially in a single direction;
whereas the bending stiffness in the perpendicular direction is practically unchanged, leading
to a distinctive strong and weak direction. In the context of roofing, this means that the
corrugations can only effectively span across in one direction, and must be supported along
their entire length in the perpendicular direction.

2.4 Expected structural performance in bending

Figure 2.2 compares the cross-sectional profiles of a corrugated sheet and a dimpled sheet.
In both cases the cross-section is similar, material has been moved away from the flat datum
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(a) (b)

Fig. 2.2 (a) The undulating cross-sectional profile of a corrugated sheet greatly increases
the bending stiffness in one direction by increasing the effective structural depth. (b) The
cross-sectional profile of a dimpled sheet is also undulating, but unlike a corrugated sheet it
undulates in the perpendicular direction also.

plane to form an undulating profile. However, a major difference is that in the dimpled sheet
the profile undulates in the perpendicular direction as well, whereas in the perpendicular
direction the profile is flat. This suggests that unlike for corrugations, the increase in stiffness
of a dimpled sheet will be equal in both directions. Assuming that dimpled sheets benefit
from an increase in structural depth due to their undulating profile, in a similar fashion to a
corrugated sheet, the expected bending performance of dimpled sheets is analysed. However,
as is seen by comparison to experimental testing in Section 2.5, this theory is inadequate.

The increase of structural depth in a corrugated sheet increases bending performance
by moving material away from the neutral axis. Euler-Bernoulli beam theory tells us that
the bending moment is carried by induced in-plane axial stresses. For a sagging moment
this leads to axial compressive stresses at the top and tensile stresses on the bottom. By
increasing the structural depth, the lever arm between the compressive and tensile stresses
increases, and thus the bending stiffness increases. We measure the capacity of a section
to withstand bending using the second moment of area, Ixx. We first calculate the location
of the neutral axis of the section, which is at the same depth as the centroid of area of the
cross-section. The second moment of area is then the integral of area with the square of the
distance from the neutral axis.

Ixx =
∫

Area
z2dA (2.2)

As an indentation dimpling process preserves volume, assuming that dimpling preserves
vertical thickness we can ascribe a dimple cross-section by giving just the profile of the
mid-surface. This assumption implies that shear deformation dominates during indentation
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Fig. 2.3 Three cross-sections: each has the same area, 16cm2, but each has a different second
moment of area. (a) A square, (b) A thin rectangle, (c) An I beam cross-section.

Fig. 2.4 Assuming a constant vertical thickness, t, the dimple cross-section is defined by the
profile of the mid-surface, shown as a short dashed line, and described as a function of x.
The radius of the dimple is a, the maximum depth of the mid-surface is d, and the centroid
of area of the dimple is located d below the datum.

as each vertical slice of material displaces purely perpendicularly to the plane. Figure 2.4
shows a dimple cross-section, and if the profile of the mid-surface is defined then the second
moment of area for the dimpled cross-section can be calculated. For example, assuming
a circular arc as the mid-surface profile leads to a revolved dimple geometry which is a
spherical cap. The second moment of area of a dimple with a circular arc profile with constant
vertical thickness is calculated in Appendix A.1.

If we know the dimple layout of a dimpled sheet and we know, or assume, a dimple
profile, then we can take cuts at locations along the sheet and calculate the second moment
of area of each cross-section. Figure 2.5 shows a dimpled sheet with a sparse hexagonal
pattern of dimples, with three horizontal lines indicating the locations of three different
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Fig. 2.5 A sparse hexagonal pattern of dimples on a square sheet. The cross-sectional
profile differs at each of the the three locations depicted by the horizontal lines, and the
corresponding cross-sections are shown below the dimpled sheet. The sheet has width L, and
the dimples have a radius a = 3L/100, depth d = 1.8L/100 and vertical thickness t = L/100.
The mid-surface profile is shown as a faint short dashed line and the neutral axis is shown as
a dot-dashed line.

cross-sections. The second moments of area are calculated for each cross-section, and are
seen to vary significantly in value from each other. In particular, when the cross-section
intersects no dimples the second moment of area is very low. What is more, for this hexagonal
pattern note that there are many horizontal cuts which intersect no dimples, whereas in the
perpendicular direction practically every cross-section intersects some dimples. This gives
rise to the ideas of “lines-of-weakness”: lines where there are no dimples at all at a given
cross-section, and thus a very low value of second moment of area. Such ideas are used to
propose that there should be weak directions and stiff directions [12] for such textured sheets.

The methodology for calculating the second moment of area for any cross-section which
intersects an arbitrary number of dimples is presented in Appendix A.2. This process can be
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(a) (b)

Fig. 2.6 (a) A regular hexagonal packing of circles (b) A phyllotaxis spiral pattern. Both
of these patterns are used as dimpling locations for a square dimpled sheet. The second
moments of area for cross-sections through these sheets are shown in Fig. 2.7.

automated using a MATLAB script [29], allowing for the calculation of the second moment
of area for every cross-section of a sheet with an arbitrary dimple pattern. Figure 2.6 shows
two different patterns of dimples. For each pattern, the second moments of area at each
cross-section are calculated, in both orthogonal directions, using the MATLAB script. The
results of these calculations are presented graphically in Fig. 2.7. The sheets are square
with side length L and thickness t = L/200, the dimples have radius a = 3L/100 and depth
d = 1.8L/100. The second moments of area are normalised by the second moment of area
for a flat sheet:

Iamplification factor =
Ixx

Lt3/12
=

Ixx

I0
(2.3)

The second moment of area variations indicate some observations about dimpled sheets.
As a semi-ellipsoid dimple pushes more material to a deeper depth than a spherical cap
dimple of the same depth, one would expect a higher second moment of area when assuming
a semi-ellipsoidal dimple. Indeed Fig. 2.7b indicates this clearly. Additionally, as expected
from the regular hexagonal pattern, we see a periodic fluctuation in the second moment of
area. Notice particularly that for the cross-sections which cut through the pattern in Fig. 2.6a
horizontally, the amplification factor drops to unity between each row of dimples. These
lines-of-weakness are expected from the pattern, as along these lines the cross-section does
not intersect any dimples at all. In contrast, the irregular phyllotaxis pattern has no periodic
fluctuation and much less variation in second moment of area overall. This was only a
reasonably small patch of phyllotaxis pattern and it would be anticipated that a larger number
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Fig. 2.7 The variation in normalised second moment of area is plotted as successive cross-
sections are taken across the dimpled sheet. The top graph in each pair shows cross-sections
that cut across the pattern vertically and the bottom graph in each pair shows cross-sections
that cut across the pattern horizontally. Solid lines indicate that a spherical cap dimple has
been assumed while the dashed line indicates a semi-ellipsoidal dimple. The sheets are
square with side length L and thickness t = L/200 and the dimples have radius a = 3L/100
and depth d = 1.8L/100. (a) Hexagonal pattern. (b) Phyllotaxis pattern.
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of dimples in such a pattern would reduce the fluctuations in second moment of area even
more.

To estimate an overall homogeneous approximation for the stiffness of a beam which has
a variable second moment of area along its length, it is natural to take an average value of Ixx.
Provided that the changes in cross-section are not too abrupt, it is reasonable to consider the
varying second moment of area of a beam with a changing cross-section [30]. A beam in
4-point bending is under a constant moment between the two inner supports and therefore the
curvatures are inversely proportional to the stiffness at each section. Integrating curvatures
along the length of the beam to find the end rotations, we can calculate an overall stiffness by
dividing the applied moment by the end rotation. This analysis shows that an appropriate
global stiffness of such a beam will be found by taking an average of the reciprocals of the
section stiffness and then inverting the answer. Or in other words, taking an equally weighted
harmonic average of the second moment of area distribution, as:

Iharmonic =
L∫ L

0 (1/Ixx)
(2.4)

The harmonic average adds some further explanation to the concept of lines-of-weakness.
The harmonic average is lowered significantly more by a few low values than the arithmetic
average is. Thus having a few cross-sections where the stiffness is very low, i.e. lines-of-
weakness, will significantly lower the overall stiffness.

The change in cross-section is relatively smooth for dimpled sheets, and thus taking a
harmonic average of the stiffness distributions shown in Fig. 2.7 would seem appropriate.
Calculating the harmonic averages for the hexagonal pattern with spherical cap dimples gives
Iharmonic = 18.72I0 for the first direction and Iharmonic = 4.24I0 in the orthogonal direction.
In comparison the phyllotaxis pattern has harmonic averages of Iharmonic = 16.37I0 and
Iharmonic = 17.70I0 for the two orthogonal directions. This would suggest that a dimpled
sheet with a hexagonal patterning should exhibit strongly orthotropic behaviour, with the
stiffness in perpendicular directions being significantly different from each other. For the
orientations in which the rows of dimples align perpendicular to the loading direction, this
analysis would suggest that the lines-of-weakness make these orientations significantly less
stiff. By contrast, for an irregular patterning, like the phyllotaxis pattern, the quasi-random
arrangement of the dimples was such that there were no cross-sections that intersected very
few, or no dimples at all. By removing such potential lines-of-weakness, the harmonic
average of second moment of area was greatly increased.

Rather than have all the dimples in a dimpled sheet going in the same direction, an obvious
extension to the concept of dimpled sheets is to have dimples going in both directions. It
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Fig. 2.8 Each cross-section has two identical dimples with radius a = 3L/15, depth d = L/15
and vertical thickness t = L/30. The top cross-section has both dimples in the same direction,
whereas the other has one dimple pointing up and the other pointing down. The neutral axis
of each cross-section is shown as a dot-dashed line.

seems intuitive that having dimples pushed through in both the upwards and downwards
direction should increase the bending performance of the sheet more than dimples in a single
direction. The natural expectation would be that this improvement is maximised when exactly
half of the dimples point one way and half the other.

Having dimples in both directions will increase the structural depth of the sheet even
more than single direction dimples, and thus the corresponding second moments of area will
be significantly higher. Figure 2.8 compares two cross-sections which have two identical
dimples. In one case both dimples are in the same direction and in the other the two dimples
point in opposite directions. In this example when the dimples are in the same direction,
Ixx = 7.86I0, whereas for dimples in opposite directions, Ixx = 22.12I0.

Using dimples which go in both directions has the potential to significantly increase the
second moment of area of a cross-section: for the example shown in Fig. 2.8 the up-down
dimple combination was almost three times as stiff. However, one practical consideration that
limits the effectiveness of this is that it is harder to find a pattern which effectively spreads out
the two directions of dimples in such a way to maintain a roughly constant second moment
of area across all cross-sections. Nevertheless, a noticeable improvement can be made.

Figure 2.9 shows a possible split of the hexagonal and phyllotaxis pattern into two equal
sets. The second moments of area for dimpled sheets which used these patterns to designate
dimples in both directions are shown graphically in Fig. 2.10. Calculating the harmonic
averages for the hexagonal pattern with the spherical cap dimples in both directions gives
Iharmonic = 21.82I0 for the first direction and Iharmonic = 5.01I0 in the orthogonal direction.
In comparison the phyllotaxis pattern has harmonic averages of Iharmonic = 26.40I0 and
Iharmonic = 24.72I0 for the two orthogonal directions. For the phyllotaxis pattern the harmonic
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(a) (b)

Fig. 2.9 (a) A regular hexagonal packing of circles. (b) A phyllotaxis spiral pattern. Both
of these patterns have been split into two equal sets, black and white. These can be used to
assign two different directions to dimples.

average of the stiffness distribution was seen to increase by 50% using dimples in both
directions compared to single direction dimples. For the hexagonal pattern despite up-down
dimpling increasing the peak bending stiffness of the weak direction by over a factor of three,
the overall average stiffness in this direction increased by less than 20%. Thus again, a very
large difference in stiffness in orthogonal directions was seen in the hexagonal pattern, while
the phyllotaxis pattern appears more isotropic in its behaviour.

2.5 Initial experimentation on dimpled sheets

2.5.1 Experimental method

Thin sheet materials are popular in practical applications, at least in part due to their ease
of manufacture and thus relatively low cost. The ease of manufacturing metal ingots into
a simple flat geometry using a rolling process, for example, enables sheet metal to be
economically viable in many situations. Therefore, though the more complex geometry of a
dimpled sheet could be manufactured directly through a process such as casting, in reality
forming dimpled sheets through the deformation of an initially flat sheet is likely to be most
common.

In order to run practical experiments on dimpled sheets, manufacturing some samples is
necessary. A suitable candidate material must be reasonably malleable, such that dimples
can be formed through local plastic deformation. To this end, samples were manufactured
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Fig. 2.10 For sheets which are dimpled in both directions the variation in normalised second
moment of area is plotted as successive cross-sections are taken across the sheet. The top
graph in each pair shows cross-sections that cut across the pattern vertically and the bottom
graph in each pair shows cross-sections that cut across the pattern horizontally. Purple
lines indicate sheets which have dimples in both directions and yellow lines are given for
comparison with single direction dimples. The sheets are square with side length L and
thickness t = L/200, and the dimples have radius a = 3L/100 and depth d = 1.8L/100 and
have a spherical cap profile. (a) Hexagonal pattern. (b) Phyllotaxis pattern.
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(a) (b)

Fig. 2.11 (a) A diagrammatic cross-section showing the dimple indentation process. The
thin copper beryllium sheet, shown in black, is held between two thick steel forming plates,
shown in grey. Holes in the forming plates allow a rounded indenter to be located at the
required dimple location. (b) Two nuts are locked together on the threaded shaft of the
indenter to form a collar which limits the depth that the indenter can be inserted and thus
controls the dimple depth.

using copper beryllium, which in addition to being malleable in its annealed state can also be
subsequently heat treated to increase its yield strength.

The dimpling process employed was an indentation process. The thin copper beryllium
sheet was held between two thick steel “forming plates”. Each forming plate comes with
a matching pair and each has as a pattern of holes to locate the dimples. The holes in the
forming plates are equal to the nominal radius of the dimples. Using a fly press, a hardened
steel rounded indenter is pushed through the hole in the forming plate in order to create a
dimple at the required location in the copper beryllium sheet, Fig. 2.11. The indenter has a
threaded shaft, which allows a collar of two locking nuts to be attached. The collar can be
adjusted to allow for different depths of dimple to be formed, but when set and locked into
position it ensures that the dimple depth is consistent for every dimple.

As well as locating the indenter, the thick forming plates confine the deformation of the
copper beryllium sheet to within the defined nominal radius of the dimple. Each pattern of
dimples requires a different pair of forming plates, and to ensure consistency and to maximise
versatility, each dimple was stamped individually using a single indenter. The forming plates
were CNC milled so that the locations of the dimples were accurate, even for complex and
irregular patterns. The nominal dimple radius chosen was 3mm, and the forming plates have
a thickness of 6mm. By comparison, the thickest copper beryllium sheet used has a thickness
of 0.514mm. Accounting also for the higher Young’s modulus of steel (210GPa) than copper
beryllium (125GPa), we note that the each forming plate should have approximately 2500
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Fig. 2.12 A pair of thick steel forming plates are bolted together at their corners to clamp a
thin copper beryllium sheet in place so that it can be dimpled using an indenter.

times the bending stiffness of the thin copper beryllium sheet. The forming plates are 120mm
squares and were bolted together at each corner to clamp the thin copper beryllium sheet in
place and prevent it from slipping during the indentation process, Fig. 2.12. The patterns of
holes cover the central 100mm square.

Four sets of forming plates were manufactured, each with a unique pattern. Square copper
beryllium sheets with a thickness of 0.514mm and a side length of 100mm were dimpled
using these forming plates. For each pattern, two different depths of dimpling were chosen,
and a variation of each pattern with upwards and downwards dimples was chosen. Thus 16
different dimpled sheet samples were produced. The patterns were chosen to have the same
minimum distance (1mm) between the edges of the dimples. Four samples representing
the four chosen dimple patterns are shown in Fig. 2.13. After some experimental trials,
nominal dimple depths of 1.15mm and 1.8mm were chosen, as these were seen to be within
practical forming limits. Attempting to indent a dimple too far could exceed the plastic limit
of the sheet and cause fracture, leading to partial or total separation of the dimple from the
sheet. After being dimpled, due to the presence of some self-stress arising from the dimpling
process, some of the sheets were found to develop a small amount of global curvature in one
direction.

The dimpled sheet samples were tested under three-point bending. A three-point bending
test (or flexural test) is a well established test of bending stiffness and is routinely used to test
beam-like specimens [31]. While in some respects a four-point bending test is superior, as it
brings the entire central section into a uniform moment, the analysis of three-point bending
is also well known, and has advantages in the ease of set-up and of specimen preparation.
Figure 2.14a shows the idealised three-point bending set-up: the sample is simply supported
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Fig. 2.13 Four square dimpled sheet samples, each with a different dimpling pattern. In each
case the sheet has a 100mm side length and thickness of 0.514mm. The dimples are 6mm in
diameter and have a minimum of 1mm spacing.
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(a) (b)

Fig. 2.14 (a) Diagrammatic set-up of a three-point bending test. The sample is simply
supported at each end and has a concentrated load applied at the midspan. (b) A photograph
of the experimental INSTRON test set-up. The sheet is simply supported along two edges
and a line load is applied at midspan. Friction between the sample and supports is low and
as the supports provide no explicit horizontal restraint, the test set-up is consistent with the
idealised 3-point bending test.

at each end and has a concentrated load applied at the midspan, which brings the sample into
uniaxial loading. For a specimen of length L, Young’s modulus E and second moment of
area I, a central force P causes a deflection at the midspan of:

δ =
PL3

48EI
(2.5)

Figure 2.14b shows a photograph of the actual experimental INSTRON test set-up. The
dimpled sheet is simply supported along two edges and a line load is applied at the midspan.
Though the three-point bending test doesn’t develop a constant moment region, this set-up
does easily allow the two orthogonal directions to be tested. Additionally as the test is
statically determinate, any minor defects in shape such as a very slight initial curvature will
not significantly affect the results. As the dimpled sheet is square and simple line supports
are used at each end and a line load applied in the middle, the sheet will not quite be in pure
uniaxial bending as any anticlastic curvature will not be able to form properly. However, as a
deft way of managing this situation and simultaneously reducing uncertainly arising from
dimension and material property measurements, an identical flat copper beryllium sheet can
be tested in this experimental set-up. The results of the dimpled sheet specimens can then be
normalised against the flat sheet.
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2.5.2 Experimental results

Using the experimental set-up shown in Fig. 2.14b, the dimpled sheet specimens which had
been manufactured were tested. In addition two flat square samples of the same thickness
and of the same material as the dimpled sheets were also tested.

The displacement of the midspan and the force applied are given as outputs from the
INSTRON universal testing machine. After a little uptake, there is a clear linear region in
the force-displacement characteristic as expected, Fig. 2.15. The gradient of this curve is
the stiffness of the sample, which is directly proportional to the effective second moment
of area of the sample, see Eq. 2.5. Orthogonal directions are tested with stiffnesses being
denoted ψxx and ψyy respectively. As well as being rotated to test the stiffness of orthogonal
directions, for each direction the dimpled sheet was flipped upside down and tested again,
and hence two readings were taken for each direction. Initial stiffness should not be affected
by reversing the direction of loading, and so the average of the two readings was taken. As
expected the flat copper beryllium plates behave isotropically and only a slight variance in
stiffness is observed. An average of the stiffnesses of the flat plates was taken to calculate the
value of ψ0, which was then used to normalised the stiffness results of the dimpled sheets.
The manufactured dimple depths were estimated by using a caliper to measure the depth of a
sample of 6 dimples per sheet. The results compared favourably with the nominal dimple
depths of 1.15mm and 1.8mm. The normalised stiffness, Ψ, is calculated by dividing the
stiffness of the dimpled sample, ψ , by the stiffness of the flat sheets, ψ0, for the x and y
directions respectively:

Ψxx =
ψxx

ψ0
, Ψyy =

ψyy

ψ0
(2.6)

The experimental results, Table 2.1, show that an increase in bending performance is
indeed seen for dimpled sheets. As no extra material was added during the indentation
dimpling process, and it is known that self-stress does not alter initial elastic stiffness, the
increase in bending performance must be due to the dimpled geometry alone. However,
notice that the normalised stiffnesses, Ψ, are much lower than expected from the second
moment of area analysis. The phyllotaxis pattern in Fig. 2.6b was predicted to be 17 times
stiffer than a flat sheet. Whereas the corresponding sheet with the same dimple pattern, sheet
thickness, dimple radius and dimple depth was found experimentally to have a normalised
stiffness of between Ψxx = 1.64 and Ψyy = 1.59. Another surprising result was that the
deeper dimples did not increase the normalised stiffness as much as expected. As second
moment of area is proportional to depth squared the deep dimpled sheets were expected to be
at least twice as stiff as the sheets with shallower dimples, however in test the deep dimpled
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Fig. 2.15 Two representative force-displacement characteristics produced during the three-
point bending testing of thin square copper beryllium sheets. After an initial uptake region
behaviour is seen to be linear. This particular curve is from a sheet dimpled with a Kite
and Dart pattern using dimples with a nominal depth of 1.8mm each pointing in the same
direction.

sheets were on average only 27.5% stiffer. Similarly, having dimples in both directions
was predicted to significantly increase the bending stiffness. Comparison of Fig. 2.7 and
Fig. 2.10 suggests an improvement of 50%, however the experimental results show only a
22% increase in normalised stiffness. Perhaps most surprising of all however, the expected
orthotropic nature of the hexagonal patterning when all the dimples are in the same direction
was not observed experimentally. For both the deep and the shallow dimples, the orthogonal
directions had an equal stiffness to within a couple of percent. Compared to the prediction
that lines-of-weakness should cause a difference in stiffness of more than a factor of four,
this result is remarkable. The stark differences between the experimental results and the
theoretical predictions suggest that a dimpled sheet cannot be treated like a Euler-Bernoulli
beam, and thus the second moment of area analysis is not valid. Considering the geometry
of a dimpled sheet, it can be seen that the tips of the dimples cannot carry load directly
between them, successive cross-sections therefore don’t develop linearly varying in-plane
stress distributions, and thus the sheets are seen not to behave like Euler-Bernoulli beams.

2.6 Conclusions

Analysing a dimpled sheet using a second moment of area analysis, in a similar way to
a corrugated sheet, has been shown to predict significant increases in bending stiffness.
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Table 2.1 Normalised stiffnesses of dimpled sheet samples in three-point bending

Sample pattern Dimple direction Dimple depth Ψxx Ψyy
(mm)

Flat
- - 1.03 1.00
- - 0.99 0.98

Hexagonal
One way

1.18 1.58 1.62
1.79 1.74 1.73

Both ways
1.15 2.17 1.65
1.62 2.78 1.87

Kite and Dart
One way

1.14 1.70 1.62
1.80 1.55 1.61

Both ways
1.16 1.73 1.73
1.76 1.99 2.20

Rhombus
One way

1.17 1.35 1.48
1.80 1.72 1.61

Both ways
1.15 1.73 1.82
1.72 1.98 2.06

Phyllotaxis
One way

1.17 1.61 1.47
1.77 1.64 1.59

Both ways
1.13 1.82 2.00
1.72 1.88 1.94

Although the second moment of area of successive cross-sections varies, the variation is
reasonably smooth, and the variation is smaller for closely packed but random patterns of
dimples. Such an analysis also predicts a strong correlation between depth of dimples and
bending stiffness, as well as indicating that regular patterns such as square and hexagonal
will have greatly reduced bending stiffness compared to irregularly patterned dimples due to
“lines-of-weakness”. A significant increase in bending stiffness is predicted by this analysis
when dimples are in both up and down directions compared to all the dimples being in a
single direction.

Although some of the trends predicted by the second moment of area analysis were
seen experimentally, such as increased stiffness with deeper dimples, and dimples in both
directions, overall it was seen that using a second moment of area analysis to model the
bending performance of dimpled sheets is wholly inadequate. Not only does such a theory
overpredict the stiffness of such sheets by an order of magnitude, but predictions of significant
orthotropic behaviour caused by “lines-of-weakness” were also shown by experimental results
to be invalid. The second moment of area based calculations are not valid because the dimpled
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sheet does not behave as an Euler-Bernoulli beam. The tips of the dimples cannot carry load
directly between them, successive cross-sections therefore don’t develop linearly varying
in-plane stress distributions.

A new theory of dimpled sheet stiffness is therefore needed to understand and capture the
behaviour of such sheets. Initial experiments have confirmed the potential of dimpling to
increase the bending performance of thin sheets, and in the subsequent chapters of this thesis,
this improvement is quantified by developing a new method for analysing dimpled sheets.





Chapter 3

Analysis of a single dimple

3.1 Summary

The analysis of a shell of revolution under asymmetric edge loading is a problem which
has received the attention of various authors over a number of decades. Here, starting
with the derivation of the governing equations of the problem, the subsequent approximate
solutions for the edge displacement and rotation of a spherical cap and cone under an applied
axisymmetric moment or horizontal force are quoted. The validity of these approximate
solutions is tested against FEA and seen to be very good. Taking these analytical solutions
for rotations and displacements and normalising appropriately, the normalised rotational and
stretching stiffness of a spherical cap or cone can be written in terms of the radius, thickness
and depth of the cap or cone, allowing general observations to be made about the form of
these stiffnesses which are also expected to hold for dimples of a general shape.

A method for approximating the rotational stiffnesses under bending for a dimple of
arbitrary shape is proposed. The proposal is an equivalent cone method which matches the
radius and thickness of a dimple to a cone whose depth is chosen such that the equivalent
cone matches the shape of the dimple over a suitable edge region. The edge region is defined
to extend to such a distance that the stresses due to the applied edge moment have decayed
away to a sufficiently small value. FEA analysis shows that the equivalent cone method
provides a good approximation over a wide range of dimple geometries.

Next, analysis of a dimple in an infinite plate in biaxial loading will show that a dimple is
equivalent to an elastic inclusion of the correct stiffness. A superposition analysis not only
confirms such an equivalence, but also provides an analytical solution for the stiffness of
such an inclusion. The effective stiffness of a dimple which is included within an infinite
plate is greater than the stiffness of the dimple by itself. The superposition analysis will show
that this is due to the bending-stretching interaction of the dimple and the horizontal restraint
provided by the infinite plate. FEA analysis of a dimple or inclusion in a large quasi-infinite
plate confirms the equivalence of a dimple to an elastic inclusion of the effective stiffness
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calculated by the analytical theory. While this equivalence proves exact for biaxial bending
and biaxial stretching, under different loading conditions the behaviour of a dimple is not
quite captured by an elastic inclusion, even allowing a slight change in the effective stiffness
of the inclusion.

3.2 Introduction

In order to understand the effects of a pattern of dimples on a plate, it is first necessary to
look more closely at the structural behaviour of a single dimple. Compared to a flat disc,
the geometry of a dimple allows that same volume of material to have a higher bending
stiffness. The key idea developed here is to realise that the dimple can be treated as a small
patch of material which is stiffer in bending than the surrounding plate, i.e. the dimple can
be treated like a stiff elastic inclusion. In this section an analytical approach to modelling a
single dimple will be examined and developed and then the equivalence of a dimple and an
inclusion will be analytically justified. This will provide a method of calculating the stiffness
of the equivalent inclusion based on the dimple geometry.

Though dimples could be manufactured into a whole variety of shapes, the most common
class is axisymmetric. Such dimples have circular (axisymmetric) symmetry: they have a
radial profile which is swept around 360° to form the three dimensional geometry, a shell
of revolution. While the profile can be arbitrary and vary as a function of radius, the profile
is constant as it is revolved, the plan outline of an axisymmetric dimple is a circle. For the
purposes of this thesis, attention will be focused on axisymmetric dimples only.

3.3 Background

The analysis of a single shell of revolution under axisymmetric edge loading is a problem
which has received the attention of various authors over a number of decades. The first to
set up the governing differential equations to this problem were Reissner [32] and Meissner
[33], see Eqns 3.1 - 3.2. The exact solution to these equations is generally not possible in
closed form. Further work has thus focused on the special geometric case of a spherical cap,
where the constant and equal principle radii of curvature allow for considerable analytical
simplification. Even for the simple spherical cap geometry, the solution is found to be an
infinite hypergeometric series, which unfortunately does not allow for amenable calculations
in practice. Therefore, most subsequent authors considered approximate solutions for the
case of a spherical cap loaded asymmetrically, notably the approximations of Geckler [34]
and Hetéyni [35]. A good summary and overview of the axisymmetric loading of shells
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of revolution is given by Zingoni [36]. Section 3.3.1 sets out the problem and provides
an overview of the existing work in this area, re-deriving previous results in the consistent
notation used in this work. Sections 3.4.1 - 3.4.3 are original work which, building upon the
analyses of Section 3.3.1, analyse the behaviour of a dimple.

3.3.1 Axisymmetric analysis of a shell of revolution

Given the inherent axisymmetry in a shell of revolution dimple, a great simplification in the
analysis is possible by considering a loading which is also axisymmetric. By utilising this
symmetry the three dimensional geometry is reduced down to a problem which is a function
of radius only. There are four key properties which will be useful in this discussion, which
will later be parameterised by α1, α2, α3 and α4. These capture the bending and stretching
stiffness of a dimple under an applied edge moment or radial horizontal force. As well as
generically having a smaller edge rotation under an applied moment than a flat disc (a higher
rotational stiffness), a dimple is also seen to deflect horizontally more than a flat disc when
under a radial tension (a lower stretching stiffness). Additionally, unlike a flat disc, there is a
coupling between the bending and stretching behaviour; a horizontal radially applied force
produces an edge rotation and an applied moment produces a radial edge displacement.

A generic shell of revolution is shown in Fig. 3.1a with a infinitesimal element showing
the moments M, in-plane forces N, and shear forces Q, which act upon it. The rotation of the
shell, Θ, is the change in slope of the meridional circle due to bending and D is the flexural
rigidity of the shell. Setting up the coordinate system as per Fig. 3.1b and defining the
instantaneous principle radii of curvature to be Rφ and Rθ , the equilibrium and compatibility
of such an element lead to the following general equations for a shell of revolution under
axisymmetric loading [36]:

[
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Rφ

sinφ

]
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Θ = Rφ Rθ sinφQ (3.1)



34 Analysis of a single dimple

(a)

(b)

Fig. 3.1 Diagrammatic set-up for the analysis of a general shell of revolution. (a) The
moments M, in-plane forces N, and shear forces Q, which act are shown on an infinitesimal
element of the shell. (b) Coordinates φ , θ , principle radii of curvature Rφ and Rθ and shell
rotation Θ are shown on an infinitesimal element.
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Fig. 3.2 Diagrammatic set-up for a spherical cap. The axis of revolution is shown as a dashed
line. The shell has a constant radius of curvature R and constant through-thickness h. The
subtended half-angle of the shell is φ0, and φ and ω paramaterise the meridional angle from
the centre and edge of the shell respectively. An axisymmetric moment per unit length M and
a horizontal force per unit length H are applied to the edge of the shell. The edge rotation Θ

and horizontal radial displacement δ are shown as well as the horizontal radial coordinate r.
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Q =−Rφ EΘ (3.2)

These equations show that there is a fundamental coupling between bending and stretching
in a shell of revolution: a stretching-bending interaction. Finding a general solution to these
equations would be “extremely difficult” [36], due to the complexity of the coefficients of
the differential terms. However, when considering special geometric cases, such as a cone
or a spherical cap, some helpful simplification can be made due to constant or zero values
for principle curvatures. When considering a spherical cap shell, Eqns 3.1 and 3.2 can be
simplified greatly to give the following simultaneous equations:
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d2
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d2Q
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)
=−EhΘ (3.4)

Nevertheless, even here the hypergeometric series solution which can be obtained [32, 33]
is too cumbersome to be of much practical value [35]. Therefore, in practice, approximate
analytical solutions to these equations are sought. Perhaps the best known and simplest
solution is the Geckler approximation [34], which keeps only the second order derivative
terms from the LHS (Left Hand Side) of Eqns 3.3 and 3.4. The rapid decay of moment and
rotation near the edge of the shell in these problems makes the second derivative terms large
in comparison to Q, dQ

dφ
, Θ and dΘ

dφ
, allowing the lower order terms to be neglected. For

a spherical cap of constant through-thickness, the Geckler approximation gives relatively
compact expressions for the rotational and stretching response under axisymmetric bending
and tension. Where ω is the meridional angle from the edge of the shell, the rotation of the
shell is Θ and the horizontal radial displacement is δ , for an applied moment per unit length
M, the Geckler solution gives:

Q = M
2λ

R
e−λω sin(λω) (3.5)

Nφφ =−M
2λ

R
cot(φ0 −ω)e−λω sin(λω) (3.6)
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where λ =
4
√

3(1−ν2)(R/h)2

These equations show that the resulting moment and in-plane force distributions, and thus
stresses, decay away quickly as they move towards the centre of the dimple, as seen from
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the exponential decay term e−λω . λ is a non-dimensional parameter which describes the
characteristic attenuation distance. Similarly, equations can be obtained for an applied radial
force per unit length on the edge of the shell. The most useful result from these solutions is
the overall edge response, rotation and horizontal radial displacement, to a unit moment or
force per unit length. These can be given in the surprisingly elegant form [35]:

Θm =
4λ 3

ERh
(3.12)

δm = Θhrz =
2λ 2 sinφ0

Eh
(3.13)

δhrz =
2λRsin2

φ0

Eh
(3.14)

The rotation at the edge of a shell due to a unit moment, Θm, has no dependence on the
subtended angle of the dimple, φ0. The horizontal radial displacement at the edge of a shell
due to a unit moment δm, and the rotation due to a unit horizontal force Θhrz, transpire to
have the same value. The horizontal radial displacement at the edge of a shell due to a unit
horizontal force is denoted δhrz.

The solution for a spherical cap can be seen to be approximately equal to a cone which
has the same thickness and the same angle of opening [35]. Figure 3.3 shows such a pair
of equivalent shells, note that each has the same gradient at its edge. The depth of the cone
which corresponds to a spherical cap is given by:

dcone =
2dsph

1−
(

dsph
a

)2 (3.15)

Therefore if we have a dimple profile which is conical or a spherical cap then we can use the
Geckler approximation (Eqns 3.12-3.14), to calculate the stiffness properties of the dimple.
These solutions assume a constant thickness in the through-thickness direction, whereas here
the assumption, based on preservation of material during an indentation process, was of a
constant vertical thickness. However, because of the nature of shells of revolution problems
with an externally applied axisymmetric load, the stresses decay away rapidly on approaching
the middle of the shell. Therefore it is sufficient to match the exact thickness at the edge of
the dimple only, i.e.

t =
h

cosφ0
(3.16)
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Fig. 3.3 A spherical cap can be seen to be approximately equivalent to a cone which has the
same thickness and the same angle of opening. The radius of the dimple a, is related to the
radius of curvature by a = Rsinφ0.
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3.4 Analytical model of a single dimple

3.4.1 Normalised stiffness of a dimple

For a shell of revolution dimple with an arbitrary profile we parameterise the geometry as
having a radius a, maximum depth d and vertical thickness t. In general we expect that the
maximum depth occurs at the centre of the dimple. However, we can actually define the
dimple geometry using just two non-dimensional parameters. Here we will choose to use
d/a and a/t, the depth to radius ratio and the radius to thickness ratio.

It is useful to seek a suitable normalisation for the structural response characteristics
given in Eqns. 3.12-3.14. This will be particularly helpful when comparing different dimple
shapes against one another. The most natural comparison would be to compare a dimple
with a flat disc of the same radius and same thickness, and thus an equal volume of material.
A flat disc of radius a, thickness t, Young’s modulus E and Poisson’s ratio ν has a radial
displacement δhrz-disc under a unit radial force per unit length. The rotation of the edge of
a flat disc under a unit moment per unit length, is Θm-disc. However, as a flat disc does not
have any coupled bending-stretching response, an applied moment does not lead to any radial
displacement, and an applied radial force does not lead to any rotation. Therefore an “apex”
cone is chosen which has the same maximum depth of the dimple d, the same radius a, and a
constant through-thickness equal to the vertical thickness of the dimple t. Such a cone has a
rotation due to an applied radial force of Θhrz-apex and radial displacement due to an applied
moment of δm-apex. These displacements and rotations are illustrated in Fig. 3.4 and given
in Eqns 3.17-3.20. δm−apex and Θhrz−apex are derived from Eqn 3.13, substituting in for the
apex cone parameters: R = a/sinφ0, h = t cosφ0.

δhrz-disc =
a(1−ν)

Et
(3.17)

Θhrz-apex =
a 2
√

3(1−ν2)

Et2 (3.18)

δm-apex =
a 2
√

3(1−ν2)

Et2 (3.19)

Θm-disc =
a(1−ν)

Et3/12
(3.20)

For a general dimple, the structural response characteristics are thus normalised using the
flat disc and apex cone appropriately. α1 is the stretching stiffness of the dimple normalised
against a flat disc in stretching. α2 is the rotational stiffness of the dimple under radial
tension normalised by the apex cone. α3 is the stretching stiffness of a dimple under bending
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Fig. 3.4 A general dimple profile and its corresponding flat disc and apex cone. The edge
rotations and horizontal radial edge displacements presented in Eqns 3.17-3.24 are indicated.

normalised by the apex cone. α4 is the bending stiffness of the dimple normalised against a
flat disc in bending. Note that as α2 and α3 are expected to be equal in value, consequently
Θhrz and δm are of equal value.
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1
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Spherical cap and cone dimple

As the structural response of a spherical cap and a cone can be analytically calculated using
the Geckler approximation, it is then possible to derive the values of α1,α2,α3 and α4 in
terms of the non-dimensionalised geometric dimple parameters. For a cone, such as shown in

Fig. 3.3, noting that R = a/sinφ0, d = a tanφ0, h = t cosφ0 and λ =
4
√

3(1−ν2)(R/h)2, the
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rotational stiffness under bending can be written in terms of the three geometric parameters
a, d and t:

1
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)]3/4 =
Et3
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Thus the normalised rotational stiffness under bending, α4, can be written in terms of the
two dimensionless geometric parameters d/a and a/t:

α4 =
[3(1−ν)]1/4

(1+ν)3/4 ·
√

a/t
√

d/a

(1+(d/a)2)
3/2 (3.26)

The values of α1, α2 and α3 can be calculated similarly and expressed in terms of the
dimensionless geometric parameters:

α1 =
(1−ν)3/4

2 [3(1+ν)]1/4 ·
1√

d/a
√
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√

1+(d/a)2
(3.27)

α2 =
1

1+(d/a)2 (3.28)

α3 =
1

1+(d/a)2 (3.29)

Note that α1 and α4 can both be split into two terms: a purely geometric term solely
in d/a and a/t, and a material parameter term as a function of ν . Furthermore, each has a
simple dependence on the dimple radius to thickness ratio, a/t. The rotational stiffness in
bending, α4, increases with the square root of a/t. Thus for a sheet of a given thickness,
the rotational stiffness of a conic dimple in bending will increase with the square root of
the dimple radius. In contrast the stretching stiffness of a conic dimple will, for a given
sheet thickness, become less stiff with the square root of the dimple radius. Additionally,
the formulae tell us that while α1, α2 and α3 all decrease for an increasing value of d/a, for
α4 there is actually an optimum dimple depth to dimple radius ratio. It also suggests that
this optimum depth of dimple is solely a function of dimple radius and not influenced by the
Poisson’s ratio or the thickness. The rotational stiffness under bending of a conic dimple is
maximised when d/a =

√
1/5 ≈ 0.4472.

As seen in Fig. 3.3, a cone and a spherical cap with the same edge gradient, thickness and
radius are equivalent to each other. Therefore, the above formulae are equally applicable to
spherical cap dimple too, provided the value of depth is adjusted accordingly using Eqn 3.15.
Thus the maximum value of α4 for a spherical cap dimple is equal to that of a conic dimple



42 Analysis of a single dimple

and occurs when the spherical cap has d/a =
√

6−
√

5 ≈ 0.2134. This indicates, in contrast
to the second moment of area theory from Chapter 2, that a deeper dimple is not always
better at increasing the bending stiffness. It also indicates that the optimum dimple depth is
surprisingly shallow, around just 20% of the dimple radius for a spherical cap dimple.

General profile dimple

For a general dimple profile calculating the stiffness parameters α1, α2, α3 and α4 is much
less amenable to analytical calculations. Perhaps the best way to calculate these normalised
stiffness parameters is to run an axisymmetric FEA simulation on the chosen dimple profile.
As rotational symmetry is present the analysis needs to only consider a single segment, and
thus only a two dimensional mesh is needed, modelling the dimple profile. Compared to
a three dimensional model, a far smaller number of elements need to be modelled, which
allows such simulations to have very quick run times. Additionally such an FEA model can
also capture through-thickness effects when the dimple is comparatively thick and also deal
with changes in thickness.

3.4.2 Equivalent cone of a general dimple

Analytically calculating the normalised stiffness parameters of an arbitrary dimple profile is
not generally feasible. Therefore FEA simulations or other numerical methods will generally
be required to calculate the stiffness parameters, see Section 3.5. However, because there is
some conceptual insight to which can be gained by exploring analytically the stiffness of a
dimple, this section investigates techniques for approximate calculations. The accuracy of
these analytical calculations is compared against FEA in Section 3.5.2. For dimples with
a constant vertical thickness, but arbitrary profile which increases up to a maximum depth
which occurs at the dimple centre, an “equivalent cone” model can be used to analytically
approximate α4. Taking a cone which has the same radius and vertical thickness of such a
dimple, an estimate of the depth of the equivalent cone is found, and the rotational stiffness
of the equivalent cone is then taken as an approximation for the rotational stiffness of the
dimple. This section focuses on the parameter α4, as the rotational bending stiffness to an
applied moment is of most interest when considering dimples because it is this parameter
where improved performance is observed compared to a flat disc.

For a general dimple profile which is formed by an indentation process we expect the
depth to increase up to a maximum central value. Such a profile is therefore, in a macroscopic
sense at least, like a conic dimple, and as a first approximation therefore a cone which is
equal in radius, vertical thickness and depth may be suggested. An apex cone as such
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Fig. 3.5 A dimple of an arbitrary profile with radius a, vertical thickness t and depth d. The
dashed line shows the equivalent cone geometry for this dimple; it also has radius a and
vertical thickness t, but the depth of the equivalent cone is d‘.

provides a reasonable approximation in some cases, but a significant improvement can be
made by allowing the depth of the equivalent cone which we pick to be different to the actual
depth of the dimple d. We will seek to choose an equivalent depth d′, which gives a good
representation of the true dimple geometry, despite the conic shape being locally different in
places.

Noting the equivalence of a spherical cap dimple and a conic dimple, Fig. 3.3, matching
the edge gradient and thickness gives good equivalence despite significant difference in
geometry near the centre. We justify this approach by utilising the fact that for thin shell of
revolution problems like these, the bending stresses and in-plane stresses only permeate a
small distance in from the edge of the shell, as was seen as the e−λω term in Eqns 3.5-3.11.
This means that we are required only to seek an equivalent conic shape which matches the
true dimple geometry over a small region near the edge of the dimple. For the spherical
cap and cone example, this region was declared to be sufficiently small that matching just
the edge gradient would suffice. However, many practical dimple profiles formed using an
indentation process may have a smooth transition from the sheet and thus, like the quartic
profile shown in Fig. 3.6, y = d

( x
a −2

)2
( x

a)
2, have an edge gradient which is zero. For

such a dimple the effective depth would be zero if matching edge gradients, and therefore
this would suggest that the dimple still acted like a flat disc. The best approximation of
the equivalent depth comes from matching the equivalent cone geometry to the true dimple
geometry over a small but non-infinitesimal region around the edge of the shell as defined by
the non-dimensional length λ .

The Mφφ term is the major contributor to stresses in a dimple under axisymmetric bending.
As shown in Eqn 3.8, it has a maximum value equal to the applied moment at the edge of
the shell, and decays away with e−λω as well as having a sinusoidal variation. We shall
define a good equivalent cone to be one which intersects the true dimple geometry when Mφφ
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becomes less than 1/4 of its maximum value. The function
√

2e−λω sin(λω +π/4) reduces
to less than 1/4 when λω = 1.47415. Thus the critical location, where the equivalent cone
and true dimple geometry intersect is given when:

ωcrit =
1.47415

λ
(3.30)

rcrit = a
(

1− tan(φ0 −ωcrit)

tanφ0

)
(3.31)

Given the profile of the arbitrary dimple, we can now formulate an expression for
the intersection and then calculate the depth of the equivalent cone. As an example, this
calculation is performed for a quartic dimple profile. The profile of the equivalent cone is
y = d′( x

a) and the quartic profile, shown in Fig. 3.6, is y = d( x
a −2)2( x

a)
2. Thus, as we define

the profiles to intersect at x = rcrit, we can calculate the depth of the equivalent cone d′:

d′ rcrit

a
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(rcrit

a
−2
)2(rcrit
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)2
(3.32)

d′ = d
(

1+
tan(φ0 −ωcrit)

tanφ0

)2(
1− tan(φ0 −ωcrit)

tanφ0

)
(3.33)

Expressed in terms of the two non-dimensional geometric parameters, φ0 = tan−1 (d/a)

and λ = 4
√

3(1−ν2)
√

a
t (

a
d +

d
a ). Hence the depth of the equivalent cone can be calculated

directly from the geometric parameters of a dimple. For the quartic dimple shown in Fig. 3.6,
d/a = 0.25 and a/t = 60. Thus it can be calculated that ωcrit = 0.07182 and therefore
d′/d = 0.8677. Once the depth of the equivalent cone is known, the value of α4 can be
calculated using Eqn 3.26, substituting in the equivalent cone depth d′ in place of the true
dimple depth d. In this case, the equivalent cone has α4 = 3.329, a 5% reduction compared
to the apex cone approximation which assumed a depth d and thus calculated α4 = 3.497.
The equivalent cone model is compared against FEA in Section 3.5.2.

What is more, this method allows us to spot the regimes where the equivalent cone
approximation will not be valid. When the value of ωcrit calculated is greater than the
opening angle of the dimple φ0, then we know that the stresses are no longer confined to the
edge of the dimple, but actually permeate right across the centre and will start interacting
with each other. This normally occurs for thick, shallow dimples, as the increasing thickness
decreases the value of λ (hence increasing ωcrit) and the shallowness reduces φ0. While,
even for this case, Eqn 3.33 finds a solution for d′, the intersection found actually occurs on
the far side of the centre, and is thus not a physically viable solution. What is more, in such
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Fig. 3.6 Axisymmetric FEA is used to find the von Mises stress distributions due to an applied
moment for a quartic dimple with d/a = 0.25 and a/t = 60, colour contours range from
[Dark blue, 0 MPa] to [Red, 4.5 MPa]. The equivalent cone for this geometry is calculated to
have d′/d = 0.8677, and this is shown as a dashed line. The FEA of the equivalent cone is
also shown and the quartic profile is superposed onto it as a dashed line to allow for ease of
comparison.

situations the value of α4 predicted is often less than 1, however as a thick shallow dimple is
approximately a flat disc, we know that in reality α4 should be approximately equal to 1.

3.4.3 Equivalence of an inclusion and a dimple in an infinite plate

Having analysed the behaviour of a shell of revolution dimple acting on its own, we now
seek to understand how such a dimple behaves when it is part of a larger flat sheet or plate.
We will compare the effect of a single dimple at the centre of an infinite plate to a circular
elastic inclusion. The plate is studied in biaxial bending and biaxial tension because such
loading is equivalent to axisymmetric loading. We shall find that in such circumstances a
dimple can be represented exactly by an elastic inclusion which is of the same thickness as
the infinite plate and the same radius of the dimple. The effective stiffness of the inclusion
in stretching Estretch, and the effective stiffness in bending Ebend, can be determined by the
dimple geometry.

The principle of superposition can be used to analyse the effect of an inclusion or a dimple
which is included into the middle of an infinite plate which is under biaxial (axisymmetric)
loading. For each of the eight states shown in Fig. 3.7, the rotation and/or radial deflection
at a radius of a is shown for a unit loading. The radial displacements and rotations of an
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Fig. 3.7 The principle of superposition can be used to analyse the effect of an inclusion
or a dimple which are included into the middle of an infinite plate which is under biaxial
(axisymmetric) loading. In each of the eight states the rotation and/or radial deflection at
a radius of a is shown for a unit loading. States A and C show an infinite plate with a
central annulus under a uniform biaxial tension and uniform biaxial bending respectively.
States B and D show an infinite plate with an applied loading on the edge of the central
annulus. States E and F show an elastic inclusion with stiffness kE, under an applied biaxial
tension or biaxial bending respectively. States G and H show an arbitrary dimple under an
applied biaxial tension or biaxial bending respectively. A combination of these states can be
superposed together to provide an equilibrium of forces and moments and a compatibility of
displacements and rotations at the interfaces.
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arbitrary dimple under an applied moment or radial tension are calculated in terms of α1,
α2, α3 and α4. Superposing states A, B and E allows for the analysis of an elastic inclusion
within an infinite plate under biaxial tension to be analysed. Considering equilibrium and
compatibility at a radius of a:

A ·δA +B ·δB = E ·δE (Compatibility) (3.34)

A−B = E (Equilibrium) (3.35)

Where A, B and E are used to indicate the proportions of each state which must be superposed
to give the total solution. Setting A = 1 to equate to a unit tension at the boundary and hence
solving the simultaneous equations, the displacement at the edge of the inclusion can be
expressed as:

E ·δE =
δA +δB

δB +δE
δE =

2k
(1+ν)k+(1−ν)

δE =
2a(1−ν)

Et[(1+ν)k+(1−ν)]
(3.36)

Superposing states A, B, D, G and H allows for the analysis of a dimple within an infinite
plate which is under a far-field uniform biaxial tension. Considering compatibility of rotation
and radial displacement and equilibrium of moment and radial force:

A ·δA +B ·δB = G ·δG +H ·δH (Compatibility of displacement) (3.37)

D ·ΘD = GΘG +H ·ΘH (Compatibility of rotation) (3.38)

A−B = G (Force equilibrium) (3.39)

D =−H (Moment equilibrium) (3.40)

Once more setting A = 1, these four simultaneous equations can be solved, which allows the
radial displacement at the edge of the dimple to be expressed as:

G ·δG +H ·δH =
δA +δB

δB +δG − ΘGδH
ΘD+ΘH

·δG +
−ΘG

ΘD +ΘH

δA +δB

δB +δG − ΘGδH
ΘD+ΘH

·δH (3.41)

This can be rewritten:
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δA +δB

δB +δG − ΘGδH
ΘD+ΘH

·
(

δG − ΘG

ΘD +ΘH
δH

)
=

δA +δB

δB +δG(1−ζ )
·δG(1−ζ ) (3.42)

where:
ζ =

ΘGδH

δG(ΘD +ΘH)
=

(1+ν)α1(
1+ν + 1−ν

α4

)
α2α3

(3.43)

Comparing the displacement of an inclusion to that of a dimple within an infinite plate in
far field tension, Eqns 3.36 and Eqn 3.42, we note that the expressions are equivalent when
δE = δG(1− ζ ). This then provides the way to calculate the effective elastic inclusion in
stretching which matches the dimple. Comparing the values of δE and δG, Fig. 3.7, we can
deduce that:

kstretch =
α1

1−ζ
(3.44)

A very similar superposition analysis can be undertaken for an elastic inclusion and a
dimple which are included in an infinite plate under uniform far-field bending. In a similar
manner, comparing the rotations of the inclusion to a dimple thus reveals the effective
stiffness of inclusion which matches the bending behaviour of a dimple:

kbend =
α4

1− γ
(3.45)

where:

γ =
ΘGδH

ΘH(δB +δG)
=

(1+ν)α4(
1+ν + 1−ν

α1

)
α2α3

(3.46)

Notice that both ζ and γ are simply functions of the normalised stiffness parameters
of the dimple, α1, α2, α3, α4 and the Poisson’s ratio ν . Therefore the effective inclusion
stiffness can be calculated given these normalised stiffness parameters.

Contrasting ΘF to ΘH directly could lead to the conclusion that the effective value of
stiffness, Ekbend, would be equal to Eα4. However, this analysis shows that when considered
as part of a larger sheet, a dimple is slightly stiffer than one might naïvely assume. This is
because of the bending-stretching interaction in a dimple: applying a pure axisymmetric
moment to the edge of a dimple, as in Fig. 3.7 H, leads to an outward radial expansion of
the dimple, however this expansion is partially restrained when it is included in a plate. The
resulting inward radial reaction force from the plate then – once again from the bending-
stretching interaction, but this time in reverse – leads to a small upward rotation, therefore
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reducing the overall rotation and increasing the bending stiffness. This effect is captured by
the dimensionless parameter γ , the larger the value of γ the larger the increase in stiffness is.
Smaller values of α2 and α3 indicate a greater interaction between bending and stretching for
a dimple, and consequently γ , which is inversely proportional to α2 and α3, is commensurate
to the bending-stretching interaction. The value of γ can often be large enough to have
a significant affect on the value of kbend, however the value of ζ is normally significantly
smaller and so the effective stiffness in stretching is not much affected. This is due to γ being
proportional to α4 whereas ζ is proportional to α1, and dimples by design have values of α4

which are greater than 1, but values of α1 tend to be significantly less than 1.
Because in a globally flat plate in the initial linear elastic regime there is no interaction

of stretching and bending this superposition analysis shows that bending performance of
a dimple and the stretching performance of a dimple can be exactly captured by elastic
inclusions of the same radius and with the appropriate values of kbend and kstretch. While
an elastic inclusion and a dimple achieve their greater stiffness in bending by different
mechanisms, they have the same effect on the surrounding plate. A slight caveat is that
while a dimple in a plate in biaxial tension results in exactly the same distribution of in-plane
stresses and radial displacements as an elastic inclusion with kstretch, the dimple also will
result in some small rotations and out-of-plane deflections near the dimple, however these
do not make any contribution to the radial displacements and are only localised around the
dimple and decay away such that they have no effect at the edge of the plate. Additionally it
must be noted that this analysis has been conducted for biaxial loadings and is not necessarily
applicable to uniaxial loading or other general loadings.

3.5 Finite Element Analysis of a single dimple

Analytical calculations of the stiffness parameters of a dimple, α1, α2, α3 and α4, are only
amenable to very limited to special geometries such as a spherical cap or cone. Other dimple
profiles can only be approximated using techniques such as the equivalent cone method,
Section 3.4.2. Using FEA, the stiffness parameters of dimples of arbitrary profile can be
calculated numerically to a high degree of accuracy. This section assesses the accuracy of
the analytical predictions for spherical caps and cones from Section 3.4.1, as well as the
accuracy of the equivalent cone method from Section 3.4.2. Furthermore FEA analyses of
a dimple included within a larger plate and analyses of an inclusion within a larger plate,
Section 3.5.3, verify the theoretical equivalence of an dimple and inclusion of the appropriate
stiffness established in Section 3.4.3.
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FEA simulations are run using the commercial software package ABAQUS 6.14 [37].
Axisymmetric modelling using CAX8R quadratic reduced integration elements is performed,
a high mesh density is chosen and loading is applied via a reference point which is coupled
to the edge of the dimple geometry with a continuum coupling. Typically analyses use
approximately 5000 CAX8R elements and correspondingly have approximately 30000
degrees of freedom. Edge rotations and edge displacements are applied and the resulting
edge reaction forces and reaction moments can be extracted from the reference point located
at the mid-thickness on the outer edge of the dimple. These forces, displacements and
rotations allow for the calculation of α1, α2, α3 and α4 for each dimple. Within the dimple,
the in-plane forces can be calculated by averaging the stress at each cross-section and the
moments can be calculated by considering the difference in stress at the top and bottom
surface. Where dimple geometries had a non-zero gradient at the outer edge, small spikes in
stress were observed at the very edge of the dimple: this was due to the edge of the dimple
not being perpendicular to the mid-surface as a result of the constant vertical thickness of
the profile. Making a very small adjustment to the geometry to make the edge of the dimple
perpendicular to the mid-surface removed these stress anomalies without any significant
change to the stress distribution in the rest of the dimple.

3.5.1 FEA of a spherical cap vs Geckler theory

As the Geckler approximation for the solution of applied axisymmetric edge loading is based
on a shell of constant thickness in the through-thickness direction, rather than the constant
vertical thickness that we assume the dimples possess, it is useful to verify the applicability of
the theory by comparing to FEA results. Additionally, as we know that the Geckler solution
is only an approximation to the true solution, since it neglects the lower order derivative
terms, it is especially important to check the accuracy via FEA comparison.

Figure 3.8 shows the moments and in-plane forces per unit length for an axisymmetric
FEA model of a spherical cap under an applied edge moment in comparison with the Geckler
approximation, Eqns 3.6-3.9. The applied moment per unit length is M = 1Nmm/mm, the
dimple has constant vertical thickness t = 0.2mm, radius a = 12mm and depth d = 3mm,
thus R = 25.5mm and φ0 = 0.48996. The moments and in-plane forces are plotted against
the meridional angle as measured from the edge of the dimple, ω , see Fig. 3.2. An excellent
agreement between the FEA and the theory is seen, for both moment and in-plane force
distribution an excellent fit of both shape and magnitude is observed. As predicted the
stresses decay away quite rapidly from the edge of the dimple; even for this relatively thick
dimple a/t = 24, the stresses are negligible near the dimple centre.
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(a)

(b)

Fig. 3.8 An axisymmetric FEA model of a spherical cap dimple with a constant vertical
thickness subjected to an applied edge moment has been modelled using ABAQUS [37]. The
applied moment per unit length is M = 1Nmm/mm, and the dimple geometry is a = 12mm,
d = 3mm and t = 0.2mm. (a) The radial and circumferential moments from FEA are
compared to the Geckler solution, Eqns 3.8-3.9 (b) The radial and circumferential in-plane
forces from FEA are compared to the Geckler solution, Eqns 3.6-3.7.
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Additionally, it is seen that the values of normalised bending and stretching stiffness are
very accurately predicted. Calculating the corresponding cone depth for a spherical cap using
Eqn 3.15, dcone = 6.4mm, then using the Geckler approximation, Eqns 3.26-3.29, we find
α1 = 0.0672, α2 = 0.7785, α3 = 0.7785 and α4 = 2.4301. The FEA results for the same
geometry give α1 = 0.0765, α2 = 0.8118, α3 = 0.8118 and α4 = 2.4245. The value of α4,
the normalised stiffness in bending due to an applied moment, is correctly predicted to within
0.25%. The other values are also accurately predicted and moreover, these values are seen to
increase in accuracy for thinner shells. Figure 3.9 shows a series of coloured heatmap tables
which compare the normalised stiffness values of a spherical cap dimple as calculated using
the Geckler approximation and as found from FEA.

As noted earlier, for a given depth to radius ratio, the value of α4 increases with
√

a/t,
and FEA confirms this trend. Additionally FEA confirms that there is an optimum depth
to radius ratio, d/a, which is independent of a/t, and that it occurs near the theoretically
predicted value of d/a =

√
6−

√
5 ≈ 0.2134. While α4 is predicted very accurately over

the entire range of geometries considered, for α1, α2 and α3, the prediction is less good for
the thicker shells, although very good agreement is seen for dimples with a high a/t ratio,
i.e. thin shells. Furthermore, FEA results confirm that the values of α2 and α3 are equal to
each other, as the theory suggests. However, unlike the theory, the FEA does suggest a slight
dependence on a/t, particularly for thicker dimples. Dimples with a lower a/t ratio have a
higher value of α2 and α3 than predicted, and this is especially notable for shallow dimples.
This should not be completely unexpected; a thick shallow dimple is close to a flat disc, and
as a flat disc has no bending-stretching interaction, it would have α2 = α3 = ∞.

As the value of γ is roughly constant and changes only slowly with varying d/a and
a/t, kbend is also, like α4, approximately proportional to

√
a/t and also has an optimum

value which occurs for a similar depth to radius ratio. The calculated values for kbend from
FEA are very similar to those calculated from the theory, within a couple of percent, the
accuracy is particularly good for the stiffer dimples, which are of most practical interest.
The theoretical approximations for kstretch are slightly less accurate, though still within 10%
for most geometries. Pleasingly the predictions are most accurate for the dimples of most
practical interest, i.e. those with a high value of α4. Additionally for these thin spherical
caps, the stretching stiffness is close to zero, and thus assuming that they have no stretching
stiffness is an easy, conservative, and yet not too inaccurate assumption.

3.5.2 FEA verification of the equivalent cone technique

Since in reality the geometry of a dimple may be more arbitrary than the simple spherical
caps and cones which the Geckler approximation can calculate, it is of interest to see how
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Fig. 3.9 A series of heatmap tables show the normalised stiffnesses of a spherical cap dimple,
comparing the FEA values to the theoretical Geckler approximation. Values are calculated for
a range of dimple depth to radius, d/a, and radius to thickness, a/t, ratios, representing the
expected range of practical dimple geometries. Values of kbend and kstretch are also calculated,
using Eqns 3.45 and 3.44.

.
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accurately the modified equivalent cone technique can predict values of α4. A quartic curve
is a well known profile which can be used to model shells of revolution where a smooth
profile with gradients of zero at the edge and the centre is desired. This particular curve
is often used as its particularly simple analytically expression can make calculations more
amenable [38]. A quartic curve has the formula y = d

( x
a −2

)2
( x

a)
2; the unequal rate of

change of meridional curvature as the profile dips and then flattens out again is typical of a
dimple formed by indentation.

Performing an FEA axisymmetric indentation test using ABAQUS [37], an idea of what
realistic dimple profiles could look like could be gained. Setting up the FEA axisymmetric
model as before, but starting with a flat profile, surface contact was modelled between a
rigid hemi-spherical indenter and the initial flat disc. The indenter has a radius equal to the
radius of the initial disc. Additionally, non-linear geometry is used as deformations are, by
definition, large. The plate was given material properties of E = 125,000N/mm2, ν = 0.3
and σ0 = 300N/mm2. Pinned roller boundary conditions were applied to the top and bottom
surface of the plate outside the indentation region. This allowed the plate material to slide
horizontally, but prevented any vertical deformation in the flat section of the plate, mimicking
the restraint imposed by the thick steel forming plates. Figure 3.10 shows the resulting
shape of dimple which is formed when a/t = 15 and the indenter moves downward by
d/a = 1/3 and is them lifted up again. Elastic rebound causes the final dimple shape to have
d/a = 0.3052. The dashed white line shows the quartic profile, superposed onto the FEA
figure which shows the resulting shape of the dimple as well as the resulting self-stresses.
This figure confirms that the assumption of constant vertical thickness is reasonably valid
and also that the quartic curve is indeed a good approximation to a dimple profile formed by
indentation.

Axisymmetric FEA simulations of quartic dimples with a range of geometries are per-
formed in an equivalent way to the spherical cap dimples as described in Section 3.5.1. The
rotations and edge displacements are extracted for both an applied edge moment and applied
radial force and thus the normalised stiffness coefficients can be calculated. Of particular
interest is the normalised bending stiffness due to an applied moment, α4. Three dimensional
contour plots of α4 are shown in Fig. 3.11; theoretical values calculated using an apex cone
and the equivalent cone, are compared to the FEA values. The apex cone assumes a cone
depth equal to the true dimple depth, whereas the depth of the equivalent cone is calculated
based on the distance the stresses propagate in from the edge, see Section 3.4.2. Additionally,
where the equivalent cone model calculates that the stresses propagate further than the centre
of the dimple, ωcrit > φ0 , the value of α4 is set to 1, as in this case the dimple is acting like
a flat disc. It is seen that the equivalent cone is much better at predicting performance of
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Fig. 3.10 FEA simulation of the plastic deformation occurring during the indentation process,
the final geometry and von Mises stresses are shown. The indenter is depressed by a distance
d/a = 1/3 and then raised again, allowing a small elastic rebound. The indenter is a rigid
hemisphere of radius a; the dimple has a/t = 15. Colour contours range from [Dark blue,
0 MPa] to [Red, 400 MPa]. A quartic profile, shown as a dashed white line, is superposed
onto the FEA geometry.

the quartic dimple than the apex cone is. For thick and deep dimples, where the bending
stiffness is less than a flat disc, behaviour is captured reasonably accurately by both apex and
equivalent cone; however, the equivalent cone correctly identifies the thick shallow dimples
that have a value of α4 ≈ 1, whereas the apex cone does not and instead predicts a value of
α4 less than 1. For thinner dimples with higher values of a/t, the equivalent cone model is
better at both predicting the overall trend and also the values of α4 than the apex cone. The
FEA and equivalent cone model both show that the optimum value of d/a is higher than
for the spherical cap, occurring around d/a = 0.5. It also shows that there is a less sharp
dependence on optimum d/a for a quartic profile: this allows for a broader range of dimple
depth to radius ratios to achieve an α4 value which is close to the optimum. The quartic cone
FEA and equivalent cone theory confirm that the α4 ∝

√
a/t relationship that was seen for

the spherical cap dimple holds for other dimple geometries too; this information is useful
from a design perspective. Additionally the spherical cap theory which showed that the
optimum dimple depth to radius ratio is independent of a/t, is proved to approximately hold
true for the quartic dimple too, though a slight increase in optimum depth is seen for thinner
dimples.

3.5.3 FEA verification of the equivalence of a dimple and an inclusion

The superposition analysis of Section 3.4.3 suggested that a dimple could be considered to
be an elastic inclusion, and gave a formula for calculating the effective Young’s modulus
for a dimple under tension and under bending. FEA simulations are carried out to compare
the effects of an inclusion in a thin plate to the effects of a dimple on the surrounding plate,
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(a) (b)

(c) (d)

Fig. 3.11 Contour maps of α4: (a) FEA results for quartic profile dimples; (b) Apex cone
theory; (c) Equivalent cone theory; (d) Equivalent cone theory with values set to unity where
ωcrit > φ0.
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Fig. 3.12 An infinite plate with a single central circular dimple or inclusion, is subjected to
a general bending loading. The loading is parametised with the parameter F , where F = 1
corresponds to biaxial bending.

Fig. 3.12 shows a diagrammatic layout of such a generalised bending set-up. A square plate
which is sufficiently large to be considered infinite is modelled: the half-width of the plate to
radius ratio is L/a = 16. A quarter model is used to exploit the inherent symmetry and three
layers of C3D20R 3D stress elements in a fine mesh ensure an accurate and smooth stress
distribution can be extracted.

Figure 3.13 shows the stress distributions seen from the FEA modelling of a dimple
and of an inclusion when subjected to an externally applied equi-biaxial bending loading.
Stresses are axisymmetric in both cases as expected and while the stresses inside an inclusion
are higher than the nominal stress, in a dimple the stresses are significantly less than in the
rest of the plate. However, the stresses seen in the rest of the plate, r > a, seem to have
the same distribution in both cases. Extracting the stresses on the top and bottom surfaces
along a radial line allows for a calculation of moment; circumferential and radial stresses
respectively allow for radial and circumferential moments to be calculated as a function of
radius. The curvature and rotation along a radial line can also be extracted from the FEA and
Fig. 3.14 shows these for an inclusion and a dimple, along with the radial and circumferential
moments.

The behaviour for ρ = r/a < 1 is very different for a dimple and an inclusion. The
inclusion has a high approximately uniform stress across it, but the curvature is lower than
that of a flat homogeneous sheet, κ < κ0, due to the higher material stiffness of the inclusion.
(Note that the curvature of a homogeneous sheet is κ0 = M0(1−Fν)/(Et3/12)). For a
dimple, geometry makes the stresses decay away to zero at the centre, in fact the stresses



58 Analysis of a single dimple

Fig. 3.13 An inclusion and a dimple of the same radius are modelled as part of a large flat
plate under biaxial moment using FEA. The inclusion has k = 2.607 and the dimple has
d/a = 1/3 and a/t = 30. The plate has a half-width which is 16 times larger than the radius
of the dimple or inclusion, L/a = 16. Colour contours show von Mises stresses from low
stress [Dark blue] to high stress [Red].the outline of the dimple and inclusion are shown by a
bold black line.
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Fig. 3.14 The radial and circumferential moments of a dimple in a plate and of an inclusion
in a plate are shown, normalised by the applied moment per unit length M0 and as a function
of normalised radius ρ = r/a. Rotation and curvature along a radial line are given for both
the dimple and inclusion case; curvature is normalised against the curvature of a flat sheet
under a biaxial bending κ0. Rotation is plotted against and compared to the rotation of a
flat homogeneous plate. The dimple has a quartic profile with d/a = 1/3 and a/t = 30, the
inclusion has k = 2.607. The plate modelled is sufficiently large to be effectively infinite,
L/a = 16 and is subjected to biaxial bending, see Fig. 3.13.
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even reverse, Mrr becomes negative. Thus the curvatures decay to zero near the centre of the
dimple and even becomes negative around ρ = 0.5, however near the edge of the dimple the
curvature is higher than κ0. Overall however, the curvature in the dimple is less than a flat
homogeneous sheet, and this is seen by noting the lower rotation at the edge of the dimple
than that of a flat sheet at ρ = 1. In contrast the behaviour of the outer plate, ρ > 1, is similar
for both an inclusion and a dimple. The moments, curvatures and rotations, both radially and
circumferentially, take exactly the same form, irrespective of whether a dimple or inclusion
is present in the middle of the plate. In this case the inclusion stiffness is chosen to be equal
to the α4 value of the dimple, k = 2.607. This can be seen to be an underestimation however,
as the rotation of the inclusion plate is slightly higher than that of the dimple plate. As
shown in Section 3.4.3, the effective k of an inclusion in bending which corresponds to a
dimple is not simply α4, but because of bending-stretching interaction and the radial restraint
of the surrounding plate, it is slightly stiffer. Equation 3.45 gives the effective stiffness as
α4/(1− γ). For the dimple presented in Fig. 3.14, d/a = 1/3 and a/t = 30; α1 = 0.147,
α2 = 1.467, α3 = 1.465 and α4 = 2.607, thus γ = 0.255 and the effective value of kbend is
3.501. Figure 3.15 shows that the behaviour of an inclusion with k = kbend = 3.501, the
FEA results verify that the behaviour in the plate, ρ > 1, matches perfectly; both radial and
circumferential moments are identical for the dimple and the inclusion case, when k = kbend.
While the stresses and curvatures are different while ρ < 1, the rotation at ρ = 1 is the same
for both cases, thus confirming that the analysis of Section 3.4.3 is valid and that under
biaxial loading a dimple can be modelled very effectively as an inclusion of the relevant
stiffness, kbend. This means that a dimple and an inclusion of the relevant stiffness can be
considered interchangeable as far as the rest of the sheet goes. This will be examined further
in Chapter 5.

Although the theory has focused analytically on biaxial/axisymmetric behaviour, it is
valuable to compare how dimples and inclusions behave under different types of loading, i.e.
uniaxial or antisymmetric. Here the term antisymmetric loading is used to describe a loading
which is equal and opposite in perpendicular directions. Using superposition of the biaxial
and antisymmetric loading conditions, any arbitrary state of loading can be achieved. Thus
considering the antisymmetric case in addition to the biaxial case is sufficient for complete
generality. If an equivalence between an inclusion in a plate and a dimple in a plate is seen,
then this equivalence will be valid for any load state.

Figure 3.16 shows the von Mises stresses developed around a dimple and an inclusion
when a large flat plate is subjected to an antisymmetric bending load. Graphs of circumferen-
tial and radial moments as well as curvatures and rotations are shown in Fig. 3.17. While the
moment distributions are different, even for ρ > 1, the curvature and rotations seem at least
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Fig. 3.15 The radial and circumferential moments of a dimple in a plate and of an inclusion in
a plate are shown, as per Fig. 3.14. However the inclusion in this case has k = kbend = 3.501.

to have a very similar form, even if the magnitudes are slightly different. Considering the
rotations, it would seem that a slightly higher value of k would allow for a more representative
inclusion, see Fig. 3.18

To achieve the best agreement of curvatures and rotations between the dimple and
inclusion when under antisymmetric bending, the stiffness of the inclusion must be larger by
about 15%, such that k ≈ 4. While the radial and circumferential moments take a significantly
different form between the two cases, the radial curvatures and rotations do correlate very
well for this slightly stiffer inclusion. This suggests that while a dimple and an inclusion do
not have an exact equivalence as was proven for biaxial bending, for antisymmetric bending
an inclusion still captures the behaviour of a dimple reasonably well.

3.6 Conclusions

The analysis of general cones of revolution under axisymmetric loading is amenable to
closed form solutions only for special geometries, such as a spherical cap or cone, where
simplification can be made on account of constant radii of curvature. Approximate solutions
such as the Geckler approximation allow for the stretching and rotational stiffness of a dimple
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Fig. 3.16 An inclusion and a dimple of the same radius are modelled as part of a large flat
plate under antisymmetric moment using FEA. The inclusion has k = 3.501 and the dimple
has d/a = 1/3 and a/t = 30. The plate has a half-width which is 16 times larger than the
radius of the dimple or inclusion, L/a = 16. Colour contours show von Mises stresses from
low stress [Dark blue] to high stress [Red].The outline of the dimple and inclusion are shown
by a bold black line.
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Fig. 3.17 The radial and circumferential moments, curvatures and rotations of a dimple in
a plate and of an inclusion in a plate in antisymmetric bending. The dimple has a quartic
profile with d/a = 1/3 and a/t = 30, the inclusion has k = kbend = 3.501.
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Fig. 3.18 The radial and circumferential moments, curvatures and rotations of a dimple in
a plate and of an inclusion in a plate in antisymmetric bending. The dimple has a quartic
profile with d/a = 1/3 and a/t = 30, the inclusion has k = 4.
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to an applied axisymmetric moment or horizontal loading to be derived. Expressing the
normalised stiffnesses, α1, α2, α3, α4, of a spherical cap or conical dimple in terms of d/a
and a/t allows general observations to be drawn abut the bending and stretching stiffness of
a dimple. For example the rotational stiffness due to an applied moment, α4, is proportional
to the square root of the radius to thickness ratio,

√
a/t, while the stretching stiffness due

to an applied horizontal force, α1 is inversely proportional to
√

a/t. There is an optimum
depth to radius ratio for maximising α4, however α2, α3 and α4 all decrease with increasing
d/a. While analytical solutions for dimples of arbitrary shape are not amenable to closed for
solutions, the equivalent cone method shows that by analysing a cone of the same thickness
and radius of the dimple and of a depth chosen to match the shape of the dimple over a
suitable edge region, a good approximation can be made of the dimple’s rotational stiffness.
Axisymmetric modelling in FEA confirms the accuracy of the analytical solutions for cones
and spherical caps, as well as the accuracy of the equivalent cone approximation. Provided
that the thickness at the edge of the shell is matched appropriately, it is found that assuming a
constant thickness in the through-thickness direction or assuming a constant vertical thickness
makes a negligible difference for typical dimple geometries. Furthermore axisymmetric FEA
is found to be an excellent method for determining numerically the rotational and stretching
stiffnesses of a dimple of any shape.

This chapter has also shown that there is an equivalence between a dimple and an elastic
inclusion in an infinite plate. When considering a linear elastic plate under biaxial tension or
biaxial bending the equivalence is exact, which is proved by both analytical consideration as
well as FEA. The analytical superposition of a dimple or an inclusion into a hole in the centre
of an infinite plate allowed for the derivation of an equation to calculate the effective stiffness
of an inclusion for a given dimple, in terms of the normalised rotational and stretching
stiffness of the dimple to an axisymmetric moment or horizontal force (α1, α2, α3, α4). The
effective rotational stiffness of a dimple in bending, kbend , is typically greater than unity,
is maximum for an intermediate value of d/a and can be especially large for dimples with
high a/t ratios. The effective stretching stiffness of a dimple, kstretch, is lower than unity
and decreased with increasing d/a and a/t. Due to the bending-stretching interaction of a
dimple and the horizontal restraint provided the surrounding plate, the effective stiffnesses of
a dimple in an infinite plate, kbend and kstretch, are greater than the rotational and stretching
stiffness of a dimple by itself, α4 and α1.

For a dimple in an infinite plate under uniaxial or antisymmetric loading, the equivalence
of a dimple and an inclusion is not exact. FEA shows that while stress distributions in the
plate are different, the resulting curvatures and rotations are very similar. However, to get
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the best correlation with a dimple, an inclusion of slightly higher stiffness must be used
compared to the stiffness of inclusion calculated to be equivalent in the biaxial bending case.



Chapter 4

Patterns of inclusions

4.1 Summary

Homogenisation is a technique used in various disciplines and here will prove to be a useful
approach to characterise the overall linear elastic stiffness of a plate patterned with inclusions.
Analytical analysis of a single inclusion in a circular plate of finite size under axisymmetric
loading will provide the basis for a derivation of a novel “rule-of-mixtures” which predicts
the smeared stiffness of an inclusion patterned plate. The resulting Finite Plate Theory
formula is able to predict the stiffness of a plate for inclusions of an arbitrary stiffness and
Poisson’s ratio.

Comparing this Finite Plate Theory prediction against FEA of inclusion patterned plates
shows an excellent agreement across a wide range of modular ratios, Poisson’s ratios, and
pattern spacing. Even for very high packing ratios, when inclusions are close together and
stress fields around neighbouring inclusions strongly interact, the prediction is excellent.
Smeared stiffness is seen to be isotropic and pattern independent and the homogeneity
proportional to the ratio of the inclusion radius to overall plate size. The overall stiffness is
also seen to be independent of loading type, with biaxial, uniaxial and antisymmetric loading
all having equal values of normalised stiffness. Compared to existing “rules-of-mixtures” the
newly derived theory is shown to be superior, providing a better match for both FEA results
as well as for experimental data from uniaxial tension and 4-point bending of perforated
strips.

4.2 Introduction

In the previous chapter it was shown that a single dimple in an infinite plate could be well
modelled by an elastic inclusion of an appropriate stiffness. This is helpful as it is much
easier to model elastic inclusions than it is to model the complicated three dimensional
geometry of a dimple – not just analytically easier, but also easier to model using FEA.
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The three dimensional problem of a dimpled sheet has been reduced to a two dimensional
problem by using inclusions. However, in the case of a dimpled sheet which is patterned
with many dimples, the idea of treating each one as an elastic inclusion really comes into
its own. Therefore in this chapter the analysis of plates which contain a pattern of multiple
inclusions will be considered and subsequently verified by FEA.

4.3 Background

Understanding the overall structural and material properties of plates with microscopic or
macroscopic inclusions is useful in many areas, from the design of perforated nuclear reactor
grid plates [3, 39] to composite materials [40–42]. The effect of a single hole or an elastic
inclusion within a larger plate is a classical problem [43], with much of the subsequent
work in this field driven by analysis of composite structures where fibres running through a
matrix are understood as stiff inclusions, or perforated plates where holes are inclusions of
zero stiffness. For a single inclusion of arbitrary stiffness in an infinite thin plate, analytical
solutions exist in both generalised bending and generalised stretching [44, 45]. However, the
practical interest in such questions often concerns not one, but multiple inclusions. For regular
patterns, previous authors used point-matching techniques to truncate infinite expressions
[9, 46] satisfying boundary conditions of a unit cell at a finite number of points, but this is a
mathematically lengthy method. While this is a useful technique by which (an arbitrarily
close approximation of) the true stress distribution can be found, it needs to be recalculated
for every new pattern, and is strictly limited to infinite plates of regular repeating patterns
(because analysing a single unit cell with appropriate symmetry conditions on its edges is a
key premise of this technique).

FEA can overcome this restriction, and can give an accurate numerical solution (to an
arbitrarily close approximation) even for finitely sized plates and those with irregular patterns
of inclusions. However, FEA is computationally expensive, with each new pattern requiring
a new simulation. Often the key property of interest is the global bending or stretching
stiffness of the overall plate. Calculating the exact stress distribution is therefore often simply
a somewhat complicated and lengthy means to an end.

Homogenisation is a technique which can be used to give an overall view of the per-
formance of a structure or material which is in reality not actually homogeneous when
observed close up, but these inhomogeneities are small compared to the overall scale of the
structure. Early motivations for homogenisation theory were for finding overall material
properties, such as the elastic properties of metal alloys [47] or the magnetic permeability
of a multiphase materials [48]. Subsequently it was seen that homogenisation was a useful
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technique to use when considering composites [9, 49, 50]. More recently homogenisation
approaches have been used to capture the overall structural behaviour of structural elements
or materials where the size of the inhomogeneities is comparatively large, no longer on a
microscopic scale. Examples range from finding the equivalent orthotropic properties of a
corrugated sheet [10] to the effective elastic modulus of foamed concrete [51, 52].

As a result of academic interest in homogenisation emanating from various different
fields, a number of different methods of estimating the smeared homogeneous properties have
been developed and such methods are termed “rules-of-mixtures”. These are often developed
from somewhat different perspectives, each bring a slightly different set of assumptions to
the problem. A comparison of many different rules-of-mixtures is given in Section 4.11.

4.4 Homogenisation of patterns of inclusions

When considering a large sheet patterned with many inclusions, rather than attempt to analyse
every detail of it, we seek an overall idea of how the sheet behaves. In other words we wish
to calculate what the smeared properties of the sheet are. Taking a flat plate with a large
number of inclusions patterned across it, the task is to calculate what the overall “material”
properties the plate would have if it were instead a plate of the same dimensions but made of
a single material throughout. Finding the new “material” properties which capture the global
behaviour of the overall structure is a technique called homogenisation. Homogenisation is
a valid method to employ when the size of the inclusions is small compared to the overall
size of the plate. In the case of metal alloys for example: though each metal which makes up
the alloy has different intrinsic material properties, the interspersion of atoms or grains is on
such a small scale, that overall homogenised material properties can be given. Alternatively
consider the way in which newspapers achieve grayscale images using just a single shade of
black ink. By using small black dots, either of varying size on a constant grid, or varying
clustering density with a single size of dot (or sometimes a combination of both), an image is
formed which from a distance appears to have greyscale shading; this technique is called
halftoning or dithering. An example of this process is displayed in Fig. 4.1; the black and
white squares each comprise of exactly 50% of the total image in each case. However,
increasing the number of squares in an image, and correspondingly decreasing the size
of each little square, starts to make the overall image appear as a single homogeneous
colour: grey. Stepping away from the page and viewing from a distance amplifies this effect.
Figures 4.1d-4.1f show the same effect using blue and red squares; using 4, 64 and 4096
total squares successively, the overall image appears to become purple. Here it is apparent
that the relative size of the squares, compared to the scale of the overall view being taken,
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(a) (b) (c)

(d) (e) (f)

Fig. 4.1 Black and white squares are alternately tiled, with each making up exactly 50% of
the total image in each case; however a different size and hence different number of small
squares is used in each case: (a) 4 squares, (b) 64 squares, (c) 4096 squares. When red and
blue squares are dithered in this manner, a homogeneous purple shade is perceived: (d) 4
squares, (e) 64 squares, (f) 4096 squares.

is important to the level of perceived homogeneity. Likewise for a pattern of inclusions in
a plate, the relative size of the inclusions to that of the overall plate will be important to
determine the validity of taking a homogenisation approach. Smaller inclusions will result in
a higher level of homogeneity, however it is useful to investigate the level of homogeneity
achieved with varying size of inclusions relative to the plate. In particular, it is important
to determine how valid a homogenisation will be when the inclusions are relatively large,
noting that for very large inclusions boundary conditions will become important.

Previous studies of composites have often sought to calculate homogenised values of
elastic constants [9, 49]. When determining the homogenised behaviour of plates patterned
with inclusions there are four factors which are likely to affect the value of the smeared elastic
moduli calculated: inclusion stiffness, the distance between inclusions, the proportion of the
plate which is made of inclusion material and the shape of the inclusions. In this chapter



4.5 Theoretical analysis of patterns of inclusions 71

the homogenised elastic moduli for an inclusion patterned plate are calculated analytically,
primarily based upon the analysis of the behaviour of an inclusion under biaxial loading,
Section 4.5. Formulas for predicting the elastic moduli are then verified using FEA modeling
of a wide variety of inclusion patterned plates and the effects of patterning, inclusion shape
and loading type are also investigated, Section 4.7.

4.5 Theoretical analysis of patterns of inclusions

4.5.1 Analysis of a single inclusion

Infinite plate behaviour

Unlike shells of revolution, circular inclusions have been analysed under generalised loadings,
not just axisymmetric loadings [43, 45, 53]. Here the term generalised loading refers to load
states with a unit loading in one direction while the loading in the perpendicular direction
can take any value between positive unity to negative unity, as indicated by the generalised
loading parameter F , for example see Fig. 4.2. While in general the effects of an inclusion
within a plate in bending or in-plane tension are slightly different, for symmetrical loading
(biaxial stretching or biaxial bending) the stress distributions formed around the inclusion
within an infinite plate are identical for linear elastic behaviour. One can understand this
straightforwardly: slicing the plate in biaxial bending into many thin layers in the through-
thickness direction produces layers, each performing as a thin plate in biaxial stretching.

The solutions to the elastic stress field around an elastic inclusion in an infinite plate
are given by Goodier [54]. Alternatively one can start with the well known solution for
a hole in an infinite plate under uniaxial tension [43], and then use superposition (in the
manner of Deryugin, Lasko and Schmauder [53]), to obtain the solution for an inclusion of
arbitrary rigidity under generalised in-plane tension. At the plate-inclusion interface there
must be an equilibrium of radial stress, and circumferential strains must be equal to satisfy
compatibility. Using a polar coordinate system, Fig. 4.2, an Airy’s stress function can specify
the stress distribution around a linear elastic inclusion in an infinite linear elastic plate for a
generalised in-plane loading, e.g. uniaxial tension, antisymmetric tension and biaxial tension,
see Equations 4.1 which are consistent with those derived in [53]. In a similar manner, Bert
[45] considers generalised bending of a linear elastic inclusion of arbitrary rigidity.

For an infinite plate with a central inclusion of arbitrary rigidity under a generalised
in-plane tension loading, the stress distributions are given by [53]. Updating the notion to be
consistent with Fig. 4.2a, denoting the plate with a “1” subscript, and the inclusion with “2”,
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(a)

(b)

Fig. 4.2 A thin infinite plate with a central circular elastic inclusion under (a) generalised
in-plane tension loading, (b) generalised bending moment loading: F = 0 is uniaxial loading
and F = 1 is biaxial/symmetrical loading. The plate is thin and is defined to have unit
thickness, σ0 is an applied force per unit length and M0 is an applied moment per unit length.
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Poisson’s ratio ν , Young’s modulus ratio k = E2/E1, generalised loading parameter F and
normalised radius ρ = r/a, the stress distributions are given by:
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where:
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(4.4)

For generalised bending of a thin linear elastic plate with a circular linear elastic inclusion
Bert [45] gives the stresses in and around the inclusion:
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The stress distributions described by Eqns 4.1 - 4.6 are presented graphically as stress
contour plots in Fig. 4.3. Note that the plane stress assumption has been used in each
case – the through-thickness stress component is assumed to be zero because the plate is thin.
The polar equations of stress have been transformed to show the stresses in the x direction.
The Stress Concentration Factor (SCF) indicates the stress relative to the nominal stress,
σxx/σ0 or Mxx/M0 respectively. The stress distributions are for an infinite plate, though
only a quadrant with side length ρ = 5 is shown. In every case the stress component σxx

is constant within the inclusion, however the magnitude of this stress changes depending
on the load type and loading condition. For in-plane stretching the inclusion SCF is almost
unchanged across the different load cases, however its value becomes marginally closer to
unity as F decreases. In contrast, for a plate in bending, more extreme values of SCF (i.e.
further from unity) are seen in the inclusion for decreasing F . For biaxial loading, identical
SCF distributions are seen in the plate for both bending and stretching. However, differences
in shape and magnitude of the SCF distributions are seen between bending and stretching
when F ̸= 1. While Fig. 4.3 is shown for k = 2, these observations hold for all values of k.
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Fig. 4.3 The normalised stress distributions around an inclusion in a thin infinite plate in
stretching or in bending are shown for three load conditions, biaxial, uniaxial and antisym-
metrical. Transforming the polar expressions in Eqns 4.1 - 4.6, the normalised stresses in the
x direction are plotted and shown for k = 2. The outline of the inclusion is indicated with a
black line in each case.
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In general these stress distributions are functions of both radius, r, and in-plane polar
angle, θ ; however for the special case of symmetrical loading (biaxial tension or bending
where F = 1 in Fig. 4.2), the stresses are simply a function of radius. Effectively, we have a
one dimensional problem where the stresses, strains and deflections are now solely a function
of radius.

Denoting the plate with a “1” subscript, and the inclusion with “2”, the generalised
equations for the stress distributions can be simplified in the biaxial case to give:
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(1+2k)2 − (ν2 +(1−ν1)k)2 (4.15)

and σ0 is the far-field stress amplitude.
This is a significant simplification of the general equations, and additionally, since both

bending and in-plane tension offer equivalent stress distributions, we shall now proceed
in terms of in-plane tension only: the results obtained are equally applicable to biaxial
bending, replacing force per unit length for moment per unit length, strain for curvature and
displacement for rotation.

From Eqns 4.14 the stresses in the plate outside of the inclusion tend towards σ0 with
the inverse square of the normalised radius. Using the stress distributions from Eqn. 4.14
and Hooke’s Law, the corresponding strains in the plate and in the inclusion for linear elastic
behaviour are:
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Fig. 4.4 A circular elastic inclusion in a circular plate of a finite size R under biaxial tension.
The plate has a unit thickness.

Note that in the case where the Poisson’s ratios of the inclusion and the plate are equal,
ν1 = ν2 = ν , the inclusion stress factor, K, and consequently ε∗, can be simplified to give:

K =
2k

(1−ν)+(1+ν)k
ε
∗ =

(1+ν)(k−1)
(1−ν)+(1+ν)k

(4.19)

We can now either integrate the radial strains or use the identity δrr = r εθθ to find the radial
displacement in the plate, δrr, as a function of ρ:

δrr = aε0

(
ρ − ε∗

ρ

)
(4.20)

The radial stiffness of a finite circular plate, Fig. 4.4, is defined to be the applied load
divided by the radial extension at the edge of the plate. Given that the inclusion acts as
a stress concentrator and the stresses decay towards unity with increasing distance away
from the inclusion, if we assume that the boundary (ρ = Λ) of a finite plate is large enough
so that stresses are not significantly changed from the infinite plate case, using the radial
displacement function of the infinite plate (Eqn 4.20), we can calculate approximately the
stiffness of the finite plate:

ψinfinite =
2πRσ0

aε0 (Λ− ε∗/Λ)
(4.21)

The radial stiffness of a circular homogeneous plate, of the same material parameters and
thickness, but without an inclusion is:

ψ0 =
2πRσ0

aε0Λ
(4.22)
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Thus the normalised stiffness, Ψ, is found by dividing by the stiffness of the inclusion plate
by the stiffness of the homogeneous plate:

ψinfinite

ψ0
= Ψinfinite =

Λ2

Λ2 − ε∗
= 1+

ε∗

Λ2 − ε∗
(4.23)

Finite plate behaviour

If the actual stress distribution in a finite plate is known (rather than approximating it with
the infinite plate stress distribution), the stiffness calculation can be further improved. An
elegant approach is to take a free body cut around a plate of a finite radius (ρ = Λ) within
the infinite plate case. From Eqn 4.14 we know that the stress at the free body edge is
σ0(1+(K −1)ρ−2). We now scale down the entire stress field in order to arrive at a radial
stress of σ0 on the external boundary. Thus, the stresses in the finite plate case are exactly the
stresses from the infinite plate case scaled down by the factor 1+(K −1)Λ−2. The overall
stiffness now increases by this same factor i.e.

Ψfinite =

(
Λ2

Λ2 − ε∗

)(
1+

K −1
Λ2

)
(4.24)

Elastic smeared modulus

Alternatively, we can approximate the normalised stiffness by calculating a smeared Young’s
modulus using the relative area of each material. The two most natural ways are to take an
arithmetic average or a harmonic average:

Earithmetic =
(πa2)E2 +π(R2 −a2)E1

πR2 = E1

(
1+

k−1
Λ2

)
(4.25)
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(4.26)

The arithmetic average is equivalent to finding the average stiffness of a set of structural
elements; consider a set of springs in parallel. The harmonic average is equivalent to finding
the average flexibility of a set of structural elements; consider a set of springs in series. The
limiting behaviour of ε∗ can be easily verified from Eqn 4.19 when the modular ratio, k,
takes extreme values of 0 and ∞. The normalised stiffnesses using the infinite plate stress
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distributions, Ψinfinite from Eqn 4.23, then become:

k → 0, ε
∗ →≈ k−1; Ψinfinite = 1+

ε∗

Λ2 − ε∗
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k−1
Λ2 (4.27)

k → ∞, ε
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k
; Ψinfinite = 1+

ε∗

Λ2 − ε∗
→ 1+

1−1/k
Λ2 −1+1/k

(4.28)

These indicate that the normalised stiffness calculated using infinite plate stress distributions
is equivalent to the harmonic smeared Young’s modulus when the inclusion is rigid; however,
when the inclusion is much less stiff and “approaches” a hole, it is close to the arithmetic
average. As the harmonic and arithmetic averages are known provide upper and lower
bounds for smeared homogenised stiffness, it is helpful to verify that the infinite plate method
estimates an intermediate value for stiffness for intermediate values of k, and tends towards
these upper and lower bound for extreme values of k.

4.5.2 Patterns of inclusions

Inscribed tile stiffness

Consider a large plate with a pattern of inclusions. Around each inclusion we can draw the
“tile” – the patch of plate associated with the inclusion. For a regular hexagonal pattern, the
tile is a hexagon, as shown in Fig. 4.5; more generally, the tile, also known as a “Voronoi cell”
[55], of a given inclusion is the region of plate which is closer to the centre of that inclusion
than to any other. For a sparse pattern with large distances between each inclusion, it is
reasonable to consider each tile as a finite plate with a single inclusion at the centre and the
far field stress, σ0, at its edge. Approximating the tile with an appropriate finite circular plate
allows us to use the results of Section 4.5.1 to estimate the overall stiffness of the patterned
plate.

Taking the inscribed circle of the tile, we can use Eqn 4.24 to calculate the stiffness of
a plate of this radius for an overall stiffness of the patterned plate. Taking the separation
between the edges of two adjacent inclusions, see Fig. 4.5, and normalising by the inclusion
radius, we find a non-dimensional measure of the separation of inclusions, which we denote
as the “gap-ratio”. For the hexagonal pattern the inscribed circle of the tile has radius, Λ

equal to: 1+(gap-ratio/2).

gap-ratio =
Separation between edges of adjacent inclusions

Radius of inclusions
(4.29)

The finite plate method also gives a prediction for the stress concentration factor inside
the inclusions. Dividing the uniform stress inside the inclusion for an infinite plate from
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Fig. 4.5 A regular hexagonal pattern of inclusions. The outlines of the hexagonal “tiles” of
each inclusion are shown in grey. Two adjacent finite circular plates inscribed by the tiles are
shown (short-dashed line). An adjusted size of finite circular plate, of the same area as one
hexagonal tile is shown using a long-dashed line. The separation between the edges of two
adjacent inclusions is shown with the black arrow. The gap-ratio of the pattern is equal to the
separation divided by the inclusion radius.

Eqn 4.14, by the finite plate factor from Section 4.5.1 and substituting for K from Eqn 4.19,
we obtain Eqn 4.30:

SCF =
K

1+(K −1)Λ−2 =
2k

k(1+ν)+(1−ν)+(k−1)(1−ν)Λ−2 (4.30)

When the gap-ratio is large and thus when there is a large spacing between inclusions,
assuming each tile to behave like a finite plate with the radius of the inscribed circle should
be a good assumption. However, when there is close spacing then the stress distributions
around the inclusions will start to interact with each other, and the stresses will no longer
decay away to unity at the midpoint between inclusions, i.e. at the edge of the assumed finite
plate. Therefore we expect that while the Finite Plate Theory of Section 4.5.1, using the
inscribed tile circle, should predict the stresses and thus stiffness of the patterned plate very
well for large gap-ratios, it will be less accurate as gap-ratios become smaller.

Figure 4.6 compares the stress distribution around an inclusion in an infinite plate and
that around an inclusion in a finite plate, Fig. 4.4, of radius equal to that of the inscribed tile
radius, to the stresses found from FEA of a regular hexagonal pattern of inclusions under
biaxial loading. The radial stresses are plotted along the line that joins the centers of two
adjacent inclusions for two different gap-ratios. When the gap-ratio is large, Fig. 4.6a, the
inscribed finite plate gives an excellent prediction, and as the finite plate factor is very small,
the infinite plate stresses are also a good approximation. For a moderate gap-ratio, Fig. 4.6b,
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(a)

(b)

Fig. 4.6 The normalised radial stress distributions for a biaxially loaded plate with a hexagonal
pattern of inclusions, k = 3, along the line connecting two inclusion centers. Stresses
calculated assuming a plate of infinite size, Eqn 4.14, and for an inscribed finite plate from
Section 4.5.1, are compared to FEA. (a) gap-ratio = 10; (b) gap-ratio = 4.
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the infinite plate stress, Eqn 4.14, no longer provides a good approximation. The inscribed
finite plate theory predicts the stress inside the inclusion (ρ < 1) very well and provides a
good approximation of the stresses in the rest of the plate. The main discrepancy seen is at the
midpoint between inclusions, where though the inscribed finite plate predicts a radial stress
of exactly σ0 by definition, the FEA of the patterned inclusions suggests a stress slightly
higher than unity.

Considering the symmetry of a regular hexagonal pattern of inclusions, we expect that
there should be a point of zero gradient in the stress distribution at the midpoint between
adjacent inclusions. Mirroring the inscribed finite plate radial stress distribution in Fig. 4.6b,
would however create a discontinuity in stress gradient, and this clearly should not be the case
as there is no geometric or material feature at this point in the plate to cause it. Both radial
and circumferential stresses should have zero gradient at the midpoint between adjacent
inclusions due to symmetry, Fig. 4.7, but not necessarily a value of radial stress equal to
σ0. Thus instead of finding a stress distribution in a finite plate which has a radial stress of
σ0 at its edge, we could seek a solution which has zero stress gradient for both radial and
circumferential stresses, i.e.

dσrr

dr

∣∣∣
r=R

= 0
dσθθ

dr

∣∣∣
r=R

= 0 (4.31)

Still considering axisymmetric solutions around a circular inclusion in a finite plate we
can use an Airy’s stress function to derive a general solution for stresses. Then relaxing
the boundary condition that the stress should be equal to σ0 at r = R, but enforcing the
two zero stress gradient boundary conditions, Eqns 4.31, find a particular solution. Solving
the biharmonic equation requires a biharmonic function, and restricting ourselves to an
axisymmetric function which is solely a function of r, the general Airy’s stress function is:

Φ = c0 + c1r2 + c2r2 lnr+ c3 lnr (4.32)

and thus:

σrr =
1
r

∂Φ

∂ r
+

1
r2

∂ 2Φ

∂θ 2 = 2c1 + c2(1+2lnr)+
c3

r2 (4.33)

σθθ =
∂ 2Φ

∂ r2 = 2c1 + c2(3+2lnr)− c3

r2 (4.34)

where c0,c1,c2 and c3 are arbitrary constants. Calculating the stress gradients at r = R:
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dσrr

dr

∣∣∣
r=R

=
2c2

R
− 2c3

R3 = 0 (4.35)

dσθθ

dr

∣∣∣
r=R

=
2c2

R
+

2c3

R3 = 0 (4.36)

thus c2 = c3 = 0. Hence it is alas impossible to enforce the zero stress gradient boundary
conditions, except in the trivial case of a constant uniform stress everywhere. As the Airy’s
stress function was as general as it could be in axisymmetry, we conclude that there is no
suitable axisymmetric stress function for a finite circular plate which will correctly display
the zero stress gradient conditions which we know must exist in a regular pattern of inclusions
due to symmetry.

Superposition and scaling method

Comparing the inscribed finite plate stresses to the FEA hexagonally patterned inclusions
stresses in Fig. 4.7, we notice that for such a small gap-ratio the stresses are approximated
even less well. However, we notice that even for such a small gap-ratio there are two points
which seem to be predicted very well: the radial stress at the centre of the inclusion and the
circumferential stress just outside the inclusion, highlighted by red circles on Fig. 4.7a and
Fig. 4.7b respectively. Note also that the stresses in the inclusions are no longer completely
constant for such a small gap-ratio: the radial stress increases slightly towards the edge of the
inclusion whereas the circumferential stress becomes fractionally lower. This observation
can be explained by considering that when very close together, the decaying stress from one
inclusion is not quite negligible when it reaches the adjacent inclusion, and thus the effect
of this interaction is seen as a slight variation in the otherwise constant internal inclusion
stress. Indeed, considering superposing two identical stress distributions, each emanating
from the centre of adjacent inclusions, would also be guaranteed to give a zero stress gradient
at the midpoint, as desired. Choosing a stress distribution which has radial stress which
reaches σ0 at the centre of the adjacent inclusion is one such option and allows relatively
easy calculation analytically: such a finite plate thus has twice the radius of the inscribed
finite plate.

Given that a homogeneous plate has a constant stress of σ0, and the inclusions cause
deviations about this value, when considering superposing different stress distributions
together it is the differences in stresses from σ0 which need to be considered, see Eqn 4.37.
In this way we can see that the stress distributions of other, more distant inclusions, will
have a negligible effect, as these will have decayed away to almost exactly σ0, and so their
contribution will be negligible. Where two stress states A and B are to be superposed:
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(a)

(b)

Fig. 4.7 The normalised stress distributions for a biaxially loaded plate with a hexagonal
pattern of inclusions, gap-ratio = 2, k = 3, along the line connecting two inclusion centers.
Stresses calculated assuming a plate of infinite size, Eqn 4.14, and for an inscribed finite plate
from Section 4.5.1, are compared to FEA. (a) Radial stresses; (b) Circumferential stresses.
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σsuperposition = (σA −σ0)+(σB −σ0)+σ0 (4.37)

Figure 4.8 plots the finite plate stress distributions around two adjacent inclusions, where
the assumed radius of each finite plate is equal to the centre to centre (c.t.c) distance between
the inclusions. The resulting superposition of stresses is also plotted in Fig. 4.8. For both
the radial and circumferential stresses, the shape of the resulting superposed distribution is
similar to that found from the FEA of hexagonally patterned inclusions. However, particularly
for the radial stresses, the magnitude of the stresses do not match that well to FEA. We know
that the inscribed finite plate gave a very good approximation to the radial stress at the centre
of an inclusion, so we can scale down the superposed stress by a constant factor everywhere
such that the stress at the centre of the inclusion is as per the inscribed finite plate prediction,
Fig. 4.8a. This superposed and scaled distribution of radial stresses is shown in Fig. 4.8a. For
the circumferential stresses such a scaling will not be appropriate. Considering equilibrium,
we know that the average circumferential stress must be equal to σ0. Consider a free body cut
which passes though the centre of a row of inclusions, such as a vertical line though Fig. 4.5,
as the far field stress perpendicular to this cut is σ0, so also the perpendicular stresses at this
cut must have an average value equal to σ0 to maintain equilibrium. Therefore any scaling
which we apply to the circumferential stresses should not change the average stress from the
value of σ0. Therefore we shall apply a scaling factor only to the difference from σ0, and
therefore the average stress will remain unchanged. The scaling factor is chosen to match
the superposition stress to the inscribed finite plate stress just outside the inclusion, as per
Fig. 4.7b. The scaled superposition stress distributions are plotted in Fig. 4.8 and comparison
to FEA is extremely good. While this method of scaling the superposed stresses is somewhat
physically dubious and not entirely justifiable, e.g. the compatibility of strains no longer
exactly holds, it does capture the stress distribution remarkably well, even for very small gap-
ratios such as 0.5. Of course, being able to accurately predict the radial and circumferential
stresses allows for the calculation of the resulting strains and therefore displacements. The
radial strain is given by εrr = (σrr − νσθθ )/E, and integrating the radial strain gives the
radial displacement. From the displacement we can thus calculate an overall normalised
stiffness. Even considering the simpler case of ν1 = ν2 = ν , the analytical derivation is quite
algebraically long (see Appendix B.1), but the final result is given here:
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Ψss = 1÷
[

1− 2(k−1)
kd

+
2(k−1)

cad3(d −1)

(
[d3 −4.5d2 +7.5d +5]+

1
k
[d3 −d2 −6d +5]

+νcb[d3 −d2 −3d +2]
k−1

k

)]
(4.38)

where d is the centre to centre distance between adjacent inclusions, ca = k(1+ν)+(1−
ν)+(k−1)(1−ν)(d/2)−2 and cb =

1+(d/2)−2

1+(d−1)−2+2d−2 .

As the stresses are predicted so accurately by this scaled superposition analysis, so too
are the strains and displacements and thus the overall stiffness calculated will be a very good
approximation for a plate of hexagonally patterned inclusions.

Finite Plate Theory

As an alternative to the accurate, though lengthy, predictions of stresses around patterns
of inclusions using the superposition and scaling method, it is possible to extract another
prediction of behaviour by using the analysis of a finite plate. While the inscribed tile theory
worked well, using a radius Λ = 1+gap-ratio/2, another choice is to choose a radius which
gives the finite plate the same area as the tile of the inclusion. This adjusted size of finite
circular plate is shown as a dashed white circle in Fig. 4.5. For a regular hexagonal pattern a

circle with equal area to the tile has a radius Λ =
√

(2
√

3/π)(1+gap-ratio/2).
Calculating the radius of such a circle for the tile of any regular pattern, we find that the

value can be neatly written as Λ =
√

1/p, where p is the proportion of the area of the total
plate which is inclusions. This is helpful as it makes the resulting calculations of normalised
stiffness and of inclusion SCFs independent of the gap-ratio between inclusions. Substituting
Λ =

√
1/p into Eqn 4.24:

ΨFPT =

(
1

1− pε∗

)
(1+(K −1)p) (4.39)

When the plate and inclusion have the same Poisson’s ratio, ν1 = ν2 = ν , substituting in
K and ε∗ from Eqn 4.19, yields a remarkably simple form:

ΨFPT =
2k− (1− p)(k−1)(1−ν)

2+(1− p)(k−1)(1+ν)
(4.40)

Similarly the SCF inside the inclusion, from Eqn 4.30, is given by:
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(a)

(b)

Fig. 4.8 Stress distributions for a finite plate which has a diameter equal to the centre to
centre (c.t.c) distance between inclusions. These stresses are superposed together and then
the superpositioned stresses are scaled to correspond with the stresses at the two key locations
identified in Fig. 4.7.
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SCFFPT =
K

1+(K −1)p
=

2k
k(1+ν)+(1−ν)+(k−1)(1−ν)p

(4.41)

Using the normalised stiffness, an expression for the effective overall Young’s modulus
of an inclusion patterned plate.

EFPT = E1ΨFPT = E1

(
1

1− pε∗

)
(1+(K −1)p) (4.42)

Similarly, by considering the stresses predicted by the Finite Plate Theory inside the
inclusion and in the plate at the inclusion interface, a prediction can be made of when first
yield will occur. In general the plate and the inclusion may have different material values of
yield stress, σY 1 and σY 2 respectively. First yield could occur in either the inclusion or the
plate, and thus both possibilities must be checked.

In the inclusion the radial and circumferential stress are equal to (σ0K)/(1+(K −1)p);
the through-thickness stress, σtt , is equal to zero due to the plane stress assumption of a thin
plate. Thus according to both Tresca and von Mises criterion, first yield will occur when
(σ0K)/(1+(K −1)p) is equal to σY 2. Consequently the effective yield stress of the overall
plate, when governed by inclusion yielding, is:

σYFPT = σY 2
1+(K −1)p

K
(4.43)

The maximum stresses in the plate are found at the inclusion/plate interface. Considering
the stresses in the plate at the interface, ρ = 1, we find:

σ1rr

σ0
=

K
1+(K −1)p

σ1θθ

σ0
=

2−K
1+(K −1)p

σ1tt

σ0
= 0 (4.44)

Using a Tresca criterion, first yield will occur when the maximum difference between any
pair of principle stresses is equal to σY 1. For a stiff inclusion, K > 1, σ1θθ is positive and thus
σY 1 = σ1rr −σ1tt . For a soft inclusion, K < 1, σ1θθ is negative and thus σY 1 = σ1rr −σ1θθ .

When K > 1 σYFPT = σY 1
1+(K −1)p

K
(4.45)

When K < 1 σYFPT = σY 1
1+(K −1)p

2−K
(4.46)

Alternatively using von Mises criterion:
σY =

√
0.5[(σrr −σθθ )2 +(σrr −σtt)2 +(σθθ −σtt)2], the effective yield stress of the over-
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all plate, when governed by plate yielding is:

σYFPT = σY 1
1+(K −1)p√
3K2 −6K +4

(4.47)

Note that when the Poisson’s ratio of the inclusion and the plate are equal, ν1 = ν2 = ν ,
then the appropriate Tresca regime is easily established as K > 1 when k > 1 and K < 1
when k < 1. Additionally, when the inclusion material is stiffer than the plate, k > 1, then
using the Tresca criterion, the effective yield stress expressions are the same for inside the
inclusion and in the plate itself, and can be simplified to give:

σYFPT = σY
(1−ν)+(1+ν)k+(k−1)(1−ν)p

2k
(4.48)

where σY is the minimum of σY 1 and σY 2.

4.6 FEA methodology

In order to test the validity and accuracy of the theoretical predictions of the behaviour of an
inclusion patterned plate, finite element simulations were conducted using ABAQUS [37].
Linear elastic models were tested in both bending and stretching for a variety of inclusion
shapes, patterns and loading conditions. The FEA methodology is set out below.

A square plate has a centred pattern of inclusions and in-plane forces per unit length
apply biaxial tension to the edges, see Fig 4.9. Partitioning is used to define the inclusion
geometry and pattern and divide the plate into sections and then each section is given the
relevant material properties. Using appropriate mirror symmetry conditions, only a quarter
of the overall plate needs to be analysed, for computational efficiency. The mesh distribution
itself is fine and non-uniform to mitigate mesh sensitivity effects. A sufficiently large number
of inclusions are modelled so that edge effects are confined in very narrow bands, much
smaller than the plate width: Fig 4.10 clearly shows the edge effects present in the FEA, but
confirms that these are reasonably small in magnitude and decay away very quickly. The
stresses around the outer row of inclusions in each case have a small but discernible deviation;
however, the remainder of the inclusions behave identically to each other. Quadratic shell
elements (S8R or STRI65), with 9 through-thickness integration points, are used as their
formulation assumes a plane stress condition (zero stress in the through-thickness direction)
which allows for a significantly more efficient run time. Selected geometries were modelled
using quadratic full 3D stress elements (C3D20R), and these simulations confirmed the
validity of using the shell elements. For these models three layers of elements through-
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Fig. 4.9 A square plate with a hexagonal pattern of inclusions, modelled in ABAQUS [37].
An equal biaxial loading is applied equal in magnitude to σ0. Colour contours of SCF range
from [Dark blue, 0.9] to [Red, 1.3]. Here: k = 3, ν = 0.3, gap-ratio = 4; thus p = 0.1008.

thickness were used, giving a total of 7 through-thickness integration points; the plate
thickness was chosen to be either 1/30th or 1/60th of the radius of the inclusions. The
quarter plate model, mirrored along symmetry lines to show the full plate in Fig. 4.9, when
modelled with quadratic shell elements contains 76574 elements, and correspondingly a total
number of degrees of freedom of 1384338. This equates to an inclusion being modelled with
approximately 200 elements. A corresponding analysis using solid elements, with the same
plan view mesh density, contained 186053 elements and had 2807310 degrees of freedom
in the model. The run time for solving the solid element FEA formulation was just over an
order of magnitude higher than the shell element FEA model. Selected geometries were also
run with finer mesh densities to confirm that convergence had been established.

For the hexagonal pattern the local stress variations in Fig. 4.10a are practically axisym-
metric, which underpins this assumption in Section 4.5. In contrast, the stress distributions
around inclusions in a square pattern exhibit a distinct four-fold symmetry. For both patterns
the stresses inside each inclusion are practically uniform (c.f. Eqn 4.14) and SCFs are
found by taking the von Mises stress at the middle of a central inclusion and dividing by
σ0. The plate stiffness can be calculated by considering the displacement at the edge of the
plate; alternatively, for a regular pattern we may consider the deformation of the central
unit cell. The stress, strain and displacement distributions along a line which connects the
centers of adjacent inclusions, Fig. 4.6, can be extracted by using the “path” functionality in
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(a) (b)

Fig. 4.10 Von Mises stress from FEA for (a) hexagonal pattern, (b) square pattern. The stress
distributions in (b) are distinctly less axisymmetric compared to (a). Colour contours of SCF
range from [Dark blue, 0.9] to [Red, 1.3].

ABAQUS. The mesh must be partitioned in such a way that the mesh elements are aligned to
the intended path: in the case of a regular pattern centered on the plate the quarter model
naturally provides such an edge. By modelling just a single inclusion in the centre of a large
plate the performance in various states of bending and stretching can be compared against
Eqns 4.1–4.6 and validate these theoretical expressions.

4.7 Biaxial loading

4.7.1 Regular patterns

The normalised stiffnesses from Eqns 4.24, 4.25, 4.26, 4.38, 4.40 are compared together in
Fig. 4.11 for two different values of inclusion stiffness, k, over a wide ratio of gap-ratios.
These are additionally compared to the FEA results of thin plates patterned hexagonally with
inclusions. There is close correlation between FEA and the inscribed finite plate stiffness
when there is large separation between inclusions that, however, diminishes as the inclusions
become closer together. The arithmetic and harmonic approximations provide upper and
lower bounds on the overall stiffness, but do not provide such an accurate prediction as the
other methods. As expected from the extremely good match between theoretical and FEA
stresses in Fig. 4.8, the superposition and scaling method gives a very good prediction of the
normalised stiffness of a hexagonally patterned plate when k > 1; better than the inscribed
finite plate theory. However, when the inclusions are less stiff than the surrounding plate,
k < 1, while still a very good prediction for large gap-ratios it is poor for small gap-ratios.
Using Finite Plate Theory Eqn 4.40, even better agreement with FEA is observed when
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the finite plate has an area equal to the hexagonal tile. The agreement is excellent over all
gap-ratios and for inclusions which are both more stiff and less stiff than the surrounding
plate, k > 1 and k < 1. Additionally, as well as having a superior prediction for closed spaced
soft inclusions, the Finite Plate Theory, Eqn 4.40, has a shorter and less complex expression
than the superposition and scaling method, Eqn 4.38.

Additionally, the Finite Plate Theory gives a prediction of the SCF inside the inclusions
Eqn 4.30. Choosing the inscribed tile radius and the equal tile area radius as values of Λ,
predictions of SCF are compared to FEA in Fig. 4.12. The inscribed finite plate theory
works well for larger values of gap-ratio, but the Finite Plate Theory (with Λ =

√
1/p) is

remarkably accurate over the entire range, even for very small gap-ratios.
Noting that when the finite plate is chosen such that it has an equal area to the tile of

the pattern, Λ =
√

1/p, the normalised stiffness becomes independent of gap-ratio and
instead is a function of p, Fig. 4.13 plots the normalised stiffness expressions against p.
Figure 4.13a plots the same data as Fig. 4.11a, but shows more clearly the superiority of
the Finite Plate Theory compared to both the inscribed finite plate theory and superposition
and scaling method. Note that, along with the arithmetic and harmonic smeared averages,
the Finite Plate Theory tends to the value of k as p tends to unity – as expected, since the
plate would be entirely inclusion material. Additionally we can observe that the inscribed
finite plate theory takes a value of k when p is the maximum packing of the pattern e.g. when
p = π/(2

√
3)≈= 90.7% for hexagonal packing. This is a consequence of the inscribed finite

plate stiffness being equal to k when the gap-ratio is equal to zero. This observation explains
why, for a square pattern of circular inclusions, the inscribed finite plate theory predicts a
value of k when p =≈ 78.5%, Fig 4.13b, and hence why the inscribed finite plate theory does
not predict the response of square patterning so well. The same gap-ratios are used in both
patterns of FEA but as the square packing is less efficient than hexagonal packing, the values
of p are slightly lower. The superposition and scaling method is also seen to be much less
accurate when predicting the stiffness of a square pattern of inclusions, however the Finite
Plate Theory prediction matches the FEA extremely well.

We conclude therefore that the Finite Plate Theory, Eqn 4.40, provides the best prediction
of normalised stiffness of inclusion patterned plates, due to its accuracy over a wide range of
gap-ratios, ability to capture behaviour for k > 1 and k < 1 equally well, and its applicability
to both the square and hexagonal pattern. In the following sections FEA results are contrasted
in detail against the Finite Plate Theory, and other curves will be omitted for clarity, apart
from the smeared average curves which are provided as upper and lower bounds.
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(a)

(b)

Fig. 4.11 Biaxial normalised stiffness for regular hexagonal patterns of inclusions: (a) k = 3,
ν = 0.3; (b) k = 0.2, ν = 0.3.
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(a)

(b)

Fig. 4.12 SCFs of hexagonally patterned inclusions in biaxial tension: (a) k = 3, ν = 0.3; (b)
k = 0.2, ν = 0.3.
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(a)

(b)

Fig. 4.13 Biaxial normalised stiffness for regular patterns of circular inclusions vs p; k = 3
and ν = 0.3: (a) Hexagonal pattern (b) Square pattern.
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4.7.2 Extreme material constants

The effect of extreme values of modular ratio, k, is shown in Fig 4.14. When the inclusions
are much stiffer than the plate, k = 10, the arithmetic smeared average becomes a very
poor approximation, Fig. 4.14a. However, the Finite Plate Theory provides an excellent
prediction. Figure 4.14b shows the case of k = 0, which is equivalent to a hole: thus the
plate is effectively “perforated”. Analysis of perforated plates in general are of practical
interest in applications such as tube plates of heat exchangers and the grid plates of nuclear
reactors [3, 39]. Note that the most significant difference between FEA and theory is for
the highest values of p, where the inclusions are extremely close together and separated by
only 5% of the inclusion diameter. For low values of p and thence large gap-ratios, the stress
distributions can decay to σ0 between inclusions, whereas this cannot happen for very small
gap-ratios.

While values of elastic modulus can take any positive value, allowing for extreme ranges
of k from 0 to ∞, the Poisson’s ratio of any material must be within the range −1 < ν < 0.5,
and practically all solid non-porous materials have a Poisson’s ratio between 0.1 and 0.5
[56]. Figure 4.15 shows that there is excellent agreement between the variation predicted by
Eqn 4.40 with respect to Poisson’s ratio and FEA. While both tend towards limiting values
of 1 and k as p goes to 0 and 1 respectively, the lower value of Poisson’s ratio, ν = 0.1, is
slightly more stiff for intermediate values of p than the higher Poisson’s ratio value, ν = 0.5.

It is interesting to observe the behaviour of the Finite Plate Theory stiffness expression as
ν takes the values 1 and -1. When a value of ν =−1 is substituted into Eqn 4.40, the result
simplifies to be exactly equal to the arithmetic average. Conversely, when the Poisson’s ratio
is increased beyond the physically obtainable upper limit of 0.5, to ν = 1, the Finite Plate
Theory simplifies to give the harmonic average:

ν →−1; ΨFPT → (1− p)+ pk (4.49)

ν →+1; ΨFPT → 1
p/k+(1− p)

(4.50)

While these absolute extreme values are not physically realistic, this does highlight the
affect of Poisson’s ratio, and the importance of considering it when calculating a normalised
stiffness. The Finite Plate Theory captures the variation in stiffness with Poisson’s ratio very
well, Fig. 4.15, and also shows that the arithmetic and harmonic averages are indeed good
upper and lower bounds on overall stiffness.

Additionally, out of interest, it is noted that when ν1 ̸= ν2, it is possible to obtain a
value of K = 1 when k ̸= 1. For example for when k = 1.2, ν1 = 0.25 and ν2 = 0.1, then
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(a)

(b)

Fig. 4.14 Biaxial normalised stiffness for regular hexagonal patterns: (a) k = 10, ν = 0.3; (b)
k = 0, ν = 0.3.



98 Patterns of inclusions

Fig. 4.15 Biaxial normalised stiffness for regular hexagonal patterns with Poisson’s ratio
ν = 0.1 and ν = 0.5; k = 3.

K = 1 and consequently the inclusion and plate both have a uniform constant stress of σ0. In
biaxial loading such an inclusion effectively acts identically to a homogeneous plate with no
inclusion. The condition for this to be the case is:

E1

1−ν1
=

E2

1−ν2
(4.51)

4.7.3 Irregular patterns

In Fig. 4.13b we saw that the normalised stiffness was predicted very accurately by the Finite
Plate Theory, despite the stress distributions around each inclusion not conforming to the
axisymmetric distribution which we assumed in Section 4.5.1, see Fig. 4.10b. Since the
Finite Plate Theory does not explicitly use information about the exact type of inclusion
patterning, but rather the proportion of inclusions, p, we have an analytical basis for assessing
irregular patterns provided that the non-uniform pattern is well distributed in a global sense.

Rather than using completely random patterns, the use of pseudo-random patterns can
achieve non-regular patterning with a high packing density. Phyllotaxis is a spiral-like pattern
which is often found in close packing problems in nature: fundamentally connected with
the “golden ratio”, it has a clear centre but no lines of symmetry or repeating unit cells [57].
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Fig. 4.16 The seeds in the head of a sunflower naturally form the spiral like phyllotaxis
pattern.

The seeds in the head of a sunflower are a classic example of phyllotaxis, Fig. 4.16. The
phyllotaxis distribution can be characterised by giving the position of a point n with the polar
coordinates [58]:

ρ = s
√

n θ =
2πn

τ
(4.52)

where s is a scalar characteristic distance and τ is the golden ratio.
Another aperiodic pattern is Penrose tiling, with the two best known variations, Rhombus

tiling and Kite–and–Dart tiling [59], each using two different prototiles to tile an infinite
plane without any translational symmetry. Each vertex in the tiling has one of a finite number
of combinations of prototiles around it, and each will appear many times, but there is no
overall repeating unit cell. The two most straight forward methods of utilising a Penrose
tiling to find an inclusions patterning are to locate an inclusion at the centre of each prototile
or to locate an inclusion at every vertex in the tiling. Unfortunately however, neither of
these choices result in an efficient packing; for example if locating inclusions at the centers
of the rhombus prototiles, when two thin rhombi are adjacent to each other, the narrow
width of the thin rhombus prototile greatly limits packing density. By considering the vertex
neighbourhoods [60, 61], the arrangement of tiles around a vertex, the locations of inclusions
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(a) (b)

Fig. 4.17 Penrose tiling schemes for inclusion pattern: (a) Rhombus tiling; (b) Kite–and–Dart
tiling. Further details of these patterns are given in Appendix C.

may be adjusted systematically in order to allow for a denser packing. The modifications to,
and subsequent calculations of packing density for Penrose tiling based patterns are detailed
in Appendix C and numerical coordinates for the Penrose pattern specimens of Section 2.5
are given in Appendix G. Figure 4.17 shows a small section of the two chosen patterns
superposed onto their underlying tiling. Packing percentages of up to 76.3% and 64.7% can
be achieved respectively from each pattern, compared to 70.2% for phyllotaxis.

Using FEA, as per Section 4.6, reasonably large but finite patches of these irregular
patterns are modelled; Fig. 4.18 shows that the corresponding stiffness, remarkably, is very
accurately predicted by the Finite Plate Theory. The exact nature of the pattern, it seems,
is not particularly important for determining the overall stiffness. Some of the scatter in
the data stems from taking the stiffness via the displacement at the edge of the plate which
inevitably includes a small error due to edge effects.

As well as normalised stiffness, the Finite Plate Theory also predicts with good accuracy
the SCF inside the inclusions (as well as the stresses in the plate at the inclusion interface).
The peak stress in the plate will tell us how much loading can be applied before yielding
begins. This will allow us to make a good estimate of the strength of the plate, and thus
calculate a prediction of homogeneous overall yield stress for the inclusion plate. Figure
4.19 compares inclusion SCFs for a variety of regular and irregular patterns from FEA to the
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Fig. 4.18 Biaxial normalised stiffness for irregular patterns of inclusions; k = 3, ν = 0.3.

theoretically predicted values from the infinite plate, Eqn 4.14, and a finite plate with radius
Λ =

√
1/p, Eqn 4.41. We see that the Finite Plate Theory accurately predicts the inclusion

SCF, which is most accurate for the regular hexagonal and square patterns. For irregular
patterns, each inclusion has a different neighbourhood and proximity to adjacent inclusions
which affects the SCF. Particularly for low p, the prediction of the Finite Plate Theory is still
reasonably accurate but, for closer packing of irregular patterns, the SCF is slightly larger
than theory.

4.7.4 Inclusion shape

While the plan form shape of inclusions is known to affect overall stiffness [50], especially
aspect ratio [62], FEA shows that the Finite Plate Theory, Eqn 4.40, is equally as valid
for plates with square inclusions, see Fig. 4.20, where p can approach unity due to perfect
tessellation. Even for exceptionally high p values the Finite Plate Theory gives a very
accurate prediction, it is especially surprising that the theory models these square inclusions
so well as now both assumption of Section 4.5.1, i.e. a circular inclusion and stresses
decaying to σ0 between inclusions, are no longer upheld. Extra care must be taken when
modeling inclusion shapes which have have sharp corners in FEA. Sharp corners lead to
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Fig. 4.19 Inclusion SCFs for a variety of regular and irregular patterns; k = 3, ν = 0.3.

stress hot spots which FEA struggles to capture accurately, therefore extra fine mesh must be
used at such locations.

However, unlike a square, inclusion shapes which still have an aspect ratio of unity,
but have concave outlines give slightly higher stiffnesses than expected. This is because
concave inclusions have a slightly larger effective area than their nominal area. Considering
a ‘C’-shaped inclusion allows this phenomenon to be understood, Fig. 4.21. Supposing the
C-shaped inclusion to have k = 0 and thus be equivalent to a hole, it is clear to see that the
uvula shaped portion of the plate is just dangling in free space by a narrow strip of material
and will be unable to carry any load, and thus can not contribute to the stiffness of the plate.
This patch of material is essentially useless therefore, and as the behaviour of the plate would
be unchanged if it were not there at all. The effective area of the inclusion will therefore be
the total area enclosed by the dashed line. Conversely, if the inclusion is rigid, k = ∞, then
the ‘C’ shape will not open up at all under load: therefore the material which is practically
enclosed by the inclusion may as well be rigid too, and thus the inclusion will effectively
be equivalent to a solid circular inclusion of the size indicated by the dashed line. Note that
equally, if the rigid inclusion was a thin circular ring with a central hole, it would have an
effective area equal to that of the entire circular area encompassed, not just the area of the
thin ring.
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Fig. 4.20 Biaxial normalised stiffness for a square pattern of square inclusions; k = 3, ν = 0.3.
The insert figure shows an example of the square patterns of square inclusions, where the
colour contours show SCFs of von Mises stress, with the outlines of the square inclusions
shown by black lines. .

A concave shape which has four sharp corners or points which are connected by concave
circular arc segments is shown in Fig. 4.22. The nominal area of this shape is 4a2(1+√

3−2π/3)≈ 2.55a2, however because of the concave nature of this shape we expect the
effective area to be slightly larger. Figure 4.23 compares the FEA results of plates with these
concave 4-pointed star inclusions against the Finite Plate Theory expectation. When plotted
against the nominal inclusion area, the normalised stiffness is seen to be slightly higher than
predicted. Increasing the nominal area by 3.5% gives an effective area which does align very
closely with the Finite Plate Theory curve; an effective area which is 3.5% larger than the
nominal area is shown as a dashed line on Fig. 4.22.

4.8 Uniaxial and antisymmetric loading

The theory developed in Section 4.5 assumed a state of biaxial loading, because this greatly
simplified the analytical complexity and also allowed for identical treatment of bending and
stretching. Figure 4.3 shows that for general loading the effects of an inclusion in stretching
are slightly different to bending. However, we expect a similar behaviour overall to occur,
both for different load cases of stretching and also between bending and stretching. Think
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Fig. 4.21 A concave C-shaped inclusion in a plate in uniaxial tension. The nominal area of
the inclusion is shaded in grey and the approximate effective area is outlined with a dashed
line.

Fig. 4.22 A concave 4-pointed star inclusion. The four points make a square of width 2a, and
the connecting concave curves are circular arc segments of radius 2a. The nominal area of
the inclusion is shaded in grey, the approximate effective area is outlined with a dashed line.
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Fig. 4.23 The normalised biaxial stiffness of a plate with concave 4-pointed inclusions in a
square patterning. The stiffnesses from FEA are plotted against both the nominal as well as
the effective inclusion area. k = 3, ν = 0.3.

for example of a metallic substitutional alloy; it has a microstructure which is effectively a
matrix of the main alloying element with inclusions of the minor alloying element, however
we expect it to have a single value of Young’s modulus which is the same for both uniaxial
and biaxial loading, for both stretching and bending. In order to assess the suitability of the
Finite Plate Theory to inclusion patterned plates in more general load cases, FEA of plates in
uniaxial and antisymmetric tension is undertaken in the following sections.

4.8.1 Bending vs stretching

We note first that alongside the FEA of inclusion patterned plates in biaxial tension, FEA in
biaxial bending was also carried out on identical plates. Both biaxial bending and stretching
gave practically identical results for normalised stiffness, as expected. These simulations
also confirmed that, as theoretically predicted, the stress distributions around the inclusions
were identical for biaxial stretching and bending. Additionally we note that, provided a
reasonably large number of inclusions were modelled, the overall stiffness was unaffected
by the exact number of inclusions, as expected. For example, Fig 4.24 shows two plates
in biaxial bending, each has the same hexagonal patterning and gap-ratio, however the
inclusions in Fig. 4.24a are four times larger than those in Fig. 4.24b; approximately 110
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inclusions and 1880 inclusions respectively. Calculating the normalised stiffness of each
of these plates, in the manner of Section 4.6, we find almost identical values, but the larger
inclusions are just 0.4% less stiff.

However, modelling uniaxial and antisymmetric bending of inclusion patterned plates,
FEA found that the normalised stiffness appeared to be dependent on the total number of
inclusions modelled. FEA of plates where the inclusions were larger relative to the overall
size of the plate were calculated to be stiffer. Figure 4.25 shows von Mises stresses from
FEA for two plates under uniaxial bending; while both have the same pattern and gap-ratio,
Fig. 4.25a has inclusions which are four times as large relative to the overall plate. From
Saint-Venant’s principle the central patch in such a plate should behave like a central patch
from an infinite pattern provided that it is a sufficient distance away from the edge of the plate
in order to allow edge effects to dissipate. Furthermore, while the absolute scale of a problem
should not affect the stresses or stiffness, the plate in Fig. 4.25a is 2.2% more stiff. It is not
an edge effect phenomenon: rather, the edge effects are seen to die away within a couple
of inclusion radii from the edge and the stress distributions around the central inclusions in
both cases match those around themselves but are slightly different between Fig. 4.25a and
Fig. 4.25b. Neither is this a mesh effect, because modelling each plate with the same number
of elements per inclusion still yields this same differing result.

Regardless of the exact cause of this phenomenon, it appears to be a problem with the FEA
model, however it is possible to observe the behaviour as increased numbers of inclusions are
modelled, Fig 4.26. As previously found, modelling a greater number of inclusions results
in a slightly lower normalised stiffness; the results tend towards the Finite Plate Theory
prediction of normalised biaxial stiffness as the relative size of the inclusions becomes very
small. In fact, the limiting values of normalised stiffness for these plates in bending with a
very large number of inclusions is equal to the values calculated using uniaxial tension. It
transpires that, like in the biaxial case, for uniaxial and antisymmetric tension, the normalised
stiffness is once again independent of the number of inclusions modelled, for example see
Table E.14 which contains the numerical data plotted in Fig. 4.27a. Therefore, knowing that
the same results could also be seen in bending if a very large number of inclusions were
modelled, all the subsequent FEA is performed on inclusion patterned plates in tension.

4.8.2 Regular patterns

Comparing the stiffness of a regular hexagonal pattern of circular inclusions under uniaxial
and antisymmetric tension to biaxial stiffness, Fig. 4.27, we see that the overall stiffness is
only minorly impacted. The Finite Plate Theory, Eqn 4.39, is therefore an accurate prediction
of the stiffness under any loading condition. For a stiff inclusion, k = 3, Fig. 4.27a, the
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(a) (b)

Fig. 4.24 Biaxial bending of hexagonally patterned plates with inclusions of an equal gap-
ratio but different absolute size. Due to symmetry only a quarter plate needs to be modelled.
Equal moments per unit length load the two outer edges, the edges indicated with a dark
dashed line have symmetry boundary conditions applied to them, constraining each edge to
remain in its corresponding plane of symmetry, and enforcing a zero rotation perpendicular
to the plane of symmetry. The plate has a half-side length L and the inclusions have radius a,
k = 3, ν = 0.3. The gap-ratio is 0.5 and thus p = 0.5804; (a) L/a = 12.5 (b) L/a = 50. The
loading is such that the nominal stress on the top surface is 24MPa. Von Mises stresses are
plotted with colour contours [Dark blue, 20MPa] to [Red, 27MPa].

(a) (b)

Fig. 4.25 Uniaxial bending of hexagonally patterned plates with inclusions of an equal gap-
ratio but different absolute size. Due to symmetry only a quarter plate needs to be modelled.
A moments per unit length of M0 loads one edge, the edges indicated with a dark dashed line
have symmetry boundary conditions applied to them, constraining each edge to remain in its
corresponding plane of symmetry, and enforcing a zero rotation perpendicular to the plane of
symmetry. The plate has a half-side length L and the inclusions have radius a, k = 3, ν = 0.3.
The gap-ratio is 0.5 and thus p = 0.5804; (a) L/a = 12.5 (b) L/a = 50. The loading is such
that the nominal stress on the top surface is 24MPa. Von Mises stresses are plotted with
colour contours [Dark blue, 8MPa] to [Red, 35MPa].
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Fig. 4.26 The normalised uniaxial bending stiffness of hexagonally patterned plates. FEA
results for plates with k = 3, ν = 0.3 and gap-ratio 0.5 or 1 are shown for a variety of L/a,
where a is the inclusion radius and L is the half-width of the plate.
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uniaxial, biaxial and antisymmetric stiffnesses are so similar that their points can barely be
distinguished on the graph, the antisymmetric stiffness is found to be just 0.25% more stiff on
average than the biaxial stiffness. For soft inclusions the plate is found to be slightly less stiff
in antisymmetric loading compared with uniaxial loading, which in turn is slightly less stiff
than biaxial loading. When k = 0.2, Fig. 4.27b, the normalised antisymmetric stiffness is on
average 2.4% less stiff than the biaxial stiffness. In each case the uniaxial and antisymmetric
display slightly more extreme stiffnesses, less stiff for soft inclusions and more stiff for stiff
inclusions. As for the biaxial loading of a hexagonal pattern of inclusions, the uniaxial and
antisymmetric behaviour seen was isotropic: the stiffness did not depend on the orientation
of the pattern with respect to loading direction.

A regular square pattern of circular inclusions is tested in FEA under uniaxial and
antisymmetric tension and the resulting normalised stiffnesses are compared with biaxial
normalised stiffness in Fig. 4.28. Unlike the hexagonal patterning, there is a significant
change in stiffness for the square patterning under the different types of loading. For both
the stiff and soft inclusions, normalised antisymmetric stiffness is significantly higher than
normalised biaxial stiffness for larger values of p. For every case the uniaxial stiffness is seen
to be between the antisymmetric stiffness and the biaxial stiffness; which is to be expected as
the uniaxial case is a superposition of the biaxial and antisymmetric load cases.

While the hexagonal pattern was seen to be isotropic in uniaxial and antisymmetric
loading as well as biaxial loading, the square pattern is not so (Fig. 4.29). Though slightly
stiffer than expected when the uniaxial or antisymmetric loading is aligned with the square
grid, when the the pattern is loaded at 45◦, the stiffness is lower than expected; in fact, it
is slightly less stiff than the biaxial loading stiffness. It appears that the slight increase in
stiffness seen when the square pattern is loaded parallel to the square grid is almost exactly
balanced by the loss of stiffness when it is loaded diagonally at 45◦. Taking the average
normalised stiffness for the parallel and diagonal orientations under uniaxial loading we
find values which agree with the biaxial stiffness to within 0.1% on average. Having the
square pattern therefore does not on average increase the normalised stiffness, regardless
of loading. While the square pattern is mildly anisotropic, its average stiffness considering
various orientations of loading is still reasonably well captured by the Finite Plate Theory.

4.8.3 Irregular patterns

The normalised stiffness under uniaxial loading always seems to fall between the normalised
stiffness under biaxial loading and under antisymmetric loading. This should not be too
surprising as the uniaxial load state can be seen as a superposition of the biaxial and the
antisymmetric loads. Therefore it is sufficient to consider just the antisymmetric loading in
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(a)

(b)

Fig. 4.27 Biaxial, uniaxial and antisymmetric normalised stiffness for regular hexagonal
patterns of circular inclusions: (a) k = 3, ν = 0.3; (b) k = 0.2, ν = 0.3.
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(a)

(b)

Fig. 4.28 Biaxial, uniaxial and antisymmetric normalised stiffness for regular square patterns
of circular inclusions: (a) k = 3, ν = 0.3; (b) k = 0.2, ν = 0.3.
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Fig. 4.29 Biaxial, uniaxial and antisymmetric normalised stiffness for regular square patterns
of circular inclusions orientated at 45◦ to the primary loading direction: (a) k = 3, ν = 0.3.
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Fig. 4.30 Antisymmetric normalised stiffness for irregular patterns of inclusions: k = 3,
ν = 0.3.

addition to the biaxial loading in order to get a full sense of the behaviour under general
loading. Figure 4.30 compares the normalised stiffness in antisymmetric tension for the
three irregular patterns from Section 4.7.3. The antisymmetric normalised stiffness is almost
identical to the biaxial normalised stiffness, compare with Fig. 4.18. As before, because the
pattern is irregular the normalised stiffness must be taken from the edge displacement and so
has a some of scatter due to edge effects. The Finite Plate Theory captures the antisymmetric
normalised stiffness very well: it would appear that due to the irregular nature of the patterns
the stiffness under different loadings is more consistent than for the regular square patterns.

4.9 Isotropy and homogeneity

An underlying assumption of this chapter has been that the overall behaviour of inclusion
patterned plates is isotropic and homogeneous. Isotropy assumes that the stiffness doesn’t
change depending on the direction in which the plate is loaded: the stiffness is independent
of pattern orientation. Homogeneity assumes that it is an acceptable approximation to treat
the plate with a constant, (albeit smeared) average, Young’s modulus.
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Fig. 4.31 The normalised antisymmetric stiffness of hexagonally patterned plates. Loading
in the perpendicular direction is equivalent to rotating the pattern 30◦ with respect to the
primary loading direction, thus the isotopic nature of the plate can be assessed.

4.9.1 Isotropy

Loading the hexagonal pattern in the perpendicular direction is equivalent to rotating the
pattern 30◦ with respect to the primary loading direction. These two different orientations
were identified in Section 2.4, where it was suggested that “lines-of-weakness” would make
one direction significantly less stiff than the other. However, as Fig. 4.31 shows, there is
no difference in stiffness depending on pattern orientation. Only a 0.0013% difference in
stiffness between the loading directions is found, well within the bounds of the numerical
accuracy, thus confirming the isotropic nature of the hexagonal pattern.

As shown in Fig. 4.29, the square pattern is not totally isotropic: its regular rectangular
patterning facilitates the possibility of direction dependent stiffness. Comparing the parallel
and diagonal orientations for the square pattern under antisymmetric loading, with k = 3, on
average a 6% difference is seen, a small but not inconsequential amount of anisotropy. For
the square pattern, antisymmetric loading displays the most extreme anisotropic behaviour.
Figure 4.32 shows how normalised stiffness varies as the pattern is rotated relative to
the principle loading direction. The hexagonal pattern is confirmed to be isotropic, the
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Fig. 4.32 The normalised antisymmetric stiffnesses of the square and hexagonal pattern of
circular dimples is shown as a function of rotation angle with respect to the principle loading
direction. Each pattern has k = 3 and a gap-ratio equal to 0.5, note that this gives the square
pattern a slightly lower p.

normalised stiffness is invariant of pattern orientation and is equal to the Finite Plate Theory
prediction. A little scatter in the data is seen as stiffnesses have to be calculated using the
edge displacements of the plate, which therefore incorporate edge effects. The stiffness of
the square pattern is seen to vary in an approximately sinusoidal manner, with maximum and
minimum stiffnesses occurring at 0◦ and 45◦ respectively. The normalised stiffness averaged
over the different pattern orientations is very close to the value predicted by the Finite Plate
Theory, with a difference of just 0.8%. Note that the Finite Plate Theory predicts different
stiffness for the hexagonal and square patterns in Fig. 4.32 because as the patterns have the
same gap-ratio they have different values of p.

Irregular patterns do not seem to be affected by loading orientation, Fig. 4.33 contrasts
the normalised antisymmetric stiffnesses when loaded in perpendicular directions, i.e. the
pattern is rotated 90◦ to the primary loading direction. As an irregular pattern does not have
any clear direction dependence, practically by definition, we would not expect there to be any
significant difference in stiffness when changing the loading direction. While, for previously
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Fig. 4.33 The normalised antisymmetric stiffness of irregularly patterned plates. Loading in
the perpendicular direction allows the isotopic nature of the plate to be assessed.

discussed reasons, there is some scatter in the data, Fig. 4.33 confirms the isotropic nature of
these irregular patterns. On average the difference in normalised stiffness between the two
orientations is 0.5% for the phyllotaxis pattern, 0.3% for the rhombus pattern and 1% for
the kite and dart pattern. The measured stiffnesses are scattered closely around the Finite
Plate Theory prediction, and the differences between different loading directions are within
the range of scatter. When considering the whole set of data it can be seen that there is no
significant anisotropy present.

4.9.2 Homogeneity

As discussed in Section 4.4, the validity of the homogeneity assumption clearly has a
dependence on the relative size of the inclusions to the size of the overall plate. Defining the
half-width of the overall plate to be L and the radius of the inclusions to be a, knowledge
of the stress patterns formed around the inclusions can be used to find the corresponding
displacement fields and therefore judge how much the true displacement may vary from
the smeared homogeneous approximation in terms of a/L. Comparing biaxial bending and
tension, the in-plane displacements of the tension case correspond to the rotations of the
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Fig. 4.34 A quarter model of a hexagonally patterned plate is subjected to biaxial bending.
Equal moments per unit length load the two outer edges, the edges indicated with a dark
dashed line have symmetry boundary conditions applied to them, constraining each edge to
remain in its corresponding plane of symmetry, and enforcing a zero rotation perpendicular
to the plane of symmetry. Von Mises SCFs (von Mises stress divided by nominal stress) are
shown with colour contours ranging from [Dark blue, 0.9] to [Red, 1.3]. k = 3, gap-ratio = 1,
p = 0.403, a/L = 50.

bending case. It is also possible to compare the out-of-plane deflections of a patterned plate
in bending to the homogeneous case.

Figure 4.34 shows an inclusion patterned plate in biaxial bending, the rotation and out-of-
plane deflection along the dashed line are extracted from the FEA and plotted in Fig. 4.35.
The rotations and deflections of a plate which has a homogeneous Young’s modulus equal to
the homogeneous smeared stiffness are also shown for comparison.

Consider the rotation along the centre-line of the plate shown in Fig. 4.34, i.e. along the
dashed line on the right half of the figure. From Fig. 4.35a we observe that the rotation is
approximately a piecewise linear function which fluctuates above and below the homogeneous
smeared average rotation. The rotation of a homogeneous plate under pure bending is a simple
linear function and by definition the homogenised smeared stiffness is chosen to ensure the
slope of this line does exactly bisect the true rotation of the inclusion patterned plate. Note
that the rotation in both cases is always less than the plain flat plate which has Young’s
modulus E1. The difference between the rotation of the inclusion patterned plate and smeared
homogeneous plate has a constant wavelength; the maximum difference has a constant
magnitude and occurs at the edge of each inclusion e.g. ρ = 1,ρ = 2,ρ = 4. While the
absolute magnitude of this difference is constant, the relative size of this difference becomes
less as the total rotation of the plate increases. This means that the best way to calculate the
magnitude of this difference in rotation is to consider the rotation at the edge of the central
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(a)

(b)

Fig. 4.35 An inclusion patterned plate in biaxial bending, Fig. 4.34, is compared to a plain
flat plate and to the smeared homogeneous approximation: (a) Rotation, (b) Out-of-plane
deflection.
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inclusion, i.e. the rotation at ρ = 1. This can be done reasonably easily by considering the
stress distributions assumed using Finite Plate Theory. As seen in Section 4.5.2, the stress in
an inclusion is approximately constant and is very well predicted by Eqn 4.41. The rotation
at the edge of the inclusion, r = a, can therefore be calculated:

Θinclusion =
M0(1−ν)

kE1I0
a SCFFPT = κ0

a SCFFPT

k
(4.53)

and the rotation at r = a for the homogenous smeared plate is:

Θsmeared =
M0(1−ν)

EFPTI0
a =

M0(1−ν)

E1I0

a
ΨFPT

= κ0
a

ΨFPT
(4.54)

where κ0 =
M0(1−ν)

E1I0
. The magnitude of the difference in rotations is thus:

Θsmeared −Θinclusion = κ0

(
1

ΨFPT
− SCFFPT

k

)
(4.55)

and the rotation at the edge of the plate, r = L is:

Θplate = κ0
L

ΨFPT
(4.56)

Dividing the magnitude of the difference in rotations by the rotation at the edge of the plate
we calculate what the maximum relative error we could have by assuming the smeared
homogeneous approximation:

Θsmeared −Θinclusion

Θplate
=

a
L

(
1− SCFFPTΨFPT

k

)
=

a
L

(
1− K

k(1− pε∗)

)
(4.57)

The bracketed part of the expression is dependent on the packing density p, Poisson’s
ratios ν , and the inclusion stiffness ratio k, however the value of the function will always
be less than or equal to unity. For typical values of k, ν and p, it takes a value of about 0.5,
e.g. when k = 3, ν = 0.3 and p = 0.5, the bracketed expression is equal to 0.394. However
of more interest is the observation that the relative error in rotation at the edge the plate
is proportional to a/L. This allows us to say that the maximum difference between the
edge rotation of an inclusion patterned plate and the corresponding homogenised plate is
a/L. Thus for the FEA of irregular patterned plates conducted in Section 4.7.3 where the
typical inclusion radius to plate half-width was a/L = 1/50, the maximum error we expect
should be less than 2%. In practice the error which we are likely to encounter will not be the
maximum, but could be anywhere between a positive or negative error of this magnitude. On
average therefore the average error which is expected should be half of the maximum error
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magnitude. Thus we would expect that the stiffnesses of the irregular patterns in Section 4.7.3
would have errors which are around 0.5%. Figure 4.18 shows that the scatter in the data
(defined as the average magnitude of the percentage difference between the FEA normalised
stiffness and Finite Plate Theory prediction) is 0.36% for the phyllotaxis pattern, 0.43%
for the Penrose rhombus pattern and 0.56% for the Penrose kite and dart pattern. This is
exactly the amount of scatter we expect, and therefore both confirms the applicability of
this analysis of homogeneity, and also further supports the applicability of the Finite Plate
Theory prediction for smeared normalised stiffness. This analysis is also equally valid for
the stretching of inclusion patterned plates, considering in-plane displacement instead of
rotation.

Consider the deflection of the plate in bending: in most applications, the rotation is not
the key parameter of concern, but rather the out-of-plane deflection may be more important.
Figure 4.35b shows the out-of-plane deflection of the same biaxially bent plate, and again
contrasts this against a plain flat plate of Young’s modulus E1 and against the equivalent
homogeneous smeared modulus plate. It is apparent that the differences between the inclusion
patterned plate and the homogeneous smeared plate are even smaller when considering
deflections. For the rotations the largest difference occurred at the edge of each inclusion,
however, as deflection is the integral of rotation, for deflections the largest difference occurs
halfway between inclusions. The maximum difference in deflection is equal to the area
enclosed between the actual rotation curve and the homogenised stiffness rotation curve,
calculated between the centre of one inclusion to the midway point between the adjacent
inclusion.

Assuming the rotation profile to be piecewise linear, the area between the curves can be
calculated straightforwardly as the area of a triangle of width a(1+gap-ratio/2) and height
equal to the maximum difference in rotations, Θsmeared −Θinclusion. Thus the magnitude
of the maximum difference in deflection between the inclusion patterned plate and the
homogeneous smeared stiffness plate is:

δsmeared −δinclusion =
1
2

a
(

1+
gap-ratio

2

)
(Θsmeared −Θinclusion)

=
κ0a2

2

(
1+
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2

)(
1− SCFFPTΨFPT

k

)
(4.58)

The deflection of the plate at the edge of the plate, r = L, is:

δplate =
κ0L2

2ΨFPT
(4.59)
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Dividing the magnitude of the difference in deflection by the deflection at the edge of the
plate we calculate the maximum relative error we could have by assuming the smeared
homogeneous approximation:

δsmeared −δinclusion

δplate
=

a2

L2

(
1+

gap-ratio
2

) (
1− SCFFPTΨFPT

k

)
(4.60)

In fact, as shown by Eqn 4.16, equating strains in stretching to curvatures in bending,
the increase in rotation by calculating the area above κ0,

∫
∞

ρ=1(κ2rr −κ0), is never greater
than the decrease in rotation which is the area below κ0,

∫ 1
ρ=0(κ0 −κ1rr). Therefore the

area between the curves in Fig. 4.35a for 1 < ρ < (1+gap-ratio/2) will always be less than
or equal to the area between the curves for 0 < ρ < 1. Calculating the area between the
curves for 0 < ρ < 1 is straightforward as it is a simple triangular area, doubling it will give
a conservative estimation of the maximum difference in out-of-plane deflection:

δsmeared −δinclusion

δplate
=

a2

L2 ·2
(

1− SCFFPTΨFPT

k

)
(4.61)

The main result of this analysis is that the relative error between the out-of-plane de-
flections of a inclusion patterned plate and a smeared homogenous plate is proportional to
(a/L)2, the square of the radius to half-width ratio. As the differences in rotation were pro-
portional to a/L, the differences in deflection will be even smaller. As before, the bracketed
expression is has an upper limit of 1 and a typical value of around 0.5. Thus for a typical
inclusion radius to plate half-width such as a/L = 1/50, the maximum error we might expect
in rotation would be less than 2%, however for out-of-plane deflection the maximum error
we would expect would be less than 0.08%. In fact, as before if instead we considered the
typical difference, we conclude that differences around a quarter of the maximum would be
expected. Even for plates with comparatively large inclusions, e.g. a/L = 0.1, the typical
difference in deflections between the edge deflection of an inclusion patterned plate and an
equivalent homogenised stiffness plate would be just 0.25%. Consequently, approximating
the equivalent value of smeared stiffness by considering the edge deflection of a inclusion
patterned plate in bending should give an answer which is accurate to within this same limit.

4.10 Experimental validation

There are obvious practical difficulties in producing specimens of thin plates with many
inclusions of a different material inserted into it. These problems are compounded by the
desire for the inclusions to be small and numerous. Most notably, attempting to form a good
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connection at the inclusion matrix interface would be very difficult: there is only a small
contact area due to the thinness of the plate, and trying to ensure the inclusion lay flush to
the rest of the plate would also be challenging.

While attempting to drill out material from a plate and fill the voids with a second material
as the inclusion might be practically infeasible, there are still some practical examples of
inclusions in thin plates. Giving an inclusion a different modulus to the surrounding matrix
does not necessarily involve the introduction of a completely new material; it suffices to
simply change the material properties of a patch of the plate. For example, a patch of
aluminium oxide in an aluminium plate [53], or a spot weld in a steel plate [63].

However, perhaps the most widely occurring inclusion is the case of k = 0, where the
inclusion is in fact a perforation, i.e. a hole. As noted in Section 4.7.2, there are several
practical examples of perforated plates having important practical uses, such as nuclear
reactor grid plates and tube plates of heat exchangers.

In addition to the FEA validation of the applicability of Finite Plate Theory to perforated
plates, Fig. 4.14b, practical experimentation on perforated strips has been carried out. Perfo-
rating a thin plate with different patterns of perforations, both regular and irregular, bending
and stretching tests were performed.

4.10.1 Experimental method

Specimens of perforated plates were manufactured from a thin sheet of copper beryllium,
t = 0.5mm, perforations of diameter 3mm were cut using a water-jet cutter. A total of six
different patterns were used: regular hexagonal, phyllotaxis, Penrose rhombus, Penrose kite
and dart (see Appendix C), square and the same square pattern but at an orientation of 45◦ to
the loading direction. For each pattern three different choices of gap-ratio were used, 2/3,
4/3 and 8/3, giving a range of nominal p values from p = 0.110 to p = 0.510 over the total
of 18 specimens. The specimens are strips of width 35mm and are 200mm in length, the
perforation pattern is centered on the strip and any perforations which would not be wholly
within the boundary of the strip are neglected. As only the central 140mm portion is loaded
during test, only the central 160mm of the strip is perforated and perforations whose centers
would be beyond this limit are neglected. Due to neglecting some perforations due to the
finite width of the strip, the nominal p value, considering p of an infinite section of patterning,
and the realised p value, considering to the actual amount of material removed, are slightly
different in value. The differences between nominal p and realised p are small, typically less
than 1%. Copper beryllium has a Poisson’s ratio of ν = 0.3.

The specimens are tested in both uniaxial tension and uniaxial bending. The uniaxial
tensile test is performed in an INSTRON testing machine, with S16 wedge action grips used
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to grip the top and bottom of the strip, leaving the central 140mm to be loaded, Fig. 4.36. A
slow quasi-static displacement is imposed as the top grip moves upward, the force response
of the sample is recorded, and this allows the stiffness to be calculated by finding the slope of
the initial linear force/displacement response. Plain strips of the same geometry and material
are also tested in this way, and by comparing the stiffness of the perforated strips to that of
the plain strips a normalised stiffness can be calculated. The strips were designed for use
with wedge grips with a 35mm face, however these were unavailable at the time of testing,
and unfortunately the new grips had only a 25mm face. Because of this, it was not possible
to align the centres of the specimens with the line of action. The lack of alignment therefore
caused an induced bending in the the specimens, in the plane of the strip. This causes the
strip to not to be loaded in pure tension, but rather a linearly varying in-plane tension across
the width of the strip which induces bending.

The perforated strips are also tested in a uniaxial 4-point bend test, Fig. 4.37. Each end
of the strip is gripped between a pair of aluminium blocks and it is supported at either end on
knife-edge supports 200mm apart and two further knife-edges press down the inner edge of
the blocks to impart a uniform moment to the central 140mm span. The top half of the rig,
with the two inner knife-edges, is displaced downwards quasi-statically and the force response
is measured. The aluminium blocks are effectively rigid, and so the edge rotation can be
calculated from the displacement of the two central knife-edges, and the applied moment
calculated by multiplying the force response by the lever arm. The rotational stiffness of
the perforated strip is then found by calculating the initial gradient of the moment/rotation
response. Plain strips of the same geometry and material are also tested in this way, and
by comparing the stiffness of the perforated strips to that of the plain strips a normalised
stiffness can be calculated. Care was taken to ensure that the specimens remained within
their elastic limits during both the stretching and the bending tests.

4.10.2 Experimental results

Figure 4.38 compares the results of the 4-point bending and uniaxial tensile stretching test
with Eqn 4.40, the Finite Plate Theory prediction, with ν = 0.3. The arithmetic smeared av-
erage is also shown for comparison, but note that the harmonic smeared average is undefined
when k = 0, and so is not shown. The experimental data is plotted against the realised p
value of each strip, accounting for the actual amount of material removed.

The results of the tensile stretching test, Fig. 4.38a, show a reasonably good agreement
with the theoretical prediction. There is a reasonable amount of scatter in the data, which
is assumed to be experimental error. The main cause of experimental error is hypothesised
to be the off-centre loading of the samples caused by the narrow grips which had to be
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Fig. 4.36 The experimental set-up of the uniaxial tensile loading of a perforated strip. An
INSTRON grips the ends of the specimen and imparts a quasi-static displacement, measuring
the force response as it does so.
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Fig. 4.37 The experimental set-up of the uniaxial bending of a perforated strip. Each edge of
the strip is clamped between a pair of aluminium blocks, these blocks are loaded using two
pairs of knife-edge supports to develop a central constant moment region.

used, leading to the samples not being in pure uniaxial tension. This is hypothesised to have
contributed to the experimental scatter because a non-uniform tensile loading is likely to
make the stiffness a little sensitive to the exact patterning. Another potential source of error
arises from the pre-loading effect of the wedge action grips. The specimens were placed into
position and then the lower grip was tightened, followed by the upper grip. It was noticed
that when the upper grip was tightened such that it gripped the specimen, that a pre-load was
seen to be imparted. Tightening the grips further increased the level of unwanted pre-load
imparted onto the specimen. While some level of pre-load had to be tolerated so that the
sample could be securely gripped, the experimental data showed that the specimens which
seemed to have a higher stiffness than the theory predicted were also the specimens which
had a higher pre-load. As found through FEA analysis, the square pattern exhibited an
anisotropic behaviour. The square pattern of perforations which is aligned to the loading
direction was more stiff than the other patterns. Additionally a drop in stiffness was observed
between the square pattern and the square pattern rotated by 45◦.

The bending test results, Fig. 4.38b, show an even better agreement to the Finite Plate
Theory prediction. There is less experimental scatter in the bending results, which is pleasing,
and adds confidence to the results. Experimental error is seen to be much lower in the
bending case, however as the loads applied were much less than in tension, the precision of
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(a)

(b)

Fig. 4.38 The normalised uniaxial stiffness of perforated plates with regular and irregular
patterns of perforations; (a) stretching, (b) bending. Finite plate theoretical prediction is
plotted with ν = 0.3.
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the INSTRON machine started to become a relevant consideration, and as such the noise
present in the data explains at least some of the scatter seen. The experimental data for the
perforated sheet experiments is tabulated in Appendix F.

4.11 Rule-of-mixtures comparison

Calculating a smeared homogeneous material property value for a composite of two or
more materials is a problem which is found in a variety of contexts, from metal alloys [47],
traditional fibre reinforced composites [49], magnetic permeability of dielectrics [48] and
even foamed concrete [52].

As a result, a number of different methods of estimating the smeared homogeneous
properties have been developed and such methods are termed “rules-of-mixtures”. In general
the packing fraction (volume fraction) and material properties of the two phases alone are not
sufficient to completely define the overall smeared properties, as (for example) the shape of
the inclusions can make a difference [50]. Many early studies give upper and lower bounds
as predictions: the bounds of Hashin and Shtrikman (HS-bounds) are perhaps the the best
known [48]. The arithmetic and harmonic smeared averages are also very widely known
upper and lower bounds, but as seen in Section 4.7, they are not very tight bounds and thus
do not provide much help in accurately predicting the smeared material properties.

HS-bounds are derived using a variational approach to magnetic permeability of a two
phase material. Tighter bounds are established by Ravichandran [49], who considered a
cube of material with a central cubic inclusion, under uniaxial tension, as a combination of
little spring elements. Combining these little spring elements in various series and parallel
arrangements, an upper and lower bound were calculated depending on if the springs were
combined first in series and then parallel or vice versa. More recently Zhang et al. [64],
extended the method of Ravichandran by progressively reducing the size of the springs.
They found that in the infinitesimal limit, the upper and lower bounds converged to a single
equation, i.e. irrespective of the order in which springs were combined in series and parallel,
the stiffness prediction was equal.

A further model, known as the “Generalised Self-Consistent model” (GSC) [65, 66],
considers a spherical inclusion, contained within a sphere of the matrix material, which itself
is included within a large homogeneous medium which has material properties equal to the
effective smeared properties of the matrix and inclusion. Using Love’s [67] general elasticity
solutions, an energy equality argument is used to match the average strains and stress fields
of the considered three phase model and a homogeneous model with the smeared properties.
The “Mori-Tanaka” method [68] has a simpler derivation, and can be understood to act as
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though each individual inclusion sees the nominal far field strain [69], however reaches
exactly the same equation for smeared bulk modulus as the generalised self-consistent model.

The “Differential method” [70] starts with the assumptions of the “Dilute method” [71],
taking a very low concentration of inclusions which are assumed not to interact. As the dilute
method is suitable only for very low concentrations of inclusions, the differential method
views the case as a series of dilute mixtures. First a small number of inclusions are added
to the matrix and then this is viewed as a homogeneous material into which the next batch
of inclusions are added. The process continues incrementally until the full packing density,
p, has been met. The method yields an unwieldy set of simultaneous differential equations;
only in very special cases can a simple closed form expression be reached.

While most authors deal with the case of a three dimensional block of material with
spherical inclusions, there is some previous literature which explicitly seeks to deal with a
two dimensional geometry. Zhang et al. perform the same infinitesimalising of series and
parallel springs approach to analyse a square inclusion in a square plate [64]. Shevlyakov
and Skoblin use an approximation of an average field stress is to estimate the the smeared
stiffness of a perforated plate [72].

Many authors calculate a smeared bulk modulus, B, and sometimes also a smeared shear
modulus G. Rewriting the bulk modulus in terms of the Young’s modulus and the Poisson’s
ratio, B = E/(3(1−2ν)), we deduce that when the Poisson’s ratio of the inclusion and the
matrix are the same, then the ratio of the bulk moduli is equal to the ratio of Young’s moduli,
and thus we can directly compare these various rules-of-mixtures. Using consistent notation
where p is the proportion of inclusions and k is the ratio of inclusion modulus to matrix
modulus, the various rules-of-mixtures presented above can be written:

ΨZhang3D =
3k−2(1− p)(k−1)
3+(1− p)(k−1)

[64] (4.62)

ΨZhang2D =
2k− (1− p)(k−1)
2+(1− p)(k−1)

[64] (4.63)

ΨGSC = 1+
p(k−1)

1+ (1−p)(k−1)
1+ 4G1

3B1

=
k
(

1+ 4G1
3B1

)
− 4G1

3B1
(1− p)(k−1)

1+ 4G1
3B1

+(1− p)(k−1)
[66] (4.64)

ΨMori-Tanaka = 1+
p(k−1)

1+ (1−p)(k−1)
1+ 4G1

3B1

=
k
(

1+ 4G1
3B1

)
− 4G1

3B1
(1− p)(k−1)

1+ 4G1
3B1

+(1− p)(k−1)
[68] (4.65)

ΨFPT =
2k− (1− p)(k−1)(1−ν)

2+(1− p)(k−1)(1+ν)
(4.66)
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where G1 is the shear modulus of the matrix and B1 is the bulk modulus of the matrix. The
normalised stiffness calculated from the Finite Plate Theory presented in Section 4.5.2 is
also shown for completeness and ease of comparison.

For the special case of k = 0, when the inclusions have zero stiffness i.e. perforations,
holes or voids, then these rules of mixtures can be written in a simpler form. The equations
for the differential model and the equation of Shevlyakov are also given:

ΨZhang3D =
2(1− p)

2+ p
[64] (4.67)

ΨZhang2D =
(1− p)
1+ p

[64] (4.68)

ΨGSC = ΨMori-Tanaka =

4G1
3B1

(1− p)
4G1
3B1

+ p
[66, 68] (4.69)

ΨDifferential = (1− p)2 [70] (4.70)

ΨShevlyakov =
(1− p)
1+2p

[72] (4.71)

ΨFPT =
(1− p)(1−ν)

2− (1− p)(1+ν)
(4.72)

A helpful comparison study [52] compares the differential method (Eqn 4.70), dilute method,
Mori-Tananka model (Eqn 4.69) and generalised self-consistent model (Eqn 4.69) to experi-
mental data of porous concrete [51]. The comparative study uses a Poisson’s ratio of ν = 0.2,
but wrongly further simplifies Eqn 4.69 to (1− p)/(1+ p). In fact, this simplification actually
occurs when ν = 1/3, noting that for this value of Poisson’s ratio 4G1/3B1 = 1. Noting this
simplification, and comparing Eqns 4.64 and 4.65 with Eqn 4.63, we see that when ν = 1/3
and thus 4G1/3B1 = 1, that all these three different methods produce identical expressions.
Interestingly, when ν = 1/3 and k = 0, the Finite Plate Theory formula, Eqn 4.72, simplifies
to the same expression as Shevlyakov, Eqn 4.71.

4.11.1 Comparison of voids and empty inclusions

Each rule-of-mixtures considered here has the expected predictions of unity and zero at p = 0
and p = 1 respectively. As might be expected from the similar form of the equations, with
the exception of the differential method, each curve has a similar shape and do not intersect
each other. As noted before, the generalised self-consistent model expression is equal to the
Mori-Tanaka expression and both are actually generalised forms of the Zhang expressions,
where the term 4G1/3B1 changes the factors multiplying the various bracketed expressions.
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Fig. 4.39 FEA results for inclusion patterned plates, k = 0, ν = 0.2, are compared with the
various theoretical predictions from Eqns 4.67-4.72.
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When ν = 1/3, then the GSC expression is equal to the Zhang2D expression, but when ν = 0
it becomes equal to the Zhang3D expression. For an intermediate value such as ν = 0.2,
the GSC expression therefore lies between the two Zhang expressions, which in this case
leaves the Zhang2D expression as the most accurate prediction out of the three. As the
Finite Plate Theory has the same form as the Zhang2D expression, but includes the Poisson’s
ratio terms, it perhaps should not be so surprising that the Finite Plate Theory captures the
hexagonally patterned inclusion plate FEA results better still. As noted the Shevlyakov
expression happens to correspond to the finite plate expression for ν = 0.5. However, as the
value of Poisson’s ratio being considered in this case is ν = 0.2, this necessitates that the
Shevlyakov will predict a lower value than the Finite Plate Theory, and this prediction is
indeed seen to fall below the experimental and FEA data. The differential method expression
has the most unique form, not having any equivalence to the other expression under any
conditions. It has an unusual behaviour at the higher values of p, becoming the lowest
estimate by a considerable margin. Overall the Finite Plate Theory is seen to be the best
rule-of-mixture for predicting homogeneous stiffness.

4.11.2 Comparison of stiff inclusions

When comparing rules-of-mixtures which allow for inclusions or arbitrary rigidity, similar
trends are seen. Again the Zhang3D expression appears to overestimate the normalised
stiffness quite significantly. While, for ν = 0.3, the Zhang2D, GSC and Mori-Tanaka
expressions are almost identical to each other, each slightly over-predict the values of
stiffness seen from the FEA of inclusion patterned plates. As previously noted, the Finite
Plate Theory expression reduces to the Zhang2D expression when ν = 0, however as seen
in Fig. 4.15, the Finite Plate Theory is excellent at capturing the behaviour with changes in
Poisson’s ratio. It is of interest to note that while simplifying using the standard expressions
for bulk and shear modulus the term 4G1/3B1 can be expressed 4G1/3B1 = 2(1−ν)/(1+ν),
if instead the expression (1−ν)/(1+ν) is inserted into the GSC expression, then the Finite
Plate Theory expression is recovered.

Overall, the Finite Plate Theory is seen to be the best rule-of-mixtures out of all those
considered for estimating the overall stiffness of inclusion patterned plates. Despite being
formulated from the consideration of elastic circular inclusions in a two dimensional plate,
comparison with other rules-of-mixtures and indicate that it may be also be useful in a much
wider range of contexts as a powerful tool to predict the elastic modulus of composites,
alloys, perforated plates or foamed materials.
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Fig. 4.40 FEA results for inclusion patterned plates, k = 10 ν = 0.3, are compared with the
various theoretical predictions from Eqns 4.62-4.66.
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4.12 Conclusions

Predicting the overall initial elastic stiffness of a plate patterned with many elastic inclusions
inclusions is a problem well suited to a homogenisation approach which seeks to characterise
the plate with a smeared representative material properties. A novel theoretical derivation of
an overall smeared stiffness for an inclusion patterned plate is derived from consideration
of a single elastic inclusion of arbitrary stiffness within a circular plate of finite size, under
an axisymmetric (biaxial) loading. By selecting the radius of the finite plate appropriately,
this Finite Plate Theory is able to capture the homogenised stiffness of a plate patterned
with many circular inclusions. The result allows for an arbitrary ratio of inclusion Young’s
modulus to plate Young’s modulus and for differing values of Poison’s ratio. The resulting
equation can be neatly expressed in terms of the proportion of the sheet which is made of
inclusions, p, and this allows the result to be applied to irregular as well as regular patterns
of inclusions. When the plate and the inclusion have the same value of Poisson’s ratio the
analytical result for smeared modulus simplifies further to a very compact form.

FEA shows that for a given pattern of inclusions, of an arbitrary stiffness, a single
value of smeared Young’s modulus is representative of the overall behaviour of the sheet in
both bending and stretching, as well as under biaxial, uniaxial and antisymmetric loading.
Inclusion patterned plates are observed to be strongly isotropic for all patterns when under
biaxial loading. For Uniaxial loading irregular patterns and a regular hexagonal pattern are
still isotropic, however the square pattern had a small degree of anisotopy. The homogeneity
of an inclusion patterned plate was seen to be proportional to ratio of inclusion radius to
overall plate side length.

Excellent agreement is seen between FEA results for plates patterned with many inclu-
sions and the Finite Plate Theory formula. Agreement is seen to be excellent for regular and
irregular patterns of inclusions, stiff and soft inclusions and over a wide range of Poisson’s
ratios. Excellent agreement is seen over a wide range of p, even for very high values of p
where there is very close packing of inclusions and stress distributions around neighbouring
inclusions strongly interact. The agreement remains excellent for uniaxial as well as anti-
symmetric loading, and for bending as well as stretching. The theoretical prediction is also
seen to be very good when the inclusions are square in shape, however it is noted that plates
with inclusions of concave shape or different aspect ratios have slightly different normalised
stiffnesses. Experimental data of perforated strips further confirms the applicability of the
Finite Plate Theory. Comparison against existing “rules-of-mixtures” shows that the Finite
Plate Theory is superior at predicting the smeared homogenised stiffness of an inclusion
patterned plate. In particular, compared to existing homogenisation formulae, the dependence
on Poisson’s ratio is a noteworthy improvement.





Chapter 5

Patterned dimpled sheets

5.1 Summary

Combining the results of the preceding chapters, an analytical model of the initial elastic
stiffness of a dimpled sheet can be formulated. Having established the equivalence of a
single dimple within an infinite plate and an inclusion in an infinite plate, and subsequently
predicted the overall smeared stiffness of an inclusion patterned plate, these results can be
combined to predict the overall stiffness of a dimpled sheet.

Comparison against FEA of dimpled sheets shows that simply replacing each dimple
with an elastic inclusion of the effective stiffness calculated for a single dimple in an infinite
sheet gives an over-prediction of the overall stiffness of the sheet. Moreover, the decrease
in realised stiffness compared to the prediction is more severe for higher packing densities.
This apparent decrease in effective stiffness with increasing pattern density is here termed
k-degradation. Drawing from the Finite Plate Theory analysis of inclusion patterned plates,
which treated each inclusion in a patterned plate as a single inclusion within a circular plate of
finite size, the effective stiffness of a dimple can be calculated considering the dimple within
a finite plate of the appropriate radius. Such an analysis shows that the reduced horizontal
restraint of a finite ring of material surrounding a dimple, compared to an infinite plate, is the
cause of k-degradation. Considering the correspondingly modified effective stiffness of a
dimple, the Finite Plate Theory prediction can be used to predict the overall stiffness of a
dimpled sheet. Noting that the effective stiffness of the dimples will vary with the packing
density of dimples. This combined theory is seen to provide excellent predictions of the
initial biaxial bending stiffness of a dimpled sheet and also provide excellent predictions of
the initial biaxial stretching stiffness. This is verified against FEA of dimpled sheets for a
variety of dimple shapes and a range of packing densities.

Where adjacent dimples are in differing up and down directions respectively, the effective
horizontal restraint of the surrounding plate is greater. Where a dimple is entirely surrounded
by dimples in the opposing direction the horizontal restraint experienced by that dimple is
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effectively the same as the restraint provided by an infinite sheet. Therefore it is seen that
having up and down patterns of dimples can negate some of the impact of k-degradation.
This provides rational to the slight increases in bending stiffness observed in the initial
experimental results of dimpled sheets and additionally this behaviour is confirmed by FEA
results.

Experimental testing of circular dimpled sheets is undertaken, utilising two concentric
circular knife-edges to create a region of pure biaxial bending. The test set-up is considered
analytically for the case of a flat plate. Results from experimental testing confirm that
dimpled sheets have a higher biaxial bending stiffness than a flat plate, however the increase
in initial stiffness is difficult to quantify due to highly non-linear force-displacement response
of this set-up.

Unlike inclusion patterned plates, the normalised bending stiffness of a dimpled sheet is
not independent of the type of loading. FEA shows that the normalised bending stiffness of a
dimpled sheet under uniaxial bending is greater than the normalised stiffness of the same
sheet under biaxial bending. While this increased stiffness cannot be captured by increasing
the effective stiffness of the dimples, a good approximation can be made by scaling the
increase in stiffness seen for the biaxial case by an empirically derived constant.

5.2 Introduction

In order to understand the structural behaviour of a dimpled sheet the work of the previous
chapters is combined in order to derive an analytical equation for the initial elastic stiffness
in bending and in stretching for a dimpled sheet.

Recall from Chapter 2 that a thin plate or sheet can have its bending stiffness increased
by dimpling (the act of indenting the surface in order to produce a plastic deformation out
of plane). Indeed, the increased stiffness is a geometric effect alone, and a sheet which is
formed directly into such a geometry, e.g. by 3D printing, also has the same bending stiffness
benefits.

Chapter 3 analysed the structural performance of a single dimple, in both bending and
stretching. It was shown that a single dimple in an infinite plate may be considered to be
an inclusion of the same radius, provided that the inclusion stiffness was chosen correctly.
Formulae for the effective modular ratios of such inclusions were theoretically calculated for
the case of biaxial stretching and biaxial bending, as functions of the dimple geometry. These
theoretical predictions were validated against FEA. Additional FEA on single inclusions and
dimples in an infinite plate subjected to uniaxial and antisymmetric load cases showed that
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the effective inclusion stiffness was about 15% higher than the theoretical prediction in these
cases, and gave a good equivalence for displacements and curvatures.

Chapter 4 then considered how patterns of inclusions in a plate behave and found that
it was possible to take a homogenised smeared Young’s modulus based on the modular
ratio of the inclusions, k, and the proportion of the area which is inclusions p. An excellent
agreement was seen with FEA of inclusion patterned plates, and FEA also confirmed that the
overall stiffness of such plates was independent of both pattern and the type of loading.

Combining these results should therefore provide a good method of predicting the
performance of a dimpled sheet, giving an overall homogeneous effective Young’s modulus
for bending and for stretching. First transforming each individual dimple into its equivalent
inclusion, then smearing out the properties of these effective inclusions in order to arrive at
the overall properties of the dimpled sheet.

Even without going into the details of this method, some initial conclusions can be
instantly drawn. For example, this approach tells us why, in stark contrast to the Euler-
Bernoulli structural depth analysis of Section 2.4, not much advantage is gained, if any, from
having half of the dimples going up and the other half going down. Regardless of dimple
direction, the dimple geometry is still the same and thus it will still be transformed into the
same effective inclusion. Therefore, given the same effective inclusion stiffness, the overall
plate stiffness will be the same.

5.3 Initial findings

Combining the theory of the previous two chapters, it is straightforward to make a prediction
for the overall behaviour of a sheet patterned with dimples. For example, a spherical
cap dimple with the geometry a/t = 6 and d/a = 1/6, has its value of kbend theoretically
calculated to be 1.920, or alternatively using an axisymmetric FEA a more accurate value can
be calculated kbend = 1.798; see Fig. 3.9. Utilising the Finite Plate Theory from Chapter 3,
this value of kbend, along with the proportion of the sheet which is dimpled, p, can be used to
predict the overall bending stiffness of the sheet. Figure 5.1 compares the FEA results for
normalised biaxial bending stiffness for sheets dimpled with hexagonal or square patterns of
such spherical cap dimples.

For both the square and the hexagonal pattern, the Finite Plate Theory curve accurately
predicts the overall stiffness for low values of p. However, as p increases, the achieved
stiffness of the dimpled sheets falls distinctly below the predicted value, though it is interest-
ing to note that both patterns do so in an identical fashion. In fact, the decrease in bending
performance compared to prediction at high p is so pronounced that it even falls below the
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Fig. 5.1 FEA results of normalised biaxial stiffness for a dimpled sheet with spherical cap
dimples with geometry a/t = 6 and d/a = 1/6. Hexagonal and square patterns of dimples
are modelled and the sheet has ν = 0.3. From Fig 3.9 the effective stiffness in bending for
such a dimple is kbend = 1.798, harmonic, arithmetic and Finite Plate Theory predictions are
plotted for this value of k.
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Fig. 5.2 The normalised stiffnesses of dimpled sheets in Fig. 5.1 are used to calculated effec-
tive inclusion stiffnesses using Eqn 5.1. These values of keff are divided by the nominal kbend
values from the axisymmetric FEA, to find a normalised measure of the dimple performance
compared to expectation.

harmonic smeared average, a strange occurrence as the harmonic smeared average is known
to be an absolute lower bound on rules-of-mixtures.

As the Finite Plate Theory was seen to be very good at estimating the performance of
inclusion patterned plates, it is possible to use it to back calculate the effective value of
inclusion stiffness, keff, for the dimples in each case given the overall stiffness of the dimpled
sheet. Starting with the Finite Plate Theory expression from Eqn 4.40:

ΨFPT =
2k− (1− p)(k−1)(1−ν)

2+(1− p)(k−1)(1+ν)
→ keff =

2Ψ− (1− p)[(1+ν)Ψ+(1−ν)]

2− (1− p)[(1+ν)Ψ+(1−ν)]
(5.1)

There are two interesting phenomena to note from Fig. 5.2. The first and most important
is that there is a degradation in the realised values of k when the dimples get packed close
together and p increases. This “k-degradation” is almost linear and is identical for both the
square and hexagonal patterning. Secondly, the effective k for small values of p is slightly
greater than the predicted value of kbend. Careful inspection of Fig. 5.1, confirms that indeed,
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the normalised stiffness seen in FEA is slightly higher than the predicted Finite Plate Theory
value for the lowest values of p.

The presence of both of these phenomena is unexpected, however, both will be explained
in the following sections. Section 5.4 outlines the FEA methodology for modelling dimpled
sheets and then section 5.5 builds upon the theoretical analysis presented in previous chapters
to more fully capture the initial structural behaviour of dimpled sheets.

5.4 FEA methodology

The finite element analysis conducted on dimpled sheets is based on the FEA of inclusion
patterned plates from section 4.6, and as such shares much in common. Again, linear elastic
models were tested in both bending and stretching using ABAQUS [37].

Dimpled sheets are modelled as per the inclusion case, but with dimples of a given
geometry instead of inclusions of a given modular ratio, see Fig. 5.3. The dimples are of
either spherical cap or quartic shape and are modelled for a variety of a/t and d/a ratios.
In-plane forces and applied moments per unit length apply loading to the edges. Using
appropriate mirror symmetry conditions, only a quarter of the overall plate needs to be
analysed, for computational efficiency; the mesh distribution itself is fine and non-uniform
to mitigate mesh sensitivity effects. A sufficiently large number of dimples are modelled
so that edge effects are confined in very narrow bands, much smaller than the plate width.
The geometry is tricky to construct using the ABAQUS graphical interface, and therefore the
geometry is made in Rhino [73], and imported into ABAQUS as a STEP geometry file format.
As before, quadratic shell elements (SR8) are used as a full 3D modelling would require a
much larger number of elements to accurately model the geometry, and the computational cost
required to run such simulations would be prohibitive. Selected geometries were modelled
using quadratic full 3D stress elements (C3D10), and these simulations confirmed the validity
of using the shell elements. The geometry of the mid-surface of the dimpled sheet profile
is defined as a shell, and then the shell thickness is defined by the section properties. The
mesh shown in Fig. 5.4a contains 54802 shell elements in the quarter sheet model, leading
to 325848 degrees of freedom on the model and the corresponding model in Fig. 5.4b has
137124 solid elements leading to 824352 degrees of freedom. Production FEA analyses for
the dimpled sheet data presented in this chapter utilise a finer mesh to increase the accuracy
of the results, a typical analysis has 225000 quadratic shell elements and 4000000 degrees of
freedom, equating to each dimple being modelled with approximately 600 shell elements.

When the dimples intersect the edge of the modelled plate, the boundary edge is no
longer a straight line, but undulates up and down slightly. Applying a bending moment to
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such a boundary is not problematic, despite the extra length of edge to which the moment per
unit length is applied. When a moment per unit length is applied to a edge with a gradient
the moment per unit length applied perpendicular to the plate thickness is just equal to the
projected horizontal length of the line; the other component of the bending moment acts as a
small twisting force, but by the nature of the dimple’s shape, this will be cancelled out by an
equal and opposite twist from the other side of the dimple. By Saint-Venant’s principle the
effect of these twisting moments will only be seen locally as an edge effect as overall they
cancel out. Thus overall, the total moment applied to the edge will be equal to the nominal
moment 2LM0.

When an in-plane force is applied to the edge of the plate, more care needs to be taken. In
applying a force per unit edge directly to the edge of the plate, the total force applied will be
greater than the nominal force assumed because the undulating edge which cuts through some
dimple cross-sections has a slightly greater length. However, even more problematically,
because the dimples undulate vertically from the mid-plane of the plate, the overall force
is not acting in same plane as the mid-plane of the plate, and this force acting at a small
lever arm causes a moment. In order to alleviate these problems, when dimpled sheets are
tested in biaxial in-plane tension the edge loading is applied only to the boundary regions of
flat plate, and not where the boundary intersects a dimple. The total length of flat boundary
edge which is being loaded is calculated and the applied loading per unit length is scaled
up accordingly such that the correct total load is applied. While this method will cause
differences in stresses locally, via Saint-Venant’s principle, the middle of the sheet will still
have the correct behaviour. Normalised stiffnesses will therefore be extracted by considering
the deformation of a central unit cell, rather than the displacement at the very edge of the
sheet.

The quadratic shell elements, by the nature of their formulation, assume a plane stress
condition and therefore zero stress in the through-thickness direction. While the shell
elements do neglect through-thickness stress, this is not a bad assumption, as the dimpled
sheets are very thin and thus through-thickness stresses are negligible. However, due to their
implementation they model a slightly different geometry to that of the assumed constant
vertical thickness dimple profile. The shell model assumes a constant through-thickness,
rather than vertical thickness; while this was exactly equivalent in the inclusion case, as the
geometry was completely flat, this is not so for dimples. The undulating surface of a dimple
necessitates that the mid-surface has a greater surface area than the nominal area in plan view,
πa2. The shell elements model therefore models a slightly larger total volume of material, i.e.
slightly larger than the nominal volume of 4L2t, for a plate with side length 2L and thickness
t. Figure 5.4 shows a comparison between a shell element mesh and a solid element mesh
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Fig. 5.3 A quarter model of a square plate with a hexagonal pattern of dimples, modelled
in ABAQUS [37]. Equal moments per unit length load the two outer edges with M0 equal
to unity, the edges indicated with a dark dashed line have symmetry boundary conditions
applied to them, constraining each edge to remain in its corresponding plane of symmetry,
and enforcing a zero rotation perpendicular to the plane of symmetry. Colour contours show
SCFs with a range from [Dark blue, 0] to [Red, 2]. Here spherical cap dimples are modelled
with: a/t = 6, d/a = 1/6, ν = 0.3, gap-ratio = 8/3; thus p = 0.1666. Dimples of this shape
are close up in Fig. 5.4. The radius of the dimples compared to the half-length of the sheet is
a/L = 3/100.
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(a)

(b)

Fig. 5.4 A comparison of the mesh of a dimpled sheet modelled in FEA: (a) shell elements
(SR8), (b) solid elements (C3D10).

for the same dimpled sheet. Because of the extra material modelled in each dimple, the kbend

value for the same dimple geometry is slightly larger when using shell elements than when
using solid elements. The stiffness parameters extracted from axisymmetric FEA analysis
of a dimple (a/t = 6, d/a = 1/6) when modelled with shell elements and solid elements
respectively are shown in Table 5.1. As expected we see that the shell elements, due to
modelling slightly more material, give slightly stiffer results. Note that while this is of the
order of 10% for bending, the stretching stiffness in each case is almost identical.

5.5 Analytical model of dimpled sheets

The differences between the FEA results for dimpled sheets presented in Fig. 5.1, and
theoretical prediction which simply combined the theory from Chapters 3 and 4, indicates the
need for a slight development of the theoretical analysis for sheets with patterns of dimples.
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Table 5.1 Comparison of stiffness parameters of a dimple modelled with shell and solid
elements; a/t = 6, d/a = 1/6, ν = 0.3.

α1 α2 α3 α4 kbend kstretch
FEA shell 0.2847 0.8932 0.8932 1.2687 1.9523 0.3388
FEA solid 0.2810 0.9381 0.9381 1.1657 1.7982 0.3382

5.5.1 Over-prediction of kbend

For a dimple with a given nominal geometry, a small difference in the bending stiffness is
realised in the FEA model depending on whether shell or solid elements are used to model it,
which sheds light on the second of the phenomena noted from Fig. 5.2. Using a shell element
representation of a dimple geometry gives a slight over-prediction of the bending stiffness.
When predicting the performance of a dimpled sheet as modelled with shell elements, e.g.
Fig. 5.4a, the corresponding value of bending stiffness should be that of the dimple modelled
by shell.

Therefore, for the dimpled sheets in Fig. 5.1, a value of kbend = 1.952 should be used
rather than 1.782. Normalised stiffnesses from FEA of dimpled sheets are compared with
the Finite Plate Theory prediction using kbend = 1.952 in Fig. 5.5a. The corresponding
k-degradation, Fig. 5.5b, confirms that this is the correct value to use, as the effective stiffness
of the dimples approaches this value of kbend as the packing density approaches zero; i.e.
keff/kbend → 1 as p → 0.

While not strictly a change in the theoretical analysis, this does highlight an important
feature of any FEA simulations of dimpled sheets. When predicting the behaviour of a sheet
modelled by solid elements or a physical dimpled sheet, a value of kbend from the solid
element axisymmetric analysis should be used to give the most accurate prediction.

5.5.2 k-degradation

Of greater importance and consequence to the analytical model is the first phenomenon noted
from Fig. 5.2, namely k-degradation, the tendency for the effective stiffness of a dimple to
decrease as packing proportion, p, increases. The effective k values for dimples can be back
calculated from the FEA results for normalised stiffness using Eqn 5.1.

Consider the behaviour of a dimple under bending, Fig. 5.6. When it is bent, it also
naturally wants to undergo a horizontal displacement at its edge. This coupling of stretching
and bending gives rise to the α3 term, see Eqn 3.23. A dimple completely restrained from
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(a)

(b)

Fig. 5.5 (a) Normalised biaxial stiffness of dimples sheet from Fig. 5.1 is compared against
homogenisation theory predictions using the FEA shell element value of kbend = 1.952. (b)
The k-degradation when accounting for this slightly increased value of kbend.
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Fig. 5.6 A general dimple in bending has both a resulting edge rotation and horizontal edge
displacement (H). The horizontal restraint provided by an infinite plate around a hole (B) is
greater than that of a finite hoop of material (I). Compare to Fig. 3.7.

horizontal expansion would therefore have an increase in its bending stiffness. For a given
applied moment, a horizontal in-plane force which prevents the horizontal displacement is
provided by the restraint, and this force, via α2, acts to oppose the rotation of the dimple.
When a dimple is part of an infinite plate, it does experience some, but not total, horizontal
restraint due to the surrounding material. This is why the value of kbend, the bending stiffness
of a dimple included in a plate, is greater than α4, the bending stiffness of a dimple on its
own. As we are considering a linear elastic response, it is clear that the surrounding plate
restrains horizontal expansion and contraction equally. Thus for a single dimple in an infinite
plate, neither the sense of the dimple and the sense of the loading affect the initial stiffness.

The superposition analysis of Section 3.4.3 considered a dimple and an inclusion which
were at the centre of an infinite plate. The horizontal restraint provided by a finite hoop of
material is obviously going to be slightly less than the restraint offered by an infinite plate.
Calculating the stiffness of a finite hoop of material to an internal loading (see Appendix D),
the displacement of the internal edge for a unit load is given as δI, Fig. 5.6. Comparing to δB,
the displacement of the internal edge of a hole in an infinite plate due to a unit load, confirms
that the finite plate is less stiff (it displaces more under the same load), and that as Λ → ∞,
that δI → δB.

As deduced in Section 4.5.2, for a pattern of inclusions in a large plate, it is permissible
to treat each inclusion as a single inclusion in a finite circular plate which has an equal area to
the average tile area of that pattern, i.e. treat each inclusion to be at the centre of a finite plate
with radius Λ =

√
1/p. Therefore instead of analysing the equivalence of a dimple and an

inclusion in an infinite plate, when considering the effective stiffness of a dimple which is in a
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patterned sheet the superposition analysis should consider how a dimple and inclusion behave
when part of a finite plate of radius Λ =

√
1/p. Conducting the superposition analysis of

Section 3.4.3, but using the finite plate (superposition state I) rather than the infinite plate
(superposition state B), we find that similarly to before:

k∗bend =
α4

1− γ∗
(5.2)

where the expression for γ is now slightly adjusted to include the p term:

γ
∗ =

ΘGδH

ΘH(δI +δG)
=

(1+ν)α4(
1+ν + 2p

1−p +
1−ν

α1

)
α2α3

(5.3)

Increasing the value of p, decreases the value of γ∗ and a lower value of γ∗ thus decreases the
value of k∗bend. A higher value of p consequently has a smaller finite plate, which provides
less horizontal restraint, therefore it has a smaller ability to increase the bending stiffness
of the dimple. This equation shows how putting dimples closer together decreases their
effective stiffness, providing an analytical basis for k-degradation. When p = 0 then the
original expression for γ is recovered. Similarly for the effective stiffness of a dimple in
stretching:

k∗stretch =
α1

1−ζ ∗ (5.4)

with the adjusted expression for ζ :

ζ
∗ =

(1+ν)α1(
1+ν + 2p

1−p +
1−ν

α4

)
α2α3

(5.5)

As the value of ζ was already very small for a typical dimple, the reduction due to p is
almost negligible when considering the value of k∗stretch. As before, the stretching stiffness of
a dimple in a plate is approximately equal to the stiffness of that dimple by itself, k∗stretch ≈ α1.

The superposition analysis indicates that there will be a state of in-plane stress around
a dimple in bending, even if a pure biaxial bending is applied globally. An inclusion has
no coupling between stretching and bending, and therefore an inclusion subjected to a pure
global bending moment will have no in-plane stresses, only the bending stresses. However,
as in-plane forces do not affect the initial bending performance of a flat plate, a dimple and
an inclusion of the equivalent stiffness can be treated as interchangeable. Correspondingly,
a dimple under a global biaxial stretching, because of its bending–stretching coupling will
impart a small bending moment on the surrounding plate. However, not only does this
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bending moment decay with the inverse square of normalised radius, but any resulting
curvatures due to the moments do not affect the initial in-plane performance of the sheet.

5.5.3 Up–down dimples

While the direction of a single dimple in an infinite plate has no effect on the bending
performance, changing the orientation of the dimple does affect the sense of the surrounding
in-plane stresses, although the magnitude remains unchanged. For a dimple which is orien-
tated with respect to the loading direction as per Fig. 5.6, the bending induces an outward
horizontal displacement, which leads to a tensile in-plane hoop stress. However for a dimple
which is the other way up, the bending would induce an inward horizontal contraction, which
leads to a compressive in-plane hoop stress. For dimples which are in the same direction as
each other, the in-plane stresses during bending are all of the same sense, and so each dimple
behaves as though in a finite plate of radius Λ =

√
1/p. However, if a dimple is surrounded

by dimples which are in the opposite direction, then the surrounding in-plane stress fields
are of an opposite sense and the restraint to horizontal displacement which the surrounding
plate provides is equal to the infinite plate case. Therefore for up-down patterns of dimples
the effective value of kbend can be up to the maximum value calculated for the infinite plate
case. While having alternating upwards and downwards facing dimples does not provide the
significant amount of performance enhancement that was predicted from the flawed second
moment of area calculations of Chapter 2, it does have the ability to negate the effects of
k-degradation.

Ideally an up-down pattern would fully surround each dimple with dimples of the opposite
direction. However, a quick consideration shows that this ideal can never be achieved in
practice. For example, taking a hexagonal pattern and surrounding a single up dimple with
six down dimples, instantly we find that each down dimple is adjacent to two other down
dimples: thus it is impossible to have every dimple surrounded by only dimples of the
opposite direction.

Two alternative up-down patterns of dimples based on the regular hexagonal patterning
are shown in Fig. 5.7. Each dimple in Fig. 5.7a has an identical set of surrounding dimples,
however the pattern is globally anisotropic. In the Hex up-down B pattern, Fig. 5.7b, there is
global isotropy as it exhibits six-fold rotational symmetry. However, not each dimple is alike
in its surroundings: of the six surrounding dimples some dimples have four opposite direction
dimples, other dimples are surrounded entirely by opposite direction dimples, whereas some
are adjacent to just three opposite direction dimples. In both cases however, on average four
out of six of the surrounding dimples are in the opposite direction.
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(a) (b)

Fig. 5.7 For the hexagonal patterning, two alternative up-down dimple patterns are presented.
In both cases exactly 50% of dimples are in each direction. (a) Hex up-down A, (b) Hex
up-down B.
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FEA results for biaxial bending of a sheet dimpled in the Hex up-down A pattern,
p = 0.6663, using spherical cap dimples with a/t = 6 and d/a = 1/6, show a 31% difference
in bending stiffness between the two orthogonal directions, with Ψ = 1.7206 and Ψ = 1.3111
respectively. The same dimpled sheet but using the Hex up-down B pattern has a measured
normalised biaxial bending stiffness of Ψ = 1.4791 and Ψ = 1.4816, less than a 0.2%
difference.

While as previously discussed the k-degradation would be entirely negated if each dimple
was entirely surrounded by opposite direction dimples, in realisable up-down patterns where
this is not quite the case we expect the k-degradation to be only partly negated. For the
hexagonal up-down patterns in Fig. 5.7 four out of six surrounding dimples were in the
opposite direction, and thus it seems reasonable to assume that two thirds of the k-degradation
will be negated.

5.5.4 Stress concentration factors

The ability to predict the maximum stress concentration factor in a dimpled sheet allows for
the prediction of the maximum stress in the sheet under an applied loading, which allows for
a prediction of when first yield will occur and thus the effective yield strength of the dimpled
sheet. The influence which large residual stresses generated by an indentation process have on
the yielding of a dimpled sheet is not considered here. However, dimpled sheet manufactured
by 3D printing or indented dimpled sheets subjected to subsequent annealing to remove
the residual stresses will have first yielding dependent on the maximum SCFs calculated in
this section. The stress distributions around a dimple and around an inclusion in a plate in
biaxial bending are identical for an inclusion with the correct effective stiffness. However,
the stress distribution within the dimple itself and within the inclusion are quite different:
see Fig. 3.15 which shows the case of a single dimple and a single inclusion within an large
plate. An inclusion has a high, practically constant radial and circumferential stress; however,
in a dimple the stresses decay away quickly, oscillating around zero. The maximum stress
concentration factor for an inclusion sheet is in the inclusion itself, however the maximum
stress in the plate also needs to be calculated to account for a potential difference in yield
stress between the plate material and inclusion material, see Section 4.5.2. For a dimpled
sheet, the dimple and the plate are made of the same material and thus the yield strength
should be constant, therefore only the location of maximum stress needs to be considered,
which for the dimpled case is at the edge of the dimple. The stresses are equal to those at the
inclusion/plate interface and are given by:
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σ1rr

σ0
=

K∗

1+(K∗−1)p
σ1θθ

σ0
=

2−K∗

1+(K∗−1)p
σ1tt

σ0
= 0 (5.6)

where K∗ = 2k∗/[(1−ν)+ (1+ν)k∗] and k∗ is the relevant effective dimple stiffness ac-
counting for the packing density p of the pattern. Thus the maximum normalised radial stress
can be written:

σ1rr

σ0
=

2k∗

(1−ν)+(1+ν)k∗+(k∗−1)(1−ν)p
(5.7)

The maximum von Mises stress can be calculated using the expression
σvonMises =

√
0.5[(σrr −σθθ )2 +(σrr −σtt)2 +(σθθ −σtt)2], which gives a maximum von

Mises stress around a dimple as:

σvonMises

σ0
=

√
3K∗2 −6K∗+4
1+(K∗−1)p

(5.8)

Using a Tresca criterion, first yield will occur when the maximum difference between any pair
of principle stresses is equal to σY 1. For a dimple in bending σ1θθ > 0 so σY 1 = σ1rr −σ1tt

but for a dimple in stretching σ1θθ < 0 thus σY 1 = σ1rr −σ1θθ . The overall yield stress of
the dimpled sheet is:

Bending σYDimpled = σY 1
1+(K∗−1)p

K∗ (5.9)

Stretching σYDimpled = σY 1
1+(K∗−1)p

2−K∗ (5.10)

Alternatively, using von Mises criterion, the effective yield stress of the overall plate is
governed when the maximum von Mises stress reaches σY 1, and is thus:

σYDimpled = σY 1
1+(K∗−1)p√
3K∗2 −6K∗+4

(5.11)

However, although the overall stiffness of patterns of inclusions and dimples is very well
predicted using Finite Plate Theory, the stresses are not quite so accurately captured. A
conservative estimate of the maximum SCF in a dimpled sheet can be calculated assuming a
single dimple in an infinite plate, σ/σ0 = K. This infinite plate theory prediction would thus
predict a lower bound on the first yield stress of the dimpled sheet:

σYDimpled = σY 1
(1−ν)+(1+ν)k

2k
(5.12)
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5.6 Biaxial behaviour of dimpled sheets

Using the analysis of shells of revolution (or axisymmetric FEA) to calculate the stiffness
parameters α1 – α4, and then using the adjusted superposition theory described in Section 5.5,
an accurate value of effective stiffness can be calculated for any given dimple geometry.
Using these values of kbend and kstretch, the Finite Plate Theory can accurately predict the
overall stiffness in bending and stretching for a sheet patterned with dimples. As seen in
Chapter 4, the exact patterning should not affect the overall stiffness, rather just the packing
density of the pattern p is required. Therefore for any well distributed pattern a very accurate
prediction of overall stiffness should be able to be made.

If a dimpled sheet has dimples in both the up and the down direction, the effective values
of stiffness can be calculated by using the proportion of the adjacent dimples which are of
the opposite sense to negate some of the k-degradation effect.

5.6.1 FEA results: Biaxial bending

Normalised stiffness

Using the FEA methodology laid out in Section 5.4, the bending stiffness of dimpled sheets
under biaxial bending was found for a variety of patterns and dimple profiles. The normalised
bending stiffnesses were then compared against the theoretical predictions. In particular
the use of the graph of k-degradation is especially helpful in comparing the accuracy of the
theory.

To plot the FEA data for k-degradation, as before, use the Finite Plate Theory to back
calculate the effective dimple stiffness, Eqn 5.1, then divide by the nominal dimple stiffness
which is calculated assuming it is in an infinite plate. To calculate the theoretical curve for
k-degradation we take the dimple stiffness accounting for the finite plate, Eqn 5.2, and divide
by the nominal value of kbend to find:

k-degradation =
1− γ

1− γ∗
=

1− (1+ν)α4(
1+ν+ 1−ν

α1

)
α2α3

1− (1+ν)α4(
1+ν+ 2p

1−p+
1−ν

α1

)
α2α3

(5.13)

Assuming that the hexagonal up-down pattern negates two thirds of the k-degradation,
we can calculate:

k-degradation UD = 1− γ − γ∗

3(1− γ∗)
(5.14)
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(a)

(b)

Fig. 5.8 FEA results of dimpled sheets with various patterns of dimples are compared to
theoretical predictions. Spherical cap dimples are used with a/t = 6, d/a = 1/6 and ν = 0.3.
(a) Normalised biaxial stiffness is compared to the Finite Plate Theory with a constant value
of kbend = 1.952 and against the complete dimpled sheet theory, Eqn 5.18, which accounts
for k-degradation with increasing p. (b) Back-calculated effective dimple stiffnesses are
calculated from FEA and the corresponding k-degradation is compared against theoretical
k-degradation.
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Figure 5.8a shows normalised biaxial stiffnesses of dimpled sheets extracted from FEA
models for a variety of patterns. The same hexagonal, square and Penrose Rhombus patterns
are the same as for the inclusion patterned plates in Section 4.7. The dimples have a spherical
cap geometry with a/t = 6 and d/a = 6, the dimple radius to half-width of the sheet is
a/L = 3/50 and the Poisson’s ratio is ν = 0.3. The up-down patterning for the hexagonal
pattern is Hex up-down B, Fig. 5.7b. The square up-down patterning has alternating up and
down dimples such that the four adjacent dimples are all of the opposite direction, in a similar
fashion to Fig. 4.1b. The up-down pattern for the Penrose Rhombus pattern is as described in
Appendix C.

When all the dimples are in the same direction, the pattern has almost no influence
on normalised stiffness. As found from the FEA results of inclusion patterned plates, the
overall stiffness is essentially independent of pattern. Comparing the k-degradation, Fig. 5.8b,
confirms the independence of pattern. Furthermore, an excellent agreement is seen between
the measured k-degradation from FEA and the predicted k-degradation from Eqn 5.13.

As noted before, the up-down patterns of dimples have a slightly superior performance
in bending, almost attaining standard Finite Plate Theory prediction. There is not much
influence on bending performance depending on the pattern, as for the single dimple direction
case. However, there is a slight variation: for example for a given p, the square up-down
pattern seems to have a slightly higher stiffness. This is understandable, as for a square
pattern all four of the nearest dimples are in the opposite direction, whereas in the hexagonal
pattern only four out of the adjacent six dimples were in the opposite direction. Therefore we
would expect that the square up-down pattern would negate the k-degradation effects even
more than the hexagonal up-down pattern. We do not expect a total negation for the square
up-down pattern, because the next nearest surrounding dimples, the four dimples which are
diagonally adjacent, are in the same direction. The theoretical prediction that the up-down
patterning negates two thirds of the k-degradation compares reasonably well with FEA – in
fact, it even seems to be marginally conservative prediction.

For the comparatively thick dimple in Fig. 5.8, kbend had a reasonably low value. The
trends and compatibility of theory to FEA seen for this low stiffness dimple also hold true for
dimpled sheets with a spherical cap dimple with a/t = 30, d/a = 1/6, ν = 0.3 and hence
kbend = 5.562, see Fig. 5.9. For stiffer dimples a key observation is that k-degradation does
not influence the overall normalised stiffness as much. The normalised biaxial stiffness of
the dimpled sheets is pretty close to the standard Finite Plate Theory, even when the dimples
are all in the same direction. However, considering Fig. 5.9b, the k-degradation itself is more
severe for this dimple. The theoretical predictions of k-degradation once again compare very
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(a)

(b)

Fig. 5.9 FEA results of dimpled sheets with various patterns of dimples are compared to
theoretical predictions. Spherical cap dimples are used with a/t = 30, d/a= 1/6 and ν = 0.3.
(a) Normalised biaxial stiffness is compared to the Finite Plate Theory with a constant value
of kbend = 5.562 and against dimpled sheet theory, Eqn 5.18. (b) k-degradation.



156 Patterned dimpled sheets

accurately with FEA. For this stiffer dimple, the difference in k-degradation between the
square up-down pattern and hexagonal up-down pattern is more pronounced.

It is important to also check that the theoretical predictions are not just valid for the
spherical cap dimple profiles. FEA results of normalised stiffness for dimpled sheets with
quartic dimples are shown in Fig. 5.10a. The quartic dimples chosen have the geometric
parameters a/t = 30 and d/a = 1/3, and with a Poisson’s ratio of ν = 0.3, this gives
kbend = 3.762. Again the normalised stiffnesses are seemingly independent of pattern, and
the k-degradation, Fig. 5.10b, is accurately predicted by the theory.

In general the k-degradation is more severe for dimples with a higher value of γ , i.e. the
reduction in the the ratio of effective dimple stiffness to nominal dimple stiffness decreases
more when there is more bending–stretching coupling. The quartic dimple, Fig. 5.10, has
γ = 0.242 and it has less k-degradation than either of the spherical cap dimple cases, Figs 5.8-
5.9 which have values of γ = 0.351 and γ = 0.467 respectively.

Stress concentration factors

The maximum stress concentration factors seen from FEA are plotted against the predictions
of maximum SCF from Eqns 5.7-5.8 and Eqn 5.15, Fig. 5.11.

Unlike the inclusion patterned plates, where the maximum SCF was seen inside the
inclusion, for dimpled sheets the maximum SCF occurs just outside the dimple. Rather
than the whole circular inclusion being subjected to this maximum stress, only a thin ring
of material around the dimple is highly stressed. The maximum stresses observed in the
FEA dimpled sheets approximately fall between the predictions of maximum stress from
Eqn 5.7 and Eqn 5.8. Additionally, the FEA results show that the up-down dimpled sheets
tend to have higher SCFs than when all the dimples are in the same direction. The SCFs
seen are quite varied, and the square and rhombus patterns develop higher stresses than the
hexagonal pattern. Considering the variation between the different patterns, the best idea is
to assume that the infinite plate theory approximation for SCF provides an upper bound. I.e.
the maximum SCF developed in a dimpled sheet is:

σDimpled

σ0
= K =

2k
(1−ν)+(1+ν)k

(5.15)

Therefore a good, yet conservative, predication of the overall first yield stress of a dimpled
sheet is:

σYDimpled = σY 1
(1−ν)+(1+ν)k

2k
(5.16)

where k is the stiffness of a dimple in an infinite plate.
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(a)

(b)

Fig. 5.10 FEA results of dimpled sheets with various patterns of dimples are compared to
theoretical predictions. Quartic dimples are used with a/t = 30, d/a = 1/3 and ν = 0.3. (a)
Normalised biaxial stiffness is compared to the Finite Plate Theory with a constant value of
kbend = 3.762 and against dimpled sheet theory, Eqn 5.18. (b) k-degradation.



158 Patterned dimpled sheets

Fig. 5.11 SCFs from FEA of dimpled sheets with various patterns of dimples are compared
to theoretical predictions. Quartic dimples are used with a/t = 30, d/a = 1/3 and ν = 0.3.
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5.6.2 FEA results: Biaxial stretching

The case of biaxial stretching of a dimpled sheet is quite similar to that of biaxial bending.
Using the same FEA methodology, but applying normal edge forces per unit length instead
of applied moments per unit length, the normalised stiffnesses in stretching were calculated
by extracting the horizontal displacements.

The most obvious difference is that while dimpled sheets are stiffer in bending than a
flat sheet, because generally kbend > 1, they are less stiff in stretching due to kstretch < 1.
However the theoretical analysis is practically unchanged, calculating kstretch for a dimple
in a plate using the superposition method, the normalised stiffness is well predicted by the
Finite Plate Theory. Calculating the effective kstretch for the dimple in a finite plate allows for
an excellent prediction of how k-degradation is affected by p.

As for the bending case, the normalised stiffness in biaxial stretching, Fig. 5.12a, is
slightly less than the standard Finite Plate Theory curve when all the dimples are in the
same direction, and is independent of pattern. When the dimples are half up and half down,
the normalised stiffness is much closer to the standard Finite Plate Theory prediction, in
fact unlike the biaxial bending case, the stiffness is even slightly higher than predicted.
Figure 5.12b indicates that the k-degradation seen for the single direction dimples is very
well predicted, however the up-down dimples actually have a slight increase in effective
kstretch with increasing p. The increase is only minor, and as such, it would be perfectly
reasonable, and also conservative, to simply assume that in biaxial stretching there is no
k-degradation for up-down dimple patterns.

5.6.3 Homogeneous smeared properties

For a dimpled sheet in biaxial bending or stretching, with material properties E1 and ν , the
overall homogeneous Young’s modulus is:

EDimpled = E1ΨDimpled (5.17)

where the normalised stiffness is given by the Finite Plate Theory equation:

ΨDimpled =
2k∗− (1− p)(k∗−1)(1−ν)

2+(1− p)(k∗−1)(1+ν)
(5.18)

The effective stiffness of a dimple, k∗, is given by consideration of geometry, and differs
depending on whether bending or stretching is being considered. The effective stiffness of a
dimple also is affected by the dimple packing proportion, p, as seen via k-degradation. For
dimples which are all in the same direction:
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(a)

(b)

Fig. 5.12 FEA results of dimpled sheets with various patterns of dimples are compared
to theoretical predictions. Spherical cap dimples are used with a/t = 6, d/a = 1/6 and
ν = 0.3. (a) Normalised biaxial stretching stiffness is compared to the Finite Plate Theory
with a constant value of kstretch = 0.3388 and against dimpled sheet theory, Eqn 5.18. (b)
k-degradation.
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k∗bend =
α1

1− γ∗
where γ

∗ =
(1+ν)α4(

1+ν + 2p
1−p +

1−ν

α1

)
α2α3

(5.19)

k∗stretch =
α1

1−ζ ∗ where ζ
∗ =

(1+ν)α1(
1+ν + 2p

1−p +
1−ν

α4

)
α2α3

(5.20)

A conservative lower bound on the stress at which first yield will occur in a dimpled
sheet, assuming a material yield stress of σY 1, is:

σYDimpled = σY 1
(1−ν)+(1+ν)k

2k
(5.21)

This prediction assumes that the greatest stress in a dimpled sheet is equal to that which
occurs around a single dimple in an infinite sheet, not accounting for any possible reduction
due to finite plate effects or a lowering effective dimple stiffness due to an increase in p.

5.7 Experimental validation

5.7.1 Experimental methodology

The analytical predictions of the biaxial stiffness of dimpled sheets match very well with
the FEA results. Experimental work would provide a further way to verify the analytically
predicted performance of dimpled sheets.

Given that the theory is based on biaxial behaviour, and that the main interest in dimpled
sheets is the increase in performance in bending, the experimental set-up should ideally test
a sheet in pure uniform biaxial bending. However, this is challenging to achieve practically.
Loading a flat square sheet in biaxial bending, each of the edges which are being loaded do
not remain straight, but rather begin to curve. This makes it very difficult to apply a moment
to each edge but without adding any additional restraint. A common test to impart a uniform
uniaxial bending moment is a four-point bend test, where two pairs of knife-edge supports
are used at each edge of the sample to induce a constant uniaxial moment region in the
central section. However, trying to apply this methodology to each direction of a square sheet
becomes problematic: each edge of a plate in pure biaxial loading has transverse curvature,
however the knife-edge supports do not.

One way to overcome this problem is to exploit the circular symmetry of biaxial bending.
Using two concentric circular knife-edge supports, each diametric cross-section is effectively
a four-point bend test, Fig. 5.13. However, because the deflected shape of a biaxially bent
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Fig. 5.13 A diametric cut-through of the biaxial bending test rig set-up. A circular plate is
supported between two concentric circular knife-edge supports. The top support is pressed
downwards, which induces a constant uniform biaxial bending moment in the central circular
region. The radius of the inner support is Lin, the radius of the outer support is Lout and the
radius of the plate is Lplate.

plate is axisymmetric, a ring at a given radius in the plate will be planar and thus the plate
will remain in contact with both the inner and outer circular knife-edge supports. Pressing the
top knife-edge support downwards will induce a constant uniform biaxial bending moment
in the central circular region of the plate.

However, this set-up has a few complications and is not as straightforward to analyse
as a a uniaxial four-point bending test. For example, in a standard four-point bending test,
the magnitude of the uniform bending moment per unit width in the central span is simply
the applied force per unit length at each knife-edge support multiplied by the lever arm
between each pair of supports. In the biaxial bending rig, although the level arm is well
defined, Lout −Lin. Applying a total force of F to the upper support, we would calculate a
force per unit length of F/(2πLin). However, from equilibrium we know that the same total
reaction force must be applied from the lower support, but here the force per unit length is
F/(2πLout). It is not clear therefore whether the magnitude of the uniform central bending
moment is equal to (Lout −Lin)F/(2πLout) or (Lout −Lin)F/(2πLin). In reality the answer
is neither, but rather it is somewhere inbetween.

Timoshenko presents the case of a circular plate simply supported on its boundary and
loaded with a ring load [74], which is equivalent to the biaxial test rig case when Lout = Lplate.
In this case the magnitude of the central bending moment is:
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M =
F(Lout −Lin)

2(1−ν)

8πLout
2 −

F ln Lin
Lout

(1+ν)

4π
(5.22)

and the corresponding deflection at inner support is:

δ |Lin =
F

8πD

[
(Lout

2 −Lin
2)

(
1+

1−ν

2(1+ν)

Lout
2 −Lin

2

Lout
2

)
+2Lin

2 ln
Lin

2

Lout
2

]
(5.23)

where D is the flexural rigidity of the plate, D = Eh3

12(1−ν2)
. Therefore from a practical test in

an INSTRON machine, where the deflection of the upper support, δ |Lin , and the total force
applied, F , are measured outputs of the test, Eqn 5.23, can calculate a value of D for the
plate. If the plate was patterned with dimples over the whole plate, then we would assume
that the value of D would simply be scaled up uniformly across the plate, and thus simply
taking the ratio of the F/δ stiffnesses of a flat plate to the different samples would allow for
calculation of normalised stiffness. However, in order to get a distributed continuous contact
with the circular edge supports, only the centre section of the plate can be dimpled.

However unfortunately, unlike a uniaxial four-point bend test, the biaxial bending test is
not quite so straightforward. If the middle section of the plate is more stiff than the rest of
the plate, then the moment distribution changes. A similar analysis assuming that the central
dimpled region of the plate has an effective stiffness of k, has to be performed in order to
find an equation that relates the force-displacement characteristic of the ring to the effective
stiffness of the middle section. Additionally, a practical consideration is that the circular plate
being tested must have a slightly larger radius than that of the outer support, or else it would
be prone to slipping and falling inside the outer support. Unlike the uniaxial four-point bend
test, the presence of an overhang outside the outer support affects the moment distribution
and the measured stiffness of the circular plate. While in the uniaxial case the material which
overhangs the outer support is completely unloaded, in the biaxial case this is not so. It is not
immediately obvious why this is so, however consider the plate without any overhang: there
is a radial rotation at the support, therefore a ring of plate which overhangs must also have
a compatible rotation at the support. While in the uniaxial case the overhanging material
had no restraint and could freely adopt this outer support rotation, the circular overhanging
ring must have an applied internal moment to adopt this shape, because forming from a flat
ring into a conic slice is opposed by circumferential hoop stresses. This has the effect of
modifying Eqn 5.23, where an additional term represents the additional stiffness of such
a plate due to an overhang. Appendix D.2 derives the modified equations which describe
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Fig. 5.14 A biaxial bending test rig set-up is analysed using FEA. An axisymmetric analysis
is used, so just one two dimensional slice is modelled. The figure here shows a visualisation
of the results swept around 180◦. Von Mises stresses are shown and colour contours range
from [Dark blue, 0 MPa] to [Red, 0.15 MPa]. The plate is simply supported against vertical
movement at Lout, indicated as a dashed black line. The force response is recorded as a
downwards displacement is imposed at Lin, solid black line. For this particular case shown:
Lin = 50mm, Lout = 60mm, Lplate = 80mm, t = 0.5mm, k = 3, E = 120000 MPa and ν = 0.3.

the combined case, a circular plate which has a stiff central section and also an arbitrary
overhang. The displacement at Lin is calculated in terms of the applied force F in Eqn D.15.

Axisymmetric FEA is conducted on the biaxial bending rig set-up, the plate is simply
supported against vertical movement at Lout, and the force response is recorded as a down-
wards displacement is imposed at Lin. Comparison of the plate stiffness from FEA confirms
the theoretical stiffness calculated in Appendix D.2. For the geometry shown in Fig. 5.14, the
initial stiffness from FEA is F/δ = 20.5897N/mm. The theoretical stiffness from Eqn D.15
is F/δ = 20.5901N/mm, a difference of less than 0.002%.

The theoretical calculation matches the FEA results very well, and therefore using
Eqn D.15 it is possible to back-calculate an effective stiffness of the central region of the
sheet from the force-displacement characteristic measured from a practical test.

Practical experimentation was undertaken using the custom made testing rig shown
in Fig. 5.15. Circular plate samples were manufactured with Lplate = 65mm. Choosing a
relatively small overhanging width reduces the dependence of stiffness on the overhang.
Dimple patterned sheets were produced using the same four patterns as the dimpled sheets
in Section 2.5, however just the central circular region was dimpled, Fig. 5.16. In addition
the hexagonal pattern forming plate was also used to produce a sparse hexagonal pattern.
In addition to the dimple forming techniques used in Section 2.5, the dimpling process was
found to have a non-negligible influence on the global curvature of the dimpled sheets. The
self-stress caused by the dimple forming process induced a global curvature on the plates,
of the order of a several plate thickness. The self-stress itself will not have any influence
on the initial bending stiffness of the dimpled sheet, however the resulting change in global
curvature will. In order to combat this, a heat treatment was used. Keeping the dimpled
sheets clamped in the forming plates in order to retain their flat global shape, an oven applied
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Fig. 5.15 The experimental biaxial bending test rig set-up used for the INSTRON testing.
The steel top and bottom loading rings have knife-edges, as per Fig. 5.13, as well as solid
plates which connect them to the INSTRON machine. The test rig is made with Lin = 50mm
and Lout = 60mm.

a heat treatment of 400◦C for 6 hours. By applying this high temperature heat treatment the
stress relaxation is practically total [75], and thus the self-stresses caused by dimpling are
completely relaxed, therefore the dimpled sheets no longer adopt the induced curved shape
but rather are globally flat, Fig. 5.17. An additional feature of this heat treatment process
is the change in yield stress. Copper beryllium alloys are prized for their high increase
in yield strength due to heat treatment. However, while the yield stress can be affected
significantly by a heat treatment, the Young’s modulus is not, and thus initial stiffness should
remain unchanged. Additionally, the colour of the copper beryllium changes during the heat
treatment, tarnishing and dulling the bright shiny copper colour of the non heat-treated plate.

5.7.2 Experimental results

The dimpled sheets are tested in the biaxial bending rig in an INSTRON machine and the
force-displacement characteristics are extracted. A flat circular plate of the same material,
thickness, and radius is tested in the biaxial bending rig in order to be able to calculate an
effective value of shell stiffness, D. However, the force-displacement characteristic found
from the experimental data is not as straightforward as desired. The initial stiffness of the plate
is found by extracting the initial slope of the force-displacement characteristic, which should



166 Patterned dimpled sheets

Fig. 5.16 Four circular dimpled sheet samples for the biaxial bending test. The samples have
Lplate = 65mm, thickness t = 0.5mm and are dimpled within the central section which has
a radius Lin = 50mm. Upper left: flat plate. Upper right: phyllotaxis. Lower left: sparse
hexagonal. Lower right: dense hexagonal.

(a) (b)

Fig. 5.17 A circular dimpled sheet with a phyllotaxis dimple pattern is shown before and
after a heat treatment of 400◦C for 6 hours. (a) Before the heat treatment, the self-stress
induce a global curvature. (b) After the heat treatment complete stress relaxation is observed
and sheet is globally flat.
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ideally be a straight linear section at the start of the response. However, neither the flat circular
plate nor the circular dimpled sheet have a clear flat initial region in the force-displacement
characteristic (Fig. 5.18), making it hard to determine an accurate initial gradient in order to
calculate the initial stiffness. The raw data is offset in the x and y direction in order to align
the origin. For example, the data shown for the hexagonally patterned dimpled sheet is offset
by about 2.5mm, as the loading doesn’t increase until this point because of the top support
not being exactly in contact with the dimpled sheet when the test began. Having offset the
data to the origin, it is clear that the bending stiffness of the dimpled sheet is significantly
greater than that of the flat plate; however, trying to quantitatively measure this improved
stiffness is difficult due to the lack of initial linear region. There are two distinct effects
which make the initial gradient of the force-displacement characteristic difficult to determine.
The first is that there is a force uptake effect which occurs as the loading ring makes contact
with the dimpled sheet, if the ring support does not make contact with the sheet in a clean
defined manner, then there will not be a clear defined start to the force response, but rather a
gentle ramp. One issue that gives rise to this effect is if the top loading ring is not entirely
parallel to the bottom support. If this is the case then contact will not occur simultaneously
around the concentric circles. Attempting to get these plates parallel to within a tolerable
margin is surprisingly difficult. Assuming an error of no more than half the plate thickness
is allowed, then over the 100mm diameter of the loading ring, a discrepancy of 0.25mm
indicates a need for the leveling accuracy to be within 0.057◦. Therefore, small errors in the
leveling of the top and bottom loading rings, or equally tiny distortions in the flatness of the
sheet, can cause take-up issues to obscure the initial stiffness.

In many practical experimental tests, these take-up issues also prevent an accurate reading
of the initial stiffness region. However, many of these tests, such as a four-point bending test,
have a reasonably large linear (or very nearly linear) regime, and as such the gradient can
be taken from this subsequent linear region and this value used as the initial gradient. This
circumvents issues associated with slack and take-up errors which might be present in the
experimental data. However, unfortunately it transpires that this biaxial bending set-up has a
strongly non-linear response. Performing the axisymmetric FEA simulation on the biaxial
test set-up, but allowing for large displacement non-linear behaviour confirms the non-linear
behaviour seen experimentally in Fig. 5.18. Within a deflection which is of just a single
plate thickness, the stiffness is seen to increase, by more than a factor of 6. Large deflections
in this biaxial bending test would make the thin plate adopt a globally doubly curved cap
shape, and any further deflection would be resisted due to circumferential hoop stresses. It
is well known that in a thin shell, the in-plane “membrane” forces quickly dominate the
bending behaviour of doubly curved surfaces. Equivalently, the rapid increase in stiffness
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Fig. 5.18 The experimental force-displacement characteristics of circular sheets under biaxial
bending. The results are given for a flat circular plate and for the dense hexagonal patterned
dimpled sheet shown in Fig. 5.16. In each case Lin = 50mm, Lout = 60mm, Lplate = 65mm
and t = 0.5mm. The raw results are given, as well as the same data offset in the x and y
directions to align the origin.
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Fig. 5.19 FEA force-displacement response of a flat circular plate in the biaxial bending
test set-up and a uniaxial four-point bending of a flat rectangular plate are compared. Large
non-linear displacements are modelled in both cases. The biaxial set-up is as shown in
Fig. 5.13. The uniaxial bending set-up is chosen to have the same profile as the biaxial
cross-section geometry, with Lin = 50mm, Lout = 60mm, Lplate = 65mm and t = 0.5mm.

observed can be explained by reasoning that the change of shape from flat disc to doubly
curved cap necessitates a change in Gaussian curvature, which in turn requires a relatively
large amount of in-plane stretching. As the in-plane stiffness of a thin plate is much greater
than the out-of-plane stiffness, this in-plane stretching causes the sharp non-linear increase
in stiffness.

Considering a four-point bend test, which has a profile equal to the diametric cross-
section of the biaxial testing rig, allows for an interesting comparison between biaxial and
uniaxial bending. While both tests have a central span of 2Lin and a lever arm of Lout −Lin,
the biaxial test has additional restraints added by the axisymmetric nature of the set-up.
The force per unit length applied in the biaxial case is calculated as F/(2πLout), and the
displacement at Lout is normalised by dividing by the plate thickness. Figure. 5.19 compares
the force-displacement characteristics of each case from FEA. Notice how both the biaxial
and uniaxial four-point bending tests start off with approximately the same initial stiffness,
however the biaxial case quickly increases in stiffness with increasing deflection. In stark
contrast, the uniaxial bending test is much more linear over a much larger range. The uniaxial
stiffness does increase slightly with large displacements, the shallow arch shape which is
being formed is capable of carrying some load, however this only starts to be a significant
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contribution for comparatively large deflections, of the order of half a dozen plate thicknesses
or more. The gradient of the force-displacement response in this uniaxial four-point bending
test changes less than 20% within the first five plate thickness of deflection. In comparison,
the biaxial test shows an increase in gradient of over 500% within a deflection equal to a
single plate thickness.

5.8 Uniaxial behaviour of dimpled sheets

The uniaxial behaviour of a dimpled sheet is expected to vary slightly from the biaxial
behaviour. While in Section 4.8 it was seen that the behaviour of an inclusion patterned plate
practically independent of the type of loading, in Section 3.5.3 the equivalence of a dimple
and an inclusion was seen to be different when under biaxial or antisymmetric loading. In the
biaxial case the stress distributions and curvature distributions around a dimple and around an
inclusion of the correct stiffness are equal. However, for antisymmetric and uniaxial loading,
while the curvature and hence rotation distributions are very similar for a modified value of
inclusion stiffness, the stress distributions are significantly different, see Fig. 3.18.

FEA simulations of dimpled sheets are conducted as per Section 5.4, but with a bending
moment per unit length applied to just one edge. The rotation along the centre line is
extracted in order to find a normalised stiffness. Normalised uniaxial bending stiffnesses
for regular patterns of dimples, for two different dimple geometries are compared to the
theoretical biaxial stiffness predictions, Fig. 5.20. Unlike the inclusion patterned plates,
the normalised stiffness of dimpled sheets is seen to vary substantially when comparing
biaxial to uniaxial bending. In uniaxial bending the dimpled sheets are significantly stiffer.
Furthermore, Fig. 5.20a shows that adopting a different rule-of-mixtures is not going to
capture the normalised uniaxial bending stiffness. It is more stiff than even the arithmetic
smeared average, which is a strict upper limit of a rule-of-mixtures. It is tempting to consider
whether the behaviour can be captured by adjusting the value of effective inclusion assumed,
as, when comparing a single dimple to a single inclusion this approach found a reasonable
correlation. However, this idea too is flawed: plotting the Finite Plate Theory curve for rigid
inclusions, k = ∞, shows that for medium values of p, a dimpled sheet in uniaxial bending is
stiffer even than an inclusion patterned plate with rigid inclusions.

While the uniaxial bending stiffnesses for dimpled sheets are significantly more stiff than
for the biaxial case, the overall trend of the stiffnesses with p does seem to be similar in form.
Considering the biaxial case, Finite Plate Theory predicts an increase in normalised stiffness,
above unity. For the uniaxial case this increase in stiffness seems to occur by a greater
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(a)

(b)

Fig. 5.20 Normalised uniaxial bending stiffness of dimpled sheets from FEA. Hexagonal
and square patterns of dimples are modelled as well as the isotropic up-down hexagonal
pattern. (a) Quartic profile dimples, a/t = 1/30, d/a = 1/3, ν = 0.3. (b) Spherical cap
profile dimples, a/t = 1/30, d/a = 1/6, ν = 0.3.
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amount. It is therefore proposed that the uniaxial stiffness can be estimated by applying an
additional scaling on the improvement given by the biaxial normalised stiffness:

Ψuniaxial = 1+(ΨDimpled −1) · cuniaxial (5.24)

Using the Finite Plate Theory expression for normalised biaxial stiffness, a theoretical
prediction for the uniaxial stiffness of a dimpled sheet can be calculated, this should predict
the stiffness of up-down patterns of dimples as well. When accounting for the effective
stiffness of a dimple given k-degradation, k∗, the stiffness of a dimpled sheet with a single
direction of dimples should be well predicted. The constant cuniaxial, is determined by
examining the best fit to the FEA data. Figure 5.21 shows Eqn 5.24 for the empirically
derived value of cuniaxial = 2.3. A good agreement is seen, for both the spherical cap and the
quartic dimples, for this value of cuniaxial. The least good agreement is seen for the highest
value of p for the spherical cap dimples. For these dimpled sheets the greatest amount of k-
degradation is seen, and since we therefore know that for these sheets the greatest interaction
between adjacent dimples is taking place, this may explain why the greatest discrepancy
occurs for these sheets. The square pattern of dimples, Fig. 5.21b, are slightly less stiff than
the hexagonally patterned dimpled sheets for a given p. It is suspected that this is due to
the square pattern not being isotropic, as for the patterns of inclusions the square patterns in
uniaxial loading had a slightly different stiffness to that expected.

5.9 Antisymmetric behaviour of dimpled sheets

For dimpled sheets under antisymmetric bending, FEA is performed and the normalised
stiffnesses are compared in Fig. 5.22. Similarly to the uniaxial case, the normalised stiffness
in antisymmetric bending is seen to be significantly greater than that in the biaxial bending
case. It is proposed that the normalised antisymmetric stiffness of a dimpled sheet can be
estimated by scaling the improvement seen for the biaxial case by a constant factor:

Ψantisymmetric = 1+(ΨDimpled −1) · cantisymmetric (5.25)

Figure 5.22 compares the FEA results for two different dimple profiles to the empirical
prediction Eqn 5.25. When accounting for the effective stiffness of a dimple given k-
degradation, k∗, the stiffness of a dimpled sheet with a single direction of dimples should be
well predicted. When a constant value of kbend is used the normalised stiffness of up-down
dimpled sheets should be well predicted. When the value of cantisymmetric = 3.6 is used, a
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(a)

(b)

Fig. 5.21 Normalised uniaxial bending stiffness of dimpled sheets from FEA are compared
with the modified dimpled sheet theory for uniaxial bending, Eqn 5.24 with an empirically
fitted value of cuniaxial = 2.3. (a) Quartic profile dimples, a/t = 1/30, d/a = 1/3, ν = 0.3.
(b) Spherical cap profile dimples, a/t = 1/30, d/a = 1/6, ν = 0.3.
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(a)

(b)

Fig. 5.22 Normalised antisymmetric bending stiffness of dimpled sheets from FEA are
compared with the modified dimpled sheet theory for antisymmetric bending, Eqn 5.25 with
an emperically fitted value of cantisymmetric = 3.6. (a) Quartic profile dimples, a/t = 1/30,
d/a = 1/3, ν = 0.3. (b) Spherical cap profile dimples, a/t = 1/30, d/a = 1/6, ν = 0.3.
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reasonably good agreement is seen for both types of dimple profile as well as for both single
direction and up-down dimpled sheets.

For antisymmetric loading, as for both the biaxial and uniaxial cases, when p is small
there is effectively no difference in stiffness between dimpled sheets which have dimples
going in a single direction compared to those sheets with up-down dimples. However, as is
also seen before, for high p values, dimpled sheets with dimples in just a single direction
are slightly less stiff than those with dimples in both directions. This is seen to be the
case particularly for spherical cap dimples, as shown in Fig. 5.22b, where even scaling the
dimpled sheet theory curve which accounts for k-degradation does not fully capture the
reduction in stiffness compared to the prediction. The shape of the dimpled sheet theory
curve does however give a good indication of the form of k-degradation which is seen in
the antisymmetric case. The quartic dimple profile is seen to be affected much less by
k-degradation, the smooth transition between the quartic profile and the flat plate is presumed
to be the reason for this.

5.10 Discussion

The normalised biaxial stiffness of a dimpled sheet is predicted excellently by the dimpled
sheet theory equation, Eqn 5.18, for both bending and stretching. The adjusted value of
equivalent inclusion stiffness, to account for the k-degradation, is accurately captured by the
assumption of each dimple behaving as if it were isolated in its own circular finite sheet. As
in the case of inclusion patterned plates, the exact patterning of dimples was seen to not have
any great effect on the overall stiffness. For regular and irregular patterns alike, the overall
stiffness was just a function of the total proportion of plate which was dimpled.

Dimpled sheets which had dimples going in both up and down directions were seen to be
marginally stiffer than the corresponding patterns which had dimples only in one direction.
When sparsely spaced, the equivalent inclusion stiffness of a dimple was independent of
dimple direction, as expected. However, when closely packed, the up-down dimples were
less impacted by k-degradation, and as such made the sheets slightly stiffer overall. This
validates the experimental findings seen in Section 2.5.2, with up-down patterns being only
marginally stiffer.

A uniaxial load case can be seen as a combination of a biaxial and antisymmetric load
case. Superposing a biaxial loading with a magnitude of half of unity to an antisymmetric
load case with a magnitude of half of unity gives an overall uniaxial load with a magnitude of
unity. It is therefore perhaps unsurprising that the normalised stiffness in uniaxial bending is
very accurately predicted by taking an average of the biaxial and antisymmetric normalised
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stiffnesses, Fig. 5.23. It can additionally be shown that the assumption of uniaxial and
antisymmetric normalised stiffnesses being given by multiplying the improvement in the
biaxial case by a constant factor, is consistent with uniaxial behaviour being an average of
the biaxial and antisymmetric cases.

Ψbiaxial +Ψantisymmetric

2
= Ψuniaxial (5.26)

1+(Ψbiaxial −1) · cuniaxial = Ψuniaxial (5.27)

1+(Ψbiaxial −1) · cantisymmetric = Ψantisymmetric (5.28)

Equation 5.26 states that the normalised uniaxial stiffness is equal to the average nor-
malised stiffness of the biaxial and antisymmetric cases. Equations 5.27 and 5.28 are the
proposed predictions of uniaxial and antisymmetric stiffness for a dimpled sheet, multiply-
ing the improvement of the biaxial case by the constant factors cuniaxial and cantisymmetric

respectively. Substituting Eqns 5.27 and 5.28 into Eqn 5.26 yields:

(Ψbiaxial −1)+(Ψbiaxial −1)cantisymmetric

2
= (Ψbiaxial −1)cuniaxial (5.29)

and hence:

1+ cantisymmetric

2
= cuniaxial → cantisymmetric = 2cuniaxial −1 (5.30)

It can be verified that the empirically chosen values of cuniaxial = 2.3 and cantisymmetric = 3.6,
which showed the best fit with the FEA results, are consistent with Eqn 5.30.

It is therefore possible to predict the normalised stiffness of a dimpled sheet which is
loaded under a general loading, with generalised loading parameter F . Knowing that the
normalised stiffness in biaxial loading (when F = 1) is very well predicted by Eqn 5.18,
and assuming the antisymmetric stiffness can be approximately given by Eqn 5.25 (when
F =−1), the following expression for normalised stiffness can be derived:

Ψgeneral = 1+(ΨDimpled −1)
[

1+
(cantisymmetric −1)(1−F)

2

]
(5.31)

where:

ΨDimpled =
2k∗− (1− p)(k∗−1)(1−ν)

2+(1− p)(k∗−1)(1+ν)
(5.32)

and where cantisymmetric is an empirically derived constant.
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(a)

(b)

Fig. 5.23 Normalised bending stiffness of dimpled sheets from FEA are compared for biaxial,
uniaxial and antisymmetric loadings. An average of the normalised antisymmetric stiffness
and normalised biaxial stiffness is calculated, and plotted also for comparison against the
normalised uniaxial stiffness. The dimpled sheets compared have hexagonal patterns of
single direction dimples: (a) Quartic profile dimples, a/t = 1/30, d/a = 1/3, ν = 0.3. (b)
Spherical cap profile dimples, a/t = 1/30, d/a = 1/6, ν = 0.3.
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Note that when F = 1, the expression simplifies to ΨDimpled and when F =−1, the expression
for antisymmetric normalised stiffness, Eqn 5.25, is recovered. When F = 0, the term in the
square brackets is equal to the expression for cuniaxial from Eqn 5.30.

5.11 Conclusions

Combining the theoretical understanding of inclusion patterned plates, with the equivalence
of an inclusion and a dimple, allows for a good understanding of the behaviour of dimpled
sheets. Having multiple dimples within a close proximity of each other however has the
additional effect of reducing the effective stiffness of each dimple. This effect is examined
and theoretically analysed, Section 5.5.2, and when combined with the Finite Plate Theory
for patterns of inclusions allows for an analytically rigorous prediction of the biaxial stiffness
of a dimpled sheet. The theoretical prediction of normalised stiffness under biaxial loading is
compared to FEA and the agreement is found to be excellent, Section 5.6.

Unlike inclusion patterned plates however, the normalised stiffness of dimpled sheets
in uniaxial and antisymmetric loading is significantly different to the normalised biaxial
stiffness. FEA simulations show that the normalised uniaxial stiffness of a dimpled sheet is
significantly greater than the normalised biaxial stiffness, Section 5.8, and the normalised
antisymmetric stiffness is greater still, Section 5.9. However empirical equations, based
on the analytically biaxial stiffness expression, are produced which are able to capture the
normalised stiffnesses of the uniaxial and antisymmetric case to within a good degree of
accuracy. While these equations require an empirically found constant, the value of this
constant is seen to be fixed for a variety of dimple profiles. Furthermore, these equations can
be generalised to give an expression which predicts the normalised stiffness of a dimpled
sheet under a general loading, Eqn 5.31.

This new insight into the structural performance of dimpled sheets allows for a much
better understanding which aids both the analysis and design of dimpled sheets. For example,
both the patterning of the dimples and the dimple profiles themselves can be optimised.
Unlike the simplistic second moment of area theory, the performance enhancement of up-
down patterns compared with single direction dimples can be understood. The profile of a
dimple too can be optimised: the effective bending stiffness of a dimple does not simply
increase with increasing dimple depth, there is actually an optimum depth to radius ratio
which maximises the value of kbend. Equally the bending stiffness of a dimple is seen to
increase with the square root of the radius to thickness ratio, which informs the choice of
dimple size. Comparing regular and irregular patterns shows that there is only a minimal
influence of pattern on overall stiffness. Unlike the conclusions of some previous authors
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[12], dimpled sheets do not suffer from “lines of weakness”, but rather are generally isotropic
in behaviour. While a square pattern was seen to introduce some anisotopy, both the regular
hexagonal and the irregular patterns showed strongly isotropic behaviour. Having found the
independence of pattern on overall stiffness for the inclusion patterned plates, one seeks to
maximise the stiffness by maximising the packing density p. For this reason a hexagonal
packing will be optimum, as it allows for the highest possible values of p. However, if an
irregular pattern can also obtain the desired value of p, then this pattern too could be used
too.





Chapter 6

Conclusions

The experimental, theoretical and computational work presented here confirms that an
increase in bending stiffness is obtained by the presence of dimples, compared to a flat sheet.
While this was already known qualitatively to be the case, previous assumptions as to the
mechanism by which the dimples increase stiffness [12] based on structural depth approaches,
were shown to be flawed. A detailed quantitative analysis considering a structural depth
approach was performed Section 2.4, and the results of this methodology were seen to give
predictions of stiffness an order of magnitude higher than the experimental results obtained,
Section 2.5.

In this work, a new method of analysing the performance of dimpled sheets was derived.
Focusing first on the behaviour of a single dimple as an axisymmetric shell of revolution,
Section 3.4, and then incorporating this single dimple into a infinite flat plate, Section 3.4.3.
The behaviour of an isolated single dimple in axisymmetric loading is a known problem [34],
and the literature provides good analytical predictions for the stiffness parameters for conic
and spherical cap dimple geometries with constant through-thickness. Comparison to FEA
shows that the stiffness of such dimple profiles is changed only slightly if a constant vertical
thickness rather than through-thickness is assumed, Section 3.5.1. This helpful discovery
is justified analytically, and is useful for the subject of dimpling, where a constant vertical
thickness, which is compatible with the conservation of volume, is a better assumption of
a practical dimple profile than a constant through-thickness. A new analytical method for
predicting the axisymmetric bending stiffness of an arbitrary dimple profile is developed, Sec-
tion 3.4.2, and excellent agreement is found between this prediction and FEA, Section 3.5.2.
Understanding the axisymmetric behaviour of a dimple which is included in the centre of
an infinite flat plate allows for an equivalence between a dimple and an elastic inclusion to
be seen, Section 3.4.3. Analytical theory is developed to prove this equivalence and predict
the stiffness value of such an equivalent inclusion in terms of the stiffness parameters of
an arbitrary dimple profile. The theory is equally able to predict the increase in bending
stiffness kbend > 1, as well as the decrease in stretching stiffness kstretch < 1. FEA simulations
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verify the equivalence of dimple and inclusion and show that the analytical predictions for
equivalent dimple stiffnesses are extremely accurate for both stretching and bending.

Having established the equivalence of a single dimple to a single inclusion, Chapter 4
investigates the effects of elastic inclusions in flat plates. The influence of a single elastic
inclusion within an infinite elastic plate is a problem which has previously been studied, both
for plates in stretching [44], as well as plates in bending [45]. A comparison between the
stress fields developed around an inclusion in bending and the same inclusion in the same
infinite sheet in stretching is made in Section 4.5.1. While in general these are different,
for biaxial loading, both bending and stretching have identical stress distributions, which
additionally can be expressed in a reasonably simple analytical form. The behaviour of
patterns of multiple inclusions is then considered, Section 4.5.2, and various analytical models
are proposed to capture the overall behaviour of a plate patterned with elastic inclusions.
Finite element analysis of inclusion patterned plates is carried out for a wide variety of
inclusion patterns and inclusion stiffnesses, Section 4.7, and the results are compared to the
analytical predictions. It is seen that the Finite Plate Theory method, Eqn 4.39, is by far the
best predictor of overall stiffness of inclusion patterned plates, and additionally predicts the
stress concentration factors present. Investigation of the overall homogeneity and isotropy of
inclusion pattern plates, Section 4.9, shows the validity of representing an inclusion patterned
plate with an smeared overall material stiffness. FEA analysis confirms the validity of using
this value of smeared stiffness, which is calculated based on an axisymmetric analysis, to all
loading cases, including uniaxial and antisymmetric loading, Section 4.8. One of the most
striking findings is the independence of the overall stiffness on the exact patterning of the
inclusions, Section 4.7.3. Even for irregular patterns, the overall stiffness was seen to be
isotropic and dependant only on the inclusion proportion of the plate p. New rules-of-mixture
formulae, based on the analysis of a single inclusion within a circular plate of finite size, are
given for the overall smeared stiffness and for the yield strength of inclusion patterned plates,
Eqns 4.42 and 4.48. The incorporation of the Poisson’s ratio terms in the Finite Plate Theory
expression for normalised stiffness sets it apart from other existing rules-of-mixtures found
in the literature and makes it both more accurate and more versatile.

Combining the theoretical understanding of inclusion patterned plates, with the equiv-
alence of an inclusion and a dimple, allows for a good understanding of the behaviour of
dimpled sheets. Having multiple dimples within a close proximity of each other however
has the additional effect of reducing the effective stiffness of each dimple. This effect is
examined and theoretically analysed, Section 5.5.2, and when combined with the Finite Plate
Theory for patterns of inclusions allows for an analytically rigorous prediction of the biaxial
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stiffness of a dimpled sheet. The theoretical prediction of normalised stiffness under biaxial
loading is compared to FEA and the agreement is found to be excellent, Section 5.6.

Unlike inclusion patterned plates however, the normalised stiffness of dimpled sheets
in uniaxial and antisymmetric loading is significantly different to the normalised biaxial
stiffness. FEA simulations show that the normalised uniaxial stiffness of a dimpled sheet is
significantly greater than the normalised biaxial stiffness, Section 5.8, and the normalised
antisymmetric stiffness is greater still, Section 5.9. However empirical equations, based
on the analytically biaxial stiffness expression, are produced which are able to capture the
normalised stiffnesses of the uniaxial and antisymmetric case to within a good degree of
accuracy. While these equations require an empirically found constant, the value of this
constant is seen to be fixed for a variety of dimple profiles. Furthermore, these equations can
be generalised to give an expression which predicts the normalised stiffness of a dimpled
sheet under a general loading, Eqn 5.31.

This new insight into the structural performance of dimpled sheets allows for a much
better understanding which aids both the analysis and design of dimpled sheets. For example,
both the patterning of the dimples and the dimple profiles themselves can be optimised.
Unlike the simplistic second moment of area theory, the performance enhancement of up-
down patterns compared with single direction dimples can be understood. The profile of a
dimple too can be optimised: the effective bending stiffness of a dimple does not simply
increase with increasing dimple depth, there is actually an optimum depth to radius ratio
which maximises the value of kbend. Equally the bending stiffness of a dimple is seen to
increase with the square root of the radius to thickness ratio, which informs the choice of
dimple size. Comparing regular and irregular patterns shows that there is only a minimal
influence of pattern on overall stiffness. Unlike the conclusions of some previous authors
[12], dimpled sheets do not suffer from “lines of weakness”, but rather are generally isotropic
in behaviour. While a square pattern was seen to introduce some anisotopy, both the regular
hexagonal and the irregular patterns showed strongly isotropic behaviour. Having found the
independence of pattern on overall stiffness for the inclusion patterned plates, one seeks to
maximise the stiffness by maximising the packing density p. For this reason a hexagonal
packing will be optimum, as it allows for the highest possible values of p. However, if an
irregular pattern can also obtain the desired value of p, then this pattern may be used too.

Application of this work to the design of dimpled sheets should allow for increased use
of dimpled sheets in practical contexts. Many current applications use dimpled sheets as
cladding, and therefore require a separate structural skeleton. A greater understanding of
structural properties of dimpled sheets, such as bending and stretching stiffness, should
enable dimpled sheets themselves to be used structurally, in addition to their other useful
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properties such as increased heat transfer. Therefore, more efficient structures can be
designed which remove or reduce the use of an additional underlying structural skeleton.
For example, rather than adding dimpled jackets around pressure vessels, pressure vessels
could be manufactured directly out of dimpled sheets. This should reduce complexity as
well as cost, without compromising on the structural and thermal properties required of
the pressure vessel. In applications such as elevated walkways, where dimpled sheets are
already used, understanding their structural behaviour should allow for more efficient design.
The increased bending stiffness of a dimpled sheet compared to a flat plate enables further
application opportunities, particularly in designs where weight is a principle concern, for
example in aerospace or high-end automotive applications. In such contexts where a flat plate
is currently used, a thinner dimpled sheet may be able to carry the same loading but requiring
less material. The analysis in this thesis enables bending stiffness to be maximised by
selecting optimum packing patterns and optimum depth to radius ratios for dimples. Future
work on this subject could explore optimising designs of dimpled sheets for a combination of
properties such as heat transfer and structural behaviour. Understanding the differences in
initial stiffness of dimpled sheets under uniaxial and biaxial loading, and investigating the
non-linear regime of dimpled sheets under load, would also be questions worthy of future
research.
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Appendix A

Cross-sections of dimpled sheets

A.1 Calculating the second moment of area of a single dim-
ple cross-section

A.1.1 Hemispherical and semi-ellipsoidal dimples

When a dimple has a semicircular profile along its radius, the revolved geometry of the
dimple is hemispherical. Every cross-section of the dimple is a semicircle, albeit of a varying
size depending on the location of the cut. The second moment of area for a semicircular
cross-section is calculated as follows.

For a semicircular profile the equation of the mid-surface is given by:

z =
√

a2 − x2 (A.1)

The area of the cross-section is:

A = 2at (A.2)

Fig. A.1 A semicircular dimple profile is shown. The dimple has a constant vertical thickness.
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Calculating the depth of the neutral axis of the section:

d =

∫ a
−a t · z ·dx

A
=

1
2a

∫ a

−a

√
a2 − x2dx =

πa
4

(A.3)

The second moment of area can then be calculated about the reference plane:

Idatum =
∫ a

−a
t · z2 ·dx =

∫ a

−a
t(a2 − x2)dx =

4a3t
3

(A.4)

Thus using the parallel axis theorem the second moment of area about the neutral axis is thus:

Icentroid = Idatum −Ad
2
=

4a3t
3

−2at
(

πa
4

)2
= a3t

(
4
3
− π2

8

)
(A.5)

For dimples with an elliptical profile the revolved dimple geometry is a semi-ellipsoid.
Being geometrically equivalent to a hemisphere under a vertical scaling, this provides a
convenient way to generalise to a dimple of arbitrary depth. For a dimple of depth d, the
second moment of area is:

Icentroid = ad2t
(

4
3
− π2

8

)
(A.6)

A.1.2 Spherical cap dimple

When a dimple has a circular arc as its radial profile, the revolved geometry of the dimple is
a spherical cap. At every cross-section of the dimple the cross-section is a circular arc, but
the radius of curvature and subtended angle of the arc depend on the location of the cut. The
second moment of area for a circular arc cross-section is calculated as follows.

For a circular arc profile it is convenient to first calculate the section properties about the
centre of curvature and then use the parallel axis theorem to refer the properties to the neutral
axis.

It is convenient to work in terms of R and φ0, the radius of curvature and subtended
half-angle. The relationship to the depth d and radius a are:

a = Rsin(φ0) d = R(1− cos(φ0)) (A.7)

The area of the cross-section is:

A = 2at = 2Rt sin(φ0) (A.8)
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Fig. A.2 A circular arc dimple profile is shown. The dimple has a constant vertical thickness.

The distance from the centre of curvature to the neutral axis of the section is:

∫ a
−a t · z ·dx

A
=

1
2Rsin(φ0)

∫
φ0

−φ0

Rcos(φ) ·Rcos(φ)dφ =
R
2

(
φ0

sin(φ0)
+ cos(φ0)

)
(A.9)

Thus the depth of the neutral axis below the datum plane is:

d =
R
2

(
φ0

sin(φ0)
+ cos(φ0)

)
−Rcos(φ0) =

R
2

(
φ0

sin(φ0)
− cos(φ0)

)
(A.10)

The second moment of area about the centre of curvature is:

ICoC =
∫ a

−a
t · z2 ·dx =

∫
φ0

−φ0

tR2 cos2 (φ) ·Rcos(φ)dφ =
R3t
6

(9sin(φ0)+ sin(3φ0) (A.11)

The second moment of area can be referred to the neutral axis using the parallel axis
theorem:

Icentroid = ICoC−A(d+Rcos(φ0))
2 =

R3t
6

(
33sin(φ0)

4
+

sin(3φ0)

4
− 3φ0

2

sin(φ0)
−6φ0 cos(φ0)

)
(A.12)
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A.2 Calculating the second moment of area of an arbitrary
cross-section

Fig. A.3 The general cross-section of a dimpled sheet. There are a number of intersections
with dimples and the width of each intersection will depend on how far from the dimple
centre the cut is made.

For a general cross-section through a dimpled sheet, there will be a mixture of dimple
profiles and flat sections between dimples. The total second moment of area can then be
calculated by summing all the contributions of the dimples around their centroids, the sum of
the products of the dimple areas by the square of their centroids distance to the neutral axis,
the product of the square of the distance between the neutral axis and the flat sections and the
area of the flat sections, and the contribution of the thickness to the second moment of area.

Ixx =
n

∑
i=1

Idimplei
+

(
L−

n

∑
i=1

wi

)
·d2

+
Lt3

12
(A.13)

where:

Idimplei
= Icentroidi +wi(d −di)

2t , d =
n

∑
i=1

widi

L
(A.14)

The relevant width of the dimple intersection, wi can be calculated from the distance of
the dimple centre to cross-section plane V , using the formula:

wi = 2
√

a2 −V 2 (A.15)

For a given dimple profile knowing the width of the intersection, the relevant values of
Icentroid can be calculated.



A.2 Calculating the second moment of area of an arbitrary cross-section 195

Listing A.1 Matlab script calculating second moments of area across a dimpled sheet

1 filename = 'Hex_POINTS.csv';

2 M = csvread(filename,1,0);

3 x = M(:,1);

4 y = M(:,2);

5 %%if x=M(:,1) y=M(:,2) then the script scans along the x direction

6 %%if y=M(:,1) and x=M(:,2) then script scans along the y direction

7
8 nMax = length(x); % number of points to be plotted

9 a = 3; %Dimple radius

10 b = 1.8; %max dimple depth

11 t = 1; %Thickness of sheet

12
13 dx=0.1; % courseness of samplng in the y direction

14 Xmax=50; %ranges of limiting rectangle

15 Ymax=50;

16 Xmin=−50;
17 Ymin=−50;
18
19 % selecting only points within the rectangle defined by Xmax, Xmin,

Ymax and Ymin

20 end;

21 for i = 1:nMax

22 if x(i)> (Xmax−0.5*a)
23 x(i)=NaN;

24 y(i)=NaN;

25 end

26 if x(i)< (Xmin+0.5*a)

27 x(i)=NaN;

28 y(i)=NaN;

29 end

30 if y(i)> (Ymax−0.5*a)
31 x(i)=NaN;

32 y(i)=NaN;

33 end

34 if y(i)< (Ymin+0.5*a)
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35 x(i)=NaN;

36 y(i)=NaN;

37 end

38
39 Ixx=zeros(1,((Xmax−Xmin)/dx));
40
41 for j= 1:((Xmax−Xmin)/dx); %%((Xmax−Xmin)/dx);
42
43 Xd=Xmin+(j−1)*dx; %Xd is dumby variable x

44
45 w=zeros(1,nMax); %width of intersections

46 V=NaN(1,nMax); %distance of intesection plane from dimple centre

47 r=zeros(1,nMax); %radius of curvature of cross−section
48 phi=zeros(1,nMax); %subtanded angle of cross−section
49 depth=zeros(1,nMax); %depth of dimple centoid

50 Idimples=zeros(1,nMax); %incl A*(d−dBar)^2 contibution of dimples

51 Icentroid=zeros(1,nMax);

52 d=zeros(1,nMax);

53
54 for i= 1:nMax;

55 if abs(x(i)−Xd)<=a;
56 w(i)=2*sqrt(a^2−(x(i)−Xd)^2);
57 %If intersection occurs, write width of intersection to w

58 V(i)=abs(x(i)−Xd);
59 %write distance of this intersection plane from dimple

centre

60 depth(i)=sqrt(((a^2+b^2)/(2*b))^2−V(i)^2)−((a^2−b^2)/(2*b))
;

61 r(i)=((w(i)/2)^2+depth(i)^2)/(2*depth(i));

62 phi(i)=2*atan(depth(i)/(w(i)/2));

63 Icentroid(i)=((t*r(i)^3)/6)*((33/4)*sin(phi(i))+sin(3*phi(i

))/4 −(3*phi(i)^2)/sin(phi(i)) − 6*phi(i)*cos(phi(i)));

64 d(i)=(r(i)/2)*((phi(i)/sin(phi(i)))−cos(phi(i))); %depth of

centroids for each dimple

65 end

66 end
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67
68 dBar=(sum(d.*w))/(Xmax−Xmin); %dBar is overall cenroid depth

69 % d.*Intersect is controibution of each dimple to overall centroid

70 flatplate(j)=(Xmax−Xmin)−sum(w); %amount of flat plate left

71 Iflat= t*flatplate(j)*dBar^2; %contibution of flat plate to Ixx

72 Ithick= (Xmax−Xmin)*(t^3)/12; %contibution of plate thickness

73 Idimples= Icentroid + t*w.*(d−dBar).^2;
74 Ixx(j)= sum(Idimples)+ + Ithick + Iflat;

75 end





Appendix B

Inclusion stresses

B.1 Scaled superposition of stresses around adjacent inclu-
sions

The scaled superposition of two finite plate stress distributions from adjacent inclusions
can be used to accurately predict the true stress distribution found between two adjacent
inclusions which are part of a regular hexagonal pattern of inclusions in a large plate.

Defining the normalised centre to centre distance between the inclusions to be d =

gap-ratio+ 2, the stress distributions around a finite plate of normalised radius d will be
superposed together. The scaling will be based on the correlation of stresses seen for a finite
plate which has radius d/2, as highlighted by red circles in Fig. 4.7, namely the radial stress
at ρ = 0 and the circumferential stress at ρ = 1+.
The stresses for a finite plate with normalised radius, d, are:

σrr

σ0
=


1+

(K −1)(1−d−2)

1+(K −1)d−2 → 0 < ρ < 1

1+
(K −1)(ρ−2 −d−2)

1+(K −1)d−2 → 1 < ρ < d
(B.1)

σθθ

σ0
=


1+

(K −1)(1−d−2)

1+(K −1)d−2 → 0 < ρ < 1

1− (K −1)(ρ−2 +d−2)

1+(K −1)d−2 → 0 < ρ < d
(B.2)

Where K is the inclusion stress for the infinite plate case as defined in Eqn. 4.15. The stresses
of a finite plate of the same radius, but with its centre at ρ = d:
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σrr

σ0
=


1+

(K −1)(1−d−2)

1+(K −1)d−2 → d > ρ > d −1

1+
(K −1)((d −ρ)−2 −d−2)

1+(K −1)d−2 → d −1 > ρ > 0
(B.3)

σθθ

σ0
=


1+

(K −1)(1−d−2)

1+(K −1)d−2 → d > ρ > d −1

1− (K −1)((d −ρ)−2 +d−2)

1+(K −1)d−2 → d −1 > ρ > 0
(B.4)

These two stress distributions can be superposed together. Superposing only the difference in
stresses from unity for these two distributions, as per Eqn 4.38:

σrr

σ0
=


1+

(K −1)(1+(d −ρ)−2 −2d−2)

1+(K −1)d−2 → 0 < ρ < 1

1+
(K −1)(ρ−2 +(d −ρ)−2 −2d−2)

1+(K −1)d−2 → 1 < ρ <
d
2

(B.5)

σθθ

σ0
=


1+

(K −1)(1− (d −ρ)−2 −2d−2)

1+(K −1)d−2 → 0 < ρ < 1

1− (K −1)(ρ−2 +(d −ρ)−2 +2d−2)

1+(K −1)d−2 → 1 < ρ <
d
2

(B.6)

Note that as the distribution is symmetric, the function is only shown up to d/2.
The superposed stresses are now scaled appropriately. For the radial stresses, the super-

posed stress is scaled by a constant factor, crr, which is defined to match the stress at the
centre of the inclusion to that found from a inscribed finite plate which has radius d/2.

σrrscaled = crr ·σrrsuperposed (B.7)

crr =

σrr

∣∣∣ ρ=0
Λ=d/2

σrrsuperposed

∣∣∣
ρ=0

=
1+(K −1)d−2

1+(K −1)(d/2)−2 (B.8)

For the circumferential stresses the scaling is applied to only the difference between the
stress and unity, Eqn B.9. The scaling factor, cθθ , is defined such that the stress just outside
the inclusion will become equal to that of the inscribed finite sheet at this location.
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σθθscaled = σ0 + cθθ · (σθθsuperposed −σ0) (B.9)

cθθ =

σθθ

∣∣∣ ρ=1+
Λ=d/2

−σ0

σθθsuperposed

∣∣∣
ρ=1+

−σ0

=
1+(K −1)d−2

1+(K −1)(d/2)−2
1+(d/2)−2

1+(d −1)−2 +2d−2 (B.10)

Calculating the radial strain in the plate as εrr = (σrr − νσθθ )/EI, gives the strain after
superposition and scaling as:

εrr =


1

kEI

[
(crr −ν)+

(K −1)([crr −νcθθ ][1−2d−2]+ [crr +νcθθ ][d −ρ]−2)

1+(K −1)d−2

]
→ 0 < ρ < 1

1
EI

[
(crr −ν)+

(K −1)([crr +νcθθ ][ρ
−2 +(d −ρ)−2]− [crr −νcθθ ]2d−2)

1+(K −1)d−2

]
→ 1 < ρ <

d
2

(B.11)

Integrating the strain between ρ = 0 and ρ = d/2 calculates the displacement at the midpoint
between two adjacent inclusions. Dividing by (d/2) ·σ0(1−ν)/EI, the displacement of a
homogeneous sheet at this point, and inverting allows us to calculate the normalised stiffness
of a plate which has stresses defined by the superposition and scaling method. When we
allow the Poisson’s ratios of the inclusion and the plate to be equal, ν1 = ν2 = ν , then
K = 2k/[(1−ν)+(1+ν)k], and the normalised stiffness becomes:

Ψss = 1÷
[

1− 2(k−1)
kd

+
2(k−1)

cad3(d −1)

(
[d3 −4.5d2 +7.5d +5]+

1
k
[d3 −d2 −6d +5]

+νcb[d3 −d2 −3d +2]
k−1

k

)]
(B.12)

where ca = k(1+ν)+(1−ν)+(k−1)(1−ν)(d/2)−2 and cb =
cθθ

crr
= 1+(d/2)−2

1+(d−1)−2+2d−2 .





Appendix C

Aperiodic patterns

C.1 Penrose tilings

In Penrose rhombus and Penrose kite and dart tiling, while there are only two distinct
prototiles, there are a number of ways that these prototiles can join to form a vertex. The
tiles around a tiling vertex are known as the “vertex neighbourhood”: due to matching rules
enforced on the tiles, defining a vertex may also force the placement of some surrounding
tiles. These additional forced tiles are known as the vertex “empire”. This appendix shows
the different vertex neighbourhoods of Penrose tiling [76] and the relative occurrences of
each of these vertices is also given. The relative abundances are conveniently given in terms
of the golden ratio, τ = 1+

√
5

2 .

Table C.1 The eight vertex neighbourhoods that occur in the Penrose rhombus tiling

Vertex neighbourhood
Name

Relative
occurrence

S τ4

τ4−1
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Vertex neighbourhood Name
Relative
occurrence

S5 τ2

τ4−1

S4 1

S3 τ

K τ2

Q τ3
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Vertex neighbourhood Name
Relative
occurrence

J τ4

D τ5

The abundances are scaled such that the relative occurrence of the ‘S4’ vertex is unity.
Note that the relative occurrence of thin rhombi is τ5 as every thin rhombi is part of exactly
one ‘D’ vertex, the relative occurrence of fat rhombi is τ6. The sum of the relative occurrences
for ‘S’ and ‘S5’ is equal to τ . The dashed white tiles shown around the ‘S’ and ‘S5’ vertices
are not technically part of the vertex neighbourhood, as they don’t have a vertex at the centre
of the neighbourhood, however they are forced tiles that are part of the empire and allow the
two vertex neighbourhoods to be easily differentiated.

Table C.2 The nine vertex neighbourhoods that occur in the Penrose kite and dart tiling

Vertex neighbourhood
Name

Relative
occurrence

Star τ4

τ4−1
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Vertex neighbourhood Name
Relative
occurrence

Sun 5 τ2

τ4−1

Sun 4 1

Sun 3 τ

King τ2

Queen τ3
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Vertex neighbourhood Name
Relative
occurrence

Jack τ4

Deuce τ5

Ace τ6

The dashed white tiles shown around the ‘Sun 5’, ‘Sun 4’ and ‘Sun 3’ vertices are not
technically part of the vertex neighbourhood, as they don’t have a vertex at the centre of
the neighbourhood, however they are forced tiles that are part of the empire and allow the
vertices to be differentiated (note that the suffix of the name in each case indicates the number
of darts surrounding the central five kites). As the vertex neighbourhood names suggest, note
the correlation between the vertex neighbourhoods in the rhombus tiling and the kite and dart
tiling. The relative occurrence of kite is τ5 and the relative occurrence of dart is τ6.
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(a) (b)

Fig. C.1 (a) A ‘thin’ rhomb prototile (b) A ‘thick’ rhomb prototile.

C.2 Penrose rhombus patterns

The Penrose rhombus pattern shown in Fig. 4.17 is created by locating an inclusion on each
vertex of the underlying Penrose rhombus tiling, except for the ’K’ and ’Q’ vertices.

The proportion of area which can be inclusions, p, is calculated for Penrose rhombus
patterns. By using some of the fundamental relationships between occurrences of differ-
ent vertex neighbourhoods and calculating geometric properties of the two prototiles the
maximum packing density p, can be calculated.

Figure C.1 shows the two rhombus prototiles, often referred to as ‘rhombs’; Fig. C.1a
’thin’ and Fig. C.1b ‘thick’. Both prototiles have the same side length, which is prescribed to
be unity, the area of the thin rhomb is thus:

Athin =
1
τ

sin72◦ =

√
5−

√
5

8
(C.1)

the area of the thick rhomb is:

Athick = τ sin36◦ =

√
5+

√
5

8
(C.2)

The ratio of thick to thin rhombs is τ : 1, therefore the average tile size is:

Athickτ +Athin

τ +1
=

√
5(5−2

√
5)

4
(C.3)

For a patterning with one inclusion of radius a per tile, the value of p is:
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p =
πa2√

5(5−2
√

5)
4

(C.4)

If instead the pattern has an inclusion centred on each vertex, we first need to calculate
the vertices density in the pattern. First calculate the average number of tiles at a vertex by
calculating the number of tiles that meet at each vertex neighbourhood, and then multiply
each by the relative abundance of that neighbourhood. Dividing throughout by the total
relative abundance give the average number of tiles at a vertex:

5 · τ +6 ·1+7 · τ +4 · τ2 +3 · τ3 +5 · τ4 +3 · τ5

τ +1+ τ + τ2 + τ3 + τ4 + τ5 = 4 (C.5)

as each tile has four vertices that must mean that there an identical number of vertices
as tiles, and thus again the p value is given by Eqn C.4.

When locating an inclusion at the each tiling vertex, the limiting size of inclusion occurs
due to the thin rhombs, Fig. C.1a. The maximum radius in this case is half the width of the
thin rhomb, a = 0.5/τ ≈ 0.309, therefore the maximum packing for this pattern is:

p =
π( 1

2τ
)2√

5(5−2
√

5)
4

=
π√

10(5+
√

2)
≈ 0.369 (C.6)

Modifying the pattern by removing inclusions from certain vertices allows the maximum
inclusion radius to increase. We wish to eliminate the inclusions which are currently limiting
the maximum inclusion radius, therefore we need to get rid of one of the inclusions from
each thin rhomb. Considering the vertex neighbourhoods, Table C.1, we note that each pair
of thin rhombs occurs at a ‘Q’ vertex and each single thin rhomb has one side which is part
of a ‘K’ vertex. Locating an inclusion on all vertices apart from on the ’K’ or ‘Q’ vertex
neighbourhoods thus increases the maximum allowable inclusion size to a = 1/2; however
this pattern now has a few less inclusions per unit area. Calculating the proportion of vertices
being used compared to the total number of vertices:

1 · τ +1 ·1+1 · τ +0 · τ2 +0 · τ3 +1 · τ4 +1 · τ5

τ +1+ τ + τ2 + τ3 + τ4 + τ5 = 3−
√

5 ≈ 0.764 (C.7)

Therefore the overall pattern density is:
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p =
π(1

2)
2√

5(5−2
√

5)
4

· (3−
√

5) =
π

5
5−

√
5

2
≈ 0.739 (C.8)

To divide this pattern into two sets so that it can be used as a pattern where dimples are
pushed through in both directions, we need to define a way of systematically selecting two
groups. A good system here is to define all the ‘D’ vertices as one set, and the other vertices,
namely ‘S’, ‘S3’, ‘S4’, ‘S5’ and ‘J’, as the other set. Noting that the ‘K’ and ‘Q’ vertex
neighbourhoods are not being used at all the percentage of ‘D’ vertex neighborhoods is:

τ5

τ +1+ τ + τ2 + τ3 + τ4 + τ5 = 0.5 = 50% (C.9)

Therefore this splits the pattern into two exactly equal sets.
The packing density can be increased slightly more however. Choosing to remove the

inclusion not on the ‘K’ vertex side of a single thin rhomb but from the opposite side we
find that the ‘S5’ vertex neighbourhood is often quite sparsely patterned. Each of the five
thin rhombs surrounding a ‘S5’ can be either a single thin rhomb or a thin rhomb pair, i.e.
a ‘K’ vertex or a ‘Q’ vertex. If surrounded by five single thin rhombs, then the ‘S5’ vertex
has just a single inclusion surrounded by a regular decagon of inclusions, and there is a
noticeable excess of space, Fig. C.2a. The space inside the decagon is large enough to fit
not just the single inclusion which is present, but up to three inclusions. Choosing to centre
an equilateral triangle with a side length equal to unity on the centre of the ‘S5’ vertex, the
central inclusion can be replaced by three inclusions placed at each corner of the triangle.
When the ‘S5’ vertex is surrounded by three single thin rhombs and two pairs of thin rhombs,
Fig. C.2b, there is enough space for two inclusions. The original ‘S5’ inclusion is replaced by
two inclusions located on two corners of the centered equilateral triangle. When four pairs of
thin rhombs surround the ‘S5’ vertex, Fig. C.2c, there is not enough space for any additional
inclusions. The maximum inclusion radius is unchanged, however a few more inclusions
have been packed in, two additional inclusions for each ‘S5’ vertex with five surrounding
single rhombs and one additional inclusion for each ‘S5’ vertex with three surrounding single
rhombs. The corresponding packing density is thus:

p =
π(1

2)
2

5
22

√
25−2

√
5
≈ 0.763 (C.10)

See Fig. 4.17a for a sample of this pattern.
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(a) (b) (c)

Fig. C.2 (a) A ‘S5’ vertex surrounded by five single thin rhomb ’K’ vertices. (b) A ‘S5’
vertex surrounded by three single thin rhombs and two pairs of thin rhombs, three ‘K’ and
two ‘Q’ vertices. (c) A ‘S5’ vertex surrounded by one single thin rhomb and four pairs of
thin rhombs, one ‘K’ and four ‘Q’ vertices.

(a) (b) (c)

Fig. C.3 (a) A kite prototile (b) A dart prototile. (c) An ‘Ace’ vertex neighborhood.

C.3 Penrose kite and dart patterns

The Penrose kite and dart pattern shown in Fig. 4.17 is created by locating one inclusion
per prototile of the underlying Penrose kite and dart tiling. The inclusions are located at
concave vertex of the dart prototile and on the centre line of each kite prototile, as defined by
Fig. C.3c.

Figure C.3 shows the kite and dart prototiles. The short side length of both prototiles is
equal to unity and the long side length is equal to τ . The area of the respective prototiles is:

Akite =

√
5+2

√
5

4
(C.11)

Adart =

√
5+

√
5

8
(C.12)
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The ratio of kites to darts is τ : 1, therefore the average tile size is:

Akiteτ +Adart

τ +1
=

√
5(5−

√
5)

8
(C.13)

For a pattern with one inclusion per tile, and an inclusion radius of a, the pattern packing
p is:

p =
πa2√
5(5−

√
5)

8

(C.14)

The kite and dart prototiles have less well defined centers than the rhombus prototiles.
The single line of symmetry of both kite and dart suggests that selecting the centre-line
for an inclusions placement would be sensible however. Considering the ‘Ace’ vertex
neighbourhood, Fig. C.3c, we could define the concave vertex as a pattern location, and
define the pattern location of the kite as to form an equilateral triangle. Solving the geometry
of this problem gives a maximum radius of:

a =
1
4

√
85+37

√
5−
√

30(445+199
√

5)≈ 0.521 (C.15)

The maximum packing for this pattern is hence:

p =
πa2√
5(5−

√
5)

8

= π

17
16

√
10+2

√
5−

√
15+

37
8

√
5+

√
5

10
− 9

√
3

4

≈ 0.648 (C.16)

See Fig. 4.17b for a sample of this pattern
Defining the kite prototiles which are around a ‘King’ vertex or a ‘Jack’ vertex and the

dart tile of a ‘Queen’ vertex neighbourhood to be one set, the percentage of the total that they
make up is:

3 · τ2 +1 · τ3 +2 · τ4

5 · τ4

τ4−1 +5 · τ2

τ4−1 +5 ·1+5 · τ +3 · τ2 +1 · τ3 +2 · τ4
= 3−

√
5 ≈ 0.507 = 50.7% (C.17)

Note that as there is only one inclusion per prototile, but each prototile belongs to multiple
vertex neighborhoods, a tile is here defined to belong to a vertex if the point of the dart is at
the vertex or the tail of the kite is at the vertex. Therefore the ‘Jack’ vertex neighborhood
is defined to have two tiles which belong to it, the two kites who’s tails meet at the vertex.
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A ‘Deuce’ or ‘Ace’ vertex by this definition have no associated tiles, so do not appear in
Eqn C.17. This choice splits the pattern into two almost equal sets, and so can be used to
define the direction of dimple in this pattern as up or down.





Appendix D

Stiffnesses of circular plates

D.1 Stiffness of a finite plate with a central hole with inter-
nal loading

This appendix uses an Airy’s stress function, Φ, to calculate the displacement of the inner
edge of a finite plate with an internal loading, this is superposition case I in Fig. 5.6. Using
an axisymmetric Airy’s stress function:

Φ = c0 + c1r2 + c2r2 lnr+ c3 lnr (D.1)

then:

σrr =
1
r

∂Φ

∂ r
+

1
r2

∂ 2Φ

∂θ 2 = 2c1 + c2(1+2lnr)+
c3

r2 (D.2)

σθθ =
∂ 2Φ

∂ r2 = 2c1 + c2(3+2lnr)− c3

r2 (D.3)

where c0,c1,c2 and c3 are arbitrary constants. Using the boundary conditions that there is a
unit stress on the internal boundary and zero radial stress at the outer boundary:

σrr

σ0

∣∣∣∣
r=a

=−1
σrr

σ0

∣∣∣∣
r=Λa

= 0 (D.4)

thus:

c1 =
−1

2(1−Λ2)
c2 = 0 c3 =

−(Λa)2

(1−Λ2)
(D.5)

the stress distributions are therefore:
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σrr

σ0
=

−(1− (Λa/r)2)

1−Λ2
σθθ

σ0
=

−(1+(Λa/r)2)

1−Λ2 (D.6)

The circumferential strain is given by εθθ = (σθθ −νσrr)/E:

εθθ

σ0
=

−
(
(1−ν)+(1+ν)(Λa/r)2)

E(1−Λ2)
(D.7)

The radial displacement can be calculated using δrr = εθθ r, and thus, the displacement at the
internal boundary, r = a, for a unit force per unit load is:

δ |r=a =
−a
Et

(1−ν)+(1+ν)Λ2

1−Λ2 =
a(1+ν)

Et

(
1+

2
(Λ2 −1)(1+ν)

)
(D.8)

D.2 Stiffness of a circular plate with stiff central section
and an overhang under a transverse ring loading

The biaxial bending rig described in Section 5.7 is analysed here for the case of an arbitrary
overhang and also a central section which has a rigidity k compared with the rest of the plate.
Figure D.1 shows a cross-section through the set-up and also shows an exploded view of the
plate, labeling the internal shear forces and moments which act on each free body section.

The effect of having a stiff central section is to act as a stress concentrator, and as such
the moment which is carried by the central section, increases by the dimensionless constant
c, which accounts for the relative size and stiffness of this central section. Considering a
circular plate with zero overhang and equating the rotations at Lin for the inner plate and the
ring of plate between the supports, but accounting for the increased flexural rigidity of the
central region, allows the magnitude of the uniform biaxial moment to be calculated as:

M =
2

1+ 1
k +
(
1− 1

k

)(Lout
2

Lin
2 +ν

(
1− Lin

2

Lout
2

)) [T (Lout −Lin)
2(1−ν)

8πLout
2 −

T ln Lin
Lout

(1+ν)

4π

]
(D.9)

Noting that the expression inside the square bracket is equal to the moment carried by the
central region of a uniform plate, see Eqn 5.22, and denoting this as M1, we can write the
moment carried by the stiff section of plate as:

M = (1+ c)M1 (D.10)
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Fig. D.1 A cross-section through the biaxial bending test rig set-up. A total force T is applied
to the top support which applies a ring load at a radius Lin. The moment which is applied to
the overhanging ring in order to ensure a compatible rotation at Lout has a magnitude M. The
magnitude of the uniform biaxial bending moment in the central section is M(1+ c), where
c is a constant which depends on the relative size and stiffness of the central section. The
shear forces acting on the plate are Q1 = T/(2πLin) and Q2 = T/(2πLout).
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And thus deduce an expression for c:

1+ c =
2

1+ 1
k +
(
1− 1

k

)(Lout
2

Lin
2 +ν

(
1− Lin

2

Lout
2

)) (D.11)

When combined with an overhang, there is an additional moment per unit length applied
to the plate at Lout, which we denote M2. As before, the stiff central section has a stress
amplification effect, and thus the total moment carried by the central section is M1(1+ c)+
M2(1+ c). The value of M2 can be calculated by equating the rotations of the overhanging
plate and the plate between the two supports. The overhanging plate, when loaded by M2 has
a radial rotation at Lout of:

Θ|Lout =
M2Lout

3

D(Lplate
2 −Lout

2)(1+ν)

(
1+

Lplate
2(1+ν)

Lout
2(1−ν)

)
(D.12)

The plate between the supports, when loaded by the moment M2 and the ring load T , has a
rotation at Lout of:

Θ|Lout =
−T (Lout

2 −Lin
2)

4πD(1+ν)Lout

+ c

[
T (Lout

2 −Lin
2)(1−ν)

8πLout
2 −

T ln Lin
Lout

(1+ν)

4π

]
2LoutLin

2

D(Lout
2 −Lin

2)(1+ν)(1−ν)

+
M2Lout

D(1+ν)
− 2M2cLoutLout

2

D(Lout
2 −Lin

2)(1+ν)(1−ν)
(D.13)

equating Eqn D.13 and Eqn D.12 gives M2 as a function of T :

M2 =
T (1−ν)

8π

Lout
2−Lin

2

Lout
2 − c

(
− ln Lin

Lout
(1+ν)

)
2Lin

2

(Lout
2−Lin

2)(1−ν)

Lplate
2

Lplate
2−Lout

2 − cLin
2

Lout
2−Lin

2

(D.14)

Finally the vertical deflection at Lin can be calculated:
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δ |Lin =
T

8πD

[
(Lout

2 −Lin
2)

(
1+

1−ν

2(1+ν)

Lout
2 −Lin

2

Lout
2

)
+2Lin

2 ln
Lin

2

Lout
2

]
+

cT
8πD

[
(Lout

2 −Lin
2)(1−ν)

Lout
2 −2ln

Lin

Lout
(1+ν)

](
−Lin

2

2(1+ν)
+

Lout
2Lin

2 ln Lin
Lout

(1−ν)(Lout
2 −Lin

2)

)

− M2

D

[
Lout

2 − (1+ c)Lin
2

2(1+ν)
+

cLout
2Lin

2 ln Lin
Lout

(1−ν)(Lout
2 −Lin

2)

]
(D.15)

And thus, using the expression for M2, this allows a complete equation which relates the
force applied by the ring load to the deflection at the point of application. This therefore
allows an experimental result of force displacement characteristic to calculate the effective
stiffness of the middle section, as required.
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Table E.1 Normalised biaxial stiffnesses and SCF of inclusion patterned sheets, regular
hexagonal pattern, k = 3 and ν = 0.3

Gap ratio p L/a Normalised stiffness SFC
0.1 0.8226 12.5 2.3551 1.0478
0.2 0.7495 12.5 2.1348 0.10656
0.3 0.6857 12.5 1.9762 1.0785
0.4 0.6298 12.5 1.8473 1.0955
0.5 0.5804 12.5 1.7558 1.1108
0.5 0.5804 25 1.7537 1.1097
0.5 0.5804 50 1.7512 1.1087
1 0.4031 50 1.4514 1.1615
2 0.2267 50 1.2257 1.2198
3 0.1451 50 1.1378 1.2494
4 0.1008 50 1.0926 1.2662
5 0.0740 50 1.0669 1.2747

10 0.0252 50 1.0230 1.2950

Table E.2 Normalised biaxial stiffnesses and SCF of inclusion patterned sheets, regular
hexagonal pattern, k = 0.2 and ν = 0.3

Gap ratio p L/a Normalised stiffness SFC
0.1 0.8226 12.5 0.2693 0.8173
0.2 0.7495 12.5 0.3092 0.7471
0.3 0.6857 12.5 0.3390 0.7033
0.4 0.6298 12.5 0.3761 0.6603
0.5 0.5804 12.5 0.4130 0.6266
0.5 0.5804 25 0.4064 0.6305
0.5 0.5804 50 0.4051 0.6314
1 0.4031 50 0.5296 0.5459
2 0.2267 50 0.6948 0.4804
3 0.1451 50 0.7914 0.4550
4 0.1008 50 0.8499 0.4422
5 0.0740 50 0.8830 0.4365

10 0.0252 50 0.9621 0.4226
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Table E.3 Normalised biaxial stiffnesses and SCF of inclusion patterned sheets, regular
square pattern, k = 3 and ν = 0.3

Gap ratio p L/a Normalised stiffness SFC
0.1 0.7124 12.5 2.0678 1.0905
0.2 0.6491 12.5 1.9024 1.1056
0.3 0.5939 12.5 1.7940 1.1096
0.4 0.5454 12.5 1.7019 1.1185
0.5 0.5027 12.5 1.6155 1.1354
0.5 0.5027 50 1.6145 1.1353
1 0.3491 50 1.3764 1.1821
2 0.1963 50 1.1921 1.2310
3 0.1257 50 1.1180 1.2560
4 0.0873 50 1.0807 1.2696
5 0.0641 50 1.0593 1.2776

10 0.0218 50 1.0201 1.2947

Table E.4 Normalised biaxial stiffnesses and SCF of inclusion patterned sheets, Penrose
Rhombus pattern, k = 3 and ν = 0.3

Gap ratio p L/a Normalised stiffness SFC
0.1 0.6918 25 1.9967 1.0804
0.2 0.6304 25 1.8549 1.1145
0.3 0.5767 25 1.7502 1.1253
0.4 0.5297 25 1.6758 1.1351
0.5 0.4881 25 1.5890 1.1392
0.5 0.4881 50 1.5899 1.1420
1 0.3390 50 1.3709 1.1867
2 0.1907 50 1.1818 1.2342
3 0.1220 50 1.1178 1.2576
4 0.0847 50 1.0813 1.2710
5 0.0623 50 1.0537 1.2809

10 0.0212 50 1.0285 1.2924
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Table E.5 Normalised biaxial stiffnesses and SCF of inclusion patterned sheets, Penrose Kite
and Dart pattern, k = 3 and ν = 0.3

Gap ratio p L/a Normalised stiffness SFC
0.1 0.5874 25 1.8010 1.1511
0.2 0.5352 25 1.6961 1.1484
0.3 0.4897 25 1.6003 1.1531
0.4 0.4497 25 1.5257 1.1527
0.5 0.4144 25 1.4615 1.1623
0.5 0.4144 50 1.4730 1.1701
1 0.2878 50 1.3015 1.2012
2 0.1619 50 1.1586 1.2416
3 0.1036 50 1.0970 1.2644
4 0.0720 50 1.0677 1.2775
5 0.0529 50 1.0517 1.2836
10 0.0180 50 0.0158 1.2969

Table E.6 Normalised biaxial stiffnesses and SCF of inclusion patterned sheets, phyllotaxis
pattern, k = 3 and ν = 0.3

Gap ratio p L/a Normalised stiffness SFC
0.1 0.6372 25 1.8699 1.1358
0.2 0.5806 25 1.7338 1.1272
0.3 0.5312 25 1.6597 1.1388
0.4 0.4878 25 1.5934 1.1368
0.5 0.4496 25 1.5327 1.1400
0.5 0.4496 50 1.5349 1.1276
1 0.3122 50 1.3332 1.1785
2 0.1756 50 1.1700 1.2286
3 0.1124 50 1.1074 1.2597
4 0.0781 50 1.0679 1.2805
5 0.0573 50 1.0474 1.2849
10 0.0195 50 1.0169 1.2962
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Table E.7 Normalised biaxial stiffnesses of inclusion patterned sheets, regular hexagonal
pattern, k = 10 and ν = 0.3

Gap ratio p L/a Normalised stiffness
0.1 0.8226 12.5 4.8171
0.2 0.7495 12.5 3.7981
0.3 0.6857 12.5 3.2169
0.4 0.6298 12.5 2.8100
0.5 0.5804 12.5 2.5134
0.5 0.5804 25 2.5065
0.5 0.5804 50 2.4963
1 0.4031 50 1.8029
2 0.2267 50 1.3667
3 0.1451 50 1.2148
4 0.1008 50 1.1427
5 0.0740 50 1.1050

10 0.0252 50 1.0314

Table E.8 Normalised biaxial stiffnesses of inclusion patterned sheets, regular hexagonal
pattern, k = 0 and ν = 0.3

Gap ratio p L/a Normalised stiffness
0.1 0.8226 12.5 0.0619
0.2 0.7495 12.5 0.0994
0.3 0.6857 12.5 0.1312
0.4 0.6298 12.5 0.1704
0.5 0.5804 12.5 0.2097
0.5 0.5804 25 0.2009
0.5 0.5804 50 0.2001
1 0.4031 50 0.3377
2 0.2267 50 0.5413
3 0.1451 50 0.6739
4 0.1008 50 0.7596
5 0.0740 50 0.8089

10 0.0252 50 0.9364
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Table E.9 Normalised biaxial stiffnesses of inclusion patterned sheets, regular hexagonal
pattern, k = 3 and ν = 0.1

Gap ratio p L/a Normalised stiffness
0.1 0.8226 12.5 2.3854
0.2 0.7495 12.5 2.1775
0.3 0.6857 12.5 2.0299
0.4 0.6298 12.5 1.8986
0.5 0.5804 12.5 1.7878
0.5 0.5804 50 1.7964
1 0.4031 50 1.4895
2 0.2267 50 1.2457
3 0.1451 50 1.1488
4 0.1008 50 1.1002
5 0.0740 50 1.0718

10 0.0252 50 1.0226

Table E.10 Normalised biaxial stiffnesses of inclusion patterned sheets, regular hexagonal
pattern, k = 3 and ν = 0.5

Gap ratio p L/a Normalised stiffness
0.1 0.8226 12.5 2.3049
0.2 0.7495 12.5 2.0921
0.3 0.6857 12.5 1.9406
0.4 0.6298 12.5 1.8144
0.5 0.5804 12.5 1.7073
0.5 0.5804 50 1.7144
1 0.4031 50 1.4282
2 0.2267 50 1.2103
3 0.1451 50 1.1264
4 0.1008 50 1.0853
5 0.0740 50 1.0631

10 0.0252 50 1.0197
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Table E.11 Normalised biaxial stiffnesses of inclusion patterned sheets, regular square pattern
of square inclusions, k = 3 and ν = 0.3

Gap ratio p L/a Normalised stiffness
0.1 0.9070 12.5 2.6188
0.2 0.8264 12.5 2.3464
0.3 0.7561 12.5 2.1584
0.4 0.6944 12.5 2.0022
0.5 0.6400 12.5 1.8772
0.5 0.6400 25 1.8766
0.5 0.6400 50 1.8765
1 0.4444 50 1.5187
2 0.2500 50 1.2575
3 0.1600 50 1.1564
4 0.1111 50 1.1063
5 0.0816 50 1.0777

Table E.12 Normalised biaxial stiffnesses of inclusion patterned sheets, regular square pattern
of concave star inclusions, k = 3 and ν = 0.3

Gap ratio p L/a Normalised stiffness
0.2 0.5270 25 1.6760
0.3 0.4822 25 1.6032
0.4 0.4428 25 1.5403
0.5 0.4081 25 1.4839
0.5 0.4081 50 1.4840
1 0.2834 50 1.3068
3 0.1020 50 1.0991
4 0.0709 50 1.0682
5 0.0521 50 1.0502
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Table E.13 Normalised uniaxial bending stiffnesses of inclusion patterned sheets, regular
hexagonal pattern, k = 3 and ν = 0.3

Gap ratio p L/a Normalised stiffness
0.5 0.5804 12.5 1.9045
0.5 0.5804 50 1.8594
0.5 0.5804 100 1.8128
0.5 0.5804 200 1.7762
1 0.4031 12.5 1.5720
1 0.4031 50 1.5496
1 0.4031 100 1.5158
1 0.4031 200 1.4792

Table E.14 Normalised uniaxial and antisymmetric stiffnesses of inclusion patterned sheets,
regular hexagonal pattern, k = 3 and ν = 0.3

Gap ratio p L/a Normalised stiffness Normalised stiffness
uniaxial antisymmetric

0.1 0.8226 12.5 2.3580 2.3596
0.2 0.7495 12.5 2.1478 2.1552
0.3 0.6857 12.5 1.9782 1.9802
0.4 0.6298 12.5 1.8586 1.8619
0.5 0.5804 12.5 1.7602 1.7646
0.5 0.5804 25 1.7576 1.7620
0.5 0.5804 50 1.7596 1.7640
1 0.4031 50 1.4539 1.4545
2 0.2267 50 1.2250 1.2244
3 0.1451 50 1.1369 1.1366
4 0.1008 50 1.0931 1.0936
5 0.0740 50 1.0660 1.0651

10 0.0252 50 1.0223 1.0222
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Table E.15 Normalised uniaxial and antisymmetric stiffnesses of inclusion patterned sheets,
regular hexagonal pattern, k = 0.2 and ν = 0.3

Gap ratio p L/a Normalised stiffness Normalised stiffness
uniaxial antisymmetric

0.1 0.8226 12.5 0.2641 0.2607
0.2 0.7495 12.5 0.2954 0.2887
0.3 0.6857 12.5 0.3292 0.3241
0.4 0.6298 12.5 0.3603 0.3584
0.5 0.5804 12.5 0.3895 0.3825
0.5 0.5804 25 0.3896 0.3825
0.5 0.5804 50 0.3912 0.3843
1 0.4031 50 0.5239 0.5203
2 0.2267 50 0.6925 0.6901
3 0.1451 50 0.7871 0.7851
4 0.1008 50 0.8444 0.8421
5 0.0740 50 0.8866 0.8872
10 0.0252 50 0.9578 0.9576

Table E.16 Normalised uniaxial and antisymmetric stiffnesses of inclusion patterned sheets,
regular square pattern, k = 3 and ν = 0.3

Gap ratio p L/a Normalised stiffness Normalised stiffness
uniaxial antisymmetric

0.1 0.7124 12.5 2.1284 2.1627
0.2 0.6491 12.5 1.9846 2.0318
0.3 0.5939 12.5 1.8456 1.8756
0.4 0.5454 12.5 1.7383 1.7597
0.5 0.5027 12.5 1.6653 1.6936
0.5 0.5027 25 1.6671 1.6968
0.5 0.5027 50 1.6692 1.7004
1 0.3491 50 1.4112 1.4305
2 0.1963 50 1.2015 1.2066
3 0.1257 50 1.1207 1.1223
4 0.0873 50 1.0804 1.0803
5 0.0641 50 1.0566 1.0553
10 0.0218 50 1.0182 1.0172
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Table E.17 Normalised uniaxial and antisymmetric stiffnesses of inclusion patterned sheets,
regular square pattern, k = 0.2 and ν = 0.3

Gap ratio p L/a Normalised stiffness Normalised stiffness
uniaxial antisymmetric

0.1 0.7124 25 0.3352 0.3464
0.2 0.6491 25 0.3819 0.3977
0.3 0.5939 25 0.4197 0.4361
0.4 0.5454 25 0.4581 0.4806
0.5 0.5027 25 0.4865 0.5056
1 0.3491 50 0.6021 0.6152
2 0.1963 50 0.7439 0.7514
3 0.1257 50 0.8219 0.8254
4 0.0873 50 0.8721 0.8756
5 0.0641 50 0.9055 0.9104

10 0.0218 50 0.9667 0.9686

Table E.18 Normalised uniaxial and antisymmetric stiffnesses of inclusion patterned sheets,
regular square pattern aligned at 45◦ to the direction of primary loading, k = 3 and ν = 0.3

Gap ratio p L/a Normalised stiffness Normalised stiffness
uniaxial antisymmetric

0.1 0.7124 12.5 2.0138 1.9847
0.2 0.6491 12.5 1.8489 1.8182
0.3 0.5939 12.5 1.7313 1.7040
0.4 0.5454 12.5 1.6391 1.6123
0.5 0.5027 25 1.5655 1.5410
0.5 0.5027 50 1.5678 1.5444
1 0.3491 50 1.3525 1.3392
2 0.1963 50 1.1835 1.1796
3 0.1257 50 1.1123 1.1092
4 0.0873 50 1.0787 1.0787
5 0.0641 50 1.0557 1.0543

10 0.0218 50 1.0197 1.0203
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Table E.19 Normalised antisymmetric stiffnesses of inclusion patterned sheets loaded in
perpendicular directions, regular hexagonal pattern, k = 3 and ν = 0.3

Gap ratio p L/a Normalised stiffness Normalised stiffness perpendicular
0.1 0.8226 12.5 2.3596 2.3654
0.2 0.7495 12.5 2.1552 2.1553
0.3 0.6857 12.5 1.9802 1.9756
0.4 0.6298 12.5 1.8619 1.8602
0.5 0.5804 12.5 1.7646 1.7697
0.5 0.5804 25 1.7620 1.7628
0.5 0.5804 50 1.7640 1.7629
1 0.4031 50 1.4545 1.4520
2 0.2267 50 1.2244 1.2238
3 0.1451 50 1.1366 1.1368
4 0.1008 50 1.0936 1.0936
5 0.0740 50 1.0651 1.0645
10 0.0252 50 1.0222 1.0230

Table E.20 Normalised antisymmetric stiffnesses of inclusion patterned sheets loaded in
perpendicular directions, Penrose Rhombus pattern, k = 3 and ν = 0.3

Gap ratio p L/a Normalised stiffness Normalised stiffness perpendicular
0.1 0.6918 25 1.9915 2.0281
0.2 0.6304 25 1.8450 1.8742
0.3 0.5767 25 1.7415 1.7935
0.4 0.5297 25 1.7031 1.7053
0.5 0.4881 25 1.6294 1.5698
1 0.3390 50 1.3702 1.3872
2 0.1907 50 1.1728 1.1686
3 0.1220 50 1.1219 1.1161
4 0.0847 50 1.0735 1.0900
5 0.0623 50 1.0572 1.0515
10 0.0212 50 1.0275 1.0246
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Table E.21 Normalised antisymmetric stiffnesses of inclusion patterned sheets loaded in
perpendicular directions, Penrose Kite and Dart pattern, k = 3 and ν = 0.3

Gap ratio p L/a Normalised stiffness Normalised stiffness perpendicular
0.1 0.5874 25 1.7856 1.7995
0.2 0.5352 25 1.6770 1.7274
0.3 0.4897 25 1.5992 1.6392
0.4 0.4497 25 1.5322 1.5383
0.5 0.4144 25 1.4771 1.4568
1 0.2878 50 1.3030 1.3156
2 0.1619 50 1.1615 1.1603
3 0.1036 50 1.0822 1.1116
4 0.0720 50 1.0585 1.0756
5 0.0529 50 1.0590 1.0624

10 0.0180 50 1.0128 1.0175

Table E.22 Normalised antisymmetric stiffnesses of inclusion patterned sheets loaded in
perpendicular directions, phyllotaxis pattern, k = 3 and ν = 0.3

Gap ratio p L/a Normalised stiffness Normalised stiffness perpendicular
0.1 0.6372 25 1.8690 1.9199
0.2 0.5806 25 1.7574 1.7766
0.3 0.5312 25 1.6677 1.6357
0.4 0.4878 25 1.5878 1.5935
0.5 0.4496 25 1.5243 1.5507
1 0.3122 50 1.3421 1.3398
2 0.1756 50 1.1595 1.1780
3 0.1124 50 1.0979 1.1159
4 0.0781 50 1.0736 1.0639
5 0.0573 50 1.0449 1.0437

10 0.0195 50 1.0163 1.0143
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Table E.23 Normalised antisymmetric stiffnesses of a regular hexagonal pattern of inclusions
as the pattern is oriented at different angles to the direction of primary loading, k = 3 and
ν = 0.3

Gap ratio p L/a Orientation Normalised stiffness
0.5 0.5804 50 0◦ 1.7640
0.5 0.5804 50 5◦ 1.7562
0.5 0.5804 50 10◦ 1.7566
0.5 0.5804 50 15◦ 1.7640
0.5 0.5804 50 20◦ 1.7498
0.5 0.5804 50 25◦ 1.7559
0.5 0.5804 50 30◦ 1.7629
0.5 0.5804 50 35◦ 1.7559
0.5 0.5804 50 40◦ 1.7498
0.5 0.5804 50 45◦ 1.7640
0.5 0.5804 50 50◦ 1.7566
0.5 0.5804 50 55◦ 1.7562
0.5 0.5804 50 60◦ 1.7640
0.5 0.5804 50 65◦ 1.7562
0.5 0.5804 50 70◦ 1.7566
0.5 0.5804 50 75◦ 1.7640
0.5 0.5804 50 80◦ 1.7498
0.5 0.5804 50 85◦ 1.7559
0.5 0.5804 50 90◦ 1.7629
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Table E.24 Normalised antisymmetric stiffnesses of a regular square pattern of inclusions
as the pattern is oriented at different angles to the direction of primary loading, k = 3 and
ν = 0.3

Gap ratio p L/a Orientation Normalised stiffness
0.5 0.5027 50 0◦ 1.7004
0.5 0.5027 50 5◦ 1.6905
0.5 0.5027 50 10◦ 1.6693
0.5 0.5027 50 15◦ 1.6699
0.5 0.5027 50 20◦ 1.6403
0.5 0.5027 50 25◦ 1.6027
0.5 0.5027 50 30◦ 1.5934
0.5 0.5027 50 35◦ 1.5707
0.5 0.5027 50 40◦ 1.5579
0.5 0.5027 50 45◦ 1.5444
0.5 0.5027 50 50◦ 1.5579
0.5 0.5027 50 55◦ 1.5707
0.5 0.5027 50 60◦ 1.5934
0.5 0.5027 50 65◦ 1.6027
0.5 0.5027 50 70◦ 1.6403
0.5 0.5027 50 75◦ 1.6699
0.5 0.5027 50 80◦ 1.6693
0.5 0.5027 50 85◦ 1.6905
0.5 0.5027 50 90◦ 1.7004
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E.2 Normalised stiffness of dimpled sheets

Table E.25 Normalised biaxial bending stiffnesses and SCF of dimpled sheets, regular
hexagonal pattern, quartic dimple profile, d/a = 1/3, a/t = 30, ν = 0.3 and L/a = 100/3

Gap ratio p Normalised stiffness Normalised stiffness SCF SCF
up-down up-down

0.333 0.6663 2.0339 2.1164 0.9957 1.1065
0.5 0.5804 1.8454 0.9937

0.667 0.5101 1.7060 1.7396 0.9992 1.109
1 0.4031 1.5171 1.0062

1.333 0.3265 1.3976 1.4075 1.0193 1.1445
1.667 0.2698 1.3166 1.0348

2 0.2267 1.2588 1.2627 1.0463 1.1768
2.333 0.1932 1.2160 1.0552
2.667 0.1666 1.1821 1.1839 1.0658 1.1938

4 0.1008 1.1055 1.0812
5 0.0740 1.0765 1.0769 1.0920 1.0769
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Table E.26 Normalised biaxial bending stiffnesses and SCF of dimpled sheets, regular square
pattern, quartic dimple profile, d/a = 1/3, a/t = 30, ν = 0.3 and L/a = 100/3

Gap ratio p Normalised stiffness Normalised stiffness SCF SCF
up-down up-down

0.333 0.5770 1.8516 1.9076 1.2758 1.1900
0.5 0.5027 1.6985 1.0757

0.667 0.4418 1.5897 1.6104 1.0403 1.1868
1 0.3491 1.4321 1.0623

1.333 0.2827 1.3342 1.3415 1.0642 1.1923
1.667 0.2337 1.2672 1.0623

2 0.1963 1.2191 1.2221 1.0670 1.1995
2.333 0.1673 1.1833 1.0723
2.667 0.1443 1.1557 1.1571 1.0788 1.2133

4 0.0873 1.0909 1.0872
5 0.0641 1.0659 1.0661 1.0960 1.2353

Table E.27 Normalised biaxial bending stiffnesses and SCF of dimpled sheets, Penrose
Rhombus pattern, quartic dimple profile, d/a = 1/3, a/t = 30, ν = 0.3 and L/a = 100/3

Gap ratio p Normalised stiffness Normalised stiffness SCF SCF
up-down up-down

0.333 0.5146 1.7303 1.7861 1.2165 1.3338
0.5 0.4637 1.6185 1.3115

0.667 0.4072 1.5168 1.5365 1.1523 1.3013
1 0.3110 1.3703 1.1420

1.333 0.2545 1.2899 1.1337
1.667 0.2036 1.2210 1.1323

2 0.1866 1.2019 1.1966 1.1238 1.2763
2.333 0.1470 1.1564 1.1223
2.667 0.1244 1.1307 1.1316 1.1258 1.12658

4 0.0763 1.0802 1.1232
5 0.0594 1.0611 1.0603 1.1088 1.2643
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Table E.28 Normalised biaxial bending stiffnesses of dimpled sheets, regular hexagonal
pattern, spherical cap dimple profile, d/a = 1/6, a/t = 6, ν = 0.3 and L/a = 100/3

Gap ratio p Normalised stiffness Normalised stiffness
up-down

0.333 0.6663 1.3203 1.4791
0.5 0.5804 1.2948 1.4102

0.667 0.5101 1.2705 1.3543
1 0.4031 1.2274

1.333 0.3265 1.1859 1.2139
1.667 0.2698 1.1556

2 0.2267 1.1313 1.1457
2.333 0.1932 1.1127
2.667 0.1666 1.0976 1.1048

4 0.1008 1.0592
5 0.0740 1.0436 1.0447

Table E.29 Normalised biaxial bending stiffnesses of dimpled sheets, regular square pattern,
spherical cap dimple profile, d/a = 1/6, a/t = 6, ν = 0.3 and L/a = 100/3

Gap ratio p Normalised stiffness Normalised stiffness
up-down

0.333 0.5770 1.2964 1.4235
0.5 0.5027 1.2692

0.667 0.4418 1.2431 1.3097
1 0.3491 1.1980

1.333 0.2827 1.1628 1.1860
1.667 0.2337 1.1357

2 0.1963 1.1146 1.1247
2.333 0.1673 1.0979
2.667 0.1443 1.0846 1.0897

4 0.0873 1.0513
5 0.0641 1.0377 1.0386
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Table E.30 Normalised biaxial bending stiffnesses of dimpled sheets, Penrose Rhombus
pattern, spherical cap dimple profile, d/a = 1/6, a/t = 6, ν = 0.3 and L/a = 100/3

Gap ratio p Normalised stiffness Normalised stiffness
up-down

0.333 0.5146 1.2734 1.3466
0.5 0.4637 1.2530

0.667 0.4072 1.2230 1.2867
1 0.3110 1.1785

1.333 0.2545 1.1444 1.1595
1.667 0.2036 1.1154

2 0.1866 1.1068 1.1100
2.333 0.1470 1.0848
2.667 0.1244 1.0740 1.0745

4 0.0763 1.0451
5 0.0594 1.0352 1.0350

Table E.31 Normalised biaxial bending stiffnesses of dimpled sheets, regular hexagonal
pattern, spherical cap dimple profile, d/a = 1/6, a/t = 30, ν = 0.3 and L/a = 100/3

Gap ratio p Normalised stiffness Normalised stiffness
up-down

0.333 0.6663 2.3063 2.4410
0.5 0.5804 2.5063 2.1367

0.667 0.5101 1.8742 1.9255
1 0.4031 1.6321

1.333 0.3265 1.4806 1.4932
1.667 0.2698 1.3802

2 0.2267 1.3092 1.3140
2.333 0.1932 1.2571
2.667 0.1666 1.2157 1.2176

4 0.1008 1.1241
5 0.0740 1.0894 1.0902
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Table E.32 Normalised biaxial bending stiffnesses of dimpled sheets, regular square pattern,
spherical cap dimple profile, d/a = 1/6, a/t = 30, ν = 0.3 and L/a = 100/3

Gap ratio p Normalised stiffness Normalised stiffness
up-down

0.333 0.5770 2.0780 2.1598
0.5 0.5027 1.8716

0.667 0.4418 1.7225 1.7609
1 0.3491 1.5249

1.333 0.2827 1.4020 1.4130
1.667 0.2337 1.3193

2 0.1963 1.2606 1.2650
2.333 0.1673 1.2172
2.667 0.1443 1.1841 1.1861

4 0.0873 1.1068
5 0.0641 1.0772 1.0775

Table E.33 Normalised biaxial stretching stiffnesses of dimpled sheets, regular hexagonal
pattern, spherical cap dimple profile, d/a = 1/6, a/t = 6, ν = 0.3 and L/a = 100/3

Gap ratio p Normalised stiffness Normalised stiffness
up-down

0.333 0.6663 0.4519 0.4989
0.5 0.5804 0.5012 0.5423

0.667 0.5101 0.5468 0.5805
1 0.4031 0.6273

1.333 0.3265 0.6824 0.6975
1.667 0.2698 0.7298

2 0.2267 0.7692 0.7783
2.333 0.1932 0.8003
2.667 0.1666 0.8228 0.8275

5 0.0740 0.9171 0.9180
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Table E.34 Normalised biaxial stretching stiffnesses of dimpled sheets, regular square pattern,
spherical cap dimple profile, d/a = 1/6, a/t = 6, ν = 0.3 and L/a = 100/3

Gap ratio p Normalised stiffness Normalised stiffness
up-down

0.333 0.5770 0.5010 0.5381
0.5 0.5027 0.5507

0.667 0.4418 0.5938 0.6163
1 0.3491 0.6643

1.333 0.2827 0.7188 0.7293
1.667 0.2337 0.7616

2 0.1963 0.7957 0.8013
2.333 0.1673 0.8232
2.667 0.1443 0.8456 0.8488

4 0.0873 0.9036
5 0.0641 0.9283 0.9290

Table E.35 Normalised uniaxial bending stiffnesses of dimpled sheets, regular hexagonal
pattern, quadratic dimple profile, d/a = 1/3, a/t = 30, ν = 0.3 and L/a = 100/3

Gap ratio p Normalised stiffness Normalised stiffness
up-down

0.333 0.6663 3.4332 3.6105
0.5 0.5804 2.9863

0.667 0.5101 2.6557 2.7025
1 0.4031 2.2160

1.333 0.3265 1.9431 1.9525
1.667 0.2698 1.7581

2 0.2267 1.6253 1.6284
2.333 0.1932 1.5255
2.667 0.1666 1.4540 1.4550

4 0.1008 1.2765
5 0.0740 1.1981 1.1983
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Table E.36 Normalised uniaxial bending stiffnesses of dimpled sheets, regular hexagonal
pattern, spherical cap dimple profile, d/a = 1/6, a/t = 30, ν = 0.3 and L/a = 100/3

Gap ratio p Normalised stiffness Normalised stiffness
up-down

0.333 0.6663 3.4000 4.2199
0.5 0.5804 3.1532 3.5531

0.667 0.5101 2.8776 3.0920
1 0.4031 2.4228

1.333 0.3265 2.1097 2.1535
1.667 0.2698 1.8929

2 0.2267 1.7362 1.7512
2.333 0.1932 1.6186
2.667 0.1666 1.5323 1.5392

4 0.1008 1.3171
5 0.0740 1.2323 1.2333

Table E.37 Normalised uniaxial bending stiffnesses of dimpled sheets, regular square pattern,
spherical cap dimple profile, d/a = 1/6, a/t = 30, ν = 0.3 and L/a = 100/3

Gap ratio p Normalised stiffness
0.333 0.5770 2.9600
0.5 0.5027 2.66070

0.667 0.4418 2.3579
1 0.3491 2.0282

1.333 0.2827 1.8188
1.667 0.2337 1.6933

2 0.1963 1.5662
2.333 0.1673 1.4842
2.667 0.1443 1.4196

4 0.0873 1.2591
5 0.0641 1.1928
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Table E.38 Normalised antisymmetric bending stiffnesses of dimpled sheets, regular hexago-
nal pattern, quadratic dimple profile, d/a = 1/3, a/t = 30, ν = 0.3 and L/a = 100/3

Gap ratio p Normalised stiffness Normalised stiffness
up-down

0.333 0.6663 5.4537 5.8245
0.5 0.5804 4.4729

0.667 0.5101 3.7921 3.8499
1 0.4031 2.9464

1.333 0.3265 2.4601 2.4668
1.667 0.2698 2.1456

2 0.2267 1.9270 1.9293
2.333 0.1932 1.7673
2.667 0.1666 1.6596 1.6597

4 0.1008 1.3813
5 0.0740 1.2757 1.2757

Table E.39 Normalised antisymmetric bending stiffnesses of dimpled sheets, regular hexago-
nal pattern, spherical cap dimple profile, d/a = 1/6, a/t = 30, ν = 0.3 and L/a = 100/3

Gap ratio p Normalised stiffness Normalised stiffness
up-down

0.333 0.6663 4.5661 7.1725
0.5 0.5804 4.4243 5.5877

0.667 0.5101 4.0431 4.5932
1 0.4031 3.2764

1.333 0.3265 2.7351 2.8215
1.667 0.2698 2.3658

2 0.2267 2.1061 2.1323
2.333 0.1932 1.9151
2.667 0.1666 1.7822 1.7932

4 0.1008 1.4514
5 0.0740 1.3257 1.3269
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Perforated strips experimental data

F.1 Uniaxial stretching stiffness of perforated strips

The experimentally found stiffnesses of the perforated strips of copper beryllium under
uniaxial tension, descried in Section 4.10, are given here. The p value of each strip is given
in two ways, the first calculating the theoretical p of the pattern for a infinite plane, and
the second based on number of perforations actually realised in the finite width strip. The
average of these two values is also calculated. The stiffness is the initial linear gradient of
the loading curve of applied load (N) against displacement (mm). The average stiffness of
the three plain specimens is used to calculate the normalised stiffness of the perforated strips.
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Table F.1 Uniaxial stretching stiffnesses of perforated strips

Pattern Gap ratio p p p Stiffness Normalised
theory actual average stiffness

(N/mm)
Plain n/a 0 0 0 5.333 0.9975
Plain n/a 0 0 0 5.267 0.9850
Plain n/a 0 0 0 5.440 1.0175

Hexagonal 0.6667 0.5101 0.4607 0.4854 1.900 0.3554
Hexagonal 1.3333 0.3265 0.3282 0.3273 2.760 0.5162
Hexagonal 2.6667 0.1666 0.1780 0.1723 3.200 0.5985

Square 0.6667 0.4418 0.4145 0.4282 2.550 0.4769
Square 1.3333 0.2827 0.2916 0.2872 3.467 0.6484
Square 2.6667 0.1443 0.1452 0.1447 4.250 0.7949

Square 45◦ 0.6667 0.4418 0.4317 0.4367 1.400 0.2618
Square 45◦ 1.3333 0.2827 0.2562 0.2695 2.833 0.5299
Square 45◦ 2.6667 0.1443 0.1452 0.1447 3.533 0.6608
Rhombus 0.6667 0.4290 0.4115 0.4203 1.620 0.3030
Rhombus 1.3333 0.2746 0.2600 0.2673 2.967 0.5549
Rhombus 2.6667 0.1401 0.1351 0.1376 3.850 0.7201

Kite and Dart 0.6667 0.3361 0.3522 0.3441 1.933 0.3616
Kite and Dart 1.3333 0.2151 0.2247 0.2199 3.333 0.6234
Kite and Dart 2.6667 0.1098 0.1098 0.1098 4.133 0.7731
Phyllotaxis 0.6667 0.3951 0.3610 0.3781 1.840 0.3441
Phyllotaxis 1.3333 0.2529 0.2335 0.2432 3.350 0.6266
Phyllotaxis 2.6667 0.1290 0.1224 0.1257 4.200 0.7860
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F.2 Uniaxial bending stiffness of perforated strips

The experimentally found stiffnesses of the perforated strips of copper beryllium under
uniaxial four point bending, descried in Section 4.10, are given here. The rotational stiffness
of the strip is found from the initial linear gradient of the curve of applied moment (Nmm)
against rotation (rad). The applied moment is calculated from the applied force at each knife-
edge, which is half the total force seen at the load cell and the lever arm, which is 30mm. The
rotation is calculated as the displacement of the upper knife-edge divided by the lever arm.
The rotational stiffness can thus be calculated as half of the gradient of the force-displacement
curve multiplied by the lever arm squared. Some of the specimens gave unusable results due
to slippage occurring between the knife-edges and the notches in the clamping plates, the
corresponding rows of the results table have been omitted correspondingly.

Table F.2 Uniaxial bending stiffnesses of perforated strips

Pattern Gap ratio p p p Stiffness Normalised
theory actual average stiffness

(Nmm/rad)
Plain n/a 0 0 0 0.7425 1.0683
Plain n/a 0 0 0 0.6825 0.9820
Plain n/a 0 0 0 0.6600 0.9496

Hexagonal 0.6667 0.5101 0.4607 0.4854 0.2093 0.3011
Hexagonal 1.3333 0.3265 0.3282 0.3273 0.2844 0.4092
Hexagonal 2.6667 0.1666 0.1780 0.1723 0.4320 0.6216

Square 0.6667 0.4418 0.4145 0.4282 - -
Square 1.3333 0.2827 0.2916 0.2872 - -
Square 2.6667 0.1443 0.1452 0.1447 0.4770 0.6863

Square 45◦ 0.6667 0.4418 0.4317 0.4367 0.2053 0.2954
Square 45◦ 1.3333 0.2827 0.2562 0.2695 0.3682 0.5298
Square 45◦ 2.6667 0.1443 0.1452 0.1447 0.4275 0.6151
Rhombus 0.6667 0.4290 0.4115 0.4203 0.2700 0.3885
Rhombus 1.3333 0.2746 0.2600 0.2673 - -
Rhombus 2.6667 0.1401 0.1351 0.1376 0.5085 0.7317

Kite and Dart 0.6667 0.3361 0.3522 0.3441 0.4725 0.6799
Kite and Dart 1.3333 0.2151 0.2247 0.2199 0.3656 0.5261
Kite and Dart 2.6667 0.1098 0.1098 0.1098 - -
Phyllotaxis 0.6667 0.3951 0.3610 0.3781 0.2789 0.4013
Phyllotaxis 1.3333 0.2529 0.2335 0.2432 0.3915 0.5633
Phyllotaxis 2.6667 0.1290 0.1224 0.1257 0.5250 0.7554
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Patterns for experimental testing of
dimpled sheets

Four distinct patterns of dimples were chosen for experimental testing. In each case the
pattern covers an area which is a square with 100mm sides. The dimples are chosen to have
a radius of 3mm, and are spaced such that there is a minimum of 1mm spacing between the
edges of the dimples. The four patterns chosen are a regular hexagonal packing, a phyllotaxis
pattern, a pattern based on the Penrose Rhombus tiling and a pattern based on the Penrose
Kite and Dart tiling. These patterns are displayed graphically in Fig. G.1.

The Penrose tiling based patterns are original to this thesis and their construction and
relationship to the underlying Penrose tiling’s is given in Appendix C.1.

Each pattern is also given as a pattern split into two subsets, to facilitate dimpling with
dimples in opposing directions. Exactly 50% of the pattern is in each subset for the hexagonal,
phyllotaxis and Penrose Rhombus patterns. The Penrose Kite and Dart pattern is split into
subsets which make up 50.7% and 49.3% respectively. The choice of how do divide the
hexagonal pattern is indicated in Fig. G.1a. The phyllotaxis pattern, defined by Eqn 4.52,
is split by assigning odd and even values of n to each subset. For the Penrose tiling based
patterns, the method of choosing the two subsets is detailed in Appendix C.1. In all four
cases, the percentage split is calculated based on the infinite pattern, and a finite patch of this
pattern is not guaranteed to have exactly the split by subsection as calculated for the overall
pattern. The split of the patterns into these two subsets is shown graphically in Fig. G.2.

The x and y coordinates of the centers of the dimples for each of the four patterns are
given in tables in Section G.2. In each case the coordinates for each subset of the pattern, as
per Fig. G.2, are given separately.

G.1 Figures of patterns used for experimental testing
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(a) (b)

(c) (d)

Fig. G.1 (a) A regular hexagonal packing of circles (b) A phyllotaxis spiral pattern. (c) A
pattern based on Penrose Rhombus tiling. (d) A pattern based on Penrose Kite and Dart
tiling. These patterns are used as dimpling locations for square dimpled sheets. Note that
these patterns are scaled down to fit onto the page.
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(a) (b)

(c) (d)

Fig. G.2 (a) A regular hexagonal packing of circles (b) A phyllotaxis spiral pattern. (c) A
pattern based on Penrose Rhombus tiling. (d) A pattern based on Penrose Kite and Dart tiling.
These patterns are used as dimpling locations for square dimpled sheets, the two subsets
given in white and black fill indicate the sets of opposing direction dimples. Note that these
patterns are scaled down to fit onto the page.
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G.2 Tables of coordinates for patterns used for experimen-
tal testing

These tables give the coordinates of the dimple centers (in mm) from the centre of the square
plate.

Table G.1 The x and y coordinates of the hexagonal pattern given in Fig. G.2a

Black White
x y x y

-46.549 -38.7 -39.101 -38.7
-46.549 -25.8 -39.101 -25.8
-46.549 -12.9 -39.101 -12.9
-46.549 0 -39.101 0
-46.549 12.9 -39.101 12.9
-46.549 25.8 -39.101 25.8
-46.549 38.7 -39.101 38.7
-42.825 -45.15 -35.377 -45.15
-42.825 -32.25 -35.377 -32.25
-42.825 -19.35 -35.377 -19.35
-42.825 -6.45 -35.377 -6.45
-42.825 6.45 -35.377 6.45
-42.825 19.35 -35.377 19.35
-42.825 32.25 -35.377 32.25
-42.825 45.15 -35.377 45.15
-31.653 -38.7 -24.205 -38.7
-31.653 -25.8 -24.205 -25.8
-31.653 -12.9 -24.205 -12.9
-31.653 0 -24.205 0
-31.653 12.9 -24.205 12.9
-31.653 25.8 -24.205 25.8
-31.653 38.7 -24.205 38.7
-27.929 -45.15 -20.481 -45.15
-27.929 -32.25 -20.481 -32.25
-27.929 -19.35 -20.481 -19.35
-27.929 -6.45 -20.481 -6.45
-27.929 6.45 -20.481 6.45
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Black White
x y x y

-27.929 19.35 -20.481 19.35
-27.929 32.25 -20.481 32.25
-27.929 45.15 -20.481 45.15
-16.758 -38.7 -9.31 -38.7
-16.758 -25.8 -9.31 -25.8
-16.758 -12.9 -9.31 -12.9
-16.758 0 -9.31 0
-16.758 12.9 -9.31 12.9
-16.758 25.8 -9.31 25.8
-16.758 38.7 -9.31 38.7
-13.034 -45.15 -5.586 -45.15
-13.034 -32.25 -5.586 -32.25
-13.034 -19.35 -5.586 -19.35
-13.034 -6.45 -5.586 -6.45
-13.034 6.45 -5.586 6.45
-13.034 19.35 -5.586 19.35
-13.034 32.25 -5.586 32.25
-13.034 45.15 -5.586 45.15
-1.862 -38.7 5.586 -38.7
-1.862 -25.8 5.586 -25.8
-1.862 -12.9 5.586 -12.9
-1.862 0 5.586 0
-1.862 12.9 5.586 12.9
-1.862 25.8 5.586 25.8
-1.862 38.7 5.586 38.7
1.862 -45.15 9.31 -45.15
1.862 -32.25 9.31 -32.25
1.862 -19.35 9.31 -19.35
1.862 -6.45 9.31 -6.45
1.862 6.45 9.31 6.45
1.862 19.35 9.31 19.35
1.862 32.25 9.31 32.25
1.862 45.15 9.31 45.15

13.034 -38.7 20.481 -38.7
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Black White
x y x y

13.034 -25.8 20.481 -25.8
13.034 -12.9 20.481 -12.9
13.034 0 20.481 0
13.034 12.9 20.481 12.9
13.034 25.8 20.481 25.8
13.034 38.7 20.481 38.7
16.758 -45.15 24.205 -45.15
16.758 -32.25 24.205 -32.25
16.758 -19.35 24.205 -19.35
16.758 -6.45 24.205 -6.45
16.758 6.45 24.205 6.45
16.758 19.35 24.205 19.35
16.758 32.25 24.205 32.25
16.758 45.15 24.205 45.15
27.929 -38.7 35.377 -38.7
27.929 -25.8 35.377 -25.8
27.929 -12.9 35.377 -12.9
27.929 0 35.377 0
27.929 12.9 35.377 12.9
27.929 25.8 35.377 25.8
27.929 38.7 35.377 38.7
31.653 -45.15 39.101 -45.15
31.653 -32.25 39.101 -32.25
31.653 -19.35 39.101 -19.35
31.653 -6.45 39.101 -6.45
31.653 6.45 39.101 6.45
31.653 19.35 39.101 19.35
31.653 32.25 39.101 32.25
31.653 45.15 39.101 45.15
42.825 -38.7
42.825 -25.8
42.825 -12.9
42.825 0
42.825 12.9
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Black White
x y x y

42.825 25.8
42.825 38.7
46.549 -45.15
46.549 -32.25
46.549 -19.35
46.549 -6.45
46.549 6.45
46.549 19.35
46.549 32.25
46.549 45.15

Table G.2 The x and y coordinates of the phyllotaxis pattern given in Fig. G.2b

Black White
x y x y

3.38 -49.608 46.328 47.228
32.69 -49.518 -1.245 46.624

-30.216 -49.325 -22.743 45.96
-14.229 -49.088 30.764 45.853
25.976 -47.454 15.293 45.62
19.613 -44.135 -16.602 41.951
-46.574 -43.711 46.548 40.201
-0.634 -43.335 2.224 39.703

-31.002 -42.318 30.908 38.725
-16.026 -41.967 16.388 38.111
13.728 -39.37 -11.009 36.336
-46.239 -36.711 -43.234 34.853
-3.481 -35.667 -36.129 34.417

-30.453 -35.078 45.638 33.255
39.695 -34.802 -28.938 32.532
46.737 -34.591 29.601 31.378
-16.327 -34.021 4.342 31.118
32.542 -33.672 15.763 29.64
8.463 -32.754 -21.671 28.845
25.317 -30.948 -6.112 28.462



254 Patterns for experimental testing of dimpled sheets

Black White
x y x y

-44.732 -29.845 43.504 26.496
-28.301 -27.619 26.477 23.784
17.976 -26.106 -14.168 22.514
-4.702 -25.847 39.991 20.032

-14.566 -24.855 -36.901 19.856
-41.934 -23.22 12.485 19.417
3.974 -23.121 -44.44 19.368

-24.006 -19.835 4.352 19.344
40.753 -19.803 -28.581 18.575
32.859 -19.473 -2.046 15.785
47.974 -18.589 20.66 15.68
10.075 -17.581 -18.84 14.591
23.976 -17.031 34.804 13.971
-37.635 -16.945 -4.912 9.457
-8.833 -12.564 27.239 8.398

-31.398 -11.121 -31.157 7.169
-15.91 -11.07 -19.711 6.288
12.584 -10.605 -39.789 5.749
-2.545 -9.467 45.963 5.273

-48.774 -7.649 7.482 4.759
25.97 -7.117 14.434 3.173
35.702 -6.675 -46.926 2.859
-21.953 -5.787 39.304 1.241
43.512 -4.461 -16.965 -0.702
10.753 -3.927 -1.5 -1.5
-42.82 -3.127 30.818 -1.576

-35.343 0.345 18.757 -2.524
-7.701 1.362 -29.476 -3.674
24.111 1.998 -11.265 -4.65
-25.488 2.362 4.021 -5.245
0.448 5.1 -37.607 -7.884
33.874 5.652 19.753 -10.382
-12.264 7.107 46.428 -11.161
19.162 8.853 -24.244 -12.442
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Black White
x y x y

-49.808 9.816 38.996 -12.861
40.824 10.336 30.421 -12.906
5.461 11.669 4.054 -12.924

-25.479 12.075 -43.612 -12.981
-42.832 12.189 -0.83 -17.96
12.395 12.334 -16.673 -18.023
-34.882 13.126 16.967 -18.704
-11.826 14.172 -48.089 -18.761
46.022 15.796 -31.038 -19.321
28.053 15.894 -8.307 -19.85
-7.419 20.626 25.647 -23.959
-21.46 21.777 10.513 -25.826
33.402 22.76 -35.258 -26.221
19.443 22.843 48.089 -26.484
0.121 24.905 33.527 -26.492

-29.651 25.489 40.984 -27.208
9.583 25.85 -21.316 -27.248
-44.58 27.011 1.104 -30.267
-37.3 27.048 -10.033 -30.926

36.677 29.707 16.748 -33.032
-13.603 29.824 -37.706 -33.212
22.537 31.4 -23.234 -35.371
-2.708 34.742 23.246 -37.753
9.899 35.442 4.62 -38.601

-19.962 35.639 -9.305 -39.555
38.377 36.728 -38.717 -40.247
23.487 39.196 29.994 -40.744
-26.593 39.44 36.913 -42.322
-33.438 41.697 43.912 -42.657
-6.794 41.979 -23.35 -42.892

-47.411 42.392 9.195 -44.954
-40.409 42.637 -7.005 -46.863
8.323 43.346 -38.474 -47.251
38.744 43.758 14.579 -49.869
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Black White
x y x y

22.861 46.469 -22.05 -49.928
-11.798 47.574 -31.157 7.169
-45.817 -50.741 -50.196 34.034
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Table G.3 The x and y coordinates of the Penrose Rhombus pattern given in Fig. G.2c

Black White
x y x y

-19.527 46.954 -13.865 -48.424
39.779 46.954 39.778 -44.309
-48.717 42.934 -26.527 -44.308
11.463 42.839 -42.18 -44.308
-6.864 42.839 -1.201 -44.308
-32.19 42.839 21.452 -44.308
19.289 40.296 5.8 -44.308
44.656 40.296 -34.313 -41.766
-40.017 40.295 13.626 -41.765
6.626 36.182 -13.864 -40.194
31.952 36.181 37.615 -37.651

-4.7 36.181 44.616 -37.651
-27.353 36.181 -40.017 -37.651
-45.68 36.181 19.289 -37.651

-12.033 35.341 31.953 -33.537
-18.691 33.178 -9.027 -33.536
19.289 32.067 39.778 -30.994
-6.864 29.524 -1.2 -30.994
34.115 29.524 4.463 -26.88
-25.19 29.524 11.463 -26.879
41.157 29.524 -32.191 -26.879
11.463 29.524 -47.843 -26.879
-19.527 25.409 27.116 -26.879
-12.526 25.409 19.289 -24.336
28.452 25.409 -39.946 -24.208
-1.201 25.409 -1.2 -22.765
-42.18 25.409 39.82 -22.765
46.779 25.409 -27.354 -20.222
-34.354 22.866 6.626 -20.222
-47.017 18.752 -9.027 -20.221
-21.69 18.752 44.656 -16.107
48.982 18.752 -13.863 -13.564
19.289 18.752 11.463 -13.564
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Black White
x y x y

26.289 18.751 -32.19 -13.563
-9.027 14.637 -45.64 -11.47

-34.354 14.637 46.819 -9.45
28.563 12.295 -1.201 -9.449
-42.181 12.095 -19.527 -9.449
46.779 12.094 -49.14 -5.408
-1.201 12.094 -32.191 -5.336
4.463 7.98 34.115 -5.335

41.156 7.98 -13.864 -5.335
11.463 7.98 11.463 -5.334
34.116 7.98 26.289 -2.793
-13.864 7.98 38.993 1.322
19.289 5.437 -27.354 1.323
-16.027 1.322 6.626 1.323
-34.354 1.322 -9.027 1.323
31.952 1.322 13.733 1.388
-45.68 1.322 46.82 3.865
-21.69 -2.793 -1.2 3.866
0.962 -2.793 -40.018 5.436

44.656 -2.793 26.29 5.438
-40.017 -2.793 -47.844 7.979
19.288 -2.793 -25.191 7.98
-6.863 -5.335 -32.19 7.98
17.126 -9.45 -6.863 7.981
-37.853 -9.45 -19.527 12.095

5.8 -9.45 21.453 12.095
-26.527 -9.45 -27.354 14.637
39.779 -9.45 13.626 14.637
24.54 -10.291 41.156 16.732

31.197 -12.454 34.156 16.732
-6.864 -13.564 -40.018 18.752
0.962 -16.108 7.963 18.752

37.657 -16.108 0.963 18.752
-40.017 -16.108 -14.69 18.752
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Black White
x y x y

19.289 -16.108 -6.863 21.295
-21.691 -16.108 37.656 22.793
-45.68 -20.221 13.626 22.867
24.953 -20.222 -27.354 22.867
-16.027 -20.222 5.8 25.409
13.626 -20.223 21.493 25.41
-34.355 -20.223 -32.19 29.524
31.953 -20.223 -47.843 29.524
46.78 -22.766 26.289 32.066

-21.458 -25.236 -40.017 32.067
34.115 -26.88 0.963 32.067
-6.864 -26.88 46.819 33.638

-13.864 -26.88 38.993 36.181
-25.572 -30.899 13.625 36.181
21.453 -30.994 -34.353 36.181
-42.18 -30.994 0.963 40.296
46.779 -30.995 -21.69 40.296
-16.027 -33.537 26.289 40.296
13.626 -33.538 -13.864 42.839
-34.354 -33.538 34.115 42.839
7.963 -37.651 -26.528 46.953
-28.69 -37.651 -42.18 46.953
26.289 -37.652 28.452 46.953
-21.69 -37.652 5.799 46.953
0.963 -37.652 -1.201 46.953

-47.017 -37.652 46.819 46.954
-6.864 -40.194 21.452 46.954
-49.18 -44.309

-19.528 -44.309
28.494 -44.309
46.779 -44.309
11.463 -48.424
-32.191 -48.424
34.116 -48.424
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Black White
x y x y

-6.864 -48.424
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Table G.4 The x and y coordinates of the Penrose Kite and Dart pattern given in Fig. G.2d

Black White
x y x y

21.446 47.994 -1.127 47.995
5.848 47.139 -40.333 47.995
37.801 47.139 44.776 47.995
-25.87 46.418 -18.66 47.995
31.319 45.033 -32.845 45.562
12.33 45.033 -7.887 45.032
41.806 41.626 25.173 41.626
1.843 41.625 -44.96 41.625
12.33 38.218 -14.033 41.624
31.319 38.218 -32.845 37.689
-7.886 38.217 -25.87 36.833
37.801 36.112 44.776 35.256
5.849 36.112 21.445 35.256

-29.876 31.319 -1.127 35.256
-45.473 30.464 -40.333 35.256
-13.52 30.463 -18.66 35.255
25.452 29.742 10.988 31.32
-20.002 28.357 32.661 31.319
44.049 27.912 18.476 28.886
6.082 25.806 -38.992 28.358
-9.515 24.95 -0.399 27.912

-20.001 21.543 37.567 25.806
-45.238 20.158 -26.147 24.95
25.451 20.158 42.707 21.014
-13.52 19.437 -38.263 21.014
31.933 18.052 0.942 21.014
-41.232 14.644 18.476 21.013
21.445 14.644 -30.776 18.581
-32.117 11.682 -6.545 18.58
31.933 11.238 11.716 18.051
11.716 11.236 38.08 14.644
-13.521 9.852 5.57 14.644
25.451 9.13 -25.635 13.789



262 Patterns for experimental testing of dimpled sheets

Black White
x y x y

-45.239 9.13 -6.546 10.708
37.567 3.483 42.707 8.275
-25.87 3.482 -20.73 8.275
-0.399 1.376 18.476 8.275

-19.389 1.376 0.942 8.275
-29.876 -2.032 -9.515 4.338
-19.389 -5.439 -32.845 4.338
-39.605 -5.439 6.061 3.665
21.446 -5.969 44.048 1.377
5.848 -6.824 -39.605 1.376

37.801 -6.824 18.476 0.401
-25.87 -7.545 25.468 -0.458
12.33 -8.93 -13.242 -2.031
31.32 -8.93 32.661 -2.031

41.807 -12.337 10.988 -2.032
1.843 -12.338 -45.751 -2.032

-13.755 -13.193 44.776 -5.968
12.33 -15.744 -1.126 -5.968
31.32 -15.745 -32.845 -8.4
5.849 -17.85 -8.615 -8.401

37.801 -17.851 25.173 -12.337
-29.876 -22.644 -45.239 -13.194
-13.521 -23.499 -7.273 -15.299
-45.473 -23.499 -32.845 -16.274
25.452 -24.22 -25.87 -17.13
0.215 -25.604 21.446 -18.706

-20.002 -25.604 -18.66 -18.707
-38.992 -25.606 -40.333 -18.707
-9.515 -29.012 32.661 -22.642

-20.002 -32.42 10.989 -22.643
43.435 -32.42 -6.545 -22.643
-38.991 -32.42 18.476 -25.076
-13.521 -34.525 43.434 -25.604
-45.473 -34.526 -26.148 -29.012
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Black White
x y x y

21.446 -39.318 6.361 -29.012
37.801 -40.174 37.288 -29.012
5.849 -40.174 0.215 -32.419
-25.87 -40.895 18.476 -32.948
31.319 -42.28 25.452 -33.805
12.33 -42.28 10.988 -35.381
-7.273 -42.726 32.66 -35.382

-45.239 -44.832 -6.545 -35.382
41.807 -45.687 -29.876 -35.382
1.842 -45.688 -40.334 -39.318

-18.661 -39.318
-32.845 -41.751
-13.755 -44.832
25.173 -45.687
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