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Epigenetic modifiers DNMT3A and BCOR are
recurrently mutated in CYLD cutaneous syndrome
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Patients with CYLD cutaneous syndrome (CCS; syn. Brooke-Spiegler syndrome) carry

germline mutations in the tumor suppressor CYLD and develop multiple skin tumors with

diverse histophenotypes. Here, we comprehensively profile the genomic landscape of 42

benign and malignant tumors across 13 individuals from four multigenerational families and

discover recurrent mutations in epigenetic modifiers DNMT3A and BCOR in 29% of benign

tumors. Multi-level and microdissected sampling strikingly reveal that many clones with

different DNMT3A mutations exist in these benign tumors, suggesting that intra-tumor

heterogeneity is common. Integrated genomic, methylation and transcriptomic profiling in

selected tumors suggest that isoform-specific DNMT3A2 mutations are associated with

dysregulated methylation. Phylogenetic and mutational signature analyses confirm cylin-

droma pulmonary metastases from primary skin tumors. These findings contribute to existing

paradigms of cutaneous tumorigenesis and metastasis.
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In human skin, benign tumors outnumber malignant tumors,
yet genetic studies of these are limited1. Rare inherited skin
tumor syndromes such as CYLD cutaneous syndrome (CCS)

offer an opportunity to address this knowledge gap and novel
molecular insights into cancer can be gained. They may reveal
unexpected driver mutations2, highlight mechanisms that may be
targetable with repurposed drugs developed for other cancers3, or
refine models of tumor growth and patterning. CCS patients
develop multiple skin tumors named cylindroma, spiradenoma,
and trichoepithelioma4,5, a histophenotypic spectrum of hair
follicle-related tumors consistent with the hypothesis that they
arise in hair follicle stem cells6,7. These tumors occur both at sun-
exposed and sun-protected sites. Infrequently, salivary gland
tumors, pulmonary tumors8, malignant transformation9, and
metastasis with lethal outcomes can occur.

CYLD encodes a ubiquitin hydrolase enzyme involved in
deubiquitination of lysine 6310,11 and Met 1-linked ubiquitin
chains12,13. In CCS families, germline mutations occur within the
catalytic domains of CYLD and are frequently truncating14, pre-
dicting loss of function. Loss of the wild-type parental allele (loss
of heterozygosity (LOH)) of CYLD is demonstrated in the
majority of inherited cylindromas, consistent with its role as a
recessive cancer gene15. Genetic analysis of sporadic spir-
adenomas, rare in the general population, has highlighted
mutations in ALPK1 and MYB overexpression16,17. Taken toge-
ther with the recent findings of upregulated MYB in CCS tumors,
this supports MYB as a key downstream mediator of cylindroma
pathogenesis following loss of CYLD18. However, beyond these
drivers, CCS tumors studied using array-based comparative
genomic hybridization demonstrate a paucity of DNA aberra-
tions, restricted to copy-neutral LOH of CYLD15, incongruent
with the diverse histophenotypes seen within and across tumor
samples.

Arguably, CYLD loss alone may be sufficient for tumorigenesis,
via its role in negatively regulating oncogenic pathways; CYLD
depletion using RNA interference first revealed its role in nega-
tively regulating nuclear factor-κB (NF-κB) signalling10,11,19.
Corroborating this, murine CYLD-knockout models develop skin
papillomas following chemical carcinogenesis that demonstrate
increased expression of NF-κB target genes such as cyclin D1
(CCND1) mediated by dysregulation of BCL320. Furthermore,
CYLD has been shown to negatively regulate various oncogenic
signalling pathways that are also relevant in hair development in
embryogenesis, including Wnt21, Notch, and TGF-β6.

In humans, recurrent loss of functional CYLD is reported in
diverse cancers, including myeloma22, leukemia23,24, hepatocel-
lular carcinoma25, neuroblastoma26, and pancreatic cancer27,
consistent with its role as a tumor suppressor expressed ubiqui-
tously in normal tissues. In CCS patients, increased Wnt signal-
ling has been shown to be an oncogenic dependency in
cylindroma and spiradenoma tumors7. Histologically organized
cylindroma and histologically disorganized spiradenoma repre-
sent extremes of a spectrum of histophenotype of the same tumor.
Transition from cylindroma to spiradenoma is associated with
loss of expression of the negative Wnt signalling regulator
Dickkopf 2 (DKK2)7. DNA methylation has been suggested as a
mechanism to account for loss of DKK2 in a subset of samples
studied7; however, comprehensive genomic and methylomic
profiling of CCS tumors has not been performed. The inability of
CYLD-knockout mouse models to recapitulate the human phe-
notype of cylindroma tumors has further limited characterization
of the genetic drivers in CCS6.

In this study, we use whole-genome sequencing (WGS) and
whole-exome sequencing (WES) to delineate the mutational
landscape of CCS. We demonstrate a relative paucity of muta-
tions in benign CCS skin tumors, among which epigenetic

modifiers DNA methyltransferase 3a (DNMT3A) and BCL6 co-
repressor (BCOR) are recurrently mutated. Malignant tumors in
CCS have distinct driver mutations to benign tumors, and we
track the origin of pulmonary cylindromas to the skin using
mutation signature analysis. These findings in CCS advance our
understanding of cutaneous tumorigenesis, pulmonary metas-
tases, and malignant transformation.

Results
Biallelic loss of CYLD drives CCS tumors. To delineate the
genomic landscape of CCS (Fig. 1a and Supplementary Fig. 1a–d)
in humans, we studied DNA from 11 fresh frozen tumors using
WGS in two directly related patients who had been under clinical
follow-up for 35 years (patients 1 and 2) (Fig. 1b and Supple-
mentary Data 1). The average number of unique reads per tumor
and normal sample for WGS was 374,496,607, generating 35.5
mean fold coverage for all samples. We detected on average
1381 substitutions per tumor sample (average 0.44 mutations per
Mb), 72 small insertions and deletions (indels), and 1 rearran-
gement, using WGS. Biallelic mutations in CYLD were a recur-
rent driver mutation, and no MYB-NFIB fusions were found,
consistent with previous studies (Fig. 1b)15. Tumors demon-
strated neither recurrent structural rearrangements nor recurrent
copy number aberrations (Supplementary Fig. 2).

To validate these findings, we studied a further 31 tumors from
12 patients of 3 additional genotyped pedigrees using WES, given
the lack of large structural rearrangements. We confirmed that
CYLD biallelic loss was independent for each sample, reinforcing
that each tumor arose independently: loss of the wild-type allele
was observed either by LOH affecting 16q (31/42 tumors) or by a
second mutation in CYLD (9/42), consistent with the loss of
CYLD occurring across all benign and some malignant tumors
in CCS.

DNMT3A and BCOR are mutated in CCS tumors. In addition
to biallelic mutations in CYLD, we discovered multiple mutations
in epigenetic modifiers DNMT3A (n= 6) and BCOR (n= 8) in 12
tumors (Figs. 1b, 2a, Supplementary Fig. 3a, Supplementary
Table 1, and Supplementary Data 2). In two tumors, both genes
were mutated. BCOR mutations have been reported to co-occur
with DNMT3A in over 40% of BCOR-mutated cases of AML, and
a future larger study of these tumors may offer insights as to
whether there is mutational synergy in CCS tumorigenesis28.
Mutations in DNMT3A were predominantly missense mutations
in the methyltransferase domain, but mutations in the zinc-finger
domains were also noted and have been reported previously in
COSMIC (Fig. 2a)29. Mutations in BCOR were predominantly
frameshift mutations. Notably, different DNMT3A and BCOR
mutations were seen in disparate tumors in patients 1 and 4,
suggesting that convergent evolution drives tumorigenesis
through epigenetic mechanisms in this cutaneous syndrome.

Interestingly, variant allele frequencies of DNMT3A and BCOR
mutations ranged from 0.05 to 0.42—Fig. 2b), suggesting that
intratumoral clonal heterogeneity may occur in these tumors. To
explore this possibility, targeted deep sequencing (TDS; average
coverage of >500×) of DNMT3A and BCOR was performed on
additional material taken from further tissue sections of nine
tumors studied above. This confirmed the presence of intratu-
moral heterogeneity of these putative driver mutations, with two
distinct mutant clones or more found to co-occur within the same
tumor in six samples (PD37330a, c, g, i, PD40536d, and
PD40537a) (Fig. 2c and Supplementary Data 1).

To investigate whether DNMT3A mutational heterogeneity
correlated with CCS tumor histophenotypes, we studied five
tumors that contained intratumoral cylindroma and spiradenoma
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(Fig. 2d and Supplementary Fig. 4a, b). DNA was extracted from
microdissected cylindroma and spiradenoma regions and TDS
was performed. In three tumors, there was an identical DNMT3A
mutation in both regions. In two tumors, there was heterogeneity
between the histophenotypes, with private mutations in each
regions, suggesting that multiple DNMT3A mutant clones of
different sizes exist within tumors.

Mutated DNMT3A2 dysregulates methylation. To explore the
functional relevance of mutations in DNMT3A and BCOR in CCS
tumors, RNA-sequencing was performed in 16 tumors. This
revealed increased expression of the short isoform of DNMT3A,
called DNMT3A2, in 15 tumors compared to four perilesional
skin controls (Fig. 3a). DNMT3A protein expression was also
increased in CCS tumors compared to control skin and hair, and
regions of heterogeneity were observed between islands of

cylindroma (Fig. 2e, Supplementary Fig. 5a, b). It should be noted
that while this confirms protein expression, a caveat of these data
is that the expression of DNMT3A may not reflect mutational
and functional status. BCOR was expressed at similar levels in
both control and tumor tissue (Supplementary Fig. 3b).

To assess the impact of DNMT3A mutations on methylation
patterns, eight samples genotyped by TDS were studied using
genome-wide DNA methylation arrays. Unsupervised clustering
of the 500 most variably methylated loci revealed two clusters,
one comprising five tumors with DNMT3A2 isoform-specific
mutations (DNMT3A2-mutated) (Fig. 3b). Comparison of these
two clusters revealed 1512 differentially hypomethylated regions
of contiguous probes in DNMT3A2-mutated tumors. Network
analysis of these regions in DNMT3A2-mutated tumors identified
the highest-ranked network to be functionally related to β-catenin
(p < 1 × 10−45; Fisher’s exact test) (Supplementary Fig. 6 and
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Supplementary Data 3). Transcriptomic analysis of Wnt/β-
catenin signalling pathway genes30 was performed on RNA
extracted in parallel with DNA for the methylation analysis, as
prior data in mouse skin showed DNMT3A loss is associated with
dysregulation of multiple pathways including Wnt/β-catenin
signalling pathway genes30 (Fig. 3c). This showed the same five
tumors were distinguished as a cluster by Wnt/β-catenin target
gene expression. This is an interesting preliminary finding in
patient-derived tumors, and further functional studies will be
needed to evaluate this association.

Malignant CCS tumors carry epigenetic modifier mutations.
Malignant transformation although uncommon in CCS is well-
recognized. We studied five malignant CCS tumors: basal cell

adenocarcinoma-low grade (BCAC-LG), malignant spir-
adenocarcinoma, atypical spiradenocarcinoma, poorly differ-
entiated adenocarcinoma, and basal cell carcinoma (BCC)
(Supplementary Fig. 7)9. The case of malignant spir-
adenocarcinoma (PD36119a) presented at the age of 80 in patient
1. The tumor had a comparatively high number of coding sub-
stitutions (375 in the exome, corresponding to 8.4 per Mb),
consisting largely of C > T transitions at CpG dinucleotides. This
hypermutator phenotype has been reported previously in con-
junction with germline methyl-binding domain 4 (MBD4)
mutations31. Closer inspection confirmed a germline MBD4
mutation in the patient, with concomitant loss of the wild-type
parental allele in the tumor. Cascade screening revealed other
family members who also carried this variant (Supplementary
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Table 2), although their tumors did not have biallelic MBD4 loss
and thus did not have the associated mutational signature. The
observed burden and pattern of mutagenesis was consistent with
MBD4’s role as a DNA glycosylase safeguarding the integrity of
methylated CpGs from deamination. Notably, additional muta-
tions detected included epigenetic modifiers, KDM6A and
CREBBP. Tumor suppressors NOTCH2 and BAP1 were also
noted to be mutated.

Poorly differentiated adenocarcinoma (PD40536c) has not
been reported in CCS and presented on the breast of a female
CCS patient at age 47 years. The patient had extensive staging
scans, mammograms, and biopsies of breast cylindromas, and has
been followed up for 3 years with no evidence of a non-cutaneous
primary tumor. This tumor had mutations in TP53 and the
epigenetic modifier EP300. Strikingly, this did not demonstrate
LOH for CYLD. The BCAC-LG (PD40545a) tumor demonstrated
a frameshift mutation in BCOR. The atypical spiradenocarcinoma
(PD40540a) did not show any changes apart from CYLD LOH.
The BCC (PD45044c) demonstrated a PTCH driver mutation and
CYLD LOH, consistent with genetic features of BCC32. It also
demonstrated the highest number of coding substitutions (1287)
in our cohort, comprising the ultraviolet (UV) signature, in
contrast to benign trichoepithelioma also arising on the face of
the same patient. In summary, malignant tumors in CCS appear
to have specific mutational patterns, and it would be interesting to
determine if these tumor-specific mutations are recurrent in
additional tumors in future studies.

Pulmonary cylindromas originate from the skin. To investigate
mutational mechanisms that may give rise to the mutations
detected in CCS patients, we compared the mutational signatures
in tumors with identical histological types at intermittently sun-
exposed and typically sun-protected sites33 (Fig. 4a). Two tumors
from the torso demonstrated substitution signature 7 (n= 2;
PD37331a, i) consistent with UV exposure. By contrast, we did
not find evidence of signature 7 and found the presence of
mutational signatures 1 (associated with deamination of methy-
lated cytosines) and 5 (unknown etiology) in sun-protected
tumors from pubic and perianal sites (n= 4; PD37330c, e, g and
PD37331c) and some intermittently sun-exposed tumors from
the breast and torso (n= 2). We surmise that in CCS, additional
mechanisms other than UV are relevant to development of skin
cancer.

We next used these data to investigate the concept of benign
metastases seen in some patients with CCS, who develop multiple
pulmonary cylindromas without typical features of malignancy8.
We studied four pulmonary cylindromas that had benign
histological features from patients 1 and 2, who were both ex-
smokers. They did not have evidence of lymph node disease,
hepatic, or bone metastases (Fig. 4b). Tumor phylogenetic
analysis revealed that multiple pulmonary lesions from patient
2 shared 1848 substitutions, suggesting that these geographically
separated lesions that seeded in the lung had a common origin.
We found that the UV mutation signature 7 was present in the
shared mutations, and thus tracked the origin of these pulmonary
lesions to intermittently sun-exposed skin. Lastly, we found
recurrent, E17K AKT1 oncogenic mutations in multiple lung
cylindromas in each patient, and in both patients independently
as well. This is interesting for two reasons: First, although the
numbers are small, this suggests that AKT1 mutations likely arose
prior to seeding in the lung. The AKT1 mutations may confer
lung tissue tropism for cylindromas. Second, this recurrent E17K
AKT1 mutation is clinically relevant and targetable. As drugs
have been developed to target AKT1 mutations in a diverse range
of solid tumors34, this finding further creates therapeutic

opportunities for this limiting secondary complication of CCS.
It is of interest to note that three sporadic cutaneous
spiradenomas also have recently been reported to carry this
identical AKT1 mutation (pulmonary status not reported) in the
absence of a CYLD mutation17, suggesting that this finding may
be relevant beyond CCS.

Discussion
This work delineates the mutational landscape of CCS. A strength
of our study is that we have employed WGS to comprehensively
profile tumors from carefully phenotyped CCS patients, where
long-term clinical follow-up date is available. Our work highlights
the presence of distinct DNMT3A and BCOR mutations in dif-
ferent tumor sites of the same patient (inter-tumor heterogeneity)
and different geographic sites within the same tumor (intra-
tumor heterogeneity), which suggests strong convergent evolution
(Supplementary Fig. 8) towards epigenetic dysregulation in this
orphan disease where no medical treatments are available. In
addition, we have performed matched analysis of methylome and
transcriptome data in a subset of tumors, which offers insights in
the absence of transgenic mice that recapitulate the human CCS
phenotype. Finally, we uncategorically demonstrate that the
multiple benign pulmonary lesions in this syndrome have a clo-
nal, cutaneous ancestral origin—reinforcing the concept of
benign metastases as a clinical phenotype.

Our data support a model where DNMT3A2 isoform-specific
mutations may selectively alter methylation in CCS tumors. We
explored this in the context of Wnt/β-catenin pathway genes, as
CCS tumor cells have a known Wnt dependency7; however, we
could not conclusively prove a link between DNMT3A mutation
and Wnt signalling using our models. It would be of interest to
explore this potential association in mouse models in future
studies, bearing in mind the caveat that existing CYLD mouse
models fail to recapitulate the human phenotype of developing
cylindromas. A separate limitation relating to the mutations
detected in rare malignant CCS tumors is that future studies will
be needed to demonstrate if the mutations found are recurrent.

Our findings may have clinical implications in the future. The
AKT1 mutation we report is targetable34, and is relevant to
patients with pulmonary cylindromas carrying this change. Also,
due to the clinical interest in mutated epigenetic modifiers in
leukemia, strategies used to target DNMT3A mutant hematolo-
gical malignancies may be relevant to CCS35. The accessibility of
CCS skin tumors lend themselves to direct drug delivery, which
may be an attractive route avoiding systemic side effects, as
suggested by the methodology of a recent early phase clinical trial
in CCS3.

Materials and methods
Patients and samples. Retrospective review of the case notes and radiological data
of 15 genotyped CYLD mutation carriers that were under follow-up between 1 July
2013 and 1 July 2017 was performed. Skin and lung samples were obtained from
patients with signed, informed, consent, and details of samples are shown in
Supplementary Data 1. The authors affirm that human research participants
provided informed consent for publication of the images in Fig. 4, Supplementary
Fig. 1a, and Supplementary Fig. 7. Research ethics committee approval was
obtained from the Hartlepool Research Ethics Committee and North East—
Newcastle & North Tyneside 1 Research Ethics Committee for this work (REC Ref:
06/Q1001/59; 08/H0906/95+ 5).

Histology and immunohistochemistry. Histological assessment was performed
following standard hematoxylin and eosin (H+ E) staining and in conjunction
with a dermatopathologist (A.H.). Immunofluorescent labeling with antibodies
against DNMT3A, β-catenin, and Ki-67 was performed7. Tissue sections from snap
frozen skin tumor biopsies were fixed, blocked, and then probed overnight at 4 °C
with primary antibodies. Antibodies against DNMT3A (#3598) and Ki-67 (#9449)
were obtained from Cell Signalling, USA. β-Catenin antibody (#610153) was
obtained from BD Transduction USA. Secondary fluorescent antibodies (Alexa
Fluor #111-5451144 488-conjugated goat-anti-rabbit and #115-585-146 594-
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conjugated goat-anti-mouse) were applied the following day and visualized with a
fluorescent microscope (Zeiss Axioimager Z2, with Apotome 2—Carl Zeiss, UK).

Whole-genome sequencing and whole-exome sequencing. DNA was extracted
from 12 cases along with corresponding normal tissue and subjected to paired-end
WGS on an Illumina HiSeq X Ten33,36. DNA for WES was extracted from blood
and cyrosections of snap frozen tissue, and in five cases from formalin-fixed par-
affin-embedded tissue (PD37330h, PD40536c, PD40540a, PD40545a, and
PD40545c). Forty-two WES library samples were prepared using the Illumina
Nextera DNA Exome Kit, prior to being sequenced on a S2 flowcell on an Illumina
Novaseq machine. Three WES samples were enriched using the SureSelect Human
All ExonV6+UTR and 100 base paired-end sequencing performed on an Illumina
Hiseq 2500 genome analyzers. For WES sequence depth was on average 255-fold.
Resulting BAM files were aligned to the reference human genome (GRCh37) using
Burrows-Wheeler Aligner, BWA-0.7.16a (r1181). Mutation calling was performed
using CaVEMan (Cancer Variants through Expectation Maximization: http://
cancerit.github.io/CaVEMan/) for calling somatic substitutions33. Indels in the
tumor and normal genomes were called using a modified Pindel version 2.0 (http://
cancerit.github.io/cgpPindel/) on the NCBI37 genome build. Structural variants
were discovered using a bespoke algorithm, BRASS (BReakpoint AnalySiS; https://
github.com/cancerit/BRASS) through discordantly mapping paired-end reads fol-
lowed by de novo local assembly using Velvet to determine exact coordinates and
features of breakpoint junction sequence. All mutations were annotated according
to ENSEMBL version 75.

ASCAT copy number analysis. Allele-specific copy number analysis of tumors
analyzed by WGS was performed using ASCAT (v2.1.1)33. ASCAT takes non-
neoplastic cellular infiltration and overall tumor ploidy into consideration, to

generate integer-based allele-specific copy number profiles for the tumor cells.
Copy number values and estimates of aberrant tumor cell fraction provided by
ASCAT were input into the CaVEMan substitution algorithm for WGS. In addi-
tion, ASCAT segmentation profiles were used to establish the presence of LOH
across CYLD and relevant mutated cancer driver genes.

Identification of driver mutations. Somatic mutations present in known cancer
genes (Cancer gene census https://cancer.sanger.ac.uk/census) were reviewed to
identify those which were likely to be driver mutations. Mutations were deemed to
be potential driver mutations if they were consistent with the type of mutations
found in a particular cancer gene, that is, inactivating mutations in tumor sup-
pressor genes (including nonsense, frameshift, essential splice site mutations, and
recurrent missense) and recurrent mutations in dominant oncogenes. Recurrent
mutations were determined by reference to reported mutation frequency in the
COSMIC database (https://cancer.sanger.ac.uk/cosmic).

Mutational signature analysis. The contributions of substitution signatures for
WGS samples were determined as follows: the substitution profile is described as a
96-channel vector. For each mutation, of which there are six substitution classes of
C > A, C > G, C > T, T > A, T > C, and T > G, the flanking 5′ and 3′ sequence
context is taken into account giving a total of 96 channels. A given set of muta-
tional signatures was fitted into the mutational profile of each sample to estimate
the exposure of each of the given signatures in that sample. The fitting algorithm
detects the presence of mutational signatures with confidence, using a bootstrap
approach to calculate the empirical probability of an exposure to be larger or equal
to a given threshold (i.e., 5% of mutations of a sample). Here, we first used 30
COSMIC signatures (https://cancer.sanger.ac.uk/cosmic/signatures) to fit into each
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sample, and then chose the first three signatures with highest confidence, which are
signature 1, 5, and 7, to do the final fitting.

For highly mutated malignant samples (the spiradenocarcinoma (PD36119a)
and the BCC (PD40544c)), the mutation burden was orders of magnitude higher
than other non-malignant tumors that were exome sequenced. We were able to use
cosine similarity between the overall 96-channel profile and COSMIC signature to
confirm the presence of particular mutational signatures in the relevant sample.
The cosine similarity between each malignant sample and the suspected COSMIC
signature was high: for PD36119a, cosine similarity to COSMIC signature 1 was
0.92 and for PD40544c cosine similarity to the UV light signature, COSMIC
signature 7, was 0.98.

Targeted sequencing. The Truseq Myeloid panel (Illumina) was used to sequence
DNMT3A and BCOR in 18 samples in accordance with the manufacturer’s pro-
tocol. A 20 pM library of the PhiX genome was added to achieve a 5% PhiX spike-
in. This library was loaded onto a Miseq flowcell (600 cycles V3) for sequencing
(Illumina, San Diego, CA, USA). Data were analyzed using BWA (v.0.7.15) to align
reads to the reference sequence and Samtools used as a variant caller. Variant calls
that passed strict filtering thresholds (“Filter”= PASS and “Qual”= 100) were
included for the deep sequencing on sections in additional levels and in new
samples. For five samples (PD37330k, PD37331k, PD37331m, PD40542e, and PD
40536e—Supplementary Fig. 4) where intratumoral clonal variation was studied
across distinct histophenotypic regions, variant call thresholds were relaxed, and all
non-synonymous variants called were confirmed by visualizing aligned read data
using Integrated Genomics Viewer (IGV; v2.3). These variants were included if
aligned reads supported the variant calls.

Transcriptomic analyses. RNA was extracted from 16 tumor samples and 4
control samples and stranded preparation was performed using the Illumina
Stranded mRNA Kit3. Libraries were prepared and sequenced using an Illumina
Hiseq 2500, giving 15 million paired-end reads per sample, which were 100 bp in
length. For eight additional samples (PD37330a, c, e, k, PD40539d, e, and
PD40542d, where DNA and RNA were extracted from the same cells), libraries
were generated using the NEB Nextera Low Input RNA Library Prep Kit, and were
sequenced using an Illumina Novaseq 6000. FASTQ files were aligned using the
splice aware aligner program STAR to generate alignment files37. The read counts
for each sample file were counted using the R package Subread38. Differential gene
expression analysis was carried out using the package DeSeq239,40. Log-
transformed count matrix values were used for heatmap generation using the
gplots41 package.

Methylation assay and analysis. We assessed genome-wide DNA methylation in
eight tumor samples with the Illumina Methylation EPIC microarray (Illumina,
San Diego, CA, USA). DNA methylation assays were performed as per the standard
manufacturer’s protocol by MWG (Aros, Denmark). Briefly, these are eight CCS
tumors in which detailed analysis was performed as follows. DNA and RNA were
extracted from the same cells, and mutation status of DNMT3A and methylation
profiling were performed. Methylation array processing, functional normal-
ization42, and quality control checks were implemented using the R package
minfi43. Differentially methylated probes were identified using minfi. Differentially
methylated regions spanning multiple probes were identified using bumphunter;44

these regions were visualized using Gviz45. When these methylation profiles were
assessed, the 500 most variably methylated probes were subject to unsupervised
hierarchical clustering. The study of the 500 most variable probes is an accepted
approach to help distinguish methylation profiles of tumors46. A Euclidean dis-
tance matrix was constructed and hierarchical clustering was subsequently per-
formed using the “complete” agglomeration method. The 500 probes with the
highest standard deviation were selected for visualization. This analysis demon-
strated that the majority of DNMT3A2-mutant tumors clustered separately from
DNMT3A2 wild-type tumors (Fig. 3b). We then studied these two groups and
assessed all genes related to probes that were significantly differentially methylated
between these two clusters with a p value of <0.05. Network analysis of these genes
using Ingenuity Pathway Analysis47 revealed networks of genes related by function
that were ranked by p value (Supplementary Data 3).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The WGS data have been deposited in the European Genome-phenome Archive (EGA)
database under the accession code EGAD00001004573. The WES data have been
deposited in the EGA database under the accession code EGAD00001005305. RNA-
sequencing data have been deposited in the EGA database under the accession code
EGAD00001005305. TDS data were deposited in the EGA database under the accession
code EGAD00001005305. Methylation data have been deposited in the EGA database
under the accession code EGAD00010001755. All the other data supporting the findings
of this study are available within the article and its Supplementary Information files and
from the corresponding author upon reasonable request.

Code availability
No new code was produced for the analysis of the data in this manuscript. Details of the
computer code used are included in the Methods section.
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