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Universality of Cutoff for Random Walks
on Random Cayley Graphs

Abstract Samuel Mark Thomas

Consider the random Cayley graph of a finite group G with respect to k generators chosen
uniformly at random. This draws a Cayley graph uniformly amongst all degree-k Cayley graphs of
G. A conjecture of Aldous and Diaconis [1] from the ’80s asserts, for k � log |G|, the following:

· the random walk on this (random) graph exhibits cutoff with high probability (whp);
· the cutoff time depends only on k and |G| asymptotically (up to smaller order terms).

The cutoff time should not depend (strongly) on the choice of generators. In other words,

cutoff is universal for the random walk on the random Cayley graph.

Restricted to Abelian groups, this was verified in the ’90s; the cutoff time T (k, |G|) was found
explicitly. In fact, T (k, |G|) was shown to be to be an upper bound on mixing for arbitrary groups.

First we extend the conjecture to 1 � k . log |G|. Write d(G) for the minimal size of a
generating set of G. We establish cutoff for (the random walk on) all Abelian group under the
condition k− d(G)� 1, verifying the occurrence of cutoff part of the Aldous–Diaconis conjecture.
This condition is almost optimal to guarantee that the group if generated whp. For the cutoff time
to depend only on k and |G|, not the algebraic structure of G, we show that d(G) � log |G| and
k − d(G) � k � 1 is sufficient. However, the result does not hold if k � log |G| � d(G); there are
even regimes with 1� k � log |G| for which it does not hold if we allow 1� k − d(G)� k.

Next we consider the (non-Abelian) Heisenberg group H := Hp,d of d× d matrices with entries
in Zp, with p prime and d ≥ 3 not diverging too quickly. We establish cutoff for any k � 1 with
log k � log |H|. Except for k growing super-polylogarithmically in |G| (ie log k � log log |G|), this
is the first example where cutoff has been established for any non-Abelian group. Further, even
restricting to k � log |H|, the cutoff time cannot be written as a function only of k and |G|; rather,
one needs |Hab|, the size of the Abelianisation, also. In fact, taking d→∞ sufficiently slowly, the
mixing time is of smaller order (not just a constant smaller) than T (k, |H|), the universal upper
bound. When k & log |Hab|, we can remove the primality assumption on p.

Our next sequence of results still regards mixing, but this time determines upper bounds which
hold for large classes of groups, rather than establishing cutoff. From a nilpotent group G, we
construct an Abelian group G (from the lower central series of G) of the same size. We show that
the mixing time for G is at least as fast (asymptotically) as that for G whp.

Wilson [77] conjectured that, amongst all groups of size at most 2d, the group Zd2 gives rise
to the slowest mixing time. When restricted to Abelian groups, we deduce this from the explicit
description of the mixing time which we obtain. As a corollary of the above nilpotent-to-Abelian
comparison, this is extended from the Abelian to the nilpotent set-up.

The spirit of the Aldous–Diaconis conjecture is that the certain properties of the random Cayley
graph should depend very weakly on the choice of generators. We apply this principle to geometric
aspects of the graph. Primarily we study the typical distance: draw U ∼ Unif(G) and consider
dist(id, U), where id ∈ G is the identity and dist is the graph distance.

We show that the typical distance concentrates whp for Abelian groups. We establish this for all
Abelian groups when either 1� k � log |G|/ log log log |G| and k−d(G) � k or k � log |G|; for k in
the interim regime or smaller 1−d(G)/k, we need additional conditions. Further, the concentration
value depends only on k and |G| in the former cases. We study typical distance for Heisenberg
groups, proving analogous results. Again, the value depends on |Hab| as well as k and |H|.

For k & log |G|, we can extend the typical distance results to show that the diameter of the
graph agrees asymptotically with the typical distance whp. (For Hp,d, we need d � 1 for this.)

Finally, we find the order of the spectral gap when the underlying group is Abelian: it is |G|2/k
whp when 1 � k . log |G| and k − d(G) � k. This extends, in the Abelian set-up, a celebrated
result of Alon and Roichman [3] which states that for any group the random Cayley graph is an
expander, ie has spectral gap order 1, whp when k − log2 |G| � k.
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1.1 Random Cayley Graphs

Consider a finite group G. Let Z be a multisubset of G, called the generators. We consider
the (nearest-neighbour) random walk (abbreviated RW and denoted S = (S(t))t≥0) on the Cayley
graph of (G,Z). (Here and throughout, unless otherwise specified explicitly, time is continuous.)
The undirected, respectively directed, Cayley graph of G generated by Z, denoted G−(Z), respect-
ively G+(Z), is the multigraph whose vertex set is G and whose edge multiset is[

{g, g · z} | g ∈ G, z ∈ Z
]
, respectively

[
(g, g · z) | g ∈ G, z ∈ Z

]
.

If the walk is at g ∈ G, then a step in G+(Z), respectively G−(Z), involves choosing a generator
z ∈ Z uniformly at random and moving to gz, respectively one of gz or gz−1 each with probability 1

2 .
We focus attention on the random Cayley graph defined by choosing Z1, ..., Zk ∼iid Unif(G).

When this is the case, we denote G+
k := G+(Z) and G−k := G−(Z). Introduced by Aldous and

Diaconis [1], there has been a great deal of research into these “random random walks”. Motivation
for this model, along with an overview of historical work, is given in §1.5.

This procedure corresponds to choosing a Cayley graph of a given degree uniformly at random;
our results then hold “for almost all Cayley graphs”. See §1.6.1 for more details.

1.2 Definitions of Statistics and the Aldous–Diaconis Conjecture

Before diving into our results, we make precise the statistics we study. In particular, the results
will be “with high probability over the random graph”, made precise in §1.2.1. We also discuss
briefly a conjecture of Aldous and Diaconis [1], which is the inspiration for this entire thesis.

1.2.1 With High Probability Over the Random Graph

For a group (or set) G, denote by πG the uniform distribution on G. This is invariant for the
RW on any Cayley graph—any generators; both directed and undirected. Further, if the Cayley
graph is connected, then it is the unique invariant distribution.

The graph, clearly, depends on the choice of generators, ie of the multiset Z. Sometimes we want
to emphasise this: we add a subscript, eg writing PG(z)(S(t) ∈ ·) for the law of S(t), ie the RW at
time t, on the graph G(z). Analogously, we write PGk(S(t) ∈ ·) for the random law corresponding
to the random choice of Z = [Z1, ..., Zk] with Z1, ..., Zk ∼iid Unif(G).

All the results appearing in the introduction are for sequences (GN )N∈N of finite groups with
|GN | → ∞. (With some additional care, they can be turned into statements about a fixed group
G with explicit error terms.) For ease of presentation, we write statements like “let G be a group”
instead of “let (GN )N∈N be a sequence of groups”. Likewise, the quantities n := |G|, k, d and so on
appearing in the statements are all implicitly sequences; eg “k − d� 1” means that the sequence
(kN , dN )N∈N satisfies kN − dN → ∞ as N →∞. Similarly, we say that an event (implicitly a
sequence of events) holds with high probability (abbreviated whp) if its probability tends to 1 in
the limit. Typically (but not always), our results are “whp over Z” statements: they hold with
probability (over the randomness in Z) tending to 1 as |G| → ∞.

1.2.2 Mixing Time and Cutoff

For two probability measures µ and π on a common (finite) space Ω, we define the total variation
(abbreviated TV ) distance between µ and π by

‖µ− π‖TV := max
A⊆Ω

∣∣µ(A)− π(A)
∣∣ = 1

2

∑
x∈Ω

∣∣µ(x)− π(x)
∣∣.

We specialise this to our application: for a multiset z, set

dG(z)(t) :=
∥∥PG(z)

(
S(t) ∈ ·

)
− πG

∥∥
TV
.

The ergodic theorem says that an irreducible Markov chain on a finite state spaces has a unique
invariant distribution and furthermore the law of the chain converges to this invariant distribution.
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Definition. A sequence (XN )N∈N of Markov chains is said to exhibit cutoff when, in a short
time-interval, known as the cutoff window, the TV distance of the distribution of the chain from
equilibrium drops from close to 1 to close to 0, or more precisely if there exists (tN )N∈N with

lim infN→∞ dN
(
tN (1− ε)

)
= 1 and lim supN→∞ dN

(
tN (1 + ε)

)
= 0 for all ε ∈ (0, 1),

where dN (·) is the TV distance of XN (·) from its equilibrium distribution for each N ∈ N.
We say that a RW on a sequence of random graphs (GN )N∈N exhibits cutoff around time

(tN )N∈N whp if, for all fixed ε, in the limit N →∞, the TV distance at time (1 + ε)tN converges
in distribution to 0 and at time (1− ε)tN to 1, where the randomness is over GN .

We also consider cutoff in separation distance. For generators z and time t ≥ 0, define

sG(z)(t) := maxg∈G
{

1− nPG(z)

(
S(t) = g

)}
.

One can then define mixing and cutoff with respect to separation distance analogously to TV.
It is standard that, under reversibility, the TV and separation mixing times differ by up to a

factor 2; see, eg, [49, Lemmas 6.16 and 6.17]. However, Hermon, Lacoin and Peres [41, Theorem 1.1]
showed that TV and separation cutoff are not equivalent, and that neither one implies the other.

1.2.3 Typical Distance and Diameter

For a graph H, write distH(x, y) for the graph distance between two vertices x, y ∈ H.

Definition. For a group G, generators z, R ≥ 0 and β ∈ (0, 1), write

BG(z)(R) := {x ∈ G
∣∣ distG(z)(id, x) ≤ R} and DG(z)(β) := min

{
R ≥ 0

∣∣ |BG(z)(R)| ≥ β|G|
}

;

the diameter ie the maximal distance between pairs of vertices, is given by diamG(z) := DG(z)(1).

Investigating this typical distance for Gk when k diverges with |G| was suggested to us by
Benjamini [10]. Previous work concentrated on fixed k, ie independent of |G|; see §1.2.3.

1.2.4 On the Worst-Case Groups

We show that the group Zd2 gives rise to the largest mixing time and largest diameter in the
random Cayley amongst all groups of size at most 2d, up to subleading order terms. These are
random sequences. We make this precise in the following definition.

Definition. For two random sequences α := (αN )N∈N and β := (βN )N∈N of reals, we say that
α ≤ β whp up to smaller order terms if there exist non-random sequences (γN )N∈N and (δN )N∈N
of reals with δN → 0 as N →∞ such that ({αN ≤ (1+δN )γN})N∈N and ({(1−δN )γN ≤ βN})N∈N
both hold whp. We say that α h β whp if α ≤ β and β ≤ α whp up to smaller order terms.

We sometimes refer to these as subleading order terms. In either case, we abbreviate as sot.

For generators z and ε ∈ (0, 1), write tmix(ε;G(z)) := inf{t ≥ 0 | dG(z)(t) ≤ ε} for the ε-mixing
time (in TV) of the RW on the graph G(z). We tend to suppress the ε from the notation.

1.2.5 Spectral Gap

Definition. Consider a reversible Markov chain with (real) eigenvalues 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥
−1 of its transition matrix. The usual, respectively absolute, spectral gap is defined as

γ := max
i6=1
{1− λi} = 1− λ2, respectively, γ∗ := max

i6=1
{1− |λi|} = 1−max{|λ2|, |λn|};

the usual, respectively absolute, relaxation time is defined as trel := 1/γ and t∗rel := 1/γ∗.
By the spectral gap or relaxation time of a graph, we mean that of the SRW on the graph.
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1.2.6 Heisenberg Matrix Groups

In general we use as our underlying group one of the following two classes of groups: either
general Abelian groups, or Heisenberg matrix groups. The latter, which we denote Hm,d for integers
m and d, is all d × d upper triangular matrices with 1s on the diagonal and entries in Zm. For a
group G, denote by Gcom := [G,G] its commutator and by Gab := G/Gcom its Abelianisation. We
have Hab

m,d
∼= Zd−1

m , corresponding to the d− 1 super-diagonal entries.

1.2.7 Aldous–Diaconis Conjecture

The following conjecture, made by Aldous and Diaconis in the ’80s, is the underlying inspiration
for the entirety of this thesis.

Conjecture (Aldous and Diaconis [1, Page 40]). For any group G, if k � log |G| and log k � log |G|,
then the random walk on Gk exhibits cutoff whp. Further, the cutoff time, to leading order, is
independent of the algebraic structure of the group: it can be written as a function only of k and |G|.

An informal, more general, variant is reiterated by Diaconis [23, Chapter 4G, Question 8].
The Aldous–Diaconis conjecture was verified for Abelian groups in the ’90s, primarily by Dou and
Hildebrand [34, 44]; see §1.5.2 for more details. Further, the upper bound holds for arbitrary groups.
We also consider a version of the conjecture adapted from mixing to typical distance and diameter.

To extend the conjecture to 1� k . log |G|, one needs additional assumptions. For an Abelian
group G, write d(G) for the minimal size of a generating set of G. If k < d(G), then the group
cannot be generated via any choice of Z. A general condition which one can impose so that the
group is generated whp is that k− d(G)� 1; see Pomerance [67]. We impose this condition. Note
that it is a necessary condition if d(G) � log |G|. One could also impose k − d(G) � k—this is
particularly relevant for the Aldous–Diaconis conjecture; see Remark A.1 below.

The underlying approach is to use the entropic method, the main idea of which is to use an
auxiliary process W to generate S; one then studies the entropic properties of the process W . For
each i ∈ [k], ie each generator index, let Wi(t) be the number of times that indeed i has been
chosen and the step g 7→ gZi is taken minus the number of times g 7→ gZ−1

i is taken. (For directed
graphs, the latter never happens.) Thus W is a SRW/DRW on Zk in the un/directed case.

Observe that S(t) is a function of (W (t′))t′≤t. Further, if the underlying group is Abelian,
then we have S(t) = W (t) · Z. This is a projection though: we could have W (t) 6= W ′(t) but
S(t) = S′(t), even for Abelian groups. We describe in detail the entropic method, both its history
and our application, in §1.4. We describe the high-level idea further in Remarks A.2 and C.2.

Relatedly, Wilson [77] conjectured that the group Zd2 gives rise to the slowest mixing time.

1.3 Summarised Statements of Results

In this section we list the results in summarised form. More refined statements are given later.

1.3.1 Cutoff for Random Walks on Cayley Graphs

Our first sequence of results considers mixing properties random walks on the random Cayley
graphs. We are interested in the existence of cutoff (§1.2.2). We start by analysing general Abelian
groups, before considering non-Abelian Heisenberg matrix groups (§1.2.6). We contrast the results,
in particular in the context of the Aldous–Diaconis conjecture (§1.2.7).

1.3.1.1 Cutoff for Almost All Random Walks on Abelian Groups

Our first result establishes cutoff for the random walk on all Abelian groups. It will be the case
that whenever k−d(G) � k and d(G)� log |G|, the mixing time depends, up to subleading order,
only on k and |G|. We propose as the mixing time the following entropic time t∗.
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Definition A. For γ ∈ N ∪ {∞}, let t±γ := t±γ (k,G) be the time at which the entropy of rate-1 RW

(ie SRW or DRW, as appropriate) on Zkγ is log |G/γG|, where γG := {γg | g ∈ G}; we use the

convention, Z∞ := Z and ∞G := |G|G = {id}. Set t±∗ := t±∗ (k,G) := maxγ∈N t
±
γ (k,G).

We establish cutoff for all Abelian groups, under almost optimal conditions on k in terms of G.
This gives an affirmative answer for Abelian groups in a strong sense to the primary part of the
conjecture (occurrence of cutoff) of Aldous and Diaconis [1] as well as the informal question asked
by Diaconis [23]; we discuss the secondary part (time depending only on k and |G|) in Remark A.1.

As mentioned above, cutoff has already been established for Abelian group when k � log |G|
with log k � log |G|; see §1.5.2. We thus restrict our statements to 1 � k . log |G|. For 1 � k .
log |G|, only two groups had been considered previously: Zd2 in [77] and Zp with p prime in [46].
More refined statements are given in Theorems 2.1.4, 2.2.6 and 2.3.1; see also Hypotheses A to C.

Theorem A. Let G be an Abelian group and k an integer with 1 � k . log |G|. Suppose that
k − d(G)� 1. Then, whp over Z, the RW on G±k exhibits cutoff at time t±∗ (k,G).

Moreover, if k − d(G) � k and d(G) � log |G|, then t∗(k,G) h t∞(k, |G|) h k|G|2/k/(2πe). If
k > d(G), then t∗(k,G) . k|G|2/k log k. If k � log |G| � d(G), then t∗(k,G) � k|G|2/k.

Remark A.1. When d(G) � log |G| and k − d(G) � k, one can check that t∗(k,G) is the same
as the time at which the entropy of rate-1 RW on Zk is log |G|. When 1 � k � log |G|, this is
k|G|2/k/(2πe), up to sot; see Proposition 2.2.2b. This means that the Aldous–Diaconis conjecture
is verified in full for Abelian groups when d(G)� log |G| and k − d(G) � k.

However, when k � log |G| � d(G), while cutoff is still exhibited whp, the cutoff time does not
depend only on k and |G|. Eg, if k h 2 log(4r), then Z2r

2 and Zr4 give rise to mixing times which
differ by a constant factor. There are even regimes with 1� k � log |G| where the claim does not
hold, provided 1� k − d(G)� k; see Proposition 5.2.2 and Theorem 5.2.4 where Zdp is studied.

From the definition of t∗, it is not difficult to see that amongst Abelian groups Zd2 is the slowest:

max
{
t∗(k,G)

∣∣ G Abelian group with |G| ≤ 2d
}

= t∗(k,Zd2).

For k � log |G|, cutoff has been established for all Abelian groups, at an explicit time, and
this time is an upper bound on mixing for arbitrary (not just Abelian) groups; see §1.5.2. It is not
difficult to show the explicit time given is the same as t∗(k,G); see, eg, Proposition 6.2.19. 4

Remark A.2. Our approach lifts the walk S from the Abelian Cayley graph G(Z) to a walk W on
the free Abelian group with k = |Z| generators. Note that the walk W is independent of Z, ie of
which k generators are used. We then study the lifted walk W , in particular its entropic profile,
before projecting back from W to S. This gives us a candidate mixing time; see §1.4.

Since the group is Abelian, if two walks W and W ′ on the free group satisfy W (t) = W ′(t),
then the corresponding projections S and S′ to the Cayley graph satisfy S(t) = S′(t). However, the
converse is not true. Key is to analyse P(S(t) = S′(t) |W (t) 6= W ′(t)) for independent W and W ′.
This is the only place in which we use the uniformity of the generators Z; see Lemma 2.1.11. 4

Remark A.3. The theorem is established via two distinct approaches: The former applies for k not
growing too rapidly; the second can be seen as a refinement of the first, optimised for larger k,
where the first breaks down. We combine the two approaches to analyse an interim regime of k.

We separate the exposition of the approaches: they are given in §2.1, §2.2 and §2.3, respectively.
In the first two a concept of entropic times is defined; see §2.1.1 and §2.2.2. A precise statement for
each approach is given; see §2.1.3, §2.2.4 and §2.3.1. In summary, Theorem A is a direct consequence
of Propositions 2.1.2 and 2.2.2 and Theorems 2.1.4, 2.2.6 and 2.3.1; see also Hypotheses A to C. 4

Remark A.4. In the first approach, as well as establishing cutoff, we find the limit profile: we
define entropic times tα and show that dGk(tα) →P Ψ(α), where Ψ is the standard Gaussian tail;
see Definition 2.1.1, Proposition 2.1.2 and Theorem 2.1.4. If k − d(G) � k, then this approach
applies for all 1� k � log |G|/ log log log |G|; see Hypothesis A for general conditions. 4
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We also consider cutoff in separation distance. For generators z and time t ≥ 0, define

sG(z)(t) := maxg∈G
{

1− nPG(z)

(
S(t) = g

)}
.

One can then define mixing and cutoff with respect to separation distance analogously to TV.
It is standard that, under reversibility, the TV and separation mixing times differ by up to a

factor 2; see, eg, [49, Lemmas 6.16 and 6.17]. However, Hermon, Lacoin and Peres [41, Theorem 1.1]
showed that TV and separation cutoff are not equivalent, and that neither one implies the other.

We analyse the regime k − d(G) � k & log |G|; in this regime, we show that separation cutoff
occurs, and moreover that the cutoff time is the same, up to subleading order, as for TV.

A more refined statement is given in Theorem 2.4.1; see also Hypothesis D.

Theorem B. Let G be an Abelian group and k an integer. Suppose that 1� log k � log |G| and
k−d(G)� max{( 1

k log |G|)2, (log |G|)1/2}. Then, whp, the RW on Gk exhibits cutoff in separation
distance at time t∗(k,G).

Remark B. The conditions hold if k & (log |G|)3/4, log k � log |G| and k − d(G) � (log |G|)1/2.
Analogously to Remark A.1, the slowest amongst Abelian groups for separation mixing is Zd2. 4

1.3.1.2 Cutoff for Random Walks for Heisenberg Groups

Our next result establishes cutoff for the random walk on Heisenberg matrix groups Hp,d (§1.2.6.
We propose as the mixing time the following (adjusted) entropic time t∗.

Definition C. Let t±0 (k,N) be the time at which the entropy of rate-1 RW (ie SRW or DRW, as
appropriate) on Zk is logN . Define t±∗ (k, p, d) := max{t±0 (k, |Hab

p,d|), logk |Hp,d|}.

A description of t±0 (k, |Hab
p,d|), up to sot, can be found in Proposition 3.1.2. A more refined

statement than the one below is given in Theorem 3.1.6; see also Hypothesis E.

Theorem C (Cutoff). Let p be prime and d ≥ 3. Let H := Hp,d and A := Hab
p,d. Recall that |H| =

pd(d−1)/2 and |A| = pd−1. Assume that 1� log k � log |H| and that one of the following holds:

· d is fixed; · 1� k ≤ log |A|/ log d and 1� d3 � k; · k & log |A| and log d� log log p.

Whp, the RW on H±k exhibits cutoff at t±∗ (k, p, d) = max{t±0 (k, |A|), logk |H|}. Moreover,

t±∗ (k, p, d) h

{
t±0 (k, |A|) when k ≤ (log |A|)1+2/(d−2),

logk |H| when k ≥ (log |A|)1+2/(d−2).

Remark C.1. While the cutoff time for Hp,d cannot be written as a function only of k and |Hp,d| =
pd(d−1)/2, the only additional information required is the size of the Abelianisation, ie |Hab

p,d| = pd−1.
In Open Question 1 we discuss potential generalisations of this phenomenon. 4

Remark C.2. The Abelianisation Hab
p,d is isomorphic to Zd−1

p ; it corresponds to the super-diagonal
of the matrices. Roughly, we split the analysis into “the mixing of the Abelianisation” and “the
mixing of the commutator (ie ‘non-Abelian part’)”. The structure of the proof is the same for all
k, except in bounding one specific (combinatorial) probability.

In §2, we study cutoff when the underlying group G is an arbitrary Abelian group. The proof
goes via lifting the walk S on the Cayley graph to a walk W on the free Abelian group with k
generators (namely Zk). The mixing time is then the time at which W has entropy log |G|. We
perform some analysis on W before projecting back to S.

It may seem natural here, then, to lift the random walk to the free nilpotent group of class d−1
(ie the nilpotency class of Hp,d) and to take as the candidate mixing time the time at which this
walk has entropy log |Hp,d|. To the best of our knowledge, the idea of studying RWs on nilpotent
groups by lifting the walk to a corresponding free nilpotent group was first used by Diaconis and
Saloff-Coste [28]. Interestingly, though, instead we still consider a walk on the free Abelian group,
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but now the candidate mixing time is the time at which this walk has entropy log |Hab
p,d|. At this

time, by our results in §2, the walk on the Cayley graph projected to the Abelianisation has mixed.
Naturally we require the mixing time to be at least logk |Hp,d| so that all vertices can be reached

with reasonable probability. We consider the maximum of this entropic time with logk |Hp,d|. 4

Remark C.3. Heisenberg groups are a canonical class of nilpotent groups. Our analysis extends to
other nilpotent groups; see §3.3.2 for a brief overview and §5.3 for more details. Hence this article
is a first step towards establishing cutoff for other nilpotent groups. This is work in progress. 4

We adapt the proof of Theorem C to prove two related results, given as Theorem D below.

D.1 When 1� k � log |Hab
p,d|, we find the limit profile of the cutoff.

D.2 When k & log |Hab
p,d|, we remove the condition that p is prime.

The adaptations to the proof are described in §3.1.9.

Theorem D.1. Let p be prime and d ≥ 3 a fixed constant. Assume that 1� k � log |Hab
p,d|. There

exist times (tα)α∈R satisfying

t0 h k · 1
2πe |H

ab
p,d|2/k, tα − t0 h α

√
2t0/
√
k = o(t0) and d±Hk(tα) h Ψ(α) whp,

where Ψ is the standard Gaussian tail, ie Ψ(α) := (2π)−1/2
∫∞
α
e−x

2/2dx for α ∈ R.

Theorem D.2. Let m, d ∈ N with d ≥ 3. Suppose that k & log |Hm,d|. If d is a constant or diverges
sufficiently slowly, then the RW on (Hm,d)

±
k exhibits cutoff whp. Further, there is a density-1 set

A ⊆ N so that if m ∈ A and log d� log logm then the RW on (Hm,d)
±
k exhibits cutoff whp.

Remark D. We use the same techniques in §2.1 to find the limit profile when the underlying group
G is Abelian. (There the regime is 1� k � log |G| = log |Gab|.) The density-1 set A comes from a
number-theoretic result. For m ∈ N, if divm is the number of divisors of m, then ‘typically’ divm
is order logm; see [40, §18]. We choose A := {m ∈ N | divm ≤ (logm)2}. 4

1.3.2 Mixing Time Comparison for Nilpotent Groups

The previous results established cutoff. The next results are of a slightly different flavour. They
consider nilpotent groups: these are groups G whose lower central series, ie the sequence (G`)`≥0

defined by G0 := G and G` := [G`−1, G] for ` ≥ 1, stabilises at the trivial group. The results
compare the mixing times between different groups; these mixing times are random.

We establish a conjecture of Wilson [77] in the nilpotent set-up; see [77, Conjecture 7].

Theorem E. For all diverging d and n with n ≤ 2d and all nilpotent groups G of size n, if
k − log2 n� 1 and log k � log n, then tmix(Gk)/tmix(Hk) ≤ 1 + o(1) whp where H := Zd2.

As noted in Remark A.1, for Abelian groups this follows from our cutoff result and the abstract
entropic definition of the cutoff time t∗(k,G) for Abelian G. The extension to nilpotent groups
is then established by Theorem F below, which is of independent interest and quite significantly
stronger than Wilson’s conjecture.

Theorem F. Let G be a nilpotent group. Set G := ⊕L1 (G`−1/G`) where (G`)`≥0 is the lower central
series of G and L := min{` ≥ 0 | G` = {id}}. Suppose that 1� log k � log |G| and k − d(G)� 1.
Then tmix(Gk)/tmix(Gk) ≤ 1 + o(1) whp.

Remark F.1. Wilson’s conjecture requires k− log2 |G| � 1 and compares tmix(Gk) with t∗(k,Zd2).
We have d(G) ≤ max{` ∈ N | p` divides |G| for some prime p} ≤ log2 |G|; often d(G) is much
smaller than log2 |G|. (In fact, in some precise sense of choosing an Abelian group H uniformly,
typically d(H)� log2 |H|.) Further, tmix(Gk) may be significantly smaller than t∗(k,Zd2).

The bounds on t∗(k,G), for Abelian G, described in Theorem A complement the upper bound
tmix(Gk) ≤ tmix(Gk) to give explicit bounds on tmix(Gk) which hold whp. 4
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Remark F.2. In the course of proving Theorem F, we prove an exact relation between the L2

mixing time for the RWs on Gk and Gk, namely that the expected L2 distance for the RW on Gk
at time t is at most that for the RW on Gk at time t. We actually prove a more refined version
of this which allows us to compare the expected L2 distances given that W (t) lies in some ‘typical
set’. We use such a modified L2 calculation in the proof of Theorem A to upper bound the TV
mixing time. From these two considerations combined, Theorem F then follows. 4

As explained below, it is natural to conjecture that this result does not require G to be nilpotent.
The definition of the Abelian group G corresponding to G required G to be nilpotent. Below, we
extend this definition to allow general group G. (The definitions are equivalent if G is nilpotent.)

The following conjecture extends Theorem F; it contains, as a special case, Wilson’s conjecture.

Conjecture F. Let G be a group. Let (G`)`≥0 be its lower central series and L := min{` ≥ 0 | G` =
{id}}. Let the prime decomposition of |GL| be |GL| =

∏r
1 pj . Set G := (⊕L1 (G`−1/G`))⊕ (⊕r1 Zpj ).

Suppose that 1� log k � log |G| and k − d(G)� 1. Then tmix(Gk)/tmix(Gk) ≤ 1 + o(1) whp.

We are showing, for nilpotent groups, that being non-Abelian can only speed up the mixing.
Finite nilpotent groups are intuitively thought of as ‘almost Abelian’; this is (partially) because
two elements having co-prime orders must commute. Thus removing the nilpotent property should
only mean the group is ‘farther from Abelian’ and speed up the mixing.

1.3.3 Geometry of Random Cayley Graphs

We move onto considering distances in the random Cayley graphs. We start by analysing typical
distance and diameter for general Abelian groups. Then we analyse these for the non-Abelian
Heisenberg group, and contrast the results. Finally we consider the spectral gap for Abelian groups.

1.3.3.1 Typical Distance and Diameter for Abelian Groups

Informally, we show that the mass (in terms of number of vertices) concentrates at a thin ‘slice’,
or ‘shell’, consisting of vertices at a distance M ± o(M) from the origin, with M explicit.

For an Abelian group G, write d(G) for the minimal size of a generating subset of G and

m∗(G) := max
{

minj∈[d]mj

∣∣ ⊕d1 Zmj is a decomposition of G
}
.

Our first statement is on typical distance for Abelian groups. More refined statements are given
in Theorems 4.1.2, 4.2.2 and 4.3.2; see also Hypotheses F to H.

Theorem G (Typical Distance). Let G be an Abelian group.

Consider 1 � k � log |G|; suppose that k − d(G) � k and d(G) � log |G|/ log log k. Write
D+ := |G|1/k/(2e) and D− := |G|1/k/e. For all β ∈ (0, 1), we have D±Gk(β)/D± →P 1.

Consider k h λ log |G| with λ ∈ (0,∞); suppose that d(G) ≤ 1
2 log |G|/ log log |G| and m∗(G)�

1. There is a constant α±λ ∈ (0,∞) so that, for all β ∈ (0, 1), we have D±Gk(β)/(α±λ k)→P 1.
Consider k � log |G| with log k � log |G|; write ρ := log k/ log log |G| so that k = (log |G|)ρ.

For all β ∈ (0, 1), we have D±Gk(β)/
(

ρ
ρ−1 logk |G|

)
→P 1.

In all three cases, the implicit lower bound holds deterministically and for all Abelian groups.

Remark G. We establish the concentration of typical distance via three distinct approaches, in
§4.1, §4.2 and §4.3. Conceptually, all involve sizes of lattice balls and drawing elements uniformly
from balls. A precise statement for each approach is given, as is an outline of the proof. In summary,
Theorem G is a direct consequence of Theorems 4.1.2, 4.2.2 and 4.3.2; see also Hypotheses F to H.

It is interesting how we prove this theorem. It is common in mixing time proofs to use geometric
properties of the graph, such as expansion or distance properties. We do the opposite: we use mixing
techniques to prove this geometric result. This is in the same spirit as [52]; see §1.5.4. 4
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We consider the diameter when k & log |G|. Our first result is a concentration statement akin
to Theorem H. A more refined statement is given in Theorem 4.4.1.

Theorem H (Diameter). Let G be an Abelian group.

Consider k h λ log |G| with λ ∈ (0,∞); suppose that d(G) ≤ 1
2 log |G|/ log log |G| and m∗(G)�

1. Let α±λ ∈ (0,∞) be the constant from Theorem G. We have diamG±k /(α
±
λ k)→P 1.

Consider k � log |G| with log k � log |G|; write ρ := log k/ log log |G| so that k = (log |G|)ρ.
We have diamG±k /(

ρ
ρ−1 logk |G|)→P 1. The implicit upper bound here holds for arbitrary groups.

In both cases, the implicit lower bound holds deterministically and for all Abelian groups.

Remark H. Note that for any graph H one has DH( 1
2 ) ≤ diamH ≤ 2DH( 1

2 ) + 1. (Note that
(x1, ..., x`) is a path in G(z) if and only if (x`, ..., x1) is a path in G(z−1).) So the typical distance
and diameter are always equivalent up to constants. Theorem H gives conditions under which they
are asymptotically equivalent whp for random Cayley graphs.

Combining Theorem G with Theorem A shows that tmix(Gk) � (diamGk)2/k whp when k −
d(G) � k. One can also consider non-Abelian groups; see Theorem J. 4

Our next diameter result shows, in a well-defined sense, that, amongst all groups, when k −
log2 |G| � k with log k � log |G|, the group Zd2 gives rise to the largest typical diameter.

We define the candidate radius which we show is an upper bound for diamGk whp.

Definition I. Write R(k, n) for the minimal R ∈ N with
(
k
R

)
≥ n.

We now state the second diameter result. A more refined statement is given in Theorem 4.4.3.

Theorem I. Let G be an arbitrary group. Suppose that k − log2 |G| � k and 1� log k � log |G|.
Then diamGk ≤ R(k, |G|) up to sot whp; further, if H := Zd2, then diamHk h R(k, |H|) whp.

This gives a quantitative sense in which Zd2 is the group giving rise to the largest diameter.

Corollary I. For all diverging d and n with n ≤ 2d and all groups G of size n, if k− log2 n � k and
log k � log n, then diamGk ≤ diamHk where H := Zd2 up to sot whp over Z.

1.3.3.2 Typical Distance and Diameter for Heisenberg Groups

Our next result concerns typical distance in the random Cayley graph.

Definition J. For a group G, k ∈ N and β ∈ (0, 1), define the β-typical distance DGk(β) via

B±Gk(R) := {x ∈ G
∣∣ distG±k

(id, x) ≤ R} and D±Gk(β) := min
{
R ≥ 0

∣∣ |B±Gk(R)| ≥ β|G|
}
,

with the ±-superscript indicating definitions for both the directed and undirected cases.

Informally, we show that the mass (in terms of number of vertices) concentrates at a thin ‘slice’,
or ‘shell’, consisting of vertices at a distance M ± o(M) from the origin, with M explicit.

Investigating this typical distance when k diverges with |G| was suggested to us by Ben-
jamini [10]. Previous work concentrated on fixed k, ie independent of |G|; see §1.5.4.

A more refined statement than the one below is given in Theorem 3.2.1.

Theorem J (Typical Distance). Let p be prime and d ≥ 3. Let H := Hp,d and A := Hab
p,d. Write

M+
k := k|A|/e, M−k := k|A|1/k/(2e) and M∗k := ρ

ρ−1 logk |A|

where ρ := log k/ log log |A|, ie k = (log |A|)ρ. Assume that the following conditions hold:

· if 1� k � log |A|, then either d is fixed or d� max{log k, k1/2/|A|1/(4k)} and k ≤ 3
2 logd |A|;

· if k & log |A|, then log k � log |H| and log d� log log |H|.
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For all λ ∈ (0,∞), there exists a constant α±λ ∈ (0,∞) so that, for all constants β ∈ (0, 1), the
following convergences in probability hold:

D±Hk(β)/M±k →
P 1 if 1� k � log |A|;

D±Hk(β)/
(
α±λ k

)
→P 1 if k h λ log |A|;

D±Hk(β)/max
{
M∗k , logk |H|

}
→P 1 if k � log |A|.

Alternatively, the typical distance concentration value can be given by the maximum of logk |H|
and the minimal radius of a k-dimensional lattice ball of volume at least |A|. Note that

max
{
M∗k , logk |H|

}
= max

{
ρ
ρ−1 ,

1
2d
}

log |A|.

Remark J.1. By a classical result, to generate a nilpotent group it is enough that the maps of the
generators under g 7→ gGcom : G 7→ Gab generate the Abelianisation Gab; this follows from the
fact that for nilpotent groups Gcom ≤ Φ(G), the Frattini subgroup of non-generators of G.

We prove a quantitative version of this result, where the typical distance in G is very close to
the typical distance in Gab for the Cayley graph with generating multiset [Z1G

com, ..., ZkG
com].

See El-Baz and Pagano [6] for a recent different result in the same spirit. 4

Remark J.2. In Remark C.2, we interpret the cutoff time for the RW in the following way: if the
walk has run for long enough so that the projection to the Abelianisation is mixed and almost
every vertex can be reached with reasonable probability, then the walk is mixed on the full group.
Theorem J says that the typical distance and mixing time agree when k � log |Hab

p,d|; this gives a
sense of rigour to the above interpretation. 4

In the regime k & log |Hab
p,d|, when d � 1, we can extend the typical distance argument to

determine the diameter, ie the maximal distance between pairs of vertices. In this regime, the two
are the same, up to sot, whp. For a graph H, denote by diamH its diameter.

Theorem K (Diameter). Let p be prime and d ≥ 3 fixed. Suppose that 1� log k � log |Hp,d|. For
all λ ∈ (0,∞), with α±λ the constant from Theorem J, the following convergences hold:(

diamHk

)
/
(
α±λ k

)
→P 1 if k h λ log |Hab

p,d|;(
diamHk

)
/max{M∗k , logk |Hab

p,d|} →P 1 if k � log |Hab
p,d|.

Remark K. Theorems C, J and K combined give tmix(Hk) � (diamHk)2/k whp. 4

Interesting is the way we prove Theorem J, and by extension Theorem K. It is quite common in
mixing proofs to use geometric properties of the graph, such as expansion or distance properties.
We, in essence, do the opposite: we adapt the mixing proof to this geometric set-up. (We give a
proof-outline in §3.2.2.) This is in the same spirit as [52]; see §1.5.4.

Remark. When k & log |Hab
p,d|, for typical distance, and by extension diameter, we can remove the

primarily assumption on p. This involves using ideas in the proof of Theorem D.2, ie the extension
to non-prime p for cutoff with k & log |Hab

p,d|. We do not go into detail here. 4

1.3.3.3 Spectral Gap for Abelian Groups

Our final result concerns the spectral gap, and relaxation time, of the random Cayley graph.

Definition L. Consider a reversible Markov chain with (real) eigenvalues 1 = λ1 ≥ λ2 ≥ · · · ≥
λn ≥ −1 of its transition matrix. The usual, respectively absolute, spectral gap is defined as

γ := max
i 6=1
{1− λi} = 1− λ2, respectively γ∗ := max

i 6=1
{1− |λi|} = 1−max{|λ2|, |λn|};

the usual, respectively absolute, relaxation time is defined as trel := 1/γ, respectively , t∗rel := 1/γ∗.
By the spectral gap or relaxation time of a graph, we mean that of the SRW on the graph.
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It is classical that under reversibility in continuous-time the spectral gap asymptotically determ-
ines the exponential rate of convergence to equilibrium, whereas in discrete-time it is determined
by the absolute spectral gap; see Remark 4.5.7.

Our result finds the correct order of the relaxation time. We do not require k →∞ as |G| → ∞.
The same statement and proof hold for both the usual and absolute relaxation times. Recall that
we write d(G) for the minimal number of generators required to generate the group.

A more refined statement than the one given below is given in Theorem 4.5.1 in §4.5.

Theorem L. There exists a positive constant c so that, for all Abelian groups G, all k and all
multisets of generators z of size k, we have

t∗rel

(
G−(z)

)
≥ trel

(
G−(z)

)
≥ c|G|2/k.

For all δ > 0, there exists a constant Cδ > 0 so that, for all Abelian groupsG, if k ≥ (2+δ)d(G), then

P
(
t∗rel(G

−
k ) ≤ Cδ|G|2/k

)
≥ 1− Cδ2−k/Cδ .

Further, for all ε ∈ (0, 1), there exists a density-(1 − ε) subset A ⊆ N so that if |G| ∈ A then the
condition k ≥ (2 + δ)d(G) can be relaxed to k ≥ (1 + δ)d(G); the constants now also depend on ε.

The method of proof for this result is rather different to our previous results, and also somewhat
different to those used by others to study the spectral gap of random Cayley graphs; see §1.5.5.

1.3.4 Additional Cutoff and Typical Distance Results

To close, we state some additional results on cutoff and typical distance. These tend to be some
slightly more refined results than those given above, but with additional conditions on the group.
Eg, in Theorem M we determine the limit profile, not just the existence of cutoff, in the regime
k � log |G|, which we could not do in Theorem A. However, while previously we considered all
groups, now there are conditions on the group.

1.3.4.1 Cutoff: Limit Profile for Random Walks on Abelian Groups

For t ≥ 0, write µt for the law of W (t). Define Q(t) := − logµt(W (t)).

Definition M. For all k, n ∈ N and all α ∈ R, define tα := tα(k, n) so that

E
(
Q(tα)

)
=
(
log n+ α

√
vk
)

where v := Var
(
Q(t0)

)
/k.

We call t0 the entropic time and the {tα}α∈R cutoff times.
An asymptotic evaluation of these times is given in Proposition 5.1.2.

For an Abelian group G, write d(G) for the minimal size of a generating subset of G and

m∗(G) := max
{

minj∈[d]mj

∣∣ ⊕d1 Zmj is a decomposition of G
}
.

A more refined statement is given in Theorem 5.1.4; see also Hypothesis I.

Theorem M. Let G be an Abelian group. Let λ ∈ (0,∞) and suppose that k h λ log |G|. Suppose
that d(G) ≤ 1

35 log |G|/ log log |G| and m∗(G) > (log k)2.
Then, whp, the RW on Gk exhibits cutoff at t0 := t0(k, |G|); moreover, it has Gaussian profile

given by {tα := tα(k, |G|)}α∈R, namely, writing Ψ : R→ [0, 1] for the standard Gaussian tail,

dGk(tα)→P Ψ(α) (in probability) for all α ∈ R.

(The randomness is over the uniform choice of generators Z = [Z1, ..., Zk].) Further,

t0 � k and |tα − t0| � αt0/
√
k for all α ∈ R.
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Remark M. We can write the cutoff statement in terms of the mixing time, rather than the TV
distance: writing tmix(ε) for the ε-mixing time, for all ε ∈ (0, 1), we have(

tmix(ε)− t0
)
/w →P Ψ−1(ε),

where t0 is the mixing time and w is the cutoff window defined, via {tα − t0}α∈R. For a more
explicit formula, using asymptotic evaluation of the cutoff times, see Remark 5.1.5. 4

1.3.4.2 Cutoff: A Detailed Investigation of Zd
p

For our next theorem, we specialise to the case G := Zdp with p prime. This specialisation allows
us to derive some very refined results. In particular, before we could not allow d to be close to k;
here we consider any k ≥ d. Now every element of G has order p; as such, need only consider the
auxiliary W mod p. We redefine the entropic times to take this into account.

Definition N. Define t0 := t0(k, p, d) to be the time at which the entropy of the RW on Zkp is log(pd).
An asymptotic evaluation of this time is given in Proposition 5.2.2.

A more refined statement is given in Theorem 5.2.4. In particular, by defining tα appropriately,
we can also also consider the cutoff window; see Definition 5.2.1 and Theorem 5.2.2.

Theorem M. Let G := Zdp with p prime. Assume that 1� k . d log p.
Suppose that (k − d)p� 1. Then, whp, the RW on Gk exhibits cutoff at t0.
Also, if 0 ≤ k − d . 1, then, conditional that the uniformly chosen multisubset [Z1, ..., Zk]

generates the group, there is cutoff whp at time 1
2d log d/(1− cos(2π/p)).

1.3.4.3 Cutoff: No Cutoff when k Is Constant

Lastly for cutoff, it is natural to ask what happens when k is constant. This regime has already
been analysed by Diaconis and Saloff-Coste [27]. We give an exposition of their results, using the
language which we have developed. We emphasise that this is a result of Diaconis and Saloff-Coste.

A more refined statement is given in Corollary 5.4.5.

Theorem N (cf [27, Corollary 5.3]). Let G be a finite, nilpotent group of bounded step. Suppose
that k � 1. Then the RW on G−(Z) does not exhibit cutoff for any choice of Z with |Z| = k.

1.3.4.4 Cutoff: Extending Arguments from Heisenberg to Other Nilpotent Groups

In Theorem C, we studied cutoff for random walks on Heisenberg groups. In the introduction
there, specifically in Remark C.3, we claimed that some of our analysis extends from Heisenberg
groups to more general nilpotent groups. We discuss this claim further in §5.3.

1.3.4.5 Typical Distance: Generalised Graph Distance for Abelian Groups

Locally, when log k � log |G|, typical degree-k Cayley graphs of an Abelian group look like Zk.
In a lattice, graph distance corresponds to L1 distance; this can be extended to an Lq distance, for
q ∈ [1,∞]. Analogously, we can extend the usual L1 graph distances to an Lq-type, for q ∈ [1,∞].

Consider a collection z = [z1, ..., zk] of generators and distances in the Cayley graph G(z). For
a path ρ in G(z), for each i ∈ [k], write ρi,+ for the number of times zi is used, ρi,− for the number
of times z−1

i is used (if in the undirected case otherwise ρi,− := 0) and ρi := ρi,+ − ρi,−. The path

connects the identity with ρ · z. Then the L1 length of ρ is ‖ρ‖1 :=
∑k

1(ρi,+ + ρi,−).

For any q ∈ [1,∞), define the Lq graph distance of ρ by ‖ρ‖qq :=
∑k

1(ρqi,+ + ρqi,−). For the L∞-
graph distance, define ‖ρ‖∞ := maxi(ρi,+ + ρi,−). (The usual graph distance is given by q = 1.)

For Abelian groups, clearly for any q ∈ [1,∞) an Lq geodesic, ie a path of minimal length, will
only use either zi or z−1

i , not both (since the terms in the product can be reordered), ie ρi,+ρi,− = 0

for all i. Thus ‖ρ‖qq =
∑k

1 |ρi|
q. Similarly, any L∞-geodesic ρ can be adjusted into a new path ρ′

with ‖ρ‖∞ = ‖ρ′‖∞ and ρ′i,+ρ
′
i,− = 0 for all i.
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We define the Lq typical distance DG(z),q(·) analogously to DG(z)(·), ie the q = 1 case.

For an Abelian group G, recall that d(G) is the minimal size of a generating subset of G and

m∗(G) = max
{

minj∈[d]mj

∣∣ ⊕d1 Zmj is a decomposition of G
}
.

Finally we set up a little more notation. Make the following definitions for q ∈ [1,∞]:

C−q := 2 Γ(1/q + 1)(qe)1/q, C+
q := 1

2C
−
q and D±q (k, n) := k1/qn1/k/C±q ,

where the case q =∞ is to be interpreted as the limit q →∞; eg, C−∞ = 2 and D+
∞(k, n) = n1/k.

A more refined statement is given in Theorem 5.5.1. Write k1/∞ := 1.

Theorem O. Let G be an Abelian group and q ∈ [1,∞]. Abbreviate n := |G|, d := d(G) and
m∗ := m∗(G). Suppose that 1� k � log |G|. Draw Z1, .., Zk ∼iid Unif(G). Suppose that m∗(G)�
k1/qn1/k and if q ∈ (1,∞) then additionally require k ≤ log n/ log log n. Suppose that lim sup d/k <
1 for undirected graphs and lim sup d/k < 1

2 for directed graphs.
Then, whp, the Lq typical distance on Gk concentrates at D±q , namely

D±G(Z),q(β)/D±q →P 1 (in probability) for all β ∈ (0, 1).

(The randomness is over the uniform choice of generators Z = [Z1, ..., Zk].)

1.4 Entropic Method and Cutoff for ‘Generic’ Markov Chains

We noted at the start of §1.3 that we use an entropic method. We briefly described how it worked
there. Here we give a brief history before giving a detailed description of the our application.

1.4.1 A Brief History

We now put our results into a broader context. As mentioned above, a common theme in the
study of mixing times is that ‘generic’ instances often exhibit the cutoff phenomenon. In this set-
up, a family of transition matrices chosen from a certain family of distributions is shown to, whp,
give rise to a sequence of Markov chains which exhibits cutoff. A few notable examples include
random birth and death chains [31, 72], the simple or non-backtracking RW on various models of
sparse random graphs, including random regular graphs [53], random graphs with given degrees [8,
9, 11, 12], the giant component of the Erdős–Rényi random graph [11] (where the authors consider
mixing from a ‘typical’ starting point) and a large family of sparse Markov chains [12], as well as
RWs on a certain generalisation of Ramanujan graphs [13] and random lifts [13, 20].

A recurring idea in the aforementioned works establishing the cutoff phenomenon for certain
families of random instances is that the cutoff time can be described in terms of entropy. One
can look at some auxiliary random process which up to the cutoff time can be coupled with, or
otherwise related to, the original Markov chain—often in the above examples this is the RW on the
corresponding Benjamini–Schramm local limit. The cutoff time is then shown to be (up to sot) the
time at which the entropy of the auxiliary process equals the entropy of the invariant distribution
of the original Markov chain. It is a relatively new technique, and has been used recently in [11,
12, 13, 20]. For ‘most’ regimes of k, this is the case for us too; further, for the non-Abelian groups,
we use a similar idea. As our auxiliary random process, we use a SRW, respectively DRW, in the
undirected, respectively directed, case.

With the exception of the very recent [43], to the best of our knowledge, in all previous instances
where the entropic method was used the graphs were tree-like. This is not the case for us: in the
Abelian set-up, Gk has cycles of length 4 (potentially up to the direction of edges); for non-Abelian
groups, the local behaviour of the graph is more complex. Admittedly, this has less of an impact
on the walk since each vertex is of diverging degree.
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1.4.2 An Application to Random Cayley Graphs

We now describe in a little more detail the entropic method applied to the set-up of (random)
Cayley graphs. We do not give an abstract definition of entropic times here, but rather in each
chapter we define them in the way appropriate for that application.

We define an auxiliary random process (W (t))t≥0, recording how many times each generator
has been used: for t ≥ 0, for each generator i = 1, ..., k, write Wi(t) for the number of times that it
has been picked by time t. By independence, W (·) forms a rate-1 DRW on Zk+. For the undirected
case, recall that we either apply a generator or its inverse; when we apply the inverse of generator
i, increment Wi →Wi − 1 (rather than Wi →Wi + 1). In this case, W (·) is a SRW on Zk.

If the underlying group is Abelian, then the order in which the generators are applied is irrel-
evant and generator-inverse pairs cancel; hence we can write S(t) =

∑k
i=1Wi(t)Zi = W (t) ·Z. For

non-Abelian groups, this simple projection does not hold; just looking at W (t) loses information.

Recall that the invariant distribution is uniform, regardless of the group. For an Abelian group
G, we propose as the mixing time the time at which the auxiliary process W obtains entropy log |G|.
The reason for this is the following: using the equivalence − logµ ≥ log |G| if and only if µ ≤ 1/|G|,
‘typically’ W (t) takes values to which it assigns probability smaller than 1/|G|; informally, this
means that W (t) is ‘well spread out’. If we could immediately deduce that S(t) typically takes
values to which it assigns probability approximately 1/|G|, we would be basically done. However,
one could have two independent copies S and S′ (using the same generators Z) with S(t) = S′(t)
but W (t) 6= W ′(t); the uniformity of the generators will show that, on average, this is unlikely. We
thus deduce that S(t) is well spread out, ie well mixed. In contrast, if the entropy is much smaller
than log |G|, then W (t) is not well spread out: it is highly likely to live on a set of size o(1/|G|).
The same must then be true for S(t); hence it is not mixed.

For a non-Abelian group, as noted above, just looking at W (t) loses information. We decompose
Hp,d into its Abelianisation Hab

p,d and commutator Hcom
p,d . The above heuristics for Abelian groups

suggest that the walk projected to the Abelianisation Hab
p,d should be mixed at the time at which W

has entropy log |Hab
p,d|. We then need to check that the walk on the commutator Hcom

p,d is mixed at

this time. For Heisenberg groups, Hab
p,d corresponds to the super-diagonal. Diaconis and Hough [26]

showed that coordinates mix faster the farther they are from the diagonal. It is thus natural then
to expect the commutator to mix faster than the Abelianisation, at least for d not too large. We
need to make sure that all elements of the group can be reached with reasonable probability, and so
need to run for at least logk |Hp,d|. This suggests max{t0(k, |Hab

p,d|), logk |Hp,d|} as the mixing time.

To study typical distance, we define a related auxiliary variable, A, corresponding to the number
of times each generator is used: A is uniformly distributed on a k-dimensional lattice ball of a certain
radius. We apply the chosen generators in a uniformly random order. We do not apply an entropic
method here, per se, but the underlying principles of the proof are extremely similar.

1.5 Historic Overview

In this section, we give a fairly comprehensive account of previous work on mixing and cutoff for
random walk on random Cayley graphs, and compare our results with existing ones. The occurrence
of cutoff in particular has received a great deal of attention over the years.

1.5.1 Motivation: Random Cayley Graphs and Cutoff for Random Walks

In their seminal paper, Aldous and Diaconis [1] considered random walks on random Cayley
graphs. Diaconis [25] gave the following (paraphrased) motivation.

Erdős, when considering classes of mathematical objects, often combinatorial or graph
theoretic, would often ask, “What does a typical object in this class ‘look like’?” If an
object is chosen uniformly at random, are there natural properties which hold whp?

It is then natural to ask, “What does a typical random walk on a group ‘look like’?”
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This lead him, with Aldous, to consider the set of all Cayley graphs of a given group G with a given
number k of generators. Drawing such a Cayley graph uniformly at random corresponds precisely
to our Gk, ie choosing generators Z1, ..., Zk ∼iid Unif(G).

In their pioneering work on the cutoff phenomenon [1], Aldous and Diaconis had the remarkable
insight to conjecture that when k � log |G| the RW on Gk exhibits cutoff whp, regardless of which
underlying group is used. They also suggested a candidate mixing time in terms of k and |G|.

It was shown in the ’90s that this conjecture is true for Abelian groups; further, the upper
bound on mixing was valid for all groups. Moreover, extending the conjecture to 1� k . log |G|,
in Theorem A here we establish cutoff for all Abelian groups. In Theorem C here, using Heisenberg
matrix groups, we give the first example of cutoff for a non-Abelian group (when k does not grow
super-polynomially with |G|); we consider any 1 � log k � log |G|. Contrary to Abelian groups,
the mixing time cannot always be written as a function only of k and |G|, even for some k � log |G|.

1.5.2 Universal Cutoff: The Aldous–Diaconis Conjecture

Aldous and Diaconis [1] stated their conjecture for k � log |G|. An upper bound, valid for
arbitrary groups, was established by Dou and Hildebrand [34, Theorem 1] and later Roichman [69,
Theorems 1 and 2], who simplified their argument. A matching lower bound, valid only for Abelian
groups, was given by Hildebrand [44, Theorem 3]. Combined, this established the Aldous–Diaconis
conjecture for Abelian groups. Moreover, the cutoff time was known explicitly:

T (k, |G|) := ρ
ρ−1 log |G|/ log k where ρ is defined by k = (log |G|)ρ.

(To have k � log |G|, one needs ρ− 1� 1/ log log |G|.) See also Dou [33] and Hildebrand [45].
There is a trivial diameter-based lower bound of logk |G|. If ρ� 1, ie k is super-polylogarithmic,

then T (k, |G|) h logk |G|. Thus cutoff is established for arbitrary groups for such k.
In Theorem C, using the Heisenberg group Hp,d, we disprove the conjecture: taking k :=

blog |Hp,d|c2 and d := 3, there is cutoff at 2
3T (k, |Hp,d|). In fact, T (k, n) does not even capture the

correct order: letting d → ∞ sufficiently slowly, k can be chosen so that k � log |Hp,d| and there
is cutoff at a time smaller order than T (k, |Hp,d|).

To extend consideration to 1� k . log |G|, one naturally needs some conditions. For example,
if k < d and G := Zd2, then the group is not generated, and so no mixing can occur. There has been
some investigation into the regime 1 � k . log |G|, but with much less success. Hildebrand [44,
Theorem 4] showed that the mixing time must be super-polylogarithmic, unlike for k � log |G|.
Wilson [77, Theorem 1] established cutoff for Zd2; this naturally requires k ≥ d = log2 |G|. Regarding
1� k � log |G|, a breakthrough came (in 2017) when Hough [46, Theorem 1.7] established cutoff
for Zp with 1� k ≤ log p/ log log p and p a (diverging) prime. The techniques were specialised to
their respective cases; we consider arbitrary Abelian groups.

1.5.3 Random Walks on the Heisenberg Group

Random walks on the Heisenberg group have been the focus of a great deal of attention; focus
has primarily been on 3 × 3 matrices. (See in particular [16, §2.1] and [66, §1.1], upon which we
have based the description below.) The probabilistic study of random walks on Hp,d was initiated
by Zack [79]; she interpreted the walk in terms of random number generation; focus has been on
d = 3. Using a specific generating set of size 4, the correct order of mixing was established by
Diaconis and Saloff-Coste [27, 29, 30] using geometric theoretical tools. Further proofs were given
by Diaconis [24], Stong [73, 74, 75] and Bump et al [16].

Moving even further from the realm of Abelian groups, consider p fixed and general d ≥ 3. One
can consider a simple walk on Hp,d: a row is chosen uniformly and added to or subtracted from
the row above. Ellenberg [36] studied the diameter of the associated Cayley graph, with d growing,
subsequently improving this in Ellenberg and Tymoczko [37]. Stong [75] gave mixing bounds via
analysis of eigenvalues. Coppersmith and Pak [21, 63] look directly at mixing. This has then been
further studied, improved upon and generalised by Peres and Sly [66], Nestoridi [59] and Nestoridi
and Sly [60]; Nestoridi and Sly [60] are the first to optimise bounds for p and d simultaneously.

In a recent impressive work, Diaconis and Hough [26] introduced a new method for proving a
CLT for random walks on nilpotent groups. They illustrate the method on Hp,d, obtaining some
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extremely precise results on the rate at which individual coordinates mix as a function of their
distance from the diagonal. They show that the greater the distance from the diagonal is, the
faster the mixing time of the coordinate is. In the same spirit, we show that, in many cases, the
bottleneck for mixing is the super-diagonal coordinates, while in the rest of the cases, the cutoff
time is given by the diameter-based lower bound logk |Hp,d|.

Related work includes analysis of the spectrum of a random walk on the Heisenberg group by
Béguin, Valette and Zuk [7]. There has also been work on a random walk on a 3 × 3 Heisenberg
group with entries in R. See, for example, Breuillard [14, 15].

1.5.3.1 Comparison of Mixing Times

In the direction of comparison of mixing times, there has been much less work. The only work
of note (of which we are aware) is by Pak [62]. There he studies universal mixing bounds (ie ones
valid for all groups), but his bounds are not tight; they are always at least a constant factor away
from those conjectured by Wilson [77] (and by us above).

A related universal bound in which Zd2 is the worst case is given by Pak [64]. Let ϕk(G) :=
P(Gk is connected), ie the probability that the group G is generated by k uniformly chosen gener-
ators. Then Pak [64, Lecture 1, Theorem 6] proves that if |G| ≤ 2d then ϕk(G) ≥ ϕ(Zd2) for all k.

1.5.4 Typical Distance and Diameter

As well as determining cutoff for these random Cayley graph, we study a geometric property
of a diameter flavour; recall the concept of typical distance from §1.2.3. Previous work (detailed
below) had concentrated on the case where the number of generators k is a fixed number, ie one
which does not increase as the size n of the group increases. In contrast, our results are in the
situation where k →∞ as n→∞; this line of enquiry was suggested to use by Benjamini [10].

Amir and Gurel-Gurevich [4] studied the diameter of the random Cayley graph of cyclic groups
of prime order. They prove (for fixed k) that the diameter is order |G|1/k; see [4, Theorems 1 and 2].
They conjecture that the diameter divided by |G|1/k converges in distribution to some non-trivial
random variable as |G| → ∞; see [4, Conjecture 3].

Marklof and Strömbergsson [55] consider, as a consequence of a quite general framework, the
diameter of the random Cayley graph of Zn with respect to a fixed number k of random generat-
ors, for a random n, without any primality assumption. They derive distributional limits for the
diameter, the average distance (defined with respect to various Lp metrics) and the girth. They
determine limit distributions for each of these, and in some cases derive explicit formulas.

Shapira and Zuck [71] build on the framework of Marklof and Strömbergsson [55], again only
for fixed k; they are able to consider non-random n, as well as Abelian groups of arbitrary (fixed)
rank, instead of only cyclic groups. In particular, they verify the conjecture of Amir and Gurel-
Gurevich [4, Conjecture 3]; they additionally work with average distance and girth.

Lubetzky and Peres [52] derive an analogous typical distance result for n-vertex, d-regular
Ramanujan graphs: whp all by o(n) of the vertices lie at a distance logd−1 n ± O(log log n); they
establish this by proving cutoff for the non-backtracking random walk at time logd−1 n.

Related work on the diameter of random Cayley graphs, including concentration of certain
measures, can be found in [50, 70].

The Aldous–Diaconis conjecture for mixing can be transferred naturally to typical distance: the
mass should concentrate at a distance M , where M can be written as a function only of k and n;
ie there is concentration of mass at a distance independent of the algebraic structure of the group.

1.5.5 Spectral Gap

Hough [46, Theorem 1.1] showed that, for any prime p, the relaxation time of the RW on any
Cayley graph of Zp with respect to an arbitrary set of k generators is order at least |Zp|2/k = p2/k,
provided that k ≤ log p/ log log p. Using a different approach, we extend Hough’s result, removing
the restrictions on p and k and considering general Abelian groups; see Theorem L.

This extends, in the Abelian set-up, a celebrated result of Alon and Roichman [3, Corollary 1],
which asserts that, for any finite group G, the random Cayley graph with at least Cε log |G| random
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generators is whp an ε-expander, provided Cε is a sufficiently large (in terms of ε). (A graph is
an ε-expander if its isoperimetric constant is bounded below by ε; up to a reparametrisation, this
is equivalent to the spectral gap of the RW on the graph being bounded below by ε.) There has
been a considerable line of work building upon this general result of Alon and Roichman. (Pak [61,
62] proves a similar result.) Their proof was simplified and extended, independently, by Loh and
Schulman [51] and Landau and Russell [47]; both were able to replace log2 |G| by log2D(G), where
D(G) is the sum of the dimensions of the irreducible representations of the group G; for Abelian
groups D(G) = |G|. A ‘derandomised’ argument for Alon–Roichman is given by Chen, Moore and
Russell [17]. Both [17, 47] use some Chernoff-type bounds on operator valued random variables.

Christofides and Markström [18] improve these further by using matrix martingales and proving
a Hoefdding-type bound on operator valued random variables. They also improved the quantifica-
tion for Cε, showing that one may take Cε := 1+cε with cε → 0 as ε→ 0; this means that, whp, the
graph is an ε-expander whenever k ≥ (1 + cε) log2D(G) and cε → 0 as ε→ 0. They also generalise
Alon–Roichman to random coset graphs. The proofs use tail bounds on the (random) eigenvalues.

Alon and Roichman [3, Theorem 2] also specifically consider Abelian groups. There they do a
calculation directly in terms of the eigenvalues, rather than using a probabilistic tail bound.

There are some fairly standard ways in which one can get bounds on the (usual) spectral gap.
The first is to look at the mixing time. It is standard that, for c > 0 and ε ∈ (0, 1/nc], we have

tmix(ε) � trel log(1/ε),

where n is the size of the state space of the Markov chain and c is a constant; see, eg, [49,
Theorems 12.5 and 20.6]. Thus, if one can bound the mixing time at level 1/nc then one can bound
the relaxation time. This method is used by Alon and Roichman [3], as well as by Pak [61].

Another method is to obtain a tail estimate on the value of a random eigenvalue; one can then
use the union bound to say that all (non-unitary) eigenvalues are at most some fixed value, which
in turn lower bounds the spectral gap (ie upper bounds the relaxation time).

All these references consider the regime k � log |G|; our results also apply when 1� k � log |G|.
From a technical perspective, in order to obtain failure probability via a large deviation bound
for a random eigenvector of O(1/|G|), one needs k & log |G|. The purpose of this is to carry out
a union bound over the |G| eigenvalues; see, eg, [18]. Likewise, arguments that bound the 1/|G|c
mixing time, for some constant c, in terms of some generator getting picked once (cf [69]) cannot
work unless k & log |G|. As such, to consider 1� k � log |G|, a different approach is needed. We
still use a union bound, but instead of asking for an error probability O(1/|G|) for each eigenvalue,
we group together eigenvalues according to a certain gcd and bound the error for each group.

1.6 Additional Remarks

1.6.1 Typical Cayley Graphs

Given a group G and an integer k, we are drawing the generators [Z1, ..., Zk] independently and
uniformly at random. Thus G(Z) is in fact a uniform Cayley graph. So when we say that our results
hold “whp over Z”, we could equivalently say that the result holds “for almost all degree-k Cayley
graphs of G”. Not only this, but since our asymptotic evaluation does not depend on the particular
choice of Z, this shows that the statistics in question depends very weakly on the particular choice
of generators for almost all choices of generators. This is a strong sense of ‘universality’.

1.6.2 Simple Cayley Graphs

The Cayley graph is simple if and only if no generator is picked twice, ie Zi 6= Zj for all i 6= j
and no generator is the identity; in the undirected case, additional no generator may be the inverse
of another, ie Zi 6= Z−1

j for all i and j. Since k/
√
|G| → 0 as |G| → ∞, the probability of this

event tends to 1 as |G| → ∞. Hence our “whp over Z” results all also hold when the generators
are chosen uniformly at random from G but conditional on giving rise a simple Cayley graph.
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1.6.3 Asymptotic Results and Notation

Our results are asymptotic as the size of the group diverges. As such, we implicitly consider a
sequence (GN )N∈N of groups; we also assume that k (and hence Z = [Z1, ..., Zk]) is indexed by N .
For simplicity of notation, we tend to drop the sequence notation, eg writing G or k.

For functions f and g, write f h g if f(N)/g(N) → 1 as N →∞; also write f � g, or
g � f , if f(N)/g(N) → 0 as N →∞. Write f . g, or g & f , if there exists a constant C so that
f(N) ≤ Cg(N) for all N ; also write f � g if g . f . g. Also write f = O(g) if f . g, and f = o(g)
if f � g. Throughout the paper, unless otherwise explicitly mentioned all limits will be as the size
of the group diverges; so if a term is o(1), then it tends to 0 as the group gets larger.

Throughout the paper, we frequently consider undirected and directed graphs, or simple and
directed RWs, simultaneously. We use a +-sub/superscript to indicated directed and − to indicated
undirected. We use ± to indicate that a statement holds for both; when such an identifier is omitted,
it means the same. Eg, Gk is a Cayley graph which can be either directed or undirected.

When dealing with a sequences (kN )N∈N and (GN )N∈N, we abbreviate

d±Gk,N (t) :=
∥∥PG±N ([Z1,...,ZkN ])

(
S(t) ∈ ·

)
− πGN

∥∥
TV

where Z1, ..., ZkN ∼iid Unif(GN ).

We write D±Gk,N (β) for the typical distance similarly. For simplicity, we tend to drop the sequence

notation, and sometimes the ±-superscript, eg writing d±Gk(t), DGk(β) or G.
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2 Cutoff for Almost All Random
Walks on Abelian Groups

Abstract for Chapter 2

We establish cutoff whp for all Abelian groups in the regime 1� k . log |G| with
k − d(G) � 1; the latter condition is almost optimal for generating the group whp.
(Cutoff for all Abelian groups in the regime k � log |G| had already been established.)

The cutoff time is described (abstractly) in terms of the entropy of random walk
on Zk. This abstract definition allows us to deduce that the cutoff time depends, up to
subleading order terms, only on k and |G| when d(G)� log |G| and k− d(G) � k � 1.
This is not so when d(G) � log |G| � k or even for some k � log |G| if 1� k−d(G)� k.

Table of Contents for Chapter 2

2.1 TV Cutoff: Approach #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.1 Entropic Times: Definition and Concentration . . . . . . . . . . . . . . . . . . 25
2.1.2 Entropic Times: Sketch Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Precise Statement and Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.4 Outline of Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.5 Lower Bound on Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.6 Upper Bound on Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 TV Cutoff: Approach #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.1 Entropic Times: New Methodology and Definition . . . . . . . . . . . . . . . . 33
2.2.2 Entropic Times: Definition and Concentration . . . . . . . . . . . . . . . . . . 33
2.2.3 Entropic Times: Entropy Growth Rate and Concentration . . . . . . . . . . . . 34
2.2.4 Precise Statement and Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.5 Outline of Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.6 Lower Bound on Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.7 Upper Bound on Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 TV Cutoff: Combining Approaches #1 and #2 . . . . . . . . . . . . . . . . . . . . . 39
2.3.1 Precise Statements and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.2 Outline of Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.3 Upper Bound on Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Separation Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 Mixing Time Comparison for Nilpotent Groups . . . . . . . . . . . . . . . . . . . . . . 43

2.5.1 Precise Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.2 Outline of Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.3 Reduction to Abelian-Type Calculations . . . . . . . . . . . . . . . . . . . . . 44
2.5.4 Evaluation of Abelian-Type Calculations . . . . . . . . . . . . . . . . . . . . . 45

2.6 Concluding Remarks and Open Questions . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6.1 Lack of Cutoff When k Is Constant . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6.2 A Variant on Roichman’s Argument . . . . . . . . . . . . . . . . . . . . . . . 47
2.6.3 Open Questions and Conjectures . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 2. Cutoff for Almost All Random Walks on Abelian Groups Page 024 of 161



2.1 TV Cutoff: Approach #1

In this section, we prove the first part of the upper bound on mixing for arbitrary Abelian
groups. The main result of the section is Theorem 2.1.4; see also Hypothesis A and Remark 2.1.5.

The outline of this section is as follows:

· §2.1.1 defines entropic times and states a CLT;
· §2.1.2 sketches arguments to evaluate these entropic times;
· §2.1.3 states precisely the main theorem of the section;
· §2.1.4 outlines the argument;
· §2.1.5 is devoted to the lower bound;
· §2.1.6 is devoted to the upper bound.

2.1.1 Entropic Times: Definition and Concentration

We now define precisely the notion of entropic times. Write µt, respectively νs, for the law of
W (t), respectively W1(sk); so µt = ν⊗kt/k. Define

Qi(t) := − log νt/k
(
Wi(t)

)
, and set Q(t) := − logµt

(
W (t)

)
=
∑k

1 Qi(t).

So E(Q(t)) and E(Q1(t)) are the entropies of W (t) and W1(t), respectively. Observe that t 7→
E(Q(t)) : [0,∞)→ [0,∞) is a smooth, increasing bijection.

Definition 2.1.1 (Entropic and Times). For all k, n ∈ N and all α ∈ R, define tα := tα(k, n) so that

E
(
Q1(tα)

)
=
(
log n+ α

√
vk
)
/k and sα := tα/k, where v := Var

(
Q1(t0)

)
,

assuming that log n+ α
√
vk ≥ 0. We call t0 the entropic time and the {tα}α∈R cutoff times.

Direct calculation with the Poisson distribution and SRW on Z gives the following relations.
These calculations are sketched below in §2.1.2; rigorous arguments are given in §6.1.

Proposition 2.1.2 (Entropic and Cutoff Times; Proposition 6.1.2). Assume that 1� k � log n. For
all α ∈ R, we have tα h t0 and furthermore

t0 h k · n2/k/(2πe) and (tα − t0)/t0 h α
√

2/k.

Since Q =
∑k

1 Qi is a sum of k iid random variables, Q(t0) concentrates around logN . One
can show that if the time is multiplied by a factor 1 + ξ for any constant ξ > 0 then the entropy
increases by a significant amount; similarly, if ξ < 0 then the entropy decreases by a significant
amount. Further, the change is by an additive term of larger order than the standard deviation√
Var(Q(t0)). Thus Q((1 + ξ)t0) concentrates around this new value.
The following proposition quantifies this change in entropy and this concentration; see §6.1.

Proposition 2.1.3 (CLT; Proposition 6.1.3). Assume that 1� k � log n. For all α ∈ R, we have

P
(
Q(tα) ≤ log n± ω

)
→ Ψ(α) for ω := Var

(
Q(t0)

)1/4
= (vk)1/4.

(There is no specific reason for choosing this ω. We just need some ω with 1� ω � (vk)1/2.)

2.1.2 Entropic Times: Sketch Evaluation

In this subsection, we sketch details towards a proof of Proposition 2.1.2. The full, rigorous
details can be found in Proposition 6.1.2, where all of the approximations below are justified.

Recall that t0 is the time t at which the entropy of W1(t), which is a rate-1/k process, is
log n/k. We need to find the variance Var(Q1(s0k)), as this is used in the definition of tα, given in
Definition 2.1.1. In the sketch below, we replace Var(Q1(t0)) by an approximation.
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For s ≥ 0, denote Xs := W1(sk) for s ≥ 0 and the entropy of Xs as H(s). The target entropy
log n/k � 1, and so s0 � 1. For s� 1, we find that Xs has approximately the normal N(E(Xs), s)
distribution. Translating the random variable has no affect on its entropy, and so we approximate
the entropy of Xs, which we denoted H(s), by the entropy of a N(0, s) random variable, which we
denoted H(s). Direct calculation with the normal distribution shows that

H(s) = 1
2 log(2πes) and hence H ′(s) = 1/(2s).

Define sα as the entropic times for the approximation:

H(sα) =
(
log n+ α

√
vk
)
/k where v := Var

(
Q1

(
s0k
))
,

where Q1(sk) is the analogue of Q1(sk), except with W1(sk) replaced by N(0, s). Hence s0 =
n2/k/(2πe). Direct calculation with the normal distribution, one finds

Var
(
Q1(sk)

)
= 1

2 .

As mentioned above, for this sketch, to ease the calculation of tα in Definition 2.1.1, we replace
Var(Q1(t0)) by its approximation 1

2 , and assume the above normal distribution approximation.
In order to find the window, assuming for the moment that α > 0, we write

sα − s0 =
∫ α

0
dsa
da da.

Again, we replace sα with sα. By definition, sα satisfies

H(sα) = log n/k + α/
√

2k, and hence dsα
dα H

′(sα) = 1/
√

2k.

Using the expressions for dsa/da and H ′(s) above, we find that

sα − s0 = (2k)−1/2
∫ α

0
2sa da ≈ (2k)−1/2

∫ α
0

2s0 da = αs0

√
2/k,

since sa only varies by sot over a ∈ [0, α]. The argument is analogous for α < 0.

We have now shown the desired result for sα, ie when approximating W1(sk) by N(E(Xs), s). It
will turn out that this approximation is sufficiently good for the results to pass over to the original
case, ie to apply to s0 and t0 = s0k. This is made rigorous with a local CLT.

2.1.3 Precise Statement and Remarks

In this subsection, we state precisely the main theorem of the section. There are some simple
conditions on k, in terms of d(G) and |G|, needed for the upper bound.

Hypothesis A. The sequence (kN , GN )N∈N satisfies Hypothesis A if the following hold:

lim
N→∞ |GN | =∞, lim

N→∞

(
kN − d(GN )

)
=∞ and

kN − dN (GN )− 1

kN
≥ 5

kN
log |GN |

+ 2
dN (GN ) log log kN

log |GN |
for all N ∈ N.

In Remark 2.1.5 below, we give some sufficient conditions of Hypothesis A to hold. Throughout
the proofs, we drop the subscript-N from the notation, eg writing k or n, considering sequences
implicitly. Recall that we abbreviate the TV distance from uniformity at time t as

dGk,N (t) =
∥∥PGN ([Z1,...,ZkN ])

(
S(t) ∈ ·

)
− πGN

∥∥
TV

where Z1, ..., ZkN ∼iid Unif(GN ).

We now state the main theorem of this section. Recall that Ψ is the standard Gaussian tail.

Theorem 2.1.4. Let (kN )N∈N be a sequence of positive integers and (GN )N∈N a sequence of finite,
Abelian groups; for each N ∈ N, define Z(N) := [Z1, ..., ZkN ] by drawing Z1, ..., ZkN ∼iid Unif(GN ).

Suppose that the sequence (kN , GN )N∈N satisfies Hypothesis A. Let α ∈ R. Then

d±Gk,N
(
tα(kN , |GN |)

)
→P Ψ(α) (in probability) as N →∞.

That is, for all α ∈ R, whp, tα is, up to sot, the mixing time tmix(Ψ−1(α)). Moreover, the implicit
lower bound holds deterministically, ie for all choices of generators.
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Remark. Using Proposition 2.1.2, we can write the cutoff statement in the form(
tmix(ε)− t0

)
/w →P Ψ−1(ε) for all ε ∈ (0, 1),

where t0 h k|G|2/k/(2πe) is the mixing time and w h
√
k|G|2/k/(

√
2πe) the window. 4

Remark 2.1.5. Write n := |G|. Note that the final condition of Hypothesis A implies that k ≤
1
5 log n; so we are in the regime 1� k . log n. Any of the following conditions imply Hypothesis A:

1� k .
√

log n/ log log log n and k − d� 1;

1� k .
√

log n and k − d� log log k;

1� k � log n/ log log log n and k − d ≥ δd for some suitable δ = o(1);

d� log n/ log log log n and k − d � k � log n. 4

Remark. The CLT, Proposition 2.1.3, will give the dominating term in the TV distance:
· on the event {Q(tα) ≤ log n− ω}, we lower bound the TV distance by 1− o(1);
· on the event {Q(tα) ≥ log n+ ω}, we upper bound the expected TV distance by o(1).

Combined with the CLT, we deduce that the dGk(tα)→ Ψ(α) in probability. 4

Remark. Observe that Hypothesis A does not cover the regime k & log |G|. Under certain condi-
tions on the group we can apply a variation on the argument given below to obtain a limit profile
result for any k with 1� log k � log |G|. We do not carry out the analysis here; see §5.1. 4

2.1.4 Outline of Proof

We now give a high-level description of our approach, introducing notations and concepts along
the way. No results or calculations from this section will be used in the remainder of the document;
rather, this section merely introduces ideas. Recall the definitions from the previous sections.

In all cases we show that cutoff occurs around the entropic time. As Q(t) is a sum of iid
random variables, we expected it to be concentrated around its mean. Loosely speaking, we show
that the shape of the cutoff, ie the profile of the convergence to equilibrium, is determined by the
fluctuations of Q(t) around its mean, which in turn, by the CLT (Proposition 2.1.3), are determined
by Var(Q(t)), for t ‘close’ to t0; note that Var(Q(t)) = kVar(Q1(t)) since the Qi are iid.

Throughout this section (§2.1.4), we write 0 for the identity element of the Abelian group G.
We now outline the proof in more detail. We often drop t-dependence from the notation.

We start by discussing the lower bound. If Q is sufficiently small, then W , and hence also S,
is restricted to a small set. Indeed, Q ≤ log n− ω if and only if µ(W ) ≥ n−1eω, and thus if this is
the case then W ∈ {w | µ(w) ≥ n−1eω}. Since we generate S via W , it is thus also the case that

S ∈ E := {g ∈ G | P
(
S = g

)
≥ n−1eω}.

But clearly |E| ≤ ne−ω. Choosing the time t slightly smaller than the entropic time t0 and ω � 1
suitably, the event {Q(t) ≤ log n− ω} will hold whp. Thus, whp, S(t) is restricted to a set of size
o(n). It hence cannot be mixed. This heuristic applies for any choice of generators.

Precisely, we show for any ω with 1� ω � log n, all t and all Z = [Z1, ..., Zk], that

dG(Z)(t) ≥ P
(
Q(t) ≤ log n− ω

)
− e−ω.

Observe that the probability on the right-hand side is independent of Z. Thus we are naturally
interested in the fluctuations of Q(t) for t close to t0. Using the CLT application above, ie Propos-
ition 2.1.3 with ω := Var(Q(t0))1/4, we deduce the lower bound in Theorem 2.1.4.

We now turn to discussing the upper bound. The lower bound was valid for any choice of
generators Z. Here we exploit the independence and uniform randomness of the elements of Z.

Let W ′(t) be an independent copy of W (t), and let V (t) := W (t) −W ′(t). Observe that, in
both the un- and directed case, the law of V (t) is that of the rate-2 SRW in Zk, evaluated at time
t. The standard L2 calculation (using Cauchy–Schwarz) says that

2
∥∥ζ − πG∥∥TV

≤
∥∥ζ − πG∥∥2

=

√
n
∑
x∈G

(
ζ(x)− 1

n

)2
,
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recalling that πG(x) = 1/n for all x ∈ G. A standard, elementary calculation shows that∥∥PGk(S(t) ∈ ·
)
− πG

∥∥
2

=
√
nP
(
V (t) · Z = 0 | Z

)
− 1.

Unfortunately, writing X = (X(s))s≥0 for a rate-1 SRW on Z, a simple calculation shows that

P
(
V (t0) · Z = 0 | Z

)
≥ P

(
V (t0) = (0, ..., 0) ∈ Zk

)
= P

(
X(2t0/k) = 0

)
k � 1/n.

(This calculation differs amongst the regimes of k.) Moreover, the L2-mixing time can then be
shown to be larger than the TV-mixing time by at least a constant factor; hence this is insufficiently
precise for showing cutoff in TV. (We drop the t-dependence from the notation from now on.)

This motivates the following ‘modified L2 calculation’. First let W ⊆ Zk, and write

typ :=
{
W,W ′ ∈ W

}
, P(·) := P( · | typ) and E(·) := E( · | typ);

note that here we are (implicitly) averaging over Z. (The setW ⊆ Zk will be chosen later; the idea
is that W ‘typically’ lies in it.) We now perform the same L2 calculation, but for P rather than P:

dGk(t) =
∥∥PGk(S ∈ ·)− πG∥∥TV

≤
∥∥PGk(S ∈ · |W ∈ W)− πG∥∥TV

+ P
(
W /∈ W

)
;

4E
(∥∥PGk(S ∈ · |W ∈ W)− πG∥∥2

TV

)
≤ E

(
nP
(
V · Z = 0 | Z

)
− 1
)

= nP
(
V · Z = 0

)
− 1;

see Lemma 2.1.6. By taking expectation over Z and doing a modified L2 calculation, we transformed
the quenched estimation of the mixing time into an annealed calculation concerning the probability
that a random word involving random generators is equal to the identity. This is a key step.

To have w ∈ W, we impose local and global typicality requirements. The global ones say that

− logµ(w) ≥ log n+ ω for all w ∈ W,

where ω := (vk)1/4 as above; the local ones will come later. For a precise statement of the typicality
requirements, see Definition 2.1.7. These have the property that P(W /∈ W) = Ψ(α) + o(1) � 1
when t = tα; see Proposition 2.1.8. This has the advantage that now

P
(
V = (0, ..., 0)

)
� P

(
W = W ′ |W ′ ∈ W

)
≤ n−1e−ω,

since − log x ≥ log n+ ω if and only if x ≤ n−1e−ω.

Of course, there are other scenarios in which we may have V ·Z ≡ 0. To deal with these, since
linear combinations of independent uniform random variables in an Abelian group are uniform on
their support, we have v ·Z ∼ Unif(gvG) where gv := gcd(v1, ..., vk, n); see Lemma 2.1.11. (For an
Abelian group G and γ ∈ N, define γG :=

{∑γ
1 g | g ∈ G

}
; eg, γN = {γ, 2γ, ...}.) Then

P
(
V · Z = 0, V 6= 0

)
= E

(
1/|gVG|

)
.

(Recall that V and Z are independent.) We use the local typicality conditions to ensure that
maxi |Wi| ≤ r∗, for some explicit r∗ which diverges a little faster than n1/k. This allows us to con-
sider only values γ ∈ [2r∗] for the gcd. It is here where the two approaches (§2.1 and §2.2) diverge.

In the first approach (§2.1) we use a rather direct approach. First, it is elementary that

|G|E
(
1(V 6= 0)/|gVG|

)
≤ E

(
g
d(G)
V 1(V 6= 0)

)
≤ 1 +

∑2r∗
γ=2 γ

d(G)P
(
gV = γ

)
;

see Lemma 2.1.12. Since the law of SRW on Z is unimodal, for each non-zero coordinate, the
probability that γ divides it is at most 1/γ. Thus in general the probability is at most 1/γ plus the
probability that the coordinate is 0, the latter of which is order 1/n1/k � 1/

√
tα/k. This leads to

P(gV = γ) .
(
2/n1/k + 1/γ

)k
;

see Lemma 2.1.14. Provided at least one of d(G) or k is not too close to log n, we are able to use this

inequality to control the expectation, showing E(g
d(G)
V 1(V 6= 0)) = 1 + o(1); see Corollary 2.1.15.

Chapter 2. Cutoff for Almost All Random Walks on Abelian Groups Page 028 of 161



Combining these two analyses, we deduce that

nP(V · Z = 0) ≤ nP(V · Z = 0, V 6= 0) + nP(V = 0) = 1 + o(1).

The modified L2 calculation then says that the TV distance is roughly Ψ(α) plus a term oP(1), ie
tending to 0 in probability. This establishes a matching limiting upper bound of Ψ(α) in probability.

The second approach (§2.2) analyses the term P(gV = γ) and uses it to kill |G/γG| directly in

|G|E
(
1(V 6= 0)/|gVG|

)
=
∑
γ∈N P(gV = γ)|G/γG|.

We outline in more detail the adaptation in §2.2.5, including where Approach #1 breaks down.

This concludes the outline; we now move onto the formal proofs.

2.1.5 Lower Bound on Mixing

In this subsection, we prove the lower bound on mixing, which holds for every choice of Z.

Proof of Lower Bound in Theorem 2.1.4. For this proof, assume that Z is given and suppress it.
We convert the CLT, Proposition 2.1.3, from a concentration statement about Q into one about

W : for all α ∈ R, by the CLT, we have

P
(
Eα
)
h Ψ(α) where Eα :=

{
µ
(
W (tα)

)
≥ n−1eω

}
=
{
Q(tα) ≤ log n− ω

}
;

recall that ω � 1. Fix α ∈ R. Consider the set

Eα :=
{
x ∈ G

∣∣ ∃w ∈ Zd st µtα(w) ≥ n−1eω and x = w · Z
}
.

Since we use W to generate S, we have P(S(tα) ∈ Eα | Eα) = 1. Every element x ∈ Eα can be
realised as x = wx · Z for some wx ∈ Zk with µtα(wx) ≥ n−1eω. Hence, for all x ∈ Eα, we have

P
(
S(tα) = x

)
≥ P

(
W (tα) = wx

)
= µtα(wx) ≥ n−1eω.

Taking the sum over all x ∈ Eα, we deduce that

1 ≥
∑
x∈Eα P

(
S(tα) = x

)
≥ |Eα| · n−1eω, and hence |Eα|/n ≤ e−ω = o(1).

Finally we deduce the lower bound from the definition of TV distance:∥∥P(S(tα) ∈ · | Z
)
− πG

∥∥
TV
≥ P

(
S(tα) ∈ Eα

)
− πG(Eα) ≥ P(Eα)− 1

n |Eα| ≥ Ψ(α)− o(1).

Remark. Using a variant of this argument, in §3.1.5 we prove an analogous lower bound for general
groups: where t0(k, |G|) was the lower bound above (for Abelian groups), we establish a lower bound
of t0(k, |G/[G,G]|) for any group. (If a group is Abelian, then [G,G] is trivial.) In many cases, this
is a significant improvement over previous best-known bound of logk−1 |G|. 4

2.1.6 Upper Bound on Mixing

It is often easier to consider L2 distances than L1: roughly, squares are easier to deal with than
absolute values. TV has the significant advantage, though, of being uniformly bounded (by 1); as
such, we can condition on high probability events, and upper bound the by 1 when this event fails.

We use a ‘modified L2 calculation’: first conditioning that W is ‘typical’; then using a standard
L2 calculation on the conditioned law. Let W ′ be an independent copy of W ; then S′ := W ′ · Z is
an independent copy of S.

Lemma 2.1.6. For all t ≥ 0 and all W ⊆ Zk, the following inequalities hold:

dGk(t) =
∥∥PGk(S(t) ∈ ·

)
− πG

∥∥
TV
≤
∥∥PGk(S(t) ∈ · |W (t) ∈ W

)
− πG

∥∥
TV

+ P
(
W (t) /∈ W

)
;

4E
(∥∥PGk(S(t) ∈ · |W (t) ∈ W

)
− πG

∥∥2

TV

)
≤ nP

(
S(t) = S′(t) |W (t),W ′(t) ∈ W

)
− 1.
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Proof. The first claim follows immediately from the triangle inequality. For the second, using
Cauchy–Schwarz, we upper bound the TV distance of the conditioned law by its L2 distance:

4
∥∥PGk(S ∈ · |W ∈ W)− πG∥∥2

TV
≤ n

∑
x

(
PGk

(
S = x |W ∈ W

)
− 1

n

)2
= n

∑
x PGk

(
S = x |W ∈ W

)
2 − 1 = n

∑
x PGk

(
S = S′ = x |W,W ′ ∈ W

)
− 1,

as S = W · Z and S′ = W ′ · Z. The claim follows by taking expectations.

We now make the specific choice of the ‘typical’ set W; we make a different choice for each
α ∈ R. Write Ψ for the standard Gaussian tail. The collection {Wα}α∈R of sets will satisfy
P(W (tα) /∈ Wα) h Ψ(α), using the CLT (Proposition 2.1.3). We show that the L2 distance is
o(1); see Proposition 2.1.9. Applying Lemma 2.1.6, we find that dGk(tα) ≤ Ψ(α) + o(1) whp over
Z. This matches the lower bound from §2.1.5.

By considering all α ∈ R, we are able to find the shape of the cutoff. If we only desire the order of
the window, then we need only consider the limit α→∞; in this case, P(W (tα) /∈ Wα) ≈ Ψ(α) ≈ 0,
which explains the use of the word ‘typically’ in describing Wα.

The typicality conditions will be a combination of ‘local’ (coordinate-wise) and ‘global’ ones.

Definition 2.1.7. For all α ∈ R, define the local and global typicality conditions, respectively:

Wα,loc :=
{
w ∈ Zk

∣∣ ∣∣wi − E
(
W1(tα)

)∣∣ ≤ r∗ ∀ i = 1, ..., k
}

where r∗ := 1
2n

1/k(log k)2;

Wα,glo :=
{
w ∈ Zk

∣∣ P(W (tα) = w
)
≤ n−1e−ω

}
.

Define Wα :=Wα,loc ∩Wα,glo, and say that w ∈ Zk is (α-)typical if w ∈ Wα.

The following proposition determines the probability that W (tα) lies in Wα, ie of typicality.

Proposition 2.1.8. For each α ∈ R, we have

P
(
W (tα) /∈ Wα

)
→ Ψ(α).

Proof. By our CLT, Proposition 2.1.3, the probability that the global conditions hold converges to
1−Ψ(α). Proposition 2.1.2 and Definitions 6.3.1 and 6.3.2 and Proposition 6.3.3 together say that
the probability that a single coordinate fails the local condition is at most k−3/2. By the union
bound, the probability that local typicality fails to hold is then at most k−1/2 = o(1).

Herein, we fix α ∈ R and frequently suppress the tα from the notation, eg writing W· for W·(tα)
or W for Wα. Let V := W −W ′, so {W · Z = W ′ · Z} = {V · Z = 0}. Write

D := D(tα) := nP
(
V (tα) · Z = 0 | typα

)
− 1 where typ := typα :=

{
W (tα),W ′(tα) ∈ Wα)

}
.

It remains to show that D(tα) = o(1) for all α ∈ R. Recall the conditions of Hypothesis A, the
crux of which is that

k − d
k
− 4

d log log k

log n
≥ 10

k

log n
and k − d� 1.

For r1, .., r` ∈ Z \ {0}, we use the convention gcd(r1, ..., r`, 0) := gcd(|r1|, ..., |r`|).

Proposition 2.1.9. Suppose that (d, n, k) jointly satisfy Hypothesis A. (Recall that, implicitly,
(d, n, k) is a sequence of integers.) Write g := gcd(V1, ..., Vk, n). Then, for all α ∈ R, we have

0 ≤ D(tα) =
∑
γ∈N P(g = γ | typ) · |G|/|γG| − 1 = o(1).

Given this proposition, we can prove the upper bound in the main theorem, Theorem 2.1.4.

Proof of Upper Bound in Theorem 2.1.4 Given Proposition 2.1.9. Hypothesis A are precisely
the conditions required for Proposition 2.1.9. Apply the modified L2 calculation, Lemma 2.1.6
and Definition 2.1.7, and use Propositions 2.1.8 and 2.1.9 to control the two resulting terms. Com-
bined, these say that dGk(tα) ≤ Ψ(α) + o(1) whp over Z.
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It remains to prove Proposition 2.1.9, ie to bound the modified L2 distance. The remainder of
the section is dedicated to this goal. To do this, we are interested in the law of V · Z. Obviously,
when V = 0, we have V ·Z = 0. The following auxiliary lemma controls this probability; its proof
is deferred to the end of the subsection.

Lemma 2.1.10. We have

nP
(
V = 0 | typ

)
≤ e−ω/P(typ) . e−ω = o(1).

Now, linear combinations of independent uniform random variables in an Abelian group are
themselves uniform on their support. Hence the distribution of v·Z is uniform on gcd(v1, ..., vk, n)G;
this is proved carefully in Lemma 6.6.1. (Recall that γG := {γg | g ∈ G} for γ ∈ N.)

Lemma 2.1.11. For all v ∈ Zk, we have

v · Z ∼ Unif
(
γG
)

where γ := gcd(v1, ..., vk, n).

We thus need to control |γG|, since Lemma 2.1.11 implies that

P
(
V · Z = 0 | typ

)
=
∑
γ∈N P(g = γ | typ)/|γG| where g := gcd

(
V1, ..., Vk, n

)
.

Lemma 2.1.12. For all Abelian groups H and all γ ∈ N, we have

|H|/|γH| ≤ γd(H).

Proof. Decompose H as ⊕d1 Zmj with d = d(H) and some m1, ...,md ∈ N. Then γH can be

decomposed as ⊕d1 gcd(γ,mj)Zmj . Hence |γH| =
∏d

1(mj/ gcd(γ,mj)) ≥
∏d

1(mj/γ) = |H|/γd.

These lemmas combine to produce a simple, but key, corollary. Recall that g = gcd(V1, ..., Vk, n).

Corollary 2.1.13. We have

nP
(
V · Z = 0, V 6= 0 | typ

)
≤ E

(
gd 1(V 6= 0) | typ

)
.

Proof. The conditioning does not affect Z. The corollary follows from Lemmas 2.1.11 and 2.1.12.

In order to control this gcd, we need to determine the probability that an individual coordinate
is a multiple of a given number. We evaluate the RW around the entropic time t0. The proof of the
following auxiliary lemma is deferred to the end of the subsection. This, along with Corollary 2.1.13,
are the key elements to the proof of Proposition 2.1.9.

Lemma 2.1.14. For all γ ∈ N, we have

P
(
V1 ∈ γZ | V1 6= 0

)
≤ 1/γ and P(g = γ | typ) .

(
1/γ + 2/n1/k

)k
.

From this, using the conditions of Hypothesis A, we can deduce that E(gd 1(V 6= 0) | typ) =
1 + o(1). We refer to this as a “corollary”, since its proof is purely technical, not relying on any
properties of the RW or the generators, just algebraic manipulation. Its proof is briefly deferred.

Corollary 2.1.15. Given Hypothesis A, we have E(gd 1(V 6= 0) | typ) = 1 + o(1).

Proposition 2.1.9 now follows immediately from Lemma 2.1.10 and Corollaries 2.1.13 and 2.1.15.

Proof of Proposition 2.1.9. By Lemma 2.1.10 and Corollaries 2.1.13 and 2.1.15, we have

nP
(
V · Z = 0 | typ

)
≤ nP

(
V = 0 | typ

)
+ nP

(
V · Z = 0, V 6= 0 | typ

)
≤ nP

(
V = 0 | typ

)
+ E

(
gd 1(V 6= 0) | typ

)
= 1 + o(1).
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We now give the deferred proof of Corollary 2.1.15.

Proof of Corollary 2.1.15. By local typicality, g ≤ 2r∗ = n1/k(log k)2 when V 6= 0. Hence

E
(
gd 1(V 6= 0) | typ

)
=
∑
γ∈N γ

dP
(
g = γ | typ

)
≤ 1 +

∑bn1/k(log k)2c
γ=2 γd P(g = γ | typ).

For γ ≥ 2, we use Lemma 2.1.14. Let δ ∈ (0, 1). For 2 ≤ γ ≤ δn1/k, we use the bound

P(g = γ | typ) .
(
1/γ + 2/(γ/δ)

)k
= (1 + 2δ)k/γk.

For γ ≥ δn1/k, we use the slightly crude bound

P(g = γ | typ) . 2k
(
1/γk + 2k/n

)
= 2k/γk + 4k/n.

Dividing the appropriate sum over γ into two parts according to whether or not γ ≤ δn1/k and
using the above inequalities, elementary algebraic manipulations can be used to deduce that

E
(
gd 1(V 6= 0) | typ

)
− 1 . e2δk2d+1−k + 2kδd+1−kn(d+1−k)/k + 4kn(d+1)/k(log k)2(d+1)/n.

This is o(1), by the conditions of Hypothesis A, as we now outline. Write η := (k−d−1)/k ∈ (0, 1).
We wish to choose δ as large as possible so that the first term is o(1); set δ := 1

4η. With this defin-
ition, it is not difficult to see that the assumption η ≥ 4k/ log n, which follows immediately from
Hypothesis A, is sufficient to make the middle term small. Finally, the inequality in Hypothesis A
is designed precisely so that the final term is o(1), noting that ηk ≥ k − d− 1 ≥ 1

2 (k − d).

Remark 2.1.16. From our analysis, it follows that if k − d = M ≥ 2 is fixed (ie not diverging),
then the order of the mixing time is still given by t0. However, our argument does not give cutoff
in this case. For many groups we expect there to be cutoff, but not always. In fact, for certain
groups, eg Zd2, it is not even the case that the group is generated whp. 4

It remains to prove the auxiliary lemmas, namely Lemmas 2.1.10 and 2.1.14.

Proof of Lemma 2.1.10. By direct calculation, since W and W ′ are independent copies,

P
(
V = 0, typ

)
= P

(
W = W ′, W ∈ W

)
=
∑
w∈W P

(
W = w

)
2.

Recall global typicality: P(W = w) ≤ n−1e−ω for all w ∈ W. Thus

nP
(
V = 0 | typ

)
≤ n

∑
w∈W P

(
W = w

)
2/P(typ) ≤ e−ω/P(typ).

Proof of Lemma 2.1.14. Let X = (Xs)s≥0 be a rate-1 SRW on Z. To calculate the expectation,
we use that V = W −W ′ has the distribution of a SRW run at twice the speed; in particular,
Vi(t) ∼ X2t/k, and that coordinates of V are independent. (This holds for both the un- and directed
cases.) Clearly the distribution of X is symmetric about 0.

It is easy to see that any non-increasing distribution on N can be written as a mixture of
Unif({1, ..., Y }) distributions, for different Y ∈ N. Observe that the map m 7→ P(|Xs| = m) : N→
[0, 1] is non-increasing for any s ≥ 0. Hence |V1| conditional on V1 6= 0 has such a distribution. Thus

|V1| ∼ Unif{1, ..., Y } conditional on V1 6= 0,

where Y has some distribution. Hence we have

P
(
V1 ∈ γZ | V1 6= 0

)
= E

(⌊
Y/γ

⌋/
Y
)
≤ 1/γ.

If the gcd g = γ, then Vi ∈ γZ for all i ∈ [k]. Hence, by independence of coordinates, we obtain

P(g = γ | typ) ≤ P(g = γ)/P(typ) . P(V1 ∈ γZ)k ≤
(
P(V1 = 0) + P(V1 ∈ γZ | V1 6= 0)

)k
,

noting that P(typ) � 1. Using Proposition 2.1.2 to argue that P(V1 = 0) ≤ 2/n1/k, we deduce that

P(g = γ | typ) .
(
2/n1/k + 1/γ

)k
.
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2.2 TV Cutoff: Approach #2

Recall that the cutoff statement for arbitrary Abelian groups, Theorem A, is established via
two distinct approaches. In the previous section we used one approach to deal with the case that
k is ‘not too large’. In this section we use a new approach to deal with the case that k is ‘not too
small’. The main result of the section is Theorem 2.2.6; see also Hypothesis B and Remark 2.2.7.

The outline of this section is roughly the same as that of the previous one:

· §2.2.1 discusses the new, refined entropic methodology;
· §2.2.2 defines the new entropic times;
· §2.2.3 states bounds on the growth rate of the entropy and concentration;
· §2.2.4 states precisely the main theorem of the section;
· §2.2.5 outlines the differences between this argument and the previous approach;
· §2.2.6 is devoted to the lower bound;
· §2.2.7 is devoted to the upper bound.

2.2.1 Entropic Times: New Methodology and Definition

The underlying principles of the method used in this section (§2.2) are the same as those of the
previous (§2.1). We adjust the method slightly to deal with the cases not covered in §2.1.

We first discuss where the previous approach broke down, and how we might fix it. The primary
issue was when d was very large. Eg consider Zd2. Since all elements are of order 2, instead of looking
at W , a RW on Z, we could equally have looked at W taken modulo 2. The entropy of W1 mod 2
may be significantly smaller than that of W1 at the original entropic time t0.

We saw that V · Z ∼ Unif(γG) when gcd(V1, ..., Vk, n) = γ. (This assumes that the group
G is Abelian.) This motivates defining tγ to be the time at which the entropy of W1 mod γ is
log |G/γG|. The proposed upper bound is then given by t∗ := maxγ∈N tγ .

While this method will be able to handle arbitrary Abelian groups, we only get an abstract
definition of the cutoff time, which is not easily calculable for many groups.

As in the previous sections, not only are we interested in the entropy at this proposed mixing
time t∗, but we also desire quantitative information about the rate of change of entropy at this
time, and the variance of the ‘random entropy’, denoted Q.

2.2.2 Entropic Times: Definition and Concentration

In this section, we redefine entropic times. There is some overlap with notation from before,
but all entropic definitions from §2.1.1 should be forgotten; all terms will be defined below.

We now define precisely the (updated) notion of entropic times. Let W = (Wi(t) | i ∈ [k], t ≥ 0)
be a RW on Z, counting the uses of generators, as in the previous sections. (This can be either a SRW
on Z or DRW on Z+.) As before, S(t) = W (t)·Z. For γ ∈ N, define Wγ via Wγ,i(t) := Wi(t) mod γ;
write W∞ := W . Then Wγ is a RW on Zkγ ; so Wγ,i := (Wγ,i(t))t≥0 forms an iid sequence (over
i ∈ [k]) of rate-1/k RWs on Zγ .

Write µγ,t, respectively νγ,s, for the law of Wγ(t), respectively Wγ,1(sk); so µγ,t = ν⊗kγ,t/k. Define

Qγ(t) := − logµγ,t
(
Wγ(t)

)
and Qγ,i(t) := − log νγ,t/k

(
Wγ,i(t)

)
;

then, Qγ,i forms an iid sequence over i ∈ [k], and

Qγ(t) =
∑k
i=1Qγ,i(t), hγ(t) := E

(
Qγ(t)

)
and Hγ(s) := E

(
Qγ,1(sk)

)
.

So hγ(t) and Hγ(s) are the entropies of W (t) and W1(sk), respectively. Note that hγ(t) = kHγ(t/k)
and that hγ : [0,∞)→ [0, log(γk)) is a strictly increasing bijection.

Some of these expressions, such as hγ , depend on k; we usually suppress this from the notation.

Definition 2.2.1. For N < γk, define the entropic time

t0(γ,N) := h−1
γ (logN) and s0(γ,N) := t0(γ,N)/k = H−1

γ (logN/k).
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We are interested primarily in N := |G/γG|. For an Abelian group G, define

t∗(k,G) := maxγo|G| t0(γ, |G/γG|).

Our next result determines the asymptotics of t∗. The first part is for k−d(G) � k: it shows that
here the mixing time is the same order as that from Approach #1, ie kn2/k. Combining the two
approaches, this means that all Abelian groups have mixing time order kn2/k when 1� k . log n
and k−d(G) � k. The second part allows k−d to diverge arbitrarily slowly: in this case the mixing
time can be as large as order kn2/k log k. The final part evaluates t∗ up to sot when d(G)� log |G|
and k − d(G) � k. The proofs are given in §6.2.3.2.

Proposition 2.2.2a (Proposition 6.2.17). Suppose that 1� k . log |G|. The following hold:

if k − d(G) � k, then t∗(k,G) � k|G|2/k;

if k − d(G) > 1, then t∗(k,G) . k|G|2/k log k.

Proposition 2.2.2b (Proposition 6.2.18). Suppose that d(G) � log |G| and k − d(G) � k � 1.
Then t∗(k,G) h t0(∞, |G|). (Note that t0(∞, |G|) = t0(k, |G|) from Definition 2.1.1.)

Heuristics Behind Proofs. For the RW on Zγ , until time γ2 the walk looks roughly the same as
if it were on Z. In particular, the entropy growth rates are comparable. From this, we are able to
see that s∗ is the same order as the entropic time s0 from §2.1 when k − d � k.

For k − d � 1, by Lemma 2.1.12, we have s0(γ, |G/γG|) ≤ s0(γ, γd) = s0(γ, |Zdγ |) = R−1
γ (ζγ).

So the worst case is studying relative entropy for the RW on Zdγ . In §5.2 we analyse in detail RWs

on random Cayley graphs of Zdp. In particular, we analyse this entropic time for 1� k − d� k.
The same heuristics hold for the regime 1 � k � log |G|, except that now one checks that

the optimal γ satisfies γ � 1 and s0(γ, log |G/γG|) � γ2. In this case, the RW on Zγ is almost
indistinguishable from that on Z. Hence the entropic times are asymptotically equivalent.

For k � log |G|, the mixing time is order k � log |G|. As such one expects each generator to be
picked an order 1 number of times. One can then separate into large γ and small γ; upper bound
|G/γG| ≤ |G| in the former case and |G/γG| ≤ γd(G) in the latter. The optimal γ must be small.

In §2.2.6, we show that t0(γ, |G/γG|) is a lower bound on mixing for all γ, for all Z. Throughout
this section, we work under the assumption that k . log n. (Recall from §1.5.2 that cutoff had
already been established for all Abelian groups when k � log n.) As a result of this, taking γ := n,
we see that the mixing time is at least order k. There hence exists a ς > 0 so that the mixing time
is at least 2ςk. (This is true for all Z, not just whp over Z.)

The following definitions are made purely for technical convenience.

Definition 2.2.3. For s ≥ 0 and γ ≥ 2, define the (adjusted) entropic time and relative entropy via

sγ := s0(γ, |G/γG|) ∨ ς, tγ := sγk and Rγ(s) := log γ −Hγ(s).

We have maxγ∈N tγ = maxγ∈N t0(γ, |G/γG|).

The maximal entropy of a distribution on Zγ is log γ, obtained uniquely by the uniform distri-
bution Unif(Zγ). Hence Rγ(s)→ 0 as s→∞ since the RW converges to Unif(Zγ).

2.2.3 Entropic Times: Entropy Growth Rate and Concentration

In the previous approach, we had a CLT for the random variable Q. Here we do not give such
precise results; this means that while we show cutoff, we do not find the profile. (Even if we knew
such refined information, it would be difficult to calculate maxγ∈N tγ , as this is highly dependent
on the group.) Instead, we determine the rate of change of the entropy around the entropic time,
and determine concentration estimates on the ‘random entropy’, ie the Qγ random variable, at a
time shortly after the entropic time.

The first lemma controls the rate of change of the entropy near the entropic time; see §6.2.
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Lemma 2.2.4 (Lemma 6.2.20). There exists a continuous function c : (0, 1) → (0, 1) so that, for
all γ ≥ 2, all ξ ∈ (−1, 1) \ {0} and all s ≥ ς, we have∣∣Hγ

(
s(1 + ξ)

)
−Hγ(s)

∣∣ ≥ 2c|ξ|
(
Rγ(s) ∧ 1

)
.

Given that we know how much the entropy, ie the expectation of Qγ , changes, we now want
a concentration result, giving upper and lower tail estimates. The upper tail is used for the lower
bound on mixing: it says that Qγ is at most some value whp. Similarly, the lower tail is used for
the upper bound on mixing. These are given in Proposition 2.2.5, which is proved in §6.2.

Recall that t∗ = maxγ∈N tγ and d = d(G). For γ ∈ N, write ζγ := 1
k (k − d(G)) log γ.

Proposition 2.2.5 (Proposition 6.2.21). Assume that k > d. There exists a continuous function
c : (0, 1)→ (0, 1) so that, for all γ ≥ 2 and all ε ∈ (0, 1), the following hold:

P
(
Qγ
(
t∗(1 + ε)

)
≤ log |G/γG|+ cε(ζγ ∧ 1)k

)
≤ exp

(
−cε(ζγ ∧ 1)k

)
;

P
(
Qγ
(
t(1− ε)

)
≥ log |G/γG| − cε(ζγ ∧ 1)k

)
= o(1) for all t ≤ tγ .

The proof of this proposition is given in §6.2. We give a brief outline here. Recall that Qγ(t) =∑k
1 Qγ,i(t) is a sum of iid terms, each of which has mean Hγ(t/k)/k. Applying the entropy growth

rate lemma, ie Lemma 2.2.4, we see, for any ξ ∈ (−1, 1) \ {0}, that the change in entropy between
times s and (1 + ξ)s is order Rγ(s) ∧ 1 (with implicit constant depending on |ξ|). Taking s :=
s0(γ, |G/γG|), recalling that |G/γG| ≤ γd(G) by Lemma 2.1.12, gives

Rγ(s) = log γ −Hγ(s) = log γ − (log |G/γG|)/k ≥ 1
k

(
k − d(G)

)
log γ = ζγ .

(We are interested in the times sγ , not s0(γ, |G/γG|); this is a minor technical complication.)
Regarding the concentration, the non-quantitative part is then an application of Chebyshev’s

inequality, once one has shown that the variance Var(Qγ,1(sk)) is uniformly bounded over s ≥ ς;
the quantitative part requires a (one-sided) large deviations estimate.

2.2.4 Precise Statement and Remarks

In this subsection, we state precisely the main theorem of the section. There are some simple
conditions on k, in terms of d(G) and |G|, needed for the upper bound.

Hypothesis B. The sequence (kN , GN )N∈N satisfies Hypothesis B if the following hold:

lim supN kN/ log |GN | <∞, lim infN
(
kN − d(GN )

)
=∞ and lim infN kN/ log |HN | =∞,

where HN :=
{
γGN

∣∣ γ o |GN | and γ ∈ [2, n∗,N ]
}

and n∗,N := b|GN |1/kN (log kN )2c.

In Remark 2.2.7 below, we give a sufficient condition for Hypothesis B to hold. Throughout
the proofs, we drop the subscript-N from the notation, eg writing k or n, considering sequences
implicitly. Recall that we abbreviate the TV distance from uniformity at time t as

dGk,N (t) =
∥∥PGN ([Z1,...,ZkN ])

(
S(t) ∈ ·

)
− πGN

∥∥
TV

where Z1, ..., ZkN ∼iid Unif(GN ).

We now state the main theorem of this section. Recall that t∗ = maxγ∈N t0(γ, |G/γG|).

Theorem 2.2.6. Let (kN )N∈N be a sequence of positive integers and (GN )N∈N a sequence of finite,
Abelian groups; for each N ∈ N, define Z(N) := [Z1, ..., ZkN ] by drawing Z1, ..., ZkN ∼iid Unif(GN ).

Suppose that the sequence (kN , GN )N∈N satisfies Hypothesis B. Let c ∈ (−1, 1) \ {0}. Then

d±Gk,N
(
(1 + c)t±∗ (kN , GN )

)
→P 1(c < 0) (in probability) as N →∞.

That is, whp, there is cutoff at maxγ t
±
0 (γ, |G/γG|). Moreover, the implicit lower bound holds

deterministically, ie for all choices of generators.

Remark 2.2.7. If k �
√

log n, then k � log |H|, since |H| ≤ n∗ ≤ n1/k(log k)2. 4

Chapter 2. Cutoff for Almost All Random Walks on Abelian Groups Page 035 of 161



2.2.5 Outline of Proof

The general outline of this approach is the same as that of the previous; see §2.1.4 for an outline
of the previous approach. The previous approach failed once either d or k became too large, or
k − d became too small. We outline here the ideas used to cover these cases.

For the lower bound, we project the walk from G to G/γG. This can only decrease the TV
distance. The idea, then, is that where before we looked at a RW on Zk and waited until it has
entropy log |G|, instead we look at a RW on Zkγ and wait until it has entropy log |G/γG|; see
Definition 2.2.1. We then take a worst-case over γ ∈ N.

For the upper bound, fundamentally, we still wish to bound the same expression:

D(t) =
∑
γ∈N P(g = γ | typ) · |G|/|γG| − 1;

see Propositions 2.1.9 and 2.2.13. In §2.1.6, we upper bounded |G|/|γG| ≤ γd(G). In certain situ-
ations, this is too crude. Instead, observe that if g = γ then V ≡ 0 mod γ. But Wγ := W mod γ
and W ′γ := W ′ mod γ are simply RWs on Zkγ . Just as we used entropy and typicality to get

P
(
W = W ′ | typ

)
� 1/|G|

in Lemma 2.1.10, here we adjust the entropic time (and typicality) so that

P
(
Wγ = W ′γ | typ

)
� |γG|/|G|;

see Definitions 2.2.1 and 2.2.8 and the proof of Proposition 2.2.13.

2.2.6 Lower Bound on Mixing

In this subsection, we state and prove the lower bound, matching the upper bound of The-
orem 2.2.6; it holds not only for all groups G but also for all choices of Z, not just whp.

The idea is to quotient out by γG, and show that the walk on this quotient is not mixed at time
(1− ε)t0(γ, |G/γG|), and hence the original walk is not mixed on G either. We use the same idea
as in §2.1.5 to show that, for each γ, the walk is not mixed on G/γG at time (1− ε)t0(γ, |G/γ,G|).

In §2.2.6 we used a CLT to control the entropic variables. Here we use the entropy growth rate
and variance bounds, detailed in Proposition 2.2.5.

Proof of Lower Bound in Theorem 2.2.6. For this proof, assume that Z is given and suppress it.
We first convert the statement from one about Qγ to one about Wγ . Let ε ∈ (0, 1) and set

t := (1− ε)t0(γ, |G/γG|). Write ζγ := Rγ(s0(γ, |G/γG|)). From Proposition 2.2.5, we obtain

P(E) = 1− o(1) where E :=
{
µγ,t

(
Wγ(t)

)
≥ δ−1

γ,ε/|G/γG|
}

and δγ,ε := exp
(
−cε(ζγ ∧ 1)k

)
.

From Lemma 2.1.12, we have |G/γG| ≤ γd(G). Thus

ζγ = Rγ
(
s0(γ, log |G/γG|)

)
= log γ − log |G/γG|/k ≥ 1

k

(
k − d(G)

)
log γ;

also, k − d(G)� 1. Thus δγ,ε = o(1) uniformly in γ. Consider the set

A :=
{
x ∈ G/γG

∣∣ ∃w ∈ Zkγ st µγ,t(w) ≥ δ−1
γ,ε/|G/γG| and x = (w · Z)γG

}
.

Define Sγ to be the projection of S to G/γG. Since we use W to generate Sγ , we have P(Sγ(t) ∈
A | E) = 1. Every element x ∈ A can be realised as x = wx · Z for some wx ∈ Zkγ with µγ,t(wx) ≥
δ−1
γ,ε/|G/γG|. Hence, for all x ∈ A, we have

P
(
Sγ(t) = x

)
≥ P

(
Wγ(t) = wx

)
= µγ,t(wx) ≥ δ−1

γ,ε/|G/γG|,

recalling that Sγ lives in the quotient G/γG. Summing over x ∈ A, we deduce that

1 ≥
∑
x∈A P

(
Sγ(t) = x

)
≥ |A| · δ−1

γ,ε/|G/γG|, and hence |A|/|G/γG| ≤ δγ,ε = o(1).

Projecting onto G/γG (which can only decrease the TV distance), we see that∥∥PGk(S(t) ∈ ·
)
− πG

∥∥
TV
≥ P

(
Sγ(t) ∈ A

)
− πG/γG(A) ≥ P(E)− |A|/|G/γG| = 1− o(1).

Finally, recall that maxγ∈N tγ = maxγ∈N t0(γ, |G/γG|). This completes the proof.
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2.2.7 Upper Bound on Mixing

To upper bound the mixing time, we use a ‘modified L2 calculation’, as in the previous approach.
This involves first conditioning that W has some ‘typical’ properties, laid out in the following
definition, and then performing a standard TV–L2 upper bound on the conditioned law.

Abbreviate t∗,ε := t∗(1 + ε). Recall that d = d(G) and ζγ = 1
k (k − d) log γ; set ζ̂γ := ζγ ∧ 1.

Definition 2.2.8. Let ε > 0; recall the constant cε > 0 from Proposition 2.2.5. The following
depend on ε; we suppress this in the notation. Define global typical sets for γ ∈ N by

Wγ,glo :=
{
w ∈ Zkγ

∣∣ P(Wγ(t∗,ε) = w) ≤ δγ,ε/|G/γG|
}

where δγ := δγ,ε := e−cεζ̂γk.

Also define δ∞ := δ∞,ε := e−cεk. Define the local typicality set by

Wloc :=
{
w ∈ Zk

∣∣ |wi − E(Wi(t∗,ε))| ≤ r∗ ∀ i ∈ [k]
}

where r∗ := 1
2n

1/k(log k)2.

When W ′ is an independent copy of W , define typicality by

typ :=
{
W (t∗,ε),W

′(t∗,ε) ∈ Wloc

}
∩
(
∩γ∈Γ

{
Wγ(t∗,ε),W

′
γ(t∗,ε) ∈ Wγ,glo

})
,

where Γ is a subset of [2, n] to be defined below in Definition 2.2.11.

We are going to do a union bound over γ ∈ Γ, so desire control on
∑
γ∈Γ δγ .

Lemma 2.2.9. For all Γ ⊆ N \ {1}, we have
∑
γ∈Γ δγ ≤ δ∞,ε|Γ|+ o(1).

Proof. Since min Γ ≥ 2 and k − d� 1, we have∑
γ∈Γ δγ ≤

∑
γ∈Γ(e−cεk + e−cεζγk) = e−cεk|Γ|+

∑
γ∈Γ γ

−cε(k−d) = δ∞|Γ|+ o(1).

Proposition 2.2.10. For all ε > 0 and any subset Γ ⊆ N \ {1}, we have

P(typ) ≥ 1− 2δ∞,ε|Γ| − o(1).

Proof. Suppress the time-dependence from the notation, eg writing W for W (t∗,ε).
Consider global typicality. First, observe that

Qγ = − logµγ(Wγ) ≥ log |G/γG|+ cεζ̂γk if and only if µγ(Wγ) ≤ e−cεζ̂γk/|G/γG|.

Hence, recalling that δγ = δγ,ε = exp(−cεζ̂γk), by Proposition 2.2.5, we have

P
(
µγ(Wγ) ≤ δγ/|G/γG|

)
≤ δγ , and hence P

(
∩γ∈Γ

{
Wγ ∈ Wγ,glo

})
≥ 1−

∑
γ∈Γ δγ ,

by the union bound. Recall that ζγ = 1
k (k − d) log γ. Applying Lemma 2.2.9, we deduce that

P
(
∩γ∈Γ

{
Wγ ∈ Wγ,glo

})
≥ 1− δ∞,ε|Γ| − o(1) where δ∞,ε = e−cεk.

Now consider local typicality. Proposition 2.2.2a says that t/k ≤ |G|2/k log k. Then Defini-
tions 6.3.1 and 6.3.2 and Proposition 6.3.3 together give

P
(
∩i
{
|Wi − E(Wi)| ≤ r∗

})
= 1− o(1), and hence P

(
W ∈ Wloc

)
= 1− o(1).

The claim follows by combining local and global typicality and applying the union bound.

We now choose the set Γ, to make sense of typicality. Recall that “H ≤ G” means that H is a
subgroup of G and that we write α o β, for α, β ∈ N, if α divides β.

Definition 2.2.11. Abbreviate n∗ := (n− 1) ∧ b2r∗c. Define ∆ := {γ ∈ [2, n∗] | γ o n}. Write H for
the set of all proper subgroups H of G which can be represented as H = γG for some γ ∈ ∆:

H :=
{
H | H = γG 6= G for some γ o n with 2 ≤ γ ≤ n∗

}
.

Given H ∈ H, write ΓH := {γ ∈ ∆ | H = γG} and denote by γH the minimal γ on so that H = γG,
ie γH := inf ΓH . Finally, define Γ := {γH | H ∈ H} ∪ {n}; so Γ ⊆ ∆ ∪ {n} ⊆ [2, n∗] ∪ {n}.
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The following lemma, whose proof is deferred to the end of the subsection, will also be needed.

Lemma 2.2.12. Given H ∈ H, for all γ ∈ ΓH , we have γH o γ.

As shown below, we can combine our results to control the L2 distance conditioned on typicality.
In analogy with §2.1.6 and Proposition 2.1.9, write

D := D(t) := nP
(
V (t) · Z = 0 | typ

)
− 1.

Proposition 2.2.13. Write g := gcd(V1, ..., Vk, n). Then, for all ε ∈ (0, 1), we have

0 ≤ D
(
t(1 + ε)

)
=
∑
γ∈N P(g = γ | typ) · |G|/|γG| − 1 ≤

(
δ∞,ε|H|+ o(1)

)
/P(typ).

(The conditions of Hypothesis B imply immediately that this last term is o(1).)

From Propositions 2.2.10 and 2.2.13, it is straightforward to deduce the upper bound on mixing.

Proof of Upper Bound in Theorem 2.2.6. We use a modified L2 calculation.

· Condition that W satisfies typicality; see Definition 2.2.8 and Proposition 2.2.10.

· Perform the standard TV–L2 upper bound on the law of S conditioned that W is typical.

· Upper bound the resulting L2 distance by (δ∞,ε|H|+ o(1))/P(typ); see Proposition 2.2.13.

· This gives an upper bound on the expected TV distance of (δ∞,ε|H|+o(1))/P(typ)+P(typc).

· From the definition of Γ, it is clear that |Γ| ≤ |H| + 1. Since δ∞,ε = e−cεk = o(1), with cε
an arbitrary constant, the assumed condition k � log |H| gives a final bound of o(1) on the
expected TV distance, recalling that P(typ) = 1− o(1) by Proposition 2.2.10.

· By Markov’s inequality, this means that the TV distance is o(1) whp over Z.

These calculations are all performed at time t∗,ε = (1 + ε) maxγ tγ . This completes the proof.

We now prove Proposition 2.2.13. To ease exposition, while all terms are evaluated at time
t∗,ε = (1 + ε) maxγ∈N tγ , we suppress this from the notation.

Proof of Proposition 2.2.13. Write V := W −W ′ and g := gcd(V∞,1, ..., V∞,k, n). If g = γ, which
must have γ o n as the gcd is with n = |G|, then V · Z ∼ Unif(γG) by Lemma 2.1.11. Then∥∥P(S ∈ · | typ

)
− πG

∥∥2

2
= nP

(
V · Z = 0 | typ

)
− 1 = |G|

∑
γon P(g = γ | typ)/|γG| − 1.

We consider various cases. For γ such that γG = G, we have |γG| = |G| and upper bound

|G|P
(
g ∈ {γ | γG = G}

)
/|γG| ≤ 1.

If V∞ = 0 in Zk, then g = γ = n, which gives γG = {id}; using the definition of typicality,

|G|P
(
V∞ = 0 | typ

)
/|γG| = |G|E

(
P
(
W∞ = W ′∞ |W ′∞, typ

)
| typ

)
≤ δ∞/P(typ);

cf Lemma 2.1.10. If V∞ 6= 0, then, given (local) typicality, g ≤ n∗ = (n− 1) ∧ b2r∗c.
So it remains to study γ ∈ ∆. As a consequence of Lemma 2.2.12, for any H ∈ H, we have{

Vγ = 0 for some γ ∈ ΓH
}
⊆
{
VγH = 0

}
.

(Recall that Vγ ∈ Zkγ for each γ.) This is key: it allows us to collapse the consideration of all γ ∈ ΓH
down to the single element γH . Indeed, using the above we have∑

γ∈ΓH
P(g = γ | typ)/|γG| = P

(
∪γ∈ΓH{g = γ} | typ

)
/|H|

≤ P
(
Vγ = 0 for some γ ∈ ΓH

)
/|H| ≤ P

(
VγH = 0 | typ

)
/|H| ≤ (δγH/|G|)/P(typ),

with the final inequality using typicality, as above. We decompose
∑
γ∈∆ into

∑
H∈H

∑
γ∈ΓH

:

|G|
∑
γ∈∆ P(g = γ | typ)/|γG| = |G|

∑
H∈H

∑
γ∈ΓH

P(g = γ | typ)/|γG| ≤
∑
H∈H δγH/P(typ)
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(Note that every γ gives rise to a unique H such that γG = H and, by definition, H is the set of
all H which can be obtained as γG for some γ; hence this decomposition neither overcounts nor
undercounts γ ∈ ∆.) Combining all these and using Lemma 2.2.9, we deduce the proposition:

0 ≤ nP
(
V · Z = 0 | typ

)
− 1 = |G|

∑
γon P(g = γ | typ)/|γG| − 1 ≤

(
δ∞|H|+ o(1)

)
/P(typ).

It remains to give the deferred proof of the divisibility lemma, namely Lemma 2.2.12.

Proof of Lemma 2.2.12. Consider any decomposition of G as ⊕r1 Zmj ; this does not require r =
d(G). Fix some β ∈ ΓH . Since αG = βG if and only if gcd(α,mj) = gcd(β,mj) for all j, we may
decompose H as ⊕r1 hjZmj where hj := gcd(β,mj) for all j. Set γ∗ := lcm(h1, ..., hr). We show
that γ∗G = H and that γ∗ o α for all α ∈ ΓH ; this proves the lemma.

Fix j ∈ [r]. Now, hj o γ∗ = lcm(h1, ..., hr) and hj omj by assumption. Hence hj o gcd(γ∗,mj).
Conversely, if x o z and y o z then lcm(x, y) o z, and so γ∗ = lcm(h1, ..., hr) o β since hj o β. Hence
gcd(γ∗,mj) o gcd(β,mj) = hj . Thus hj = gcd(γ∗,mj). Hence γ∗G = H. Now consider any α with
αG = H; so hj = gcd(α,mj) for all j. Hence hj o α for all j, and so lcm(h1, .., hr) o α, ie γ∗ o α.

2.3 TV Cutoff: Combining Approaches #1 and #2

In this section we combine the analysis from the previous two approaches to study the regime√
log |G|/ log log log |G| . k .

√
log |G| with 1� k − d(G)� k.

We use the more refined notion of the entropic times; see §2.2.2.

2.3.1 Precise Statements and Results

In this subsection, we state precisely the main theorem of the section. There are some simple
conditions on k, in terms of d(G) and |G|, needed for the upper bound.

Hypothesis C. The sequence (kN , GN )N∈N satisfies Hypothesis C if the following hold:

lim infN kN/
√

log |GN |/ log log log |GN | > 0, lim supN kN/
√

log |GN | <∞,
lim infN

(
kN − d(GN )

)
=∞ and lim supN

(
kN − d(GN )

)
/kN = 0.

Throughout the proofs, we drop the subscript-N from the notation, eg writing k or n, consid-
ering sequences implicitly. Recall that we abbreviate the TV distance from uniformity at time t as

dGk,N (t) =
∥∥PGN ([Z1,...,ZkN ])

(
S(t) ∈ ·

)
− πGN

∥∥
TV

where Z1, ..., ZkN ∼iid Unif(GN ).

We now state the main theorem of this section. Recall that t∗ = maxγ∈N t0(γ, |G/γG|).

Theorem 2.3.1. Let (kN )N∈N be a sequence of positive integers and (GN )N∈N a sequence of finite,
Abelian groups; for each N ∈ N, define Z(N) := [Z1, ..., ZkN ] by drawing Z1, ..., ZkN ∼iid Unif(GN ).

Suppose that the sequence (kN , GN )N∈N satisfies Hypothesis C. Let c ∈ (−1, 1) \ {0}. Then

d±Gk,N
(
(1 + c)t±∗ (kN , GN )

)
→P 1(c < 0) (in probability) as N →∞.

That is, whp, there is cutoff at maxγ t
±
0 (γ, |G/γG|). Moreover, the implicit lower bound holds

deterministically, ie for all choices of generators.

Remark 2.3.2. In short, the conditions of Hypothesis C say that√
log |G|/ log log log |G| . k .

√
log |G| and 1� k − d(G)� k.

The regime of smaller k is covered by Approach #1 and of larger k by Approach #2. 4

Remark. Recall that the lower bound from §2.2 is valid whenever 1� k . log |G| and k−d(G)� 1.
It thus suffices to consider only the upper bound. 4
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2.3.2 Outline of Proof

Fundamentally, we still wish to bound the same expression that we did in previously:∑
γo|G| P(g = γ | typ) · |G/γG| − 1;

see Propositions 2.1.9 and 2.2.13. In §2.1.6 we used |G/γG| ≤ γd(G). In §2.2.7 we used

P
(
g = γ | typ

)
≤ P

(
Wγ = W ′γ | typ

)
� 1/|G/γG|.

The upper bound |G/γG| ≤ γd(G) is fairly crude. Roughly the idea here is to show, for this interim
regime of k around

√
log |G|, that for all but eo(k) of the γ we can improve it; for the remaining γ,

we use the second approach. (Before we considered |H| different γ, and so required |H| = eo(k).)

2.3.3 Upper Bound on Mixing

Let G be an Abelian group; set n := |G|. One can find a decomposition ⊕d1 Zmj of G such
that d = d(G), the minimal size of a generating set, and mi o mj for all i ≤ j. (This can be
proved by induction. Alternatively, write G as a direct sum of p-groups then merge the p-groups
appropriately.) For the remainder of this section we fix such a decomposition.

We use the more refined concept of typicality from Approach #2. Let ε > 0 and let t := t∗,ε :=
(1 + ε)t∗(k,G). We frequently suppress the t and ε dependence in the notation. Let c := cε > 0 be
the constant from Proposition 2.2.5. Recall some notation:

ζγ := 1
k (k − d) log γ, ζ̂γ := ζγ ∧ 1 and δγ := e−cζ̂γk.

Note that k − d � 1 and k .
√

log n; thus ζ̂n = 1; set ζ̂∞ := 1. Recall that W is a RW on Z and
we define Wγ by W mod γ; set W∞ := W . We repeat the definition of typicality for convenience.

Definition 2.3.3 (Definition 2.2.8). Define typical sets for γ ∈ N∞ by the following:

Wγ,glo :=
{
w ∈ Zkγ

∣∣ P(Wγ(t∗,ε) = w) ≤ δγ,ε/|G/γG|
}

where δγ := δγ,ε := e−cεζ̂γk;

Wloc :=
{
w ∈ Zk

∣∣ |wi − E(Wi(t∗,ε))| ≤ r∗ ∀ i ∈ [k]
}

where r∗ := 1
2n

1/k(log k)2.

Choose L to be the maximal integer in [1, d] with mL ≤M where

M := exp
(√

log n/ log log n
)
; set Γ :=

{
r ·m

∣∣ r ∈ [
√
k], m omL, rm o n

}
\ {1}.

When W ′ is an independent copy of W , define typicality by

typ :=
{
W (t∗,ε),W

′(t∗,ε) ∈ Wloc

}
∩
(
∩γ∈Γ

{
Wγ(t∗,ε),W

′
γ(t∗,ε) ∈ Wγ,glo

})
.

Lemma 2.3.4. We have log |Γ| � k. In particular, δ∞|Γ| = o(1).

Proof. We have |Γ| ≤
√
k divmL where divm is the number of divisors of m ∈ N. We have

log divmL . logM/ log logM .
√

log n/ log log n/ log log n� k

by [40, §18.1]. Also log
√
k � log k � k. Thus log |Γ| � k. Recall that log(1/δ∞) � k.

We use a union bound over γ ∈ Γ, which we then bound via Lemma 2.3.4.

Lemma 2.3.5 (Lemma 2.2.9). We have
∑
γ∈Γ δγ = o(1).

Proposition 2.3.6 (Proposition 2.2.10). For all ε > 0, we have

P(typ) = 1− o(1).
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Thus, by applying the modified L2 calculation, it suffices to prove the following result.

Proposition 2.3.7. Let ε > 0 be fixed and set t := (1 + ε)t∗(k,G). Then

|G|P
(
S = S′ | typ

)
− 1 =

∑
γ∈N |G/γG|P

(
g = γ | typ

)
− 1 = o(1).

In order to prove this, we first show that L h d h k.

Lemma 2.3.8. We have 0 ≤ d− L ≤
√

log n/ log log n� k. In particular, L h d h k.

Proof. Since n = m1 · · ·mL and m1 ≤ · · · ≤ mL, if L < d then Md−L ≤ md−L
L+1 ≤ n. Rearranging

gives the inequalities. Recall that k &
√

log n/ log log log n and k h d. This completes the proof.

We prove Proposition 2.3.7 by separating the sum over γ into two according to Γ.

Proof of Proposition 2.3.7. Observe that |G/γG|P(g = γ | typ) ≤ 1 when γ = 1. Also, g on. Thus∑
γ∈N |G/γG|P

(
g = γ | typ

)
− 1 ≤

∑
γ∈Γ |G/γG|P

(
g = γ | typ

)
+
∑
γ∈Γ |G/γG|P

(
g = γ | typ

)
where Γ := {γ ∈ [2, n] | γ o n} \ Γ. We analyse these sums with Approach #1 and #2, respectively.
Namely we show below that both sums are o(1), when t := (1+ε)t∗(k,G) with ε > 0 a constant.

Analysis via Approach #1. Suppose that γ ∈ Γ, ie γ /∈ Γ ∪ {1}. We improve the inequality
|G/γG| ≤ γd via the following argument. For each j ∈ [L], we may write

γ = rj · gcd(γ,mj) and mj = r′j · gcd(γ,mj) where gcd(rj , r
′
j) = 1.

By definition of Γ, if γ = r̃ ·m for some m omj , then r̃ ≥
√
k. Hence gcd(γ,mj) = γ/rj ≤ γ/k1/2 for

j ∈ [L]. Applying this to the first L terms of the product gives |G/γG| =
∏d

1 gcd(γ,mj) ≤ γd/kL/2.
Exactly the same analysis as in the proof of Corollary 2.1.15 then leads us to∑

γ∈Γ |G/γG|P
(
g = γ | typ

)
≤ e2δk2d+1−k + 2kδd+1−kn(d+1−k)/k + 4k(log k)2(d+1)/kL/2,

where δ is any value in (0, 1). As in Corollary 2.1.15, the first two terms are o(1) if k − d � 1
and k � log n. For the third term, in Corollary 2.1.15 we needed the complicated condition from
Hypothesis A. Now, however, observe that 4k(log k)2(d+1)/kL/2 � 1 as L h k h d; thus the final
term is also o(1). We thus deduce that the sum over γ ∈ Γ is o(1).

Analysis via Approach #2. The typicality conditions set out in Definition 2.3.3 imply that

P
(
g = γ | typ

)
≤ P

(
Wγ = W ′γ | typ

)
≤ δγ/|G/γG|;

cf Lemma 2.1.10. Combining this with Lemma 2.3.5, we deduce that the sum over γ ∈ Γ is o(1):∑
γ∈Γ |G/γG|P

(
g = γ | typ

)
≤
∑
γ∈Γ δγ = o(1).

2.4 Separation Cutoff

In this section we prove Theorem B, namely that there is cutoff in the separation metric for
k & log |G|. Recall that the separation distance is defined by

s(t) := maxx,y{1− Pt(x, y)/π(y)},

where P· is the heat kernel (ie transition probabilities) and π the invariant distribution. We write
s±Gk,N when considering sequences (kN , GN )N∈N, analogously to d±Gk,N .

We now state the main theorem. We require k & log |G|, log k � log |G| and k − d(G) � k.

Hypothesis D. The sequence (kN , GN )N∈N satisfies Hypothesis D if the following hold:

lim infN kN/ log |GN | > 0, lim supN log kN/ log |GN | <∞ and lim infN
(
kN−d(GN )

)
/kN > 0.

Chapter 2. Cutoff for Almost All Random Walks on Abelian Groups Page 041 of 161



Theorem 2.4.1. Let (kN )N∈N be a sequence of positive integers and (GN )N∈N a sequence of finite,
Abelian groups; for each N ∈ N, define Z(N) := [Z1, ..., ZkN ] by drawing Z1, ..., ZkN ∼iid Unif(GN ).

Suppose that the sequence (kN , GN )N∈N satisfies Hypothesis D. Let c ∈ (−1, 1) \ {0}. Then

s±Gk,N
(
(1 + c)t∗(kN , GN )

)
→P 1(c < 0) (in probability) as N →∞.

That is, there is cutoff in the separation metric at t∗(k,G) whp. Moreover, the implicit lower bound
holds deterministically, ie for all choices of generators.

Remark 2.4.2. While we only state and prove the result for k & log |G| with k − d(G) � k, the
argument can be extended to larger regimes in a couple of ways:

· k � log |G| with k − d(G) � k, provided log |G|/k diverges sufficiently slowly;

· k & log |G| with 1� k − d(G)� k provided k − d(G) diverges sufficiently rapidly.

These regimes require a little more care; we do not explore the details here.

The proof uses the TV mixing time as a building block.

Proof of Theorem 2.4.1. Since TV is a lower bound on separation (see, eg, [49, Lemma 6.16]),
the lower bound follows from the TV result. References for the TV result are as follows. See
Theorem 2.2.6, specifically §2.2.6 for the lower bound on mixing, for the regime k � log |G|. For
k � log |G|, TV cutoff had already been established; see §1.5.2.

We turn to the upper bound. For y, z ∈ G and t ≥ 0, write Pt(y, z) := Py(S(t) = z) for the
transition probability from y to z in time t. Write n := |G|. We want to show, for fixed ξ > 0, that

minx∈G P
±
t (0, x) ≥ 1

n

(
1− o(1)

)
when t ≥ (1 + 2ξ)t±∗ (k,G).

Let ε > 0 with ε = o(1) to be specified later. Let A := [Z1, ..., Z(1−ε)k] be the first (1 − ε)k
generators and B := [Z(1−ε)k+1, ..., Zk] be the remaining εk. Since G is Abelian, we may write
Pt = Pt,APt,B where in Pt,A, respectively Pt,B , we pick each generator of A, respectively B, at rate
1/k independently. (In words, we first apply the generators from A and then those from B.)

Let t′ := (1 + ξ)t∗((1 − ε)k,G); we can then choose δ = o(1) so that t′ is larger than the
1
2δ

2-TV mixing time for the rate-1 RW on G(A) for a typical choice of A. To relate this to the
rate-1 RW on G(Z), rescale time by k/|A| = 1/(1 − ε): set t := t′/(1 − ε). Since ε = o(1) and
k−d(G) � k & log |G|, we have t ≤ (1+2ξ)t∗(k, |G|) by Proposition 2.2.2a. (Note that k−d(G) � k
implies that (1− ε)k − d(G) � k when ε = o(1).) It thus suffices to show that

minx Pt(0, x) ≥ 1
n

(
1− o(1)

)
.

Now condition on a typical realisation of A, namely write A := {A | tmix( 1
2δ

2;G(A)) ≤ t′} and
condition on A = a for a fixed a ∈ A. We have P(A ∈ A) = 1− o(1). Given A = a ∈ A, the set

D :=
{
z ∈ G

∣∣ Pt,a(0, z) ≥ 1
n (1− δ)

}
satisfies |D| ≥ |G| − δ|G| = |G| ·

(
1− o(1)

)
.

For the undirected case (ie the RW on G−k ), by reversibility, conditional on A, we have

P−t (0, x) ≥ P−t,B(x,D) · 1
n (1− δ).

While the RW on G+
k is not reversible, Cayley graphs have the special property that a step

‘backwards’ with a generator z corresponds to a step ‘forwards’ with z−1. Thus

P+
t (0, x) ≥ Q+

t,B(x,D) · 1
n (1− δ)

where Q+
·,B is the heat kernel for the RW on G+(B−1) where B−1 := [z−1 | z ∈ B], rather than on

G(B). For the RW on G−k , replacing the generators with their inverses has no effect on the graph
(or RW); set Q−·,B := P−·,B . We want to show that Qt,B(x,D) = 1− o(1) uniformly in x ∈ G.

This is a RW on G±(B−1) run for time t. By considering just the final step of this RW, it
suffices to prove the following statement: we can choose ε and η with ε, η = o(1) so that, for all
(deterministic) sets D ⊆ G with |G \D| ≤ δ|G| and all x ∈ G uniformly, we have

P
(
QB(x,D) ≤ 1− η

)
= o(1/|G|) where QB(y, z) := |B±|−1∑

b∈B± 1(y + b−1 = z)
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for y, z ∈ G where B+ := B and B− := B ∪ B−1 (as multisets). Indeed, this failure probability
allows us to perform a union bound to say (conditional on A = a) that

P
(
minxQt,B(x,D) ≤ 1− 2η

∣∣ A = a
)

= o(1),

where the randomness is over the generators B, provided η decays sufficiently slowly (taking into
account the uniform o(1) probability that the walk makes no steps). For A ∈ A we have the desired
lower bound on minx Pt(0, x). Finally we average over A and use P(A ∈ A) = 1 − o(1) to show
that minx Pt(0, x) ≥ 1

n (1− o(1)) whp. It remains to prove the claim given above.
Fix an arbitrary x ∈ G. We desire at least a proportion 1−η of the generators in B to connect x

to D. The generators are chosen independently, and each connect with probability |D|/|G| ≥ 1−δ.
Since there are εk generators, it thus suffices to choose η with η = o(1) so that

P
(
Bin(εk, 1− δ) ≤ εk(1− η)

)
= o(1).

Direct calculation, using standard inequalities, gives

P
(
Bin(εk, 1− δ) ≤ εk(1− η)

)
= P

(
Bin(εk, δ) ≥ ηεk

)
≤
(
εk
ηεk

)
δηεk ≤ (δe/η)ηεk.

Given δ = o(1), choose ε and η to be decaying sufficiently slowly so that so that (δe/η)ηε = o(1).
Since k & log n, with this choice of ε and η, we have

P
(
QB(x,D) ≤ 1− η

)
= P

(
Bin(εk, δ) ≥ ηεk

)
≤ (δe/η)ηεk = o(1/|G|).

This bound is independent of x, and hence holds for all x ∈ G uniformly, completing the proof.

2.5 Mixing Time Comparison for Nilpotent Groups

In this section we compare the mixing time of a general nilpotent group G with a ‘corresponding’
Abelian group G: we show that tmix(Gk)/tmix(Gk) ≤ 1 + o(1) whp.

2.5.1 Precise Statement

We compare the mixing time for G with that for G. Specifically, we prove Theorem F, which
we recall here for the reader’s convenience.

Theorem 2.5.1. Let G be a nilpotent group. Set G := ⊕L1 (G`−1/G`) where (G`)`≥0 is the lower
central series of G and L := min{` ≥ 0 | G` = {id}}. Suppose that 1 � log k � log |G| and
k − d(G)� 1. Let ε > 0 and let t ≥ (1 + ε)t∗(k,G). Then dGk(t) = o(1) whp.

Remark. An upper bound valid for all groups has already been established in the regime k �
log |G| at T (k, |G|) h t∗(k,G); recall Remark A.1. Thus we need only consider 1� k . log |G|. 4

2.5.2 Outline of Proof

Let L be the minimal integer such that GL is the trivial group. Consider the series of quotients
(Q` := G`−1/G`)

L
`=1. For each ` ∈ [L], choose a set R` ⊆ G`−1 of representatives for Q` = G`−1/G`.

In order to sample Zi ∼ Unif(G) it suffices to sample Zi,` ∼ Unif(R`) for each ` independ-
ently and then take the product: Zi := Zi,1 · · ·Zi,L; see Lemma 2.5.2. Then Zi,`G` ∼ Unif(Q`)
independently for each i and `; see Corollary 2.5.3.

Suppose that M steps are taken; let σ : [M ] → [k] indicate which generator is used in each

step. Set S :=
∏M
m=1 Zσ(m). For each ` ∈ [L], let S` :=

∏M
m=1 Zσ(m),`; this is the projection of S to

Q`. Then each S`G` is a RW on Q`, which is an Abelian group, but all using the choice σ.
Since these are RWs on Abelian groups, the ordering in σ will not matter. For each i ∈ [k], let

Wi be the number of times in σ that generator Zi has been applied minus the number of times
that Z−1

i has been applied. Let σ′ be an independent copy of σ and define S′ and W ′ via σ′ and

Z; for each ` ∈ [L], define S′` :=
∏M
m=1 Zσ(m),`. Then S and S′ are iid conditional on Z.

Chapter 2. Cutoff for Almost All Random Walks on Abelian Groups Page 043 of 161



To compare the RW on the nilpotent group with one on an Abelian group, we show that

nP
(
S = S′ | (W,W ′)

)
≤ n

∏L
1 P
(
S`G` = S′`G` | (W,W ′)

)
=
∣∣G/gG∣∣,

where g := gcd(W1−W ′1, ...,Wk −W ′k, n); see Proposition 2.5.5 and Corollary 2.5.8. Via analysing
|G/gG|, we showed in §2.1–§2.3 that the RW on Gk is mixed whp shortly after t∗(k,G); see
specifically Lemma 2.1.11. From this and the inequality above, we are able to deduce that the RW
on Gk is mixed whp shortly after the same time.

2.5.3 Reduction to Abelian-Type Calculations

Let L be the minimal integer such that GL is the trivial group. Consider the series of quotients
(Q` := G`−1/G`)

L
`=1. For each ` ∈ [L], choose a set R` ⊆ G`−1 of representatives for Q` = G`−1/G`,

ie a set R` with |R`| = |Q`| and {rG`}r∈R` = G`−1/G` = Q`.
We want to sample the uniform generators by using uniform random variables on each of the

quotients. In this way, projecting to one of the quotients, we get a RW on this quotient. The
following two proofs are deferred to Lemma 6.6.3 and Corollary 6.6.4, respectively.

Lemma 2.5.2. For each ` ∈ [L], let Y` ∼ Unif(R`) independently. Then Y := Y1 · · ·YL ∼ Unif(G).

Corollary 2.5.3. For each (i, `) ∈ [k] × [L], sample Zi,` ∼ Unif(R`) independently and set Zi :=
Zi,1 · · ·Zi,L. Then Z1, ..., ZL ∼iid Unif(G). Further, Zi,`G` ∼ Unif(Q`) independently for each (i, `).

For the remainder of the section, assume that Z is drawn in this way. The next main result
(Proposition 2.5.5) is the key element of the proof of Theorem 2.5.1. Informally, it reduces the
problem to a collection of Abelian calculations, the like of which were handled when we established
cutoff when the underlying group was Abelian. We first need a preliminary ‘worst-case’ lemma.

As is standard, we write 0 for the identity of an Abelian group.

Lemma 2.5.4. Let H be an Abelian group. Let Z1, ..., Zk ∼iid Unif(H). Let v ∈ Zk. Then

maxh∈H P
(
v · Z = h

)
= P

(
v · Z = 0

)
.

Proof. Let h ∈ H. Write A(h) := {z ∈ Hk | v · z = h}. If w ∈ A(h), then B := {z − w | z ∈
A(h)} ⊆ A(0); also, clearly, |B| = |A(h)|, so |A(h)| ≤ |A(0)|. Hence

P
(
v · Z = h

)
= |A(h)|/|H|k ≤ |A(0)|/|H|k = P

(
v · Z = 0

)
.

We now prove the decomposition theorem. It crucially uses the nilpotency of the group.

Proposition 2.5.5. Let M,M ′ ∈ N. Let σ : [M ] → [k] and σ′ : [M ′] → [k]. Let η ∈ {±1}M and
η′ ∈ {±1}M ′ . For ` ∈ [L], set

S` :=
∏M
m=1 Z

ηm
σ(m),`, S′` :=

∏M
m=1 Z

η′m
σ′(m),`, S :=

∏M
m=1 Z

ηm
σ(m) and S′ :=

∏M
m=1 Z

η′m
σ′(m).

For i ∈ [k], write vi :=
∑
m∈[M ′]:σ′(m)=i η

′
m −

∑
m∈[M ]:σ(m)=i ηm. Then

P
(
S = S′

)
≤
∏L
`=1 P

(
S`G` = S′`G`

)
=
∏L
`=1 P

(∑k
i=1 viZi,`G` = id(Q`)

)
.

Proof. The claimed equality follows immediately from the fact that Q` is Abelian.
We now set up a little notation. Write Ai,` := Zi,1 · · ·Zi,`−1 and Bi,` := Zi,`+1 · · ·Zi,L; then

Zi = Ai,`Zi,`Bi,`. (Here, Ai,1 := id and Bi,L := id.) Note that Bj,` ∈ G` for all j ∈ [k] and ` ∈ [L].
Let E` := {S′S−1 ∈ G`}. Then

P
(
S = S′

)
=
∏L

1 P
(
E` | E`−1

)
.

For all g ∈ G and h ∈ G`−1, we have [g, h] ∈ G` and hg = gh[h−1, g−1] = gh[g, h]−1. We can hence
write S′S−1 in the following way:

S′S−1 = M`N` ·
(∏M ′

m=1B
η′m
σ′(m),`C

′
σ′(m),`

)
·
(∏M

m=1B
−ηM+1−m
σ(M+1−m),`C

′
σ(M+1−m),`

)
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for some Cj,`, C
′
j,` ∈ G` and M` and N` defined as follows:

M` :=
(∏M ′

m=1A
η′m
σ′(m),`

)
·
(∏M

m=1A
−ηM+1−m
σ(M+1−m),`

)
N` :=

(∏M ′

m=1 Z
η′m
σ′(m),`

)
·
(∏M

m=1 Z
−ηM+1−m
σ(M+1−m),`

)
∈ G`−1.

We thus see that E`−1 = {S′S−1 ∈ G`−1} holds if and only if {M` ∈ G`−1} holds. Crucially, this
implies that the indicator 1(E`−1) of this event is independent of N`.

We claim the following:

given that S′S−1 ∈ G`−1, we have S′S−1 ∈ G` if and only if M`N` ∈ G`.

To prove this, first make the following observations, recalling that G`−1/G` is Abelian:

· for all α ∈ G`−1, we have αG` = G` and (αβ)G` = (αG`)(βG`) for all β ∈ G;

· Bj,`, Cj,`, C ′j,` ∈ G` for all j ∈ [k] and N` ∈ G`−1;

· S′S−1 ∈ G`−1 if and only if M` ∈ G`−1, and so M`N` ∈ G`−1.

Assume that S′S−1 ∈ G`−1. Applying these observations in the above formula above gives

S′S−1G` = (M`N`G`) ·
(∏M ′

m=1(B
η′m
σ′(m),`G`)(C

′
σ′(m),`G`)

)
·
(∏M

m=1(B
−ηM+1−m
σ(M+1−m),`G`)(Cσ(M+1−m),`G`)

)
= M`N`G`.

Thus S′S−1 ∈ G`−1 if and only if M`N` ∈ G`−1, as claimed.
Now, M` is independent of N` and so N` is independent also of 1(E`−1). Thus

P
(
E` | E`−1

)
= P

(
M`N` ∈ G` | E`−1

)
≤ maxx∈G`−1

P
(
xN` ∈ G`

)
.

Now, G`−1/G` is Abelian and N` is a product of generators Zj,` and Z−1
j,` for different j ∈ [k].

Hence we are in the set-up of Lemma 2.5.4. Applying said lemma, we deduce that

P
(
E` | E`−1

)
≤ P

(
N` ∈ G`

)
= P

(
S`G` = S′`G`

)
,

using the definition of N`. This proves the desired inequality.

2.5.4 Evaluation of Abelian-Type Calculations

When establishing cutoff for RWs on Abelian groups, we had to bound a very similar expression
to those in the product of Proposition 2.5.5. In particular, since the Q` are Abelian groups, it does
not matter in which order the generators are applied. So instead of considering the exact sequence
σ : [M ]→ [k], it suffices to consider W where Wi :=

∑M
m=1 1(σ(m) = i) for each i ∈ [k].

Key in analysing these Abelian-type terms are gcds: for all w,w′ ∈ Zk, define

g(w,w′) := gcd
(
w1 − w′1, w2 − w′2, ..., wk − w′k, |G|

)
.

We use this to evaluate the right-hand side of Proposition 2.5.5, culminating in Corollary 2.5.8.

Lemma 2.5.6. Let ` ∈ [L]. For all w,w′ ∈ Zk, we have∑k
i=1 viZi,`G` ∼ Unif

(
g(w,w′)Q`

)
.

Proof. Corollary 2.5.3 says that each Zi,`G` is an independent Unif(Q`). Lemma 6.6.1 in the sup-
plementary material says that linear combinations of independent random variables in an Abelian
group are also uniform, but on the subgroup given by the gcd of the coefficients.

This leads us to a bound on P(w,w′)(S = S′) in terms of a product of |Q`|/|γQ`| over ` ∈ [L],
for some γ which is a suitable gcd. The following lemma controls this product.

Lemma 2.5.7. For all γ ∈ N, we have
∏L
`=1 |γQ`| = |γG|.
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Proof. For any Abelian groups A and B and any γ ∈ N, we have γ(A ⊕ B) = (γA) ⊕ (γB) and
|A⊕B| = |A||B|. Since G was defined to be a direct sum of the Q`, the claim now follows.

Let (S′,W ′) be an independent copy of (S,W ). Combining Proposition 2.5.5 and Lemmas 2.5.6
and 2.5.7 gives the following corollary. For w,w′ ∈ Zk, write P(w,w′)(·) := P( · | (W,W ′) = (w,w′)).

Corollary 2.5.8. For all w,w′ ∈ Zk, we have

nP(w,w′)

(
S = S′

)
≤
∏L
`=1 |Q`|/|g(w,w′)Q`| = |G|/|g(w,w′)G| =

∣∣G/g(w,w′)G
∣∣.

Proof. Note that |Q`| divides |G|, and so gcd(v1, ..., vk, |Q`|) ≤ gcd(v1, ..., vk, |G|) for all v ∈ Zk.
Also, for any Abelian subgroup H of G, if α o |H| and α o β, then αH ≤ βH. Combined with
Proposition 2.5.5 and Lemma 2.5.6, this proves the inequality. The first equality follows immediately
from Lemma 2.5.7. The second equality follows from Lagrange’s theorem.

Observe that the right-hand side of this corollary depends only on the Abelian group G. By
applying the results used for Abelian groups, we can prove Theorem 2.5.1; we explain this now.
Here, as there, we use a modified L2 calculation; see Lemma 2.1.6.

Lemma 2.5.9 (Lemma 2.1.6). For all t ≥ 0 and all W ⊆ Zk, the following inequalities hold:

dGk(t) =
∥∥PGk(S(t) ∈ ·

)
− πG

∥∥
TV
≤
∥∥PGk(S(t) ∈ · |W (t) ∈ W

)
− πG

∥∥
TV

+ P
(
W (t) /∈ W

)
;

4E
(∥∥PGk(S(t) ∈ · |W (t) ∈ W

)
− πG

∥∥2

TV

)
≤ nP

(
S(t) = S′(t) |W (t),W ′(t) ∈ W

)
− 1.

Proof of Theorem 2.5.1. Let W ⊆ Zk be arbitrary for the moment. Set

D := nP
(
S = S′ | typ

)
− 1 where typ := {W,W ′ ∈ W}.

Abbreviate g := g(W,W ′). Applying now Corollary 2.5.8, we obtain

D ≤
∑
γ∈N P

(
g = γ | typ

)
·
∣∣G/γG∣∣− 1.

This latter expression is purely a statistics of the Abelian group G. We established the upper
bound on mixing by looking at precisely this quantity. Bounding it was one of the main challenges.
There were three different arguments for bounding it, corresponding to different regimes of k. We
briefly outline these arguments now. The choice of W varies from argument to argument.

· In §2.1.6 we upper bounded |G/γG| ≤ γd(G); we then used unimodality to show that P(γ oWi |
Wi 6= 0) ≤ 1/γ, and convert this into P(g = γ | typ) ≤ (1/γ + P(W1 = 0 | typ))k.

· In §2.2.7 we analysed (W,W ′) taken modulo γ, for each γ; we then used entropic considera-
tions to bound P(g = γ | typ)� |G/γG| in a quantitative sense.

· In §2.3.3 we combined these two approaches.

Instead of reconstructing these arguments, we reference the appropriate places in the previous
sections. For each approach, there are conditions on (k,G); see Hypotheses A to C. At least one
of these is satisfied if 1� k . log |G| and k − d(G)� 1; see Remarks 2.1.5, 2.2.7 and 2.3.2.

We need to choose the set W; see Definitions 2.1.7 and 2.2.8 for the respective definitions. (In
those definitions, replace G with G.) See Propositions 2.1.9, 2.2.13 and 2.3.7 specifically for the
results bounding this sum. The conclusion of these results is that

D ≤
∑
γ∈N P

(
g = γ | typ

)
·
∣∣G/γG∣∣− 1 = o(1).

Combined with the modified L2 calculation of Lemma 2.5.9 this completes the proof.
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2.6 Concluding Remarks and Open Questions

§2.6.1 We discuss some statistics in the regime where k is a fixed constant.

§2.6.2 We give a very short proof, which is a small variant on Roichman’s argument [69, The-
orem 2], establishing an upper bound on mixing, for arbitrary groups and any k � log |G|.

§2.6.3 To conclude, we discuss some questions which remain open and gives some conjectures.

Throughout this section, we only sketch details.

2.6.1 Lack of Cutoff When k Is Constant

Throughout the paper we have always been assuming that k → ∞ as |G| → ∞. It is natural
to ask what happens when k does not diverge. This case has actually already been covered by
Diaconis and Saloff-Coste [27], using their concept of moderate growth. There is no cutoff.

Diaconis and Saloff-Coste establish this not only for Abelian groups, but for nilpotent groups.
Recall that a group G is called nilpotent of step at most L if its lower central series terminates in
the trivial group after at most L steps: G0 := G and G` := [G`−1, G] for ` ∈ N with GL = {id}.

For a Cayley graph G(Z), use the following notation. Write ∆ := diamG(Z) for its diameter.
For the lazy simple random walk on G(Z), write trel := trel(G(Z)) for the relaxation time (ie inverse
of the spectral gap) and tmix := tmix(ε;G(Z)) for the (TV) ε-mixing time, for ε ∈ (0, 1). When
considering sequences (GN (Z(N)))N∈N, add an N -sub/superscript.

We phrase the result of Diaconis and Saloff-Coste [27] in our language.

Theorem 2.6.1 (cf [27, Corollary 5.3]). Let (GN )N∈N be a sequence of finite, nilpotent groups. For
each N ∈ N, let Z(N) be a symmetric generating set for GN and write LN for the step of GN .
Suppose that supN |Z(N)| <∞ and supN LN <∞. Then tNmix/kN . ∆2

N . tNrel . tNmix as N →∞;
in particular, (tNmix)N∈N does not exhibit the cutoff phenomenon

We give a very brief exposition of the results of Diaconis and Saloff-Coste [27], including the
definition of moderate growth, leading to this conclusion in §5.4.

2.6.2 A Variant on Roichman’s Argument

In this subsection we give a very short argument upper bounding the mixing time for arbitrary
groups and k � log |G|; it is a small modification of Roichman’s argument [69, Theorem 2], but
it applies in both the undirected and directed cases. (Roichman [69, Theorem 1] deals with the
directed case, but requires additional matrix algebra machinery.)

The proof proceeds as follows. Assume that k � log |G| and log k � log |G|; let ε > 0 and let
t := (1 + ε) log |G|/ log(k/ log |G|). Note that 1� k � t. Choose some ω � 1, diverging arbitrarily
slowly; set t± := bt(1 ± ω/

√
t)c and L := ωbt2/kc. Whp the number of generators picked at most

once is at least k − L; whp of these the number picked exactly once lies in [t−, t+]. Take typ to be
the event that these two conditions hold for two independent copies, W and W ′. We use a modified
L2 calculation (see, eg, Lemma 2.1.6) meaning that we need to control

|G|P
(
S = S′ |W = W ′, typ

)
− 1.

Let E be the event that some generator is used once in W and not at all in W ′ or vice versa, ie

E :=
⋃
i∈[k]

(
{|Wi| = 1, |W ′i | = 0} ∪ {|W ′i | = 1, |Wi| = 0}

)
.

Then S′ · S−1 ∼ Unif(G) on E . Indeed, if Z ∼ Unif(G) and X,Y ∈ G are independent of Z, then
XZY ∼ Unif(G); here Z corresponds to one of the generators used once in W and not in W ′ or
vice versa, with the obvious choice of X and Y so that XZY = S′S−1. Off E , every generator
picked once in W must be picked at least once in W ′ and vice versa. There are at most L generators
which are picked more than once in W ′. Thus

P
(
E | typ

)
≤ mina∈[t−,t+],b≤L 1/

(
k−b
a−b
)

= 1/
(
k−L
t−−L

)
.
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An application of Stirling’s approximation shows that this probability is o(1/|G|) when ω diverges
sufficiently slowly. Combined with the modified L2 calculation, this proves the upper bound.

Finally, consider the case k = |G|α for some fixed α ∈ (0, 1). The discrete-time chain cannot
be mixed at time d1/αe − 1 by considering the size of its support, but noting that

(
k
t

)
� |G| for

t := b1/αc+ 1, by the above argument we see that the walk is mixed whp after t steps.

2.6.3 Open Questions and Conjectures

We close the paper with some questions which are left open.

1: Does the Product Condition Imply Cutoff?

The problem of singling out abstract conditions under which the cutoff phenomenon occurs
has drawn considerable attention. For a reversible Markov chain X, write tmix(X) for its mixing
time and γgap(X) for its spectral gap. In 2004, Peres [65] proposed a simple spectral criterion for
a sequence (XN )N∈N of reversible Markov chains, known as the product condition:

cutoff is equivalent to tmix(XN )γgap(XN )→∞ as N →∞.

It is well-known that the product condition is a necessary condition for cutoff; see, eg, [49,
Proposition 18.4]. It is relatively easy to artificially create counter-examples, but these are not
‘natural’; see, eg, [49, §18] where constructions due to Aldous and due to Pak are described. The
product condition is widely believed to be sufficient for “most” chains.

We conjecture that the product condition implies cutoff for random Cayley graph of Abelian
groups. In fact, we conjecture this whenever G is nilpotent of bounded step (denoted stepG), ie
has lower central series terminating at the trivial group and this sequence is of bounded length.

Conjecture 1. Let (GN )N∈N be a sequence of finite, nilpotent group and (Z(N))N∈N a
sequence of subsets with Z(N) ⊆ GN for all N ∈ N. For each N ∈ N, write tNmix, respect-
ively γNgap, for the mixing time, respectively spectral gap, of the SRW on GN (Z(N)).

Suppose that lim supN→∞ stepGN < ∞ and that the product condition holds, ie
tNmixγ

N
gap →∞ as N →∞. Then the sequence of SRWs exhibits cutoff.

An equivalence between the product condition and cutoff has been established for birth-and-
death chains by Ding, Lubetzky and Peres [32] and, more generally, for RWs on trees by Basu,
Hermon and Peres [5]. It is believed to imply cutoff for the SRW on transitive expanders of bounded
degree, but this is known only in the case of Ramanujan graphs, due to Lubetzky and Peres [52].

2: An Explicit Choice of Generators

We have shown that if one chooses the generators Z uniformly, then one obtains cutoff whp,
at a time which does not depend on Z. In particular, this means that there is cutoff for almost
all choices of generators at a time independent of the choice of generators. This ‘almost universal’
mixing time is given by t∗(k,G) from Definition 2.2.1. A question raised to us by Diaconis [25] is
to find explicit sets of generators for which cutoff occurs; see also [23, Chapter 4G, Question 2].

Open Problem 2. Let G be an Abelian group and 1 � k . log |G|. Find an explicit
choice of generators Z so that the RW on G(Z) exhibits cutoff. Further, find generators
so that the cutoff time is t∗(k,G).

For the cyclic group Zp with p prime, Hough [46, Theorem 1.11] shows that the choice Z :=
[0,±1,±2, ...,±2dlog2 pe−1], which he describes as “an approximate embedding of the classical hy-
percube walk into the cycle”, gives rise to a random walk on Zp which has cutoff. The cutoff time
is not the entropic time, however. Although the entropic time is the mixing time for ‘most’ choice
of generators, finding an explicit choice of generators which gives rise to cutoff at the entropic time
is still open—even for the cyclic group of prime order.
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3 Cutoff and Geometry for Random
Walks on Heisenberg Groups

Abstract for Chapter 3

We establish cutoff whp for the RW on H := Hp,d with p prime and d ≥ 3, provided
d does not diverge too quickly, for all 1 � log k � log |H|. When k does not grow
super-polylogarithmically in the size of the group, this is the first example of cutoff
for the RW on the random Cayley graph of a non-Abelian group. When k & log |Hab|,
where Hab ∼= Zd−1

p is the Abelianisation, we can remove the primality assumption on p.

The cutoff time is described (abstractly) in terms of the entropy of RW on Zk.
Unlike for Abelian groups, this cutoff time does not depend, up to subleading order
terms, only on k and |H| = pd(d−1)/2; rather, one needs to know |Hab| too. In fact, for
k ≤ (log |Hab|)1+2/(d−2), the cutoff time is asymptotically equivalent to the cutoff time
for the RW on the random Cayley graph of the Abelian group Hab.

We also study typical distance for the random Cayley graph of H. We show that
all but o(|H|) of the elements of H lie at a graph distance M ± o(M) from the identity
whp, where M is the minimal radius of a ball in Zk of cardinality at least |Hab| = pd−1.

When k & log |H| and d � 1, we show that the diameter of the random Cayley
graph is asymptotically equivalent to the typical distance value M whp.
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3.1 Cutoff for Random Walk

In this section, we consider mixing for the random walk on the random directed Cayley graph
of the Heisenberg group Hp,d. We take p prime and “≡” means “equivalent modulo p”.

Recall that we denote by Hcom
p,d = [Hp,d, Hp,d] the commutator and Hab

p,d = Hp,d/[Hp,d, Hp,d]
the Abelianisation (noting that the latter is an Abelian group). It is straightforward to see that
Hab
p,d
∼= Zd−1

p (corresponding to the super-diagonal terms). Set n := |Hp,d| = pd(d−1)/2.
Informally, we show that there is competition between mixing of the Abelianisation and of the

commutator. Which part governs the mixing depends on the regime of k: for k � (log n)1+2/(d−2),
it is the Abelianisation, meaning that the overall mixing time is the same as that for Zd−1

p ; for

k � (log n)1+2/(d−2), it is the non-Abelian part, and the overall mixing time is given by the
standard diameter-based lower bound of logk |Hp,d|; see Definition 3.1.4 and Theorem 3.1.6.

Throughout this section, we use the following notation:

k =
(
log |Hab

p,d|
)
ρ, 1

2d =
(
log |Hp,d|

)
ν and n = |Hp,d| = pd(d−1)/2;

the choice of ν is so that log |Hp,d| = (log |Hab
p,d|)1+ν , so also k = (log |Hp,d|)ρ/(1+ν).

3.1.1 Entropic Times: Definition and Concentration

In this section, we define the notion of entropic times. For t ≥ 0, write µt, respectively νt, for
the law of W (t), respectively W1(t); so µt = ν⊗kt . Also, for each i = 1, ..., k, define

Qi(t) := − log νt/k
(
Wi(t)

)
, and set Q(t) := − logµt

(
W (t)

)
=
∑k

1 Qi(t).

Definition 3.1.1. For k,N ∈ N, define the entropic time t0(k,N) so that E(Q1(t0(k,N))) =
logN/k. We apply this with N := pd−1 = n2/d; abbreviate t0 := t0(k, pd−1) = t0(k, n2/d).

Direct calculation, with the SRW and Poisson laws gives the following relations. We sketch the
argument in §3.1.2; full, rigorous details are given in Proposition 6.1.2 and §6.1.5. Recall that the
+-superscript corresponds to the DRW and the −-superscript to the SRW.

Proposition 3.1.2. Assume that 1 � log k � logN . Write κ := k/ logN . For all λ ∈ (0,∞), the
following relations hold, for some continuous, decreasing bijection f± : (0,∞)→ (0,∞):

t±0 (k,N) h k ·N2/k/(2πe) when k � logN ; (3.1.1a)

t±0 (k,N) h k · f±(λ) when k h λ logN ; (3.1.1b)

t±0 (k,N) h k · 1/(κ log κ) when k � logN. (3.1.1c)

By a standard argument considering appropriate subsequences, to cover the general case k �
logN , it suffices to assume that k/ logN actually converges, say to λ ∈ (0,∞).

Since Q =
∑k

1 Qi is a sum of k iid random variables, Q(t0) concentrates around logN . One
can show that if the time is multiplied by a factor 1 + ξ for any constant ξ > 0 then the entropy
increases by a significant amount; similarly, if ξ < 0 then the entropy decreases by a significant
amount. Further, the change is by an additive term of larger order than the standard deviation√

Var(Q(t0)). Thus Q((1 + ξ)t0) concentrates around this new value.
The following proposition quantifies this change in entropy and this concentration. For rigorous

details, see Definition 6.1.1 and Propositions 6.1.2 and 6.1.3 in the supplementary material.

Proposition 3.1.3. Assume that k satisfies 1� log k � logN . Then Var(Q(t0))� 1, and further,
for ξ ∈ R \ {0}, writing v := Var(Q1(t0)) and ω := Var(Q(t0))1/4 = (vk)1/4, we have

P
(
Q((1 + ξ)t0) ≥ logN ± ω

)
→ 1(ξ > 0). (3.1.2)

(There is no specific reason for choosing this ω; we just need some ω with 1� ω � (vk)1/2.)
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3.1.2 Entropic Times: Sketch Evaluation

In this subsection, we sketch details towards a proof of Proposition 3.1.2. The full, rigorous de-
tails can be found in Proposition 6.1.2 and §6.1.5, where all the approximations below are justified.

(3.1.1a). When k � logN , the target entropy for the rate-1/k RW W1 on Z is logN/k � 1.
Hence t0(k,N)/k � 1. When a rate-1 RW on Z is run for time s � 1, it approximates a normal
distribution with variance s; the SRW has mean 0 and the DRW mean s. Direct calculation shows
that the entropy of such a normal distribution is precisely 1

2 log(2πes). Assuming that we can
approximate the entropy of the RW by that of the normal distribution sufficiently well (which is
precisely what we show in Proposition 6.1.9), the claim now follows.

(3.1.1b). When k � logN , the target entropy is logN/k � 1. So we consider a rate-1 RW on Z
run for time order 1. The claim now follows with f(λ) := H−1(1/λ), where H(s) is the entropy of
the rate-1 RW on Z run for time s. See Proposition 6.1.12 for a more formal treatment.

(3.1.1c). When k � logN , the target entropy is logN/k � 1. The rate-1 RW on Z run for
time s� 1 is approximated by a Bernoulli distribution with success probability 1−e−s ≈ s (along
with a uniformly chosen sign for the SRW). Such a (possibly signed) Bernoulli distribution has
entropy s log(1/s)+O(s). Again assuming that this approximation can be suitably justified (which
is precisely what we show in Proposition 6.1.13), the claim now follows.

3.1.3 Precise Statement and Remarks

In this section, we state the more refined version of Theorem C.

Definition 3.1.4. Define tdiam(k, n) := logk n. Define

t±∗ (k, p, d) := max
{
t±0 (k, |Hab

p,d|), tdiam(k, |Hp,d|)
}
.

Abbreviate tdiam := tdiam(k, pd(d−1)/2) and t±0 := t0(k, p, d).

The following proposition determines t∗ up to a 1± o(1) factor; it follows easily from Proposi-
tion 3.1.2 and Definition 3.1.4, using N := |Hab

p,d| = |Hp,d|2/d.

Proposition 3.1.5. We have the following approximation to t∗:

t∗ h



k · 1
2πe |H

ab
p,d|2/k when 1� k � log |Hab

p,d|;
k · f(λ) when k h λ log |Hab

p,d|;
ρ
ρ−1

2
d logk |Hp,d| when log |Hab

p,d| � k ≤ (log |Hab
p,d|)1+2/(d−2);

logk |Hp,d| when (log |Hab
p,d|)1+2/(d−2) ≤ k, log k � log |Hp,d|;

(3.1.3a)

(3.1.3b)

(3.1.3c)

(3.1.3d)

here f is the function from Proposition 3.1.2. (The third regime is empty if (log |Hab
p,d|)1/d � 1, ie

d & log log p; in this case, the lower bound in the fourth regime becomes k � log |Hab
p,d|.)

There are some simple conditions that the parameters must satisfy for our proof to be valid.
The conditions will be assumed throughout the remainder of the section, often not explicitly stated.

Hypothesis E. The triple (k, p, d) satisfies Hypothesis E if the following conditions hold:

· 1� log k � log |Hp,d|;
· if k � log |Hab

p,d|, then d3 � k and k ≤ 3
2 log |Hab

p,d|/ log d (eg k ≤ d log p/ log d);

· if k & log |Hab
p,d|, then log d� log log p (equivalently log d� log log |Hp,d|).

(Recall that implicitly we consider sequences (kN , pN , dN )N∈N.)

Remark. Hypothesis E holds when d � 1 and 1� log k � log |Hab
p,d|. As noted in the introduction,

there is no cutoff for k outside this regime. Thus our conditions are optimal when d � 1. 4
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We now state the main result of this section; it is in essence a restatement of Theorem C.

Theorem 3.1.6 (Cutoff). Let (k, p, d) be integers with p prime and d ≥ 3, satisfying Hypo-
thesis E. Then the random walk on H±k exhibits cutoff at time t±∗ (k, p, d), given in Definition 3.1.4,
whp over Z. Moreover, the implicit lower bound on mixing holds deterministically for all Z.

Remark. For ease of presentation, consider for the moment d independent of n. Define

T (ρ,N) := ρ
ρ−1 logkN = ρ

ρ−1 tdiam(k,N).

Simple algebraic manipulations give T (ρ,N) h t±0 ((logN)ρ, N) when ρ > 1 is bounded away from
1. This is the universal mixing time upper bound for a group of sizeN from §1.5.2 when k = (logN)ρ

with ρ > 1. (It is tight for Abelian groups.) Recall that the Abelianisation has size |Hab
p,d| = pd−1.

Consider k = (log |Hab
p,d|)ρ with ρ > 1. Hence the walk projected to the Abelianisation has

cutoff at t0(k, |Hab
p,d|). Our proof shows that the random walk on the whole group exhibits cutoff,

with time given by the maximum of this and the diameter lower bound, tdiam(k, |Hp,d|).
This heuristic is only valid when ρ > 1. From Theorem 2.1.4, one sees that the walk projected

to the Abelianisation has cutoff at t0(k, |Hab
p,d|) for ρ ≤ 1 too; in this regime, t0(k, |Hab

p,d|) �
tdiam(k, |Hp,d|). We show that the mixing time is upper bounded by t0(k, |Hab

p,d|) when ρ ≤ 1. 4

The fact that the mixing time is a maximum of two quantities suggests some sort of ‘competi-
tion’ between the Abelianisation and the rest of the group; this leads to a ‘phase transition’ in the
mixing time, which has an interesting consequence for the Aldous–Diaconis conjecture.

Remark. Consider for the moment ρ := 1 + 1
d . If d→∞ sufficiently slowly, then

log |Hab
p,d| � (log |Hab

p,d|)1+1/d � (log |Hab
p,d|)1+2/(d−2).

According to the Aldous–Diaconis conjecture, there should be cutoff at T (ρ, n); however, Propos-
ition 3.1.5 shows that the mixing time t∗ satisfies t∗ h T (ρ, |Hab

p,d|) = 2
dT (ρ, |Hp,d|) in this regime

(provided d does not grow too quickly). Hence the Aldous–Diaconis conjecture is off by a factor
of 2

d , and so does not even capture the correct order of the mixing (since we allow d→∞).
Recall that the conjecture has been verified for Abelian groups, in the entire k � log n regime.

These Heisenberg groups give a counter-example once one allows non-Abelian groups. 4

Recall that cutoff is already established (for all groups) when k grows super-polylogarithmically
in n, ie log k � log log |Hp,d|. Below assume that log k . log log |Hp,d|, ie k = (log |Hp,d|)O(1).

3.1.4 Outline of Proof

We now give a high-level description of our approach, introducing notations and concepts along
the way. No results or calculations from this section will be used in the remainder of the document;
rather, this section merely introduces ideas. Recall the definitions from the previous sections.

For ease of notation, we suppress the p and d dependence from Hp,d, writing just H. Similarly
we write Hab := Hab

p,d for the Abelianisation and Hcom := Hcom
p,d for the commutator.

We start by discussing the lower bound. In §2.1.5 we consider an analogous entropic lower
bound but where the underlying group is Abelian. To apply this, we simply project the walk from
H to Hab, which is an Abelian group. Projection cannot increase the TV distance.

If Q is sufficiently small, then W , and hence also S, is restricted to a small set. Indeed, Q ≤
log |Hab| − ω if and only if µ(W ) ≥ |Hab|−1eω, and thus if this is the case then W ∈ {w | µ(w) ≥
|Hab|−1eω}. Write Sab for S projected to the Abelianisation Hab. Since Hab is an Abelian group,
Sab(t) depends only on W (t) (not additionally any W (t′) for t′ < t). It is thus also the case that

Sab(t) ∈ E := {a ∈ Hab | P
(
Sab(t) = a

)
≥ |Hab|−1eω}.

But clearly |E| ≤ e−ω|Hab|. Choosing the time t slightly smaller than the entropic time t0 and
ω � 1 suitably, the event {Q(t) ≤ log |Hab| − ω} will hold whp. Thus, whp, Sab(t) is restricted to
a set of size o(|Hab|). It hence cannot be mixed. This heuristic applies for any choice of generators.
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Precisely, we show for any ω with 1� ω � log |Hab|, all t and all Z = [Z1, ..., Zk], that

dG(Z)(t) ≥ P
(
Q(t) ≤ log |Hab| − ω

)
− e−ω.

Observe that the probability on the right-hand side is independent of Z. Thus we are naturally
interested in the fluctuations of Q(t) for t close to t0. Using the concentration of Q, ie Proposi-
tion 3.1.3 with ξ < 0 and ω := Var(Q(t0))1/4, we deduce the lower bound in Theorem 3.1.6.

We now turn to discussing the upper bound. We use a modified L2 calculation; see Lemma 3.1.8.
If S and S′ are independent copies, with auxiliary W and W ′, and W ⊆ Zk is some set, then

E
(∥∥P(S(t) ∈ ·

)
− πH

∥∥
TV

)
≤ 1

2

√
|H|P

(
S(t) = S′(t) |W (t),W ′(t) ∈ W

)
− 1 + P

(
W (t) /∈ W

)
.

We choose W so that P(W (t) /∈ W) = o(1), and think of W as the set of ‘typical W (t)’. By
imposing some mild typicality conditions, we show that S′(t)S(t)−1 is uniformly distributed on H
when W (t) 6= W ′(t) with both W (t) and W ′(t) typical. It thus remains to show that

|H|P
(
S(t) = S′(t), W (t) = W ′(t)

∣∣W (t),W ′(t) ∈ W
)
− 1 = o(1/|G|).

This is where we analyse the Abelianisation and commutator separately. Drop the t from the
notation. Also write P(·) := P( · |W (t),W ′(t) ∈ W).

For the regime in which the mixing time is the entropic time t0(k, |Hab|), for the Abelianisation,
we add an entropic condition to typicality: if w ∈ W, then µ(w) ≤ |Hab|−1e−ω. By definition of
the entropic time, like in the lower bound, we have

P
(
W = W ′

)
≤ e−ω|Hab|−1 � |Hab|−1;

see Lemma 3.1.13. If W = W ′, then S′S−1 ∈ Hcom. Given W = W ′, we desire S′S−1 to be
approximately uniformly distributed on Hcom, say with modal probability order |Hcom|−1, as then

P
(
S = S′, W = W ′

)
= P

(
S = S′

∣∣W = W ′
)
· P
(
W = W ′

)
� |Hab|−1 · |Hcom|−1 = |H|−1,

as desired. When the mixing time is logk |H|, then we perform an analogous analysis, but this time
we calculate the entropy shortly after logk |H|, which is larger than t0(k, |Hab|); see Lemmas 3.1.9
and 3.1.13. We can then relax the “approximate uniformity” appropriately.

We now briefly explain how to establish this “approximate uniformity” of S′S−1 on Hcom given
W = W ′. We explain the method for d = 3; general d imposes some additional technical hurdles.

We define a combinatorial event E in terms of W and W ′, which depends on the order in which
the generators are chosen not just on the final counts W (t) and W ′(t). We can describe this event

in terms of a random walk on a free nilpotent group. Let H̃k be a free nilpotent group of step 2
with k generators. Let S̃ be the RW on H̃k; assign to it auxiliary process W . Let (S̃′,W ′) be an

independent copy of (S̃,W ). Let w ∈ Zk. Given W (t) = w = W ′(t), the combinatorial event E is

exactly the event {S̃′(t)S̃(t)−1 ∈ [H̃k, H̃k]} \ {S̃′(t)S̃(t)−1 ∈ [H̃k, [H̃k, H̃k]] \ {id}}. It is interesting
that this condition turns out to be the relevant condition for arguing that S′(t)S(t)−1 is roughly
a uniformly distributed commutator Hcom = [H,H]. We plan to investigate this further in the
context of general step 2 nilpotent groups in future work.

It remains to control the probability of E ; we again use typicality conditions for this. This is
the only place in which the method differs according to the regime of k; see Lemma 3.1.15.

When the mixing time is the entropic time, this ‘error probability’ will be smaller than 1/|Hcom|,
meaning that P(S = S′, W = W ′) = o(1/|H|), as described above. When the mixing time is
logk |H|, the error is larger, but combined with P(W = W ′) gives o(1/|H|); see Lemma 3.1.18.

3.1.5 Lower Bound

The lower bound is relatively straightforward to prove: we project onto the Abelianisation, then
use the lower bound for Abelian groups from Chapter 2, specifically §2.1.5.

For ease of notation, we suppress the p and d dependence from Hp,d, writing just H. Similarly
we write A := Hab

p,d for the Abelianisation. Also write n := |Hp,d| = pd(d−1)/2.
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Proof of Lower Bound in Theorem 3.1.6. We assume that Z is given, and suppress it.
For any ε > 0, a lower bound is given by (1− ε) logk n: in m steps the support of the random

walk is (at most) km, and hence the walk cannot be mixed in this many steps; cf [52, Fact 2.1].
Write Π : H → A for the canonical projection. Write N := |A| = pd−1. Let ε > 0 and let

t := (1− ε)t0(k,N). Write

E :=
{
µ
(
W (t)

)
≥ N−1eω

}
=
{
Q(t) ≤ logN − ω

}
,

with µ, Q and ω � 1 from §3.1.1. By Proposition 3.1.3, we have P(E) = 1− o(1).
For w ∈ Zk+ and z1, ..., zk ∈ H, write zw := zw1

1 · · · z
wk
k . Recall that reordering the terms

corresponds to multiplication by a particular element of the commutator. Consider the set

E :=
{
x ∈ A

∣∣ ∃w ∈ Zk+ st µt(w) ≥ N−1eω and x = Π(Zw)
}
⊆ A.

Since we use W to generate S, we have P(Π(S(t)) ∈ E | E) = 1. Every element x ∈ E satisfies
x = Π(wx · Z) for some wx ∈ Zk+ with µt(wx) ≥ N−1eω. Hence, for all x ∈ E, we have

P
(
Π(S(t)) = x

)
≥ P

(
W (t) = wx

)
= µt(wx) ≥ N−1eω.

Taking the sum over all x ∈ E ⊆ A, we deduce that

1 ≥
∑
x∈E P

(
Π(S(t)) = x

)
≥ |E| ·N−1eω, and hence |E|/N ≤ e−ω = o(1).

Finally we deduce the lower bound from the definition of TV distance:∥∥P(S(t) ∈ · | Z
)
− πG

∥∥
TV
≥ P

(
S(t) ∈ Π−1(E)

)
− πG

(
Π−1(E)

)
≥ P(E)− 1

N |E| ≥ 1− o(1).

Remark 3.1.7. For the entropic lower bound, all that we used was the size of the Abelianisation.
The same argument shows, for all finite groups G, all k � 1 and all multisubsets Z of G of size k,
that max{t0(k, |Gab|), logk |G|} is a lower bound on the mixing time.

The lower bound here can be used to determine the profile of the convergence to equilibrium;
this is done in §3.1.9.2, and in §2.1. Another lower bound is proved in §2.2.6; this cannot be used
to determine the profile. For many groups these lower bounds will be equivalent, but for some the
latter captures the correct mixing time while the former is a constant factor too small. 4

3.1.6 Upper Bound Preliminaries

For ease of notation, we suppress the p and d dependence from Hp,d, writing just H. Similarly
we write A := Hab

p,d for the Abelianisation. Also write n := |Hp,d| = pd(d−1)/2.
We first prove the upper bound for d = 3. The majority of the ideas are exposed in this case,

while the technical details involved in the general d case somewhat obscure the ideas. Note that
the conditions on d from Hypothesis E are always satisfied when d = 3 (or, in fact, any fixed d).
Similarly, we first analyse the DRW (ie directed graphs); in §3.1.9.1 we then describe the (simple)
adaptations to the proof required for the SRW.

Before doing so, we need some preliminary results (for both d = 3 and general d). First, we
need a concept of ‘typicality’ for the auxiliary random variable W (t): later in the proof, we define
a set W ⊆ Zk+ (dropping the t-dependence from the notation) with the property

W ⊆
{
w ∈ Zk+

∣∣ µt(w) ≤ e−h, maxi wi <
1
2p
}
, (3.1.4)

where h is roughly the entropy of W (t); see Definition 3.1.11 for the precise definition of h, and
also Lemma 3.1.9 for the relation to the entropy. This set will satisfy P(W ∈ W) = 1− o(1), hence
the name ‘typical’; see Lemma 3.1.12.

It is often easier to work with L2, rather than TV, distance, since it has a nice explicit repres-
entation; on the other hand, with TV one can condition on ‘typical’ events. We combine the two
with a ‘modified L2 calculation’: let S and S′ be independent copies (given Z), and let W and W ′

be their associated auxiliary random variables; write typ := {W,W ′ ∈ W}.
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Lemma 3.1.8. Assume that P(W ((1 + ε)t∗) /∈ W) = o(1) for all constants ε > 0. Then the upper
bound in Theorem 3.1.6 is established by showing, for all constants ε > 0, that

t 7→ D(t) := |H|P
(
S(t) = S′(t) | typ

)
− 1 satisfies D

(
(1 + ε)t∗

)
= o(1).

Proof. Using the triangle inequality and then Cauchy-Schwarz inequality, we obtain the following:

dHk(t) =
∥∥PHk(S(t) ∈ · | Z

)
− πH

∥∥
TV
≤
∥∥PHk(S(t) ∈ · |W (t) ∈ W

)
− πH

∥∥
TV

+ P
(
W (t) /∈ W

)
;

E
(
2
∥∥PHk(S(t) ∈ · |W (t) ∈ W

)
− πH

∥∥
TV

)
2 ≤ |H|P

(
S(t) = S′(t) | typ

)
− 1 = D(t).

Combining these with the assumption P(W /∈ W) = o(1), and Markov’s inequality, gives∥∥PHk(S(t) ∈ ·
)
− πH

∥∥
TV

= o(1) whp over Z.

To upper bound D := D(t), we separate into cases according to whether or not W = W ′:

P
(
S = S′ | typ

)
= P

(
S = S′ |W = W ′, typ

)
P
(
W = W ′ | typ

)
+ P

(
S = S′ |W 6= W ′, typ

)
P
(
W 6= W ′ | typ

)
.

Were the underlying group Abelian, W = W ′ would imply S = S′. This is not the case for
non-Abelian groups; in fact estimating P(S = S′ |W = W ′, typ) is the main part of the proof.

First we control P(W = W ′ | typ). To do this, we must estimate the entropy shortly after
the proposed mixing time. Recall that W (·) is a RW on Zk+, that µt is the law of W (t) and that
Q(t) = − logµt(W (t)). Denote by

h(t) = E
(
Q(t)

)
, the entropy of W (t).

Recall that tdiam = logk |H|, 1
2d = (log |A|)ν , k = (log |A|)ρ = (log |H|)ρ/(1+ν) and |H| = |A|d/2.

Lemma 3.1.9. Let ξ > 0. Then, for any ω � min{k, log |A|}, the following lower bounds hold.

· For t ≥ (1 + ξ)t0(k, |A|), we have h(t) = E(Q(t)) ≥ log |A|+ 2ω.
· For t ≥ (1 + ξ)tdiam, if ρ ≥ 1 + 2/(d− 2), then h(t) = E(Q(t)) ≥ (1− 1

ρ ) log |H|+ 2ω.

To prove this lemma, we use the following result, which will be used independently later.

Lemma 3.1.10. Let t0 and t2ω be the entropic times for entropy log |A| and log |A|+ 2ω, respect-
ively. Then we have t2ω h t0 if ω � min{k, log |A|}.

We defer the proof of Lemma 3.1.10 to Chapter 6; see Lemma 6.1.8. We now prove Lemma 3.1.9.

Proof of Lemma 3.1.9. Consider first time t0(k, |A|). We have h(t) ≥ log |A| by definition of the
entropic time. The +2ω additive term then follows immediately from Lemma 3.1.10.

Consider now the time tdiam. Recall from §3.1.2 that the entropy of the rate-1 RW on Z at time
s� 1 satisfies H(s) h s log(1/s). Take s := tdiam/k. Direct calculation gives s� 1. Thus

h(tdiam)/ log n h tdiam log(k/tdiam)/ log n = 1
log k log

(
k log k
logn

)
= 1

ρ log log |A|
(
(ρ− 1− ν) log log |A|+ log log((log |A|)ρ)

)
≥ 1− 1+ν

ρ .

For ξ ∈ (0, 1) fixed, h((1+ ξ)tdiam) h (1+ ξ)h(tdiam). The conditions on d gives 1−1/ρ ≥ 2/d� ν.
Hence the claim is true for all ξ > 0 (fixed) provided k � 2

d log n, ie k � log |A|.

Motivated by this lemma, recalling that t∗ = max{t0, tdiam}, we make the following definition.

Definition 3.1.11. Define h0 as follows:

h0 :=

 log |A| when k ≤ (log |A|)1+2/(d−2);

(1− 1
ρ ) log |H| when k ≥ (log |A|)1+2/(d−2).

Fix some ω such that 1� ω � min{k, log |A|}, and set h := h0 + ω.

Chapter 3. Cutoff and Geometry for Random Walks on Heisenberg Groups Page 055 of 161



Not only does the entropy satisfy this lower bound, but the Q random variable, which is defined,
in §3.1.1, so that E(Q(t)) = h(t), concentrates, giving the following result.

Lemma 3.1.12. Assume that ω � min{k, log |A|}. Let ε > 0 and t ≥ (1+3ε) max{t0, tdiam}. Then

P
(
Q(t) ≥ h

)
= P

(
µt
(
W (t)

)
≤ e−h

)
= 1− o(1).

Proof. Rearrange the inequality µ ≤ e−h into Q := − logµ ≥ h, use Lemma 3.1.9, the definition
of h and h0 from Definition 3.1.11 and apply the concentration result Proposition 3.1.3.

We now control P(W = W ′ | typ). This is where the typicality condition in (3.1.4) comes in.

Lemma 3.1.13. Recall h as defined in Definition 3.1.11. We have

P
(
W = W ′ | typ

)
≤ e−h/P(typ).

Proof. By direct calculation, since W and W ′ are independent copies, we have

P
(
W = W ′, typ

)
= P

(
W = W ′, W ∈ W

)
=
∑
w∈W P

(
W = w

)
P
(
W ′ = w

)
≤ e−h,

using the fact that
∑
w∈W P

(
W = w

)
≤ 1 and P(W ′ = w) ≤ e−h for all w ∈ W.

Consideration of P(S = S′ | W 6= W ′, typ) is the topic of the next two subsections (§3.1.7
for d = 3 and §3.1.8 for general d). The main ingredient is the following lemma, which follows
immediately from the fact that p is prime. (Recall that [m] = {1, ...,m} for m ∈ N.)

Lemma 3.1.14. Let X1, ..., X` ∼iid Unif(Zp) and a1, ..., a` ∈ [p− 1]. Then
∑`

1 aiXi ∼ Unif(Zp).

We can extend this to general p ∈ N: we have
∑`

1 aiXi ∼ Unif(gZp) where g := gcd(a1, ..., a`, p)
and gZp = {g, 2g, ..., p}; see Lemma 2.1.11. (These statements are in Zp, ie modulo p.)

3.1.7 Upper Bound for 3× 3 Heisenberg Matrices

As in §3.1.6, we use the abbreviations H := Hp,d, A := Hab
p,d and n := |Hp,d| = pd(d−1)/2. Here

(§3.1.7), we study only d = 3. In the 3× 3 case, we only have three terms to deal with. Abbreviate

a matrix M ∈ Hp,3 by (M1,2,M2,3,M3,3).

For matrices M1,M2, ... ∈ Hp,3, writing Mj := (aj , bj , cj) for each j, we have∏t
1Ms =

(∑t
1 as,

∑t
1 bs,

∑t
1 cs + f

(
(as)

t
1, (bs)

t
1

))
where f

(
(aj)

t
1, (bj)

t
1

)
:=
∑t
s=1 bs

∑s−1
r=1 ar,

(3.1.5)

Note that the first two terms are ‘Abelian’ (and correspond to the Abelianisation): we can reorder
the product M1 · · ·Mt in any way we desire, and the first two terms are unchanged; also, so is the
first part of the third term, but the polynomial f is not.

We have k generators Z = [Z1, ..., Zk]; write Zi := (Ai, Bi, Ci) for each i. Recall that W is
a DRW on Zk+. Suppose that N := N(t) steps are taken. Write (α1, β1, γ1), ..., (αN , βN , γN ) for
the steps taken by S. Write Gm for the generator index chosen at step m ∈ [N ], ie Gm = i if
(αm, βm, γm) = (Ai, Bi, Ci). Write α := (αm)N1 and β := (βm)N1 . Let S′ be an independent copy
of S, and make similar definitions. From (3.1.5), we have

S(t) =
(∑k

1 AiWi(t),
∑k

1 BiWi(t),
∑k

1 CiWi(t) + f(α,β)
)
. (3.1.6)

Recall that we write “≡” to mean “equivalent modulo p”.
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Proof of Theorem 3.1.6 (when d = 3). First, we claim that

P
(
S = S′ |W 6= W ′, typ

)
= 1/n = 1/p3. (3.1.7)

Indeed, for any v ∈ Zkp \ {0}, by Lemma 3.1.14, each of
∑k

1 Aivi,
∑k

1 Bivi and
∑k

1 Civi is an

independent Unif(Zp); also, f(α,β) is independent of
∑k

1 CiWi(t). Note also that, by typicality,
|Wi −W ′i | < p for all i, and so Wi ≡W ′i mod p if and only if Wi = W ′i . Hence conditioning on W
and W ′ and then using (3.1.6) establishes the claim. Next, recall from Lemma 3.1.13 that

P
(
W = W ′ | typ

)
≤ e−h/P

(
typ
)

= e−ωe−h0/P
(
typ
)
. (3.1.8)

It remains to consider the case that W (t) = W ′(t) = w, for some w ∈ W. In particular, S and S′

take the same number of steps: N = N ′. Note, by (3.1.6), that S−S′ = (0, 0, f(α,β)− f(α′,β′)).
Expanding the definition of f in (3.1.5), we may write

f(α,β) =
∑k
i,j=1 Ci,jAiBj , (3.1.9)

for appropriate {Ci,j}ki,j=1; specifically, for i, j ∈ [k], we have

Ci,j :=
∑N
`=1 1

(
G` = j

)∑`−1
m=1 1

(
Gm = i

)
; write C := (Ci,j | i, j ∈ [k]). (3.1.10)

Define C ′i,j and C ′ analogously with respect to W ′. The body of the proof will be controlling the
probability that C ≡ C ′ conditional on W (t) = W ′(t) = w, for some typical w ∈ W. Write

E :=
{
C ≡ C ′

}
=
{
Ci,j ≡ C ′i,j ∀ i, j ∈ [k]

}
. (3.1.11)

We have P(S = S′ |W = W ′ = w, E) = 1. We now argue that

P
(
S = S′ |W = W ′ = w, Ec

)
≤ 2/p. (3.1.12)

Write Di,j := Ci,j − C ′i,j . On the event Ec, there exist i′, j′ ∈ [k] with Di′,j′ 6≡ 0. Then

f(α,β)− f(α′,β′) = Ai′
(
Di′,j′Bj′ +

∑
j 6=j′ Di,jBj

)
+
∑
i6=i′ Ai

∑
j Di,jBj . (3.1.13)

We can write this final expression (with the natural association) as

U
(
V +X

)
+ Y. (3.1.14)

Since Di′,j′ 6≡ 0 (by choice of i′ and j′) and p is prime, U, V ∼iid Unif(Zp). Moreover, U is jointly
independent of X and Y and V is independent of X (but not of Y ); hence V + X ∼ Unif(Zp),
independent of U , and so U(V +X) ∼ Unif(Zp) and is independent of Y on the event {V +X 6≡ 0}.
(These independence statements are all conditional on W = W ′ = w.) Thus

P
(
U(V +X) + Y ≡ 0

)
≤ maxu P

(
U ≡ u

)
+ P

(
V +X ≡ 0

)
= 2/p. (3.1.15)

This establishes (3.1.12).
Combining these results, recalling that E = {C ≡ C ′}, writing

q(t) := maxw∈W P
(
E |W = W ′ = w

)
,

recalling that w is an arbitrary (fixed) element of W, we find that

P
(
S = S′ |W = W ′ = w, typ

)
≤ 2/p+ q(t). (3.1.16)

Once we average over w ∈ W, recalling (3.1.8), we obtain

P
(
S = S′, W = W ′ | typ

)
≤ 2e−h

(
1/p+ q(t)

)
/P
(
typ
)
. (3.1.17)

It remains to make an appropriate definition of typicality, ie ofW: we require that it satisfies (3.1.4),
that P(W ∈ W) = 1− o(1), and hence P(typ) = 1− o(1), and that e−h(2/p+ q(t)) = o(1/n). This
is done in Lemma 3.1.15 below; it is the main technical part of the proof.

Once this is done, combining (3.1.7, 3.1.17) gives

nP
(
S = S′ | typ

)
− 1 = o(1).

The upper bound in Theorem 3.1.6 then follows from Lemma 3.1.8, modulo Lemma 3.1.15.
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It remains to appropriately upper bound q(t) so that the right-hand side of (3.1.16) is o(eh/n).

Lemma 3.1.15. Suppose that 1� log k � log n. There exists aW ⊆ Zk+, satisfying (3.1.4), so that

P
(
W ∈ W

)
= 1− o(1) and ne−h

(
1/p+ q(t)

)
= o(1).

For this proof, let ε > 0, and assume that it is as small as required (but independent of n).
Recall that here d = 3, so log |A| � log n and 1 + 2

d−2 = 3. Hence there are three main regimes:

k � log |A|, log |A| . k ≤ (log |A|)3 and k ≥ (log |A|)3.

Proof of Lemma 3.1.15 when k ≥ (log |A|)3. We have t ≥ (1 + 3ε)tdiam = (1 + 3ε) logk |G|.
Recall from Definition 3.1.11 that, in this regime, we take h0 := (1− 1

ρ ) log n. Hence e−h0 = n−1+1/ρ.

Since t� k, almost all the generators are picked at most once whp. For w ∈ Zk+, define

J (w) :=
{
i ∈ [k] | wi = 1

}
and J(w) := |J (w)|.

Using this, we make precise our definition of typicality:

W :=
{
w ∈ Zk+

∣∣ µt(w) ≤ e−h, |J(w)− te−t/k| ≤ 1
2εte

−t/k, maxi wi <
1
2p
}
,

satisfying (3.1.4). Using the conditions of Hypothesis E, we have logk n �
√
p and t0 . k � √p.

Thus the condition {maxi wi <
1
2p} holds with probability 1 − o(1). By Binomial concentration

and Lemma 3.1.12, we then have P(W ∈ W) = 1− o(1).
Let w ∈ W. We now argue that

P
(
E
∣∣W = W ′ = w, |J (w)| = J

)
≤ 1/J !. (3.1.18)

This holds since, conditional on W = W ′ = w, different (relative) orderings, between S and S′,
of the coordinates chosen once, ie in J (w), must result in some pair (i, j) such that Ci,j = 1 and
C ′i,j = 0. There are J ! different orderings.

Applying (3.1.18), using the condition |J(w)− te−t/k| ≤ 1
2εte

−t/k for w ∈ W, gives

q(t) ≤ 1/
(
(1− ε)t

)
! (3.1.19)

Note that k = (log |H|)ρ/(1+ν), and so tdiam = logk n = 1+ν
ρ log n/ log log n. Using t ≥ (1 + 3ε)tdiam

in (3.1.19), direct calculation with Stirling’s approximation gives

q(t) ≤
(
(1 + ε)tdiam/e

)−(1+ε)tdiam ≤ n−1/ρ. (3.1.20)

Recalling that e−h = e−ωn−1+1/ρ, the proof is completed in the regime k ≥ (log |A|)3:

ne−h
(
1/p+ q(t)

)
≤ 2n · e−ωn−1+(1+ν)/ρ · n−(1+ν)/ρ = 2e−ω � 1.

Proof of Lemma 3.1.15 when log |A| . k ≤ (log |A|)3. We have t ≥ (1 + 3ε)t0. Recall from
Definition 3.1.11 that, in this regime, we take h0 := log |A|. Hence e−h0 = |A|−1.

Since d � 1, we have 1 � t . k. We use the same definition of typicality here as for k ≥
(log |A|)3. Since 1� t . k, we have P(W ∈ W) = 1− o(1).

Since t ≥ (1 + 3ε)t0, direct calculation using (3.1.1c, 3.1.19) and Stirling’s approximation gives

q
(
(1 + 3ε)t0

)
≤
(
(1 + ε)t0/e

)−(1+ε)t0 ≤ |A|1/(ρ−1) when k � log |A|. (3.1.21a)

For k h λ log |A|, with λ ∈ (0,∞), we have t0 h f(λ)k h λf(λ) log |A| by (3.1.3b), and thus

E
(
|J |
)
h λf(λ)e−f(λ) log |A|.

Applying (3.1.18), using the condition |J(w)− te−t/k| ≤ 1
2εte

−t/k for w ∈ W, gives

q(t) ≤ 1/
(
(1− ε)λf(λ)e−f(λ) log |A|

)
!;
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applying Stirling’s approximation, it is easy to see that this decays super-polynomially, ie

log
(
1/q
(
(1 + 3ε)t0

))
� log |A| when k h λ log |A|, (3.1.21b)

provided ε is sufficiently small. Hence

q(t) ≤ |A|1/(ρ−1) when log n . k ≤ (log |A|)3. (3.1.22)

Recall that we want to compare q(t) with 1/p = |A|/|H|. Recall that |H| = |A|2/d. Some simple
algebra then shows that q(t) ≤ 1/p when ρ ≥ 1 + 2

d−2 = 3. Recalling that e−h = e−ω|A|−1, the

proof is completed in the regime log |A| . k ≤ (log |A|)3:

ne−h
(
2/p+ q(t)

)
≤ |H| · e−ω|A|−1 · 3|A|/|H| = 3e−ω � 1.

Proof of Lemma 3.1.15 when 1� k� log |A|. We have t ≥ (1 + 3ε)t0. Recall from Defini-
tion 3.1.11 that, in this regime, we take h0 := log |A|. Hence e−h0 = |A|−1.

Since d � 1, we have t0 � k|A|2/k = kp4/k � k. Hence the same generator is picked lots
of times, and so we need a new approach for calculating q(t). The expected number of times a
generator is picked is s := t/k � 1. As part of our typicality requirements, we ask that ‘most’
pairs (2i, 2i−1), with i ∈ {1, ..., bk/2c}, are picked between ηs and η−1s times, for a small positive
constant η, to be chosen later; for the moment, let η ∈ (0, 1). For w ∈ Zk+, write

C(w) :=
{
i ∈ {1, ..., bk/2c}

∣∣ ηs ≤ min{w2i, w2i−1} ≤ max{w2i, w2i−1} ≤ η−1s
}
.

Then, for η sufficiently small (but still a constant), we have

P
(
|C(W )| ≥ 2

5k
)

= 1− o(1). (3.1.23)

(We could replace 2
5 by any constant less than 1

2 , at the cost only of making η a smaller constant.)
We use this to make precise our definition of typicality for this regime:

W :=
{
w ∈ Zk+

∣∣ µt(w) ≤ e−h, |C(w)| ≥ 2
5k, maxi wi <

1
2p
}
.

Then, like before and additionally using (3.1.23), we have P(W ∈ W) = 1− o(1). If i ∈ C(w), then
max{C2i,2i−1, C

′
2i,2i−1} ≤ w2

i . s2 � p as d � 1, so {C2i,2i−1 ≡ C ′2i,2i−1} = {C2i,2i−1 = C ′2i,2i−1}.
We claim that it is sufficient to fix an arbitrary w ∈ W and prove the bound

maxi qi ≤ p−3/k where qi := maxx P
(
C2i,2i−1 = x

∣∣W = w
)
1
(
i ∈ C(w)

)
. (3.1.24)

To see this, first make the simple observation that, for any I ⊆ {1, ..., bk/2c}, we have{
(Ci,j)i,j∈[k] = (C ′i,j)i,j∈[k]

}
⊆
{

(C2i,2i−1)i∈I = (C ′2i,2i−1)i∈I
}
.

Given W = W ′ = w, the event {Ci,j = C ′i,j} is determined by the relative order in which the
generators i and j are chosen. Hence, since the pairs (2i, 2i−1) are disjoint, the events {C2i,2i−1 =
C ′2i,2i−1} are independent for different i, conditional on W = W ′ = w. Take I := C(w), which has

size at least 2
5k. By the aforementioned independence, given (3.1.24), we have

P
(
C = C ′

∣∣W = W ′ = w
)
≤ (maxi qi)

2k/5 ≤ p(−3/k)(2k/5) = p−6/5 � 1/p,

and hence q(t)� 1/p. The proof is then completed as in the regime log |A| . k ≤ (log |A|)3.
It remains to prove (3.1.24). For simplicity of notation, we assume that 1 ∈ C(w) and set i := 1.

Let r := w1 +w2, and write our random word as S = ZG1 · · ·ZGN ; here N =
∑k

1 wi is the number
of steps taken and G` is the generator index chosen in the `-th step. Let J1 < · · · < Jr be the
(random) indices with GJ` ∈ {1, 2}. Now define the vector I ∈ {1, 2}r by I` := GJ` . Thus I encodes
the relative order between the different occurrences (with multiplicities) of the generators labelled
by {1, 2} in the word S. By typicality, 2ηs ≤ r ≤ 2η−1s.

Let I ′ be the random vector obtained from I by picking a 2 uniformly at random and omitting
it from I. (Eg, if I = (2, 2, 1, 1, 2, 1) and we pick the last 2, then I ′ = (2, 2, 1, 1, 1).) Importantly, we
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are omitting elements of the relative order of appearances of Z1 and Z2, not the absolute locations
of the corresponding generators.

By the definition of C1,2, given in (3.1.10), given W = w, the value of C1,2 is a function only of
the relative locations I. Hence, given I ′ also, it is a function only of the location of the omitted 2.
It is constant on the set of locations which give rise to the same I: two different placements of the
omitted 2 give rise to the same I if and only if they both lie in the same (possibly empty) interval
of consecutive 2s. (Eg, if I ′ = (2, 2, 1), then there are three locations in which we can insert a 2 to
get I = (2, 2, 2, 1), namely the first, second and third positions, and only one to get I = (2, 2, 1, 2),
namely the fourth position; the first three give rise to C1,2 = 0 and the fourth to C1,2 = 1.)

Hence, writing L(I ′) for the longest interval of 2s in I ′, we have

maxx P
(
C1,2 = x

∣∣W = w, I ′
)
≤
(
L(I ′) + 1

)
/r.

By Claim 3.1.16 below, with m = 2, we find that L(I ′)/(C log r) � Geom( 1
2 ) given W = w for a

sufficiently large constant C, and so E(L(I ′) |W = w) . log r. Hence

maxx P
(
C1,2 = x

∣∣W = w
)
≤ E

(
L(I ′) + 1

∣∣W = w
)
/r . (log r)/r.

Since 2ηs ≤ r ≤ 2η−1s, as w ∈ W, and η is a (small) constant, this last expression is o(1/s3/4). (In
fact, it is O(log s)/s.) Recalling that s � p4/k establishes (3.1.24). This completes the proof.

It remains to state and prove the claim regarding E(L(I ′)). We actually state and prove a
slightly more general claim, that we are then able to use in the analysis of the d× d matrices.

Claim 3.1.16. Let m ∈ N and η ∈ (0, 1). Let {w1, ..., wm} be arbitrary positive integers satisfying
wi/wj ∈ [η2, η−2] for all i, j ∈ [m]. For each k ∈ {1, ...,m}, let there be wk balls of colour k; write
r :=

∑m
k=1 wk for the total number of balls. Choose a uniform permutation of the balls on positions

{1, ..., r}. For each k ∈ {1, ...,m}, let Lk be the longest interval without any balls of colour k. Then,
for each k, we have the stochastic domination

Lk/(η
−2m log r) � Geom( 1

2 ).

Proof. Without loss of generality, take k := 1 and write L := L1. By assumption, wi/wj ∈ [η2, η−2]
for all i and j, and η ∈ (0, 1) is a constant. Hence r ≤ mη−2w1, and so w1 ≥ η2r/m. Let ` ∈ N to
be chosen shortly; write [1, r] ⊆ [1, `] ∪ [2, `+ 1] ∪ · · · ∪ [r, r + `− 1]. By direct calculation,

P
(
L > `

)
≤ rP

(
no 1 in the interval [1, `]

)
= r ·

(
1− w1−1

r−1

)(
1− w1−1

r−2

)
· · ·
(
1− w1−1

r−`
)

≤ r
(
1− w1−1

r−1

)` ≤ r exp
(
−`w1/r

)
≤ r exp

(
−`η2/m

)
,

where for the penultimate inequality we used the fact that w1−1
r−1 ≤

w1

r , which holds since w1 ≤ r.

Choosing ` := (k + 1)η−2m log r gives

P
(
L > (k + 1)η−2m log r

)
≤ r exp

(
−(k + 1) log r

)
= r−k.

Thus we may stochastically dominate

L/(η−2m log r) � Geom(1− 1/r) � Geom( 1
2 ).

3.1.8 Upper Bound for d× d Heisenberg Matrices

The high-level ideas of the proof will be similar to the d = 3 case, but there are a number
of subtleties which need to be navigated. Analogously to Lemma 3.1.15, there will be a certain
probability that requires bounding, and the argument for bounding this will differ depending on
k; the specific reference will be Lemmas 3.1.18 and 3.1.10, and comes at the end of the section.

We also use the same preliminaries (see §3.1.6), and in particular consider

D(t) = |Hp,d|P
(
S = S′ | typ

)
− 1.
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The analogues of (3.1.5, 3.1.6) are different for general d than for d = 3: they have the same
basic structure, but with the addition of ‘higher order’ terms (given by ga,b in the lemma below).
The following lemma is for both the DRW and SRW; take σ` := 1 for all ` to reduce to the DRW.

Lemma 3.1.17. Let Z1, ..., Zk ∈ Hp,d. Let γ ∈ [k]L and σ ∈ {±1}L. For i, j ∈ [k], set

Ci,j(γ, σ) :=
∑L
`=0

∑`−1
m=0 σmσ`1(γm = i, γ` = j) + 1(i = j)

∑L
`=0 1(γ` = i, σ` = −1).

Set M := Zσ1
γ1 · · ·Z

σL
γL . Then, for all a ∈ [d], we have

M(a, a) = 1 and M(a, a+ 1) =
∑L
`=1 σγ`Zγ`(a, a+ 1),

and, for all a, b ∈ [d] with b ≥ a+ 2, we have

M(a, b) =
∑
`∈[L] Zγ`(a, b) +

∑
i,j∈[k] Ci,j(γ, σ)Zi(a, a+ 1)Zj(a+ 1, b) + ga,b(γ, σ;Z1, ..., Zk),

(3.1.25)
where ga,b(γ, σ;Z1, ..., Zk) is a polynomial in (Zi(x, y) : i ∈ [k], x ∈ [d− 1], y > x). Further, in this
polynomial, each monomial contains the term Zi(a, a + 1) either 0 times or exactly once and no
monomial contains a term of the form Zi(a, a+ 1)Zj(a+ 1, b) for i, j ∈ [k].

We give a sketch of the argument here; the rigorous details are deferred to Lemma 6.6.2.

Proof Sketch of Lemma 3.1.17. The fundamental idea is to write a matrix M` ∈ Hp,d as I +N`
where N` is strictly upper triangular. For M1, ...,ML ∈ Hp,d written like this, one then has

M1 · · ·ML =
∏L
`=1(1 +N`) = I +

∑L
`=1N` +

∑
m1<m2

Nm1
Nm2

+
∑L
`=3

∑
m1<···<m`

∏`
r=1Nmr ,

where the indices mr run over [L]. Further, for (a, b) with b− a ≥ 2, one can write(
Nm1Nm2

)
(a, b) =

∑
c∈[1,d]Nm1(a, c)Nm2(c, b) =

∑
c∈[a+1,b−1]Mm1

(a, c)Mm2
(c, b)

= Mm1
(a, a+ 1)M2(a+ 1, b) +

∑b−1
c=a+2Mm1

(a, c)M2(c, b).

We consider this latter sum along with all products of degree at least 3 as ‘higher order’ terms.
Writing

∑
m1<m2

as
∑L
m2=1

∑m2−1
m1=1, the formula for Ci,j follows for the DRW (ie σ` := 1 for all `).

The SRW analysis is similar. Since N` is strictly upper triangular, Nd
` = 0. Thus

M−1
` = (1 +N`)

−1 = I −N` +N2
` +

∑d
t=3(−1)tN t

` .

Separating out ‘higher order’ terms similarly, we deduce the formula for the SRW.

As previously, we use the abbreviations H := Hp,d, A := Hab
p,d and n := |Hp,d| = pd(d−1)/2.

Proof of Theorem 3.1.6 (general d). When W (t) 6= W ′(t), the same argument as for d = 3, using
Lemma 3.1.14, applies, replacing (3.1.6) by (3.1.25):

P
(
S = S′ |W 6= W ′, typ

)
= 1/n = 1/pd(d−1)/2 = p−(d−1)(d−2)/2 · p−(d−1). (3.1.26)

This is the analogue of (3.1.7). Next, recall from Lemma 3.1.13 that

P
(
W = W ′ | typ

)
≤ e−h/P

(
typ
)

= e−ωe−h0/P
(
typ
)
. (3.1.27)

Now suppose that W (t) = W ′(t) = w, where w is some fixed element of W (yet to be defined
fully). Then the ‘Abelian’ parts of S and S′, corresponding to the first term in the right-hand side
of (3.1.25), cancel (as was the case when d = 3). Write C := (Ci,j) and C ′ := (C ′i,j) for the C(γ) in
Lemma 3.1.17 generated by S and S′, respectively. Write E := {C = C ′}. On E , the middle terms
of (3.1.25) cancel, leaving only the higher-order terms; upper bound P(S = S′ |W = W ′, E) ≤ 1.

Now suppose that E does not hold; choose, and fix, (i′, j′) so that Ci′,j′ 6≡ C ′i′,j′ . By the
condition (3.1.4) which W must satisfy and the definition of Ci,j , this implies that Ci′,j′ 6= C ′i′,j′ .
Analogously to (3.1.13, 3.1.14), where d was equal to 3, letting

Ua,b := Zi′(a, a+ 1) and Va,b := (Ci′,j′ − C ′i′,j′)Zj′(a+ 1, b), (3.1.28)
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we can, for some random variables Xa,b and Ya,b, write∑k
i,j(Ci,j − C

′
i,j)Zi(a, a+ 1)Zj(a+ 1, b) naturally as Ua,b(Va,b +Xa,b) + Ya,b.

For the moment, fix (a, b). Analogously to the d = 3 case, ie (3.1.12–3.1.15), the following hold:
Ua,b, Va,b ∼ Unif(Zp); Ua,b is independent of (Va,b, Xa,b, Ya,b); Va,b is independent of Xa,b (but not
of Ya,b). Thus Ua,b(Va,b+Xa,b) ∼ Unif(Zp) is independent of Y on the event Va,b+Xa,b 6≡ 0. Hence

maxr P
(
Ua,b(Va,b +Xa,b) + Ya,b ≡ r

)
≤ maxu P

(
Ua,b ≡ u

)
+ P

(
Va,b +Xa,b ≡ 0

)
≤ 2/p; (3.1.29)

Now compare Sa,b and S′a,b. Since W = W ′, the ‘Abelian’ part cancels; we are left with the
Ua,b(Va,b +Xa,b) + Ya,b part and the higher-order terms, given by the ga,b polynomials in (3.1.25).
These two parts are independent, by the conditions of Lemma 3.1.17. Hence (3.1.29) implies that

P
(
Sa,b = S′a,b

∣∣W = W ′ = w, Ec
)
≤ 2/p. (3.1.30)

Now, the random variables {Xa,b, Ya,b}a,b are not independent. Also, Ua,b = Zi′(a, a+ 1) does
not depend on b, and so {Ua,b, Va,b | b ≥ a+ 2}a,b are not independent either. However, if we fix b
then {Ua,b, Va,b | b ≥ a+ 2}a is a collection of independent variables. We exploit this.

Partition the [k] generators into d − 2 sets (P3, ..., Pd). For each (fixed) b ∈ {3, ..., d}, we
use generators only from Pb; this will give independence when we consider all b. (Note that for
b ∈ {1, 2} there are no terms above the super-diagonal.) Then for the (a, b)-th coordinate we try
to get Ci′,j′ 6≡ C ′i′,j′ for some (i′, j′) with i′, j′ ∈ Pb. Now, for each b, using this pair (i′, j′) in the
definition (3.1.28) of Ua,b and Va,b, the random variables {Ua,b, Va,b | b ≥ a+ 2}a are independent,
since they depend on a disjoint set of generators.

For each b ∈ {3, ..., d}, write

Cb := (Ci,j)i,j∈Pb , C ′b := (C ′i,j)i,j∈Pb and Eb := {Cb = C ′b}. (3.1.31)

We wish to get an analogue of (3.1.16), for general d. Write Pw(·) := P( · | W = W ′ = w) for
w ∈ W, and S:,b := (Sa,b | a = 1, ..., b − 2) for the b-th column strictly above the super-diagonal;

also, henceforth, in
∑d

3 and
∏d

3, the implicit index is always b. Then

Pw
(
S = S′

)
=
∏d

3 Pw
(
S:,b = S′:,b

∣∣ S:,b′ = S′:,b′ ∀ b′ = 3, ..., b− 1
)

Using (3.1.30), and noting that S:,b has b− 2 entries, we obtain

Pw
(
S:,b = S′:,b

∣∣ S:,b′ = S′:,b′ ∀ b′ = 3, ..., b− 1
)
≤ (2/p)b−2 + Pw

(
Eb
)
;

this uses the aforementioned independence between columns, guaranteed by the partitioning of the
generators. Combining these two equations, we obtain

Pw
(
S = S′

)
≤ 2d

2/2∏d
3

(
1/pb−2 + qb(t)

)
where qb(t) := maxw∈W

∏d
3 Pw(Eb). (3.1.32)

It remains to make an appropriate definition of typicality, ie of W, and choose the partition
(P3, ..., Pd) appropriately. For reasons explained later, we end up choosing Pb so that Rb := |Pb|/k =

(b − 2)/
(
d−1

2

)
, omitting floor/ceiling signs. (Note that

∑d
3 Rb = 1, as required.) We justify the

omission of floor/ceiling signs by the fact that |Pb| � (b− 2)kd−2 � 1 (as d2 � k).
This is all done in Lemma 3.1.18, which gives the following bound:

nPw
(
S = S′

)
≡ nP

(
S = S′ |W = W ′ = w

)
≤ eh02d

2

. (3.1.33)

Combined with (3.1.26, 3.1.27) this implies that

nP
(
S = S′ | typ

)
− 1 ≤ 2 · e−ω2d

2

, (3.1.34)

where we shall choose typ so that P(typ) = 1 − o(1). If we can show that we can choose ω � d2,
then the upper bound in Theorem 3.1.6 then follows from Lemma 3.1.8, modulo Lemma 3.1.18.

It remains to prove that we can choose ω � d2. Lemma 3.1.10 says that we can choose any
ω � min{k, log |A|}. Hypothesis E implies that d2 � min{k, log |A|} is satisfied, as required:

d3 � k when k � log |A| and d� log log p when k & log |A|.
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It remains to appropriately bound qb(t), defined in (3.1.32).

Lemma 3.1.18. Let ε > 0 and set t := (1 + 3ε)t∗. Assume the conditions of Hypothesis E. Then
there exists a W ⊆ Zk+, satisfying (3.1.4), so that

P
(
W ∈ W

)
= 1− o(1) and |H|e−h0

∏d
3

(
1/pb−2 + qb(t)

)
≤ 2d

2/2.

Recall the condition onW given by (3.1.4). Since t ≥ (1+3ε)t0, by Lemma 3.1.12, this condition
is satisfied with probability 1− o(1). Hence we need only check that any additional constraints are
also satisfied with probability 1− o(1). Recall that we use the notation

k =
(
log |A|

)
ρ and 1

2d =
(
log |H|

)
ν , so k =

(
log |H|

)
ρ/(1+ν), and n = |H| = pd(d−1)/2.

Proof of Lemma 3.1.18 for k & log |A|. Let ε > 0 and set t := (1 + 3ε)t∗; write s := t/k.

Typicality. As when d = 3, when k � log |A| almost all the generators are picked at most
once; when k � log |A|, a constant proportion are. As part of our typicality requirement (typ), we
ask that at least (1 − ε)te−t/k generators are picked exactly once—ie at least (1 − ε) times the
expected number. Given this, we can then choose our partition so that, for each b ∈ {3, ..., d},
writing Rb := |Pb|/k, at least (1− ε)te−t/kRb generators from Pb are picked exactly once.

We can hence use the same definition of typicality, for k & log |A|, as when d = 3:

W :=
{
w ∈ Z+

∣∣ µt(w) ≤ e−h, |J(w)− se−sk| ≤ 1
2εse

−sk, maxi wi <
√
p
}
, (3.1.35)

satisfying (3.1.4), recalling that J(w) =
∑k

1 1(wi = 1). As previously, P(W ∈ W) = 1− o(1).
Analogously to (3.1.19), when k � log |A|, we have

qb(t) ≤ 1/
(
(1− 2ε)tRb

)
!, (3.1.36)

where we have absorbed the e−t/k = 1− o(1) term into the (1− 2ε); we consider k � log |A| later.

Regime k ≥ (log |A|)1+2/(d−2). We have t ≥ (1 + 3ε)tdiam = (1 + 3ε) logk |A|. Direct calculation,
analogous to (3.1.20), using (3.1.3d) and (3.1.36) and Stirling’s approximation gives

qb(t) ≤ 1/
(
(1− 2ε) · (1 + 3ε)tdiam ·Rb

)
! ≤ n−Rb1/ρ.

In (3.1.20), we upper bounded q(t) ≤ n−1/ρ, and this term was dominant in the sum 1/p+n−1/ρ.
Here, we compare qb(t) ≤ n−Rb/ρ and 1/pb−2. It is thus natural to choose Rb ∝ b − 2, ie Rb :=
(b− 2)/

(
d−1

2

)
, for b ∈ {3, ..., d}. Observe that

1/pb−2 ≤ n−Rb/ρ if and only if ρ(b− 2)/
(
d
2

)
≥ Rb = (b− 2)/

(
d−1

2

)
;

hence we need ρ ≥
(
d
2

)
/
(
d−1

2

)
= 1 + 2

d−2 , which is precisely the regime which we are considering.
Combining the upper bounds just developed, we deduce that∏d

3

(
1/pb−2 + qb(t)

)
≤ 2d

∏d
3 qb(t) ≤ 2dn−1/ρ,

since
∑d

3 Rb = 1. Recalling that h0 = (1− 1
ρ ) log n in this regime, we deduce the desired bound.

Regime log |A| . k � (log |A|)1+2/(d−2). We have t ≥ (1 + 3ε)t0. Recall from Definition 3.1.11
that, in this regime, we take h0 := log |A|. Hence e−h0 = |A|−1. We subdivide the regime.

Consider first k � log |A|. Direct calculation, analogous to (3.1.21a), using (3.1.3c) and (3.1.36)
and Stirling’s approximation, gives

qb(t) ≤ 1/
(
(1− 2ε) · (1 + 3ε)t0 ·Rb

)
! ≤ exp

(
− 2
d

1
ρ−1Rb log n

)
; (3.1.37)

again, this crucially uses the fact that d = (log n)o(1) and ε > 0 is a constant.
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In (3.1.21a), we upper bounded q(t) ≤ |A|1/(ρ−1), and this term was subdominant in the sum
1/p + |A|1/(ρ−1). Here, we compare qb(t) ≤ |A|Rb/(ρ−1) with 1/pb−2. Again, it is thus natural to
choose Rb ∝ b− 2, ie Rb := (b− 2)/

(
d−1

2

)
, for b ∈ {3, ..., d}. Observe that

1/pb−2 ≥ exp
(
− 2
d

1
ρ−1Rb log n

)
if and only if (ρ− 1)(b− 2)/(d− 1) ≤ Rb = (b− 2)/

(
d−1

2

)
;

hence we need ρ ≤ 1 + 2
d−2 , which is precisely the regime that we are considering.

Combining the upper bounds just developed, we deduce that∏d
3

(
1/pb−2 + qb(t)

)
≤ 2d

∏d
3 1/pb−2 ≤ 2dp−(d−1

2 ) = 2d|A|/|H|.

Recalling that h0 = log |A| in this regime, we deduce the desired bound.

Consider now k � log |A|. Suppose that k h λ log |A| with λ ∈ (0,∞). Direct calculation,
analogous to (3.1.21b), using (3.1.3b) and (3.1.36) and Stirling’s approximation gives

log
(
1/qb(t)

)
� d−1 log log |A| · (b− 2) log p� (b− 2) log p, (3.1.38)

using the conditions on d. The proof is then completed in exactly the same way as above.

Proof of Lemma 3.1.18 for k� log |A|. Set t := (1 + 3ε)t∗ ≥ (1 + 3ε)t0. Recall from Defini-
tion 3.1.11 that, in this regime, we take h0 := log |A|. Hence e−h0 = |A|−1. Then s := t/k �
|A|2/k � 1, by Proposition 3.1.2 and the assumption k � log |A|.

As noted in the d = 3 case, neither the actual value of t nor the fact that W and W ′ are
independent DRWs is of much consequence. Even the particular form of s is not important: it can
be changed, subject to changing the conditions on d appropriately.

In the case d = 3, we looked at (adjacent) pairs of indices (2i, 2i − 1). For general d, this is
insufficient; instead, we look at m-tuples, where m is a (growing) function of d.

In this regime, the same generator is picked lots of times, with expectation s = t/k � 1. For
the moment, let η ∈ (0, 1). For w ∈ Zk+, write

C(w) :=
{
i ∈ [k]

∣∣ ηs ≤ wi ≤ η−1s
}
. (3.1.39a)

Then, for η sufficiently small (but still a constant), we have

P
(
|C(W )|/k ≥ 4

5

)
= 1− o(1). (3.1.39b)

(We could replace 4
5 by any constant less than 1.) This will form part of our typicality requirements:

W :=
{
w ∈ Zk+

∣∣ µt(w) ≤ e−h, |C(w)| ≥ 4
5k, maxi wi < p

}
. (3.1.40)

Note that this definition satisfies (3.1.4). For i, j ∈ C(w), as when d = 3, we have {Ci,j ≡ C ′i,j} =

{Ci,j = C ′i,j}, since max{Ci,j , C ′i,j} ≤ wiwj . s2 � p2(d−1)/k � p.

Now recall the partition (P3, ..., Pd) of k, and the definition Rb = |Pk|/k = (b − 2)/
(
d−1

2

)
. Let

m be an integer (allowed to depend on other parameters) with m � minb |Pb| = k/
(
d−1

2

)
� k/d2.

By exchangeability of the generators, for each b ∈ {3, ..., d} assume that the first 4
5 |Pb| entries i of

Pb satisfy ηs ≤ wi ≤ η−1s.
Our aim is to show that the mode of the vector Cm := (Ci,j)i,j∈[m], conditional on W = w,

which we denote µm, is bounded by s−f(m), for some (suitable) super-linearly growing function f ,
recalling that s � p2(d−1)/k. We prove this in Claim 3.1.19 below, and in fact show that we can
take f(m) � m2; for now, assume that claim.

Partition {1, ..., 4
5 |Pb|} into N := b 4

5 |Pb|/mc ≥
3
4 |Pb|/m sequential intervals of length m, say

I1,b, ..., IN,b. This allows us to decompose

Eb =
{
Ci,j = C ′i,j ∀ i, j ∈ Pb

}
⊆ ∩N`=1

{
Ci,j = C ′i,j ∀ i, j ∈ I`,b

}
.

Moreover, the events in the intersection are independent. We upper bound each using the mode:

qb(t) ≤ µNm ≤ s−f(m)N ≤ p−(d−1)k−1·f(m)·(3/4)|Pb|/m ≤ p−dRb· 12 f(m)/m, (3.1.41)
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as s � p2(d−1)/k, and so in particular s ≥ p(d−1)/k (recall that we had said that the exact value of
s would be unimportant); we have dRb = (b− 2)d/

(
d−1

2

)
≥ 2(b− 2)/d, and so this becomes

qb(t) ≤ p−(b−2)·d−1f(m)/m. (3.1.42)

Since f(m)/m � m, we can choose a constant C large enough so that m := Cd satisfies f(m)/m ≥
d, and hence qb(t) ≤ 1/pb−2.

We still need m� k/
(
d−1

2

)
� k/d2; since m � d, this is equivalent to requiring d3 � k. Finally,

to apply Claim 3.1.19, we need logm ≤ 4
3 log |A|/k. But m � d and k � log |A|, so this is implied

by the condition log d ≤ 3
2 log |A|/k from Hypothesis E.

This establishes the desired bound, as it did for log |A| . k ≤ (log |A|)1+2/(d−2).

Claim 3.1.19. In the notation and under the assumptions of the above proof, there exists an
absolute positive constant c so that, assuming that logm ≤ 4

3 log |A|/k (so that m� s), we have

µm ≤ s−cm
2

.

Proof. First, note that logm ≤ 4
3 log |A|/k implies that m ≤ |A|(4/3)/k � |A|2/k � s.

For this proof, we use the following notation: for w ∈ W, write Pw(·) := P( · | W = W ′ = w)
and Ew(·) similarly; often we consider events that depend on W but not on W ′, in which case
we ignore the conditioning on W ′ (noting that W and W ′ are independent). Recall that we write
G` ∈ [k] for the index of the generators chosen in the `-th step.

Further, we abuse notation and terminology slightly by always assuming that “pairs (i, j)” have
i 6= j, and write [m]2 = {(i, j) | i 6= j}, so |[m]2| = m(m− 1).

Take an arbitrary ordering of all m(m − 1) distinct pairs (i, j) ∈ [m]2; write K := m(m − 1)
and the κ-th term (of the ordering) as yκ, for κ ∈ [K].

Let xm = (xi,j)i,j∈[m]2 , with xi,j ∈ N0 for all (i, j) ∈ [m]2, be arbitrary. We are interested
in P(Cm = xm | W = w); cf (3.1.24). We do this by sequentially estimating the conditional
probabilities that Ci,j = xi,j . For each κ ∈ [K], let χκ := 1(Cyκ = xyκ), recalling that (y1, ..., yK)
is the chosen ordering of all pairs (i, j) ∈ [m]2. Then we want to bound Ew(χ1 · · ·χK).

To do this, we use the following general bound, which is an immediate consequence of the tower
property for conditional expectation: for random variables V1, ..., VK , we have

E
(
f1(V1, ..., VK) · · · fK(V1, ..., VK)

)
≤ max
v1,...,vK

E
(
f1(V1, v2, ..., vK) · · · fK(v1, ..., vK−1, VK)

)
= max
v1,...,vK

E
(∏K

κ=1 E
(
fκ(v1, ..., vκ−1, Vκ, vκ+1, ..., vK

∣∣ V1, ..., Vκ−1

))
.

The following argument is analogous to that given in the d = 3 case; see the end of the proof of
Lemma 3.1.15. Let r :=

∑m
1 wi, and write our random word as S = ZG1 · · ·ZGN ; here N =

∑k
1 wi

is the number of steps taken and G` is the generator index chosen in the `-th step. Let J1 < · · · < Jr
be the (random) indices with GJ` ∈ [m]. Now define the vector I ∈ {1, ...,m}r by I` := GJ` . Thus I
encodes the relative order between the different occurrences (with multiplicities) of the generators
labelled by [m] in the word S. By typicality, mηs ≤ r ≤ mη−1s

Sequentially, and without replacements, for each pair (i, j), or index κ, choose a uniformly
random element of {` | G` = j}; call this Ui,j , or Uκ. (This can be done since |{` | G` = j}| & s� m
by assumption.) For each pair (i, j), let Vi,j be the location in I of the random element Ui,j .
Now define the vector I ′ from I by omitting the K = m(m − 1) locations {Vi,j}i,j∈[m]2 ; so I ′ ∈
{1, ...,m}r−K . Importantly, we are omitting elements of the relative order, not the absolute order.

By definition of Ci,j , given in (3.1.10), given W = w, the value of Ci,j is a function only of the
relative locations I. Hence, given I ′ also, it is a function only of the location of the omitted j. It is
constant on the set of locations which give rise to the same relative order between choices of i and
j: two different placements of the omitted j give rise to the same relative order between choices of
i and j if and only if they both lie in the same (possibly empty) interval in which there are no i-s;
this is analogous to the case d = 3. (Recall that for the pair (i, j) we omitted the location of a j.)

Recall that the random variables {Vκ} are drawn uniformly at random without replacement
from [r]; hence the distribution of Vκ given V1, ..., Vκ−1 is uniform on [r] \ {V1, ..., Vκ−1}. Hence,
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writing Li := Li(I
′) for the longest interval in I ′ without an i in it, we obtain

Ew
(
χκ(v1, ..., vκ−1, Vκ, vκ+1, ..., vK)

∣∣ V1, ..., Vκ−1, I
′) ≤ (Lκ +m(m− 1) + 1

)
/(r − κ+ 1).

Hence, applying the above formula and noting that m(m− 1) + 1 ≤ m2, we obtain

Ew
(
χ1 · · ·χK

∣∣ I ′) ≤ ∏m
1 (Li +m2)m−1

r(r − 1) · · · (r −m(m− 1) + 1)
.

We now average over I ′. To bound this expectation, we use the generalisation of Hölder’s inequality
to the product of m variables: for non-negative random variables X1, ..., Xm, we have

E
(
X1 · · ·Xm

)
≤
(
E
(
Xm

1

)
· · ·E

(
Xm
m

))1/m
.

In our application of this, we take Xi = (Li +m2)m−1. This gives

Ew
(∏m

1 (Li +m2)m−1
)
≤ maxi Ew

(
(Li +m2)m(m−1)

)
.

Since r ≥ mηs and s � m, we have m2 ≤ 1
2r, and so the denominator is at least 2−m

2

r−m(m−1);
recall also that r ≥ mηs. In summary, we have proved that

Ew
(
χ1 · · ·χK

)
≤ 2m(2η−1m−1)m(m−1)s−m(m−1) maxi Ew

(
(Li +m2)m

2)
. (3.1.43)

Recall also that s � p2(d−1)/k. It remains to bound this latter expectation.
To do this, recall Claim 3.1.16, which, for given w, states that

Li/(η
−2m log r) � Geom( 1

2 ).

Using the the inequality (a+ b)` ≤ 2`−1(a` + b`), valid for a, b ≥ 0 and ` ∈ N, we obtain(
Li +m2

)m2

≤
(
2η−2m log r

)m2(
Li/(η

−2m log r
)m2

+ (2m2)m
2

.

If X ∼ Geom( 1
2 ), then one can show, for ` ≥ 3, that E(X`) ≤ ``. (This follows by comparison with

the exponential-(log 2) distribution.) We apply this with X := Li/(η
−2m log r) and ` := m2:

Ew
(
(Li +m2)m

2)
≤
(
2η−2m log r

)m2

· (m2)m
2

+ (4m2)m
2

≤ 2
(
2η−2m3 log r

)m2

.

Plugging this back into (3.1.43), we obtain

− logEw
(
χ1 · · ·χK

)
� m2 log s+m2 logm+m2 log r.

Recalling that r � ms and log s � log |A|/k, we obtain

− logEw
(
χ1 · · ·χK

)
� m2 log s+ logm � m2

(
log |A|/k + logm

)
� m2 log |A|/k,

using the condition logm ≤ 4
3 log |A|/k. Recall that we desire

Ew
(
χ1 · · ·χK

)
≤ s−f(m) ≤ |A|−f(m)/k,

as s h |A|2/k/(2πe) ≥ |A|, where f is some super-linearly growing function; this holds if

− logE
(
χ1 · · ·χK

∣∣W = w
)
≥ f(m) log |A|/k.

We hence see that this is satisfied for some f with f(m) � m2.

3.1.9 Extensions

In this subsection we describe some extensions to the argument.

§3.1.9.1 We consider undirected Cayley graphs.
§3.1.9.2 We describe the limit profile in the regime 1� k � log |Hab

p,d|.
§3.1.9.3 We relax that condition that p (in Hp,d) is prime when k & log |Hp,d|.
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3.1.9.1 Undirected Cayley Graphs

Throughout the paper we have always been assuming that the graph is directed. Here we
describe the required adaptations to consider undirected Cayley graphs, rather than directed. We
still use an auxiliary process W to generate the walk; it is now a SRW, rather than a DRW, on Zk.

Recall that in the directed case the mixing time was the maximum of the time t+0 at which the
entropy of W , ie a DRW on Zk, reaches log |Hab

p,d| and the diameter-based bound of logk |Hp,d|; see
Definition C. The undirected case is completely analogous: the mixing time is the maximum of the
time t−0 at which the entropy of W , now a SRW on Zk, reaches log |Hab

p,d| and the diameter-based
lower bound of logk |Hp,d|. (The directed graphs are k-regular, while the undirected graphs are
2k-regular; but log(2k) h log k, and so log2k |Hp,d| h logk |Hp,d|, when k � 1.)

We still use exactly the same outline, namely we use a modified L2 calculation and ‘typicality’.

Adaptation from DRW to SRW. The primary difference comes from our expression for S(t) given
the generators chosen: for the DRW there were no inverses. However, Lemma 3.1.17 had basically
the same form whether the inverses were included or not; the ‘remainder polynomial’ g is different
in the two cases, as is the expression for Ci,i, but neither of these forms were needed for our proof.
Recall that, in fact, Ci,j has the same form for the DRW and SRW for i 6= j. The SRW generalises
the DRW in some sense: if no inverses are applied, then the formulas for the SRW are exactly
those for the DRW. (In the terminology of Lemma 3.1.17 where the Ci,j are defined, the DRW
corresponds to the ‘signs’ σ` := 1 for all `.) Recall also that the entropic results of §3.1.1 are stated
for both the DRW and the SRW; further, the statements in these two cases are analogous.

The remaining adaptations are relatively simple. This is one of the strengths of our entropic
method. Importantly, note that V := W −W ′ is a rate-2 SRW on Zk in both the undirected and
the directed cases, where W ′ is an independent copy of the auxiliary process W . The definition of
Ci,j for i 6= j for the SRW is almost the same as for the DRW, except that now when an inverse
is chosen 1 is subtracted from the count, rather than added.

For the DRW, conditioning on (W (t),W ′(t)) told us exactly how many times each generator
had been applied. Now if a generator–inverse pair is applied at some point, this is not seen by
(W (t),W ′(t)). Instead we define Wi,+(t) to be the number of times that generator Zi is applied
(normally) and Wi,−(t) to be the number of times that the inverse Zi is applied; then Wi(t) =
Wi,+(t)−Wi,−(t). Write W+(t) := (Wi,+(t))i∈[k] and define W−(t), W ′+(t) and W ′−(t) similarly.

Using this construction, when considering P(S = S′ | W (t) = W ′(t), typ), rather than condi-
tioning on W (t) = w = W ′(t), for some typical w ∈ W, we condition on(
W+(t),W−(t)

)
= (w+, w−) and

(
W ′+(t),W ′−(t)

)
= (w′+, w

′
−) with w+ − w− = w′+ − w′−.

We need these to be ‘typical’ in the appropriate sense. Recall that throughout the proof there
have been two types of typicality: first, the entropic part, requiring µt(w) ≤ e−h; second, some
technical requirements; call these sets W1 and W2, respectively, so W =W1 ∩W2. The main part
of the technical requirements asks for k & log |Hab

p,d| that approximately the correct number of

generators precisely once, while for 1 � k � log |Hab
p,d| it asks that most generators are picked

within some constant factor of the expected number of times. It is the entropic part which was
the key part; see also (3.1.4). For the entropy, we are interested in the law of W (t). As such, we
require w := w+ − w− and w′ := w′+ − w′− to be in W1. For the technical requirements, we ask
that w+, w−, w

′
+, w

′
− ∈ W2.

The only other place where the proof needs to be adapted is in Claim 3.1.19, namely the analysis
of P(S(t) = S′(t) | W (t) = W ′(t), typ) in the regime 1 � k � log |Hab

p,d|. There we considered
the relative order of the choices of generators the multiset [Zi, Zj ]; we redacted one Zj from this
partial order and then considered the longest interval without Zi. Here we consider the relative
order of the choices of generators [Zi, Z

−1
i , Zj , Z

−1
j ]; we redact one Zj or Z−1

j and then consider

the longest interval with neither Zi nor Z−1
i . This analysis is completely analogous.

3.1.9.2 Cutoff Window

We determine the limit profile in the regime k � log |Hab
p,d|. Here the mixing time is t0(k, |Hab

p,d|).
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Theorem D.1. Let p be prime and d ≥ 3 a fixed constant. Suppose that 1� k � log |Hab
p,d| � log p.

There exist times (tα)α∈R satisfying

t0 h k · 1
2πe |H

ab
p,d|2/k, tα − t0 h α

√
2t0/
√
k = o(t0) and d±(Hp,d)k

(tα) h Ψ(α) whp.

Proof. Recall that t0 is determined by the entropy of W , which was the expectation of the random
variable Q; see Definition 3.1.1. For α ∈ R, we now define tα(k,N) according to the variations of Q:

E
(
Q1(tα(k,N))

)
=
(
logN + α

√
vk
)
/k where v := Var

(
Q1(t0(k,N))

)
.

Analogously to before, we consider the entropic time tα := tα(k, |Hab
p,d|). We show in the supple-

mentary material, in §6.1, that, for all α ∈ R, if 1� ω �
√
vk and 1� k � log |Hab

p,d|, then

t0 h k|Hab
p,d|2/k, tα − t0 h α

√
2t0/
√
k = o(t0) and P

(
Q(tα) ≤ log |Hab

p,d| ± ω
)
h Ψ(α),

where Ψ is the standard Gaussian tail; see Propositions 6.1.2 and 6.1.3.
Recall from the analysis of the total variation distance given typicality, from §3.1.8, in the

regime k � |Hab
p,d|, that the particular value of t0 is unimportant—changing it by a constant would

not affect the proof or the result. The above says that tα h t0 for all α ∈ R. Hence this contribution
is o(1) when t0 is replaced by tα, regardless of α ∈ R. All that changes is Lemma 3.1.12: now

P
(
µtα
(
W (tα)

)
≤ e−h

)
= P

(
Q(tα) ≥ log |Hab

p,d| ± ω
)
h 1−Ψ(α).

Hence exactly the same argument gives d(Hp,d)k(tα) h Ψ(α) whp over Z.

3.1.9.3 Lifting the Primality Condition for p when k & log |Hab
p,d|

Throughout the paper we have always been assuming that p is prime. Here we describe how to
remove this assumption under the condition that k & log |Hab

p,d| and d is constant; we also define
a density-1 set A ⊆ N so that if |G| ∈ A then we can allow d to diverge. To emphasise the lack of
primality, we consider Hm,d with m, d ∈ N (ie replace the letter p by the letter m).

Theorem D.2. Let m, d ∈ N with d ≥ 3. Suppose that k & log |Hab
m,d|. If d is a constant or diverges

sufficiently slowly, then the RW on (Hm,d)
±
k exhibits cutoff whp. Further, there is a density-1 set

A ⊆ N so that if m ∈ A and log d� log logm then the RW on (Hm,d)
±
k exhibits cutoff whp.

Lower Bound. First note that the lower bound holds easily: all it required was that the walk
projected to the Abelianisation was not mixed. The lower bound for mixing on an Abelian group
is valid for any Abelian group and any choice of generators.

We now turn to the upper bound. We use the same definition of typicality as when we studied
m = p prime with a directed graph. Let W ′ be an independent copy of W and define S′ via W ′;
write V := W −W ′. We are interested in the probability that S = S′ when W and W ′ are typical.

Analysis when W (t) 6= W ′(t). When m = p is prime, for any v ∈ Zkp \ {0}, each of
∑
iAivi,∑

iBivi and
∑
i Civi was an independent Unif(Zp) random variable, since {Ai, Bi, Ci}k1 is an

independent collection of Unif(Zp)-s. As described above, in the (a, b)-th coordinate there is a sum∑
i Zi(a, b)Wi(t), independent of the other terms in the coordinate. Hence, as in (3.1.26), we have

P
(
S = S′ |W 6= W ′, typ

)
= 1/|Hm,d| = 1/md(d−1)/2.

This is not so when m is composite. Instead, they are uniform on the subset gvZm, where
gv := gcd(v1, ..., vk,m); this is proved in Lemma 6.6.1. Since in the (a, b)-th coordinate there is
a sum

∑
i Zi(a, b)Wi(t), independent of the other terms in the coordinate, noting that there are

1
2d(d− 1) non-trivial coordinates in the matrix, exactly the same arguments show that

P
(
S = S′ |W = w, W ′ = w′

)
≤ (gw−w′/m)d(d−1)/2 for any w,w′ ∈ Zk.
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We then need to take expectation of (W,W ′) with W 6= W ′. We now argue that

E
(
g
d(d−1)/2
W−W ′ |W = W ′, typ

)
= 1 + o(1).

An analysis of such a gcd-expectation is carried out in §5.1.5, where Abelian groups are con-

sidered; the application here is for the Abelian group Zd(d−1)/2
m , so n there should be replaced with

md(d−1)/2. The gcd is taken with respect to n, not m; this only increases the right-hand side.
We now take expectation over (W,W ′) with W 6= W ′. In §5.1.5, there are conditions on (k, d, n);

see Hypothesis I. Since log d � log logm, it is straightforward to see that m � log log |Hm,d|.
Recall that we can assume that log k . log log |Hm,d|, otherwise cutoff is already established at
time logk |Hm,d|. Thus the conditions are satisfied.

The conclusion of §5.1.5—namely that the expectation of the power of the gcd is 1 + o(1); see
specifically Proposition 5.1.10—thus follows. In summary,

P
(
S = S′ |W 6= W ′, typ

)
≤
(
1 + o(1)

)
/n. (3.1.44)

Analysis when W (t) = W ′(t). In the regime k & log |Hab
m,d|, part of the typicality conditions

were that a large number of generators are picked at most once; see (3.1.35). When calculating the
probability that Ci,j = C ′i,j for all i, j ∈ [k], we restricted ourselves to just looking at those (i, j)
with Ci,j , C

′
i,j ∈ {0, 1}; see (3.1.18, 3.1.19). (Now we have a sign for Ci,j , so look at (i, j) with

Ci,j , C
′
i,j ∈ {0,±1}.) As such, we may replace the event

E := {C = C ′} where C := (Ci,j) and C ′ := (C ′i,j)

from (3.1.11) with the event

E ′ :=
{
∃ (i, j) st |Di,j | = 1

}
where Di,j := Ci,j − C ′i,j for all i, j ∈ [k].

Herein assume that there exists (i, j) with |Ci,j | = 1. By Lemma 3.1.17, we need to control AB
for A,B ∼iid Unif(Zm), representing the Zγi(a, a+1) and Zγj (a+1, b), respectively. (When m = p
was prime, it did not matter whether or not |Ci,j | = 1, just that Ci,j 6≡ 0 mod p.) Then the law of
AB conditional on gcd(B,m) =: g is uniform on gZm. Hence

maxx∈Zm P
(
AB ≡ xmodm

)
= maxx∈Zm E

(
P
(
AB ≡ x modm | g

))
≤ E

(
g
)
/m.

It remains to bound this expectation. For α, β ∈ N, write α oβ to indicate that α divides β. We have

E(g) =
∑
r∈[m] r P(g = r) ≤

∑
r∈[m] r P(r oB)1(r om) =

∑
r∈[m] 1(r om) =: divm,

ie the number of divisors of m. From this we deduce the analogue of (3.1.30):

P
(
Sa,b = S′a,b

∣∣W = W ′, ∃ (i, j) st |Di,j | = 1
)
≤ (divm)/m,

where (a, b) is an element of the matrix above the super-diagonal, ie a ≤ b− 2.

Consider first d = 3. Here there is only one such element (a, b), namely (1, 3). Thus

P
(
S = S′

∣∣W = W ′, ∃ (i, j) st |Di,j | = 1
)
≤ (divm)/m,

which is the direct analogue of (3.1.12). When d = 3, we trivially bound P(S = S′ |W = W ′, E ′) ≤
1. This leads us to the analogue of (3.1.17), still for d = 3:

P
(
S = S′, W = W ′ | typ

)
≤ (divm) e−h

(
1/m+ q

)
/P(typ)

where q := maxw∈W P
(
E ′ |W = W ′ = w

)
and h is the entropy at the time t. Lemma 3.1.15 controls this last upper bound. An easy inspection
of the proof shows that when k & log |Hab

m,d|, the o(1) term in Lemma 3.1.15 is O(e−ω). Hence

|Hm,d|P
(
S = S′, W = W ′ | typ

)
. e−ω · divm.
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We may take any 1 � ω � min{k, log |Hab
m,d|} � log |Hm,d| (as d = 3 here); see Lemmas 3.1.9

and 3.1.12 and Definition 3.1.11 for entropic calculations. It is well-known that div r ≤ rO(1/ log log r)

for all r ∈ N; see, eg, [40, §18.1]. So here divm ≤ div |Hm,d| = |Hm,d|o(1), as m o |Hm,d|. Choosing
ω sufficiently close to log |Hm,d|, we obtain e−ω divm = o(1). In summary,

|Hm,d|P
(
S = S′, W = W ′ | typ

)
= o(1). (3.1.45a)

Consider now general d. We use the partitioning argument to deduce an analogue of (3.1.33):

|Hm,d|P
(
S = S′, W = W ′ | typ

)
. e−ω · (divm)d

2

.

Using the bound div r ≤ rO(1/ log log r) for all r ∈ N, if d = o(log log |Hm,d|), ie d� log logm, then

the same upper bound as for d = 3 holds for the number of divisors, namely (divm)d
2

= no(1).
Hence, with exactly the same justification as for (3.1.45a), we deduce for such d that

|Hm,d|P
(
S = S′, W = W ′ | typ

)
= o(1). (3.1.45b)

Conclusion for Fixed or Slowly Diverging d. Combining (3.1.44, 3.1.45), we deduce that

|Hm,d|P
(
S = S′ | typ

)
− 1 = o(1).

Combined with the modified L2 calculation Lemma 3.1.8, we deduce the theorems for such d.

Adaptations for Diverging d. Now consider the part of the theorem where d is allowed to diverge
with log d� log logm. In [40, §18.2] it is shown that if U ∼ Unif([m]) then E(divU)/(m logm)→ 1
as m→∞. In particular, P(divU ≤ (logm)2)→ 1 as m→∞. Define

A :=
{
m ∈ N

∣∣ divm ≤ (logm)2
}
.

Then A has density 1 in N. Assume that m ∈ A. For such m, we have

(divm)L ≤ (logm)2·d2/2 = (logm)d
2

= ed
2 log logm.

As above, we require ω � min{k, log |Hab
m,d|} � log |Hab

m,d| � d logm; we desire ω � d2 log logm.

Thus d2 � logm/ log logm suffices. But we already required log d � log logm in order to apply
Lemma 3.1.18 (see Hypothesis E), and this implies that d2 = (logm)o(1) � logm/ log logm.

3.2 Typical Distance and Diameter

This section focuses on distances from a fixed point in the directed random Cayley graph of a
Heisenberg matrix group Hp,d, with p prime and d ≥ 3. Recall the definition of typical distance:
when G := Hp,d and there are k generators, for R ≥ 0 and β ∈ (0, 1), write

Bk(R) :=
{
x ∈ G

∣∣ distGk(id, x) ≤ R
}

and Dk(β) := min
{
R ≥ 0

∣∣ |Bk(R)| ≥ β|G|
}
,

emphasising explicitly the dependence on d for the latter statistic.

3.2.1 Precise Statement and Remarks

In this section, we state the more refined version of Theorem J. Again, there are some simple
conditions that the parameters must satisfy.

We now state the main result of this section; it is in essence a restatement of Theorem J.

Theorem 3.2.1a (Typical Distance for 1� k � log |Hab
p,d|). Let k, d, p ∈ N. Write

M+
k := k|Hab

p,d|1/k/e and M−k := k|Hab
p,d|1/k/(2e); recall that |Hab

p,d| = pd−1.

Suppose that (k, d, p) jointly satisfy the following conditions:
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1� k � log |Hab
p,d|, k ≤ 1

2 log |Hab
p,d|/ log d and d� max{log k, k1/2/|Hab

p,d|1/(4k)}.
For all constants β ∈ (0, 1), we have

D±(Hp,d)k
(β)/M±k →

P 1 (in probability) as N →∞.

Moreover, the implicit lower bound holds deterministically, ie for all choices of generators, and for
all Heisenberg groups, requiring only 1� k � log |Hab

p,d|.

Theorem 3.2.1b (Typical Distance for k & log |Hab
p,d|). Let (k, p, d) be integers with p prime and

d ≥ 3. Suppose that k & log |Hab
p,d| and log k � log |Hp,d|; suppose also that log d� log log p. Write

Mk := ρ
ρ−1 logk |Hab

p,d| where ρ := log k/ log log |Hab
p,d|, ie k =

(
log |Hab

p,d|
)
ρ.

For all λ ∈ (0,∞), there exists a constant α±λ ∈ (0,∞) so that, for all constants β ∈ (0, 1), the
following convergences in probability hold:

D±(Hp,d)k
(β)/

(
α±λ k

)
→P 1 if k h λ log |Hab

p,d|;

D±(Hp,d)k
(β)/max

{
Mk, logk |Hp,d|

}
→P 1 if k � log |Hab

p,d|.

Moreover, the implicit lower bound holds deterministically, ie for all choices of generators, and for
all Heisenberg groups, requiring only k & log |Hab

p,d| and log k � log |Hp,d|. Note that

max
{
Mk, logk |Hp,d|

}
= max

{
ρ
ρ−1 ,

1
2d
}

log |Hab
p,d|.

We also state the result on the diameter; it is a restatement of Theorem K.

Theorem 3.2.2 (Diameter for k & log |Hab
p,d|). Let (k, p, d) be integers with p prime and d ≥ 3.

Suppose that k & log |Hab
p,d| and log k � log |Hp,d|; suppose also that log d� log log p. Write

Mk := ρ
ρ−1 logk |Hab

p,d| where ρ := log k/ log log |Hab
p,d|, ie k =

(
log |Hab

p,d|
)
ρ.

For all λ ∈ (0,∞), let α±λ be the constant from Theorem 3.2.1b.
For all λ ∈ (0,∞), the following convergences in probability hold:(

diam (Hp,d)k
)
/
(
α±λ k

)
→P 1 if k h λ log |Hab

p,d|;(
diam (Hp,d)k

)
/max

{
Mk, logk |Hp,d|

}
→P 1 if k � log |Hab

p,d|.

Moreover, the implicit lower bound holds deterministically, ie for all choices of generators, and for
all Heisenberg groups, requiring only k & log |Hab

p,d| and log k � log |Hp,d|. Note that

max
{
Mk, logk |Hp,d|

}
= max

{
ρ
ρ−1 ,

1
2d
}

logk |Hab
p,d|.

As a proxy for the size of the (L1) balls in the (directed) Cayley graph with k generators,
denoted Bk(·), we use the size of discrete, directed L1 balls in dimension k, denoted Bk(·): for
R ≥ 0, define Bk(R) := {x ∈ Zk+ | distZk+(0, x) ≤ R}. This is done in Lemma 3.2.4 below.

Were the underlying group Abelian, we would have the easy inequality |Bk(R)| ≤ |Bk(R)|. For
the Heisenberg group Hp,d, we develop a similar inequality; roughly, we use the inequality for the
Abelianisation and upper bound the number of elements which can be seen by the other vertices
by the maximum amount, ie |Hp,d|/|Hab

p,d|. In §4.1, we studied typical distance for general Abelian
groups, using the same (overall) method; there, the radius R of the balls in question was chosen
so that |Bk(R)| ≈ |G|. Here our candidate radius M∗k satisfies |Bk(M∗k )| � |Hab

p,d|.

Definition 3.2.3. Set ω := max{(log k)2, k/|Hab
p,d|1/(2k)} = max{(log k)2, k/p(d−1)/(2k)}. Choose

M∗k to be the minimal integer satisfying |Bk(M∗k )| ≥ eω|Hab
p,d|.

For the sake or presentation, we first analyse in §3.2.2–§3.2.4 typical distance for directed graphs
with 1 � k � log |Hab

p,d|. We then describe in §3.2.5 the requisite extensions to the argument to

handle undirected graphs and k & log |Hab
p,d| for both typical distance and diameter.
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3.2.2 Outline of Proof

As remarked after the summarised statement (in §1.3.3.2), when considering the mixing time
on a graph, geometric properties of the graph are often derived and used. In a reversal of this, we
use knowledge about the mixing properties of the random walk to derive a geometric result; the
style of proof is similar enough that we even quote lemmas from the mixing section.

The main difference between the proofs is the following: previously, W (·) was a DRW on Zk+;
we replace this W (t) by A which is uniformly distributed on a Zk+-ball of radius R, for R defined
later; this A tells us how many times each generator is used; we apply the sequence of generators,
with multiplicities, in an order chosen uniformly at random; call the resulting element S.

We choose M so that this ball has size slightly larger than |Hab
p,d|—recall that this size was used

for the entropic time t0(k, |Hab
p,d|) in the mixing. For a constant ξ > 0, if R := M(1 − ξ), then we

use a counting argument to show that the ball cannot cover more than a proportion o(1) of the
vertices of the graph; hence this gives a deterministic lower bound, valid for all Z. For a constant
ξ > 0, if R := M(1 + ξ), then we show that not only does the ball cover (almost) all the graph,
but the random variable S is well-mixed whp, in the sense that it is very close to the uniform
distribution. From this we deduce that, for a proportion 1−o(1) of the vertices, there is a non-zero
probability that S is at that vertex, and hence a path to it must exist; furthermore, by choice of
A, the path must have length at most R = M(1 + ξ). To prove this, we even use an analogous L2

calculation to that used for the mixing, namely Lemma 3.1.8.

3.2.3 Size of Ball Estimates and Lower Bound

Lemma 3.2.4. For all R ≥ 0, we have ∣∣Bk(R)
∣∣ =

(bRc+k
k

)
.

Proof. Assume that R ∈ N. It is a standard combinatorial identity that∣∣Bk(R)
∣∣ =

∣∣{α ∈ Zk+
∣∣ ∑k

1 αi ≤ R
}∣∣ =

(
R+k
k

)
.

Recall that Mk = M+
k = k|Hab

p,d|1/k/e. The next lemma shows that the difference between M∗k
and M∗k is only in sot, and so can be absorbed into the error terms.

Lemma 3.2.5. For k � log |Hab
p,d|, for all constants ξ ∈ (0, 1), we have

M∗k ≤
⌈
Mk(1 + ξ)

⌉
and

∣∣Bk(Mk(1− ξ)
)∣∣� |Hab

p,d|.

Proof. Upper bound. Set M := eξk|Hab
p,d|1/k/e. By Stirling’s approximation, we have(

M+k
k

)
≥Mk/k! & k−1/2(eM/k)k = k−1/2eξk|Hab

p,d|.

Since ω � k, we have k−1/2eξk � eω and
(
M+k
k

)
≥ eω|Hab

p,d|.

Lower bound. Set M := e−ξk|Hab
p,d|1/k/e. Using the inequality

(
N
k

)
≤ (eN/k)k, we have(

M+k
k

)
≤
(
e(M + k)/k

)k ≤ (eM/k)k exp
(
k2/M

)
≤ e−ξk|Hab

p,d| exp
(
e1+ξk/|Hab

p,d|1/k
)
.

Since k � log |Hab
p,d|, we have k/|Hab

p,d|1/k � ξk and
(
M+k
k

)
� |Hab

p,d|.

From these, it is straightforward to deduce the lower bound (for all Z) in Theorem 3.2.1a.

Proof of Lower Bound in Theorem 3.2.1a. Were the underlying group Abelian, we would be able
to upper bound |Bk(M)| ≤ |Bk(M)|. However, this does not hold for general groups.

Recall that the Abelianisation of Hp,d corresponds to ‘modding out all but the super-diagonal’:

Hab
p,d = Hp,d/[Hp,d, Hp,d] ∼= Zd−1

p and |Hcom
p,d | = |[Hp,d, Hp,d]| = p(d−1)(d−2)/2.
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for a given number of steps, the number of different elements that can be seen is at most |Hcom
p,d |

times the number that can be seen in the Abelianisation Hab
p,d; that is,∣∣Bk(M)

∣∣ ≤ L · |Hcom
p,d | where L :=

∣∣{gHcom
p,d

∣∣ g ∈ Bk(M)
}∣∣.

Since L ≤ |Bk(M)|, we have |Bk(M)| ≤ |Bk(M)||Hcom
p,d |. We choose M so that |Bk(M)| ≈ |Hab

p,d|.
More precisely, for any constant ξ > 0, by Lemma 3.2.5, we have

|Bk
(
M∗k (1− ξ)

)
| � |Hab

p,d| · |Hcom
p,d | = |Hp,d|.

Thus, for any constant β ∈ (0, 1), we have Dk(β) ≥M∗k (1− ξ), asymptotically.

Remark 3.2.6. This proof generalises further. Instead of looking at just Heisenberg groups, we can
take any group G. We then obtain a lower bound analogously, but where now M∗k is defined so
that |Bk(M∗k )| ≥ eω|Gab|, for some suitable ω � 1. (For Hp,d, this is eωpd−1.) 4

Remark 3.2.7. The statements are for directed lattice balls, in Zk+. Changing to undirected lattice
balls, in Zk, increases the size by a factor at most 2k. Since k � log |Hab

p,d| and we are looking at

sizes of the order |Hab
p,d|, analogous statements can easily be proved for directed balls. 4

3.2.4 Mixing-Type Results and Upper Bound

As stated in the outline (§3.2.2), we replace the auxiliary W with A ∼ Unif(Bk(M∗k )), and then
apply the generators in a uniformly chosen order. More precisely, we have the following algorithm.

Definition 3.2.8. Define S via the following random algorithm.

· First draw A ∼ Unif(Bk(M∗k )); this tells us how many times we use each of the k generators.
Define the vector g by g1 = · · · = gA1 = 1, gA1+1 = · · · = gA1+A2 = 2 and so on.

· To decide in which order we apply the generators, label the steps 1, ..., N , so N :=
∑k

1 Ai,
and then draw a uniform permutation σ on [N ] = {1, ..., N}; this will tell us in which order
we the generators: S := Zgσ(1) · · ·Zgσ(N)

.

In words, we choose how many times each generator is going to be used by A, and then apply them
in a uniformly chosen order. In particular, we can define (Ci,j)i,j∈[k] as before; see Lemma 3.1.17.

We now present our ‘mixing-type’ result, showing that S is close to uniform.

Proposition 3.2.9. Assume that the conditions of Theorem 3.2.1a hold. Then

E
(∥∥PGk(S ∈ ·)− πG∥∥TV

)
= o(1).

Proof. For notational ease, write M := M∗k . Let S′, A′ and σ′ be independent copies of S, A and
σ, respectively. For a set A (to be defined), the modified L2 calculation used in Lemma 3.1.8 gives

E
(∥∥PGk(S = · | Z

)
− πG

∥∥
TV

)
≤ nP

(
S = S′ | typ

)
− 1 + P

(
A /∈ A

)
,

where typ := {A,A′ ∈ A}. Write n := |Hp,d| = pd(d−1)/2. Similarly to the mixing case, we separate
according to whether or not A = A′. If A = A′, then we do an analysis similar to that of W = W ′

from §3.1. Using Lemma 3.1.14 in an analogous way as was used to obtain (3.1.26), we obtain

P
(
S = S′ | A 6= A′, typ

)
= 1/n = 1/|Hp,d| = 1/pd(d−1)/2. (3.2.1)

recall that the coefficients in Lemma 3.1.14 (corresponding to the entries of A − A′ here) are
deterministic, and hence (3.2.1) holds regardless of the choice ofA. This also uses the fact thatM �
p, and so |Ai −A′i| � p for all i; this follows from manipulating the conditions of Theorem 3.2.1a
and using M � k|Hab

p,d|1/k. Using the definition of M = M∗k , it is easy to calculate

P
(
A = A′ | typ

)
≤
∣∣Bk(M)

∣∣−1
/P
(
typ
)
≤ |Hab

p,d|−1e−ω/P
(
typ
)
; (3.2.2)
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this replaces the entropic calculation (3.1.27). Combining (3.2.1, 3.2.2) establishes

nP
(
S = S′ | typ

)
− 1 ≤ n|Hab

p,d|−1 P
(
S = S′ | A = A′, typ

)
/P
(
typ
)

As stated above, the analysis of P(S = S′ | A = A′, typ) is analogous to the W = W ′

case from §3.1. There we stated that it was not important that W was a DRW, and that we
would apply the same proof here (§3.2) for a “different W”—the A just defined is this “different
W”. Recall that we separated the generators using the partition {P3, ..., Pd}; we do the same
here. Define Eb as in (3.1.31):

Cb := (Ci,j)i,j∈Pb , C ′b := (C ′i,j)i,j∈Pb and Eb := {Cb = C ′b}.

So far, we have in essence been following Proof of Theorem 3.1.6 Given Lemmas 3.1.18 and 3.1.10
from the start of §3.1.8, but with W (t) replaced by A and W replaced by A; it is not until
Lemma 3.1.18, which upper bounds the analogue of P(S = S′ | A = A′, typ), that the choice of
typicality is made. Hence (3.1.32) still holds here: write Pa(·) := P(· | A = A′ = a, typ); we have

Pa
(
S = S′

)
≤ 2d

2/2∏d
3

(
1/pd−2 + qb

)
where qb := maxa∈A

∏d
3 Pa(Eb). (3.2.3)

In the mixing context, Lemma 3.1.18 upper bounded this probability by 2d
2

n−1eh0 , where
h0 was the entropy; for k � log |Hab

p,d|, we chose h0 = log |Hab
p,d|, so this upper bound became

2d
2/2n−1|Hab

p,d|. Combined with the entropic calculation (3.1.27), of which (3.2.2) is the analogue,

established (3.1.34): nP(S = S′ | typ) − 1 ≤ 2 · e−ω2d
2

. Conditions on d ensured that we could
choose ω to make this o(1).

We claim that we can copy the proof of Lemma 3.1.18 to show that qb ≤ 1/pb−2. The proof of
this claim is deferred to the end of the subsection (§3.2.4). From this claim, we deduce that

Pa
(
S = S′

)
≤ 2d

2 ∏d
3 1/pb−2 = 2d

2

p−(d−1)(d−2)/2 = 2d
2

|Hab
p,d|/n. (3.2.4)

Combining (3.2.3, 3.2.4), we obtain

nP
(
S = S′ | typ

)
− 1 ≤ e−ω2d

2

/P
(
typ
)
,

where we shall choose typ so that P(typ) = 1 − o(1); this is analogous to (3.1.34). We now check
that our conditions on d allow us to choose ω so that ω � d2: recall from Definition 3.2.3 that ω =
max{(log k)2, k/|Hab

p,d|1/(2k)}; the condition d2 � ω is included in the conditions of Theorem 3.2.1a.

It remains to prove our claim that we can copy of the proof of Lemma 3.1.18 to prove that
qb ≤ 1/pb−2. In said proof, we were particularly interested in the (expected) number of times that
an individual generator was picked; this was s := t/k, and, in the regime k � log |Hab

p,d|, satisfied

s � |Hab
p,d|2/k. At the start of Proof of Lemma 3.1.18 for k � log |Hab

p,d|, we emphasised that the

proof did not rely heavily on the distribution of W , nor did it need s � p2(d−1)/k; we apply the same
arguments with W replaced by A, and in this case the expected number of times that an individual
generator is picked, which we still denote s, satisfies s � |Hab

p,d|1/k since A ∼ Unif(Bk(M∗k )) and,

by Lemma 3.2.5, M∗k � k|Hab
p,d|1/k. We elaborate further on how to adapt the proof to this context.

Let η ∈ (0, 1) be a (small) constant. For a ∈ Zk+, writing

C(a) :=
{
i ∈ [k]

∣∣ ηs ≤ ai ≤ η−1s
}
, we have P

(
|C(A)|/k ≥ 4

5

)
= 1− o(1),

if η is sufficiently small; this is analogous to (3.1.39). We use this to define typicality, analogously
to (3.1.40) except recalling that we no longer require the entropic part:

A :=
{
a ∈ Zk+

∣∣ |C(a)| ≥ 4
5k, maxi ai < p

}
.

We use exactly the same decomposition of generators; we look at m-tuples, and require m �
k/d2. We take m � d, and so need d3 � k; this is implied by the conditions of Theorem 3.2.1a.
Fixing some a ∈ A, consider the mode µm of the vector Cm := (Ci,j)i,j∈[m], conditional on A = a;
here Ci,j is defined as in (3.1.10), but now with S defined using A instead of W . Since log s =
log |Hab

p,d|/k � d log p/k, as it did in §3.1.8, we may apply Claim 3.1.19, provided m � |Hab
p,d|1/k.

This condition is in Theorem 3.2.1a. Applying Lemma 3.1.18 gives

qb ≤ p−(b−2)·d−1f(m)/m for some f(m) � m2,

exactly as in (3.1.42); setting m := Cd for a sufficiently large constant C gives qb ≤ 1/pb−2.
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3.2.5 Extensions

In this subsection we describe two extensions to the argument.

§3.2.5.1 We consider typical distance k & log |Hab
p,d|.

§3.2.5.2 We consider diameter for k & log |Hab
p,d|.

§3.2.5.3 We consider undirected Cayley graphs for 1� k . log |Hab
p,d|.

3.2.5.1 Extending Typical Distance to k & log |Hab
p,d|

In this subsection we extend the argument to k & log |Hab
p,d|. We consider first k � log |Hab

p,d|.

Typical Distance for k � log |Hab
p,d|. Key to the typical distance analysis was adapting the mix-

ing time analysis from §3.1.8 to the case where the auxiliary process W , which is a RW, is replaced
with A, which is uniform on a certain ball. To define the element S of G, we use the generators
chosen by A (ie Zi Ai times), applied in a uniformly chosen order; see Definition 3.2.8. We then
adapted the mixing analysis of §3.1 to show, for k � d log p, that S is well-mixed.

The method for k � log |Hab
p,d| is exactly the same, except that now we use mixing analysis for

k � log |Hab
p,d|. We define A analogously to W, given in (3.1.35), except without the entropic part:

A :=
{
a ∈ Zk+

∣∣ |J(a)−Re−R/k| ≤ 1
2εRe

−R/k, maxi ai <
√
p
}

where J(a) :=
∑k

1 1(ai = 1).

Write typ := {A,A′ ∈ A}. It then suffices to show that

E
(∥∥PGk(S ∈ · | A ∈ A)− πG∥∥2

2

)
= nP

(
S = S′ | A = A′, typ

)
− 1 = o(1).

(Indeed, if the L2 norm is o(1) in expectation, then it is o(1) whp, and in particular the support
of S must be a proportion 1− o(1) of the vertices of G whp.) As in (3.2.3), we have

Pa
(
S = S′

)
≤ 2d

2/2∏d
3

(
1/pd−2 + qb

)
where qb := maxa∈A

∏d
3 Pa(Eb),

recalling that we wrote Pa(·) := P(· | A = A′ = a, typ). Now, however, to bound Pa(Eb), we use the
method from Lemma 3.1.18 with k � log |Hab

p,d|, rather than 1 � k � log |Hab
p,d|. There, key was

to consider only generators which are chosen either once or not at all—we needed such generators
to have the same relative order in S as in S′. For more details, see (3.1.18, 3.1.19, 3.1.36, 3.1.38).
The remainder of the mixing-type proof follows analogously to the regime 1� k � log |Hab

p,d|.
It remains to describe the adaptations in calculating the minimal radius of a ball of cardinality

at least |Hab
p,d| = pd−1. When k � log |Hab

p,d|, it is not difficult to see that we need a radius order
k; so typically each of the k coordinates gets displaced by an order 1 amount. We wish to choose
R � k � log |Hab

p,d| so that
(
R+k
k

)
≈ pd−1. A more refined approximation to

(
R+k
k

)
is needed, with

R � k: an application of Stirling’s approximation gives

log
(
R+k
k

)
= (R+ k)h

(
k/(R+ k)

)
·
(
1 + o(1)

)
,

where h : [0, 1] → [0, 1] : q 7→ −q log q − (1 − q) log(1 − q) is the entropy (in nats) of Bern(q).
Writing R = αk, if k h λ log |Hab

p,d|, then, motivated by the above display, we choose α to satisfy

(α+ 1)h
(
1/(α+ 1)

)
= λ

in the directed case. In the undirected case, the same analysis holds, but the lattice balls have
slightly different sizes; cf §3.2.5.3. The desired radius R still satisfies R � k, but now with a
different implicit constant; cf α± in Theorem 4.2.2. Further details can be found in §4.2.3 and §6.5.
(In §4.2, the groups G are Abelian, so |Gab| = n.)

The analysis for k � log |Hab
p,d| is almost identical.
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Typical Distance for k� log |Hab
p,d|. The mixing time of the RW gives an upper bound on the

typical distance. As noted in Remark J.2, the mixing time agrees with the desired upper bound on
the typical distance. This completes the proof of the upper bound.

We turn to the lower bound. The lower bound of logk |Hp,d| is trivial. For the other part of
the maximum, we project to the Abelianisation Hab

p,d, as in §3.1.5. As in Lemma 3.2.4, we have

|Bk(R)| ≤ 2R
(
R+k
R

)
. It is easy to check that this is o(|Hab

p,d|) when R = (1− ξ) · ρ
ρ−1 logk |Hab

p,d| and

k = (log |Hab
p,d|)ρ. This is done carefully in §4.3. (There the groups are Abelian, so G = Gab.)

3.2.5.2 Diameter for k & log |Hab
p,d|

In this subsection, we outline the diameter argument. Here d � 1, so log |Hp,d| � log |Hab
p,d|.

In §4.2 we consider typical distance for Abelian groups in the regime k � log |G|. (For Abelian
groups, G = Gab.) In §4.4 we show carefully how to adapt the argument to the diameter; here we
give a sketch of the argument there, adapted slightly to Heisenberg groups.

Proof of Theorem 3.2.2. Clearly typical distance is a lower bound on the diameter.

We first assume that k h λ log |Hab
p,d| with λ ∈ (0,∞). Our aim is to show that the dia-

meter is, up to sot, the same as the typical distance; by Theorem J, this is αk for some constant
α := α±λ . We thus let ξ > 0 and set R := αk(1 + ξ); we show that diam (Hp,d)k ≤ R+ 1 whp.

Split the generators into two sets: A := [Z1, ..., Z(1−ε)k] and B := [Z(1−ε)k+1, ..., Zk], with
ε = o(1) to be determined. Roughly, one first uses the generators in A to connect the identity
to the set S ⊆ Hp,d of elements of G which can be reached by paths of length at most R. By
Theorem J, we have |Hp,d \ S| � |Hp,d| whp; assume this herein. Given an arbitrary g ∈ G, if
g /∈ S then one uses the remaining generators from B to connect g to S directly, and by extension
to the identity. More precisely, we try to connect g ∈ G\S to S via hz = g for some z = Zi for some
i > (1 − ε)k and h ∈ S. The probability that this fails for a given g for all such Zi and all h ∈ S
is at most (|Hp,d \ S|/|Hp,d|)εk. Since |Hp,d \ S| � |Hp,d| and k � log |Hab

p,d| � log |Hp,d|, we can
choose ε→ 0 sufficiently slowly so that this latter probability is o(1/|Hp,d|). By the union bound,
the probability that this fails for some such g is o(1). When this does not fail, diam (Hp,d)k ≤ R+1.

Finally, when k � log |Hab
p,d| replacing k with (1− ε)k changes the typical distance by a factor

1 + oε→0(1). This completes the proof for this regime.

The same argument holds for k � log |Hab
p,d|, using the typical distance result of that regime.

3.2.5.3 Undirected Cayley Graphs

Here we describe the required adaptations to the proof to allow undirected graphs. The only
major difference is that the size of the discrete lattice balls changes: previously we considered
a ∈ Zk+ with

∑k
1 ai ≤ R, while now we consider a ∈ Zk with

∑k
1 |ai| ≤ R. Indeed, besides

estimates on the sizes of balls, the only tool required was an adaptation of the mixing proof. Since
this proof works for both the directed and undirected cases, the same holds true here.

When 1� k � log |Hab
p,d|, the desired radius R satisfies R� k. Comparing Lemma 6.5.3a with

Lemma 3.2.4 shows that the radius of the desired ball changes by approximately a factor 2. This
is shown carefully in §4.1.3; there the groups G are Abelian, so |Gab| = |G|.

When k � log |Hab
p,d|, the desired radius R satisfies R � k. In general there is not an easy closed

form for the implicit constant in either the directed or undirected cases; cf Theorem 4.2.2.

3.3 Concluding Remarks and Open Questions

§3.3.1 We discuss some statistics in the regime where k is a fixed constant.

§3.3.2 We discuss very briefly how our methods can be extended to more general nilpotent groups.

§3.3.3 To conclude, we discuss some questions which remain open and gives some conjectures.
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3.3.1 Lack of Cutoff when k Is Constant

Throughout the paper we have always been assuming that k → ∞ as |G| → ∞. It is natural
to ask what happens when k does not diverge. This case has actually already been covered by
Diaconis and Saloff-Coste [27], using their concept of moderate growth. There is no cutoff.

Recall that a group G is called nilpotent of step at most L if its lower central series terminates
in the trivial group after at most L steps: G0 := G and G` := [G`−1, G] for ` ∈ N with GL = {id}.

For a Cayley graph G(Z), use the following notation. Write ∆ := diamG(Z) for its diameter.
For the lazy simple random walk on G(Z), write trel := trel(G(Z)) for the relaxation time (ie inverse
of the spectral gap) and tmix := tmix(ε;G(Z)) for the (TV) ε-mixing time, for ε ∈ (0, 1). When
considering sequences (GN (Z(N)))N∈N, add an N -sub/superscript.

We phrase the result of Diaconis and Saloff-Coste [27] in our language.

Theorem 3.3.1 (cf [27, Corollary 5.3]). Let (GN )N∈N be a sequence of finite, nilpotent groups. For
each N ∈ N, let Z(N) be a symmetric generating set for GN and write LN for the step of GN .
Suppose that supN |Z(N)| < ∞ and supN LN < ∞. Then (tNmix)N∈N does not exhibit the cutoff
phenomenon; in particular, tNmix/kN . ∆2

N . tNrel . tNmix as N →∞.

We give a very brief exposition of the results of Diaconis and Saloff-Coste [27], including the
definition of moderate growth, leading to this conclusion in §5.4.

3.3.2 Extending Our Arguments from Heisenberg to Other Nilpotent Groups

Our analysis has focussed on Heisenberg matrix groups; these are a canonical class of nilpo-
tent groups. In the introduction, in Remark C.3, we claimed that some of our analysis extends
from Heisenberg groups to more general nilpotent groups. This extension is based primarily on
observations made by Péter Varjú during discussions of our work with him.

Recall that we wrote S for the location of the walk and W for its auxiliary variable; let W ′ be an
independent copy of W , and define S′ correspondingly. Recall the definition of Ci,j from (3.1.10).
The difference Ci,j−C ′i,j has a natural group theoretic interpretation. Indeed, for a step-2 nilpotent

group, one can write S′S−1 in the canonical form
∏k

1 Z
Wi−W ′i
i ZVii ·

∏
i<j [Zi, Zj ]

Ci,j−C′i,j ; for general

groups, S′S−1 can be written like this up to multiplication on the right by a term in [[G,G], G].
When W = W ′, we are left just with the product of commutator terms in the expression for S′S−1.

For a p-group G, when W 6= W ′ mod p, one can show that S′S−1 is uniformly distributed on
G. (In the current article, we used the specific structure of Hp,d to reach this conclusion.)

We give a fairly detailed discussion, elaborating on the above points, in §5.3.

3.3.3 Open Questions and Conjectures

We close the paper with some questions which are left open.

1: Sufficient Conditions for Cutoff for Nilpotent and General Groups

We have established cutoff for a family of non-Abelian groups. The group is guaranteed to be
generated whp if k � log |G|.

Conjecture 1. For all groups G, for k � log |G| with log k � log |G|, the random walk
on Gk exhibits cutoff whp.

It is natural to ask at which time this cutoff occurs.

Open Problem 1. Find an expression for the cutoff time in Conjecture 1.

Find conditions under which this time can be in terms of a few statistics of the group, eg
the size of the Abelianisation, the number of low dimensional irreducible representations
or the size of the largest Abelian subgroup.
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In Theorem A in Chapter 2 we establish cutoff for all Abelian groups in the regime 1 � k .
log |G|. There are some necessary conditions to generate the group whp. Using the techniques from
there, one can look to extend Open Problem 1 to the regime 1� k . log |Gab|.

Since t0(k, |Gab|) is a lower bound on the mixing time, clearly the size of the Abelianisation
plays a role. Relatedly, the size of the largest Abelian subgroup appears to play a role. Indeed,
consider the dihedral group D2n of order 2n. This has an Abelian subgroup congruent to Zn
(corresponding to rotations). Some basic calculations suggest that the mixing time likely should be
the same as that of Zn. This is perhaps related to irreducible representations (irreps): D2n has at
most 4 irreps of dimension 1 (and hence |Dab

2n| ≤ 4), and all the remaining irreps are of dimension
2. Instead of just considering |Gab|, which is the number of irreps of dimension 1, more generally
the number of low dimensional irreps (in some precise sense) is likely to affect the mixing time.

As a starting point, one should perhaps study nilpotent groups. Finally, we mention work by
Gowers [39], on quasirandom groups. He looks for groups whose (non-trivial) irreps all have high
dimension; such groups he describes as being ‘very far from Abelian’. The farther a group is from
Abelian, the faster we expect its mixing time to be. Perhaps a similar criterion would be useful for
this question of comparing the mixing of the Abelianisation with that of the full group.

2: Cutoff for Heisenberg Group Hp,d with p Small (eg p = 2)

Our conditions on d appear to be more than artefact of the proof than actual necessities. It is
natural to expect there to be cutoff even for larger d. Here W should now be a DRW on Zkp (ie

taken mod p), rather than Zk; see below, or §2.2. As such, the entropic times are now defined with
respect to the RW on Zkp.

Conjecture 2. Let p be prime and d ≥ 3. Suppose that 1� log k � log |Hp,d|. Then the
RW on (Hp,d)k exhibits cutoff whp over Z, with behaviour similar to Theorem 3.1.6.

One place in which we loose information is in moving from 3 × 3 matrices to d × d matrices.
Indeed, compare (3.1.6) with (3.1.25): in both cases, we used the ‘Abelian’ terms (ie monomials of
degree 1) and the first ‘non-Abelian’ terms (ie monomials of size 2); for general d, there are d− 1
terms—coordinates at distance ` from the diagonal contain monomials of size at most `. (This
corresponds to the fact that Hp,3 is step-2 nilpotent, while in general Hp,d is step-(d−1) nilpotent;
the further from the diagonal a coordinate is, the ‘more non-Abelian’ it is.) Considering only the
first two terms meant that the analysis was more analogous to the 3 × 3 case, however we threw
away a lot of information. In order to study the case where d is very large (compared with p), one
surely needs to analyse these higher order terms.

In §5.2, we study in detail cutoff for the Abelian group Zdp, in particular allowing (prime) p to

be fixed; this extends Wilson’s consideration of Zd2 (ie p = 2) in [77]. One key difference is that
instead of letting W be a RW on Zk, we take each coordinate modulo p; this leads from entropy to
relative entropy considerations. The same adaptation should be made here. In the current article, p
has been large enough so that almost all coordinates of W never reach p, and hence the distinction
between a RW on Zk and Zkp is negligible (cf §2.1 vs §2.2); this will not be the case for small p.

3: Cutoff for Heisenberg Group Hp,d with p Not Prime

Throughout this paper, we primarily considered Hp,d with p prime. In Theorem D.2 we relieved
this condition, but only in the regime k & log |Hab

p,d|. We conjecture that the analogous behaviour

holds for p not prime in the regime 1� k � log |Hab
p,d|. This is work in progress.

Conjecture 3. Subject to potentially stronger conditions, analogous results hold when
p is not prime with the same cutoff time.

When we studied Abelian groups in Chapter 2, we did not assume that the analogue of p was
prime; we did the gcd analysis. It is not unreasonable to imagine that similar techniques applied
there (see §2.1.6/§2.2.7) may well be applicable here too.

Chapter 3. Cutoff and Geometry for Random Walks on Heisenberg Groups Page 078 of 161



4: Spectral Gap for Heisenberg Group Hp,d with k & log |Hab
p,d|

We studied typical distance for k . log |Hab
p,d|. In the boundary regime k � log |Hab

p,d|, the
typical distance is order k. We study typical distance for Abelian groups in Theorem G, obtaining
analogous results—for an Abelian group, G = Gab. The regime k � log |G| is the point at which the
Cayley graph of an Abelian group becomes an expander; see Theorem L. It is natural to conjecture
that the analogue holds for Heisenberg groups. It is known that the Gk is an expander whp for
any group is when, eg, k ≥ 2 log2 |G|; this is the celebrated Alon–Roichman theorem [3].

Conjecture 4. If k & log |Hab
p,d| with k − d � k, then (Hp,d)k is an expander whp.

If this were proved for some diverging d, then it would provide the first example of a group with
the property that its k-uniform Cayley graph is an expander whp for some k with k � log |G|.

5: Diameter for Heisenberg Group Hp,d for Diverging k

We have shown concentration of typical distance, but never considered the diameter. It is trivial
that the typical distance is a lower bound on the diameter, and that twice the typical distance is
an upper bound. Further, in the regime k � log |Hab

p,d|, we argued that the diameter and typical
distance are asymptotically equivalent; see §3.2.5.1. Can more be determined?

Conjecture 5. For G = Hp,d and Z1, ..., Zk ∼iid Unif(Hp,d), write ∆Z for the diameter
of the Cayley graph with generators Z. Assume that k diverges, sufficiently rapidly in
terms of d. Then the law of ∆Z concentrates.

6: Diameter for Heisenberg Group Hp,d for Fixed k

Instead of requiring k � 1, as in the previous question, for fixed d we can ask that k is (at least) a
sufficiently large constant (depending on d). Theorem 3.3.1 and considering just the Abelianisation
shows that the correct order for the diameter if |Hab

p,d|1/k, and suggest that in the limit as k grows it

is order k|Hab
p,d|1/k. Shapira and Zuck [71] establish, for Abelian groups, convergence in distribution

of the normalised diameter to some non-trivial random variable. (Cf Amir and Gurel-Gurevich [4].)
We conjecture that the same holds for Heisenberg groups.

Conjecture 6. For G = Hp,d and Z1, ..., Zk ∼iid Unif(Hp,d), write ∆Z for the diameter
of the Cayley graph with generators Z. For all k ∈ N, under suitable conditions on
d, there exists a non-trivial random variable ∆k so that ∆Z/(k|Hab

p,d|1/k)→dist ∆k (in
distribution) as p→∞. Further, the sequence (∆k)k∈N of random variables is tight.

Subsequent to the original posting of this conjecture, El-Baz and Pagano [6, Theorem 1.2]
established the convergence in distribution for each fixed k, without any primality assumption on
p. They derive this as a consequence of a general inequality, showing that the diameter of a Cayley
graph of a nilpotent group is governed by the diameter of its Abelianisation.

Questions for Typical Distance

Questions for typical distance can be asked analogous to those detailed in Questions 2 and 3.

Replacing the Heisenberg Group with a Nilpotent Group

Questions 4–6 for the Heisenberg group can all be extended by replacingG = Hp,d with a general
nilpotent group G; where one sees the Abelianisation Hab

p,d, this should be replaced with Gab.
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4 Geometry of Random Cayley
Graphs of Abelian Groups

Abstract for Chapter 4

We show that the distance from the identity for all but o(|G|) of the elements of G
lies in the interval [M − o(M),M + o(M)]. In the regime k & log |G|, we show that the
diameter of the graph is asymptotically equivalent to the typical distance value M whp.
In the spirit of the Aldous–Diaconis conjecture, this M depends only on k and |G|.

Additionally, when k− log2 |G| � k, we show, in a quantitative sense, that the group
Zd2 gives rise to the largest diameter amongst all (not just Abelian) groups whp.

We prove that the spectral gap of the graph is order |G|−2/k when k − d(G) � k
whp. This extends, for Abelian groups, a celebrated result of Alon and Roichman [3].
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4.1 Typical Distance: 1� k� log |G|
This section focusses on concentration of distances from the identity in the random Cayley

graph of an Abelian group when 1 � k � log |G|. (Subsequent sections deal with k & log |G|.)
The main result of the section is Theorem 4.1.2; see also Hypothesis F.

The outline of this section is as follows:
· §4.1.1 states precisely the main theorem of the section;
· §4.1.2 outlines the argument;
· §4.1.3 gives some crucial estimates on the size of lattice balls;
· §4.1.4 is devoted to the lower bound;
· §4.1.5 is devoted to the upper bound.

4.1.1 Precise Statement and Remarks

To start the section, we recall the typical distance statistic.

Definition 4.1.1. Let H be a graph and fix a vertex 0 ∈ H. For r ∈ N, write BH(r) for the r-ball
in the graph H, ie BH(r) := {h ∈ H | dH(0, h) ≤ r}, where dH is the graph distance in H. Define

DH(β) := min
{
r ≥ 0

∣∣ |BH(r)| ≥ βn
}

for β ∈ (0, 1).

When considering sequences (kN , GN )N∈N of integers and Abelian groups, abbreviate

DN (β) := DGN ([Z1,...,ZkN ])(β) where Z1, ..., ZkN ∼iid Unif(GN ).

Finally, considering such sequences, we define the candidate radius for the typical distance:

D+
N := kN |GN |1/kN /(2e) and D−N := kN |GN |1/kN /e for each N ∈ N.

As always, if we write DN , then this is either D+
N or D−N according to context.

We show that, whp over the graph (ie choice of Z), this statistics concentrates. The result will
be valid for all Abelian groups, under some conditions on k in terms of G. Further, the value at
which the typical distance concentrates, written as D± below, depends only on k and |G|. This is
in agreement with the spirit of the Aldous–Diaconis conjecture.

Hypothesis F. The sequence (kN , GN )N∈N satisfies Hypothesis F if the following hold:

lim inf
N→∞ |GN | =∞, lim sup

N→∞
kN/ log |GN | = 0, lim inf

N→∞ (kN − d(GN )) =∞

and
kN − d(GN )− 1

kN
≥ 5

kN
log |GN |

+ 2
d(GN ) log log kN

log |GN |
for all N ∈ N.

So we are only studying 1� k � log |G| here. In Remark 4.1.3 below, we give some sufficient
conditions for Theorem 4.1.2 to hold. Throughout the proofs, we drop the subscript-N from the
notation, eg writing k or n = |G|, considering sequences implicitly. Write Dk(β) for the β-typical
distance of the random Cayley graph Gk.

We now state the main theorem of this section.

Theorem 4.1.2. Let (kN )N∈N be a sequence of positive integers and (GN )N∈N a sequence of finite,
Abelian groups; for each N ∈ N, define Z(N) := [Z1, ..., ZkN ] by drawing Z1, ..., ZkN ∼iid Unif(GN ).

Suppose that (kN , GN )N∈N satisfies Hypothesis F. Then, for all β ∈ (0, 1), we have

D±N (β)/D±N →
P 1 (in probability) as N →∞.

Moreover, the implicit lower bound holds deterministically, ie for all choices of generators, and for
all Abelian groups, ie Hypothesis F need not be satisfied—we just need lim supN kN/ log |GN | = 0.
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Remark 4.1.3. Write n := |G|. Any of the following conditions imply Hypothesis F:

1� k .
√

log n/ log log log n and k − d� 1;

1� k .
√

log n and k − d� log log k;

1� k � log n/ log log log n and k − d ≥ δd for some suitable δ = o(1);

d� log n/ log log log n and k − d � k. 4

4.1.2 Outline of Proof

As remarked after the summarised statement (in §1.3.3.1), when considering the mixing of SRW
on a graph, geometric properties of the graph are often derived and used. In a reversal of this, we
use knowledge about the mixing properties of the random variable to derive a geometric result.
We explain this in a little more detail now.

For the lower bound, for any Cayley graph G of an Abelian group of degree k, (trivially) we
have |BG(R)| ≤ |Bk(R)|, where Bk(R) is the k-dimensional lattice ball of radius R. If |Bk(R)| � n,
then immediately |BG(R)| � n, and so DG(β) ≥ R for all β ∈ (0, 1), asymptotically in n.

Consider first the upper bound. We fix some target radius kL and draw W1, ...,Wk ∼iid

Geom(1/L) in the directed case. For the undirected case, we add to each Wi a uniform sign.
It is well-known that the law of W := (W1, ...,Wk) given ‖W‖1 = R is uniform on the L1 sphere

of radius R. Since the ‖W‖1 =
∑k

1 |Wi| is an iid sum, it concentrates around its mean, ie kL. So
this is roughly like drawing uniformly from a sphere of radius kL, except that we have the added
benefit that the coordinates W1, ...,Wk are independent.

We can then interpret Wi as the number of times which generator i is used in getting from the
identity to W · Z. We show that W · Z is well-mixed whp over Z when kL is slightly larger than
the target radius. Now, if the law of W · Z is mixed in TV and ‖W‖1 ≤ kL(1 + δ) whp, then the
law of W ·Z conditional on ‖W‖1 ≤ kL(1 + δ) is also mixed in TV. Thus, using the concentration
of ‖W‖1, we deduce that a proportion 1 − o(1) of vertices x ∈ G can be written as x = w · Z for
some w with ‖w‖1 h kL; this gives a path of length at most kL from the identity to x.

We show this mixing estimate via a (modified) L2 argument. The most important part is to
bound the probability that two independent copies of W are equal; this must be o(1/n). Since
‖W‖1 concentrates and W is uniform on the sphere of this radius, we need to choose L so that the
sphere of radius kL has volume slightly more than n. In high dimensions—here we consider balls
in k � 1 dimensions—(discrete) spheres and balls are of asymptotically the same volume. Thus
the desired radius coincides with that of the lower bound up to sot.

In an ideal world, we would directly sample W uniformly from a ball of radius kL. However,
the lack of independence between the coordinate causes difficulties, in particular in Lemma 4.1.13
below. We thus use this vector of geometrics as a proxy for the uniform distribution, but with the
key property that the coordinates are independent.

4.1.3 Estimates on Sizes of Balls in Zk

We desire an M so that |B±k (M)| ≈ n, where B±k (M) is the lattice ball of radius M , ie

B−k (M) :=
{
w ∈ Zk

∣∣ ‖w‖1 ≤M} and B+
k (M) :=

{
w ∈ Zk+

∣∣ ‖w‖1 ≤M}.
Definition 4.1.4. Set ω := max{(log k)2, k/n1/(2k)}. Note that 1� ω � k. Define

R±0 := inf
{
R ∈ N | |Bk(R)| ≥ neω

}
.

The following lemma controls the size of balls. Its proof is given in §6.5; see in particular
Lemmas 6.5.2a and 6.5.3a where the index q corresponds to a type of Lq lattice balls; take q := 1
to recover the usual L1 lattice balls here. Recall Dk from Definition 4.1.1.

Lemma 4.1.5. Assume that 1� k � log n. For all ξ ∈ (0, 1), we have

|R0 −Dk|/Dk � 1 and
∣∣Bk(Dk(1− ξ)

)∣∣� n.
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4.1.4 Lower Bound on Typical Distance

From the results in §4.1.3, it is straightforward to deduce the lower bound in Theorem 4.1.2.

Proof of Lower Bound in Theorem 4.1.2. Let ξ ∈ (0, 1) and set R := Rk(1 − ξ). Since the un-
derlying group is Abelian, applying Lemma 4.1.5, we have |Bk(R)| ≤ |Bk(R)| � n. Hence, for all
β ∈ (0, 1) and all Z, we have Dk(β) ≥ R = Rk(1− ξ), asymptotically in n.

4.1.5 Upper Bound on Typical Distance

The argument given here is in a similar vein to that of §2.1.6; there we analysed the mixing
time of the random walk on the (random) Cayley graph. Let ε > 0 and set L := (1 + 3ε)R0/k.

Draw W = (Wi)
k
1 ∼ Geom(1/L)⊗k; later, we condition on ‖W‖1 ≤ Lk. Here the geometric

random variable has support {1, 2, ...}. Define χ := (χi)
k
1 as follows: in the undirected case, χi ∼iid

Unif({±1}); in the directed case, χi := 1 for all i. Set S := (χW ) · Z where (χW ) = (χiWi)
k
1 .

Define W ′ and χ′ as independent copies of W and χ, respectively; set S′ := (χ′W ′) · Z.
In §2.1.6, a key ingredient was conditioning that the auxiliary variable W was ‘typical’ in a

precise sense. There we were interested in the law of S, ie the random walk; the introduction of
typicality was a tool to study this, and establishing mixing bounds for the random walk. Here,
somewhat in reverse, we can choose which random variable we study.

Definition 4.1.6. Abbreviate L− := dL(1− log k/
√
k)e. Define

W :=
{
w ∈ Zk+

∣∣ L(1− log k/
√
k
)

+ 1 ≤ ‖w‖1/k ≤ L, maxi wi ≤ 3L log k
}
.

When W and W ′ are independent copies, write typ := {W,W ′ ∈ W}.

Lemma 4.1.7 (Typicality). We have P(W ∈ W) � 1 and hence P(typ) � 1.

Proof. We consider the three parts of typicality separately:
· the lower bound on ‖W‖1 holds with probability 1− o(1) by Chebyshev’s inequality;
· the upper bound on ‖W‖1 holds with probability bounded away from 0 by Berry–Esseen;
· the upper bound on maxiWi holds with probability 1− o(1) by the union bound.

We control the L2 distance between S conditional on W ∈ W and the uniform distribution.

Proposition 4.1.8. Suppose that (d, n, k) jointly satisfy Hypothesis F. Then

E
(∥∥PGk(S ∈ · |W ∈ W)−Unif(G)

∥∥2

2

)
= o(1),

where we recall that PGk(·) is the random law corresponding to the random Cayley graph Gk.

We now have all the ingredients to prove the upper bound on typical distance.

Proof of Upper Bound in Theorem 4.1.2. Let W have the law of W conditional on W ∈ W. By
Proposition 4.1.8, the L2 distance between S := W · Z and Unif(G) is o(1) whp over Z. Thus
the support S of S is a proportion 1 − o(1) of the vertices whp. In particular, there is a path of
length at most Lk from id to all vertices in S whp, as ‖W‖1 ≤ Lk by definition of typicality. Hence
Dk(β) ≤ Lk = (1+3ε)R0 whp. Applying Lemma 4.1.5 then gives (Dk(β)−Dk)/Dk ≤ 4ε whp.

The remainder of this subsection is devoted to proving Proposition 4.1.8. We have

E
(∥∥PGk(S ∈ · |W ∈ W)−Unif(G)

∥∥2

2

)
= nP

(
S = S′ | typ

)
− 1.

First we control the probability that χW = χ′W ′, since in this case we necessarily have S = S′.

Lemma 4.1.9. We have nP(χW = χ′W ′ | typ) = o(1).
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Proof. Recall that L− := dL(1− log k/
√
k)e. Consider the directed case first, ie χ = 1 = χ′. Then

P
(
W = W ′, typ

)
≤
∑
w:‖w‖1≥kL− P

(
W = w = W ′

)
=
∑
w:‖w‖1≥kL− P

(
W ′ = w

)∏k
1 P
(
Wi = wi

)
=
∑
w:‖w‖1≥kL− P

(
W ′ = w

)∏k
1 L
−1(1− L−1)wi−1

=
∑
w:‖w‖1≥kL− P

(
W ′ = w

)
· L−k(1− L−1)‖w‖1−k

≤ L−k(1− L−1)kL− =
(
L−1(1− L−1)dL(1−

√
log k/k)e)k

≤ (eL)−k exp
(√

k log k
)
≤ n−1e−3εk/2,

with the final inequality using L+ ≥ (1 + 2ε)n1/k/e, using Lemma 4.1.5. In the undirected case,
we also need χ = χ′, which happens with probability 2−k, and is independent of (W,W ′). Hence
the same inequality holds with the event {W = W ′} replaced by {χW = χ′W ′}, recalling that
L− = 1

2L
+. Finally, P(typ) � 1, and so Bayes’s rule combined with the above calculation gives

P
(
χW = χ′W ′ | typ

)
≤ n−1e−εk � 1/n.

The following lemma describing the distribution of v · Z for a given v ∈ Zk is crucial.

Lemma 4.1.10. For all v ∈ Zk with gcd(v1, ..., vk, n) = γ, we have

v · Z ∼ Unif(γG).

We thus now need to control |γG|.

Lemma 4.1.11. For all Abelian groups H and all γ ∈ N, we have

|H|/|γH| ≤ γd(H).

These two lemmas were used in §2.1.6; see Lemmas 2.1.11 and 2.1.12 for proofs. Define

V := χW − χ′W ′ and g := gcd(V1, ..., Vk, n).

Corollary 4.1.12. We have

nP
(
V · Z = 0, V 6= 0 | typ

)
. E

(
gd1(V 6= 0) | typ

)
.

Proof. The conditioning does not affect Z. The result follows from Lemmas 4.1.10 and 4.1.11.

Lemma 4.1.13. Given Hypothesis F, we have E(gd1(V 6= 0) | typ) = 1 + o(1).

Proof. Each coordinate of V is unimodal and symmetric about 0.

P
(
V1 ∈ γZ | V1 6= 0

)
≤ 1/γ,

as in Lemma 2.1.14. The probability of V1 = 0 is roughly 1/(2L) � n−1/k; in particular, it is at
most 3n−1/k. The coordinates are independent. Since P(typ) � 1, we thus have

P
(
g = γ | typ

)
.
(
1/γ + 3/n1/k

)k
.

By typicality, g ≤ 6L log k ≤ 3n1/k log k. Hence, summing over γ, we obtain

E
(
gd1(V 6= 0) |

)
.
∑3n1/k log k
γ=1 γd

(
1/γ + 3/n1/k

)k
.

We handle almost exactly the same sum in Corollary 2.1.15. Hypothesis F here are designed
precisely to control this sum; they are identical to Hypothesis A. There the 3/n1/k part is replaced
with 2/n1/k, but exactly the same arguments apply showing that the sum is 1 + o(1).
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Proposition 4.1.8 now follows immediately from Lemmas 4.1.9 and 4.1.13 and Corollary 4.1.12.

Proof of Proposition 4.1.8. By Lemmas 4.1.9 and 4.1.13 and Corollary 4.1.12, we have

P
(
S = S′ | typ

)
≤ P

(
V = 0 | typ

)
+ P

(
V · Z = 0, V 6= 0 | typ

)
≤ P

(
V = 0 | typ

)
+ E

(
gd 1(V 6= 0) | typ

)
= 1 + o(1).

4.2 Typical Distance: k � log |G|
This section focusses on concentration of distances from the identity in the random Cayley graph

of an Abelian group when k � log |G|. (The previous section dealt with 1 � k � log |G| and the
next deal with k � log |G|.) The main result of the section is Theorem 4.2.2; see also Hypothesis G.

The outline of this section is as follows:
· §4.2.1 states precisely the main theorem of the section;
· §4.2.2 outlines the argument;
· §4.2.3 gives some crucial estimates on the size of lattice balls;
· §4.2.4 is devoted to the lower bound;
· §4.2.5 is devoted to the upper bound under additional constraints;
· §4.2.6 describes how to relax these additional constraints;
· §4.2.7 describes an extension for L1-type graph distances to Lq-type.

4.2.1 Precise Statement and Remarks

To start the section, we recall the typical distance statistic.

Definition 4.2.1. Let H be a graph and fix a vertex 0 ∈ H. For r ∈ N, write BH(r) for the r-ball
in the graph H, ie BH(r) := {h ∈ H | dH(0, h) ≤ r}, where dH is the graph distance in H. Define

DH(β) := min
{
r ≥ 0

∣∣ |BH(r)| ≥ βn
}

for β ∈ (0, 1).

When considering sequences (kN , GN )N∈N of integers and Abelian groups, abbreviate

DN (β) := DGN ([Z1,...,ZkN ])(β) where Z1, ..., ZkN ∼iid Unif(GN ).

As always, if we write DN , then this is either D+
N or D−N according to context.

We show that, whp over the graph (ie choice of Z), this statistics concentrates. Here we consider
k h λ log |G| for any λ ∈ (0,∞). The result holds for a large class of Abelian groups. Further, for
these groups, the typical distance concentrates at αλk where αλ ∈ (0,∞) is a constant; so this
depends only on k and |G|. This is in agreement with the spirit of the Aldous–Diaconis conjecture.

Recall that any Abelian group can be decomposed as ⊕d1 Zmj for some d,m1, ...,md ∈ N. For
an Abelian group G, we define the dimension and minimal side-length, respectively, as follows:

d(G) := min
{
d ∈ N

∣∣ ⊕d1 Zmj is a decomposition of G
}

;

m∗(G) := max
{

minj∈[d]mj

∣∣ ⊕d1 Zmj is a decomposition of G
}
.

It can be shown that there is a decomposition which is optimal for both these statistics: there exist
d,m1, ...,md ∈ N so that ⊕d1 Zmj is a decomposition of G with d = d(G) and minj∈[d]mj = m∗(G).
From now on, we assume that we are always using such an optimal decomposition.

There are some conditions which the Abelian groups must satisfy.

Hypothesis G. The sequence (kN , GN )N∈N satisfies Hypothesis G if

limN kN =∞, limN kN/ log |GN | ∈ (0,∞), lim infN m∗(GN ) =∞
and d(GN ) ≤ 1

2 log |GN |/ log log |GN | for all N .

We are now ready to state the main theorem of this section.
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Theorem 4.2.2. Let (kN )N∈N be a sequence of positive integers and (GN )N∈N a sequence of finite,
Abelian groups; for each N ∈ N, define Z(N) := [Z1, ..., ZkN ] by drawing Z1, ..., ZkN ∼iid Unif(GN ).

Suppose that (kN , GN )N∈N satisfies Hypothesis G. Let λ := lim supN kN/ log |GN |. Then there
exists a constant α±λ so that, for all β ∈ (0, 1), we have

D±N (β)/(α±λ kN )→P 1 (in probability) as N →∞.

Moreover, the implicit lower bound holds deterministically, ie for all choices of generators, and for
all Abelian groups, ie Hypothesis G need not be satisfied—we just need limN kN/ log |GN | ∈ (0,∞).

For ease of presentation, in the proof we drop the N -subscripts.

Remark 4.2.3. In §4.2.7 we extend the usual L1-type graph distances to Lq-type. An analogous
concentration of typical distance is given. See Hypotheses G′ and Theorem 4.2.11. 4

4.2.2 Outline of Proof

The outline here is very similar to that from before; see §4.1.2. In particular, the lower bound
is exactly the same idea. For the upper bound, we were trying to bound the expectation of a d-th
power of a gcd. Issues arose when k became too large while k − d is fairly small; see the proof of
Lemma 4.1.13. This arose from the fact that we used the estimate

P
(
V1 ∈ γZ

)
≤ P

(
V1 ∈ γZ | V1 6= 0

)
+ P

(
V1 = 0

)
≤ 1/γ + 3/n1/k.

Once this was raised to the power k, the second term became an issue. We alleviate this by defining

I :=
{
i ∈ [k] | Vi 6= 0

}
and studying P(Vi ∈ γZ | i ∈ I); the problematic term 3/n1/k then does not exist. If G = ⊕d1 Zmj ,
then we are actually interested in Vi modmj for each j. Recall that m∗ = minjmj . ‘Typically’,
one has |Vi| ≤ m∗. We assume m∗ is sufficiently large so that maxi |Vi| < m∗ whp. Thus looking
at Vi = 0 or Vi ≡ 0 modmj is no different.

For large |I|, the gcd analysis goes through similarly to before. When |I| is small, eg smaller
than d, it is more difficult to control; in this case, we use a fairly naive bound on the gcd, but
control carefully the probability of realising such an I. The case I = ∅ corresponding to V = 0,
which is handled by taking the ball to be of large enough volume.

Previously we used a vector of geometrics as a proxy for a uniform distribution on a ball. Here
we are able to let W be uniform on a ball. The coordinates are no longer independent, which makes
the gcd analysis is slightly complicated. However, since we only consider i with Vi 6= 0, this can be
handled; see Lemma 4.2.9. This uniformity simplifies some other calculations somewhat.

4.2.3 Estimates on Sizes of Balls in Zk

We wish to determine the size of balls Bk(R) when k � log n. In particular, we are interested
in the growth when the volume is around n.

Definition 4.2.4. Define M±∗ (k,N) to be the minimal integer M satisfying |B±k (M)| ≥ N .

Lemma 4.2.5. For all λ > 0, there exists a function ω � 1 and a constant α± so that, for all
ε ∈ (0, 1), if k h λ log n, then M±∗ := M±∗ (k, neω) satisfies

M±∗ h α±k h α±λ log n and
∣∣B±k (α±k(1− ε)

)∣∣� n.

(There, the ±-superscript indicates that α takes different values in the un/directed cases.)

This will follow easily from the following auxiliary lemma controlling the size of lattice balls.
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Lemma 4.2.6. There exists a strictly increasing, continuous function c± : (0,∞)→ (0,∞) so that,
for all a ∈ (0,∞), we have ∣∣B±k (ak)

∣∣ = exp
(
k
(
c±(a) + o(1)

))
.

Proof. The directed case follows immediately from Stirling’s approximation and the fact that∣∣B+
k (ak)

∣∣ =
∣∣{b ∈ Zk+

∣∣ ∑k
1 bi ≤ ak

}∣∣ =
(bakc+k

k

)
=
(b(a+1)kc

k

)
Consider now the undirected case. Omit all floor/ceiling signs. By considering the number i of

coordinates which equal 0, we obtain∣∣B−k (ak)
∣∣ =

∑k
i=0Ai where Ai := Ai(k, a) :=

(
k
i

)
2k−i

(
k−i+ak
ak

)
.

Choose i∗ := i∗(k, a) that maximises Ai. Then Ai∗ ≤ |B−k (ak)| ≤ (k + 1)Ai∗ . Observe that

Ai+1

Ai
=

(k − i)2

2(i+ 1)(k(1 + a)− i)
,

and hence one can determine i∗ as a function of k and a, conclude that i∗(a, k)/k converges as
k → ∞ and thus determine c+(a) in terms of the last limit. We omit the details. Knowing this
limit allows us to plug this into the definition of Ai and use Stirling’s approximation to get

Ai∗ = exp
(
k
(
c−(a) + o(1)

))
,

for some strictly increasing function c− : (0,∞)→ (0,∞). Since k+1 = eo(k), the claim follows.

From this lemma, Lemma 4.2.5 follows easily.

Proof of Lemma 4.2.5. Set α := c−1(1/λ). The upper bound is an immediate consequence of the
continuity of c. The lower bound follows from the exponential growth rate.

4.2.4 Lower Bound on Typical Distance

From the results in §4.2.3, it is straightforward to deduce the lower bound in Theorem 4.2.2.

Proof of Lower Bound in Theorem 4.2.2. Let ξ ∈ (0, 1) and set R := α±λ k(1 − ξ). Since the
underlying group is Abelian, applying Lemma 4.2.5, we have |B±k (R)| ≤ |B±k (R)| � n. Hence, for
all β ∈ (0, 1) and all Z, we have D±k (β) ≥ R = α±λ k(1− ξ), asymptotically in n.

4.2.5 Upper Bound on Typical Distance

Define M±∗ , ω and α± as in Definition 4.2.4 and Lemma 4.2.5. In this subsection we draw
W± ∼ Unif(B±k (M±∗ )), ie uniform on a ball of radius M±∗ . We show that W± ·Z is well-mixed on
G, and hence its support contains almost all the vertices.

Proposition 4.2.7. Suppose that (k, n, d,m) satisfy Hypothesis G. Then

E
(∥∥PGk(W± · Z ∈ ·)− πG∥∥2

2

)
= o(1),

Given this proposition, the upper bound in Theorem 4.2.2 follows easily.

Proof of Upper Bound in Theorem 4.2.2 Given Proposition 4.2.7. If ‖PGk(W±·Z ∈ ·)−πG‖2 ≤
ε, then the support S of W± · Z satisfies πG(Sc) ≤ ε. Combined with Lemma 4.2.5 and Proposi-
tion 4.2.7, the upper bound in Theorem 4.2.2 follows.
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The remainder of this subsection is devoted to proving Proposition 4.2.7. We tend to drop
the ±-superscript from the notation, only writing + or − if there is ambiguity. Let W,W ′ ∼iid

Unif(Bk(M∗)) and let V := W −W ′. The standard L2 calculation gives

E
(∥∥PGk(W · Z ∈ ·)− πG∥∥2

2

)
= E

(
nP
(
V · Z = 0 | Z

)
− 1
)

= nP
(
V · Z = 0

)
− 1.

First, it is immediate that P(V = 0) = P(W = W ′) = |Bk(M∗)|−1 ≤ n−1e−ω � n−1. Now
consider V 6= 0. As in §4.1.5, it is key to analyse certain gcds. Specifically, set

gj := gcd
(
V1, ..., Vk,mj

)
for each j ∈ [d]; set g := gcd

(
V1, ..., Vk, n

)
.

The following lemma is an immediate application of (the analogous) Lemma 4.1.10.

Lemma 4.2.8. Conditional on V , we have V · Z ∼ Unif(⊕d1 gjZmj ).

Since the minimal side-length m∗ satisfies m∗ � k �M∗, we have maxi∈[k] |Vi| < maxj∈[d]mj .
An immediate corollary of this is that

I :=
{
i ∈ [k]

∣∣ Vi 6≡ 0 modmj ∀ j ∈ [d]
}

=
{
i ∈ [k]

∣∣Wi 6= W ′i
}
.

To analyse the expected gcd, we breakdown according to the value of I.

Lemma 4.2.9. There exists a constant C so that, for all I ⊆ [k] with I 6= ∅, we have

nP
(
V · Z = 0 | I = I

)
≤ E

(
gd | I = I

)
≤

{
C2d(2M∗)

d−|I|+2 when |I| ≤ d+ 1,

1 + 5 · ( 3
2 )2d−|I| when |I| ≥ d+ 2.

Lemma 4.2.10. For all I ⊆ [k] with |I| � k, we have P(I = I) ≤ e−ωn−1+o(1). If I = ∅, then the
o(1) term may be taken to be 0.

Given these two lemmas, we have all the ingredients required to prove Proposition 4.2.7,
from which we deduced the main theorem (Theorem 4.2.2). We defer the proofs of Lemmas 4.2.9
and 4.2.10 until after the proof of Proposition 4.2.7, which we give now.

Proof of Proposition 4.2.7. Here k h λ log n,M := M∗ h αk h αλ log n and d ≤ 1
2 log n/ log log n.

As noted previously, the standard L2 calculation gives

E
(∥∥PGk(W · Z ∈ ·)− πG∥∥2

2

)
= E

(
nP
(
V · Z = 0 | Z

)
− 1
)

= nP
(
V · Z = 0

)
− 1 = n

∑
I⊆[k] P

(
V · Z = 0, I = I

)
− 1.

Consider I = ∅. Then V ·Z = 0 (for all Z). By Lemma 4.2.10, we have P(I = ∅) ≤ n−1e−ω. Thus

nP
(
V · Z = 0, I = ∅

)
≤ e−ω = o(1).

Consider I ⊆ [k] with 1 ≤ |I| ≤ d+ 1. There are at most (d+ 1)
(
k
d+1

)
≤ kd+2 such sets I. Since

log k = log log n+ log λ+ o(1), we have kd+2 ≤ n2/3. Applying Lemmas 4.2.9 and 4.2.10 gives

nP
(
V · Z = 0, I = I

)
≤ C2d(3αλ log n)d+2−|I| · n−1+o(1) ≤ k−d−2n−1/4,

noting that 2d = no(1). We now sum over all I with 1 ≤ |I| ≤ d+ 1:

n
∑

1≤|I|≤d+1 P
(
V · Z = 0, I = I

)
≤ n−1/4 = o(1).

Consider I ⊆ [k] with d+ 2 ≤ |I| ≤ L := 2
3 log n/ log log n; then L− 2d� 1. Similarly to above,

there are at most L
(
k
L

)
≤ kL+1 such sets I. Applying Lemmas 4.2.9 and 4.2.10 gives

nP
(
V · Z = 0, I = I

)
≤ n−1+o(1) ≤ k−L−1n−1/4.
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We now sum over all I with d+ 2 ≤ |I| ≤ L:

n
∑
d+2≤|I|≤L P

(
V · Z = 0, I = I

)
≤ n−1/4 = o(1).

Finally consider I ⊆ [k] with |I| ≥ L. Sum over these using Lemma 4.2.9:

n
∑
L≤|I|≤k P

(
V · Z = 0, I = I

)
≤ 1 + 5 · ( 3

2 )2d−L = 1 + o(1).

Combining these four parts into a single sum, we deduce the result.

It remains to prove the auxiliary Lemmas 4.2.9 and 4.2.10.

Proof of Lemma 4.2.9. The first inequality is an immediate consequence of Lemma 4.2.8.
Note that g ≤ 2M∗ since maxi |Vi| ≤ 2M∗. For α, β ∈ Z, write α o β if α divides β. Thus

E
(
gd | I = I

)
≤
∑2M
γ=1 γ

d P
(
γ o Vi ∀ i ∈ I | I = I

)
For a set I ⊆ [k], write WI := (Wi)i∈I and W\I := W[k]\I . Consider conditioning on I = I. Let

W\I and W ′\I be given; since I = I, we have W\I = W ′\I . Let U have the distribution of WI given

W\I and define U ′ analogously. Write Di := Di(γ) := {γ o (Ui − U ′i)}. Then

P
(
γ o Vi ∀ i ∈ I | I = I, ‖W\I‖1

)
= P

(
Di ∀ i ∈ I

)
.

By exchangeability, it suffices to consider the case I = {1, ..., `}. We then have

P
(
Di ∀ i ∈ I

)
= P

(
D`

)
P
(
D`−1 | D`

)
· · ·P

(
D1 | D2, ..., D`

)
=
∏`
i=1 P

(
Di | Di+1, ..., D`

)
.

For i ∈ [k], define Mi := M∗−‖W\{1,...,i}‖1 and M ′i analogously. Let i ∈ [`−1]. Let (ui+1, ..., u`)
and (u′i+1, ..., u

′
`) be two vectors in the support of (Ui+1, ..., U`). Then,

conditional on (Ui+1, ..., U`) = (ui+1, ..., u`) and (U ′i+1, ..., U
′
`) = (u′i+1, ..., u

′
`)

we have (U1, ..., Ui) ∼ Unif
(
Bi(R)

)
and (U ′1, ..., U

′
i) ∼ Unif

(
Bi(R

′)
)

for some R,R′ ∈ R.

(Recall that the subscript in Bk denotes the dimension of the ball.)
In the case of undirected balls, the law of Ui − U ′i given this conditioning is symmetric and

unimodal on Z \ {0}; see [68, Theorem 2.2]. It follows, as in the proof of Lemma 4.1.13, that

P
(
D−i | D

−
i+1, ..., D

−
`

)
≤ 1/γ.

Further, this holds not just conditional on D−i+1 ∩ · · · ∩ D
−
` , but conditional on any choice of

(Ui+1, ..., U`) and (U ′i+1, ..., U
′
`) which satisfy D−i+1∩· · ·∩D

−
` . By the same reasoning, P(D−` ) ≤ 1/γ.

Hence, for undirected balls,

P
(
D−i ∀ i ∈ I

)
= P

(
γ o V −i ∀ i ∈ I | I = I

)
≤ γ−|I|.

(The −-superscript emphasises that this is for undirected balls.)
We now turn our attention to directed balls. In this case, Ui and U ′i are both unimodal, but

with potentially different modes, if R 6= R′. Instead of direct computation, we compare with
the undirected case. Specifically, if Ui and U ′i have the same sign in the undirected case, then
|Vi| = |Ui − U ′i | has the same law as in the directed case. The choice of sign is independent of
everything else; the two have the same sign with probability 1

2 . Hence, by conditioning on the
specific values of (Ui+1, ..., U`) and (U ′i+1, ..., U

′
`), we obtain

1/γ ≥ P
(
D−i | D

−
i+1, ..., D

−
`

)
≥ 1

2P
(
D+
i | D

+
i+1, ..., D

+
`

)
.

For γ = 2, note that the probabilities are actually the same: this is because x− y is even if and
only if |x| − |y| is even, since x and −x have the same parity.

From this we deduce, for both the undirected and directed cases, that

E
(
gd | I = I

)
≤ 1 + 2d−|I| +

∑2M
γ=3 γ

d(2/γ)|I| = 1 + 2d−|I| + 2d
∑2M
γ=3(γ/2)d−|I|.

A case-by-case analysis, according to d− |I|, completes the proof.
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Proof of Lemma 4.2.10. Recall from Definition 4.2.4 that |Bk(M∗)| ≥ neω. Thus

P
(
I = ∅

)
= P

(
W = W ′

)
=
∣∣Bk(M∗)

∣∣−1 ≤ n−1e−ω.

Using the law of WI given W\I determined in the previous proof, we have

P
(
W\I = W ′\I

)
=

P(W = W ′)

P(W = W ′ |W\I = W ′\I)
=

|Bk(M∗)|−1

E(|B|I|(M∗ − ‖W\I‖1)|−1)
≤
|B|I|(M∗)|
|Bk(M∗)|

.

It is a standard balls-in-bins combinatorial identity that∣∣B+
` (R)

∣∣ =
∣∣{b ∈ Z`+

∣∣ ∑`
1 bi ≤ R

}∣∣ =
(bRc+`

`

)
.

For the undirected case, we can choose a sign ±bi. Hence we see that∣∣B+
` (R)

∣∣ ≤ ∣∣B−` (R)
∣∣ =

∣∣{b ∈ Z`
∣∣ ∑`

1 |bi| ≤ R
}∣∣ ≤ 2`

(bRc+`
`

)
.

Abbreviate M := M∗ and ` := |I|. It suffices to consider I with ` ≤ ck, for an arbitrarily small
positive constant c. From Lemma 4.2.5, we have M ≤ 2αk. So∣∣B±` (M)

∣∣ ≤ 2`
(bMc+`

`

)
≤
(
2e(2αk/`+ 1)

)` ≤ (8eαk/`)`,

with the last inequality requiring 2αk/` ≥ 1, which holds if c is sufficiently small, as ` ≤ ck. Now,
for c sufficiently small, the map ` 7→ (8eαk/`)` is increasing on [1, ck]. Hence∣∣B±` (M)

∣∣ ≤ (8eαk/`)` ≤ (8eα/c)ck ≤ (8eα/c)2cλ logn.

By taking c sufficiently small, we can upper bound this by an arbitrarily small power of n.

4.2.6 Relaxing Condition on Minimal Side-Length m∗(G)

For the upper bound, we have been assuming that the minimal side length m∗(G) satisfies
m∗(G) � log |G|. (Recall that the lower bound had no conditions on m∗(G).) We now describe
how to relax this condition to m∗(G) � 1. We could go even further, with statements like “only
a small number of j in G = ⊕d1 Zmj have mj � 1”. Since we have no reason to believe our other
conditions are optimal, we settle for the simpler m∗(G)� 1.

In this proof we consider both L1 and L∞ balls. To distinguish these we use a superscript:

· B1
` (R) will be the L1 ball in ` dimensions of radius R;

· B∞` (R) will be the L∞ ball in ` dimensions of radius R.

For a set I ⊆ [k] we write WI := (Wi)i∈I and W\I := (Wi)i/∈I .

We describe the adaptations for undirected graphs. The adaptations for directed graphs are
completely analogous: simply replace appearances of Zk with Zk+ and |Wi| with Wi.

Outline of Proof. The idea behind the proof is intuitive. Since R � k, by symmetry we have
E(|Wi|) ≤ R/k � 1 for all i. Thus ‘almost all’ the coordinates should be smaller than any diverging
function (‘good’). Further, the contribution to the radius ‖W‖1 due to these ‘bad’ coordinates
should be small, ie o(k). Roughly this allows us to replace k with k = k(1 − o(1)) and R with
R = R(1− o(1)). Choosing R := αk/ lognk · (1 + 2ε) for ε > 0 then gives

R ≥ αk/ lognk · (1 + ε) and hence |B1
k
(R)| � n.

This was the key element in the proof previously, and the remainder of the proof is as before.

We now proceed formally and rigorously.
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Relaxing Minimal Side-Length Condition. Let ε > 0 and λ := lim k/ log n. Set R := αλk(1 + 2ε)
and draw W ∼ Unif(Bk,1(R)). Let ν satisfy 1� ν � m∗(G). For w ∈ Zk, define

J (w) :=
{
i ∈ [k]

∣∣ |wi| ≤ ν}.
These are the ‘good’ coordinates. By Markov’s inequality, clearly |[k] \ J (W )| . 1/ν = o(1) whp.

As always, we look at two independent realisations W and W ′. We then wish to look at
coordinates i ∈ [k] which are ‘good’ for both W and W ′, ie in J := J (W ) ∩ J (W ′). We need to
make sure that the contribution to the radius from the (abnormally large) ‘bad’ coordinates is not
too large. For δ > 0 and w ∈ Zk, write Lδ(w) for the collection of the d2δke-largest (in absolute
value) coordinates of w. We then define typicality in the following way: for δ, δ′ > 0, set

W :=
{
w ∈ Zk

∣∣ ‖w‖1 ≤ R, ∣∣[k] \ J (w)
∣∣ ≤ δk, ‖wLδ(w)‖ ≤ δ′k

}
.

In particular now, if w,w′ ∈ W, then ‖wJ (w)∩J (w′)‖1 ≥ k − 2δ′k. It is not difficult to see that we
can choose δ, δ′ = o(1) with P(W ∈ W) = 1− o(1); we give justification at the end of the proof.

Consider now W,W ′ ∼iid Unif(Bk,1(R)). We have the following conditional law:

WJ ,W
′
J
∼iid Unif

(
B1
k
(R) ∩B∞

k
(ν)
)

conditional on W\J = w\J = W ′\J and J = J

where J := J (W ) ∩ J (W ′), k := |J | and R := R− ‖w\J‖.

Write typ := {W,W ′ ∈ W}. On the event typ, given J = J and (WJ ,W
′
J

), we have

k ≥ k(1− δ) = k
(
1− o(1)

)
and R ≥ R(1− δ′) = R

(
1− o(1)

)
.

In particular, we may choose η > 0 sufficiently small but constant (depending on ε) so that

R ≥ αλ(1−η)k(1− η)(1 + ε) and k ≥ k(1− η), and hence |B1
k
(R)| � n.

Since typicality holds with probability 1− o(1), we have∣∣B1
k
(R) ∩B∞

k
(ν)
∣∣� n.

The remainder of the proof follows similarly to before. Formally, we define W and W ′ as follows:

W i := Wi and W ′i := W ′i for i ∈ J ;

W i := 0 and W ′i := 0 for i /∈ J .

Since this is a projection, {WI = W ′I} ⊆ {W I = W I} for any I ⊆ [k]. Now instead of decomposing
according to the value (or size) of I := {i ∈ [k] |Wi 6= 0}, we use the set I := I ∩J . The fact that∣∣B1

k
(R) ∩B∞

k
(ν)
∣∣� n allows all the previous estimates for I to follow through for I here.

The last change to mention is the gcd calculations of Lemma 4.2.9. The only property of the
distribution of (W,W ′) required was that each coordinate (while not independent) is unimodal and
symmetric about 0, even conditional on WI = W ′I and W ′I = w′I for some I ⊆ [k] and wI , w

′
I ∈ Z|I|.

For (W,W ′), this property still holds. Hence the identical argument applies here too.

It remains to argue that P(W ∈ W) = 1 − o(1) for some δ, δ′ = o(1). First, as noted above,
P(|[k] \ J (W )| > δk) = o(1) by Markov’s inequality and the fact that E(|W1|) � 1. The fact that
P(‖WLδ(W )‖ > δk) = o(1) follows by a union bound over all

(
k
d2δke

)
possible values of the set Lδ(W )

and applying Bernstein’s inequality; take δ′ := Cδ log(1/δ) for a sufficiently large constant C.

Remark. We believe that the typical distance should concentrate if k � log |G| and k − d � 1
without any condition on like that on m∗(G). However, without any such condition, we do have
reason to believe that the value at which this concentration happens should depend on more than
just k and |G|—the algebraic structure of G should be important. This exact phenomenon occurs
when studying the mixing time of the random walk on the Cayley graph. See Theorem A, in
particular contrasting the cases k � log |G| and 1� k � log |G|. 4
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4.2.7 Typical Distances for Lq-Type Graph Distances

Graphs distances in Cayley graphs have some special properties. Consider a collection z =
[z1, ..., zk] of generators and distances in the Cayley graph G(z). For a path ρ in G(z), for each
i ∈ [k], write ρi,+ for the number of times zi is used, ρi,− for the number of times z−1

i is used (if
in the undirected case, otherwise ρi,− := 0) and ρi := ρi,+ − ρi,−. The path connects the identity

with ρ · z. Then the length, in the usual graph distance, of ρ is ‖ρ‖1 :=
∑k

1(ρi,+ + ρi,−).

For any q ∈ [1,∞), define the Lq graph distance of ρ by ‖ρ‖qq :=
∑k

1(ρqi,+ + ρqi,−). For the L∞-
graph distance, define ‖ρ‖∞ := maxi(ρi,+ + ρi,−). (The usual graph distance is given by q = 1.)

For Abelian groups, clearly for any q ∈ [1,∞) an Lq geodesic, ie a path of minimal length, will
only use either zi or z−1

i , not both (since the terms in the product can be reordered), ie ρi,+ρi,− = 0

for all i. Thus ‖ρ‖qq =
∑k

1 |ρi|
q. Similarly, any L∞-geodesic ρ can be adjusted into a new path ρ′

with ‖ρ‖∞ = ‖ρ′‖∞ and ρ′i,+ρ
′
i,− = 0 for all i.

We define the Lq typical distance DG(z),q(·) analogously to DG(z)(·), ie the q = 1 case. When the

k generators are chosen uniformly at random, we write D±k,q(·), with the ±-superscript indicating
whether or not the Cayley graph is directed.

Hypothesis G′. The sequence (kN , GN )N∈N and q ∈ [1,∞] jointly satisfy Hypotheses G′ if the
following conditions hold (defining k1/∞ := 1 for k ∈ N):

limN kN =∞, limN kN/ log |GN | = 0 and limN k
1/q
N |GN |

1/kN /m∗(GN ) = 0;

if q ∈ (1,∞) then additionally kN ≤ log |GN |/ log log |GN | for all N ∈ N;

lim supN dN/kN <

{
1 for undirected graphs,
1
2 for directed graphs.

Finally we set up a little more notation. Make the following definitions:

C−q := 2 Γ(1/q + 1)(qe)1/q, C+
q := 1

2C
−
q and D±q (k, n) := k1/qn1/k/C±q ,

where the case q =∞ is to be interpreted as the limit q →∞; eg, C−∞ = 2 and D+
∞(k, n) = n1/k.

When these are sequences (kN , |GN |)N∈N, for N ∈ N and q ∈ [1,∞], write D±N,q := D±q (kN , |GN |).
Similarly, for a sequence (GN )N∈N of finite groups with corresponding multisubsets (Z(N))N∈N

of sizes (kN )N∈N, for N ∈ N, β ∈ [0, 1] and q ∈ [1,∞], define D±N,q := DG±N (Z(N))
(β).

Using an extension of the methodology from this section (§4.2), including analysis of Lq lattice
balls, we can prove the following theorem. We have already considered q = 1 and k � log |G|.

Theorem 4.2.11. Let (kN )N∈N be a sequence of positive integers and (GN )N∈N a sequence of finite,
Abelian groups; for each N ∈ N, define Z(N) := [Z1, ..., ZkN ] by drawing Z1, ..., ZkN ∼iid Unif(GN ).

Suppose that (kN , GN )N∈N satisfies Hypotheses G′. Then, for all β ∈ (0, 1), we have

D±N,q(β)/D±N,q →
P 1 (in probability) as N →∞.

Moreover, the implicit lower bound holds for all choices of generators and for all Abelian groups,
only requiring the conditions in Hypotheses G′ which depend only on (kN , |GN |)N∈N and q.

The arguments used to prove this theorem really are analogous to those used in this section
(§4.2). The only real difference is that we have to look at lattice balls under an Lq and in dimension
1 � k � log n, rather than L1 and k � log n. Other than this, the remainder of the analysis, in
particular the reduction to a gcd and the consideration of the set I of non-zero coordinates of W ,
is exactly the same. (Now W is uniform on an Lq ball of appropriate radius.) We do not give the
proof here; it is deferred to §5.5.
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4.3 Typical Distance: k� log |G|
This section focusses on concentration of distances from the identity in the random Cayley

graph of an Abelian group when k � log |G|. (The previous sections dealt with 1� k . log |G|.)
The main result of the section is Theorem 4.3.2; see also Hypothesis H.

The outline of this section is as follows:
· §4.3.1 states precisely the main theorem of the section;
· §4.3.2 outlines the argument;
· §4.3.3 gives some crucial estimates on the size of lattice balls;
· §4.3.4 is devoted to the lower bound;
· §4.3.5 is devoted to the upper bound.

4.3.1 Precise Statement and Remarks

To start the section, we recall the typical distance statistic.

Definition 4.3.1. Let H be a graph and fix a vertex 0 ∈ H. For r ∈ N, write BH(r) for the r-ball
in the graph H, ie BH(r) := {h ∈ H | dH(0, h) ≤ r}, where dH is the graph distance in H. Define

DH(β) := min
{
r ≥ 0

∣∣ |BH(r)| ≥ βn
}

for β ∈ (0, 1).

When considering sequences (kN , GN )N∈N of integers and Abelian groups, abbreviate

DN (β) := DGN ([Z1,...,ZkN ])(β) where Z1, ..., ZkN ∼iid Unif(GN ).

Finally, considering such sequences, we define the candidate radius for the typical distance:

DN := ρN
ρN−1 log |GN |/ log kN where ρN := log kN/ log log |GN | for each N ∈ N.

To leading order, the typical distance will be the same for the undirected graphs as for the directed.

We show that, whp over the graph (ie choice of Z), this statistics concentrates. Here we consider
k � log |G|. The result holds for all Abelian groups; in fact, the implicit upper bound is valid for
all groups. Further, the typical distance concentrates at a distances which depends only on k and
|G|. This is in agreement with the spirit of the Aldous–Diaconis conjecture.

Hypothesis H. The sequence (kN , nN )N∈N satisfies Hypothesis H if

lim infN kN/ log nN =∞ and lim infN log kN/ log nN = 0.

Theorem 4.3.2. Let (kN )N∈N be a sequence of positive integers and (GN )N∈N a sequence of finite,
Abelian groups; for each N ∈ N, define Z(N) := [Z1, ..., ZkN ] by drawing Z1, ..., ZkN ∼iid Unif(GN ).

Suppose that (kN , |GN |)N∈N satisfies Hypothesis H. Then, for all β ∈ (0, 1), we have

D±N (β)/DN →P 1 (in probability) as N →∞.

Moreover, the implicit lower bound holds deterministically, ie for all choices of generators, and the
implicit upper bound holds for all groups, not just Abelian groups.

As always, for ease of presentation, in the proof we drop the N -subscripts.

4.3.2 Outline of Proof

When k � log |G|, one can see that the typical distances statistic D must satisfy D � k. By
symmetry, the expected number of times a generator is used when drawing from a ball Bk(R) is
o(1). The number of ways that precisely R can be chosen is

(
k
r

)
. Choose R with

(
k
R

)
≈ |G|.
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4.3.3 Estimates on Sizes of Balls in Zk

We consider balls and spheres in the L1 and L∞ senses: write Bk,1(·), respectively Sk,1(·), for
the L1 ball, respectively sphere, in Zk; write Bk,∞(1) for the L∞ unit ball in Zk.

Lemma 4.3.3. For all R ≥ 0, we have

|B±k,1(R)| ≤ 2R
(bRc+k
bRc

)
and

∣∣S±k,1(R) ∩B±k,∞(1)
∣∣ ≥ ( k

bRc
)
.

Furthermore, if R� k, then

2R
(bRc+k
bRc

)
= exp

(
R log(k/R) ·

(
1 + o(1)

))
=
(
k
bRc
)

In particular, if k = (log n)ρ and ε > 0 is a constant, then∣∣S±k,1( ρ
ρ−1 logk n

)
∩Bk,∞(1)

∣∣� n.

Proof. In the first display, the upper bound is proved in Lemma 6.5.2a; the lower bound is the
usual formula for the number of subsets of [k] of size R. The second display is a simple application of
Stirling’s approximation and asymptotics of the binary entropy function. The final display follows
by combining the previous two and performing a simple calculation.

4.3.4 Lower Bound on Typical Distance

From the results in §4.3.3, it is straightforward to deduce the lower bound in Theorem 4.3.2.

Proof of Lower Bound in Theorem 4.3.2. Let ξ ∈ (0, 1) and set R := D(1− ξ). Since the under-
lying group is Abelian, applying Lemma 4.3.3, a simple calculation gives

|Bk(R)| ≤ |Bk,1(R)| ≤ exp
(
D log(k/D) · (1− 1

2ξ)
)
� n.

Hence, for all β ∈ (0, 1) and all Z, we have Dk(β) ≥ R = D(1− ξ), asymptotically in n.

4.3.5 Upper Bound on Typical Distance

Lemma 4.3.3 gives a quantitative sense in which |Bk,1(R)| ≈
∣∣Sk,1(R) ∩ Bk,∞(1)

∣∣ ≥ (
k
bRc
)
;

informally, this means that we do not really lose any volume by restricting to the sphere and
requiring that each generator is used at most once. We show the upper bound for arbitrary groups.

Proof of Upper Bound in Theorem 4.3.2. Let ξ > 0 and set R := D(1 + ξ). Draw W,W ′ ∼iid

Unif(Sk,1(R)∩Bk,∞(1)). Define S := ZW1
1 · · ·ZWk

k and S′ similarly. We show that S is well-mixed
whp (this time in the L2 sense) to deduce the upper bound. Then, by the standard L2 calculation,

E
(
‖PGk

(
S ∈ ·

)
− πG‖22

)
= nP

(
S′ = S′

)
− 1.

If W 6= W ′, then there exists an i ∈ [k] so that Wi = 1 and W ′i = 0 or vice versa. By the uniformity
and independence of the generators, S′S−1 ∼ Unif(G) for all (not just Abelian) groups. Thus

nP
(
S = S′

)
− 1 ≤ nP

(
W = W ′

)
= n

∣∣Sk,1(R) ∩Bk,∞(1)
∣∣−1 � 1,

using Lemma 4.3.3 for the final relation. This completes the proof.

Remark. We remark that this upper bound, ie on typical distance with k � log |G|, can be
easily deduced from mixing results proved in the ’90s. Specifically, it was shown by Dou and
Hildebrand [34, Theorem 1] that the mixing time for the usual random walk is upper bounded by
ρ
ρ−1 logk |G| for any group; Roichman [69, Theorems 1 and 2] subsequently gave a simpler proof,
using an argument not that dissimilar from our proof above. The lower bound does not follow from
mixing results, though.

There are a few reasons for including the proof above. Foremost is that we use the same
argument in §4.4.2 to obtain universal bounds for k ≥ (1 + δ) log2 |G| (with δ > 0 a constant), not
just k � log |G|. Additionally, we need to do most of the work for the lower bound anyway, and it
demonstrates how easily our method adapts to this new regime. 4
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4.4 Diameter

In this section we consider the diameter of the random Cayley graph. Our analysis is separated
into two distinct sections.

§4.4.1 We show that the diameter concentrates for k & log |G|, and that the value at which it
concentrates is the same as for typical distance.

§4.4.2 We show, for k ≥ (1 + δ) log2 |G|, with δ > 0 constant, that the group giving rise to the
largest diameter (amongst all groups) is Zd2.

4.4.1 Concentration for k & log |G|
Recall that in Theorem 4.2.2 we showed, in the regime k � log n and under some assump-

tions, that, up to sot, the typical distance concentrates at αk, for some constant α. The next
theorem shows, in the same set-up, that the diameter does the same. The argument is a relatively
straightforward adaptation of the typical distance argument. Recall Hypothesis G.

Theorem 4.4.1. Let (kN )N∈N be a sequence of positive integers and (GN )N∈N a sequence of finite,
Abelian groups; for each N ∈ N, define Z(N) := [Z1, ..., ZkN ] by drawing Z1, ..., ZkN ∼iid Unif(GN ).

Suppose that (kN , GN )N∈N satisfies either Hypotheses G or H. For λ ∈ (0,∞), let α±λ ∈ (0,∞)
be the constant from Theorem 4.2.2; for each N ∈ N, write ρN := log kN/ log log |GN |, so that
kN = (log |GN |)ρN . Then the following convergences in probability hold:

diamGN (Z(N))/
(
α±λ kN

)
→P 1 when limN kN/ log |GN | = λ;

diamGN (Z(N))/
(

ρN
ρN−1 logkN |GN |

)
→P 1 when limN kN/ log |GN | =∞.

Moreover, the implicit lower bound on the diameter holds deterministically, ie for all choices of
generators, and for all Abelian groups, and, when k � log |G|, the implicit upper bound holds for
all groups, not just Abelian groups.

Remark 4.4.2. While we only state and prove the result for k & log |G|, the argument can be
extended to allow k � log |G|, provided log |G|/k diverges sufficiently slowly. This require a little
more care; we do not explore the details here.

As always, we drop the N -subscripts in the proof, eg writing diamGk or |G|.

Proof of Theorem 4.4.1. Clearly diamGk = Dk(1) ≥ Dk(β) for all β ∈ [0, 1]. Hence typical
distance is trivially a lower bound on the diameter. It remains to consider the upper bound.

Assume first Hypotheses G, so k � log |G|. Let ε � 1, vanishing slowly. Define α := α±λ as in
Theorem 4.2.2. Let A := [Z1, ..., Z(1−ε)k] be the first (1−ε)k generators and B := [Z(1−ε)k+1, ..., Zk]
be the remaining εk. By transitivity, it suffices to consider distances from the identity. The idea is

to take L steps using A and then one more using B, where L is the minimal radius of a ball in Z|A|±
of volume at least neω, for some slowly diverging ω. Write M := αk. By Lemma 4.2.5, we have
L/M h 1− ε h 1. (This does not hold for 1� k � log |G| by Lemma 4.1.5.) The key point is that
when k � log |G| replacing k with (1− ε)k changes the typical distance by a factor 1 + oε→0(1).

By Theorem 4.2.2, whp, A is typical in the sense that the proportion of elements of the group
which can be reached via a word of length at most L, using only the generators from A, is 1− e−ν ,
for some ν � 1, independent of ε.

Condition on A, and that it is typical; write P for the probability measure induced by this
conditioning. Denote by H the set of elements which can be reached in the above sense. (This is
the vertex set of the ball of radius L in G(A).) Fix x ∈ G. Note that if b ∼ Unif(G), then

P
(
x ∈ b+H

)
= 1− e−ν where b+H := {b+ h | h ∈ H}.

Furthermore, if b, b′ ∼ Unif(G) are independent then the events {x ∈ b+H} and {x ∈ b′+H} are
P-independent; this is because we have conditioned on A, and so H is a deterministic set.
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Using the εk generators from B, informally we get εk Bernoulli trials to get to x using b + H
for b ∈ B, and each trial has success probability 1− o(1). Formally, write R for the set of elements
reachable from the identity via a word of length at most L+1 (ie the ‘range’); let b′ be an arbitrary
element of B, so b′ ∼ Unif(G). (Recall that the conditioning makes H non-random.) Then

P
(
x /∈ R

)
≤ P

(
x /∈ B +H

)
= P

(
x /∈ b+H ∀ b ∈ B

)
= P

(
x /∈ b′ +H

)|B|
= e−νεk.

Since ν →∞, we may choose ε→ 0 so that νε→∞. Then, since k � log n, we have

P
(
R 6= G

)
= P

(
∃x ∈ G st x /∈ R

)
≤ nP

(
x /∈ R

)
≤ ne−νεk = o(1).

Averaging over typical A establishes an upper bound of diamGk ≤ L+1 whp, and L ≤M(1+ε).

Finally consider Hypotheses H, so k � log |G|. Exactly the same argument holds here, using
the typical distance to first get to almost all the elements and then one more step. Recall from
Theorem 4.3.2 that the upper bound is valid for arbitrary groups.

4.4.2 Universal Bounds for k ≥ (1 + δ) log2 |G|
In this subsection we show that the group Zd2 gives rise to the random Cayley graph with the

largest diameter when k ≥ (1 + δ) log2 |G| whp, up to sot.
Recall that R(k, n) is the minimal R ∈ N with

(
k
R

)
≥ n.

Theorem 4.4.3. Let (kN )N∈N be a sequence of positive integers and (GN )N∈N a sequence of finite
groups; for each N ∈ N, define Z(N) := [Z1, ..., ZkN ] by drawing Z1, ..., ZkN ∼iid Unif(GN ).

Suppose that lim infN (kN − log2 |GN |)/kN > 0 and lim supN log kN/ log |GN | = 0. Then

lim supN diamGN (Z(N))/R(kN , |GN |) ≤ 1 in probability.

As noted in the introduction, the proof of this statement is that it will follow from our previous
typical distance and diameter considerations with relatively little extra work.

Proof. From Lemma 4.3.3 and Theorem 4.4.1, when k � log |G|, the diameter concentrates at
R(k, |G|) when the underlying group is Abelian, and this is an upper bound for all groups.

Thus it remains to consider k with k − log2 |G| � k and k � log |G|. All that was required
for the upper bound on typical distance when k � log |G| was that P(W = W ′) � 1/|G| where
W,W ′ ∼iid Unif(Sk,1(D) ∩ Bk,∞(1)) with D := D(1 + ξ), where D was the candidate typical
distance radius and ξ > 0 was a constant. We show that the analogous statement holds here.

Let ξ > 0 be fixed and set R := R(k, |G|)(1 + ξ). Before proceeding, let us determine some
estimates on R. Let h : (0, 1)→ (0, 1) : p 7→ −p log p− (1− p) log(1− p) denote the binary entropy
function (in nats). It is standard that Stirling’s approximation, like in Lemma 4.3.3, gives(

k
r

)
= exp

(
k h(r/k) ·

(
1 + o(1)

))
.

Thus if k − log2 |G| � k, then we see that R(k, |G|) � k. Further, the fact that the derivative of h
is continuous and strictly positive on (0, 1

2 ) gives
(
k
R

)
� |G|; hence P(W = W ′)� 1/|G|.

This shows that the typical distanceDk(β) ≤ R(k, |G|) whp up to sot for all constants β ∈ (0, 1).
This is then converted from a statement about typical distance to one about the diameter via the
same method as used previously (in §4.4.1), noting that R(k, |G|) � k.

4.5 Spectral Gap

In this section, we calculate the spectral gap; see Theorem L. We first prove it for k ≥ 3d(G). In
§4.5.4, we explain how to extend to k ≥ (2+δ)d(G) and then to k ≥ (1+δ)d(G) for a density-(1−ε)
subset of values for |G|. The lower bound holds deterministically, without any conditions.
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4.5.1 Precise Statement

For an Abelian group G, we write d(G) for the minimal size of a generating set. It is convenient
to phrase the statement in terms of the relaxation time, which is the inverse of the spectral gap.

Theorem 4.5.1 (Spectral Gap). First, there exists an absolute constant c > 0 so that, for all
Abelian groups G and all (multi)sets Z of generators of size k, we have

trel

(
G(Z)

)
≥ c|G|2/k. (4.5.1a)

Second, for all δ > 0, there exist constants cδ, Cδ > 0 so that, for all Abelian groups G, if
k ≥ (2 + δ)d and Z1, ..., Zk ∼iid Unif(G), then

P
(
trel(Gk) ≤ Cδ|G|2/k

)
≥ 1− Cδ2−k/cδ . (4.5.1b)

Furthermore, for all ε ∈ (0, 1), there exists a subset A ⊆ N of density at least 1 − ε so that if
|G| ∈ A then then condition k ≥ (2 + δ)d(G) can be relaxed to k ≥ (1 + δ)d(G) and (4.5.1b) still
holds; the constant Cδ now also depends on ε, ie becomes Cδ,ε, but cδ need not be adjusted.

We prove this for the non-absolute spectral gap, ie minλ6=1{1− λ}, where the minimum is over
eigenvalues; the same proof also works for the absolute spectral gap, ie minλ 6=1{1− |λ|}.

4.5.2 Lower Bound on Relaxation Time

In this subsection, we establish the lower bound in Theorem 4.5.1.

Proof of Lower Bound in Theorem 4.5.1. Write n := |G|. We may assume that k ≤ log3( 1
2n), as

otherwise (4.5.1a) indeed holds for some c > 0. Let L := b 1
2 (( 1

2n)1/k − 1)c. By our assumption on
k, we have L ≥ 1. Consider the set

A :=
{
w · Z | w ∈ Zk and |wi| ≤ L ∀ i = 1, ..., k

}
⊆ G. (4.5.2)

Clearly |A| ≤ (2L + 1)k ≤ 1
2n. Let t ≥ 0, and let (Ys)s≥0 be a continuous-time rate-1 SRW on Z.

Writing τAc := inf{s ≥ 0 | Ss /∈ A} for the exit time of A by the SRW S, observe that

P0

(
τAc > t

)
≤ P0

(
maxs∈[0,t/k] |Ys| ≤ L

)
k, (4.5.3)

where 0 ∈ A is the identity of the group. It follows from Lemma 4.5.3 below that

P0

(
maxs∈[0,t/k] |Ys| ≤ L

)
≥ exp

(
− 1

8π
2(t/k)/(L+ 1)2

)
.

Substituting this into (4.5.3) we get

P0

(
τAc > t

)
≥ exp

(
− 1

8 tπ
2/(L+ 1)2

)
. (4.5.4)

The minimal Dirichlet eigenvalue of a set A is defined to be the minimal eigenvalue of minus
the generator of the walk killed upon exiting A; we denote it by λA. For connected A, we show in
Lemma 4.5.4 below that, for all a ∈ A, we have

− 1
t logPa

(
τAc > t

)
→ λA as t→∞.

From this and (4.5.4), it then follows that λA ≤ λ where

λ := 1
8π

2/(L+ 1)2 ≤ π2/
(
( 1

2n)1/k + 1
)2
.

Since |A| ≤ 1
2n, applying [2, Corollary 3.34], we get

trel ≥ (1− 1
n |A|)/λ ≥ 1/(2λ).

This concludes the proof of the lower bound in Theorem 4.5.1, namely (4.5.1a).
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4.5.3 Upper Bound on Relaxation Time

In this subsection, we establish the upper bound in Theorem 4.5.1, namely (4.5.1b). For ease
of presentation, we assume first that k ≥ 3d(G). In §4.5.4, we explain how to relax this condition,
to prove the complete theorem.

Proof of Upper Bound in Theorem 4.5.1. Decompose G as ⊕d1 Zmj . An orthogonal basis of ei-
genvectors for P , the transition matrix of the corresponding discrete-time walk, is given by

(fx | x ∈ G) where fx(y) := cos
(
2π
∑d
i=1 xiyi/mi

)
,

with corresponding eigenvalues given by(
λx | x ∈ G

)
where λx = 1

k

∑k
i=1 cos

(
2π(x̄ · Zi)

)
,

where x̄j = xj/mj for all j = 1, ..., d and x̄ · Zi =
∑d
j=1 xjZ

j
i /mj

is the standard inner-product on Rd, where Zji is the j-th coordinate of the i-th generator Zi; here
we identify x̄ and Zj with elements of Rd in a natural manner.

Observe that λ0 = 1. Our goal is to bound minx∈G\{0}{1−λx} from below. For α ∈ R, let {α}
be the unique number in (− 1

2 ,
1
2 ] so that α− {α} ∈ Z. It follows from Lemma 4.5.5 below that

1− λx ≥ 2π2

3k

∑k
i=1{x̄ · Zi}

2. (4.5.5)

For each x ∈ G, we make the following definitions:

gj := gj(x) := gcd(xj ,mj) for each j ≥ 1;

s∗ := s∗(x) := max
{
mj/gj | j ∈ {1, ..., d}

}
;

A(s) :=
{
x ∈ G | s∗(x) = s

}
for each s ≥ 1;

φ(j) :=
∣∣{j′ ∈ {1, ..., j} | gcd(j, j′) = 1

}∣∣ for each j ≥ 1.

From this, we claim that we are able to deduce, for s ≥ 2, that

|A(s)| ≤
(∑s

j=1 φ(j)
)d ≤ (1 +

∑s
j=2(j − 1)

)d ≤ ( 1
2s

2
)d
. (4.5.6)

Indeed, φ(j) ≤ j − 1 for j ≥ 2, and observe that

if r divides m, then
∣∣{a ∈ {1, ...,m} ∣∣ gcd(a,m) = r

}∣∣ = φ(m/r);

hence, summing over the set of possible values for mj/gj , which by definition of A(s) is {1, ..., s},
we have |A(s)|1/d ≤

∑s
j=1 φ(j). We are then able to deduce the upper bound, ie (4.5.1b), from

Proposition 4.5.2, which we state precisely below. Indeed, first write

p(s) := max
x:s∗(x)=s

P
(
1− λx ≤ c1n−2/k

)
.

By (4.5.5) along with Proposition 4.5.2 and Lemma 4.5.5 (stated below), for c′ := c1 · 3
2π2 , we have∑

x∈G\{0}

P
(
1− λx ≤ c′1n−2/k

)
≤ n max

s>C2n1/k
p(s) +

∑
2≤s≤C2n1/k

|A(s)| p(s)

≤ 2−k + 2−d
∑
s≥2 s

2d(2s)−9k/10 . 2−k,

where we have used k ≥ 3d and the fact that s∗(x) > 1 for all x 6= 0.
Modulo the proofs of the quoted results, ie Proposition 4.5.2 and Lemmas 4.5.3 to 4.5.5, this

concludes the proof of the upper bound in Theorem 4.5.1, namely (4.5.1b).

It remains to state and prove the quoted results, ie Proposition 4.5.2 and Lemmas 4.5.3 to 4.5.5.
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Proposition 4.5.2. There exist absolute constants c1 ∈ (0, 1) and C2 such that

P
(

1
k

∑k
i=1{x̄ · Zi}

2 ≤ c1n−2/k
)
≤

{
s∗(x)−9k/10 when s∗(x) ≤ C2n

1/k,

2−k/n when s∗(x) > C2n
1/k.

(4.5.7a)

(4.5.7b)

Proof. Fix x ∈ G. First consider the case that s := s∗(x) > C2n
1/k, ie (4.5.7b). Let j := j(x)

be a coordinate satisfying s = mj/gj . Denote m := mj(x) and g := gj(x). Observe that xjZ
j
i ∼iid

Unif{g, 2g, ...,m} for each i. Hence, for each i, we have

Ui := x̄jZ
j
i ∼ Unif{1/s, 2/s, ..., 1}. (4.5.8)

By averaging over (ai)
k
i=1, where ai := {

∑
`∈{1,...,d}\{j} x`Z

`
i /m`}, recalling that {α} is the

unique number in (− 1
2 ,

1
2 ] so that α− {α} ∈ Z, it suffices to show that

max
b1,...,bk∈[−1/2,1/2]

P
(

1
k

∑k
i=1{Ui + bi}2 ≤ c1n−2/k

)
≤ 2−k/n. (4.5.9)

Replacing c1 with 4c1 we may assume that bi ∈ 1
sZ. Indeed, if

|bi − `/s| ≤ 1/(2s), ie |bi − `/s| = min
{
|bi − α| | α ∈ 1

sZ
}
,

then {Ui + `/s}2 ≤ 4{Ui + bi}2. Hence

if 1
k

∑k
j=1{Ui + bi}2 ≤ c1n−2/k then 1

k

∑k
j=1{Ui + `/s}2 ≤ 4c1n

−2/k.

In this case, {Ui+bi} has the same law as {Ui}. It thus suffices to prove (4.5.9) for b1 = · · · = bk = 0.
We now split [0, 1

2 ] into M := d4n1/ke consecutive intervals of equal length J1, ..., JM , where

J1 := [0, 1
2M ] and J` := ( `−1

2M , `
2M ] for ` > 1. Let Yi := ` − 1 if |{Ui}| ∈ J`. Clearly, 1

4Yi/M
2 ≤

1
4Y

2
i /M

2 ≤ {Ui}2. It thus suffices to show that

P
(

1
k

∑k
i=1 Yi ≤

1
10

)
≤ 2−k/n.

This last claim follows by a simple counting argument: there are Mk total assignments of the Yi-s,
but at most L(k) :=

(d11k/10e
k−1

)
≤ 2k assignments satisfy 1

k

∑k
i=1 Yi ≤

1
10 , since L(k)/Mk ≤ 2−kn−1.

We now prove the case s := s∗(x) ≤ C2n
1/k, ie (4.5.7a). By the same reasoning as for (4.5.9),

it suffices to show that

max
b1,...,bk∈[−1/2,1/2]

P
(

1
k

∑k
i=1{Ui + bi}2 ≤ c1n−2/k

)
≤ s−9k/10. (4.5.10)

Regardless of bi, there is at most one a := a(bi) ∈ {1/s, 2/s, ..., 1} such that {a + bi}2 < (2s)−2,
and hence by (4.5.8), for all i, we have

P
(
{Ui + bi}2 < (2s)−2

)
≤ 1/s.

If there is no such value a(bi), then set a(bi) := −1.
If {Ui + bi}2 ≥ (2s)−2 for at least q := k · 4c1s2n−2/k of the i-s, ie if∣∣{i ∈ {1, ..., k} | Ui 6= a(bi)

}∣∣ ≥ q,
then 1

k

∑k
i=1{Ui + bi}2 ≥ c1n

−2/k, as desired. As s ≤ C2n
1/k, by taking c1 sufficiently small in

terms of C2, we can make q/k sufficiently small so that the following holds:

P
(∣∣{i ∈ {1, ..., k} | Ui 6= a(bi)

}∣∣ < q
)
.
(
k
q

)
sq−k . s−9k/10.

We now state the auxiliary lemmas referenced above, ie Lemmas 4.5.3 to 4.5.5. These are
technical results; their proofs are given in §6.4.

Lemma 4.5.3. Let ` ∈ N and τ := inf{s ≥ 0 | |Ys| = `}, where (Ys)s≥0 is a continuous-time rate-1
SRW on Z. Let θ := 1

2π/` and λ := 1− cos θ. Then, for all s ≥ 0, we have

P0

(
τ > s

)
≥ e−λs ≥ exp

(
− 1

8s(π/`)
2
)
.
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For a transition matrix P and a set A, let λA be the minimal Dirichlet eigenvalue, defined to
be the minimal eigenvalue of minus the generator of the chain killed upon exiting A, ie of

IA − PA where (IA − PA)(x, y) := 1
(
x, y ∈ A

)(
1(x = y)− P (x, y)

)
.

Also, for a set A, write τAc for the (first) exit time of this set by the chain.

Lemma 4.5.4. Consider a rate-1, continuous-time, reversible Markov chain with transition matrix
P . Let A be a connected set, and let λA and τAc be as above. Then, for all a ∈ A, we have

− 1
t logPa

(
τAc > t

)
→ λA as t→∞.

Lemma 4.5.5. For θ ∈ [− 1
2 ,

1
2 ], we have

2(πθ)2 ≥ 1− cos(2πθ) ≥ 2
3 (πθ)2.

4.5.4 Relaxing the Conditions on k

In this subsection, we explain how to relax the conditions on k. First we can relax from k ≥ 3d
to k ≥ (2 + δ)d, with δ > 0, valid for every group size n = |G|. (The constants now depend on δ.)

We now give conditions under which this can be relaxed to k ≥ (1 + δ)d. If G = Zdp for a prime
p, then one can relax this further to k ≥ (1+δ)d, and even allow δ to tend to 0, provided p diverges.
(In this case, the term 2−k has to be replaced by another term which tends to zero at a slower rate
as k →∞.) This follows from the fact that now we only need to consider (4.5.6) above with s := p
and we can replace (4.5.6) with |A(p)| = pd − 1. So the condition k ≥ (1 + δ)d is sufficient when
G = Zdp with p prime.

We now show that if |G| is ‘typical’ (in a precise sense), then the same condition is sufficient.
In the proof above, in (4.5.6), we used the crude bound

|A(s)| ≤
(∑

i∈[s] φ(i)
)d ≤ ( 1

2s
2
)d
.

Instead, recalling that we write i o n to mean that i divides n, we can use the improved bound

|A(s)| ≤
(∑

i∈[s] i1(i o n)
)d
.

In Lemma 6.6.5, we show that, for all ε > 0, there exists a constant C ′ε and a density-(1 − ε) set
Bε ⊆ N such that, for all n ∈ Bε and all 2 ≤ s ≤ n, we have∑

i∈[s] i1(i o n) ≤ C ′εs(log s)2.

Using this to derive an improved bound on |A(s)|, and adjusting some of the constants in the proof
in an appropriate manner, an inspection of the proof reveals that, for all n ∈ Bε and all δ > 0,
there exists a positive constant Cε,δ so that, for all Abelian groups of size n, if k ≥ (1 + δ)d, then

P
(
trel(Gk) ≥ Cε,δn2/k

)
≤ e−k/Cε,δ .

4.5.5 Remarks and Extensions

Now that we have completed the proof (modulo the deferred lemmas), we make two remarks.

Remark 4.5.6. Our proof gives an explicit form for c in (4.5.1a). If k � log n, then we get

trel ≥ 2π−2|G|2/k ·
(
1 + o(1)

)
.

Indeed, in this case, in the definition of the set A in (4.5.2), we can take L := b 1
2 (εn)1/kc for any

ε > 0, making |A|/|G| arbitrary small. 4
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Remark 4.5.7. It is classical that

1
2e
−γt ≤ max

x∈V

∥∥Pt(x, ·)− π∥∥TV
≤ 1

2

(
min
y∈V π(y)

)−1/2
e−γt,

where Pt := e−t(I−P ) is the heat-kernel of the corresponding continuous-time chain; see, for ex-
ample, [49, Theorems 12.4, 12.5 and 20.6]. To complement this, we note that the same holds with
P t in the role of Pt if we replace e−γt with (1− γ∗)t, where γ∗ is the absolute spectral gap.

The argument in the proof of (4.5.1b) can be used to show, for a positive constant C, that

P
(
1/γ∗ ≤ C|G|2/k

)
≥ 1− C2−k,

where γ∗ is the absolute spectral gap of the transition matrix of the SRW, when k ≥ 3d(G). 4

4.6 Open Questions and Conjectures

We close the paper with some questions which are left open.

1: Typical Distance for All Abelian Groups

In our typical distance theorem, there were some conditions on the group. We allowed any group
with d(G)� log |G|/ log log k if 1� k � log |G|, but once d(G) became larger than this or k be-
came order log |G|, we had to impose conditions. We conjecture that these are artefacts of the proof.

Conjecture 1. Let G be an Abelian group. Suppose that k − d(G) � 1 and 1 � k .
log |G|. Then the typical distance statistic concentrates. Further, if k � log |G| and
k − d(G) � k, then it concentrates at a value which depends only on k and |G|.

The claim when 1 � k � log |G| and k − d(G) � k is a natural extension of Theorem 4.1.2.
Further, if k �

√
log |G|/ log log log |G|, then k − d(G) � 1 is sufficient, by Hypothesis F. Once

we relax to k − d(G) � 1, for larger k, we still expect concentration of typical distance for all
Abelian groups, but now the value will likely depend on the specific group. Compare this with the
occurrence of cutoff for the random walk on the random Cayley graph established in Chapter 2.

2: Diameter for Abelian Groups for Diverging k

We have shown concentration of typical distance, but never considered the diameter. It is trivial
that the typical distance is a lower bound on the diameter, and that twice the typical distance is an
upper bound. Can more be determined? Recall that d(G) is the minimal size of a generating set.

Conjecture 2. For an Abelian group G and Z1, ..., Zk ∼iid Unif(G), write ∆Z for the
diameter of the Cayley graph with generators Z. Assume that k diverges, sufficiently
rapidly in terms of d(G). Then the law of ∆Z concentrates. Further, if k−d(G) � k and
k � log |G|, then it concentrates at a value ∆k,|G| which depends only on k and |G|.

3: Isoperimetry for Random Cayley Graphs

The isoperimetric, or Cheeger, constant of a finite d-regular graph G = (V,E) is defined as

Φ∗ := 1
d

min
1≤|S|≤ 1

2 |V |
Φ(S) where Φ(S) := 1

|S|
∣∣{{a, b} ∈ E ∣∣ a ∈ S, b ∈ Sc}∣∣.

More generally, the isoperimetric constant is defined for Markov chains; see [49, §7.2]. For a given
stochastic matrix P , it is easy to see that the original chain P , the time-reversal P ∗ and the
additive symmetrisation 1

2 (P +P ∗) all have the same isoperimetric profile. Thus the isoperimetric
constant for a directed Cayley graphs is the same as that for the undirected version.

The following conjecture assets that the Cheeger constant is, up to a constant factor, the same
as that of the standard Cayley graph of ZkL where L is such that n � Lk.
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Conjecture 3. There exists a constant c so that, for all ε ∈ (0, 1), there exist constants
nε and Mε so that, for every finite group G of size at least nε, when k ≥Mε, we have

P
(
Φ∗(Gk) ≤ c|G|−1/k

)
≤ ε,

where Φ∗(Gk) is the Cheeger constant of a random Cayley graph with k generators.

By [54, Theorem 6.29], which regards expansion of general Cayley graphs, along with out upper
bound on typical distance (and hence on diameter), we can prove this conjecture up to a factor k.

By the well-known discrete analogue of Cheeger’s inequality, discovered independently by mul-
tiple authors—see, for example, [49, Theorem 13.10]—we have 1

2γ ≤ Φ∗ ≤
√

2γ. Determining the
correct order of Φ∗ in our model remains an open problem. We conjecture that the correct order
of Φ∗ is given by

√
γ, ie order |G|−1/k, using Theorem L for the order of the spectral gap.

The celebrated Alon–Roichman theorem states that the Cayley graph of any finite group G
is a (1 − ε)-expander (ie Φ∗ ≥ 1 − ε) whp when k ≥ Cε log |G|, for some constant Cε; the best
known upper bound on Cε is O(1/ε2). Naor [58, Theorem 1.2] refines this for Abelian groups: he
showed that one can in fact bound |Φ(S) − 1| ≤ ε

√
log |S|/ log |G| for all S with 1 ≤ |S| ≤ 1

2 |V |
simultaneously, when k/ log n ≥ C/ε2, for a constant C.
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5 Additional Cutoff and Typical
Distance Results for Abelian
Groups

Abstract for Chapter 5

The results of this chapter supplement those of the previous chapters. In general, the
results proved here are more refined, but require additional conditions on the underlying
group. The three main results are the following.

For k � log |G|, under suitable conditions on the group, we determine the limit
profile (not just the existence of cutoff) for the RW on the random Cayley graph. (This
was found in Chapter 2, but only for 1� k � log |G|.)

We study in greater detail the special case of G := Zdp for a prime p. In particular,
if p � 1 then we allow k − d � 1, even k = d + 1 or k = d. We establish cutoff and
determine bounds on the window. There are two regimes of behaviours according to
the parameter ζ := 1

k (k − d) log p, namely ζ � 1 and ζ & 1.
For Abelian groups, we extend the concept of graph distance from an L1 to an

Lq sense, analogously to Lq distances in (multi-dimensional) lattices. Under suitable
conditions on the group, we establish typical distance results akin to those of Chapter 4.
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5.1 Cutoff: Limit Profile for Random Walks on Abelian Groups

In §2.1, we established the shape of the cutoff profile for arbitrary Abelian groups G, with some
conditions on the number k of generators in terms of G. For an Abelian group G, we wrote d(G)
for the minimal size of a generating set. For our results, the following conditions were sufficient:

to consider any k − d(G)� 1, we needed k �
√

log |G|/ log log log |G|;
to consider any k − d(G) � k, we needed k � log |G|/ log log log |G|;
to consider any k � log |G|, we needed d� log |G|/ log log log |G|;

see Hypothesis A. In particular, we could never consider general k & log |G|. Recall that cutoff had
already been established for arbitrary Abelian groups when k � log |G|, but the window, never
mind the profile, was not known. In this section, we outline how to alleviate the conditions on k,
at the cost of some conditions on the group.

5.1.1 Entropic Times: Methodology, Definition and Concentration

We use an ‘entropic method’, as mentioned in §1.3.4.1; cf [11, 12, 13, 20]. The method is fairly
general; we now explain the specific application in a little more depth.

We define an auxiliary random process (W (t))t≥0, recording how many times each generator
has been used: for t ≥ 0, for each generator i = 1, ..., k, write Wi(t) for the number of times that it
has been picked by time t. By independence, W (·) forms a rate-1 DRW on Zk+. For the undirected
case, recall that we either apply a generator or its inverse; when we apply the inverse of generator
i, increment Wi →Wi − 1 (rather than Wi →Wi + 1). In this case, W (·) is a SRW on Zk.

Since the underlying group is Abelian, the order in which the generators are applied is irrelevant
and generator-inverse pairs cancel; hence we can write

S(t) =
∑k
i=1Wi(t)Zi = W (t) · Z.

Recall that the invariant distribution is uniform on G, giving mass 1/n to each vertex. The
proposed mixing time is then the time at which the auxiliary process W obtains entropy log n.
This time can be calculated fairly precisely in many situations; see Proposition 5.1.2.

We now define precisely the notion of entropic times. Write µt, respectively νs, for the law of
W (t), respectively W1(sk); so µt = ν⊗kt/k. Define

Qi(t) := − log νt/k
(
Wi(t)

)
, and set Q(t) := − logµt

(
W (t)

)
=
∑k

1 Qi(t).

So E(Q(t)) and E(Q1(t)) are the entropies of W (t) and W1(t), respectively. Observe that t 7→
E(Q(t)) : [0,∞)→ [0,∞) is a smooth, increasing bijection.

Definition 5.1.1 (Entropic and Times). For all k, n ∈ N and all α ∈ R, define tα := tα(k, n) so that

E
(
Q1(tα)

)
=
(
log n+ α

√
vk
)
/k and sα := tα/k, where v := Var

(
Q1(t0)

)
,

assuming that log n+ α
√
vk ≥ 0. We call t0 the entropic time and the {tα}α∈R cutoff times.

Direct calculation with the Poisson distribution and SRW on Z gives the following relations. A
sketch is given below; the rigorous details are given in §6.1.

Proposition 5.1.2 (Entropic and Cutoff Times, Proposition 6.1.2). Assume that 1� log k � log n.
Write κ := k/ log n. For all α ∈ R, we have tα h t0 and furthermore, for some functions f and g
and all λ > 0, the following relations hold:

if k � log n, then tα h k · n2/k/(2πe) and (tα − t0)/t0 h α
√

2/
√
k; (5.1.1a)

if k h λ log n, then tα h k · f(λ) and (tα − t0)/t0 h αg(λ)/
√
k; (5.1.1b)

if k � log n, then tα h k · 1/(κ log κ) and (tα − t0)/t0 h α
√
κ log κ/

√
k. (5.1.1c)

Moreover, f, g : (0,∞) are continuous bijections, whose value differs between SRW and DRW.
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Sketch of Proof. In §2.1.2, we sketched the argument for k � log n. For k � log n, the target
entropy is order 1, and so all the random variables are bounded in probability, away from both 0
and∞. For k � log n, we have t0 � k, so approximate the RW by a Bernoulli distribution (with a
uniformly chosen sign for the SRW); in §2.1.2, for k � log n, we had t0 � k and so approximated
by a normal distribution. With this adaptation, the sketch from §2.1.2 passes over.

Since the Wi, and hence the Qi, are iid, Q is a sum of k iid random variables. Also, it turns out
that Var(Q(t)) h Var(Q(t0)) � 1 when t h t0; see Corollary 6.1.7. It then stands to reason that

a CLT holds for Q =
∑k

1 Qi; this is indeed the case. The following propositions, which will be of
great importance, is proved in §6.1.

Proposition 5.1.3 (CLT, Proposition 6.1.3). Assume that 1� log k � log n. For all α ∈ R, we have

P
(
Q(tα) ≤ log n± ω

)
→ Ψ(α) for ω := Var

(
Q(t0)

)1/4
= (vk)1/4.

(There is no specific reason for choosing this ω. We just need some ω with 1� ω � (vk)1/2.)

5.1.2 Precise Statement and Remarks

In this section we give the more refined version of Theorem M. Recall that, for an Abelian
group G, we write d(G) for the minimal size of a generating subset of G and

m∗(G) := max
{

minj∈[d]mj

∣∣ ⊕d1 Zmj is a decomposition of G
}
.

Hypothesis I. An Abelian group G and integer k jointly satisfy Hypothesis I if

k ≥ 1
2 log |G|/ log log |G|, m∗(G) > |G|1/k(log k)2 and d(G) ≤ 1

30 log |G|/ log k.

Recall that we write d±Gk,N (t) for the TV distance from uniform at time t for the walk on G±k
and Ψ for the standard Gaussian tail. Throughout the proofs, we drop the subscript-N from the
notation, considering sequences implicitly. We now state the main theorem of this section.

Theorem 5.1.4. Let (kN )N∈N be a sequence of positive integers and (GN )N∈N a sequence of finite,
Abelian groups; for each N ∈ N, define Z(N) := [Z1, ..., ZkN ] by drawing Z1, ..., ZkN ∼iid Unif(GN ).

Suppose that the sequence (kN , GN )N∈N satisfies Hypothesis I. Then, for all α ∈ R, we have

d±Gk,N
(
tα(kN , |GN |)

)
→P Ψ(α) (in probability) as N →∞.

That is, for all α ∈ R, whp, tα is, up to sot, the mixing time tmix(Ψ−1(α)). Moreover, the implicit
lower bound holds deterministically, ie for all choices of generators.

Remark 5.1.5. We can write the cutoff statement, emphasising the N -dependence, in the form(
tZ,Nmix (ε)− t0,N

)
/wN →P Ψ−1(ε) for all ε ∈ (0, 1),

where (t0,N )N∈N is the mixing time and (wN )N∈N is the window, defined by Proposition 5.1.2: for
all λ ∈ (0,∞) and all ε ∈ (0, 1), combining Proposition 5.1.2 and Theorem 5.1.4, we have

tZmix(ε)− f(λ)k

g(λ)
√
k

→ Ψ−1(ε) for all ε ∈ (0, 1) when k h λ log |G|. 4

Remark. The CLT, Proposition 5.1.3, gives the dominating term in the TV distance Theorem 5.1.4:
· on the event {Q(tα) ≤ log n− ω}, we lower bound the TV distance by 1− o(1);
· on the event {Q(tα) ≥ log n+ ω}, we upper bound the expected TV distance by o(1).

Combined with the CLT, we deduce that the dZ(tα)→ Ψ(α) in probability. 4

Remark. Observe that Hypothesis I requires k ≥ 1
2 log n/ log log n and d ≤ 1

30 log n/ log k; in
particular, this implies that k/d ≥ 10. This method does in fact apply for all k with 1� log k �
log n. We do not give details, though. This is because of results proved in §2.1. Write d := d(G).
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· If 1� k � log n/ log log log n and k− d � k, then the argument of §2.1 establishes the same
cutoff profile, but with no conditions on the Abelian group.

· If 1� k � log n, then the conditions k − d � k and d� log n/ log log log n are sufficient.

For 1
2 log n/ log log n ≤ k � log n, these are weaker than Hypothesis I. However, k � log n is never

allowed in §2.1. (It is considered in §2.2, and there the group is arbitrary, but the profile is not
found, only the occurrence of cutoff is shown.)

As such, the method of this article is only really of interest for k & log n, where cutoff is known
but the profile is not: for k � log2 n ≥ d(G), this had been established prior to our work (see
§1.5.2); for k �

√
log n and k − d(G)� 1, this is established by our work (see §2.2. 4

Remark 5.1.6. The regime k � log n is of particular interest. It can be thought of as a ‘critical
regime’: if k � log n, then tmix � k; if k � log n, then tmix � k; if k � log n, then tmix � k.

Further, in this regime, the analysis of §2.2 disproved the Abelian Aldous–Diaconis conjecture:
eg, the mixing times for Z2r

2 and Zr4 are different if k h log n, but not if k � 2 log2 n; note that
d(Z2r

2 ) = 2r = log2 |Z2r
2 | and d(Zr4) = r = 1

2 log2 |Zr4|, so we need k ≥ d � log n.
The Abelian Aldous–Diaconis conjecture was already known to hold when k � log |G|. In §2.1,

we were able to give sufficient conditions for it to hold when k � log n; see, eg, the bullets in the
previous remark or Remark 2.1.5. In this article, we close the gap, giving sufficient conditions for
the conjecture to hold when k � log n. 4

5.1.3 Outline of Proof

The outline here is very similar to that from the main article. For a detailed outline, see §2.1.4
there; here we outline the difference. Note that the lower bound in §2.1.5 was valid for all groups;
we repeat it here for convenience.

For the upper bound, we were trying to bound the expectation of a d-th power of a gcd. Issues
arose when k became too large while k − d is fairly small; see the proof of Corollary 2.1.15. This
arose from the fact that we used the following estimate from Lemma 2.1.14:

P
(
V1 ∈ γZ

)
≤ P

(
V1 ∈ γZ | V1 6= 0

)
+ P

(
V1 = 0

)
≤ 1/γ + 2/n1/k.

Once this was raised to the power k, the second term became an issue. We alleviate this by defining

I :=
{
i ∈ [k] | Vi 6= 0

}
and studying P(Vi ∈ γZ | i ∈ I); the problematic term 2/n1/k then does not exist. If G = ⊕d1 Zmj ,
then we are actually interested in Vi modmj for each j. Recall that m∗ = minjmj . ‘Typically’,
one has |Vi| ≤ m∗. We assume m∗ is sufficiently large so that maxi |Vi| < m∗ whp. Thus looking
at Vi = 0 or Vi ≡ 0 modmj is no different.

For large |I|, the gcd analysis goes through similarly to before. When |I| is small, eg smaller
than d, it is more difficult to control; in this case, we use a fairly naive bound on the gcd, but
control carefully the probability of realising such an I. The case I = ∅ corresponding to V = 0, is
handled using the concentration around the entropic time in exactly the same way as before.

5.1.4 Lower Bound on Mixing

In this subsection, we prove the lower bound on mixing, which holds for every choice of Z.
In §2.1, we only considered 1 � k � log n. As such, we only stated the entropic results for

this regime. Above, in Propositions 5.1.2 and 5.1.3, we stated analogous results for the full regime
1 � log k � log n. In the lower bound given in §2.1.5, valid for arbitrary groups, there were no
conditions on k beyond those required for the entropic concentration, namely Proposition 2.1.3.
As such, the identical proof passes over to the full regime 1� log k � log n unchanged.

5.1.5 Upper Bound on Mixing

We use a modified L2 calculation, as in Lemma 5.2.6 and Definition 5.2.7 in §5.2.5 above. There
we only bounded the order of the cutoff window; now we desire the profile. We use definitions
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analogous to Lemma 2.1.6 and Definition 2.1.7 in §2.1.6, where the profile is studied. Herein, we
often suppress the time and α-subscripts, eg writing W for W (tα) or W (t), depending on context.

Let W ′ be an independent copy of W ; then S′ := W ′ ·Z is an independent copy of S. We recall
the modified L2 calculation; the following lemma is the same as Lemma 5.2.6.

Lemma 5.1.7. For all t ≥ 0 and all W ⊆ Zk, the following inequalities hold:∥∥PZ(S(t) ∈ ·
)
− πG

∥∥
TV
≤
∥∥PZ(S(t) ∈ · |W (t) ∈ W

)
− πG

∥∥
TV

+ P
(
W (t) /∈ W

)
; (5.1.2a)

4E
(∥∥PZ(S(t) ∈ · |W (t) ∈ W

)
− πG

∥∥2

TV

)
≤ P

(
S(t) = S′(t) |W (t),W ′(t) ∈ W

)
− 1. (5.1.2b)

We now make the specific choice of the ‘typical’ set W; we make a different choice for each
α ∈ R. Write Ψ for the standard Gaussian tail. The collection {Wα}α∈R of sets will satisfy

P
(
W (tα) /∈ Wα

)
h Ψ(α),

using the CLT (Proposition 5.1.3). We show that the expression in (5.1.2b) is o(1). Then applying
(5.1.2a) gives dZ(tα) ≤ Ψ(α) + o(1) whp over Z. This matches the lower bound in §5.1.4.

By considering all α ∈ R, we are able to find the shape of the cutoff. If we only desire the order of
the window, then we need only consider the limit α→∞; in this case, P(W (tα) /∈ Wα) ≈ Ψ(α) ≈ 0,
which explains the use of the word ‘typically’ in describing Wα.

In order to define precisely the set Wα here, we first define two parameters, rα and pα.

Definition 5.1.8a. For all α ∈ R, define rα(k, n) and pα(k, n) as follows:

rα(k, n) := min
{
r ∈ Z+

∣∣ P(∣∣W1(tα)− E
(
W1(tα)

)∣∣ > r
)
≤ 1/k3/2

}
;

pα(k, n) := min
{
P
(
W1(tα)− E

(
W1(tα)

)
= j
) ∣∣ |j| ≤ rα(k, n)

}
.

Also define r∗(k, n) := 1
2n

1/k(log k)2 and p∗(k, n) := n−1/kk−2.

The typicality conditions will be a combination of ‘local’ (coordinate-wise) and ‘global’ ones.

Definition 5.1.8b. For all α ∈ R, define the local and global typicality conditions, respectively:

Wα,` :=
{
w ∈ Zk

∣∣ ∣∣wi − E
(
W1(tα)

)∣∣ ≤ rα ∀ i = 1, ..., k
}

;

Wα,g :=
{
w ∈ Zk

∣∣ P(W (tα) = w
)
≤ n−1e−ω

}
.

Define Wα :=Wα,` ∩Wα,g, and say that w ∈ Zk is (α-)typical if w ∈ Wα.

The following proposition determines the probability that W (tα) lies in Wα, ie of typicality.

Proposition 5.1.9. For each α ∈ R, we have

P
(
W (tα) /∈ Wα

)
→ Ψ(α).

Proof. By our CLT, Proposition 5.1.3, the probability that the global conditions hold converges
to 1−Ψ(α). By Definition 5.1.8a, the probability that a single coordinate fails the local condition
is at most k−3/2. By the union bound, the probability that local typicality fails to hold is then at
most k−1/2 = o(1). The claim follows.

Herein, we fix α ∈ R and frequently suppress the tα from the notation, eg writing W· for W·(tα)
or W for Wα. Let V := W −W ′, so {W · Z = W ′ · Z} = {V · Z = 0}. Write

D := Dα := nP
(
V (tα) · Z = 0 | typα

)
− 1 where typ := typα :=

{
W (tα),W ′(tα) ∈ Wα)

}
.

It remains to show that Dα = o(1) for all α ∈ R. Recall the conditions of Hypothesis I:

minjmj > |G|1/k(log k)2, k ≥ 1
2 log |G|/ log log log |G| and d ≤ 1

30 log |G|/ log k.
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Proposition 5.1.10. Suppose that (k,G) jointly satisfy Hypothesis I. (Recall that, implicitly, (k,G)
is a sequence of Abelian groups and integers.) Then, for all α ∈ R, we have Dα = o(1).

Given this proposition, we can prove the upper bound in the main theorem, Theorem 5.1.4.

Proof of Upper Bound in Theorem 5.1.4 Given Proposition 5.1.10. Hypothesis I imply that con-
ditions required for Proposition 5.1.10. Apply the modified L2 calculation, Lemma 5.1.7 and Defin-
ition 5.1.8b, and use Propositions 5.1.9 and 5.1.10 to control the two resulting terms. Combined,
these says that dZ(tα) ≤ Ψ(α) + o(1) whp over Z.

It remains to prove Proposition 5.1.10, ie to bound the modified L2 distance. The remainder
of the section is dedicated to this goal. Up to here, the proof has been very similar to that given
in §5.2.5 or in §2.2.7; here it diverges somewhat.

Write [k] := {1, ..., k}. For v ∈ Zk, write

I(v) :=
{
i ∈ [k]

∣∣ vi 6≡ 0 modmj for all j = 1, ..., d
}
.

We always consider V conditioned on typicality. By local typicality, |Vi| ≤ 2r∗. By Hypothesis I,
r∗ = n1/k(log k)2 < mj for all i and j. Thus, conditioned on local typicality,

I(V ) =
{
i ∈ [k]

∣∣ Vi 6= 0
}

; abbreviate I := I(V ).

Thus we may write D := Dα as

D + 1 = n
∑
I⊆[k] P

(
V · Z ≡ 0, I = I | typ

)
.

We now split the sum into ‘large I’, ‘small I’ and ‘empty I’. In the sums below, we always have
I ⊆ [k]. Let L be a number greater than 1, allowed to depend on n. We then have

D + 1 ≤ n
∑

1≤|I|<L P
(
V · Z ≡ 0 | I = I, typ

)
P
(
I = I | typ

)
+ n

∑
|I|≥L P

(
V · Z ≡ 0 | I = I, typ

)
P
(
I = I | typ

)
+ nP

(
I = ∅ | typ

)
,

(5.1.3)

noting that if I = ∅ then V = 0 ∈ Zk (as a vector), and hence V · Z = 0.

We first bound the third term on the right-hand side of (5.1.3), ie consider I = ∅. The global
typicality condition is designed precisely so that the following lemma holds.

Lemma 5.1.11. We have
nP
(
I = ∅ | typ

)
≤ e−ω/P

(
typ
)
. (5.1.4)

Proof. We have {I = ∅} = {W = W ′} given typicality. So the claim follows as in Lemma 5.2.9.

We now turn our attention to I 6= ∅, where we must also analyse P(V ·Z ≡ 0 | I = I, typ). For
r1, ..., r` ∈ Z \ {0}, we use the convention gcd(r1, ..., r`, 0) := gcd(|r1|, ..., |r`|). Define

gj := gcd
(
V1, ..., Vk,mj

)
for j = 1, ..., d, and also define g := gcd

(
V1, ..., Vk, n

)
.

We end up needing to separate the concepts of local and global typicality: define

typ` :=
{
W,W ′ ∈ W`

}
and typg :=

{
W,W ′ ∈ Wg

}
, so typ = typ` ∩ typg.

We now state a simple lemma, describing the law of V · Z given I 6= ∅. The same lemma is
used in §2.1.6; its proof is given in Lemma 6.6.1.

Lemma 5.1.12 (Lemma 6.6.1). For any v ∈ Zk, writing gj(v) := gcd(v1, ..., vk,mj), we have

v · Z ∼ Unif
(∏d

1 gj(v)Zmj
)
; note that gj(v) =

{
gj(v), 2gj(v), ...,mj

}
.

To control this gcd, we determine the probability an individual coordinate is a multiple of a
given number in the following auxiliary lemma; it is taken from §2.1.6. Write α o β if α divides β.
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Lemma 5.1.13. For all non-empty I ⊆ [k] with {I = I} ∩ typ 6= ∅ and all γ ∈ N, we have

P
(
γ o Vi ∀ i ∈ I | I = I, typ`

)
≤ γ−|I|.

Proof. The coordinates are independent and local typicality merely conditions each coordinate to
lie in a certain interval centred at 0. The claim now follows immediately from Lemma 2.1.14.

Note that gj ≤ g since mj divides n, for all j = 1, ..., d. From the lemma we now deduce that

nP
(
V · Z ≡ 0 | I = I, typ

)
= nE

(∏d
1 gj/mj | I = I, typ

)
≤ E

(
gd | I = I, typ

)
, (5.1.5)

as
∏d

1 mj = n and since, by local typicality, we have |Vi| < mj for all i and j and observing that
the conditioning affects V , but not Z. We now bound the expectation of this gcd.

In order to do this, in one situation we consider a ‘worst-case’ for W . For this, we need to know
bounds on rα. Also given are bounds on pα, which will be used in Lemma 5.1.17 below.

Proposition 5.1.14 (Proposition 6.3.3). For all α ∈ R, we have

rα(k, n) ≥ r∗(k, n) and pα(k, n) ≥ p∗(k, n). (5.1.6)

Proof. This follows from standard large deviation theory. Its proof can be found in §6.3.

Remark. The exponent 2 in (log k)2 is not optimal, but is chosen for convenience of proof and to
enable us to deal with all regimes of k simultaneously. 4

Lemma 5.1.15. There exists a constant C so that, for all I 6= ∅ with {I = I} ∩ typ 6= ∅, we have

E
(
gd | I = I, typ

)
≤

{
C(2r∗)

d−|I|+2/P
(
typg | I = I, typ`

)
when |I| ≤ d+ 1,

1 + 3 · 2d−|I|/P
(
typg | I = I, typ`

)
when |I| ≥ d+ 2.

(5.1.7a)

(5.1.7b)

Furthermore, recalling the definition of r∗ from Definition 5.1.8a, we also have

E
(
gd | I = I, typ

)
≤ (2r∗)

d = nd/k(log k)2d. (5.1.8)

An easy corollary of this says that the contribution to (5.1.3) by ‘large I’ is 1 + o(1).

Corollary 5.1.16. For any L with L ≥ d+ 2, we have

n
∑
|I|≥L P

(
V · Z ≡ 0, I = I | typ

)
≤ 1 + 3 · 2d−L/P

(
typ
)
.

Proof. This proof is a direct calculation. By (5.1.7b), using Bayes’s rule, specifically the fact that
P(B | C)/P(C | B) = P(B)/P(C) for non-null events B and C, for L ≥ d+ 2 we deduce that

n
∑
|I|≥L P

(
V · Z ≡ 0, I = I | typ

)
= n

∑
|I|≥L P

(
V · Z ≡ 0 | I = I, typ

)
P
(
I = I | typ

)
≤
∑
|I|≥L

(
P
(
I = I | typ

)
+ 3 · 2d−|I| P

(
I = I

)
/P
(
typ
))

≤ P
(
|I| ≥ L | typ

)
+ 3 · 2d−LP

(
|I| ≥ L

)
/P
(
typ
)
≤ 1 + 3 · 2d−L/P

(
typ
)
.

Proof of Lemma 5.1.15. The definition of r∗ from (5.1.8) along with (5.1.5) immediately imply
the final claim (5.1.8). Write P and E to denote probability and expectation, respectively, condi-
tioned on I = I and typ` (ie local typicality). As for (5.1.5), we obtain

nP
(
V · Z ≡ 0 | I = I, typ

)
≤ 1 + E

(
gd − 1 | I = I, typ

)
≤ 1 + E

(
gd − 1

)
/P
(
typg

)
.

Hence, to prove (5.1.7a, 5.1.7b), we need to bound E(gd). To do this, note that

E
(
gd
)

=
∑2r∗
γ=1 γ

d P
(
g = γ

)
≤
∑2r∗
γ=1 γ

d P
(
γ o Vi ∀ i ∈ I

)
.
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Applying Lemma 5.1.13, we obtain

E
(
gd
)
≤
∑2r
γ=1 γ

d−|I|.

To bound this sum, we now consider separate cases, according to the value of d−|I|. In particular,
we can summarise all these cases in the following way:

E
(
gd
)
≤

{
1 + 3 · 2d−|I| when |I| − d ≥ 2,

C(2r∗)
d−|I|+2 when |I| − d ≤ 1,

where C is the implicit constant in the previous equation. We thus deduce (5.1.7a, 5.1.7b).

We now consider the probability of a given realisation of I. Recall that t := tα still.

Lemma 5.1.17. We have

P
(
I = I, typ

)
≤ n−1e−ω/p

|I|
∗ = e−ωn−1+|I|/kk2|I|. (5.1.9)

Proof. Requiring I = I places restrictions on the coordinates in Ic, but not on the coordinates of
I other than that they are non-zero; we ignore the latter to get an upper bound (see below).

For a vector w ∈ Zk, write

WI(w) :=
{
w′ ∈ Zk | I(w − w′) = I

}
.

Then, using the independence of W and W ′, we have

P
(
I = I, W ∈ W

)
=
∑
w∈W P

(
W = w

)
P
(
W ′ ∈ WI(w)

)
.

Hence, using the independence of the coordinates of W ′, given w ∈ W we have

P
(
W ′ ∈ WI(w)

)
= P

(
W ′ = w

)
·
∏
i∈I

P(W ′i 6= wi)

P(W ′i = wi)
≤ P

(
W ′ = w

)
·
∏
i∈I

1

P(W ′i = wi)
.

An immediate consequence of the definitions of r and p, in Definition 5.1.8a, is that,

for all α ∈ R, if
∣∣w1 − E

(
W1(tα)

)∣∣ ≤ rα(k, n) then P
(
W1(tα) = w1

)
≥ pα(k, n).

By Proposition 5.1.14, we have pα ≥ p∗. Hence, for w ∈ W, we then obtain

P
(
W ′ ∈ WI(w)

)
≤ P

(
W ′ = w

)
/p
|I|
∗ ≤ n−1e−ω/p

|I|
∗ .

From this and the sum above, (5.1.9) follows by summing over all w ∈ W:

P
(
I = I, typ

)
≤ P

(
I = I, W ∈ W

)
≤ n−1e−ωp

−|I|
∗

∑
w∈W P

(
W = w

)
≤ n−1e−ωp

−|I|
∗ ;

finally we substitute the definition p∗ = n−1/kk−2 from Definition 5.1.8a.

We have now done all the hard work in proving Proposition 5.1.10, from which we deduced
Theorem 5.1.4. It remains to go through the details of how to combine the previous results; there
are no more interesting ideas to prove the proposition, but the details are quite technical.

Proof of Proposition 5.1.10. Assume that (k,G) satisfy Hypothesis I. Set L := 1
15 log n/ log k;

this satisfies d ≤ 1
2L. Also, log k � log n, so L� 1 and hence also L− d� 1.

Consider first I ⊆ [k] with 1 ≤ |I| ≤ L. We have

nP
(
V · Z ≡ 0, I = I, typ

)
= nP

(
V · Z ≡ 0 | I = I, typ

)
P
(
I = I, typ

)
(5.1.8, 5.1.9)≤ (2r∗)

d · n−1e−ωp
−|I|
∗

(5.1.6)≤ nd/k(log k)2d · n−1e−ω · n|I|/kk2|I|

= e−ωn−1+(d+|I|)/kk2|I|(log k)2d.
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We now sum over the I with 1 ≤ |I| ≤ L:

n
∑

1≤|I|<L P
(
V · Z ≡ 0, I = I | typ

)
≤ LkLn−1+(d+L)/kk2L+d−1,

since
(
k
`

)
≤ k` ≤ kL for ` ≤ L. We now use the fact that d + |I| ≤ 3

2L = 1
10 log n/ log k and

k ≥ 1
2 log n/ log log n to deduce that (d+ |I|)/k ≤ 2

5 . Also, since d ≤ L, we have

k3|I|+d ≤ e4L log k = e4 logn/10 = n2/5,

by definition of L. Hence

n
∑

1≤|I|≤L P
(
V · Z ≡ 0, I = I, typ

)
≤ n−1+2/5+2/5 = n−1/5. (5.1.10)

Finally we consider I ⊆ [k] with L ≤ |I| ≤ k. By Corollary 5.1.16, we have

n
∑
L≤|I|≤k P

(
V · Z ≡ 0, I = I | typ

)
≤ 1 + 3 · 2d−L/P

(
typ
)
. (5.1.11)

Plugging (5.1.4, 5.1.10, 5.1.11) into (5.1.3), recalling that L− d� 1, we obtain

D = n
∑
I P
(
V · Z ≡ 0, I = I | typ

)
− 1 = o(1)/P

(
typ
)

= o(1).

5.2 Cutoff: A Detailed Investigation of Zdp
In this section we perform a detailed analysis of the behaviour of the mixing time for the

random walk on the uniform random Cayley graph of degree k of Zdp. In Chapter 2 we established

cutoff in this set-up, under the assumption that k − d� 1. If G = Zdp for p prime, then{
γG | γ o n

}
=
{
γG | γ o p

}
= {G} ∪ {pG} = {G, {id}};

that is, the only options are the group itself and the trivial group, corresponding to γ = 1 and γ = p,
respectively. Thus, applying Theorem 2.2.6, we deduce that there is cutoff at the entropic time
t0(p, |G|) = t0(p, pd), ie the time at which the entropy of the RW on Zkp becomes log |G| = d log p.

In this exposition, we consider some cases not covered in Chapter 2. In particular, we allow
k − d to be a fixed constant, not diverging. When this is the case and p diverges, it can be shown
that choosing k elements Z1, ..., Zk ∼iid Unif(Zdp) generates the group whp. On the other hand, if
p is also fixed, then this is not the case; we establish cutoff conditional on generating the group.

To ease notation, we drop completely any p-s, and often drop the p; to be explicit, we state in
the next subsection precisely what notation we are going to use.

5.2.1 Entropic Times: Methodology, Definition and Concentration

We use an ‘entropic method’; for further details, see Chapter 2. To make this as self-contained
as possible, we now explain the specific application in a little more depth.

We define an auxiliary random process (W (t))t≥0, recording how many times, mod p, each
generator has been used: for t ≥ 0, for each generator i = 1, ..., k, write Wi(t) for the number of
times that it has been picked by time t. By independence, W (·) forms a rate-1 DRW on Zkp. For the
undirected case, recall that we either apply a generator or its inverse; when we apply the inverse
of generator i, increment Wi → Wi − 1 (rather than Wi → Wi + 1). In this case, W (·) is a SRW
(rather than DRW) on Zkp. Note that every element of G = Zdp has order p, since p is prime. Hence

it suffices to look at the walk W mod p, ie on Zkp, rather than on Zk.
Since the underlying group is Abelian, the order in which the generators are applied is irrelevant

and generator-inverse pairs cancel; hence we can write

S(t) =
∑k
i=1Wi(t)Zi = W (t) · Z.

Recall that the invariant distribution is uniform on G, giving mass 1/n to each vertex. The
proposed mixing time is then the time at which the auxiliary process W obtains entropy log n.
This time will be calculated fairly precisely in many situations; see Proposition 5.2.2.
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Write µt, respectively νs, for the law of W (t), respectively W1(sk); so µt = ν⊗kt/k. Define

Q(t) := − logµt
(
Wi(t)

)
and Qi(t) := − log νt/k

(
Wi(t)

)
;

then, Qi forms an iid sequence over i ∈ [k], and

Q(t) =
∑k
i=1Qi(t), h(t) := E

(
Q(t)

)
and H(s) := E

(
Q1(sk)

)
.

So h(t) and H(s) are the entropies of W (t) and W1(sk), respectively. Note that h(t) = kH(t/k)
and that h : [0,∞)→ [0, log(pk)) is a strictly increasing bijection.

While all our results can be phrased in terms of (Shannon) entropy, from a technical point of
view it will be convenient to define the relative entropy :

R(s) := log p−H(s).

The maximal entropy of a random variable on Zp is log p, obtained uniquely by the uniform
distribution. Since the RW converges to the uniform distribution, R(s) → 0 as s→∞. Of great
importance will be the parameter

ζ := 1
k (k − d) log p = log p− 1

k log n where n := |Zdp| = pd.

Definition 5.2.1. Define ζ := 1
k (k − d) log p = log p− 1

k log n, and, for α ∈ R, define

ζα := ζ
(
1− 2α/

√
ζk(ζ ∨ 1)

)
, sα := H−1(ζα) and tα := sαk.

5.2.2 Entropic Times: Evaluation and Concentration

In this subsection, we estimate the entropic times in different regimes, and give a concentration
result. The proofs are given in §6.2.4; precise references are given at the appropriate times.

The first proposition estimates the entropic times t0 and the difference tα− t0; the second gives
concentration of the Q random variable around these times.

Proposition 5.2.2a (Proposition 6.2.25a). Suppose that 1� k . d log p. The following hold:

if ζ � 1, then t0/k = s0 h 1
2 log(1/ζ)/

(
1− cos(2π/p)

)
;

if ζ & 1, then t0/k = s0 � p2e−2ζ = (pd)2/k;

further, if in fact 1� k � d log p, then

if ζ � 1, then t0/k = s0 h p2e−2ζ/(2πe) = (pd)2/k/(2πe).

Note that 1− cos(2π/p) hp→∞ 2π2/p2 = 2π2p−2d/ke2ζ .

Proposition 5.2.2b (Proposition 6.2.25b). Suppose that 1 � k . d log p and (k − d)p � 1, ie
ζ � 1/k. Then, for all α ∈ R, we have tα h t0 and furthermore the following hold:

if ζ . 1, then (tα − t0)/t0 . 1/
(√

ζk log((1/ζ) ∨ e)
)

= o(1);

if ζ � 1, then (tα − t0)/t0 . 1/
√
k = o(1) for the SRW.

Proposition 5.2.3 (Concentration, Proposition 6.2.27). For α ∈ R, define

Q+
α := {Q(tα) ≥ d log p+ α

√
k(ζ ∧ 1)} and Q−α := {Q(t−α) ≤ d log p− α

√
k(ζ ∧ 1)};

For all α ∈ (0,∞) with |ζα − ζ0| ≤ 1
2ζ0, we have P((Q±α )c) . α−2.
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5.2.3 Precise Statement and Remarks

Recall that dZ(t) is the TV distance from uniform after time t with realisation Z of generators.

Theorem 5.2.4 (Cutoff). Let G be a finite, Abelian group admitting a decomposition G := Zdp with
p prime. Assume that 1 � k . d log p. Define the entropic times {tα}α∈R as in Definition 5.2.1.
The entropic times are asymptotically evaluated in Proposition 5.2.2.

Suppose that (k−d)p� 1, ie ζk � 1. Then the RW on Gk exhibits cutoff whp at t0. More pre-
cisely, choose a sequence (βN )N∈N ⊆ RN

+ with βN →∞ (arbitrarily slowly) and let c ∈ {±1}. Then

d±Gk,N (tcβN )→P 1(c = −1) (in probability) as N →∞.

Moreover, the implicit lower bound holds deterministically, ie for all choices of generators.
Also, if 0 ≤ (k − d)p . 1, then, conditional that the uniformly chosen multisubset [Z1, ..., Zk]

generates the group, there is cutoff whp at time 1
2d log d/(1− cos(2π/p)).

Remark 5.2.5. The outline of the proof is the same for all ζ with ζk � 1; we assume this initially.
We also consider the case where 0 ≤ k−d = O(1) conditional on generating the group. This uses

a standard argument for the case k = d, and then compares the walk which uses Z = [Z1, ..., Zk]
with another walk using a subset Z ′ of size d which generates the group.

We explain how to do this at the end of the section in §5.2.6. 4

Remark. Prior to our work, cutoff had already been established for any Abelian group when
k � log n, with an explicit mixing time; see §1.5.2. Although our technique can be adapted to
allow k & log n (when n = |Zdp|, this is equivalent to k & d log p), we do not give details here. 4

5.2.4 Lower Bound on Mixing for Zd
p

In this subsection, we prove the lower bound on mixing, which holds for every choice of Z.
(This argument is almost identical to the one which we give in §2.1.5.)

Proof of Lower Bound. For this proof, we assume that Z is given, and suppress it.
The concentration result Proposition 5.2.3 gives P(Q−α )→ 1 as α→∞. Consider the set

Aα :=
{
x ∈ G

∣∣ ∃w ∈ Zd st µtα(w) ≥ n−1eω and x = w · Z
}
.

Since we use W to generate S, we have P(S(tα) ∈ Aα | Eα) = 1. Every element x ∈ Aα can be
realised as x = wx · Z for some wx ∈ Zk with µtα(wx) ≥ n−1eω. Hence, for all x ∈ Aα, we have

P
(
S(tα) = x

)
≥ P

(
W (tα) = wx

)
= µtα(wx) ≥ n−1eω.

From this we deduce that

1 ≥
∑
x∈Aα P

(
S(tα) = x

)
≥ |Aα| · n−1eω, and hence |Aα|/n ≤ e−ω = o(1).

Finally we deduce the lower bound from the definition of TV distance:∥∥P(S(tα) ∈ · | Z
)
− πG

∥∥
TV
≥ P

(
S(tα) ∈ Aα

)
− πG(Aα) ≥ P

(
Q−α
)
− 1

n |Aα| = 1− o(1).

5.2.5 Upper Bound on Mixing for Zd
p for (k − d)p� 1

This subsection is devoted to the upper bound.

Outline of Proof. Consider α with α→∞, but arbitrarily slowly. We show that the TV distance
from uniform is o(1) on the event Q+

α (whp over Z) and that P(Q+
α ) = 1 − o(1), using similar

techniques to those in §2.1.6. Theorem 5.2.4 follows from this and Propositions 5.2.2 and 5.2.3. 4
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We now make this outline precise and rigorous. Herein, we frequently suppress the time and
α-subscripts, eg writing W for W (tα) or W (t), depending on context.

Key is a ‘modified L2 calculation’; cf Lemma 2.1.6. In short, one condition that W is ‘typical’
(in some precise sense), and then applies the standard TV–L2 calculation on the conditioned law.

Let W ′ be an independent copy of W ; then S′ := W ′ · Z is an independent copy of S.

Lemma 5.2.6. For all t ≥ 0 and all W ⊆ Zkp, the following inequalities hold:∥∥P(S(t) ∈ · | Z
)
− πG

∥∥
TV
≤
∥∥PZ(S(t) ∈ · |W (t) ∈ W

)
− πG

∥∥
TV

+ P
(
W (t) /∈ W

)
; (5.2.1a)

4E
(∥∥PZ(S(t) ∈ · |W (t) ∈ W

)
− πG

∥∥2

TV

)
≤ nP

(
S(t) = S′(t) |W (t),W ′(t) ∈ W

)
− 1. (5.2.1b)

Proof. The first claim follows immediately from the triangle inequality. For the second, using
Cauchy–Schwarz, we upper bound the TV distance of the conditioned law by its L2 distance:

4
∥∥PZ(S ∈ · |W ∈ W)− πG∥∥2

TV
≤ n

∑
x

(
PZ
(
S = x |W ∈ W

)
− 1

n

)2
= n

∑
x PZ

(
S = x |W ∈ W

)
2 − 1 = n

∑
x PZ

(
S = S′ = x |W,W ′ ∈ W

)
− 1,

as S = W · Z, S′ = W ′ · Z and V = W −W ′. The claim follows from Jensen’s inequality.

We now make the specific choice of the ‘typical’ set W; we make a different choice for each
α ∈ R. Cf Definition 2.1.7. The collection {Wα}α∈R will satisfy

P
(
W (tα) /∈ Wα

)
≈ 0 for large α,

using the concentration result Proposition 5.2.3. We show that the expression (5.2.1b) is o(1). Then
applying (5.2.1a) gives dZ(tα) ≈ 0 whp over Z, for large α.

Definition 5.2.7. For all α ∈ R, define ωα := α
√
k(ζ ∧ 1)� 1,

Wα :=
{
w ∈ Zkp | P

(
W (tα) = w

)
≤ n−1e−ωα

}
, and typα :=

{
W (tα),W ′(tα) ∈ Wα

}
.

The following proposition determines the probability that W (tα) lies in Wα, ie of typicality.

Lemma 5.2.8. For all α ∈ (0,∞) with |ζα − ζ0| ≤ 1
2ζ0, we have

P
(
W (tα) /∈ Wα

)
. α−2.

Proof. The lemma follows immediately from Proposition 5.2.3, since {W (tα) ∈ Wα} = Q+
α .

Herein, inside proofs we often drop the time dependence and α-subscripts from the notation,
eg writing W for W (tα) and W for Wα or typ for typα. The ‘typical set’ W is designed precisely
so that the following lemma holds.

Lemma 5.2.9. For all α ∈ (0,∞), we have

P
(
W (tα) = W ′(tα) | typα

)
≤ n−1e−ωα/P

(
typα

)
� n−1.

Proof. By direct calculation, using independence of W and W ′, we have

P
(
W = W ′, typ

)
= P

(
W = W ′, W ∈ W

)
=
∑
w∈W P

(
W = w

)
2 ≤ n−1e−ω,

with the final inequality using global typicality. The result follows by Bayes’s rule.

When W = W ′, we necessarily have S = S′ (since the group is Abelian). Now consider when
W 6= W ′. The following lemma is a special case of Lemma 2.1.11.

Lemma 5.2.10 (Lemma 2.1.11). For any v ∈ Zkp \ {0}, we have v · Z ∼ Unif(G).
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Corollary 5.2.11. For all α ∈ R, we have

P
(
S(tα) = S′(tα), W (tα) 6= W ′(tα) | typα

)
≤ 1

n .

Proof. Condition on W = w and W ′ = w′ with w 6= w′ and w,w′ ∈ W. This conditioning is
independent of Z. Hence S−S′ = (w−w′) ·Z ∼ Unif(G) by Lemma 5.2.10. The claim follows.

Proof of Upper Bound in Theorem 5.2.4 Given Propositions 5.2.2 and 5.2.3. We are assuming
that (k−d)p� 1, ie ζk � 1. This means that |ζα−ζ0| ≤ 1

2ζ0 for all α ∈ R. Choose α with α→∞,
arbitrarily slowly. We need to show that dZ(tα) = o(1) whp over Z.

Apply Lemma 5.2.9 and Corollary 5.2.11 to deduce that P(S = S′ | typ) = o(1). Apply the
modified L2 calculation of Lemma 5.2.6 using Definition 5.2.7 for the definition of typicality. Bound
the ‘error term’ using Lemma 5.2.8. This gives dZ(tα) = o(1) whp.

5.2.6 Removing the Condition (k − d)p� 1

In this subsection, we explain how to remove the condition (k − d)p � 1 in Theorem 5.2.4
conditional on generating the group, as referenced in Remark 5.2.5. There are two cases to consider:
k = d with p arbitrary (allowed to diverge) and 0 < k − d = O(1) with p a fixed prime.

Case k = d. Here we do not need to assume that p is prime. Note also that d = k � 1. The
occurrence of cutoff in this set-up is not difficult. As we could not find a proof in the literature—
note that p is not assumed to be fixed—we give the details.

A key observation is that if Z ′ is a set of size d that generates Zdp, then the Cayley graph
with respect to it is isomorphic to the Cayley graph with respect to the standard basis {e1, ..., ed}.
Namely, it is the d-fold Cartesian product chain of the p-cycle with itself.

For the lower bound, we combine the method of distinguishing statistics and Wilson’s method
[78]. Let f2(y) := cos(2πy/p) and λp := cos(2π/p). Then λp is the second largest eigenvalue of the
transition matrix of SRW on Zp, and the corresponding eigenvector is f2. Then f(x1, ..., xd) :=
1
d

∑d
i=1 f2(xi) is an eigenvector of the transition matrix of SRW on Zdp with eigenvalue

Λp,d := (d− 1)/d+ λp/d = 1− (1− λp)/d.

We use initial state (0, ..., 0). To apply the method of distinguishing statistics, we need to bound
both the expectation and the variance of f , both under the uniform and the RW distributions (at
time t); write these as π and µt, respectively. Under the uniform distribution, since the coordinates
are independent and |f2(z)| ≤ 1 for all z ∈ Zp, we have Varπ(f) ≤ 1

d ; similarly, we have Varµt(f) ≤
1
d . Also, since f is an eigenvector, we have Eπ(f) = 0 and Eµt(f) = e−(1−Λp,d)t. Applying the
method of distinguishing statistics, eg as stated in [49, Proposition 7.12], for all ε ∈ (0, 1), whenever
e−(1−Λp,d)t ≥ Cε/

√
d, for a sufficient large constant Cε, we have t ≤ tmix(1− ε).

Rearranging e−(1−Λp,d)t ≥ Cε/
√
d and recalling the definitions of Λp,d and λp, we obtain

t ≤
1
2 log d− logCε

1− Λp,d
=

1
2d log d− d logCε

1− λp
=

1
2d log d

1− λp
·
(
1− o(1)

)
.

We now prove a matching upper bound on the mixing time. Let Pt be the time-t transition
probabilities of the walk on Zdp. We identify this walk with the aforementioned d-fold Cartesian
product of the p-cycle with itself. Using independence of the coordinates, we have

pd P2t(x, x)− 1 =
(
pQ2t/d(0, 0)

)d − 1,

where Qs is the time-s transition kernel for a rate-1 SRW on Zp. This is the L∞ distance at time
2t, and hence the square of the L2 distance at time t. Let ε > 0 be a constant. Using the fact that

(1 + 1
2ε

2/d)d ≤ ε2

when ε is sufficiently small, we have

pd P2t(x, x)− 1 ≤ ε when pQ2t/d(0, 0)− 1 ≤ 1
2ε

2/d.
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Using the eigenvalue representation,

if 2t/d ≥ (1 + ε) log(2d/ε2)/(1− λp), then pQ2t/d(0, 0)− 1 ≤ 1
2ε

2/d,

and hence pdP2t(x, x)− 1 ≤ ε2. Thus

if t ≥
1
2 (1 + ε)d log d+ 1

2 (1 + ε)d log(2/ε2)

1− λp
=

1
2d log d

1− λp
·
(
1 + o(1)

)
then d2(t) ≤ ε,

provided ε is sufficiently small. This upper bound matches our lower bound.

Case 0 < k − d = O(1). When p� 1, we already established cutoff, and so the group is gener-
ated, whp. Thus we may assume that both p and k − d are fixed, but k ≥ d� 1.

The following statement is key: if Z1, ..., Zk generate Zdp for p prime, then there exists a set

S ⊆ [k] such that |S| = d and {Z`}`∈S generate Zdp. This is immediate by viewing Zdp as a vector

space over the field Fp and noting that a set generates Zdp if and only if it spans it.

We begin by obtaining an upper bound. Choose a subset of generators of size d which generate
the group. We consider the walk on the Cayley graph corresponding to this subset of generators. In
the natural realisation of this walk, each coordinate is updated at rate 1/d; we want it to be updated
at rate 1/k. If this walk is mixed, then since the walk on Gk is obtained by a random independent
shift of that walk, the walk on Gk is also mixed. Hence the previous entropic upper bound on the
mixing time from the case k = d is still valid, after multiplication by k/d = 1 +O(1/d) = 1 + o(1),
due to replacing the rate 1/d by 1/k.

We now turn to the lower bound. Set ζ := 1
k (k − d) log p � 1/k � 1. Since k > d, we can

apply our argument from §5.2.4. To bound the variance, we can no longer assume that |ζα − ζ0| ≤
1
2ζ0 = 1

2ζ, since ζk � 1. (Recall the definition of ζα from Definition 5.2.1.) This means that there
is an extra factor of ζα/ζ0 = 1 − 2α/

√
ζk � 1 multiplying the variance. For the lower bound, we

need only consider α < 0 with |α| large. Multiplying the variance by a constant only changes the
window by a constant—it does not affect the occurrence of cutoff. Hence the entropic time lower
bound is still valid. Also, as k/d = 1+o(1), multiplying it by k/d does not affect the leading order.

Finally we must asymptotically evaluate this entropic time when 0 < (k − d)p = O(1). Up to
sot, by Proposition 5.2.2 it equals the desired time:

1
2k log

(
k(k − d)−1/ log p

)
/
(
1− cos(2π/p)

)
h 1

2d log d/
(
1− cos(2π/p)

)
,

5.3 Cutoff: From Heisenberg to General Nilpotent Groups

Most of the following discussion is based on observations made by Péter Varjú during discussions
of our work with him. A group is nilpotent of step at most ` if all iterated commutators of order at
least `+ 1 vanish necessarily. For example, step-1 is Abelian; step-2 has [[g1, g2], g3] = id for all g1,
g2 and g3, ie the commutator subgroup is central. Our analysis has focussed on Heisenberg matrix
groups; these are a canonical class of nilpotent groups—Hp,d is step-(d − 2) nilpotent. However,
some of our analysis does extend somewhat to more general nilpotent, as we now explain.

Recall that we wrote S for the location of the walk and W for its auxiliary variable; let W ′ be
an independent copy of W , and define S′ correspondingly. As previously, we work in the directed
regime; so in the word S there are no inverses. Recall the definition of Ci,j from (3.1.10):

Ci,j :=
∑N
`=1 1

(
G` = j

)∑`−1
m=1 1

(
Gm = i

)
and Ci,i := 0 for all i, j ∈ [k],

where there are N steps and Gm is the index of the generator chosen in step m.

Lemma 5.3.1. Up to multiplication by an element of [G,Gcom], we can express S as

S =
(∏k

1 Z
Wi
i

)
·
(∏

i<j [Z
−1
i , Z−1

j ]−Ci,j
)

If G is step-2 nilpotent then [G,Gcom] = {id} is the trivial group.
(The second product is unordered, since we are working up to an element of [G,Gcom], and so

we may assume that commutators commute with any element of G; the first is ordered i = 1, ..., k.)
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Sketch of Proof. Writing a rigorous proof of this lemma is technical, and can obscure what is
going on; we use an example to demonstrate how to prove the lemma. In essence, we wish to move
all the Z1-s to the left, then all the Z2-s to the left-but-one and so on. To reverse the order terms,
we use the fact that hg = ghh−1g−1gh = gh[h−1, g−1] and [h−1, g−1] = [g−1, h−1]−1. For example,

ghhg = gh · gh[g−1, h−1]−1 = g · gh[g−1, h−1]−1 · h[g−1, h−1]−1 = g2h2[g−1, h−1]−2.

To move Zi past Zj , with i < j, for each occurrence of Zi we need to count the number of times
that Zj appears before it in the word; this is precisely (the definition of) Ci,j .

Expressing S−1S′ as a similar product, it is straightforward to see what we get when W = W ′.
(We actually only need Wi ≡W ′i mod ordZi for each i, but W = W ′ is generally easier to analyse.)

Corollary 5.3.2. If W = W ′, then S−1S′ ∈ [G,G]/[G, [G,G]]. The converse holds in the free group,
ie when considering Z1, ..., Zk as formal variables (ie with no relations between them).

If W = W ′, then, up to multiplication by an element of [G,Gcom], we can express S−1S′ as

S−1S′ =
∏
i<j [Z

−1
i , Z−1

j ]Di,j where Di,j := Ci,j − C ′i,j ; write D := (Di,j)i,j .

In particular, if Ci,j = C ′i,j for all i and j (which implies that Wi = W ′i for all i by taking i = j),

then S−1S′ ∈ [G,Gcom]; if the group is step-2 nilpotent, then [G,Gcom] = {id}, and hence S = S′.

Consider now step-2 nilpotent groups, of which Hp,3 is an example. We are interested in ana-
lysing P(S = S′ | typ); typicality will primarily involve entropic considerations. For ease of present-
ation, here we drop typ from the notation. As in §3.1, we separate this probability as

P
(
S = S′

)
≤ P

(
S = S′ |W = W ′

)
P
(
W = W ′

)
+ P

(
S = S′ |W 6= W ′

)
.

Typicality (entropy) bounds P(W = W ′)� 1/|Gab| = |Gcom|/|G|, as for Heisenberg groups.
Assume that t � k, and that every generator is picked at most once—eg, this is the case if

k � log n. The assumption means that some generator is picked once in S and never in S′ (or vice
versa); this will allow us to deduce that S−1S′ ∼ Unif(G), and hence P(S = S′ |W 6= W ′) = 1/n.

Since S = S′ when Di,j = 0 for all i and j, we have

P
(
S = S′ |W = W ′

)
≤ P

(
S = S′ |W = W ′, D 6= 0

)
+ P

(
D = 0

)
.

When the nilpotent group is of higher step, the bound P(S = S′ | D = 0) ≤ 1 may be too crude.
We analysed P(D = 0) in §3.1, obtaining P(D = 0) ≈ 1/t!. We desire this to be close to 1/|Gcom|.

We wish to get P(S = S′ |W = W ′, D 6= 0) close to 1/|Gcom|. To do this, write

S−1S′ =
∏
i<j:Di,j 6=0

[
Z−1
i , Z−1

j′

]
Di,j .

While these commutators are neither uniformly random nor independent, we aim to have suitably
many Di,j 6= 0 so that the commutator product is sufficiently close to uniform (on Gcom).

If “close” can mean “up to a sufficiently small factor”, then combining all these bounds gives
P(S = S′, W = W ′)� 1/n. The modified L2 distance is then given by nP(S = S′)− 1 = o(1).

We can apply the method for nilpotent groups of greater step, by quotienting out [G,Gcom].
However, as the step increases the bounds become more crude: we could have P(S = S′) �
P(S−1S′ ∈ [G,Gcom]), which would be bad for this method; this is in essence what we did for Hp,d.
The analysis also applies to non-nilpotent groups, for which such issues can be even worse.

5.4 Cutoff: No Cutoff When k Is Constant

Throughout the paper we have always been assuming that k →∞ as n→∞. It is natural to ask
what happens when k does not diverge. This case has actually already been covered by Diaconis
and Saloff-Coste [27], using their concept of moderate growth. Here we give a short exposition
of their results leading to the conclusion that, for nilpotent groups of bounded step, there is no
cutoff—for any choice of generating set, not only when one draws the Cayley graph uniformly.

Recall that a group G is called nilpotent of step at most L if its lower central series terminates
in the trivial group after at most L steps: G0 := G and G` := [G`−1, G] for ` ∈ N with GL = {id}.
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Definition 5.4.1 ([27]). Let G be a finite group. Let Z be a symmetric generating subset; that is,
{z1 · · · zr | r ∈ N0, z1, ..., zr ∈ Z} = G and if z ∈ Z then z−1 ∈ Z also. For R ∈ N0, let B(R) denote
the R-ball around the identity in G. Write ∆ := inf{R ∈ N0 | |B(R)| = |G|} for the diameter of
G(Z). We say that G(Z) is of (A, d)-moderate growth if |B(R)| ≥ A−1|G|(R/∆)a for all R ∈ N0.

The main abstract result of Diaconis and Saloff-Coste [27] considers simple random walks on
general Cayley graphs of moderate growth; see [27, Theorem 3.1] for a slight extension, considering
more general random walks, which fundamentally gives the same conclusion.

Theorem 5.4.2 ([27, Theorem 1.2]). Let G(Z) be a Cayley graph of (A, d)-moderate growth; write
∆ := diamG(Z). For t ∈ N0, let dTV(t) denote the TV distance between the law of the lazy SRW
run for t steps and the uniform distribution. Let c > 0. Then the following hold:

dTV

(
2(1 + c)|Z|∆2

)
≤ Be−c where B := A1/22d(d+3)/4;

dTV

(
c∆2/(24d+1A2)

)
≥ 1

2e
−c.

Further, the corresponding relaxation time trel satisfies trel ≥ ∆2/(42d+1A2).

The claim on the spectral is not included in the statements of Diaconis and Saloff-Coste [27].
However, the lower bound is proved precisely via the standard eigenvalue analysis; [27, (3.2)] gives
the required inequality (in the notation there β1 is the largest non-trivial eigenvalue).

Diaconis and Saloff-Coste then make the following observation, formalised below.

Corollary 5.4.3. Let A, d > 0. Let (GN (Z(N)))N∈N be a sequence of finite, undirected Cayley
graphs of (A, d)-moderate growth and with supN |Z(N)| < ∞. Then the corresponding sequences
of lazy simple random walks does not exhibit the cutoff phenomenon; in fact,

tmix

(
GN (Z(N))

)
/kN .

(
diamGN (Z(N))

)2
. trel

(
GN (Z(N))

)
. tmix

(
GN (Z(N))

)
as N →∞.

Diaconis and Saloff-Coste apply this to nilpotent groups of bounded step.

Theorem 5.4.4 ([27, Lemma 5.1 and Theorem 5.2]). Let G be a nilpotent group of step L. Let Z
be a symmetric set of generators for G. Then G(Z) is of (A, log2A)-moderate growth for some
A := A(|Z|, L), depending only on the number of generators |Z| and the step L.

As a corollary of this, if the number of generators is bounded and the underlying group is
nilpotent of bounded step, then the corresponding simple random walks do not exhibit cutoff.

For a Cayley graph G(Z), use the following notation. Write ∆ := diamG(Z) for its diameter.
For the lazy simple random walk on G(Z), write trel := trel(G(Z)) for the relaxation time (ie inverse
of the spectral gap) and tmix := tmix(ε;G(Z)) for the (TV) ε-mixing time, for ε ∈ (0, 1). When
considering sequences (GN (Z(N)))N∈N, add an N -sub/superscript.

Corollary 5.4.5 (cf [27, Corollary 5.3]). Let (GN )N∈N be a sequence of finite, nilpotent groups. For
each N ∈ N, let Z(N) be a symmetric generating set for GN and write LN for the step of GN .
Suppose that supN |Z(N)| < ∞ and supN LN < ∞. Then (tNmix)N∈N does not exhibit the cutoff
phenomenon; in particular, tNmix/kN . ∆2

N . tNrel . tNmix as N →∞.

5.5 Typical Distance: Generalised Graph Distance

This section focuses on distances from a fixed point in the uniform random Cayley graph of
degree k of an Abelian group G. The analysis is very similar to that of §4.2 where the same statistic
was studied; here we are more general. In particular, there we only considered k � log |G|. Here
we adapt that analysis to consider 1� k � log |G|; we also extend the concept of graph distance
from an L1-type concept to an Lq-type, for general q ∈ [1,∞].
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5.5.1 Definition of Lq Typical Distance

Graphs distances in Cayley graphs have some special properties. Consider a collection z =
[z1, ..., zk] of generators and distances in the Cayley graph G(z). For a path ρ in G(z), for each
i ∈ [k], write ρi,+ for the number of times zi is used, ρi,− for the number of times z−1

i is used (if
in the undirected case otherwise ρi,− := 0) and ρi := ρi,+ − ρi,−. The path connects the identity

with ρ · z. Then the length, in the usual graph distance, of ρ is ‖ρ‖1 :=
∑k

1(ρi,+ + ρi,−).

For any q ∈ [1,∞), define the Lq graph distance of ρ by ‖ρ‖qq :=
∑k

1(ρqi,+ + ρqi,−). For the L∞-
graph distance, define ‖ρ‖∞ := maxi(ρi,+ + ρi,−). (The usual graph distance is given by q = 1.)

For Abelian groups, clearly for any q ∈ [1,∞) an Lq geodesic, ie a path of minimal length, will
only use either zi or z−1

i , not both (since the terms in the product can be reordered), ie ρi,+ρi,− = 0

for all i. Thus ‖ρ‖qq =
∑k

1 |ρi|
q. Similarly, any L∞-geodesic ρ can be adjusted into a new path ρ′

with ‖ρ‖∞ = ‖ρ′‖∞ and ρ′i,+ρ
′
i,− = 0 for all i.

We define the Lq typical distance DG(z),q(·) analogously to DG(z)(·), ie the q = 1 case. When the

k generators are chosen uniformly at random, we write D±Gk,q(·), with the ±-superscript indicating
whether or not the Cayley graph is directed.

5.5.2 Precise Statement

For an Abelian group, we define the dimension and minimal side-length, respectively, as follows:

d(G) := min
{
d ∈ N

∣∣ ⊕d1 Zmj is a decomposition of G
}

;

m∗ := max
{

minj=1,...,dmj

∣∣ ⊕d1 Zmj is a decomposition of G
}
.

It can be shown that there exists an optimal decomposition {mj}d1 for m∗ with d = d(G). Our
main constraints will be lim sup d/k < 1 and k1/qn1/k/m∗ � 1.

Hypothesis J. The sequence (kN , GN )N∈N and q ∈ [1,∞] jointly satisfy Hypothesis J if the fol-
lowing conditions hold (defining k1/∞ := 1 for k ∈ N):

limN kN =∞, limN kN/ log |GN | = 0 and limN k
1/q
N |GN |

1/kN /m∗(GN ) = 0;

if q ∈ (1,∞) then additionally kN ≤ log |GN |/ log log |GN | for all N ∈ N;

lim supN dN/kN <

{
1 for undirected graphs,
1
2 for directed graphs.

Finally we set up a little more notation. Make the following definitions:

C−q := 2 Γ(1/q + 1)(qe)1/q, C+
q := 1

2C
−
q and D±q (k, n) := k1/qn1/k/C±q ,

where the case q =∞ is to be interpreted as the limit q →∞; eg, C−∞ = 2 and D+
∞(k, n) = n1/k.

When these are sequences (kN , GN )N∈N, for N ∈ N and q ∈ [1,∞], write D±N,q := D±q (kN , |GN |).
Similarly, for a sequence (GN )N∈N of finite groups with corresponding multisubsets (Z(N))N∈N

of sizes (kN )N∈N, for N ∈ N, β ∈ [0, 1] and q ∈ [1,∞], define D±N,q := DG±N (Z(N))
(β).

Theorem 5.5.1. Let (kN )N∈N be a sequence of positive integers and (GN )N∈N a sequence of finite,
Abelian groups; for each N ∈ N, define Z(N) := [Z1, ..., ZkN ] by drawing Z1, ..., ZkN ∼iid Unif(GN ).

Suppose that the sequence (kN , GN )N∈N satisfies Hypothesis J. Then, for all β ∈ (0, 1), we have

D±N,q(β)/D±N,q →
P 1 (in probability) as N →∞.

Moreover, the implicit lower bound holds for all choices of generators and for all Abelian groups,
only requiring the conditions in Hypothesis J which depend only on (kN , |GN |)N∈N and q.

Remark. We initially prove this theorem for undirected Cayley graphs. In §5.5.6, we explain how
to adapt the proof from the undirected case to the directed case. Doing this, rather than making
every statement apply for both the un- and directed cases, significantly increases the readability. In
particular, when we speak of Z we are referring to the set of all integers, positive and negative. 4
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Remark. We use the same methodology as §4.2. An outline of the proof is given in §4.2.2. 4

5.5.3 Size of Ball Estimates and Lower Bound

In the lemmas below, used to prove this theorem, instead of writing one lemma with multiple
parts, we split into separate lemmas according to q and k, eg q ∈ (1,∞) or k � log n; these parts
are indexed with letters, eg Lemmas 5.5.2a, 5.5.2b and 5.5.2c.

We wish to determine the size of the Lq balls in Rk. This is done by Lemmas 5.5.2 and 5.5.4;
the statements are given below, with proofs are deferred to the supplementary material, §6.5.

For q ∈ [1,∞), write Vk,q(R) for the (Lebesgue) volume of the Lq ball of radius R in Rk, ie

Vk,q(R) := vol
{
x ∈ Rk

∣∣ ‖x‖q ≤ R};

also write Vk,q := Vk,q(1) and note that Vk,q(R) = RkVk,q. It is known (see [76]) that

V`,q = 2`Γ(1/q + 1)`/Γ(`/q + 1). (5.5.1)

We can use this, along with Lemma 5.5.2b below, to well-approximate |Bk,q(R)| when q /∈ {1,∞};
for q = 1 we directly bound |Bk,1(·)|, while for q =∞ we have an exact expression.

Lemma 5.5.2a. For q = 1 and all R ≥ 0, we have

2k
(bRc
k

)
1(R ≥ k) ≤

∣∣Bk,1(R)
∣∣ ≤ 2k

(bRc+k
k

)
. (5.5.2a)

Lemma 5.5.2b. For q ∈ (1,∞) and all R ≥ k1+1/q, we have∣∣Bk,q(R)
∣∣ = Vk,q(R)

(
1 +O

(
k1+1/q/R

))
. (5.5.2b)

Lemma 5.5.2c. For q =∞ and all R ≥ 0, we have∣∣Bk,∞(R)
∣∣ =

(
2bRc+ 1

)k
. (5.5.2c)

We use this lemma to find an M so that |Bk,q(M)| ≈ n.

Definition 5.5.3. Set ω := max{(log k)2, k/n1/(2k)}, and choose Mk,q to be the minimal integer
satisfying |Bk,q(Mk,q)| ≥ neω. Note that ω satisfies 1� ω � k if k � log n.

Recall that Mk,q = k1/qn1/k/Cq, and that Cq = 2 Γ(1/q + 1)(qe)1/q. The next lemma shows
that the difference between M and M is only by sot. Also, let K be a constant, assumed to be as
large as required, and let ξ := 1− e−Kω/k.

Lemma 5.5.4a. For k � log n and q = 1, we have

Mk,1 ≤
⌈
Mk,1(1 + ξ)

⌉
and

∣∣Bk,1(Mk,1(1− ξ)
)∣∣� n. (5.5.3a)

Lemma 5.5.4b. For k ≤ log n/ log log n and all q ∈ [1,∞), we have

Mk,q ≤
⌊
Mk,q(1 + ξ)

⌋
and

∣∣Bk,q(Mk,q(1− ξ)
)∣∣� n. (5.5.3b)

Lemma 5.5.4c. For q =∞, we have

Mk,∞ =
⌈

1
2n

1/keω/k − 1
2

⌉
and

∣∣Bk,∞(Mk,∞(1− ξ)
)∣∣� n. (5.5.3c)

Moreover, if k � log n then Mk,∞ h Mk,∞.

5.5.4 Lower Bound on Typical Distance

From this lemma, it is straightforward to deduce the lower bound in Theorem 5.5.1.

Proof of Lower Bound in Theorem 5.5.1. Observe that |Bk,q(M)| ≤ |Bk,q(M)|. By Lemma 5.5.4,
|Bk,q(M)| = o(n) when M := Mk,q(1−ξ) when k � log n. Thus DGk,q(β) ≥M for all β and Z.
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5.5.5 Upper Bound on Typical Distance

The outline of this subsection follows closely that of §4.2.5.

Proposition 5.5.5. Let q ∈ [1,∞]. Suppose that k � log n. If q ∈ (1,∞), then further restrict to
k ≤ log n/ log log n. Suppose also that lim supn d/k < 1. Then E(‖P(W ·Z = · | Z)−πG‖22) = o(1).

Once we prove these propositions, we have all we need to prove Theorem 5.5.1.

Proof of Theorem 5.5.1 Given Lemma 5.5.4 and Proposition 5.5.5. Write S for the support of
A · Z. If ‖P(A · Z = · | Z) − πG‖2 ≤ ε, then πG(Sc) ≤ ε. Combining this with Lemma 5.5.4 and
Proposition 5.5.5, we deduce the upper bound in Theorem 5.5.1.

Remark. Proposition 5.5.5 actually holds even if η := 1− d/k ↓ 0, provided it does so sufficiently
slowly and k/ log n is sufficiently small. It turns out that k/ log n� η and η � 1/

√
k is sufficient;

this allows k very close to both d and log n. 4

Let W,W ′ ∼iid Unif(Bk,q(M)), and let V := W −W ′. Then we have

E
(∥∥PGk(W · Z ∈ ·)− πG∥∥2

2

)
= E

(
nP
(
V · Z = 0 | Z

)
− 1
)

= nP
(
V · Z = 0

)
− 1.

First, it is immediate to see that P(W = W ′) = |Bk,q(M)|−1 ≤ n−1e−ω. Analogously in §5.1,
the side-lengths {mj}d1 satisfy minjmj > 2M . Then we have

I :=
{
i ∈ [k]

∣∣ Vi 6≡ 0 modmj ∀ j = 1, ..., d
}

=
{
i ∈ [k]

∣∣Wi 6= W ′i
}
.

Lemma 5.5.6a. For all k and all q, we have

P
(
I = ∅

)
≤ n−1e−ω. (5.5.4a)

Lemma 5.5.6b. Suppose that k � log n and q ∈ [1,∞). If q ∈ (1,∞), then restrict further to
k ≤ log n/ log log n. Then, for all I ⊆ [k], we have

P
(
I = I

)
≤ ek(1/(eq)+ξq)n−1+|I|/k (5.5.4b)

where ξq := Kqω/k � 1, for some constant Kq.

Lemma 5.5.6c. For q =∞, for all I ⊆ [k], we have

P
(
I = I

)
≤ e−ω(1−|I|/k)n−1+|I|/k ≤ n−1+|I|/k (5.5.4c)

While we have been stating results for undirected graphs, Lemma 5.5.6 holds in the directed case
too. Contrastingly, the following lemma distinguishes between the directed and undirected graphs
at one point. A proof of the lemma can be found in Lemma 4.2.9 in the main article. (There, while
we studied both undirected and directed graphs, it was sufficient to use the worst-case bound for
both; there we need the slightly more refined statement. The identical proof works.) Define

g := gcd
(
V1, ..., Vk, n

)
.

Lemma 5.5.7. For all I ⊆ [k], we have

nP
(
V · Z = 0 | I = I

)
≤ E

(
gd | I = I

)
. (5.5.5)

Further, there exists a constant C so that, for all I ⊆ [k], we have

E
(
gd | I = I

)
≤


C2d(2M)d−|I|+2 when |I| ≤ d+ 1;

1 + 3 · 2d−|I| when |I| ≥ d+ 2 for undirected grahs,

1 + 5 · ( 3
2 )2d−|I| when |I| ≥ d+ 2 for directed graphs.

(5.5.6a)

(5.5.6b)

(5.5.6c)

Chapter 5. Additional Cutoff and Typical Distance Results for Abelian Groups Page 121 of 161



The idea behind (5.5.5) is that linear combinations of independent uniform random variables
are uniform on their support. Writing G = ⊕d1 Zmj , we obtain V · Z ∼ Unif(⊕d1 gjZmj ) where
gj := gcd(V1, ..., Vk,mj) ≤ g. For a rigorous argument, see Lemma 4.2.8 in the main article.

When |I| is large, if g > 1 then we are asking that a large number of coordinates have a common
divisor; naturally this decays exponentially in |I|. Using this decay, we can sum over all “large I”.

Remark 5.5.8. We firmly believe that the stronger (5.5.6c) should hold for both the undirected
and directed graphs (ie (5.5.6b) is unnecessary). It is merely a technical hurdle which is holding us
back from proving this. When q = ∞, the coordinates of V are independent; in this case, we can
prove that (5.5.6b) holds for both the undirected and directed graphs. As a result, we can relax
lim sup d/k < 1

2 to lim sup d/k < 1 for q =∞. 4

Corollary 5.5.9. For any L with L ≥ d+ 2, we have

n
∑
|I|≥L P

(
V · Z ≡ 0, I = I

)
≤

{
1 + 3 · 2d−L for undirected graphs

1 + 5 · ( 3
2 )2d−L for directed graphs

(5.5.7a)

(5.5.7b)

Proof. This proof is a direct calculation. By (5.5.5, 5.5.6b), using Bayes’s rule, specifically the fact
that P(B | C)/P(C | B) = P(B)/P(C) for non-null events B and C, for L ≥ d+ 2 we deduce that

n
∑
|I|≥L P

(
V · Z ≡ 0, I = I | typ

)
= n

∑
|I|≥L P

(
V · Z ≡ 0 | I = I, typ

)
P
(
I = I | typ

)
≤
∑
|I|≥L

(
P
(
I = I | typ

)
+ 3 · 2d−|I| P

(
I = I

)
/P
(
typ
))

≤ P
(
|I| ≥ L | typ

)
+ 3 · 2d−LP

(
|I| ≥ L

)
/P
(
typ
)
≤ 1 + 3 · 2d−L/P

(
typ
)

for undirected graphs. The case of directed graphs follows analogously.

We first prove the results on P(I = I). For a set I ⊆ [k] and W ∈ Zk, write WI = (Wi)i∈I and
W\I = WIc . Recall that if C ⊆ C′ and U ∼ Unif(C′), then (U | U ∈ C) ∼ Unif(C). Hence we have

P
(
W\I = W ′\I

)
=

P(W = W ′)

P(WI = W ′I |W\I = W ′\I)
=

|Bk,q(M)|−1

E(|B|I|,q(M − ‖A\I‖1)|−1)
≤
|B|I|,q(M)|
|Bk,q(M)|

.

(5.5.8)
Write ` := |I|. Recall that, by choice of M , we have |Bk,q(M)| ≥ neω, and so

P
(
W\I = W ′\I

)
≤ n−1e−ω

∣∣B`,q(M)
∣∣.

Proof of Lemma 5.5.6a. Recall the choice of Mk,q, from Definition 5.5.3. Then (5.5.4a) follows:

P
(
I = ∅

)
= P

(
W = W ′

)
=
∣∣Bk,q(Mk,q)

∣∣−1 ≤ n−1e−ω.

Proof of Lemma 5.5.6b. Consider first q = 1. From Lemma 5.5.4a, recall thatM1 ≤ (2e)−1kn1/keξ

with ξ � ω/k. Using Lemma 5.5.2a, for ` ≤ k, we have∣∣B`,1(M1)
∣∣ ≤ 2`

(
M1+`
`

)
≤
(
2e(M1/`+ 1)

)` ≤ eξ`(k/`)`n`/k ≤ ek(1/e+ξ)n`/k,

using the fact that
(
N
`

)
≤ (eN/`)`, that ` 7→ (k/`)` is maximised by ` = k/e and that 1 + x ≤ ex.

The proof is completed by noting that {I = I} ⊆ {A\I = A′\I}, and applying (5.5.8).

Now consider q ∈ (1,∞). Justified by Lemma 5.5.2b and Lemma 5.5.4b, which shows that
Mk,q � k1+1/q for all q, we replace this discrete ball by the continuous ball, and lose only a factor
1 + o(1); for readability, we do not carry this factor in subsequent formulae.

Using Stirling’s formula and the upper for Mk,q from Lemma 5.5.4b gives

V`,q(Mk,q) ≤ V`,q ·
(
(1 + ξ)k1/qn1/k/Cq

)` ≤ q1/2eKqω(k/`)`/qn`/k.

From this, similarly to in Lemma 5.5.6a, using (5.5.8), we deduce that

P
(
W\I = W ′\I

)
≤ q1/2eKqω(k/`)`/qn−1+`/k ≤ ek(1/(eq)+ξ)n−1+`/q,

where ξ := Kqω/k � 1, using again the fact that
(
N
`

)
≤ (eN/`)` and that ` 7→ (k/`)` is maximised

by ` = k/e The proof is completed by noting that {I = I} ⊆ {W\I = W ′\I}.
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Proof of Lemma 5.5.6c. The coordinates of W satisfy Wi ∼iid Unif({0,±1, ...,±M∞}), for i =
1, ..., k. Write ` := |I|. Hence, by (5.5.8) and (5.5.4a), we have

P
(
W\I = W ′\I

)
≤
∣∣B`,∞(M∞)

∣∣/∣∣Bk,∞(M∞)
∣∣ = (2M∞ + 1)`−k.

By (5.5.3c), we have 2M∞ + 1 ≥ n1/keω/k. Hence

P
(
I = I

)
≤ P

(
A\I = A′\I

)
≤ eω(−1+`/k)n−1+`/k.

We have now done all the hard work in proving Proposition 5.5.5, from which we deduced
Theorem 5.5.1. It remains to go through the details of how to combine the previous results; there
are no more interesting ideas to prove the propositions, but the details are quite technical.

Similarly to the mixing proof, we use an L2 calculation:

E
(∥∥P(W · Z = · | Z

)
− πG

∥∥2

2

)
= n

∑
I⊆[k] P

(
V · Z = 0, I = I

)
− 1. (5.5.9)

Proof of Proposition 5.5.5 (when q <∞). Recall that here k � log n. For undirected graphs,
lim sup d/k < 1; for directed, lim sup d/k < 1

2 . Set η− := 1 − lim sup d/k > 0 and η+ := 1
2 −

lim sup d/k; set L− := d+ 1
4η
−(k− d) and L+ := 2d+ 1

4η
+(k− 2d). Use L− for undirected graphs

and L+ for directed. Then

lim supL±/k ≤ 1
4η
± + (1− 1

4η
±)(1− η±) ≤ 1− 2

3η
± < 1;

also, L− − d� 1 and L+ − 2d� 1. Suppress the ±-superscript: write L := L±. By Lemma 5.5.4,
recalling that Cq = 2 Γ(1/q + 1) (qe)1/q, for some εq = O(ω/k) = o(1), we can write

M = (1 + εq)k
1/qn1/k/Cq.

It can be shown that Cq ≥ 2 for all q ∈ [1,∞], and hence

2M ≤ eεqk1/qn1/k. (5.5.10)

Recall that when we consider q = 1, we only require k � log n; when we consider q ∈ (1,∞), we
require further that k ≤ log n/ log log n. Note that if I = ∅ then B = 0, and so B · Z = 0. Hence

nP
(
B · Z = 0 | I = ∅

)
= nP

(
I = ∅

)
≤ e−ω,

by the choice of the radius Mk,q.
Consider I ⊆ [k] with 1 ≤ ` = |I| ≤ d+ 1. There are at most 2k such sets I. Recall ξq given in

Lemma 5.5.6b, and that ξq = O(ω/k) = o(1). Applying (5.5.4b, 5.5.5, 5.5.6a, 5.5.10), we obtain

nP
(
V · Z = 0, I = I

)
≤ C2dekεqekξqk(d+2−`)/qn(d+2−`)/k · ek/(eq)n−1+`/k;

algebraic manipulations using the fact that lim sup d/k < 1 and 2d = no(1) then give

nP
(
V · Z = 0, I = I

)
= 2−ko(1). (5.5.11)

Consider I ⊆ [k] with d+ 2 ≤ ` = |I| ≤ L = d. Applying (5.5.4b, 5.5.5, 5.5.6b, 5.5.6c) gives

nP
(
V · Z = 0, I = I

)
≤ 15 · ek(1/(eq)+ξq)n−1+`/k;

similar algebraic manipulations to those used when 1 ≤ |I| ≤ d+ 1 give

nP
(
V · Z = 0, I = I

)
= 2−ko(1). (5.5.12)

We now sum over all I with 1 ≤ |I| ≤ L, using (5.5.11, 5.5.12):

n
∑

1≤|I|≤L P
(
V · Z = 0, I = I

)
= o(1). (5.5.13)

Finally we consider I ⊆ [k] with L ≤ |I| ≤ k. By Corollary 5.5.9, we have

n
∑

L≤|I|≤k

P
(
V · Z ≡ 0, I = I

)
≤

{
1 + 3 · 2d−L = 1 + o(1) for undirected graphs,

1 + 5 · ( 3
2 )2d−L = 1 + o(1) for directed graphs.

(5.5.14a)

(5.5.14b)

This last result actually holds for all q ∈ [1,∞] and all 1� k � log n.
The proof is completed by combining (5.5.13, 5.5.14) with (5.5.9).
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Proof of Proposition 5.5.5 (when q =∞). Recall that k � log n. As discussed in Remark 5.5.8,
here (5.5.6c) holds for both the undirected and directed balls (ie (5.5.6b) is unnecessary); we only
assume that lim sup d/k < 1 in either case. Set η := 1− lim sup d/k > 0.

By (5.5.3c), we have 2Mk,∞ ≤ n1/keω/k + 1. Consider I ⊆ [k] with 1 ≤ ` = |I| ≤ d+ 1. There
are at most 2k such sets I. Applying (5.5.3c, 5.5.4c, 5.5.5, 5.5.6a), we obtain

nP
(
V · Z = 0, I = I

)
≤ C2dn(d−`+2)/keω(d+2−`)/k(1 + e−ω/k/n1/k)d+2−` · e−ω(1−`/k)n−1+`/k;

algebraic manipulations using the fact that lim sup d/k < 1 and 2d = no(1) then give

nP
(
V · Z = 0, I = I

)
= 2−ko(1). (5.5.15)

For I ⊆ [k] with d+ 2 ≤ ` = |I| ≤ (1− η)k =: L, applying (5.5.4c, 5.5.5, 5.5.6b) gives

nP
(
V · Z = 0, I = I

)
≤ 15n−1+`/k ≤ 2−kn−1+L/k+o(1), (5.5.16)

since k � log n. We now sum over the I with 1 ≤ |I| ≤ L = (1− η)k, using (5.5.15, 5.5.16):

n
∑

1≤|I|≤L P
(
V · Z = 0, I = I

)
≤ 2k · 2−kn−1+L/k+o(1) ≤ n−η+o(1) = o(1). (5.5.17)

Finally we consider I ⊆ [k] with L ≤ |I| ≤ k. As above, by Corollary 5.5.9, we have

n
∑

L≤|I|≤k

P
(
V · Z ≡ 0, I = I

)
≤

{
1 + 3 · 2d−L = 1 + o(1) for undirected graphs,

1 + 5 · ( 3
2 )2d−L = 1 + o(1) for directed graphs.

(5.5.18a)

(5.5.18b)

The proof is completed by combining (5.5.17, 5.5.18) with (5.5.9).

5.5.6 Adapting Proof to Directed Cayley Graphs

Where the random variable A was uniform on a certain undirected lattice ball, it is now uniform
on a directed ball (of a different radius). Other than this, the only adaptation that needs be made
is in determining the sizes of the discrete lattice balls: now instead of being a subset of Zk, for some
k, they are restricted to the first quadrant, ie to Zk+. Assuming that their radius is large enough,
this simply reduces their size by a factor (roughly) 2k.

Since all the sizes in question scale like Rk when the ball-radius is R, when k � log n (and
so R � 1), the desired radius for the directed ball is twice that of the undirected ball. When
k � log n (and we consider the L1 ball), the directed ball has size

(
R+k
k

)
, so we are still interested

in R � k � log n, just the constant is different for directed compared with directed.
Finally, for directed graphs, we have a slightly weakened bound on the expected gcd, ie E(gd |

I = I); see Lemma 5.5.7. We addressed this in the proof of Proposition 5.5.5 at the time.
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6 Supplementary Material

Abstract for Chapter 6

This document contains supplementary material for the previous chapters.

We prove very refined results about simple random walks on the integers and on
the cycle. (See §6.1 and §6.2.) We are primarily interested in these random walks’
entropy at certain times, and how this entropy changes when the time changes slightly.
Additionally, we prove some large deviation and exit time estimates. (See §6.3 and §6.4.)

We prove some results on the size of discrete lattice balls, and how this size changes
when the radius changes slightly, in a general Lq norm (q ∈ [1,∞]). (See §6.5.)

We also prove some technical results deferred from the previous chapters. (See §6.6.)

We hope that some of the results, particularly the simple random walk estimates,
will be useful in their own right for other researchers.
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6.0 Notation and Terminology

While notation will often be recalled later, we list here the majority of what we use below.

• The simple random walk, abbreviated SRW, on Zk (or Zkγ) is the rate-1 RW which, in each
step, chooses a coordinate uniformly at random and adds/subtracts 1 from this value (mod
γ) with equal probability. The directed random walk, abbreviated DRW, on Zk (or Zkγ) is the
same except that it only ever adds 1 (mod γ).

When we wish to specify the DRW, we add a +-superscript; for the SRW, we add a −-
superscript. When we do not wish to specify to which walk we are referring (as the statement
applies for both), we simply speak of the random walk, abbreviated RW ; if we wish to
emphasise that the statement applies for both, then we sometimes add a ±-superscript.

• Rate-1 RW on Zk:

– W =
(
Wi(t) | i ∈ [k], t ≥ 0

)
is a rate-1 RW on Zk;

– µt(·) := L
(
W (t)

)
, the law ;

– Q(t) := − logµt
(
W (t)

)
, the random (Shannon) entropy ;

– h(t) := E
(
Q(t)

)
, the (Shannon) entropy.

• Rate-1 RW on Z:

– Wi = (W1(t) | i ∈ [k], t ≥ 0) is a rate-1/k RW on Z;

– X = (X(s) = Xs | s ≥ 0) defined by Xs := W1(sk) is a rate-1 RW on Z;

– νs(·) := L
(
W1(sk)

)
= L

(
X(s)

)
, the law ;

– Qi(t) := − log νt/k
(
Wi(t)

)
, the random (Shannon) entropy ;

– H(s) := E
(
Q1(sk)

)
= E

(
− log νs

(
X(s)

))
, the (Shannon) entropy.

• Rate-1 RW on Zkγ :

– Wγ =
(
Wγ,i(t) | t ≥ 0

)
defined by Wγ,i(t) := Wi(t) mod γ is a rate-1 RW on Zγ ;

– µγ,t(·) := L
(
Wγ(t)

)
, the law ;

– Qγ(t) := − logµγ,t
(
Wγ(t)

)
, the random (Shannon) entropy ;

– hγ(t) := E
(
Qγ(t)

)
, the (Shannon) entropy ;

– rγ(t) := log(γk)− hγ(t), the relative entropy wrt Unif(Zkγ).

• Rate-1 RW on Zγ :

– Wγ,i =
(
Wγ,i(t) | t ≥ 0

)
is a rate-1/k RW on Zγ ;

– Xγ =
(
Xγ(s) | s ≥ 0

)
defined by Xγ(s) := Wγ,1(sk) is a rate-1 RW on Zγ ;

– νγ,s(·) := L
(
Wγ,1(sk)

)
= L

(
Xγ(s)

)
, the law ;

– Qγ,i(t) := − log νt/k
(
Wγ,i(t)

)
, the random (Shannon) entropy ;

– Hγ(s) := E
(
Qγ,1(sk)

)
= E

(
− log νγ,s

(
Xγ(s)

))
, the (Shannon) entropy ;

– Rγ(s) := log γ −Hγ(s), the relative entropy wrt Unif(Zγ).

• Consider “mod ∞” to mean no modulation; eg, W = W∞ or H = H∞.

• For γ ∈ N and p ∈ [1,∞], write

dp,γ(s) :=
∥∥P(Xγ(s) ∈ ·

)
−Unif(Zγ)

∥∥
p,γ

=
(∑

x∈Zγ
1
γ

∣∣nP(Xγ(s) = x
)
− 1
∣∣p)1/p;

also write dTV,γ(s) := 1
2dγ,1(s) for the total variation distance, which can be represented as

dTV,γ(s) = maxA⊆Zγ
∣∣P(Xγ(s) ∈ A

)
− 1

γ |A|
∣∣.

For γ =∞, we usually drop the γ-subscript.
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6.1 Shannon Entropy Estimates and Central Limit Theorem

This part of the appendix (§6.1) is devoted to properties of the entropic time t0 and cutoff
window tα − t0; this is done through analysis of a CLT for Q (Proposition 6.1.3) and variance of
Q1 at the entropic time, Var(Q1(t0)). Accordingly, here we mainly derive properties of the SRW
on Z evaluated at t/k or of Poisson(t/k), for t around the entropic time.

6.1.1 Key Definitions and Results for Shannon Entropy

We now define precisely the notion of entropic times. Let W = (W (t))t≥0 be a RW on Zk.
Write µt, respectively νs, for the law of W (t), respectively W1(sk); so µt = ν⊗kt/k. Define

Qi(t) := − log νt/k
(
Wi(t)

)
, and set Q(t) := − logµt

(
W (t)

)
=
∑k

1 Qi(t).

So E(Q(t)) and E(Q1(t)) are the entropies of W (t) and W1(t), respectively. Observe that t 7→
E(Q(t)) : [0,∞)→ [0,∞) is a smooth, increasing bijection.

Definition 6.1.1 (Entropic and Times). For all k, n ∈ N and all α ∈ R, define tα := tα(k, n) so that

E
(
Q1(tα)

)
=
(
log n+ α

√
vk
)
/k and sα := tα/k, where v := Var

(
Q1(t0)

)
.

We call t0 the entropic time and the {tα}α∈R cutoff times.

The following proposition gives a detailed approximate evaluation of these entropic times.

Proposition 6.1.2 (Entropic and Cutoff Times). Assume that 1� log k � log n. Write κ := k/ log n.
For all α ∈ R and λ > 0, the following relations hold, for some functions f and g: we have tα h t0;

for k � log n, we have t0 h k · n2/k/(2πe) and tα − t0 h
√

2 · αt0/
√
k; (6.1.1a)

for k h λ log n, we have t0 h k · f(λ) and tα − t0 h g(λ) · αt0/
√
k; (6.1.1b)

for k � log n, we have t0 h k · 1/(κ log κ) and tα − t0 h
√
κ log κ · αt0/

√
k. (6.1.1c)

Moreover, f, g : (0,∞)→ (0,∞) are continuous functions, whose value differs between the un- and
directed cases. In particular, for all α ∈ R, in all cases, we have tα h t0.

Observe that Q(t) =
∑k

1 Qi(t) is a sum of iid random variables.

Proposition 6.1.3 (CLT). Assume that 1� k � log n. For all α ∈ R, we have

P
(
Q(tα) ≤ log n± ω

)
→ Ψ(α) for ω := Var

(
Q(t0)

)1/4
= (vk)1/4.

(There is no specific reason for choosing this ω. We just need some ω with 1� ω � (vk)1/2.)

6.1.2 Local CLT for RW on Z
We repeatedly use a local CLT for Poisson and simple random walk distributions. We state it

here precisely; the particular version is given in [48, Theorem 2.5.6].

Theorem 6.1.4 (Local CLT, [48, Theorem 2.5.6]). Let ς > 0 and let s ∈ (ς,∞); the implicit
constants in the O-notation notation depend on ς. Let X = (Xs)s≥0 be either a rate-1 SRW or
rate-1 DRW on Z. For all x ∈ R with x− E(Xs) ∈ Z and |x| ≤ 1

2s, we have

P
(
Xs − E(Xs) = x

)
=

1√
2πs

exp

(
−x

2

2s

)
exp

(
O
(

1√
s

+
|x|3

s2

))
.

In particular, if |x| ≤ s7/12, then

P
(
Xs − E(Xs) = x

)
=

1√
2πs

exp

(
−x

2

2s

)
exp
(
O
(
s−1/4

))
. (6.1.2)
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Proof. The result for the SRW is given in [48, Theorem 2.5.6]. For the DRW, observe that Xs ∼
Poisson(s) and use Stirling’s approximation.

6.1.3 Derivation of CLT for Q

We first justify our CLT application in Proposition 6.1.3. The distribution of Qi(tα) depends
on k (and n), and so we cannot apply the standard CLT. Instead, we apply a CLT for ‘triangular
arrays’; specifically, we now state a special case of the Lindeberg–Feller theorem.

Theorem 6.1.5 (CLT for Triangular Arrays; cf [35, Theorem 3.4.5]). For each k ∈ N, let {Yi,k}ki=1 be
an iid sequence of centralised, normalised random variables, and suppose that E(Y 4

1,k)� k. Then∑k
i=1 Yi,k/

√
k →d N(0, 1) as k →∞,

where N(0, 1) is a standard normal.

This version can be deduced easily from the version given in Durrett [35, Theorem 3.4.5].
Indeed, apply [35, Theorem 3.4.5] to the iid triangular array defined by Xi,k := Yi,k/

√
k. Note that(∑k

1 E
(
X2
i,k1(|Xi,k| ≥ ε)

))2
= E

(
Y 2

1,k1(|Y1,k| ≥ ε
√
k)
)

2

≤ E
(
Y 4

1,k

)
P
(
|Y1,k| ≥ ε

√
k
)
≤ E

(
Y 4

1,k

)
/(ε2k)→ 0.

Using this CLT for triangular arrays, we can deduce a CLT for Q.

Proof of Proposition 6.1.3. For our application of Theorem 6.1.5, for each α ∈ R, we take

Yi,k := Yi,k(α) :=
Qi(tα)− E(Qi(tα))√

Var(Qi(t0))
. (6.1.3)

Observe that E(Yi,k) = 0 and Var(Yi,k) = E(Y 2
i,k) = 1. Assuming that E(Y 4

i,k)� k, we deduce the
following result: for any sequence (αn)n≥1 which converges to α, we deduce that

P
(
Q(t)− E

(
Q(t)

)
≥ αn

√
Var(Q(t))

)
→ Ψ(α). (6.1.4)

(We are also using Slutsky’s theorem to allow αn to depend on n, and, of course, the fact that
k →∞ as n→∞.) We also further rely on the following claim:

if t h t0, then Var
(
Q1(t)

)
h Var

(
Q1(t0)

)
; also Var

(
Q(t0)

)
� 1. (6.1.5)

We prove these two statements in this claim (independently of the proof of the CLT) in Corol-
lary 6.1.7 in §6.1.4. Now recall (6.1.1), which says that tα h t0 for all α ∈ R. Taking

αn := −α
√

Var(Q(t0))/Var(Q(tα))± ω/
√
Var(Q(tα)) with ω := Var

(
Q(t0)

)1/4 � 1,

applying (6.1.4, 6.1.5) along with the above recollections we obtain the desired result:

P
(
Q(tα) ≤ log n± ω

)
→ Ψ(α).

It remains to verify that E(Y 4
i,k)� k. Roughly, |W1(t)| is ‘well-approximated’ by the following:∣∣N(E(W1(t)), t/k

)∣∣ when t/k � 1, ie k � log n;

Bernoulli(t/k) when t/k � 1, ie k � log n.

In the interim regime k � log n, we have that W1 behaves like an ‘order 1’ random variable, in
the sense that its mean and variance are bounded away from both 0 and ∞. It will actually turn
out that the normal approximation is sufficient in the k � log n regime also. Below, we abbreviate
Q1(tα) by Q1, W1(tα) by W1 and tα by t.
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Write s := t/k. We consider separately the cases s & 1 and s � 1. When s & 1, we have
t & k � 1; when considering s � 1, however, we shall only consider t with 1 � t � k. We shall
be interested in t := tα h t0, and Proposition 6.1.2 says that t0 � 1 in all regimes; hence we need
only consider t� 1. Let δ > 0 be some (arbitrarily) small number.

Consider first s = t/k with s ≥ δ. In this regime, we approximate W1(t) by a N(E(W1), s)
distribution, where s = t/k. Let Z ∼ N(E(W1), s), and write f for its density function:

f(x) := (2πs)−1/2 exp
(
− 1

2s (x− E(W1))2
)

for x ∈ R. (6.1.6)

Let R1 be a real valued random variable defined so that

R1 = − log f(x) when W1 = x. (6.1.7)

Also write G := W1 +U , where U ∼ Unif[− 1
2 ,

1
2 ) is independent of W1; then G has density function

g(x) := P
(
W1 = [x]

)
for x ∈ R, (6.1.8)

where [x] ∈ Z is x ∈ R rounded to the nearest integer (rounding up when x ∈ Z + 1
2 ). We have

(a− b)4 ≤ 34
(
(a− a′)4 + (a′ − b′)4 + (b′ − b)4

)
for all a, a′, b, b′ ∈ R.

Applying this inequality with a = Q1, a′ = R1, b = E(Q1) and b′ = E(R1), we obtain

3−4E
(
(Q1 − E(Q1))4

)
≤ E

(
(Q1 −R1)4

)
+ E

(
(R1 − E(R1))4

)
+ E

(
R1 −Q1

)
4

≤ E
(
(R1 − E(R1))4

)
+ 2E

(
(Q1 −R1)4

)
, (6.1.9)

with the second inequality following from Jensen (or Cauchy–Schwarz twice). We study these terms
separately. Approximately, the local CLT will say that the second term is small; up to an error
term which we control with the local CLT, the first term we can calculate directly using properties
of the normal distribution.

We consider first the first term of (6.1.9). In terms of an integral, it is given by

E
(
(R1 − E(R1))4

)
=
∫
R g(x)

(
− log f(x)− E(R1)

)4
dx.

The local CLT suggests that we can approximately replace the g(x) factor by f(x), at least for a
large range of x. So let us first study∫

R f(x)
(
− log f(x)− E(R1)

)4
dx =

∫
R f(x+ E(W1))

(
− log f(x+ E(W1))− E(R1)

)4
dx.

A direct calculation reveals, remarkably, that the last expression is independent of the mean ofW1—
this is a property special to the family of normal distributions. Expanding the fourth power and
using moments of N(0, 1), one finds that this equals 15

4 ; the exact numerical value is unimportant.
Now, by the local CLT (6.1.2), we have∫ s7/12
−s7/12 g(x)

(
− log f(x)− E(R1)

)4
dx =

(
1 +O(s−1/4)

) ∫ s7/12
−s7/12 f(x)

(
− log f(x)− E(R1)

)4
dx

≤
(
1 +O(s−1/4)

)
· 15

4 .

Using bounds on the tail of the SRW and Poisson distribution, as given in Propositions 6.3.4
and 6.3.5, it is straightforward to see, in both the undirected and directed cases, that∫

R\[−s7/12,s7/12]
f(x)

(
− log f(x)− E(R1)

)4
dx = o

(
s−10

)
. (6.1.10)

(In fact, it is easy to see that it is O(exp(−cs1/6)) for some sufficiently small constant c.) Hence

E
(
(R1 − E(R1))4

)
= 15

4

(
1 +O(s−1/4)

)
= 15

4

(
1 + o(1)

)
. (6.1.11)

We now turn to the second term of (6.1.9). In terms of an integral, it is given by

E
(
(Q1 −R1)4

)
= E

((
log f(W1)− log g(W1)

)4)
=
∫
R g(x) log

(
f(x)/g(x)

)4
dx.
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Again by the local CLT (6.1.2), we have∫ s7/12
−s7/12 g(x) log

(
f(x)/g(x)

)4
dx = O

(
s−1/4

) ∫ s7/12
−s7/12 g(x) dx ≤ O

(
s−1/4

)
,

and a similar application of the tail bounds in Propositions 6.3.4 and 6.3.5 shows that∫
R\[−s7/12,s7/12]

g(x) log
(
f(x)/g(x)

)4
dx = o

(
s−10

)
= O

(
s−1/4

)
. (6.1.12)

Hence, combining (6.1.11, 6.1.12) into (6.1.9), we obtain

E
(
(Q1 − E(Q1))4

)
≤ 15

4 · 3
4 + o(1) ≤ 1000.

Now consider Var(Q1). The arguments used for Proposition 6.1.6 (in §6.1.4) below show that

E
((
Q1(sk)− E

(
Q1(sk)

))
4
)
. 1 when s & 1.

Since s0 = t0/k & 1 in the regime k . log n, we deduce that E(Y 4
1,k) . 1� k.

Consider now s = t/k with s ≤ δ but t � 1. In this regime, we approximate the number of
steps taken by Bernoulli(t/k). Indeed, we have

E
(
W1 = 0

)
= 1− s+O(bs2) and E

(
|W1| = 1

)
= s+O

(
s2
)
.

We also use the fact that, for both the undirected and directed cases, for x ≥ 0 we have

P
(
W1 = x

)
≥ P

(
Poisson(s) = x

)
· 2−x = 2−xe−ssx/x! ≥ (s2/x)x; (6.1.13)

from this one deduces that − logP(W1 = x) ≤ x log(x/s2) = x(x+2 log(1/s)). We use this to show
that the terms with |x| ≥ 2 contribute subleading order to the expectation

E
(
Q1

)
=
∑
x P
(
W1 = x

)
log 1/P

(
W1 = x

)
= s log(1/s) +O(s).

Similarly, we can use (6.1.13) to ignore the terms with |x| ≥ 2 in

E
(∣∣Q1 − E(Q1)

∣∣r) =
∑
x P
(
W1 = x

)∣∣− logP
(
W1 = x

)
− s log(1/s) +O(s)

∣∣r
= s log(1/s)r

(
1 +O(s)

)
, (6.1.14)

for any fixed r ∈ N with r ≥ 2, say r ∈ {2, 3, 4}.
In particular, this says that Var(Q1) h s log(1/s)2, and so

E
(
Y 4
i,k

)
h
(
s log(1/s)4

)/(
s log(1/s)2

)2
= 1/s = k/t� k,

with the final relation holding since while s� 1 we do have t� 1.

We now have all that we need to get on and calculate the entropic time t0 in the three regimes
of k. However, in order to find the cutoff times tα, we need to know what the variance of the terms
in the sum Q(t), ie Var(Q1(t)), is for t h t0.

6.1.4 Variance of Q1(t)

Recall that, for all t ≥ 0, we have

Q(t) = − logµ(t) = −
∑k
i=1 log νt

(
Wi(t)

)
=
∑k
i=1Qi(t),

and that the Qi(t)-s are iid (for fixed t). We now determine what its variance is at the entropic
time t0, and how the variance changes around this time. Note that Var(Q(t)) = kVar(Q1(t)).

Proposition 6.1.6. In both the undirected and the directed case,

Var
(
Q1(sk)

)
h

{
1/2 as s→∞,
s log(1/s)2 as s→ 0;

(6.1.15a)

(6.1.15b)

furthermore, the map s 7→ Var(Q1(sk)) : [0,∞)→ R+ is continuous.
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From this, it is easy to calculate the variance at the entropic time t0. Note that knowledge of
the variance is not required to calculate t0. The reader should recall Proposition 6.1.2. (Knowledge
of the variance is required in calculating tα with α 6= 0, but not with α = 0.)

Corollary 6.1.7. For all regimes of k, in both the undirected and directed case,

if t h t0, then Var
(
Q1(t)

)
h Var

(
Q1(t0)

)
� 1/k. (6.1.16)

Moreover, for all λ > 0, we have

Var
(
Q1(t0)

)
h


1/2 when k � log n,

v(λ) when k h λ log n,

log n log(k/ log n)/k when k � log n,

(6.1.17a)

(6.1.17b)

(6.1.17c)

where v : (0,∞) → (0,∞) : λ 7→ Var(Q1(f(λ)k)) is a continuous function whose value differs
between the undirected and directed cases.

Proof of Corollary 6.1.7. The first claim is immediate from Proposition 6.1.6. The claim for k �
log n also uses (6.1.1). For k � log n, there is a small amount of work to do. Set s0 := t0/k, and so

s0 =
t0
k

h
log n/k

log(k/ log n)
=

1

κ log κ
where κ :=

k

log n
� 1.

We then also have
log(1/s0) = log log κ+ log κ+ o(1) h log κ,

and hence
s0 log(1/s0)2 h (log κ)2/(κ log κ) = log κ/κ = log n log(k/ log n)/k.

Note that while this has Var(Q1(t0))� 1, it does have Var(Q(t0)) = kVar(Q1(t0))� 1.
Finally consider k h λ log n. Each coordinate runs at rate 1/k, so for all s ∈ R+ the map

s 7→ Var(Q1(sk)) is continuous. Hence given C > 0 there exists an M so that

1/M ≤ Var
(
Q1(sk)

)
≤M for all s with 1/C ≤ s ≤ C.

By (6.1.1b), we have s = t0/k → f(λ). Hence Var(Q1(t0)) → v for some constant v ∈ (0,∞)
depending only on λ. This v is not the same in the directed and undirected cases.

Proof of Proposition 6.1.6. Consider first s → ∞. This proof is similar to the s & 1 case, in
justifying the CLT application. In particular, if

g(x) := P
(
W1(sk) = [x]

)
and f(x) := (2πs)−1/2 exp

(
− 1

2s (x− E
(
W1(sk)

)
)2
)
,

then the local CLT (6.1.2) says, for s & 1, that

g(x) = f(x)
(
1 +O(s−1/4)

)
for x ∈ R with

∣∣x− E
(
W1(sk)

)∣∣ ≤ s7/12.

Under the assumption that W1(sk) is actually distributed as N(0, s), direct calculation as in the
previous section shows that the variance is then 1

2 . Considering the same approximations as before,

namely splitting the integration range into |x−E(W1)| ≤ s7/12 and |x−E(W1)| > s7/12, and using
the local CLT to argue that log(g(x)/f(x)) = O(s−1/4) for x in the first range, we obtain

Var
(
Q1(sk)

)
= 1

2 +O
(
s−1/4 log s

)
h 1

2 when s� 1.

Consider next s→ 0. In the CLT justification in the case s & 1, we showed that

E
(∣∣Q1(sk)− E(Q1(sk))

∣∣r) = s log(1/s)r +O
(
s2 log(1/s)r

)
, (6.1.14)

and in particular deduced that Var(Q1(sk)) h s log(1/s)2. This applies for s� 1 also.
The continuity of s 7→ Var(Q1(sk)) follows from the dominated convergence theorem.
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6.1.5 Calculating the Entropic and Cutoff Times

In this section we calculate the entropic time t0, and the cutoff times tα. Recall that

h(t) = E
(
Q(t)

)
and H(s) := E

(
Q1(sk)

)
;

note that H(s) is the entropy of W1(sk), which forms a rate-1 RW on Z. The primary purpose of
this section is to prove Proposition 6.1.2, which the reader should recall. To prove this, we derive
asymptotic expressions for the entropy of rate-1 RW on Z. As a consequence of these, one can see
by how much the entropy changes when t0 is replaced by (1 + ξ)t0 for a (small) constant ξ ∈ R.

Lemma 6.1.8. Let t0 and t±2ω be the times at which the entropy of rate-1 RW on Zk obtains
entropy logN and logN ± 2ω, respectively. Then t±2ω h t0 if ω � min{k, logN}.

We give this proof straight away, quoting results which are proved in the upcoming subsections.

Proof of Lemma 6.1.8. We prove the claim for t2ω; the analysis for t−2ω is identical.
For s ≥ 0, write H(s) for the entropy rate-1 RW on Z evaluated at time s. In Propositions 6.1.9

and 6.1.13 below, we establish the following relations:

H(s) =

{
1
2 log(2πes) +O(s−1/4) when s� 1;

s log(1/s) +O(s) when s� 1;

(6.1.18a)

(6.1.18b)

when s � 1, we use continuity of λ 7→ H(1/λ) (cf Proposition 6.1.12 below). Let δ > 0; assume
that δ ↓ 0, but more slowly than the error terms in (6.1.18). Recall that the entropic time t0 = s0k
is defined so that H(s0) = logN/k. We need to choose δ and ω so that

H
(
s0(1 + δ)

)
≥ logN/k + 2ω/k with δ � 1 and ω � 1.

Note that the statement is monotone in ω: if it holds for some ω, then it holds for any 0 ≤ ω′ ≤ ω,
since then t0 ≤ t2ω′ ≤ t2ω. Hence we may assume lower bounds on ω, if desired.

Regime k � logN . By (3.1.3a), we have s0 � 1. By (6.1.18a), we have

H
(
s0(1 + δ)

)
= 1

2 log(2πes0) + 1
2 log(1 + δ) +O

(
s
−1/4
0

)
= logN/k + 1

2δ +O
(
min

{
δ2, s

−1/4
0

})
.

We take δ := 5ω/k, and so need s
−1/4
0 � ω/k � 1. Hence ω � k suffices.

Regime k � logN . By (3.1.3c, 3.1.3d), we have s0 � 1. By (6.1.18b), we have

H
(
s0(1 + δ)

)
= (1 + δ) · s0 log(1/s0)− s0(1 + δ) log(1 + δ) +O(s0)

= logN/k + δ logN/k +O(s0).

We take δ := 2ω/ logN , and so need s0 � ω/ logN � 1. Hence ω � logN suffices.

Regime k � logN . By continuity and the strict increasing property of the entropy, all we require
is that logN/k + 2ω/k = (1 + o(1)) logN/k, and hence only require ω � logN � k.

6.1.5.1 Regime k� logn

We first consider the regime k � log n, which corresponds to s0 = t0/k � 1.

Proposition 6.1.9. For s & 1, the entropy H of a rate-1 SRW or DRW on Z satisfies

H(s) = 1
2 log(2πes) +O

(
s−1/4

)
. (6.1.19)

Proof. We consider both the directed and undirected cases together. Write t := sk. Define f , R1

and g as in (6.1.6, 6.1.7, 6.1.8), respectively. By (6.1.12), we have∣∣E(Q1)− E(R1)
∣∣ ≤ E

(
(Q1 −R1)4

)
1/4 = o

(
s−5/2

)
= O

(
s−1/4

)
when s & 1.
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Direct calculation with its pdf shows that the entropy of N(0, s) is precisely 1
2 log(2πes). Using

this along with a similar calculation as used for (6.1.11) gives

E
(
R1

)
=
(
1 +O(s−1/4)

)
· log(2πes).

Hence we obtain our desired expression, namely (6.1.19).

We now calculate the derivative of this entropy.

Proposition 6.1.10. For s & 1, the entropy H of a rate-1 SRW or DRW on Z satisfies

H ′(s) = (2s)−1
(
1 +O

(
s−10

))
. (6.1.20)

By the chain rule, for t & k, the entropy h of rate-1 SRW or DRW on Zk then satisfies

h′(t) = H ′(t/k) = (2t/k)−1
(
1 +O

(
(t/k)−10

))
.

Proof. Write t := sk. Define f , R1 and g as in (6.1.6, 6.1.7, 6.1.8) respectively. We have

H(s) = −
∑
x∈Z P

(
Xs = x

)
logP

(
Xs = x

)
.

Differentiating this with respect to t we obtain

H ′(s) = −
∑
x∈Z

d
dsP
(
Xs = x

)(
logP

(
Xs = x

)
+ 1
)

= −
∑
x∈Z

d
dsP
(
Xs = x

)
· logP

(
Xs = x

)
.

Consider first the SRW. Using the Kolmogorov backward equations for the SRW, we obtain

d
dsP
(
Xs = x

)
= 1

2P
(
Xs = x+ 1

)
+ 1

2P
(
Xs = x− 1

)
− P

(
Xs = x

)
.

Recall that νs(x) := P(Xs = x); write gs(x) := νs([x]). Since
∑
x∈Z νs(x) = 1, we obtain

H ′(s) =
∑
x∈Z
(
νs(x)− 1

2 (νs(x+ 1) + νs(x− 1))
)

log νs(x)

=
∫
R
(
gs(x)− 1

2 (gs(x+ 1) + gs(x− 1))
)

log g(x).

=
∫
R
(
gs(x)− 1

2 (gs(x+ 1) + gs(x− 1))
)

log fs(x) dx (6.1.21a)

+
∫
R
(
gs(x)− 1

2 (gs(x+ 1) + gs(x− 1))
)

log
(
gs(x)/fs(x)

)
dx, (6.1.21b)

where fs(x) := (2πs)−1/2 exp(−x2/(2s)). The same arguments as used for (6.1.10) show that the
integral in (6.1.21b) is o(s−10). Now consider the integral in (6.1.21a). Using a simple shift,∫

R gs(x+ 1) log fs(x) dx =
∫
R gs(x) log fs(x) dx−

∫
R gs(x) log

(
fs(x− 1)/fs(x)

)
dx,

and we consider
∫
R gs(x− 1) log fs(x) dx similarly; hence we have∫

R
(
gs(x)− 1

2 (gs(x+ 1) + gs(x− 1))
)

log fs(x) dx

= 1
2

∫
R gs(x)

(
log
(
fs(x− 1)/fs(x)

)
+ log

(
fs(x+ 1)/fs(x)

))
dx

= 1
2

∫
R gs(x) log

(
fs(x− 1)fs(x+ 1)/fs(x)2

)
dx.

Since fs(x) = (2πs)−1/2 exp(−x2/(2s)), this log is precisely 1/s (independent of x). Since it is a
distribution, gs integrates to 1, so the integral equals 1/(2s). This proves the SRW case.

Now consider the DRW. Here the backward Kolmogorov equations read

d
dsP
(
Xs = x

)
= P

(
Xs = x− 1

)
− P

(
Xs = x

)
for x ∈ N

and d
dsP(Xs = 0) = −P(Xs = 0) = −e−s. Hence, as above, we have

H ′(s)− se−s =
∑
x∈N
(
νs(x)− νs(x− 1)

)
log νs(x)

=
∫∞

1/2

(
gs(x)− gs(x− 1)

)
log fs(x) dx (6.1.22a)

+
∫∞

1/2

(
gs(x)− gs(x− 1)

)
log
(
gs(x)/fs(x)

)
dx. (6.1.22b)
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As for (6.1.21b) above, the same arguments as used for (6.1.10) show that the integral in (6.1.22b)
is o(s−10). Note also that se−s = o(s−10) as s→∞. Now consider the integral in (6.1.22a). Using
a simple shift as before, we have∫∞

1/2

(
gs(x)− gs(x− 1)

)
log fs(x) dx = −

∫∞
1/2

gs(x) log
(
fs(x+ 1)/fs(x)

)
dx

=
∫∞

1/2
gs(x)

(
(x− s)/s+ 1/(2s)

)
dx = 1/(2s),

recalling that here fs(x) = (2πs)−1/2 exp(−(x − s)2/(2s)), E(Xs) = s and gs integrates to 1. In
the same way as for the SRW, this proves the DRW case.

We wish to find the times sα = tα/k defined so that, recalling (6.1.17a),

H(sα) =
(
log n+ α

√
vk
)
/k where v := Var

(
Q1(t0)

)
h 1

2 .

Proposition 6.1.11. For k � log n, we have

s0 = t0/k h n2/k/(2πe), (6.1.1a)

and, for each α ∈ R, we have sα h s0, and furthermore

(sα − s0)/s0 = (tα − t0)/t0 h α
√

2/k = o(1). (6.1.1a)

Proof. We consider the directed and undirected cases simultaneously. By directly manipulating
(6.1.19), we see that if H(s0) = log n/k then

s0 = n2/k/(2πe) ·
(
1 +O

(
s
−1/4
0

))
h n2/k/(2πe),

noting that k � log n and so n2/k � 1. This proves the first part of (6.1.1a).
We now turn to finding tα. Fix α ∈ R. Note that H is increasing and α

√
v/k = o(1). So from

the form of H(s) given in (6.1.19) we see that, for all ε > 0, we have (1− ε)s0 ≤ sα ≤ (1 + ε)s0 for
n sufficiently large (depending on α); hence sα h s0 for all α ∈ R.

By definition of sα, we have

H(sα)−H(s0) = α
√
v/k, and hence dsα

dα H ′(sα) =
√
v/k.

Hence we have
sα − s0 =

∫ α
0
dsa
da da =

√
v/k

∫ α
0

1/H ′(sa) da.

But, by Proposition 6.1.10, we may write H ′(s) = (2s)−1(1 + o(1)) with o(1) term uniform over
s ∈ [ 1

2s0, 2s0], which is an interval containing the cutoff window. Hence, recalling from (6.1.17a)
that v h 1

2 in this regime, the second part of (6.1.1a) follows:

sα − s0 h 2αs0

√
1/2/
√
k h αs0

√
2/k.

6.1.5.2 Regime k � logn

We next consider the regime k h λ log n with λ ∈ (0,∞), which corresponds to s0 = t0/k � 1.

Proposition 6.1.12. There exists a decreasing, continuous bijection f : (0,∞) → (0,∞), whose
value differs between the undirected and directed cases, so that, for all λ > 0, for k h λ log n, we
have

s0 = t0/k h f(λ) where f(λ) := H−1(1/λ), (6.1.1b)

and, for each α ∈ R, we have sα h s0, and furthermore

(sα − s0)/s0 = (tα − t0)/t0 h αg(λ)/
√
k = o(1)

where g(λ) :=
√

Var(Q1(f(λ) k))/
(
f(λ)H ′(f(λ))

)
.

(6.1.1b)

(Note that, for s ∈ R+, the law of Q1(sk) is independent of n and k, so g is a continuous function.)
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Proof. Since log n/k h 1/λ, we must choose s0 so that H(s0) h 1/λ ∈ R. Since H is strictly
increasing and continuous, we thus deduce that t0/k = s0 h H−1(1/λ) =: f(λ). So f is a decreasing,
continuous bijection from (0,∞) to itself. This proves the first part of (6.1.1b).

We wish to find times sα defined so that, recalling (6.1.17b),

H(sα) =
(
log n+ α

√
vk
)
/k where v := Var

(
Q1(t0)

)
h Var

(
Q1(f(λ)k)

)
,

which is a constant whose value differs between the undirected and directed cases.
We now turn to finding sα. Fix α ∈ R. Note that G is increasing and α

√
v/k = o(1). So from

the continuity of H we see that, for all ε > 0, we have (1− ε)s0 ≤ sα ≤ (1 + ε)s0 for n sufficiently
large (depending on α); hence sα h s0 for all α ∈ R.

Using the same arguments as in the previous derivative proof, we have

sα − s0 =
∫ α

0
dsa
da da =

√
v/k

∫ α
0

1/H ′(sa) da.

Using continuity of H ′ along with sα h s0 h f(λ), the second part of (6.1.1b) follows:

sα − s0 h α
√
v∗/k/H

′(s0) h α
√
v∗/k/H

′(f(λ))

h αs0

(√
Var(Q1(f(λ) k)/

(
f(λ)H ′(f(λ))

))
/
√
k.

6.1.5.3 Regime k� logn

Finally we consider the regime k � log n, which corresponds to s0 = t0/k � 1 but t0 � 1. We
have to handle the directed and undirected cases slightly differently here. The entropic time t0 and
cutoff times tα will be the same (up to sot), but the technical details of the proofs will differ ever
so slightly.

Proposition 6.1.13. For s� 1, the entropy H of a rate-1 SRW or DRW on Z satisfies

H(s) = s log(1/s) +O(s). (6.1.23)

Proof. This follows immediately from (6.1.14) given in the justification of the CLT when s� 1.

Proposition 6.1.14. For s� 1, the entropy H of a rate-1 SRW or DRW on Z satisfies

H ′(s) = log(1/s) +O(1). (6.1.24)

(For SRW, this O(1) is log 2 +O(s); for DRW, it is O(s log(1/s)).)

Proof. We proceed as in the previous derivative proof, ie the proof of Proposition 6.1.10.
Consider first the undirected case. Using the Kolmogorov backward equations, we obtain

H ′(s) =
∑
x∈Z
(
νs(x)− 1

2 (νs(x+ 1) + νs(x− 1))
)

log νs(x).

Recall that we have

P
(
Xs = 0

)
= 1− s+O

(
s2
)

and P
(
Xs = x

)
= 1

2s+O
(
s2
)

for x ∈ {±1},

and hence P(Xs = x) = O(s2) for x /∈ {0,±1}. Also, as previously, in the above sum we may ignore
the x with x /∈ {0,±1} to give an error O(s log(1/s)). (Note that it is not O(s2 log(1/s)), since the
x-th term of the sum contains νs(x+ 1) and νs(x− 1).) Direct calculation then gives

H ′(s) = log(1/s) + log 2 +O(s) = log(1/s) +O(1).

This proves the undirected case.
Now consider the directed case. Here, Xs ∼ Poisson(s), and so P(Xs = x) = e−sxs/x!. Then

W1(t) ∼ Xs. Direct differentiation shows that

d
dsP
(
Xs = x

)
= P

(
Xs = x− 1

)
− P

(
Xs = x

)
= e−ssx−1(x− s)/x! for x ∈ N,
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and d
dsP(Xs = 0) = −P(Xs = 0) = −e−s, as in the previous derivative proof. As there, we have

H ′(s) = −
∑
x∈Z+

d
dsP
(
Xs = x

)(
logP

(
Xs = x

)
+ 1
)
.

As previously, we may ignore the terms with x /∈ {0,±1}, giving an error O(s log(1/s)). Plugging
in the derivative, we obtain

H ′(s) = −e−s log
(
e−s
)
− e−s(1− s) log

(
se−s

)
+O

(
s log(1/s)

)
= s
(
1− s+O(s2)

)
− (1− s)

(
1− s+O(s2)

)(
log s− s

)
+O

(
s log(1/s)

)
= log(1/s) +O

(
s log(1/s)

)
= log(1/s) +O(1).

This proves the directed case.

We wish to find the times sα = tα/k defined so that, recalling (6.1.17c),

H(sα) =
(
log n+ α

√
vk
)
/k where v := Var

(
Q1(t0)

)
h (log n/k) log(k/ log n).

Proposition 6.1.15. For k � log n, we have

s0 = t0/k h k−1 log n/ log(k/ log n), (6.1.1c)

and, for each α ∈ R, we have sα h s0, and furthermore

(sα − s0)/s0 = (tα − t0)/t0 h α
√

log(k/ log n)/ log n = o(1). (6.1.1c)

Proof. We consider the directed and undirected cases simultaneously. By directly manipulating
(6.1.23), we see that if H(s0) = log n/k then

s0 log(1/s0) h log n/k. and hence log(1/s0) h log(k/ log n),

with the final relation holding since k � log n and so log(k/ log n)� 1; this implies that

s0 = t0/k h k−1 log n/ log(k/ log n).

We now turn to finding sα. Fix α ∈ R. From the form (6.1.23) of H, observe that

H
(
s0(1± ε)

)
= (1± ε)H(s0) +O(s0) = (1± ε)H(s0) ·

(
1 + o(1)

)
,

noting that s0 � 1 and so H(s0) h s0 log(1/s0)� s0. Note also that

√
vk h

√
log n log(k/ log n)� log n,

since log k � log n. Hence H(sα) = h(t0) · (1 + o(1)). Hence, for all ε > 0, we have (1 − ε)s0 ≤
sα ≤ (1 + ε)s0 for n sufficiently large (depending on α); hence sα h s0 for all α ∈ R.

As in the previous derivative proofs, we have

sα − s0 =
∫ α

0
dsa
da da =

√
v/k

∫ α
0

1/H ′(sa) da.

But, by Proposition 6.1.14, we may write H ′(s) = log(1/s)(1 + o(1)) with o(1) term uniform over
t ∈ [ 1

2s0, 2s0], which is an interval containing the cutoff window. Hence, recalling the expressions
for v from (6.1.15b) and s0 from above, the second part of (6.1.1c) follows:

sα − s0 h α
√
s0/k = αs0/

√
s0k h αs0/

√
log n/ log(k/ log n).

Note that log k � log n, and so log n/ log(k/ log n)� 1. So we do indeed have |sα−s0| = o(s0).

Remark. In the directed case, we can actually find an explicit closed-form solution for the entropy:

H(s) = s
(
log(1/s) + 1 + e−s

∑∞
`=2 s

`−1 log(`!)/`!
)
.

From this explicit expression, one can derive an approximation to the entropy when s� 1; see [38].
An analogous result for s� 1 is easy to obtain. For s � 1, no simple closed form is known. 4
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6.2 Relative Entropy Estimates, Growth and Concentration

Let X+
γ := (X+

γ (s))s≥0 be a DRW on Zγ and X−γ := (X−γ (s))s≥0 be a SRW on Zγ . Throughout
this section, we use +-superscript to indicate DRW, eg X+

γ (s), and −-superscript to indicate SRW,
eg X−γ (s); when the result holds for both the SRW and DRW, we use either ±-superscript or none at
all, eg X±γ (s) or Xγ(s). Write νγ,s(·) for the law of Xγ(s), adding +/−-superscripts as appropriate.

The aim of this section is to derive some estimates on relative entropy. In the first two sub-
sections (§6.2.1 and §6.2.2), the results will be for general times s. In the final subsection (§6.2.3),
we are interested in the behaviour of the relative entropy around the so-called entropic times; see
§6.2.3 for the definition, namely Definition 6.2.8.

First, we prove some general estimates on the relative entropy for RW on Zγ . We then specialise
to s & γ2 (in §6.2.1) and then to s� γ2 (in §6.2.2).

Lemma 6.2.1. There exists an absolute constant c > 0 so that, for all γ ≥ 2 and all s ≥ c, we have

Rγ(s) ≥ c log(γ/
√
s). (6.2.1)

Moreover, for all p ≥ 2 and s ≥ 0, we have

1
2e
−2γ2s ≤ 2 dTV,γ(s)2 ≤ Rγ(s) ≤ d∞,γ(2s) ≤

∑γ
`=2 e

−2γ`s (6.2.2)

where γ` := 1− cos(2π(`− 1)/γ) for ` ∈ [γ]. In particular, the following hold:

Rγ(s)� 1 if and only if s� γ2;

Rγ(s) � 1 if and only if s � γ2;

Rγ(s)� 1 if and only if s� γ2.

Proof. The first claim is an immediate consequence of [42, Proposition 4.1]; it applies for both
SRW and DRW. In particular, in the notation of [42, Proposition 4.1], the set A is chosen to be
an interval of width 2

√
s around the mode of the RW location.

For the lower bound, recall Pinsker’s inequality, which says that

Rγ(s) ≥ 2 dTV,γ(s)2.

Recall the standard fact that, for any eigenvalue ψ of the transition matrix and s ≥ 0, we have

dTV,γ(s) ≥ 1
2e
−s<(1−ψ);

see [49, (12.15)] for the discrete-time analogue. Write q := e−2πi/γ , where i is the imaginary unit
(not an index). The eigenvalues of the transition matrix for DRW, respectively SRW, are given by(

λ+
` := q`−1 | ` ∈ [γ]

)
, respectively

(
λ−` := <(q`−1) = <(λ+

` ) | ` ∈ [γ]
)
.

Apply this with ψ := λ±2 . As λ−2 = <(λ+
2 ), this proves the lower bound for both SRW and DRW.

We turn to the upper bounds. By Jensen’s inequality, for two measures µ and π, we have

D(µ ‖π) =
∫
µ(x) log

(
µ(x)/π(x)

)
dx ≤ log

(∫
µ(x)2/π(x) dx

)
= log

(
1 +

∫
π(x)|µ(x)/π(x)− 1|2 dx

)
= log

(
1 + ‖µ− π‖2L2(π)

)
.

Applying this and using the inequality log(1 + x) ≤ x for x > −1, we obtain

Rγ(s) ≤ log
(
1 + d2,γ(s)2

)
≤ d2,γ(s)2.

For reversible chains, it is well-known that d2,γ(s)2 = d∞,γ(2s). For the DRW, we have d2,γ(s)2 ≤
d∞,γ(2s). Indeed, by symmetry, the L2 mixing profile for the DRW and its time reversal are
identical. The claim then follows from L2–L∞ mixing time relations in [57, Appendix].
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For the SRW, by transitivity, and since we are working in continuous time,

d−∞,γ(2s) = γ ν−γ,2s(0)− 1 = trace(P−γ,2s)− 1 =
∑γ
`=2 e

−2γ`s,

where P−γ,· is the transition kernel for rate-1 SRW on Zγ . (See [2, Lemma 3.20, (3.60)] for justific-
ation of the first equality.) This establishes the upper bound for SRW.

For the DRW, we use the spectral decomposition. Let (f+
` | ` ∈ [γ]) be the orthonormal

eigenbasis corresponding to (λ+
` | ` ∈ [γ]). We have f+

` (x) := exp(−2πi(`− 1)x/γ) for x ∈ Zγ . By
the spectral decomposition, for all s ≥ 0 and all x, y ∈ Zγ , we have

P+
γ,2s(x, y)− 1

γ = 1
γ

∑γ
`=2 f

+
` (x)f+

` (y) exp
(
−2s(1− λ+

` )
)
≤ 1

γ

∑γ
`=2 exp

(
−2s

(
1−<(λ+

` )
))
,

where P+
γ,· is the transition kernel for rate-1 DRW on Zγ and we have used the fact that |f+

` (z)| = 1

for all z ∈ Zγ . As <(λ+
` ) = λ−` for all ` ∈ [γ], this establishes the upper bound for DRW.

6.2.1 Estimates for s & γ2

This subsection is devoted to analysing the regime s & γ2. (Recall that centred RW is diffusive,
and so γ2 is the order of the mixing and maximal hitting time of the RW.)

Lemma 6.2.1 has the following simple, but extremely useful, corollary.

Corollary 6.2.2. For all γ ≥ 2, if s & γ2, then

dTV,γ(s)2 � Rγ(s) � d∞,γ(2s) � d∞,γ(s)2 � e−2γ2s.

Proof. Note that γ2 = γm. Hence from (6.2.2) we deduce that

1
2e
−2γ2s ≤ Rγ(s) ≤ e−2γ2s

(
2 +

∑γ−1
`=3 e

−2(γ`−γ2)s
)
.

Since s & γ2 and γ` − γ2 & min{`, γ − `}2/γ2, the sum above is O(1).

Lemma 6.2.3. For all c > 0, there exists a constant σ ∈ (0,∞) so that, for all s ≥ cγ2, we have

1/
(
1 + σ

√
Rγ(s)

)
≤ γminx∈Zγ νγ,s(x) ≤ γmaxx∈Zγ νγ,s(x) ≤ 1 + σ

√
Rγ(s).

Proof. By Lemma 6.2.1 and Corollary 6.2.2, there exists a constant σ+ ∈ (0,∞) so that

d∞,γ(s) ≤ σ+

√
Rγ(s), and hence pmaxx νγ,s(x) ≤ 1 + σ+

√
Rγ(s).

If Rγ(s) ≤ (2σ+)−2, then 1− σ+

√
Rγ(s) ≥ 1/(1 + 2σ+

√
Rγ(s)); the claim follows with σ := 2σ+.

It remains to prove the lower bound under the assumption that Rγ(s) ≥ (2σ+)−2. It then
suffices to show that minx νγ,s(x) & 1/γ. This follows from a relatively simple application of the
local CLT (see Theorem 6.1.4), for either SRW or DRW, noting that s & L2.

Corollary 6.2.4. For all c > 0, there exists a constant σ > 0 so that, for all s ≥ cγ2, we have

Var
(
Qγ,1(sk)

)
≤ σ2Rγ(s).

Proof. Abbreviate ρx := νγ,s(x) · γ for x ∈ Zγ . Since Qγ,1(sk) takes the value − log νγ,s(x) with
probability νγ,s(x) for each x ∈ Zγ , if we define the random variable Y to take the value log ρx
with probability νγ,s(x) for each x ∈ Zγ , then

Var
(
Qγ,1(sk)

)
= Var(Y ) ≤ E

(
Y 2
)
.

Applying Lemma 6.2.3, we deduce the corollary:

E
(
Y 2
)

=
∑
x νγ,s(x)| log ρx|2 ≤ maxx | log ρx|2 ≤ log

(
1 + σRL(s)1/2

)2 ≤ σ2RL(s).
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6.2.2 Estimates for s� γ2

This subsection is devoted to analysing the regime s� γ2; however, we only consider s ≥ ς, for
some absolute constant ς. Many of the constants below will depend on the choice of ς; however, since
ς should be thought of as fixed throughout this whole section, we do not restate this dependence.

Proposition 6.2.5. Uniformly in all γ ∈ N, we have

maxs∈[r,cγ2]

∣∣Hγ(s)− 1
2 log(2πes)

∣∣ = or→∞(1) + oc→0(1).

Equivalently, uniformly in all γ ∈ N, we have

maxs∈[r,cγ2]

∣∣Rγ(s)− 1
2 log(γ2/s)− 1

2 log(2πe)
∣∣ = or→∞(1) + oc→0(1).

Proof. We can uniquely write X∞(s) = X̃γ(s) + γMγ(s) +ms with the following definitions:

· X̃γ(·) is the RW on [− 1
2γ,

1
2γ] centred to have mean 0;

· Mγ(s) indicates in which interval of width L the RW on Z lives;
· ms is the mode of X∞(s).

As X∞(s) determines (Xγ(s), Mγ(s)) and vice versa, by standard properties of entropy, we have

Ent
(
Xγ(s)

)
≤ Ent

(
Xγ(s), Mγ(s)

)
= Ent

(
X∞(s)

)
≤ Ent

(
Xγ(s)

)
+ Ent

(
Mγ(s)

)
.

The upper bound on Hγ(s) now follows immediately from Proposition 6.1.9.
We now turn to the lower bound. Using large deviations estimates for the SRW and the Poisson

distribution from Propositions 6.3.4 and 6.3.5, it is routine to show that

− log Ent
(
Mγ(s)

)
� γ2/s ≥ 1/c.

The above proof actually quantifies the errors, in the way described below.

Corollary 6.2.6. There exists a constant c so that, for all γ ∈ N and all ς ≤ s ≤ cγ2, we have

0 ≤ H∞(s)−Hγ(s) ≤ e−cγ
2/s/c.

Lemma 6.2.7. There exist positive constants c and C so that, for all γ ∈ N, if ς ≤ s ≤ cγ2, then

Var
(
Qγ,1(sk)

)
≤ C.

Proof. We may assume that γ is larger than any constant which we desire, otherwise all random
variables are order 1 and so the statement holds easily. For δ ∈ (0, 1

2 ), consider the set

Aδ :=
{
x ∈ Zγ

∣∣ νγ,s(x) ≥ δ/
√
s
}

; write Bδ := Zγ \Aδ.

By Proposition 6.2.5 and the local CLT (Theorem 6.1.4), since ς ≤ s ≤ cγ2, we have

E
(
Qγ,1(sk)

)
= Hγ(s) = 1

2 log s+O(1) and maxx νγ,s(x) = νγ,s(0) & 1/
√
s.

From this and the definition of Aδ, we deduce the following relations:

α :=
∑
x∈Aδ νγ,s(x)

(
log(1/νγ,s(x))− E

(
Qγ,1(sk)

))2
. 1/δ;

β :=
∑
x∈Bδ νγ,s(x)

(
log(1/νγ,s(x))− E

(
Qγ,1(sk)

))2
. 1 +

∑
x∈Bδ νγ,s(x) log

(√
sνγ,s(x)

)2
.

To analyse the sum over x ∈ Bδ, note that δ ≤ 1
2 . Under this assumption,

νγ,s(x) ≤ s−1/2e−
√
u iff log

(√
sνγ,s(x)

)
≤ −
√
u iff log

(√
sνγ,s(x)

)2 ≥ u.
From this, using a simple change of variables, taking δ := exp(−

√
10) ∈ (0, 1

2 ), we find that∑
x∈Bδ νγ,s(x) log

(√
sνγ,s(x)

)2
=
∫∞

0
P
(
log
(√
sνγ,s(Xs)

)2
> u | Xs ∈ Bδ

)
P
(
Xs ∈ Bδ

)
du

=
∫∞

0
P
(
νγ,s(Xs) ≤ s−1/2 min{e−

√
u, δ}

)
du

≤
∫∞

10
ν∞,s

(
x ∈ Z | ν∞,s(x) ≤ s−1/2e−

√
u
)
du+ 10.

It is easy to verify that the last integral is bounded from above, uniformly in s ≥ ς.
The result now follows, since Var(Qγ,1(sk)) = α+ β, and δ = exp(−

√
10).
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6.2.3 Variations Around the Entropic Time: General Abelian Groups

For rate-1 RW on Zkγ , the entropy function is denoted hγ(·). For rate-1 RW on Zγ , the Shannon,
respectively relative, entropy function is denoted Hγ(·), respectively Rγ(·); recall that hγ(·) =
log γ −Rγ(·). The Shannon entropy functions are strictly increasing bijections with

hγ : [0,∞)→
[
0, log(γk)

)
= [0, k log γ) and Hγ : [0,∞)→ [0, log γ).

6.2.3.1 Entropic Time Definitions and Preliminaries

We are primarily interested in a target entropy of N := log |G/γG|, where G is an arbitrary
Abelian group G. For certain γ, the time H−1

γ (log |G/γG|/k) may well be o(1), but since k . log n
the maximum over γ is at least order 1. In the definition below, we take a maximum with ς.

Definition 6.2.8. For γ,N ∈ N, the entropic time is defined by

s0(γ,N) := H−1
γ

(
(logN)/k

)
and t0(γ,N) := s0(γ,N)k = h−1

γ (logN).

For the special case N := |G/γG|, write tγ := sγk and t∗ := s∗k where

sγ := s0(γ, |G/γG|) ∨ ς and s∗ := maxγ∈N sγ .

For an Abelian group G, write d(G) for the minimal size of a generating subset of G. Abbreviate

ζγ := 1
k

(
k − d(G)

)
log γ.

Lemma 6.2.9. For all γ ∈ N, we have |γG| ≥ γ−d(G)|G|, and in particular |G/γG| ≤ γd(G).

Proof. Decompose G as ⊕d1 Zmj . Then γG can be decomposed as ⊕d1 Zmj/ gcd(γ,mj). Thus |γG| =∏d
1 mj/ gcd(γ,mj) ≥

∏d
1 mj/γ = |G|/γd. The second part follows from Lagrange’s theorem.

Corollary 6.2.10. For all γ ≥ 2, we have

Rγ
(
s0(γ, |G/γG|)

)
= log γ − (log |G/γG|)/k ≥ 1

k

(
k − d(G)

)
log γ = ζγ .

We first determine the asymptotic behaviour of s∗. Afterwards, we determine the rate of growth
of the entropy around the entropy time. For both investigations, the following is useful.

Use the usual functional inner product: 〈f, g〉π :=
∑
z f(z)g(z).

Definition 6.2.11. For all transition matrices P and all functions f and g, define the Dirichlet form

EP (f, g) :=
〈
f, (1− P )g

〉
π

=
∑
x,y f(x)

(
g(x)− g(y)

)
P (x, y)π(x).

For a transition matrix P , write P ∗ for its time reversal; then P× := 1
2 (P + P ∗) is its additive

symmetrisation. Observe that, for all functions f and g, we have the following:

EP (f, f) = 1
2

∑
x,y

(
f(x)− f(y)

)2
P (x, y)π(x) and EP (f, f) = EP∗(f, f) = EP×(f, f);

if P is reversible, then also E(f, g) = E(g, f). We now define logarithmic-Sobolev constants.
Recall that we write Entπ(g) := Eπ(g log(g/Eπ(g))) = D(g/Eπ(g) ‖π)Eπ(g) for a function g.

Definition 6.2.12. Define the usual, respectively modified, log-Sobolev constants by

cLS,P := inf
f :f 6=0

EP (f, f)

Entπ(f2)
and cMLS,P := inf

f :f>0

EP (f, log f)

Entπ(f)
.

Observe that cLS,P = cLS,P∗ = cLS,P× , ie this is the same for the reversal and the symmetrisation.

Lemma 6.2.13. For every irreducible transition matrix P , we have 2cLS,P ≤ cMLS,P .
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Proof. Using the inequality log c ≥ 1−1/c for c > 0, it is straightforward to show that E(f, log f) ≥
2 E(
√
f,
√
f) for f > 0; see, eg, [57, Lemma 2.8]. From this and the definitions, the claim follows.

Simple direct calculations establish the following lemma; see, eg, [57, Lemma 2.4].

Lemma 6.2.14 ([57, Lemma 2.4]). Let Ω be a state space and let s ≥ 0. Let P be an irreducible
transition matrix with invariant distribution π and write Ps := es(P−I) for its heat kernel. Let µ
be a distribution on Ω and write µs := µPs, ie the law of the chain started from µ and run for time
s. For x ∈ Ω, write hs(x) := µs(x)/π(x), ie the density with respect to π. Then

d
dsD(µs ‖π) = d

ds Entπ(hs) = −E(hs, log hs) ≤ −cMLS,P Entπ(hs) = −cMLS,PD(µs ‖π).

Corollary 6.2.15. In the set-up of Lemma 6.2.14, we have

D(µs ‖π) ≤ D(µ ‖π)e−cMLS,P s ≤ D(µ ‖π)e−2cLS,P s.

Proof. This follows immediately from Lemmas 6.2.13 and 6.2.14 and Gronwall’s lemma.

It remains to estimate the log-Sobolev constant for the random walks on Zγ—recall that this
is the same for the SRW and DRW, as the SRW is the additive symmetrisation of the DRW.

Lemma 6.2.16. For all γ ∈ N, the log-Sobolev constants of the RW on Zγ satisfy

cMLS,γ ≥ 2cLS,γ & 1/γ2.

Proof. In [22, Corollary 3.11], it is shown that the L2 mixing time is bounded below by 1/(2cLS,P ).
For the SRW on ZL, the L2 mixing time is well-known to be order γ2. The claim follows.

6.2.3.2 Asymptotic Evaluation of Entropic Time

The precise definitions of s0(γ,N) and t0(γ,N) Here we asymptotically evaluate the entropic
time. We first determine its order in general; second we evaluated it up to smaller order terms
when 1� k � log |G| and k − d(G) � k.

Proposition 6.2.17a. Let d, n ∈ N. Suppose that 1� k . log n and k−d � k. Then, with implicit
constant uniform over all Abelian groups G with |G| = n and d(G) = d, we have

maxγ∈N t0(γ, |G/γG|) � k|G|2/k.

Proposition 6.2.17b. Let d, n ∈ N. Suppose that 1 � k . log n and k > d. Then, with implicit
constant uniform over all Abelian groups G with |G| = n and d(G) = d, we have

maxγ∈N t0(γ, |G/γG|) . k|G|2/k log k.

When d � log n and k − d(G) � k, the entropic time t∗(k,G) is asymptotically equivalent to
t0(∞, |G|), ie the time at which the entropy of the RW on Zk reaches log |G|. This entropic time
t0(∞, |G|) is evaluated, in different regimes, in Proposition 6.1.2—there it is denoted t0(k, |G|).

Proposition 6.2.18. Let d, n ∈ N. Suppose that d � log n and k − d � k. Then, with implicit
constant uniform over all Abelian groups G with |G| = n and d(G) = d, we have

maxγ∈N t0(γ, |G/γG|) h t0(∞, |G|).

Proposition 6.2.19. Suppose that k � log |G|. Write ρ := log k/ log log |G|. Then

maxγ∈N t0(γ, |G/γG|) h ρ
ρ−1 logk |G|.
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Proof of Proposition 6.2.17a. For the lower bound, take γ :=∞ and use Proposition 6.1.2

s̃∗ := maxγ∈N s0(γ, |G/γG|) ≥ s0(∞, |G|) � |G|2/k.

In particular, this says that the maximising γ satisfies s0(γ, |G/γG|) & |G|2/k & 1.
We now turn to the upper bound. Assume that k − d ≥ εk with ε ∈ (0, 1). By Lemma 6.2.9,

the entropy of a single-coordinate at t := t0(γ, |G/γG|), which we denote x, satisfies

x = 1
k log |G/γG| ≤

(
1
k log n

)
∧
(

1
k log(γd)

)
≤
(

1
k log n

)
∧
(
(1− ε) log γ

)
.

The relative entropy, which we denote ξ, thus satisfies ξ = log γ−x ≥ ε log γ & 1. By Lemma 6.2.1
and Proposition 6.2.5, there exists a constant C so that if ξ ≥ C then t/k ≤ Ce2x ≤ Cn2/k.
On the other hand, if ξ ≤ C, then necessarily ξ � 1 and ε log γ ≤ C, ie γ ≤ eC/ε. Lemma 6.2.1
then implies that t/k � γ2 ≤ e2C/ε ≤ e2C/εn2/k, with implicit constant uniform over the compact
interval [ε log 2, C] in which ξ lies. Hence, in either case, we have t . C ′kn2/k.

Proof of Proposition 6.2.17b. As in the proof of Proposition 6.2.17a, the relative entropy of a
single coordinate at time t := t0(γ, |G/γG|), which we denote ξ, satisfies

ξ = log γ − 1
k log |G/γG| ≥ log γ −

(
1
k log n

)
∧
(

1
k log(γd)

)
=
(

1
k (k − d) log γ

)
∨
(
log γ − 1

k log n
)
.

Consider first the case that ξ = 1
k (k − d) log γ =: ζ, ie γ ≤ n1/d. This is precisely the entropic

time studied in §6.2.4 below, specifically Definition 6.2.24 and Proposition 6.2.25a with p := γ and
α := 0 (in the notation there). These references show that t/k . (γd)2/k| log(ζ ∧ 1

2 )|. Since here we

are considering L ≤ n1/d, the proof is completed in this case.
Now suppose that ξ = log γ − 1

k log n, ie L ≥ n1/d. Then ξ ≥ k−2(k − d) log n ≥ 1/k2. By
Lemma 6.2.1 and Proposition 6.2.5, there exists a constant C so that if log γ − 1

k log n ≥ C then

t/k ≤ Cn2/k as in the proof of Proposition 6.2.17a. On the other hand, if log γ− 1
k log n ≤ C, then

necessarily ξ . 1 and n1/d ≤ γ . n1/k. Corollary 6.2.2 implies that Rγ(C ′γ2 log k) ≤ 1/k2 ≤ ξ for
a large enough constant C ′. Since C ′γ2 log k . n2/k log k the proof is completed in this case.

Proof of Proposition 6.2.18. For the lower bound, take γ :=∞ and use Proposition 6.1.2:

s̃∗ := maxγ∈N s0(γ, |G/γG|) ≥ s0(∞, n).

When k � log n, we have s0(∞, n) h 1
2πen

2/k � 1 while s0(∞, n) � 1 when k � log n.
We now turn to the upper bound. Choose γ to be an optimiser, ie with s̃∗ = s0(γ, |G/γG|). By

Lemma 6.2.9, we have s̃∗ ≤ s0(γ, γd) =: s̃γ . We consider first the case that 1 � k � log n with
k−d � k; so s̃∗ � 1. If k & log(γd), then s̃γ � 1. But s̃γ � 1, so we must have 1� k � log(γd). But
k ≥ d, so we must have γ � 1. Hence ζ := 1

k (k−d) log γ � 1. By Lemma 6.2.1 and Corollary 6.2.10,
we thus have Rγ(s̃γ) ≥ ζ � 1 and s̃γ � γ2. By Proposition 6.2.5,

Hγ(s̃γ) = 1
2 log(2πes̃γ) + o(1).

The target entropy is 1
k log |G/γG| ≤ 1

k log n. Thus s̃γ h 1
2πen

2/k, completing the upper bound.
Consider now k � log n with d� log n. Choose m� 1 such that d logm� log n � k. Consider

first γ ≤ m. Since log(md)/k = d logm/k � 1, we have s̃γ ≤ s0(γ,md) � 1. But s̃∗ � 1, so we
must have γ ≥ m � 1. Since s̃γ = s̃∗ � 1, for γ ≥ m, we have s̃γ � γ2. Thus we may apply
Corollary 6.2.6 to deduce that 0 ≤ H∞(s̃∗)−Hγ(s̃∗) = o(1). Further, H∞(s̃∗) � 1. We thus deduce
that the entropic times for the RW on Zk and Zkγ are asymptotically equivalent.

Proof of Proposition 6.2.19. We start with the lower bound. Clearly t0(γ, |G/γG|) ≥ t0(∞, |G|).
By (6.1.1b) and some simple algebraic manipulations, we have t0(∞, |G|) h ρ

ρ−1 logk |G|.
We turn to the upper bound. Clearly t0(γ, |G/γG|) ≤ t0(2, |G|) for all γ ∈ N. In the regime

k � log |G|, in §6.1, to prove (6.1.1b), we approximated the rate-1 RW run for time s � 1 on Z
by one on Z2. Thus the arguments for (6.1.1b) imply the upper bound here.
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6.2.3.3 Rate of Change of Entropy Around the Entropic Time

We now move onto determining the rate of growth of the entropy. The following lemma is valid
for any s ≥ ς, but we are particularly interested in applying it at an entropic time sγ . (This is one
place in which we need the bound s ≥ ς, and so need to deal with sγ , rather than s0(γ, |G/γG|).)

Lemma 6.2.20. There exists a continuous function c̃ : (0, 1) → (0, 1) so that, for all γ ≥ 2, all
ξ ∈ (−1, 1) \ {0} and all s ≥ ς, we have∣∣Hγ

(
s(1 + ξ)

)
−Hγ(s)

∣∣ ≥ 2c̃|ξ|
(
Rγ(s) ∧ 1

)
.

Proof. If s � 1, then the claim is immediate, noting that Rγ(s) � 1. Now assume that s� 1.
Consider first the case where s/γ2 is small; in particular, γ is large. By Proposition 6.2.5, there

exists constants γ0 ∈ N and α, c ∈ (0,∞) so that, for all γ ≥ γ0 and all s ∈ [ς, 2αγ2], the difference
in entropy is 1

2 log(1 + ξ) + o(1). The claim thus follows in this case.
Now suppose that s ≥ αγ2. By Corollary 6.2.15, for all γ ≥ 2 and all s ≥ αγ2, we have

Hγ

(
s(1 + ε)

)
−Hγ(s) = Rγ(s)−Rγ

(
s(1 + ε)

)
≥ (1− e−2cLS,γsε)Rγ(s) ≥ δεRγ(s),

where δε := lim infγ{1− e−2αεcLS,γγ
2} ∈ (0, 1) by Lemma 6.2.16. This completes the proof.

Abbreviate ργ := Rγ(sγ). By Corollary 6.2.10, if sγ = s0(γ, |G/γG|), then ργ ≥ ζγ .

Proposition 6.2.21. Suppose that k − d(G) � 1 There exists a continuous function c : (0, 1) →
(0, 1) so that, for all γ ≥ 2 with γ o |G| and all ε ∈ (0, 1), the following hold:

P
(
Qγ
(
t∗(1 + ε)

)
≤ log |G/γG|+ cε(ζγ ∧ 1)k

)
≤ exp

(
−cε(ζγ ∧ 1)k

)
;

P
(
Qγ
(
t(1− ε)

)
≥ log |G/γG| − cε(ζγ ∧ 1)k

)
= o(1) for all t ≤ t0(γ, |G/γG|).

The outline is of the proof is relatively straightforward. Replace sγ with s0(γ, |G/γG|). Consider
k− d � k, so that ζγ � ζγ ∧ 1 � 1. Both parts use the entropy growth rate lemma, Lemma 6.2.20.
The non-quantitative part is then an application of Chebyshev’s inequality, once one has shown
that the variance Var(Qγ,1(sk)) is uniformly bounded over s ≥ ςk. The quantitative part requires a
(one-sided) large deviations estimate given below in Theorem 6.2.22. We are not exactly sure who
proved this originally; the earliest reference we found is in a survey by McDiarmid [56, Theorem 2.7];
we use the version given in the very nice survey paper by Chung and Lu [19, Theorem 3.4].

Theorem 6.2.22. Let (ξi)
k
i=1 be a sequence of iid, mean-0 random variables with ξ1 ≥ −M (de-

terministically), for some M . Set σ2 := Var(ξ1) = E(ξ2
1). For all x > 0, we have

P
(∑k

1 ξi ≤ −x
)
≤ B(x,M, kσ2) where B(x,M, v2) := exp

(
− 1

2x
2/(v2 + xM/3)

)
.

Recall the definition of the random variable Q and the entropies h and H. Define

ξi := Qγ,i(t)−Hγ(t/k); in particular recall that E
(
Qγ,i(t)

)
= Hγ(t/k).

To apply the large deviations estimate to
∑k

1 ξi, we wish to find an M ∈ R so that ξ1 ≥ −M
deterministically. We also need to bound the variance. The following auxiliary lemmas do these.

Lemma 6.2.23a. There exists an absolute constant M so that, for all γ ≥ 2 and s ≥ ς, we have

Qγ,1(sk)− E
(
Qγ,1(sk)

)
≥ −M

(√
Rγ(s) ∧ 1

)
.

Lemma 6.2.23b. There exist an absolute constant σ2 so that, for all γ ≥ 2 and s ≥ ς, we have

Var
(
Qγ,1(sk)

)
≤ σ2

(
Rγ(s) ∧ 1

)
.

We combine these lemmas to get our own large deviations estimate on Qγ(·).
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Proof of Proposition 6.2.21. Let ε ∈ (0, 1). We are interested at looking at time t∗, which satisfies

maxγ∈N tγ = t∗ = maxγ∈N t0(γ, |G/γG|).

Let γ ∈ N and set t0 := t0(γ, |G/γG|) and s0 := t0/k. Abbreviate rγ := Rγ(s0) and r̂γ := rγ ∧ 1.
By Corollary 6.2.10, we have rγ ≥ ζγ . By Lemma 6.2.20, there exists a constant c̃ε > 0 so that

hγ
(
t0(1 + ε)

)
− hγ(t0) ≥ 2c̃εr̂γk ≥ 2c̃εζ̂γk,

where ζγ := ζγ ∧ 1. Recall that E(Qγ(t′)) = h(t′) for all t′ ≥ 0. For each i ∈ [k], set

ξi := Qγ,i
(
t0(1 + ε)

)
− E

(
Qγ,i

(
t0(1 + ε)

))
.

Altogether, these relations imply that{
Qγ
(
t0(1 + ε)

)
≤ log |G/γG|+ c̃εζ̂γk

}
⊆
{∑k

1 ξi ≤ −c̃εζ̂γk
}
.

Applying the large deviations estimate Theorem 6.2.22, with parameters controlled by Lemma 6.2.23,
setting cε := 1

2 c̃
2
ε/(σ

2 + 1
3 c̃εM), a little algebra shows that

P
(
Qγ
(
t0(1 + ε)

)
≤ log |G/γG|+ c̃εζ̂γk

)
≤ exp

(
−cεζ̂γk

)
.

We want to apply this for maxγ∈N t0(γ, |G/γG|) instead of each individual t0(γ, |G/γG|). This
follows from the above analysis, due to the fact that t′ 7→ Qγ(t′) is stochastically increasing.

For the lower bound, observe that the growth rate lemma Lemma 6.2.20 has the same form for
time 1− ε as for 1 + ε. As for the upper bound, it suffices to prove the result for t := t0(γ, |G/γG|).
We apply Chebyshev’s inequality, with the variance controlled by Lemma 6.2.23b. The standard de-
viation is order (ζ̂γk)1/2 and the displacement order ζ̂γk. So to deduce the result from Chebyshev’s

inequality, we need ζ̂γk � 1. This is immediate: ζ̂γk = (k − d) log γ � 1 as k − d(G)� 1.

It remains to prove Lemma 6.2.23, which has two parts.

Proof of Lemma 6.2.23a. Recall that Rγ(s) . 1 if s & γ2 and Rγ(s) & 1 if s . γ2. We have

E
(
Qγ,1(sk)

)
−Qγ,1(sk) ≤ log γ + log

(
maxx∈Zγ νγ,s(x)

)
= log

(
1 + d∞,γ(s)

)
≤ d∞,γ(s).

By Lemma 6.2.1, writing γ` := 1− cos(2π(`− 1)/γ) for ` ∈ [γ], for both SRW and DRW, we have

d∞,γ(s) ≤
∑γ
`=2 e

−γ`s = 2e−γ2s
(
1 + 1

2

∑γ−1
`=3 e

−(γ`−γ2)s
)
.

Since γ` − γ2 � min{`, γ − `}2/γ2, there exists a constant β so that, if s ≥ βγ2, then

E
(
Qγ,1(sk)

)
−Qγ,1(sk) ≤ d∞,γ(s) ≤ 5

√
Rγ(s).

On the other hand, if ς ≤ s ≤ βγ2, then we upper bound

E
(
Qγ,1(sk)

)
= Hγ(s) ≤ H∞(s) = 1

2 log(2πes) +O
(
s−1/4

)
,

with the last relation following from Proposition 6.1.9. By the local CLT (see, eg, [48, The-
orem 2.5.6] or Theorem 6.1.4), the mode has probability order 1/

√
s in this regime. Hence

E
(
Qγ,1(sk)

)
−Qγ,1(sk) ≤ O(1).

Proof of Lemma 6.2.23b. This is an immediate consequence of Corollary 6.2.4 and Lemma 6.2.7.

Proof of Lemma 6.2.23b. Recall that Rγ(s) . 1 if s & γ2 and Rγ(s) & 1 if s . γ2.
By Lemma 6.2.7, there exist positive constants β and C so that, if ς ≤ s ≤ βγ2, then

Var
(
Qγ,1(sk)

)
≤ C.

On the other hand, if s ≥ βγ2, then by Corollary 6.2.4 we have

Var
(
Qγ,1(sk)

)
. Rγ(s).

Chapter 6. Supplementary Material Page 144 of 161



6.2.4 Variations Around the Entropic Time: The Special Case of Zd
p

In this section we specialise to the group Zdp; these entropic results do not require p to be prime.

(Note that d(Zdp) = d.) Here we not only establish cutoff, but also get a bound on the order of the
cutoff window when (k − d)p� 1. This section has two main propositions.

Use the notation from the previous sections, but drop the γ-subscripts: we only consider RWs
on Zp or Zkp. This is because the maximiser γ is clearly given by γ = p.

We first define precisely the entropic times under consideration here.

Definition 6.2.24. Recall that ζ = 1
k (k − d) log p. For α ∈ R, define

tα := h−1
(
d log p+ 2α

√
k(ζ ∧ 1)

)
.

Equivalently, tα := sαk where

ζα := ζ − 2α
√

(ζ ∧ 1)/k = ζ
(
1− 2α/

√
ζk(ζ ∨ 1)

)
and sα := R−1(ζα).

We call t0 the entropic time and {tα}α∈R cutoff times. Note that ζ0 = ζ.

The next proposition estimates these entropic times.

Proposition 6.2.25a (Entropic Times). Suppose that 1� k . d log p. The following hold:

if ζ � 1, then t0/k = s0 h 1
2 log(1/ζ)/

(
1− cos(2π/p)

)
;

if ζ & 1, then t0/k = s0 � p2e−2ζ = (pd)2/k;

further, if in fact 1� k � d log p, then

if ζ � 1, then t0/k = s0 h p2e−2ζ/(2πe) = (pd)2/k/(2πe).

Note that 1− cos(2π/p) hp→∞ 2π2/p2 = 2π2p−2d/ke2ζ .

Proposition 6.2.25b (Cutoff Times). Suppose that 1� k . d log p and (k − d)p� 1, ie ζ � 1/k.
Then, for all α ∈ R, we have tα h t0 and furthermore the following hold:

if ζ . 1, then (tα − t0)/t0 . 1/
(√

ζk log((1/ζ) ∨ e)
)
;

if ζ � 1, then (tα − t0)/t0 . 1/
√
k for the SRW.

Remark 6.2.26. We strongly believe that the last result also holds for the DRW; see Remark 6.2.29
for justification of this belief. In short, ζ � 1 implies that s0 � p2, and so the RW on Zp should
look almost the same as the RW on Z, once recentred to have mean 0. In particular, the growth
of the entropy (as a function of time) should be similar. 4

The next result is a concentration result. For α ∈ R, define

Q+
α := {Q(tα) ≥ log n+ α

√
k(ζ ∧ 1)} and Q−α := {Q(t−α) ≤ log n− α

√
k(ζ ∧ 1)};

Proposition 6.2.27 (Concentration). For all α ∈ (0,∞) with |ζα − ζ0| ≤ 1
2ζ0, we have

P
(
(Q±α )c

)
. α−2.

This proposition is an easy consequence of relative entropy results proved earlier in §6.2.

Proof of Proposition 6.2.27. Using the definition of ζα and ζ, we have

h(tα) = log n+ 2α
√
k(ζ ∧ 1);
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recall that n = d log p. Note that Var(Q) = kVar(Q1). By Chebyshev’s inequality, we have

P
(∣∣Q(tα)−

(
log n+ 2α

√
k(ζ ∧ 1)

)∣∣ ≥ |α|√k(ζ ∧ 1)
)
≤ α−2 Var

(
Q1(tα)

)
/(ζ ∧ 1).

Consider ζ . 1. Lemma 6.2.1 implies that sα & p2. Then, by Corollary 6.2.4, we have Var(Q(tα)) .
ζα � ζ. From this and the definition of Q±α , the proposition follows. When ζ � 1, Lemma 6.2.1
gives sα � p2. The argument proceeds as before, replacing Corollary 6.2.4 with Lemma 6.2.7.

We separate the proof of Proposition 6.2.25 into multiple parts.

Proof of 6.2.25a. Apply Lemma 6.2.1 and Corollary 6.2.2 together: for ζ � 1, they imply that
s0 h 1

2γ
−1
2 log(1/ζ); for ζ � 1, they imply that s0 � γ−1

2 . Also, note that γ2 = 1−cos(2π/p) hp→∞
2π2/p2. For ζ � 1, Proposition 6.2.5 implies that s0 � n2/k = p2d/k. Further, if k � d log p = log n,
then s0 � 1, and so in fact Proposition 6.2.5 implies that s0 h n2/k/(2πe).

We first show cutoff, namely tα h t0 for all α ∈ R. This just uses the entropy growth rate.

Proof of 6.2.25b: Cutoff. Since ζk � 1, we have

R(sα) = ζα = ζ
(
1 + o(1)

)
= R(s0)

(
1 + o(1)

)
.

But by Lemma 6.2.20, replacing s0 by s0(1 + ξ) changes the entropy by at least order ζ ∧ 1. Case
analysis gives s0(1− ε) ≤ sα ≤ s0(1 + ε) asymptotically for all α ∈ R for all ε ∈ (0, 1).

We next bound the window. Note that (k − d)p� 1 implies ζk(ζ ∨ 1)� 1.

Proof of 6.2.25b: Window when ζ . 1. Recall Corollary 6.2.15 and Lemma 6.2.16:

R(u+ v) ≤ R(v)e−2cLS,pu for all u, v ≥ 0 and cLS,p & 1/p2.

Consider first α > 0. Applying this with v := s0 and u := sα − s0 gives

ζα = R(sα) ≤ e−cLS,p(sα−s0)R(s0) = e−cLS,p(sα−s0)ζ0.

We hence deduce that sα − s0 ≤ c−1
LS,p log(ζ0/ζα), ie

sα − s0 ≤ −c−1
LS,p log

(
1− α/

√
ζk(ζ ∨ 1)

)
� αp2/

√
ζk(ζ ∨ 1) � αp2/

√
ζk.

For α < 0, use v := sα and u := s0 − sα to deduce the analogous result. Hence

|sα − s0| � |α|p2/
√
ζk � |α|s0

/(√
ζk log((1/ζ) ∨ e)

)
.

To analyse the window, we need to use the derivative of the entropy.

Lemma 6.2.28. There exist positive constants c and c′ so that, for all γ ∈ N, if ς ≤ s ≤ cγ2, then

d
dsH

−
γ (s) = − d

dsR
−
γ (s) ≥ c′/s.

Remark 6.2.29. This intuition for this claim is simple. For s � γ2, the RW on Zγ and Z look
almost the same. This is quantified by Corollary 6.2.6. We showed the the RW on Z that the
derivative satisfies H ′∞(s) h 1/(2s). We thus expect the RW on Zγ to exhibit the same property
when s� γ2. However, due to a technical hurdle, we have only been able to show this for the SRW.

The claim is somewhat analogous to the usual log-Sobolev inequality (see Corollary 6.2.15):

Rγ(u+ v) ≤ Rγ(v)e−cLS,γv for all u, v ≥ 0. 4

Proof of 6.2.25b: Window when ζ � 1 for SRW. In Proposition 6.1.11 we performed an ana-
logous calculation. Exactly as there, using Lemma 6.2.28, we deduce that |sα−s0|/s0 . |α|/

√
k.

Finally, we prove Lemma 6.2.28.
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Proof of Lemma 6.2.28. We may assume that s, and hence γ, is larger than any constant which
we desire, otherwise all terms on the left-hand side are order 1 and so the statement holds easily.

There is a constant C sufficiently large so that, writing K := C
√
s, we have

ν−γ,s([−K,K]) :=
∑
x∈[−K,K] ν

−
γ,s(x) ≥ 8

9 .

Moreover, provided c is sufficiently small, we can choose C so that K ≤ γ/10. Define ξ− by

ξ−x := ν−γ,s(x)1(x ∈ [−K,K])/ν−γ,s([−K,K]).

Let U denote the uniform distribution on Z2K+1. For g : Z2K+1 → (0,∞), define

EntU (g) := EU
(
g log

(
g/EU (g)

))
.

By definition of the modified log-Sobolev constant (of RW on Z2K+1), denoted cMLS,2K+1, we have∑
x∈Z2K+1

1
2U(x)

(
g(x)− g(x+ 1)

)
log
(
g(x)/g(x+ 1)

)
≥ cMLS,2K+1 EntU (g); (6.2.3)

see Definition 6.2.12 below. Further, it is well-known that, cMLS,2K+1 & cLS,2K+1 & 1/K2; see
Lemma 6.2.16 below. This holds for both the SRW and the DRW.

Using the backward Kolmogorov equations, an elementary calculation for the SRW gives

− d
dsR

−
γ (s) =

∑
x∈Zγ

d
dsν
−
γ,s(x) · log ν−γ,s(x)

=
∑
x∈Zγ

1
2

(
ν−γ,s(x)− ν−γ,s(x+ 1)

)
log
(
ν−γ,s(x)/ν−γ,s(x+ 1)

)
. (6.2.4)

This actually holds for the DRW too; we explain this at the end. Note that (a − b) log(a/b) ≥ 0
whenever a, b > 0. Hence all terms above are non-negative, and so, recalling the definition of ξ−

above, we have

− d
dsR

−
γ (s) ≥ ν−γ,s([−K,K])

∑
x∈[−K,K]

1
2

(
ξ−x − ξ−x+1

)
log
(
ξ−x /ξ

−
x+1

)
,

where we identify Z2K+1 with [−K,K] ∩ Z and K + 1 ≡ −K, and used the fact that ξ−K = ξ−−K .

Combining this with (6.2.3), noting that νγ,s([−K,K]) ≥ 8
9 , we see that

− d
dsR

−
γ (s) ≥ νγ,s([−K,K])

∑
x∈Z2K+1

1
2

(
ξ−x − ξ−x+1

)
log
( ξ−x
ξ−x+1

)
= νγ,s([−K,K])

∑
x∈Z2K+1

U(x) 1
2

(
(2K + 1)ξ−x − (2K + 1)ξ−x+1

)
log
( (2K+1)ξ−x

(2K+1)ξ−x+1

)
& K−2 EntU

(
(2K + 1)ξ−

)
= K−2D(ξ− ‖U),

where the final expression is the the relative entropy of ξ− with respect to U on Z2K+1.
We argue that D(ξ− ‖U) & 1; the lemma then follows, since K �

√
s. By standard exit time

estimates for SRW on a cycle, ν−γ,s([−K,K]) � 1 since K �
√
s. Since K ≤ γ/10, the support of ξ,

namely [−K,K] ⊆ Zγ , contains fewer than half the vertices of Zγ . Hence by Pinsker’s inequality
and then the triangle inequality, we have 1

2D(ξ− ‖U)2 ≥ ‖ξ− − U‖TV ≥ 1
2 .

6.3 Large Deviation Estimates for Random Walk on Z
The aim of this section is to prove a large deviations result for the RW on Z. First we must

define the times at which we wish to evaluate the RW. Roughly, we look at the time at which the
entropy of the RW on Z is log n/k. This corresponds to roughly the time in the following definition.

Definition 6.3.1. Abbreviate κ := k/ log n. Let s0 := s0(k, n) be any time satisfying

s0 . n2/k log k when k . log n and s0 h 1/(κ log κ) when k � log n.

When we say “RW”, we mean either a SRW or a DRW.
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Definition 6.3.2. Let X = (Xs)s≥0 be a rate-1 RW on Z. Define r(k, n) and p(k, n) as follows:

r(k, n) := min
{
r ∈ Z

∣∣ P(∣∣Xs0 − E(Xs0)
∣∣ > r

)
≤ 1/k3/2

}
;

p(k, n) := min
{
P
(
Xs0 − E(Xs0) = j

) ∣∣ |j| ≤ r(k, n)
}
.

Also define r∗(k, n) := 1
2n

1/k(log k)2 and p∗(k, n) := n−1/kk−2.

Proposition 6.3.3. We have r(k, n) ≥ r∗(k, n) and p(k, n) ≥ p∗(k, n).

This proposition will follow from standard large deviation theory, but the details are non-trivial.
The exponent 2 in (log k)2 is not optimal, but is chosen for convenience of proof and to enable us
to deal with all regimes of k simultaneously.

The following propositions provide asymptotic estimates for tails of the Poisson distribution and
for continuous-time SRW on Z, as well as for the ratio between the ‘tail’ and ‘point’ probabilities.
We note that in the regime r ∈ [

√
s, s2/3] stronger assertions can be made via the local CLT (6.1.2).

Below, for a, b ∈ R, we write a ∨ b := max{a, b} and a ∧ b := min{a, b}.

Proposition 6.3.4 (Poisson Bounds). For s ∈ (0,∞), let Xs ∼ Poisson(s). Then, uniformly in
s ∈ (0,∞) and in r with r ≥

√
s and s+ r ∈ Z, we have the following relations:

− logP
(
Xs ≥ s+ r

)
� r
(
(r/s) ∧ 1

)
log
(
(r/s) ∨ e

)
; (6.3.1a)

P
(
Xs ≥ s+ r

)
/P
(
Xs = s+ r

)
� (s/r) ∨ 1. (6.3.2a)

Moreover, uniformly in s ∈ (0,∞) and in r ∈ [
√
s, s] with s−r ∈ Z we have the following relations:

− logP
(
Xs ≤ s− r

)
� r
(
(r/s) ∧ 1

)
log
(
(r/s) ∨ e

)
; (6.3.1b)

P
(
Xs ≤ s− r

)
/P
(
Xs = s− r

)
� (s/r) ∨ 1. (6.3.2b)

Proposition 6.3.5 (SRW Bounds). Let X = (Xs)s≥0 be a rate-1 SRW on Z started at 0. Then,
uniformly in s ∈ (0,∞) and in r with r ≥

√
s and r ∈ Z, we have the following relations:

− logP
(
Xs ≥ r

)
� r
(
(r/s) ∧ 1

)
log
(
(r/s) ∨ e

)
; (6.3.3)

P
(
Xs ≥ r

)
/P
(
Xs = r

)
� (s/r) ∨ 1. (6.3.4)

From these, we can deduce the proof of Proposition 6.3.3.

Proof of Proposition 6.3.3. Recall that κ = k/ log n and that the time s being considered satisfies

s . n2/k log k when k . log n and s h 1/(κ log κ) when k � log n.

Consider the SRW. Equations (6.3.1–6.3.4) are all “f � g”-type statements; let c > 0 be a
universal constant such that c is a lower and C := 1/c an upper bound for these relations.

For r, it is enough to find an r̃ so that

− logP
(
Xs ≥ r̃

)
≥ 2 log k.

For p, since we only consider j with |j| ≤ r, and r is defined as a minimum, we have P(Xs ≥ |j|) ≥
k−3/2 for all such j. We split into two regimes, namely s ≥ 2C log k and s < 2C log k.

First suppose that s ≥ 2C log k. Set r̃ :=
√

2Cs log k. Then r̃ ≤ s, and so, by (6.3.3), we have

− logP
(
Xs ≥ r̃

)
≥ cr̃

(
(r̃/s) ∧ 1

)
log
(
(r̃/s) ∨ e

)
= cr̃2/s ≥ 2 log k.

For p∗, since r̃ ≤ s, by (6.3.4), we have

P
(
Xs = j

)
& (s/r)P

(
Xs ≥ j

)
& (log k)1/2n−1/k · k−3/2 � n−1/kk−2.

Suppose now that s < 2C log k. Set r̃ := 2C log k. Then r̃ ≥ s, and so, by (6.3.3), we have

− logP
(
Xs ≥ r̃

)
≥ cr̃

(
(r̃/s) ∧ 1

)
log
(
(r̃/s) ∨ e

)
≥ cr̃ = 2 log k.
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For p∗, since r̃ ≥ s, by (6.3.4), we have

P
(
Xs = j

)
& P

(
Xs ≥ j

)
≥ k−3/2 � k−2 ≥ n−1/kk−2.

Observe that, in either regime, we have r̃ ≤ r∗, with r∗ defined in Definition 6.3.2. This
completes the proof of Proposition 6.3.3 in the undirected case.

The DRW case, using Poisson bounds, is in essence the same, due to the similarity of Proposi-
tions 6.3.4 and 6.3.5. It is slightly messier to write down, since one must take care that s+r ≥ 0.

Proof of Proposition 6.3.4 (Poisson). For s ≤ 10, all that is needed is the observation that

P
(
Xs ≥ r

)
� P

(
Xs = r

)
� sr/r! �

(
es/r

)r
/
√
r.

We now consider the case s ≥ 1. First we state that, for all r ≥ 0, we have

max
{
P
(
Xs ≥ s+ r

)
,P
(
Xs ≤ s− r

)}
≤ exp

(
− 1

2r
2/(s+ r/3)

)
; (6.3.5)

this follows from Bernstein’s inequality, by taking an appropriate limit.
A direct calculation involving Stirling’s approximation shows, uniformly in s and in r with

r ≥ 1
2s and s+ r ∈ Z, respectively 1

2s ≤ r ≤ s, the following relations:

P
(
Xs ≥ s+ r

)
� P

(
Xs = s+ r

)
�
er
(
s/(s+ r)

)s+r√
2π(s+ r)

,

P
(
Xs ≤ s− r

)
� P

(
Xs = s− r

)
�
er
(
s/(s− r)

)s−r√
2π(s− r)

;

from these, one can verify (6.3.2a, 6.3.2b) for such r.
We can obtain lower bounds on P(Xs ≥ s + r) and P(Xs ≤ s − r) for r ≤ 1

2s, from which,
together with (6.3.5), we can verify (6.3.2a, 6.3.2b) for such r:

P
(
Xs = s+ r

)√
2π(s+ r) � er

( s

s+ r

)s+r
� exp

(
− r2

2(s+ r)
−O

(
r3

(s+ r)2

))
,

P
(
Xs = s− r

)√
2π(s− r) � e−r

( s

s− r

)s−r
� exp

(
− r2

2(s− r)
−O

(
r3

(s− r)2

))
;

these are found using Stirling’s approximation, and both hold uniformly for r ≤ 1
2s.

We now prove (6.3.1a); the proof of (6.3.1b) is similar and is omitted. We consider s ≥ 10,
having already considered s ≤ 10 initially. Observe that r 7→ P(Xs = s± r) is decreasing on r ≥ 0
with s± r ∈ Z. Using the formula for P(Poisson(λ) = k), we have

P(Xs = s+ r)

P(Xs = s+ r + 1)
=
s+ r + 1

s
.

If r ≥ 1
4s, then this ratio is at least 11/9, when s ≥ 10, from which one can readily see that

(6.3.1a) holds. Now suppose that r ∈ [
√
s, 1

4s]. To conclude the proof, we show that there exist
universal constants c1, c2 ∈ (0, 1) so that, for such r, we have

c1 P
(
Xs = s+ r

)
≤ P

(
Xs = s+ r + ds/(2r)e

)
≤ c2 P

(
Xs = s+ r

)
. (6.3.6)

This, together with the decreasing statement above, can easily be seen to imply (6.3.1a). We now
prove (6.3.6). If

√
s ≤ r ≤ 1

4s, then

P(Xs = s+ r)

P(Xs = r + r + j)
=

j∏
i=1

s+ r + i

s
=

j∏
i=1

(
1 + (r + i)/s

)
≤ exp

(∑j
i=1(r + i)/s

)
= exp

(
1
2j(j + 2r + 1)/s

)
.

If in addition j ≤ 1
2s/r, then the last estimate is tight up to a constant factor. Indeed, in this

case we have exp( 1
2j(j + 2r + 1)/s) ≤ e3. Conversely, using the fact that 1 + θ ≥ exp(θ − 2θ2) for

θ ∈ [0, 1
2 ], we find some universal constant c0 > 1 so that exp( 1

2j(j + 2r + 1)/s) ≥ c0.
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Proof of Proposition 6.3.5 (SRW). Fix an s ∈ (0,∞); without loss of generality, assume r ≥ 0.

Recall that X has the same law as YN :=
∑N

1 ξi, where (ξi)i∈N is an iid sequence of random
variables with P(ξ1 = +1) = 1

2 = P(ξ1 = −1) and N ∼ Poisson(s), independent of (ξi)i∈N. Then

(Yk :=
∑k

1 ξi)k∈Z+ is a discrete-time SRW on Z started at the origin.

We first prove (6.3.3). Observe that E(eλξ1) = 1
2e
λ + 1

2e
−λ ≤ eλ

2/2, and so E(eλYk) ≤ eλ
2k/2,

and hence P(Yk ≥ r) ≤ exp(−r2/(2k)), by taking λ := r/k. Further, an elementary calculation
involving Stirling’s approximation shows, uniformly over r with

√
k log k < r ≤ k, that

− logP
(
Yk ≥ r

)
≤ − logP

(
Yk ∈ {r, r + 1}

)
� r2/k;

for
√
k ≤ r ≤

√
k log k one can use the local CLT (see Theorem 6.1.4) to verify that

− logP
(
Yk ≥ r

)
� r2/k.

For r ≤
√

2s, we average over N and use the above bounds on Yk. In particular, we have

E
(
eλXs

)
≤
∑∞
r=0 P

(
N = k

)
eλ

2k/2 = E
(
eλ

2N/2
)

= exp
(
s(eλ

2/2 − 1)
)
≤ exp

(
s(λ2/2 + (λ2/2)2)

)
,

with the final inequality holding when λ2 ≤ 2, applying the inequality eθ − 1 ≤ θ + θ2 valid for
θ ∈ [−1, 1]. We now set λ := r/s and use Chernoff to deduce that

P
(
Xs ≥ r

)
≤ exp

(
− 1

2 (r2/s)(1− 1
2 (r/s))

)
≤ exp

(
− 1

8 (r2/s)
)
.

For r ≥
√

2s, we use the inequalities

P
(
Xs ≥ r

)
≤ P

(
Poisson(s) ≥ r

)
and P

(
Xs ≥ r

)
≥ P

(
N = 2r

)
P
(
Y2r ≥ r

)
.

This case is completed by applying (6.3.1, 6.3.2), ie Proposition 6.3.4.

We now prove (6.3.4). For r ≥ 1
2s, it follows from the fact that r 7→ P(Xs = r) is decreasing and

sups, r st r≥s/2 P
(
Xs = r + 2

)
/P
(
Xs = r

)
< 1,

which can be verified via a direct calculation involving averaging over N and applying Stirling’s
approximation; we omit the details. For r ≤ 1

2s, it suffices to prove the following corresponding

result for (Yk)k∈Z+ : uniformly in k > 0 and r ∈ [
√
k, 1

2k] with r ∈ Z, we have

P(Y2k ≥ 2r)

P(Y2k = 2r)
� k

r
� P(Y2r+1 ≥ 2r + 1)

P(Y2r+1 = 2r + 1)
; (6.3.7)

from this, the original claim follows by averaging over N . Using Stirling’s approximation, it is not
hard to verify for r ∈ [

√
k, 1

2k] that there exist universal constants c1, c2 ∈ (0, 1) such that the
following hold:

c1 P
(
Y2k = 2r

)
≤ P

(
Y2k = 2(r + dk/re)

)
≤ c2 P

(
Y2k = 2r

)
;

c1 P
(
Y2k+1 = 2r + 1

)
≤ P

(
Y2k+1 = 2(r + dk/re) + 1

)
≤ c2 P

(
Y2k+1 = 2r + 1

)
.

This, together with the fact that both r 7→ P(Y2k = 2r) and r 7→ P(Y2k+1 = 2r+ 1) are decreasing
on [0, k], is easily seen to imply (6.3.7).

6.4 Simple Random Walk Exit Times Estimates

In this section, we prove some estimates on exit times for SRW on the integers. These results
were used in the spectral gap analysis of Chapter 4. The following auxiliary lemma is needed.

Lemma 6.4.1. For ϕ ∈ [− 1
2 ,

1
2 ], we have

2(πϕ)2 ≥ 1− cos(2πϕ) ≥ 2
3 (πϕ)2.
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Proof of Lemma 6.4.1. Let ϕ ∈ [− 1
2 ,

1
2 ]. Then, using the fact that log(1−x) ≥ −x−x2 for |x| < 1,

that
∑∞

1 1/i2 = 1
6π

2, that
∑∞

1 1/i4 = 1
90π

4 and that ϕ ∈ [− 1
2 ,

1
2 ], we can calculate directly:

1 ≥ 1− cos(2πϕ)

2(πϕ)2
=
( sin(πϕ)

πϕ

)2

=

∞∏
`=1

(
1− ϕ2

`2

)2

≥ exp

(
−2

∞∑
`=1

(ϕ2

`2
+
ϕ4

`4

))
≥ 0.383 ≥ 1

3 .

Lemma 6.4.2. Let ` ∈ N and τ := inf{s ≥ 0 | |Ys| = `}, where (Ys)s≥0 is a continuous-time rate-1
SRW on Z. Let θ := 1

2π/` and λ := 1− cos θ. Then, for all s ≥ 0, we have

P0

(
τ > s

)
≥ e−λs ≥ exp

(
− 1

8s(π/`)
2
)
.

Proof of Lemma 6.4.2. The second inequality follows from Lemma 6.4.1.
For the first inequality, we first note that

µ : x 7→ cos(θx)
/∑`

j=−` cos(θj) : {−`, ..., `} → [0, 1]

is a distribution satisfying µ(±`) = 0 and

(µP̂ )(x) = µ(x) cos θ for x ∈ J = {−`+ 1, ..., `− 1},

where P̂ is the transition matrix of discrete-time SRW on {−`, ..., `} with absorption at the bound-

ary. Indeed, using µ(±`) = 0 we have (µP̂ )(x) = 1
2 (µ(x+ 1) + µ(x− 1)) = µ(x) cos(π/(2`)), where

we have used cos(a+ b) + cos(a− b) = 2 cos a cos b. If follows that starting from initial distribution

µ we have µP̂ i(J) = (1−λ)i, where P̂ i is the matrix P̂ raised to the power i, and so µP̂ i(J) is the
probability of not getting absorbed at the boundary by the i-th step when the initial distribution
is µ. It follows that

Pµ
(
τ > s

)
=
∑∞
i=0 µP̂

i(J)P
(
Poisson(t) = i

)
= e−λs.

By considering the continuous-time chain with jump-matrix P̂ , we obtain, for all s ≥ 0, that

P0

(
τ > s

)
= maxj∈J Pj

(
τ > s

)
,

as can be seen by a simple coupling argument; cf [49, Example 5.1]. This concludes the proof.

Definition 6.4.3. For a transition matrix P and a set A, let λA be the minimal Dirichlet eigenvalue,
namely the minimal eigenvalue of minus the generator of the chain killed upon exiting A, ie of

IA − PA where (IA − PA)(x, y) := 1(x, y ∈ A)
(
1(x = y)− P (x, y)

)
.

Also, for a set A, write τAc for the (first) exit time of this set by the chain.

Lemma 6.4.4. Consider a rate-1, continuous-time, reversible Markov chain with transition matrix
P . Let A be a connected set, and let λA and τAc be as in Definition 6.4.3. For all a ∈ A, we have

− 1
t logPa

(
τAc > t

)
→ λA as t→∞.

Proof of Lemma 6.4.4. For connected A, by the Perron–Frobenius theorem, the quasi-stationary
distribution of A, which we denote by µ = (µa)a∈A, is positive everywhere on A. (See [2, §3.6.5]
for the definition of quasi-stationarity.) Since Pµ(τAc > t) =

∑
a∈A µa Pa

(
τAc > t

)
, we have

Pa
(
τAc > t

)
≤ µ−1

a Pµ
(
τAc > t

)
= µ−1

a exp(−λAt),

since the exit time starting from the quasi-stationary distribution is exponential with rate λA, as
shown in the equation proceeding (3.83) in [2]. This proves the upper bound, taking t→∞.

For the other direction, we claim that there exists a constant c, independent of a and t, so that

mina∈A Pa
(
τAc > t

)
≥ c maxa∈A Pa

(
τAc > t+ 1

)
.
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Indeed, let a′ be an element of A attaining the maximum at time t + 1. Using the connectedness
of A, for any other a ∈ A there exists a path from a′ to a consisting of states belonging to A. The
probability that the walk traverses this path, and does so in time less than 1, is at least c, for some
c independent of t. From this we deduce that

mina∈A Pa
(
τAc > t

)
≥ cPµ

(
τAc > t+ 1

)
= c exp

(
−λA(t+ 1)

)
.

This proves the lower bound, taking t→∞, and hence proves the lemma.

6.5 Size of Discrete Lattice Ball Estimates

We wish to determine the size of the Lq balls in Zk. In particular, we desire Rk,q so that

|Bk,q(Rk,p)| ≈ n where Bk,q(R) :=
{
a ∈ Zk

∣∣ ∑k
1 |ai|

q ≤ Rq
}
.

This is done by Lemmas 6.5.2 and 6.5.3. First we need a definition and preliminary lemma.

Definition 6.5.1. Set ω := max{(log k)2, k/n1/(2k)}, and choose Rk,q to be the minimal integer
satisfying |Bk,q(Rk,q)| ≥ neω. Note that ω satisfies 1� ω � k if k � log n.

For q ∈ [1,∞), write Vk,q(R) for the (Lebesgue) volume of the Lq ball of radius R in Rk, ie

Vk,q(R) := vol
{
x ∈ Rk

∣∣ ‖x‖q ≤ R};

also write Vk,q := Vk,q(1) and note that Vk,q(R) = RkVk,q. It is known (see [76]) that

V`,q = 2`Γ(1/q + 1)`/Γ(`/q + 1). (6.5.1)

We can use this, along with Lemma 6.5.2b below, to well-approximate |Bk,q(R)| when q /∈ {1,∞};
for q = 1 we directly bound |Bk,1(·)|, while for q =∞ we have an exact expression.

Lemma 6.5.2a. For q = 1 and all R ≥ 0, we have

2k∧R
(bRc
k

)
1(R ≥ k) ≤

∣∣Bk,1(R)
∣∣ ≤ 2k∧R

(bRc+k
k

)
. (6.5.2a)

Lemma 6.5.2b. For q ∈ (1,∞) and all R ≥ k1+1/q, we have∣∣Bk,q(R)
∣∣ = Vk,q(R)

(
1 +O

(
k1+1/q/R

))
. (6.5.2b)

Lemma 6.5.2c. For q =∞ and all R ≥ 0, we have∣∣Bk,∞(R)
∣∣ =

(
2bRc+ 1

)k
. (6.5.2c)

Proof of Lemma 6.5.2a. Assume R ∈ N. Observe that∣∣Bk,1(R)
∣∣ =

∣∣{a ∈ Zk |
∑k
i=1 |ai| ≤ R

}∣∣.
Moreover, it is a standard combinatorial identity that∣∣{α ∈ Zk+ |

∑k
i=1 αi ≤ R

}∣∣ =
(
R+k
k

)
.

The upper and lower bounds will follow easily from this view point, setting αi := |ai|.
For the upper bound, note that αi = | ± ai|, and so given the value of αi, there are two choices

for ai if αi > 0, otherwise there is only one (since 0 = −0). Hence∣∣{a ∈ Zk |
∑k
i=1 |ai| ≤ R

}∣∣ ≤ 2k∧R
∣∣{a ∈ Zk+ |

∑k
i=1 αi ≤ R

}∣∣ = 2k∧R
(
R+k
k

)
,

noting that there are at most k ∧R non-zero coordinates for which a sign can be chosen.
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For the lower bound, we get the factor of 2k∧R by only considering a ∈ Zk with |ai| > 0 for all
i, and then setting βi := αi − 1. Concretely, for R ≥ k, we have∣∣{a ∈ Zk

∣∣ ∑k
i=1 |ai| ≤ R

}∣∣ ≥ ∣∣{a ∈ Zk
∣∣ ∑k

i=1 |ai| ≤ R, ai 6= 0 ∀ i = 1, ..., k
}∣∣

= 2k∧R
∣∣{α ∈ Zk

∣∣ ∑k
i=1 αi ≤ R, αi > 0 ∀ i = 1, ..., k

}∣∣
= 2k∧R

∣∣{β ∈ Zk
∣∣ ∑k

i=1 βi ≤ R− k, βi ≥ 0 ∀ i = 1, ..., k
}∣∣ = 2k∧R

(
R
k

)
.

Proof of Lemma 6.5.2b. For any R, writing diamq for the Lq diameter (in Rk), we have

Bkq
(
R− diamq[− 1

2 ,
1
2 )k
)
⊆ Bkq (R) ⊆ Bkq

(
R+ diamq[− 1

2 ,
1
2 )k
)
.

Note that diamq[− 1
2 ,

1
2 )k = k1/q. Hence, for R with R ≥ k1+1/q, we have∣∣Bkq (R)

∣∣ =
(
1 +O(k1/q/R)

)k
= 1 +O

(
k1+1/q/R

)
.

Cf [46, Lemma 2.5], where the case q = 2 is considered; there, convolutions are employed.

Proof of Lemma 6.5.2c. In the L∞ norm, the coordinates are independent. The claim follows.

We use this lemma to find an Rk,p from Definition 6.5.1, which is the minimal integer satisfying
|Bk,q(Rk,p)| ≥ neω. Recall that Mk,q = k1/qn1/k/Cq, and that Cq = 2 Γ(1/q + 1)(qe)1/q. The next
lemma shows that the difference between M and M is only by sot. Also, let K be a constant,
assumed to be as large as required, and let ξ := 1 − e−Kω/k when k � log n. (As such, we can
always replace 1± ξ by e±ξ.)

Lemma 6.5.3a. For k � log n and q = 1, we have

Rk,1 ≤
⌈
Mk,1(1 + ξ)

⌉
and

∣∣Bk,1(Mk,1(1− ξ)
)∣∣� n. (6.5.3a)

Lemma 6.5.3b. For k ≤ log n/ log log n and all q ∈ [1,∞), we have

Rk,q ≤
⌊
Mk,q(1 + ξ)

⌋
and

∣∣Bk,q(Mk,q(1− ξ)
)∣∣� n. (6.5.3b)

Lemma 6.5.3c. For q =∞, we have

Rk,∞ =
⌈

1
2n

1/keω/k − 1
2

⌉
and

∣∣Bk,∞(Mk,∞(1− ξ)
)∣∣� n. (6.5.3c)

Moreover, if k � log n then Rk,∞ h Mk,∞.

Lemma 6.5.3d. For all λ > 0, for k h λ log n, there exists a function ω � 1 and a constant α so
that, for all ε ∈ (0, 1), the minimal integer M1 satisfying |Bk,1(M1)| ≥ neω satisfies

Rk,1 h αk h αλ log n and
∣∣Bk,1(αk(1− ε)

)∣∣� n. (6.5.3d)

In fact, the result holds for any 1� ω � k.

Proof of Lemma 6.5.3a. Upper Bound. Write M := deξkn1/k/(2e)e. Note that k � log n, and so
n1/k � 1, and so M � k. Then, by (6.5.2a) and Stirling’s formula, we have∣∣Bk,1(M)

∣∣ ≥ 2k
(
M
k

)
≥ 2k(M − k)k/k! & k−1/2(1− k/M)k(2eM/k)k

≥ k−1/2 exp
(
−k(2k/M + ξ)

)
· n.

Take ξ := 2ω/k: then k/M � n−1/k � n−1/(2k) ≤ ξ and e−ξk � k1/2. Hence |Bk,1(M)| ≥ neω.

Lower Bound. Set M := kn1/ke−Kω/k/(2e). Using
(
N
k

)
≤ (eN/k)k and (6.5.2a), we have∣∣Bk,1(M)

∣∣ ≤ (2e(M/k + 1)
)k ≤ ne−Kω exp

(
6k/n1/k

)
� n,

using 1 + x ≤ ex with x = k/M ,
(
N
r

)
≤ (eN/r)r and ω ≥ k/n1/(2k) � k/n1/k as k � log n.
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Proof of Lemma 6.5.3b. Upper Bound. From the formula (6.5.1), we see that

Rk,q := n1/ke2ω/k/V
1/k
k,q = 1

2n
1/ke2ω/kΓ(k/q + 1)1/k/Γ(1/q + 1)

satisfies V kq (Rk,q) = ne2ω. Using Stirling’s formula, and the fact that k � 1, we then deduce that

Rk,q ≤ n1/kk1/qeξ/Cq.

Observe that k1+1/q/Rk,q � k/n1/k � k/n1/(2k) ≤ ω. Applying Lemma 6.5.2b with R := Rk,q,
which is valid since k ≤ log n/ log log n, implying n1/k � k and hence Rk,q � k1+1/q, gives∣∣Bkq (Rk,q)

∣∣/V kq (Rk,q) = 1 +O
(
k1+1/q/Rk,q

)
= exp

(
o(ω)

)
.

Noting that V kq (Rk,q) = ne2ω, we hence deduce that |Bkq (Rk,q)| ≥ neω.

Lower Bound. Set M := k1/qn1/ke−Kω/k/Cq. Then, by (6.5.1) and Stirling, we have

V kq (M) = CkM
k = ne−Kωkk/q

/(
Γ(k/q + 1)(qe)k/q

)
� n.

Note that M � k1+1/q since k ≤ log n/ log log n, and hence |Bkq (M)| � n by Lemma 6.5.2b.

Proof of Lemma 6.5.3c. Upper Bound. This is immediate from (6.5.2c) and the relation n1/k � 1.

Lower Bound. Recall Lemma 6.5.2c. Observe that

(2M + 1)k ≤ ne−ν if and only if k log(2M) + k log
(
1 + 1/(2M)

)
≤ log n− ν.

Let us set M := 1
2n

1/ke−Kω/k, for a constant K. Then

(2M + 1)k ≤ ne−ν if and only if log n−Kω + k log
(
1 + 1/(2M)

)
≤ log n− ν.

Recall that ω ≥ k/n1/(2k) � k/n1/k � k/M . Hence, for any constant K, we have∣∣Bk∞(M)
∣∣ ≤ (2M + 1)k � n,

by choosing ν � 1 but with ν = o(ω). Also, k � log n, so bMc � 1.

Proof of Lemma 6.5.3d. We first prove that there exists a strictly increasing function c : (0,∞)→
(0,∞) so that, for all a > 0, omitting here and below all ceiling signs, we have∣∣Bk,1(ak)

∣∣ = exp
(
k
(
c(a) + o(1)

))
.

By considering the number i of coordinates which equal 0, we have |Bk,1(ak)| =
∑k
i=0Ai, where

Ai := Ai(k, a) :=
(
k
i

)
2k−i

(
k−i+ak
ak

)
.

Choose i∗ := i∗(k, a) that maximises Ai. Then Ai∗ ≤ |Bk,1(ak)| ≤ (k + 1)Ai∗ . Observe that

Ai+1

Ai
=

(k − i)2

2(i+ 1)(k(1 + a)− i)
,

and hence one can determine i∗ as a function of k and a, conclude that i∗(a, k)/k converges as
k → ∞ and thus determine c(a) (in terms of the last limit). We omit the details. Knowing this
limit allows us to plug this into the definition of Ai and use Stirling’s approximation to get

Ai∗ = exp
(
k
(
c(a) + o(1)

))
,

for some strictly increasing function c : (0,∞)→ (0,∞). Since k + 1 = eo(k), the claim follows.

Upper Bound. Since k h λ log n, we have M1/k → c−1(1/λ) as n→∞; set α := c−1(1/λ).

Lower Bound. It follows from the exponential increase in the size of the L1 ball that
|Bk,1((1− ε)αk)| = o(n) for all ε > 0, where M1 h αk and α = c−1(1/λ).

Chapter 6. Supplementary Material Page 154 of 161



6.6 Some Further Deferred Proofs

6.6.1 Uniformity of Linear Combination of Uniform Random Variables

Lemma 6.6.1. Let G be Abelian, k ∈ N and v ∈ (Z \ {0})k. Draw Z1, ..., Zk ∼iid Unif(G). Then

v · Z =
∑k

1 viZi ∼ Unif(gG) where g := gcd(v1, ..., vk, |G|).

Proof. Decompose G as ⊕d1 Zmj . Write gj := gcd(v1, ..., vk,mj) for each j ∈ [d]. Then, for each
i ∈ [k], we may write Zi = (ζi,1, ..., ζi,d) with ζi,j ∼ Unif(Zmj ) with all the ζi,j independent. Then

(v · Z)j =
∑k
i=1 viζi,j ,

where (v ·Z)j is the j-th component of v ·Z ∈ Zd, and in particular ((v ·Z)j)
d
j=1 are independent.

Assuming the d = 1 case, the above then shows that (v · Z)j ∼ Unif(gjZmj/gj ) for each j. Hence
it suffices to prove the d = 1 case.

We now prove the d = 1 case. Since any i ∈ [k] with vi ≡ 0 mod m does not contribute to the
sum, by passing to a subsequence, we may assume that vi 6≡ 0 mod n for all i ∈ [k].

We use induction on |I|. Let U ∼ Unif{1, ..., n} and set R := mU where m ∈ {1, ..., n}. Define

g := gcd(m,n) and r := m/g so that R = mU = g · (rU).

We then have gcd(r, n) = 1, and so rU ∼ Unif{1, ..., n}: indeed, for any x ∈ {1, ..., n}, we have

P
(
rU = x

)
= P

(
U = xr−1

)
= 1

n where r−1 is the inverse of r mod n.

Thus we have R = g · (rU) ∼ Unif{g, 2g, ..., n}, since g o n. This proves the base case |I| = 1.
Now consider independent X,Y ∼ Unif{1, ..., n} and set R := aX + bY . By pulling out a

constant as above, we may assume that a, b o n. Write c := gcd(a, b, n). Then there exist r, s ∈
{1, ..., n} with

ar + bs ≡ c modn, and hence a(mr) + b(ms) ≡ cm modn for any m ∈ {1, ..., n}.

Thus {c, 2c, ..., n} ⊆ supp(R). By writing R := c(ac−1X + bc−1Y ), with c−1 the inverse modn, we
see that in fact supp(R) = {c, 2c, ..., n}. It remains to show that R is uniform on its support.

Pulling out the factor c, it is enough to consider gcd(a, b, n) = 1. For m ∈ {0, 1, ..., n− 1}, set

Ωm :=
{

(x, y) ∈ [n]2 | ax+ by ≡ m modn
}
.

We show that |Ωm| is the same for all m, and hence deduce that R is uniform on {c, 2c, ..., n}.
Indeed, for every m there exists a pair (xm, ym) ∈ [n]2 so that axm+ bym = m. If also (x, y) ∈ Ωm,
then letting x′ = x− xm and y′ = y − ym, we see that (x′, y′) ∈ Ω0. This proves the case |I| = 2.

Now suppose that X1, ..., XL ∼iid Unif{1, ..., n} and a1, ..., aL ∈ {1, ..., n−1}. By the hypothesis,∑L−1
`=1 a`X` ∼ c0U where U ∼ Unif{1, ..., n} and c0 := gcd(a1, ..., aL−1, n).

Now, XL is independent of this sum, and so the previous case applies to say that∑L
`=1 a`X` ∼ cU where U ∼ Unif{1, ..., n} and c := gcd(c0, aL, n) = gcd(a1, ..., aL, n).

This completes the induction, and hence proves the claim.

6.6.2 Decomposition for Product of Upper Triangular Matrices

Write Hp,d for the set of d× d uni-upper triangular matrices with entries in Zp.

Lemma 6.6.2. Let Z1, ..., Zk ∈ Hp,d. Let γ ∈ [k]L and σ ∈ {±1}L. For i, j ∈ [k], set

Ci,j(γ, σ) :=
∑L
`=0

∑`−1
m=0 σmσ`1(γm = i, γ` = j) + 1(i = j)

∑L
`=0 1(γ` = i, σ` = −1).
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Set M := Zσ1
γ1 · · ·Z

σL
γL . Then, for all a ∈ [d], we have

M(a, a) = 1 and M(a, a+ 1) =
∑L
`=1 σγ`Zγ`(a, a+ 1),

and, for all a, b ∈ [d] with b ≥ a+ 2, we have

M(a, b) =
∑
`∈[L] Zγ`(a, b) +

∑
i,j∈[k] Ci,j(γ, σ)Zi(a, a+ 1)Zj(a+ 1, b) + ga,b(γ, σ;Z1, ..., Zk),

where ga,b(γ, σ;Z1, ..., Zk) is a polynomial in (Zi(x, y) : i ∈ [k], x ∈ [d− 1], y > x). Further, in this
polynomial, each monomial contains the term Zi(a, a + 1) either 0 times or exactly once and no
monomial contains a term of the form Zi(a, a+ 1)Zj(a+ 1, b) for i, j ∈ [k].

Proof. Given M` ∈ Hp,d, we can write M` = I+N` with N` strictly upper triangular. Consider now
M1, ...,ML ∈ Hp,d; write M := M1 · · ·ML. From the above expression for Mσ`

` and the fact that
N` is strictly upper triangular, the claimed expression for M(a, a + 1) is immediate—specifically,

(
∏`
r=1Nmr )(a, a+ 1) = 0 for all m1, ...,m` ∈ [L] and a ∈ [L− 1] when ` ≥ 2.
Herein we consider the terms above the super-diagonal, ie (a, b) with b ≥ a+ 2. Observe that∏L

`=1(I +N`) =
∑L
`=0

∑
m1<···<m`

∏`
r=1Nmr

where the indices m1, ...,m` run over all of [L]. Then, for (a, b) with b ≥ a+ 2, we have(∏`
r=1Nmr

)
(a, b) =

∑
c0,...,c`∈[d] 1(c0 = a, c` = b)

∏`
r=1Nmr (cr−1, cr)

=
∑
a=c0<c1<···<c`−1<c`=b

∏`
r=1Mmr (cr−1, cr),

using the strict upper triangular property of the N`. Similarly, for (a, b) with b ≥ a+ 2, we have(
Nm1Nm2

)
(a, b) = Mm1(a, a+ 1)M2(a+ 1, b) +

∑b−1
c=a+2Mm1(a, c)M2(c, b).

Next observe that Nd
` = 0 as N` is strictly upper triangular. Hence, for any σ ∈ {±1}, we have

Mσ`
` = I + σ`N` +N2

` 1(σ` = −1) +
∑d
t=3(−1)tN t

`1(σ` = −1).

Recall that M = M1 · · ·ML. Then, for (a, b) with b ≥ a+ 2, we may write

M(a, b) =
∑
mM(a, b) +

∑
m1<m2

Mm1
(a, a+ 1)Mm2

(a+ 1, b) +R(a, b)

+
∑
mMm(a, a+ 1)Mm(a+ 1, b)1(σm = −1)

where R(a, b) is a ‘remainder’ polynomial, containing the matrix products of degree 2 and higher
except for those of the form Mm1(a, a + 1)Mm2(a + 1, b). Indeed, since the sequence (c0, ..., c`) is
strictly increasing, each monomial in R(a, b) contains the term Mm(a, a + 1) for m ∈ [L] either 0
times or exactly once and, since ` ≥ 3 and c` = b, no monomial in R(a, b) contains a term of the
form Mm1

(a, a+ 1)Mm2
(a+ 1, b) for m1,m2 ∈ [L].

Suppose now that M` = Zγ` for some γ := (γ`)
L
1 ∈ [k]L. By the above analysis, the ‘first order’

term
∑L
`=1 Zγ`(a, b) has the desired form and the ‘remainder’ term has the desired property. Thus

it only remains to check that the ‘second order’ term has the desired form. Writing
∑
m1<m2

as∑L
m2=1

∑m2−1
m1=1, the i 6= j case follows from some simple algebra; cf (3.1.5, 3.1.9, 3.1.10) for the

d = 3 case. The analysis of Ci,i is similar (and depends on whether or not inverses are allowed).

6.6.3 Uniform Random Variables in Nilpotent Groups

Lemma 6.6.3. For each ` ∈ [L], let Y` ∼iid Unif(R`). Then Y := Y1 · · ·YL ∼ Unif(G).

Proof. Let r0 ∈ G and consider the event {Y = r0}.
If r0 = Y1 · · ·YL, then r1 := Y −1

1 r0 = Y2 · · ·YL. Clearly the right-hand side is in G1, and so
the left-hand side must be too. Hence r0 ≡ Y1 mod G1, ie π1(r0) = Y1. Since Y1 ∼ Unif(R1), the
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probability of this is 1/|R1| = 1/|G0/G1|. Similarly, r2 := Y −1
2 r1 = Y3 · · ·YL, and we deduce that

r2 ≡ Y2 mod G2, the probability of which is 1/|R2| = 1/|G1/G2|.
Iterating this argument, recalling that the Y` are independent, we deduce that

P
(
Y = r0

)
=
∏L

1 1/|G`−1/G`| =
∏L

1 |G`|/|G`−1| = |GL|/|G0| = 1/|G|.

Since r0 ∈ G was arbitrary, we deduce that Y ∼ Unif(G).

This gives the following corollary.

Corollary 6.6.4. For each i ∈ [k] and ` ∈ [L], sample Zi,` ∼ Unif(R`) independently; set Zi :=
Zi,1 · · ·Zi,L. Then Z1, ..., ZL ∼iid Unif(G). Further, Zi,`G` ∼ Unif(Q`) independently for each (i, `).

For the remainder of the section, assume that Z is drawn in this way.

Proof. All the independence claims are immediate. The first claim is immediate from Lemma 6.6.3.
For the second claim, we have Zi,` ∼ Unif(R`) and |R`| = |Q`|. Now, xG` = yG` if and only if

y−1xG` = G`. If X ∼ Unif(R`) and H ∈ Q`, say H = yG` with y ∈ R`, then y−1X ∼ Unif(R`)
independently of y. So P(XG` = yG`) = 1/|R`|. Hence XG` ∼ Unif(Q`).

6.6.4 A Bound on the Number of Divisors of an Integer

In this section, we prove the following number-theoretic result.

Lemma 6.6.5. For all ε > 0, there exists a density-(1− ε) set Aε ⊆ N such that, for all n ∈ Aε, all
m ≥ 2 and all λ > 0, we have∑

i∈[m] i1(i o n) ≤ 40(λε)−1m(logm)2.

Proof. Choose N ∈ N (large) and sample n ∼ Unif({1, ..., N}); let ε, λ ∈ (0, 1). We prove that

P
(
∩m∈[1,n]

{∑
i∈[m] i1(i o n) ≤ 20(ελ)−1m(logm)1+λ

})
≥ 1− ε.

This implies the lemma. We have P(i o n) ≤ 1/i for each i ∈ [N ]. For i ∈ [blog2Nc], defining

Ni :=
∑
j∈[2i−1,2i−1] 1(j o n), we have E(Ni) ≤

∑2i−1
j=2i−1 1/j ≤ 1.

By Markov’s inequality, for any λ,C > 0, we then have

P
(
Ni ≥ Ci1+λ

)
≤ 1/(Ci1+λ).

Using the union bound, this gives

P(E) ≥ 1− 2λ−1/C where E := ∩i≥1{Ni ≤ Ci1+λ}.

Set r := dlog2me; then m ≤ 2r. On the event E , we then have∑
i∈[m] i1(i o n) ≤

∑r
i=1 2iNi ≤ C

∑r
i=1 2ii1+λ ≤ Cr1+λ2r+1 ≤ 20Cm(logm)1+λ.

Now let ε ∈ (0, 1) and set C := 2/(ελ), so then P(E) ≥ 1− ε. The result follows.

Exactly the same argument can be used to show the following result.

Lemma 6.6.6. For all ε > 0, there exists a density-(1− ε) set Aε ⊆ N such that, for all n ∈ Aε, all
m ≥ 2 and all λ > 0, we have ∑

i∈[m] 1(i o n) ≤ 10(λε)−1(logm)2+λ.
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