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Results in Extremal Graph Theory, Ramsey Theory and
Additive Combinatorics

Olivér Noel Janzer

Abstract

This dissertation contains results from various areas of Combinatorics.

In Chapter 2, we consider a central problem in Extremal Graph Theory. The extremal
number (or Turán number) ex(n,H) of a graph H is the maximum number of edges in
an H-free graph on n vertices. It is a major area of research to better understand the
extremal number of bipartite graphs. In this chapter we develop a new method which
allows us to obtain strong (and often best possible) upper bounds in a wide range of
cases. Our results answer several conjectures of Conlon and Lee, and Kang, Kim and Liu.
Furthermore, they relate to and improve work of (among others) Füredi, Alon, Krivelevich
and Sudakov, Kostochka and Pyber, and Jiang and Seiver.

While in Chapter 2 the focus is on subdivided graphs, in Chapter 3 we study the
extremal number of blow-ups. In particular, we obtain tight upper bounds for the extremal
number of blow-ups of trees. As an extension of this, we pose a general conjecture relating
the extremal number of F and that of its blow-up. We prove the conjecture for the 2-
blowup of C6.

In Chapter 4 we study a coloured variant of the Turán problem. The rainbow Turán
number of H, denoted by ex∗(n,H), is the maximum possible number of edges in an
n-vertex properly edge-coloured graph without a rainbow subgraph isomorphic to H.
We prove that ex∗(n,C2k) = O(n1+1/k), which is tight and establishes a conjecture of
Keevash, Mubayi, Sudakov and Verstraëte. We use the same method to answer several
further questions in various topics: among others, a question of Conlon and Tyomkyn on
colour-isomorphic cycles and a conjecture of Jiang and Newman of blow-ups of cycles. We
also disprove an old conjecture of Erdős and Simonovits on (ordinary) extremal numbers.

In Chapter 5, we consider the following problem. Let 2 ≤ s < t be fixed integers. If
G is an arbitrary Kt-free graph on n vertices, how large a Ks-free induced subgraph must
there exist in G? This number, which is a generalisation of the usual off-diagonal Ramsey
numbers, is viewed as a function in n, and is called the Erdős-Rogers function. We obtain
new upper bounds in the case s + 2 ≤ t ≤ 2s − 1, improving results of (among others)
Bollobás, Erdős and Krivelevich, and answering a question of Dudek, Retter and Rödl.

In Chapter 6, we investigate the relationship between two well-studied notions of tensor
rank. We show that the partition rank of a tensor is bounded above by a polynomial in
the analytic rank of the same tensor. This improves Ackermann-type bounds obtained by
various authors including Green and Tao, and Bhowmick and Lovett.

In Chapter 7, we use the main technical lemma of Chapter 6 to prove a result about
the expansion of subsets of the Cayley graph on the tensor product Fn1

2 ⊗ · · ·⊗Fnd2 where
the generators are the rank 1 tensors. This is motivated by the famous Unique Games
Conjecture from Theoretical Computer Science, and is a partial generalisation of a recent
breakthrough result of Khot, Minzer and Safra.

In Chapter 8, we ask the following question. Given constants α, β, γ, what is the
minimal possible edge density of a graph G on n vertices with the property that every
subset A ⊂ V (G) with |A| ≥ αn contains a subset B ⊂ A with |B| ≥ βn such that G[B]
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has edge density at least γ? We also study a bipartite version of this question, obtaining
sharp results in both cases.

In Chapter 9, we determine asymptotically the maximum possible number of induced
C5’s in a planar graph on n vertices.
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Chapter 1

Introduction

Apart from this introduction, the dissertation is organized into eight main chapters.

Chapter 2 is based on four of my papers [23, 65, 66, 69], and contains several results

about the extremal number of bipartite graphs, with an emphasis on subdivided graphs.

Given a graph H, the extremal number ex(n,H) denotes the maximum number of edges

in a graph on n vertices which does not contain H as a subgraph. The k-subdivision of a

multigraph F is obtained by replacing each edge of F with a path of length k + 1, and is

denoted by F k.

Section 2.3 is based on [65]. In this section we prove that the 1-subdivision of Kt

has extremal number O(n
3
2
− 1

4t−6 ). This proves in a strong form a conjecture proposed by

Conlon and Lee [24], and improves the bound O(n
3
2
− 1

6t ) obtained by them. We shall also

briefly discuss the connection of this result with off-diagonal Ramsey numbers.

Sections 2.4 and 2.5 are based on joint work with Conlon and Lee [23]. In Section 2.4

we prove that a K2,2-free bipartite graph with maximum degree r on one side has extremal

number o(n2−1/r). This improves the celebrated result of Füredi [46], which states that

any bipartite graph with maximum degree r on one side has extremal number O(n2−1/r).

In Section 2.5 we give a very short proof of a recent difficult result of Kang, Kim and

Liu [79].

Section 2.6 is based on [69]. The main result in this section is an upper bound for the

extremal number of the (k − 1)-subdivision of an arbitrary multigraph. More precisely,

we show that if k is even and F is a multigraph, then ex(n, F k−1) = O(n1+1/k), and when

F is a simple graph, then ex(n, F k−1) = O(n1+1/k−c(F,k)) for some c(F, k) > 0. The former

bound is sharp, while the latter is sharp up to the value of c(F, k). These results answer

two conjectures of Conlon and Lee [24], and improve results of Kostochka and Pyber

[88], Jiang [71] and Jiang and Seiver [76], the most recent of which was ex(n,Kk−1
t ) =

O(n1+16/k).

Section 2.7 is based on [66]. We prove that ex(n,Kk−1
s,t ) = O(n1+ s−1

sk ), which is tight

for t sufficiently large. This result settles a conjecture of Conlon, Janzer and Lee [23], and

improves on a substantial body of work by Conlon and Lee [24], Kang, Kim and Liu [79],

Jiang and Qiu [75] and the author [65].

1



In Chapter 3 we continue the study of bipartite extremal numbers. However, the focus

in this chapter is on the extremal number of blow-up-like graphs. The r-blowup of a graph

F is obtained by replacing the vertices and edges of F with independent sets of size r and

copies of Kr,r, respectively. We denote this graph by F [r]. We make the conjecture that

if ex(n, F ) = O(n2−α), then ex(n, F [r]) = O(n2−α
r ).

Section 3.2 is based on joint work with Grzesik and Nagy [57]. In this section we

prove that if H is the r-blow-up of a tree, then ex(n,H) = O(n2−1/r), which is tight and

confirms the above conjecture when F is a tree. We also establish some generalisations of

this result, which extend the theorem of Füredi about the extremal number of bipartite

graphs with maximum degree r on one side.

Section 3.3 is based on joint work with Methuku and Nagy [70]. In this section we prove

that ex(n,C6[2]) = O(n5/3), and more generally that for any t, ex(n, θ3,t[2]) = O(n5/3).

This is tight when t is sufficiently large, and proves the above conjecture for F = θ3,t and

r = 2.

Chapter 4 is based on [67]. The rainbow Turán number ex∗(n,H) of a graph H is the

maximum possible number of edges in a properly edge-coloured n-vertex graph with no

rainbow subgraph isomorphic to H. We settle a conjecture of Keevash, Mubayi, Sudakov

and Verstraëte [82] by proving that for any integer k ≥ 2, ex∗(n,C2k) = O(n1+1/k). This

is tight and improves the bound of Das, Lee and Sudakov [26] stating that ex∗(n,C2k) =

O
(
n1+

(1+εk) log k

k

)
where εk → 0 as k →∞.

We use the same method to prove several other conjectures in various topics. First, we

prove that there exists a constant c such that any properly edge-coloured n-vertex graph

with more than cn(log n)4 edges contains a rainbow cycle. It is known that there exist

properly edge-coloured n-vertex graphs with Ω(n log n) edges which do not contain any

rainbow cycle.

Secondly, we prove that in any proper edge-colouring of Kn with o(n
r
r−1
· k−1
k ) colours,

there exist r colour-isomorphic, pairwise vertex-disjoint copies of C2k. This proves in

a strong form a conjecture of Conlon and Tyomkyn [25], and a strenghtened version

proposed by Xu, Zhang, Jing and Ge [110]. As a corollary, our theorem generalises a

recent result of Fish, Pohoata and Sheffer [45] on the Erdős–Gyárfás function.

Moreover, we answer a question of Jiang and Newman [73] by showing that there

exists a constant c = c(r) such that any n-vertex graph with more than cn2−1/r(log n)7/r

edges contains the r-blowup of an even cycle. Finally, by showing that ex(n,C2k[r]) =

O(n2− 1
r

+ 1
k+r−1

+o(1)), we disprove an old conjecture of Erdős and Simonovits [31] which

proposed a lower bound for the extremal number of bipartite graphs with given minimum

degree.

Chapter 5 is based on joint work with Gowers [52]. Our results concern the following

problem. Let 2 ≤ s < t be integers. The Erdős-Rogers function fs,t(n) measures how large

a Ks-free induced subgraph there must be in a Kt-free graph on n vertices. This function

has been studied by several authors including Bollobás, Erdős, Krivelevich, Rödl and
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Sudakov [13,27–29,37,90,91,105,106,109]. After a sequence of earlier papers, it was proved

that by Dudek, Retter and Rödl that for every s ≥ 3, fs,s+1(n) = n1/2+o(1) [27]. They

asked whether it is true that for every s ≥ 3, fs,s+2(n) = o(n1/2). Via a novel probabilistic

construction, we improve the upper bound for fs,t(n) in the range s+ 2 ≤ t ≤ 2s− 1. In

particular, we show that fs,s+2(n) = O(nαs) for some αs < 1/2, answering the question of

Dudek, Retter and Rödl affirmatively. Our bound is close to the best known lower bound,

due to Sudakov [105].

Chapter 6 has the same content as [68], which is an improved version of my earlier

manuscript [64]. Tensors are generalisations of matrices to higher dimension. Unlike in

the case of matrices, there does not exist a unique definition for the rank of a tensor as the

different equivalent characterisations of the usual matrix rank lead to different notions

for tensors. The main focus of this paper is the relationship between two well-studied

notions of rank. More precisely, we show that the partition rank of a tensor T is bounded

above by a polynomial in the analytic rank of T . Before our work, the best known bound

was an Ackermann-type function. Our result has an essentially equivalent formulation

in terms of polynomials over finite fields. In that language, it roughly states that if the

distribution of the values of a degree d polynomial (in n variables) over Fq is far from

uniform, then the polynomial can be written as a function of not too many (the number

does not depend on n) polynomials of degree less than d. This improves on results of

various authors including Green and Tao [56] and Bhowmick and Lovett [9].

Chapter 7 is based on joint work with Gowers [51]. In this paper we were aiming to

generalise a recent breakthrough result of Khot, Minzer and Safra [84] which completed

the proof of the so-called 2-to-2 Games Conjecture. The Unique Games Conjecture is

a central conjecture in Theoretical Computer Science which, if true, implies that for a

certain set of constraints it is NP-hard to distinguish between situations where (say) 1%

and where 99% of the constraints can be satisfied. The 2-to-2 Games Conjecture (now

proven) asserts that it is NP-hard to distinguish between situations where 50% and where

99% of the constraints can be satisfied. This weakening was reduced to the problem of

finding a qualitative description of the so called closed sets of the group Mm,n(F2) of

m×n matrices over F2. A set A ⊂ Mm,n(F2) is η-closed if the probability that A+B ∈ A
is at least η when A ∈ A is uniformly random and B is a uniformly random rank 1

matrix. In this paper we consider the same problem in higher dimensions. We say that

A ⊂ Fn1
2 ⊗· · ·⊗Fnd2 is η-closed if P(A+u1⊗ · · ·⊗ud ∈ A) ≥ η where A ∈ A and ui ∈ Fni2

are uniformly randomly chosen. We make a conjecture that would describe the closed

sets qualitatively, and prove the conjecture in an important special case. In particular,

we show that our conjecture holds whenever A ⊂ Fn1
2 ⊗ · · · ⊗ Fnd2 is a vector space.

Chapter 8 is based on joint work with Gowers [53]. In this paper we consider the

following questions. Suppose that a graph G on n vertices has the property that for any

A ⊂ V (G) of size at least αn there is some B ⊂ A of size at least βn such that G[B]

has edge density at least γ. (α, β and γ may depend on n, we only assume that they are

3



not very small.) What is the minimal density of G? We may ask an analogous question

about bipartite graphs as well. Suppose that G is a bipartite graph on n+n vertices with

parts X and Y such that for any A ⊂ X, B ⊂ Y with |A|, |B| ≥ αn, there exist C ⊂ A,

D ⊂ B with |C|, |D| ≥ βn such that G[C,D] has density at least γ. What is the minimal

density of G? In the graph case we give a lower bound βγ
α

(1− o(1)) which is tight when

α/β is an integer. In the bipartite case, we show that the answer is between cβγ
α

log(1/α)

and C βγ
α

log(1/α) for some absolute constants 0 < c < C. We also prove some structural

results about graphs with the above property.

Chapter 9 is based on joint work with Ghosh, Győri, Paulos, Salia and Zamora [49]. In

this chapter we prove that the maximum possible number of induced 5-cycles in a planar

graph on n vertices is n2

3
+O(n).

4



Chapter 2

The extremal number of subdivisions

2.1 Introduction

For a family H of graphs, the extremal number (or Turán number) ex(n,H) is defined

to be the maximal number of edges in a graph on n vertices that does not contain any

H ∈ H as a subgraph. When H = {H}, we write ex(n,H) for the same number. The

Erdős–Stone–Simonovits theorem [32,33] states that

ex(n,H) =

(
1− 1

χ(H)− 1

)(
n

2

)
+ o(n2),

which determines the asymptotics of ex(n,H) when χ(H) > 2. However, for bipartite

graphs H, this theorem only gives ex(n,H) = o(n2), and determining the order of mag-

nitude of ex(n,H) is notoriously difficult. Even for simple graphs such as even cycles

and complete bipartite graphs, the problem is not settled. An old result of Bondy and

Simonovits [15] states that ex(n,C2k) = O(n1+1/k), but matching lower bounds are only

known for k ∈ {2, 3, 5} [8,103]. Also, we have an upper bound ex(n,Ks,t) = O(n2−1/s) [89],

but this is only known to be tight when t > (s− 1)! [5, 86]. For a survey on the classical

results in the area, see [47].

The following conjecture has been made about the order of magnitude of the extremal

function.

Conjecture 2.1.1 (Erdős–Simonovits [35]). For every graph H, there exists a rational

number r ∈ {0} ∪ [1, 2] such that ex(n,H) = Θ(nr).

The converse of this statement is one of the most central conjectures in Extremal

Graph Theory.

Conjecture 2.1.2 (Rational Exponents Conjecture; Erdős–Simonovits [35]). For every

rational number r ∈ (1, 2), there exists a graph H with ex(n,H) = Θ(nr).

We say that r ∈ (1, 2) is realisable (by H) if there exists a graph H such that

ex(n,H) = Θ(nr). With this terminology, the Rational Exponent Conjecture states that
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every rational number between 1 and 2 is realisable. In a recent breakthrough, Bukh and

Conlon [18] have proved that for any rational number r ∈ (1, 2) there exists a finite family

H of graphs such that ex(n,H) = Θ(nr). However, Conjecture 2.1.2 remains wide open.

In fact, until recently only very few realisable numbers were known, namely 2 − 1/s for

s ∈ N, which are realised by Ks,t for t sufficiently large. A few years ago, the family

1 + 1/s was also shown to be realisable, by theta graphs. The theta graph θs,t is the

union of t paths of length s which have the same endpoints but are pairwise internally

vertex-disjoint. Note that θs,2 = C2s. A classical result of Faudree and Simonovits [44]

states that ex(n, θs,t) = O(n1+1/s), and it was proved recently by Conlon [21] that this is

tight for sufficiently large t.

Two years ago, Jiang, Ma and Yepremyan [72] enlarged the class of realisable exponents

by proving that 7/5 and 2− 2
2s−1

for s ≥ 2, s ∈ N are also realisable. Subsequently, Kang,

Kim and Liu [79] proved that for each a, b ∈ N with a < b and b ≡ ±1 (mod a), the

number 2− a
b

is realisable.

In this chapter we present a method that allows us to obtain further large families of

realisable exponents and, perhaps more importantly, can be used to prove strong upper

bounds for the extremal number of subdivided graphs.

For a multigraph F , a subdivision of F is a graph obtained by replacing the edges of F

with pairwise internally vertex-disjoint paths of arbitrary lengths. The k-subdivision of F

is the graph obtained by replacing the edges of F with pairwise internally vertex-disjoint

paths of length k + 1, and is denoted by F k. The 1-subdivision of F is also denoted by

F ′.

The study of the extremal number ofK ′t has been initiated by Conlon and Lee [24] in an

attempt to generalise the following celebrated result of Füredi [46] and Alon, Krivelevich

and Sudakov [4]. In this theorem and everywhere else in this chapter (unless stated

otherwise) the asymptotic notation means that n→∞ and all other parameters are kept

constant.

Theorem 2.1.3 (Füredi, Alon–Krivelevich–Sudakov). Let H be a bipartite graph such

that in one of the parts all the degrees are at most r. Then

ex(n,H) = O(n2−1/r).

This result is tight, since as we have mentioned before, for s sufficiently large in terms

of r, ex(n,Kr,s) = Ω(n2−1/r). Moreover, it is conjectured [89] that this should already

hold when s = r. On the other hand, a recent conjecture of Conlon and Lee [24] says that

containing Kr,r as a subgraph should be the only reason why Theorem 2.1.3 is tight.

Conjecture 2.1.4 (Conlon–Lee [24]). Let H be a bipartite graph such that in one of the

parts all the degrees are at most r and H does not contain Kr,r as a subgraph. Then there

exists some δ > 0 such that ex(n,H) = O(n2−1/r−δ).

It is easy to see that any K2,2-free bipartite graph in which every vertex in one part
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has degree at most two is a subgraph of K ′t for some positive integer t. Conlon and Lee

have verified their conjecture in the r = 2 case by proving the following result.

Theorem 2.1.5 (Conlon–Lee [24]). For any integer t ≥ 3,

ex(n,K ′t) = O(n3/2−1/6t).

They have asked for an upper bound of the form ex(n,K ′t) = O(n3/2−δt), where 1/δt is

bounded by a polynomial in t. We prove such a bound even for a linear 1/δt.

Theorem 2.1.6 (Janzer [65]). For any integer t ≥ 3,

ex(n,K ′t) = O(n3/2− 1
4t−6 ).

Note that this bound is tight for t = 3 as ex(n,C6) = Θ(n4/3). If Theorem 2.1.6 is

tight for every t, that may have very important consequences in Ramsey theory. The

Ramsey number R(t,m) is the smallest number N such that any graph on N vertices

contains a clique of size t or an independent set of size m. When t is fixed and m→∞,

the best known bounds are of the form m
t+1
2
−o(1) ≤ R(t,m) ≤ mt−1−o(1). The exponent

in the lower bound was first proved by Spencer [104], while the upper bound mt−1 is a

classical result of Erdős and Szekeres [41]. The current best bounds (which improve the

earlier results by polylogarithmic factors) are due to Bohman and Keevash [11], and Ajtai,

Komlós and Szemerédi [1].

Recently, Mubayi and Verstraëte [98] showed that the existence of certain pseudo-

random graphs would imply that R(t,m) = mt−1−o(1). An (n, d, λ) graph is a d-regular

graph on n vertices whose eigenvalues, apart from the largest one, have absolute value at

most λ. It is known that if d/n is bounded away from 1, then we must have λ = Ω(
√
d).

When λ = Θ(
√
d), we say that our graph is pseudorandom. It is known that any Kt-free

pseudorandom d-regular n-vertex graph has d = O(n1− 1
2t−3 ). The result of Mubayi and

Verstraëte states that if there exists a Kt-free pseudorandom d-regular n-vertex graph

with d = Θ(n1− 1
2t−3 ), then R(t,m) = mt−1−o(1). Alon [3] constructed such a graph in the

case t = 3.

A different construction was found by Conlon [20]. He starts with a C4-free and C6-

free bipartite graph H with Θ(n4/3) edges (with parts X and Y ) and defines a graph

G with vertex set Y as follows. For each x ∈ X, we randomly partition NH(x) into

two parts and take a complete bipartite graph between the parts. Then we define G to

be the union of these bipartite graphs. Because of the C6-freeness of H, G is triangle-

free. Moreover, since H has Θ(n4/3) edges and it is C4-free, almost surely G has Θ(n5/3)

edges. Conlon showed that G is pseudorandom (up to a logarithmic factor which makes no

difference in the Ramsey theory applications). Here comes the connection to our Theorem

2.1.6. If, instead of starting with a C6-free graph, we start with a K ′t-free bipartite graph

H with Θ(n3/2− 1
4t−6 ) edges (which may or may not exist) and define G as above, then
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G is Kt-free and (provided that H is C4-free) G has Θ(n2− 1
2t−3 ) edges. If we can also

show that, similarly to the t = 3 case, G is sufficiently pseudorandom, that would imply

R(t,m) = mt−1−o(1).

We now continue our discussion of bipartite extremal numbers. Our next result gives

some small progress towards Conjecture 2.1.4 for general r.

Theorem 2.1.7 (Conlon–Janzer–Lee [23]). Let H be a bipartite graph such that in one of

the parts all the degrees are at most r and H does not contain K2,2 as a subgraph. Then

ex(n,H) = o(n2−1/r).

Recently, Sudakov and Tomon proved the following stronger result.

Theorem 2.1.8 (Sudakov–Tomon [107]). Let H be a bipartite graph such that in one of

the parts all the degrees are at most r and H does not contain Kr,r as a subgraph. Then

ex(n,H) = o(n2−1/r).

In the next two subsections we present the rich history of the study of longer subdi-

visions of graphs and multigraphs.

2.1.1 Longer subdivisions of (multi)graphs

Many researchers have studied the problem of estimating the number of edges needed in

a graph G on n vertices to guarantee that it contains as a subgraph a subdivided copy of

a fixed graph. The first result in this direction is due to Mader [94] who proved that for

any graph F there exists a constant C = C(F ) such that if an n-vertex graph G contains

at least Cn edges, then G contains a subdivision of F as a subgraph. In this result the

size of the subdivided graph can grow with n, which is necessary since an n-vertex graph

with Cn edges need not contain a cycle of bounded length.

Answering a question of Erdős about planar subgraphs [30], Kostochka and Pyber [88]

proved that any n-vertex graph with at least 4t
2
n1+ε edges contains a subdivided Kt with

at most 7t2 log t
ε

vertices. This is the first result that guarantees a subdivided Kt of bounded

size.

Let Ft,k be the family of graphs that can be obtained by replacing the edges of Kt

with pairwise internally vertex-disjoint paths of length at most k. Jiang [71] proved that

for any t ∈ N and any 0 < ε < 1/2, we have ex(n,Ft,d10/εe) = O(n1+ε).

Note that Jiang’s result improves that of Kostochka and Pyber in two ways. Firstly,

any F ∈ Ft,d10/εe has at most Ct2

ε
vertices, so a log factor is saved. Secondly, the edges

in Jiang’s theorem are replaced by uniformly short paths not depending on t. However,

they can still have different lengths. The next result of Jiang and Seiver guarantees a

subdivided Kt with prescribed path lengths.

Theorem 2.1.9 (Jiang–Seiver [76]). For any t ∈ N and any even k ∈ N,

ex(n,Kk−1
t ) = O(n1+ 16

k ).
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Note that if k is odd, then Kk−1
t is not a bipartite graph, so ex(n,Kk−1

t ) = Θ(n2).

Conlon and Lee conjectured that the following two strengthenings hold.

Conjecture 2.1.10 (Conlon–Lee [24]). Let F be a multigraph and let k ≥ 2 be even.

Then

ex(n, F k−1) = O(n1+ 1
k ).

Conjecture 2.1.11 (Conlon–Lee [24]). Let F be a simple graph and let k ≥ 2 be even.

Then there exists some ε > 0 such that

ex(n, F k−1) = O(n1+ 1
k
−ε).

In the case k = 2, Conjecture 2.1.10 follows from the r = 2 case of Theorem 2.1.3,

while Conjecture 2.1.11 follows from Theorem 2.1.5. Conlon, Janzer and Lee [23] proved

Conjecture 2.1.11 for every bipartite graph F (see Theorem 2.1.14 in the next subsection).

We prove both Conjecture 2.1.10 and Conjecture 2.1.11.

Theorem 2.1.12 (Janzer [69]). Let F be a multigraph and let k ≥ 2 be even. Then

ex(n, F k−1) = O(n1+ 1
k ).

Theorem 2.1.13 (Janzer [69]). Let F be a simple graph and let k ≥ 2 be even. Then

there exists some ε > 0 such that

ex(n, F k−1) = O(n1+ 1
k
−ε).

Note that Theorem 2.1.12 is tight. Indeed, as we have mentioned above, the theta

graph θk,` (which is the (k − 1)-subdivision of the multigraph consisting of a multiplicity

` edge) has extremal number Θ(n1+1/k) for all ` ≥ `0(k). Moreover, Erdős–Rényi random

graphs show that ex(n,Kk−1
t ) = Ω(n1+1/k−ck,t) where ck,t → 0 as t → ∞. So the term

1 + 1/k in the exponent in Theorem 2.1.13 is also best possible, though our ε is not

optimal.

2.1.2 Longer subdivisions of the complete bipartite graph

In this subsection we focus on the extremal number of the subdivisions of the complete

bipartite graph. The first few results on this topic concerned the 1-subdivision of the

complete bipartite graph. Conlon and Lee [24] proved that if s ≤ t, then ex(n,K ′s,t) =

O(n
3
2
− 1

12t ). This was improved by the author [65] to ex(n,K ′s,t) = O(n
3
2
− 1

4s−2 ) and the

same result was reproved using different methods by Kang, Kim and Liu [79]. Moreover,

they conjectured that ex(n,K ′s,t) = O(n
3
2
− 1

2s ) holds, which is then tight for sufficiently

large t by a general result of Bukh and Conlon (see Theorem 2.8.1 below). The conjecture

was proved by the author, Conlon and Lee [23]. About longer subdivisions, we proved

the following result.
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Theorem 2.1.14 (Conlon–Janzer–Lee [23]). For any integers s, t, k ≥ 2,

ex(n,Kk−1
s,t ) = O(n1+ s

sk+1 ).

This is nearly sharp for t sufficiently large, since Theorem 2.8.1 implies that there

exists t0 = t0(s, k) such that for all t ≥ t0, ex(n,Kk−1
s,t ) = Ω(n1+ s−1

sk ).

Together with Conlon and Lee, we conjectured that this lower bound is tight.

Conjecture 2.1.15 (Conlon–Janzer–Lee [23]). For any integers s, t, k ≥ 2,

ex(n,Kk−1
s,t ) = O(n1+ s−1

sk ).

Jiang and Qiu proved that the conjecture holds for k = 3 and k = 4 (as mentioned

above, the k = 2 case had been proved by the author, Conlon and Lee).

Theorem 2.1.16 (Jiang–Qiu [75]). For any integers s, t ≥ 2 and k ∈ {3, 4},

ex(n,Kk−1
s,t ) = O(n1+ s−1

sk ).

We prove Conjecture 2.1.15 for arbitrary k.

Theorem 2.1.17 (Janzer [66]). For any integers s, t, k ≥ 2,

ex(n,Kk−1
s,t ) = O(n1+ s−1

sk ).

Corollary 2.1.18. For any integers s, k ≥ 2, there exists t0 = t0(s, k) such that for all

integers t ≥ t0,

ex(n,Kk−1
s,t ) = Θ(n1+ s−1

sk ).

This means that 1 + s−1
sk

is realisable for every s, k ≥ 2.

The structure of this chapter

The rest of this chapter is organised as follows. In Section 2.2 we present some preliminary

lemmas that will be used in the proofs. In Section 2.3 we prove Theorem 2.1.6. In Section

2.4 we prove Theorem 2.1.7. In Section 2.5 we give a short proof of a result of Kang,

Kim and Liu, mentioned in the introduction. In Section 2.6 we prove Theorem 2.1.12 and

Theorem 2.1.13. In Section 2.7 we prove Theorem 2.1.17. In Section 2.8 we present some

concluding remarks.

2.2 Preliminaries

A common feature of our proofs is that we first assume that our host graph is suffi-

ciently regular. Let us say that a graph G is K-almost-regular if maxv∈V (G) deg(v) ≤
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K minv∈V (G) deg(v). The reason why we may assume that our graph is almost regular is

the following result of Jiang and Seiver, which is a slight modification of a much earlier

result of Erdős and Simonovits [38].

Lemma 2.2.1 (Jiang–Seiver [76]). Let ε, c be positive reals, where ε < 1 and c ≥ 1.

Let n be a positive integer that is sufficiently large as a function of ε. Let G be a graph

on n vertices with e(G) ≥ cn1+ε. Then G contains a K-almost-regular subgraph Greg on

m ≥ n
ε
2

1−ε
1+ε vertices such that e(Greg) ≥ 2c

5
m1+ε and K = 20 · 2

1
ε2

+1.

In Section 2.4 we will need a version of this where c can be smaller than 1.

Lemma 2.2.2. Let ε, c be positive reals, where ε < 1. Let n be a positive integer that is

sufficiently large as a function of ε. Let G be a graph on n vertices with e(G) ≥ cn1+ε.

Then G contains a K-almost-regular subgraph Greg on m ≥ n
ε−ε2
4+4ε vertices such that

e(Greg) ≥ 2c
5
m1+ε and K = 20 · 2

1
ε2

+1.

The proof of this is the same as the proof of Lemma 2.2.1 with one straightforward

modification. Nevertheless, we include it here for completeness.

Proof. For convenience, we will drop ceilings and floors whenever doing so does not

affect the analysis in an essential way. Let ε, c be positive reals, where ε < 1. Let n be

a positive integer sufficiently large as a function of ε. Let G be a graph on n vertices

with e(G) ≥ cn1+ε. Set p = d2
1
ε2

+1e. We partition V (G) into 2p almost equal parts

B1, . . . , B2p, where B1 consists of d n
2p
e vertices of the highest degrees in G. Suppose first

that at most c
2
n1+ε edges of G are incident to B1. We say that G is of type 1. Let

H = G− B1. Then e(H) ≥ c
2
n1+ε. Successively remove vertices of degree less than c

10
nε

from H until we get stuck; denote the remaining subgraph by Greg. Let m = |V (Greg)|.
Since at most c

10
nε · n = c

10
n1+ε edges are removed in the process, we have e(Greg) ≥

4c
10
n1+ε ≥ 2c

5
m1+ε. Also, δ(Greg) ≥ c

10
nε by the way we obtained Greg. By our assumption

of B1, dG(x) ≥ ∆(Greg) for all x ∈ B1. Also,
∑

x∈B1
dG(x) ≤ cn1+ε since at most c

2
n1+ε

edges of G are incident to B1. We have ∆(Greg)(n/2p) ≥
∑

x∈B1
dG(x) ≥ cn1+ε, from

which we get ∆(Greg) ≤ 2pcnε. Thus, ∆(Greg)/δ(Greg) ≤ 2pcnε/ c
10
nε = 20p. So Greg is

K-almost-regular. Also, m ≥ 2e(Greg)/∆(Greg) ≥ 4c
5
n1+ε/2pcnε = 2

5p
n ≥ n

ε−ε2
4+4ε for large

n. So, the claim holds.

Suppose now that more than c
2
n1+ε edges of G are incident to B1. We say that G is

of type 2. By an averaging argument, for some j ∈ {2, . . . , 2p}, the subgraph G1 of G

induced by B1 ∪ Bj has more than 1
2p

c
2
n1+ε = c

4p
n1+ε edges. Let n1 = |V (G1)|. Then

n1 ≈ n/p. Note that cn1+ε
1 = c(n

p
)1+ε = c

p
n1+ε 1

pε
≤ c

4p
n1+ε, using that pε ≥ 2( 1

ε2
+1)ε ≥ 4.

So e(G1) ≥ cn1+ε
1 .

We can now replace G with G1 and repeat the analysis. If G1 is of type 1, we terminate.

If G1 of type 2, we define G2 from G1 the way we defined G1 from G. We continue like this

as long as the new graph Gi is of type 2. We terminate when Gi is of type 1 for the first

time. With G0 = G, let k be the smallest i such that Gi is of type 1. Then |V (Gk)| ≈ n
pk
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and e(Gk) ≥ c
(4p)k

n1+ε. Since e(Gk) ≤ |V (Gk)|2, we have c
(4p)k

n1+ε ≤ n2

p2k
. Thus, (p

4
)k ≤

n1−ε

c
≤ n

1−ε+ ε(1−ε)2

2(1+ε2) as n is sufficiently large. Hence, k ≤ (1 − ε + ε(1−ε)2
2(1+ε2)

) logn
log(p/4)

. Since

nk = |V (Gk)| ≈ n/pk, log nk ≈ log n−k log p ≥ (1−(1−ε+ ε(1−ε)2
2(1+ε2)

) log p
log(p/4)

) log n. Plugging

in p = 2
1
ε2

+1, we get log nk ≥ (1 − (1 − ε + ε(1−ε)2
2(1+ε2)

)
1
ε2

+1
1
ε2
−1

) log n = ε−ε2
2+2ε

log n, therefore

nk ≥ n
ε−ε2
2+2ε . Since Gk is of type 1, by our earlier arguments it contains a subgraph Greg

on m vertices where m ≥ 2
5p
nk ≥ n

ε−ε2
4+4ε for large n. Furthermore, e(Greg) ≥ 2c

5
m1+ε, and

Greg is K-almost-regular. This completes the proof.

We will in fact need a version of this lemma which gives an almost-regular bipartite

subgraph. Following Conlon and Lee, we say that a bipartite graph G with a bipartition

A ∪B is balanced if 1
2
|B| ≤ |A| ≤ 2|B|.

Lemma 2.2.3. Let ε, c be positive reals, where ε < 1. Let n be a positive integer that

is sufficiently large as a function of ε. Let G be a graph on n vertices with e(G) ≥
cn1+ε. Then G contains a K-almost-regular balanced bipartite subgraph Greg on m ≥ n

ε−ε2
4+4ε

vertices such that e(Greg) ≥ c
10
m1+ε and K = 60 · 2

1
ε2

+1.

The proof of this lemma is almost identical to the proof of Lemma 2.3 in [24] and is

therefore omitted.

The notation we will use in the remaining sections is mostly standard. For a graph G

and v ∈ V (G), we write NG(v) (or N(v) if G is clear) for the neighbourhood of v in G.

Also, we write dG(v) or d(v) for the degree of v. Finally, if u1, . . . , ur ∈ V (G), then we

write dG(u1, . . . , ur) = d(u1, . . . , ur) = |NG(u1) ∩ · · · ∩NG(ur)|.

2.3 The 1-subdivision of Kt

In this section, we shall prove Theorem 2.1.6. Note that Lemma 2.2.3 reduces Theorem

2.1.6 to the following.

Theorem 2.3.1. For every K ≥ 1 and integer t ≥ 3, there exists a constant c = c(t,K)

with the following property. Let n be sufficiently large and let G be a balanced bipartite

graph with bipartition A∪B, |B| = n such that the degree of every vertex of G is between

δ and Kδ, for some δ ≥ cn
t−2
2t−3 . Then G contains a copy of K ′t.

Given a bipartite graph G with bipartition A ∪ B, the neighbourhood graph is the

weighted graph WG on vertex set A where the weight of the pair uv is dG(u, v). For a

subset U ⊂ A, we write W (U) for the total weight in U , ie. W (U) =
∑

uv∈(U2)
dG(u, v).

We shall use the following simple lemma of Conlon and Lee [24, Lemma 2.4].

Lemma 2.3.2. Let G be a bipartite graph with bipartition A∪B, |B| = n, and minimum

degree at least δ on the vertices in A. Then for any subset U ⊂ A with δ|U | ≥ 2n,

∑
uv∈(U2)

dG(u, v) ≥ δ2

2n

(
|U |
2

)
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In other words, the conclusion of Lemma 2.3.2 is that W (U) ≥ δ2

2n

(|U |
2

)
.

In the next definition, and in the rest of this section, for a weighted graph W on vertex

set A, if u, v ∈ A, then W (u, v) stands for the weight of uv. Moreover, we shall tacitly

assume throughout the section that t ≥ 3 is a fixed integer.

Definition 2.3.3. Let W be a weighted graph on vertex set A and let u, v ∈ A be

distinct. We say that uv is a light edge if 1 ≤ W (u, v) <
(
t
2

)
and that it is a heavy edge if

W (u, v) ≥
(
t
2

)
.

Note that if there is a Kt in WG formed by heavy edges, then there is an K ′t in G.

The next lemma is one of our key observations.

Lemma 2.3.4. Let G be an K ′t-free bipartite graph with bipartition A ∪ B, |B| = n and

suppose that W (A) ≥ 2t2n. Then the number of light edges in WG is at least W (A)
2t4

.

Proof. Let B = {b1, . . . , bn}. Let ki = |NG(bi)| and suppose that ki ≥ t for some i. As G

is K ′t-free, there is no Kt in W [NG(bi)] formed by heavy edges. Thus, by simple averaging,

the number of light edges in NG(bi) is at least 1

(t2)

(
ki
2

)
. But

∑
i:ki<t

(
ki
2

)
< t2n ≤ W (A)

2
,

so

∑
i:ki≥t

(
ki
2

)
≥ W (A)

2
.

Since every light edge is present in at most
(
t
2

)
of the sets NG(bi), it follows that the total

number of light edges is at least

1(
t
2

) ∑
i:ki≥t

1(
t
2

)(ki
2

)
≥ W (A)

4t2
.

Corollary 2.3.5. Let G be a K ′t-free bipartite graph with bipartition A ∪ B, |B| = n,

and minimum degree at least δ on the vertices in A. Then for any subset U ⊂ A with

|U | ≥ 4tn
δ

and |U | ≥ 2, the number of light edges in WG[U ] is at least δ2

4t4n

(|U |
2

)
.

Proof. By Lemma 2.3.2, we have W (U) ≥ δ2

2n

(|U |
2

)
≥ δ2

8n
|U |2 ≥ 2t2n. Now the result

follows by applying Lemma 2.3.4 to the graph G[U ∪B].

We are now in a position to complete the proof of Theorem 2.3.1.

Proof of Theorem 2.3.1. Let c be specified later and suppose that n is sufficiently

large. Assume, for contradiction, that G is K ′t-free. We shall find distinct u1, . . . , ut ∈ A
with the following properties.
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(i) Each uiuj is a light edge in WG.

(ii) If i, j, k are distinct, then NG(ui) ∩NG(uj) ∩NG(uk) = ∅.

(iii) For each 1 ≤ i ≤ t− 1, the number of v ∈ A with the property that for every j ≤ i,

ujv is a light edge is at least ( δ2

16t4n
)i · |A|.

As n is sufficiently large, we have |A| ≥ n/2 ≥ 4tn
δ

, therefore by Corollary 2.3.5 there

are at least δ2

4t4n

(|A|
2

)
light edges in A, so we may choose u1 ∈ A such that the number of

light edges u1v is at least δ2

4t4n
(|A| − 1) ≥ δ2

16t4n
|A|.

Now suppose that 2 ≤ i ≤ t−1, and that u1, . . . , ui−1 have been constructed satisfying

(i), (ii) and (iii). Let U0 be the set of vertices v ∈ A with the property that ujv is a light

edge for every j ≤ i − 1. By (iii), we have |U0| ≥ ( δ2

16t4n
)i−1|A|. Now let U consist of

those v ∈ U0 for which NG(uj) ∩ NG(uk) ∩ NG(v) = ∅ holds for all 1 ≤ j < k ≤ i − 1.

Since ujuk is a light edge for any 1 ≤ j < k ≤ i − 1, we have that dG(uj, uk) <
(
t
2

)
.

But the degree of every b ∈ B is at most Kδ, therefore the number of v ∈ A for which

NG(uj)∩NG(uk)∩NG(v) 6= ∅ is at most
(
t
2

)
Kδ, so |U0 \U | ≤

(
i−1

2

)(
t
2

)
Kδ. But note that

for sufficiently large n, we have ( δ2

16t4n
)i−1|A| ≥ 2

(
i−1

2

)(
t
2

)
Kδ because δ = o((δ2/n)t−2n)

and δ = o((δ2/n)n). Thus,

|U | ≥ 1

2
|U0| ≥

1

2

(
δ2

16t4n

)i−1

|A|.

But for sufficiently large c = c(t,K), we have 1
2
( δ2

16t4n
)i−1|A| ≥ 4tn

δ
. Indeed, this is obvious

when δ2 ≥ 16t4n, and otherwise, using δ ≥ cn
t−2
2t−3 , we have

1

2

(
δ2

16t4n

)i−1

|A| ≥ 1

2

(
δ2

16t4n

)t−2

|A| ≥ 1

4(16t4)t−2
· δ

2t−4

nt−3
≥ 4tn

δ

Thus, by Corollary 2.3.5, there exists some ui ∈ U with at least δ2

4t4n
(|U |−1) ≥ ( δ2

16t4n
)i|A|

light edges adjacent to it in U . This completes the recursive construction of the vertices

{uj}1≤j≤t−1.

By (iii) for i = t− 1, there is a set V ⊂ A consisting of at least ( δ2

16t4n
)t−1|A| vertices

v such that for every j ≤ t − 1, ujv is a light edge. Since every uiuj is a light edge,

the number of those v ∈ A with NG(ui) ∩NG(uj) ∩NG(v) 6= ∅ for some i 6= j is at most(
t−1

2

)(
t
2

)
Kδ. But for large enough c = c(t,K), this is less than ( δ2

16t4n
)t−1|A|, so there exists

ut ∈ V such that u1, . . . , ut satisfy (i), (ii) and (iii) above.

Now it is easy to see that there exists a K ′t in G containing u1, . . . , ut as vertices.
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2.4 K2,2-free bipartite graphs with max degree r on

one side

We now use ideas from the previous section to prove Theorem 2.1.7. In order to prove

this theorem, we may clearly assume that all the degrees in one part of H are exactly r.

Then Lemma 2.2.3 reduces Theorem 2.1.7 to the following statement.

Theorem 2.4.1. Let r ≥ 2 be an integer, let K ≥ 1 be fixed and let H be a bipartite

graph such that in one of the parts all the degrees are exactly r and H does not contain

K2,2 as a subgraph. Then, for any constant c > 0, there exists n0 such that if n ≥ n0 and

G is a K-almost-regular balanced bipartite graph with bipartition A ∪ B, |B| = n, with

minimum degree δ ≥ cn1−1/r, then G contains a copy of H.

We need the following generalisation of Lemma 2.3.2.

Lemma 2.4.2. Let r ≥ 2 be an integer and let G be a bipartite graph with bipartition

A∪B, |B| = n, and minimum degree at least δ on the vertices in A. Then, for any subset

U ⊂ A with |U | ≥ rn
δ

,

∑
u1...ur∈(Ur)

d(u1, . . . , ur) ≥
δr

rrnr−1
|U |r ≥ δr

rrnr−1

(
|U |
r

)
.

Proof. Writing dU(v) for |NG(v) ∩ U |, we have that

∑
u1...ur∈(Ur)

d(u1, . . . , ur) =
∑
b∈B

(
dU(b)

r

)
≥ n

(∑
b∈B dU(b)/n

r

)

= n

(∑
u∈U d(u)/n

r

)
≥ n

(
δ|U |/n
r

)
≥ n

(δ|U |
rn

)r
=

δr

rrnr−1
|U |r,

where the first inequality follows from the convexity of
(
x
r

)
and in the last inequality we

used that |U | ≥ rn
δ

.

Given a bipartite graph G with bipartition A ∪ B, the neighbourhood r-graph is the

weighted r-uniform hypergraph WG on vertex set A, where the weight of the hyperedge

u1 . . . ur (for u1, . . . , ur distinct) is d(u1, . . . , ur). For a subset U ⊂ A, we write W (U)

for the total weight in U , i.e., W (U) =
∑

u1...ur∈(Ur)
d(u1, . . . , ur). In this language, the

conclusion of Lemma 2.4.2 is that W (U) ≥ δr

rrnr−1

(|U |
r

)
.

In the next definition, for a weighted r-graph W on vertex set A and u1, . . . , ur ∈ A, we

write W (u1, . . . , ur) for the weight of the hyperedge u1 . . . ur. Moreover, in what follows

we fix r ≥ 2 and a bipartite graph H with the property that in one part all the degrees

are exactly r. Let h = |V (H)|.
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Definition 2.4.3. Let W be a weighted r-graph on vertex set A and let u1, . . . , ur ∈ A
be distinct. We say that u1 . . . ur is a light edge if 1 ≤ W (u1, . . . , ur) <

(
h
r

)
and that it is

a heavy edge if W (u1, . . . , ur) ≥
(
h
r

)
.

Note that if there is a K
(r)
h in WG formed by heavy edges, then clearly there is a copy

of H in G. This observation is an important ingredient in our next lemma, which is the

generalisation of Lemma 2.3.4.

Lemma 2.4.4. Let G be an H-free bipartite graph with bipartition A ∪ B, |B| = n, and

suppose that W (A) ≥ 2hrn. Then the number of light edges in WG is at least W (A)
2h2r

.

Proof. Suppose B = {b1, . . . , bn}. Let ki = |NG(bi)| and suppose that ki ≥ h for some i.

As G is H-free, there is no K
(r)
h in W [NG(bi)] formed by heavy edges. Since ex(t,K

(r)
h ) ≤

(1− 1/
(
h
r

)
)
(
t
r

)
holds for t ≥ h, the number of light edges in NG(bi) is at least

(kir )
(hr)

. But

∑
i:ki<h

(
ki
r

)
< hrn ≤ W (A)

2
,

so

∑
i:ki≥h

(
ki
r

)
≥ W (A)

2
.

Since every light edge is present in at most
(
h
r

)
of the sets NG(bi), it follows that the total

number of light edges is at least

1(
h
r

) ∑
i:ki≥h

(
ki
r

)(
h
r

) ≥ W (A)

2h2r
,

as required.

Corollary 2.4.5. Let G be an H-free bipartite graph with bipartition A ∪ B, |B| = n,

and minimum degree at least δ on the vertices in A. Then, for any subset U ⊂ A with

|U | ≥ 2hrn
δ

, the number of light edges in WG[U ] is at least δr

2h2rrrnr−1

(|U |
r

)
.

Proof. By Lemma 2.4.2, we have W (U) ≥ δr

rrnr−1 |U |r ≥ 2hrn. Hence, the result follows

by applying Lemma 2.4.4 to the graph G[U ∪B].

We now recall Definition 5 from [85].

Definition 2.4.6. An r-uniform hypergraph G = (V,E) is (ρ, d)-dense if, for any subset

U ⊂ V of size |U | ≥ ρ|V |, eG(U) ≥ d
(|U |
r

)
.

Recall also that a linear hypergraph is a hypergraph where any two edges intersect in

at most one vertex. The following result follows from Theorem 7 in [85].
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Theorem 2.4.7 (Kohayakawa–Nagle–Rödl–Schacht). Let L be a linear r-uniform hyper-

graph on ` vertices. Then, for every d > 0, there exist ρ = ρ(L, d) > 0, ε = ε(L, d) > 0

and n0 = n0(L, d) such that every (ρ, d)-dense r-uniform hypergraph G = (V,E) on n ≥ n0

vertices contains at least ε|V |` copies of L.

We are now in a position to complete the proof of Theorem 2.4.1.

Proof of Theorem 2.4.1. We may assume that δ ≤ n1−1/(2r), as we already know that

ex(n,H) = O(n2−1/r). Suppose that G is H-free. Define G to be the r-uniform (simple)

hypergraph whose vertex set is A and whose edges are precisely the light edges of WG.

By Corollary 2.4.5, for any U ⊂ A with |U | ≥ 2hrn
δ

, we have

eG(U) ≥ δr

2h2rrrnr−1

(
|U |
r

)
≥ cr

2h2rrr

(
|U |
r

)
.

Suppose H has bipartition X ∪Y with every vertex in Y having degree r. Define L to be

the r-uniform hypergraph whose vertex set is X and whose edges are the neighbourhoods

NH(y) for y ∈ Y . Since H does not contain a K2,2, it follows that L is linear. Let

d = cr

2h2rrr
and choose ρ > 0, ε > 0 and n0 as in the conclusion of Theorem 2.4.7. Note

that for n sufficiently large, we have 2hrn
δ

< ρ|A|, so G is (ρ, d)-dense and consequently

contains at least ε|A||X| copies of L. All these copies of L provide homomorphic copies of

H in G (with vertices in X mapped to vertices in A and vertices in Y mapped to vertices

in B), but some of these may be degenerate in the sense that distinct vertices in Y may

be mapped to the same vertex in B.

We now give an upper bound for the number of degenerate copies of H, counting only

those copies that were obtained by the method above. Any such degenerate copy must

contain some u ∈ B and v1, . . . , vr+1 ∈ NG(u) with v1 . . . vr a light edge in WG. The

number of possible choices for such a configuration is at most (2n)r ·
(
h
r

)
· Kδ, since we

can choose v1, . . . , vr in at most (2n)r ways (since |A| ≤ 2n), then we can choose u in at

most
(
h
r

)
ways (since v1 . . . vr is a light edge) and, finally, we can choose vr+1 in at most

Kδ ways (since ∆(G) ≤ Kδ). But the number of ways to extend this to a copy of H is

at most (2n)|X|−r−1 ·
(
h
r

)(|X|r )
, because we can map those vertices in X that have not been

mapped in at most (2n)|X|−r−1 ways and, given any choice for the images of X, there

are at most
(
h
r

)
possible choices for the image of each y ∈ Y , since we are only counting

those copies of H in which NH(y) is mapped to a light edge. Thus, of the ε|A||X| copies

of H that we found, at most
(
h
r

)(|X|r )+1
Kδ(2n)|X|−1 are degenerate. Since δ ≤ n1− 1

2r and

|A| ≥ n/2, for sufficiently large n we obtain a non-degenerate copy of H.

2.5 A short proof of a result of Kang, Kim and Liu

As mentioned in the introduction, Kang, Kim and Liu proved that for each a, b ∈ N with

a < b and b ≡ ±1 (mod a), the number 2 − a
b

is realisable. Their main result was a
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x1 x2 · · · xr−1
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· · ·
w1,r−1

z2

w2,1 . . . w2,r−1

· · · zs

ws,1

· · ·

ws,r−1

Figure 2.1: Hs,1(r)

tight upper bound on the extremal number of certain graphs from which the result just

mentioned for b ≡ −1 (mod a) follows fairly easily. We now define this family of graphs.

Consider a graph F with a set R ( V (F ) of root vertices. The rooted t-blowup of this

rooted graph is the graph obtained by taking t vertex-disjoint copies of F and identifying

the different copies of v for each v ∈ R. We let Hs,1(r) be the graph consisting of vertices

xi (1 ≤ i ≤ r − 1), y, zj (1 ≤ j ≤ s) and wj,k (1 ≤ j ≤ s, 1 ≤ k ≤ r − 1) and edges

xiy for all i, yzj for all j and zjwj,k for all j, k. Then Hs,t(r) is the rooted t-blowup of

Hs,1(r), with the roots being {xi : 1 ≤ i ≤ r − 1} ∪ {wj,k : 1 ≤ j ≤ s, 1 ≤ k ≤ r − 1}.
For a picture, we refer the reader to Figure 2.1, where the root vertices are marked by

rectangular boxes. The result of Kang, Kim and Liu [79, Lemma 3.2] is now as follows.

Theorem 2.5.1 (Kang–Kim–Liu). For any integers s, t ≥ 1 and r ≥ 2,

ex(n,Hs,t(r)) = O(n2− s+1
r(s+1)−1 ).

Combined with results of Bukh and Conlon [18] (see Theorem 2.8.1 below), Theo-

rem 2.5.1 easily implies that 2− s+1
r(s+1)−1

is realisable for every s ≥ 1, r ≥ 2.

In this section, we illustrate our method by giving a new proof of Theorem 2.5.1

which is significantly shorter than the original one. By Lemma 2.2.1, it suffices to prove

the following.

Theorem 2.5.2. Let s, t ≥ 1 and r ≥ 2 be fixed integers and K ≥ 1 a constant. Suppose

that G is a K-almost-regular graph on n vertices with minimum degree δ = ω(n1− s+1
r(s+1)−1 ).

Then, for n sufficiently large, G contains a copy of Hs,t(r).

In what follows, let s, t ≥ 1 and r ≥ 2 be fixed integers and K ≥ 1 a constant. Let

H = Hs,t(r) and δ = ω(n1− s+1
r(s+1)−1 ). The constant L will be assumed to be sufficiently

large in terms of s, t, r and K, while n will always be sufficiently large in terms of s,

t, r, K and L. As a shorthand, we will now write dG(S) for the size of the common

neighbourhood NG(S) of a set S.

Definition 2.5.3. An r-set S ⊂ V (G) is called an r-edge if dG(S) > 0. The weight of

S is dG(S). S is called an L-light r-edge if 1 ≤ dG(S) ≤ L and an L-heavy r-edge if

dG(S) > L.
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Lemma 2.5.4. Let G be an H-free K-almost-regular graph on n vertices with minimum

degree δ. Then the total weight on L-heavy r-edges is at most an fL-proportion of the

total weight of r-edges, where fL → 0 as L→∞.

Proof. First note that for any r − 1 distinct vertices x1, . . . , xr−1, we cannot have m =

ms,t,r = t + s(r − 1) vertices in N(x1) ∩ · · · ∩ N(xr−1) such that any r of them form an

edge of weight at least c = cs,t,r = |V (H)|, since then we could find a copy of H. Indeed,

if there are vertices yi for 1 ≤ i ≤ t and wj,k for 1 ≤ j ≤ s, 1 ≤ k ≤ r − 1 such that

NG({yi, wj,1, . . . , wj,r−1}) contains at least c elements for every i, j, then we can choose

an element zi,j from each of these sets such that all the xi, yj, zk,` and wa,b are distinct,

yielding a copy of H. Thus, as long as |N(x1) ∩ · · · ∩ N(xr−1)| ≥ m, we have that in

N(x1) ∩ · · · ∩ N(xr−1) the proportion of those r-sets with weight at most c is at least

η = ηs,t,r = 1/
(
m
r

)
. Since each r-set in NG({x1, . . . , xr−1}) is clearly an r-edge, it follows

that the total number of r-edges of weight at most c is at least

1(
c

r−1

) · η · ∑
x1...xr−1∈(V (G)

r−1 )
dG(x1,...,xr−1)≥m

(
dG(x1, . . . , xr−1)

r

)
, (2.1)

where we used the fact that an r-tuple of weight at most c is in at most
(

c
r−1

)
of the sets

NG({x1, . . . , xr−1}). Note now that

∑
x1...xr−1∈(V (G)

r−1 )

dG(x1, . . . , xr−1) ≥ n

(
δ

r − 1

)
= Ω(nδr−1).

Therefore, on average dG(x1, . . . , xr−1) is Ω(n(δ/n)r−1) = ω(1), so, by Jensen’s inequality,

we have ∑
x1...xr−1∈(V (G)

r−1 )

(
dG(x1, . . . , xr−1)

r

)
≥ 2

(
|V (G)|
r − 1

)(
m

r

)

≥ 2
∑

x1...xr−1∈(V (G)
r−1 )

dG(x1,...,xr−1)<m

(
dG(x1, . . . , xr−1)

r

)
.

Thus, together with (2.1), the total number of r-edges of weight at most c (and, therefore,

the total weight of r-edges) is at least

1

2
· 1(

c
r−1

) · η · ∑
x1...xr−1∈(V (G)

r−1 )

(
dG(x1, . . . , xr−1)

r

)
. (2.2)
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On the other hand, the total weight on r-edges of weight at least L is at most

L(
L
r−1

) · ∑
x1...xr−1∈(V (G)

r−1 )

(
dG(x1, . . . , xr−1)

r

)
, (2.3)

since an r-edge of weight w is in
(
w
r−1

)
of the sets NG({x1, . . . , xr−1}) and w/

(
w
r−1

)
is a

non-increasing function of w. If r ≥ 3, then L/
(
L
r−1

)
→ 0 as L → ∞ and, hence, the

proportion of weight on L-heavy edges tends to 0 as L tends to infinity.

In the r = 2 case, (2.3) does not help us, so we take a slightly different approach.

For a constant ε > 0, let ξ = εη
2c

. If N(x1) contains more than ξ
(
d(x1)

2

)
pairs of weight

at least c, then, for n sufficiently large, there exists a copy of H. Indeed, the vertex x1

together with a copy of Ks,t in N(x1) formed by edges of weight at least c easily extend

to a nondegenerate copy of H. Thus, for large enough n and L = c, the total weight on

edges of weight at least L is at most

ξ ·
∑

x∈V (G)

(
dG(x)

2

)
,

which is at most ε times (2.2).

The following definition and lemma contain the key idea in our proof. Note that

we continue to abuse notation slightly by referring to the vertices of Hs,t(r) and their

embedded images in another graph G by the same labels.

Definition 2.5.5. An embedding of Hs,1(r) in a graph G is L-good if the r-sets

{x1, . . . , xr−1, zi} and {y, wi,1, . . . , wi,r−1} are L-light in G for every 1 ≤ i ≤ s.

Lemma 2.5.6. Let G be an H-free K-almost-regular graph on n vertices with minimum

degree δ. Then, for L sufficiently large (not depending on n), the number of L-good

embeddings of Hs,1(r) in G is at least 1
2
nδsr+r−1.

Proof. The total weight on r-edges in G is equal to the number of r-stars, which is at

most n(Kδ)r as ∆(G) ≤ Kδ. Thus, Lemma 2.5.4 implies that the number of r-stars

whose leaf set is heavy is at most cLnδ
r, where cL → 0 as L→∞.

Since Hs,1(r) is a tree on sr + r vertices and every vertex in G has degree at least

δ, there are at least (1 − o(1))nδsr+r−1 copies of Hs,1(r) in G. By the first paragraph,

{x1, . . . , xr−1, z1} is not light in at most rcLnδ
r(Kδ)sr−1 of them. Indeed, there are at most

(Kδ)sr−1 ways to extend a fixed choice of x1, . . . , xr−1, y, z1, since Hs,1(r) is connected and

every vertex in G has degree at most Kδ. The factor r accounts for the fact that knowing

the vertex set {x1, . . . , xr−1, y, z1} of the r-star leaves r possibilities for z1. The same holds

for the other r-sets {x1, . . . , xr−1, zi} and {y, wi,1, . . . , wi,r−1}, so the number of copies of

Hs,1(r) which are not suitable is at most 2s ·rcLnδr(Kδ)sr−1 = 2rscLK
sr−1nδsr+r−1. Since

cL → 0 as L→∞, the result follows.
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We are now in a position to prove Theorem 2.5.2.

Proof of Theorem 2.5.2. Choose L large enough that the conclusion of Lemma 2.5.6

holds. By that lemma and averaging, there exist xi (1 ≤ i ≤ r−1) and wj,k (1 ≤ j ≤ s, 1 ≤
k ≤ r − 1) which extend to at least Ω(n1−(r−1)−s(r−1)δsr+r−1) = ω(1) L-good embeddings

of Hs,1(r). Take a maximal setM of such extensions which are vertex-disjoint apart from

the roots. If M consists of at least t copies of Hs,1(r), then their union forms a copy of

Hs,t(r).

Suppose instead thatM consists of at most t−1 extensions. Then any other extension

has a non-root vertex which coincides with one of the non-root vertices of some M ∈M.

Since there are O(1) non-root vertices in the graphs M ∈M and O(1) vertices in Hs,1(r),

there must exist some non-root vertex of Hs,1(r) that is mapped to the same vertex

in ω(1) of the good embeddings of Hs,1(r) that extend xi (1 ≤ i ≤ r − 1) and wj,k

(1 ≤ j ≤ s, 1 ≤ k ≤ r − 1). Suppose first that y is mapped to the same vertex in

ω(1) copies. Since {y, wj,1, . . . , wj,r−1} is L-light for every j, this leaves at most L = O(1)

possibilities for each zj, which is a contradiction. Similarly, suppose that some zj takes the

same vertex in ω(1) copies. Since {x1, . . . , xr−1, zj} is L-light, this allows only L = O(1)

possibilities for y, so y is mapped to some vertex ω(1) times. As before, this leads to a

contradiction.

2.6 Longer subdivisions of (multi)graphs

In this section we prove Theorems 2.1.12 and 2.1.13.

2.6.1 The high-level structure of the proof

Using Lemma 2.2.1, Theorem 2.1.12 and Theorem 2.1.13 reduce to the following two

statements, respectively. For notational convenience, we have dropped the assumption

that k is even, and replaced k by 2k.

Theorem 2.6.1. Let F be a multigraph and let k ≥ 1. Suppose that G is a K-almost-

regular graph on n vertices with minimum degree δ = ω(n
1
2k ). Then, for n sufficiently

large, G contains a copy of F 2k−1.

Theorem 2.6.2. Let F be a simple graph and let k ≥ 1. Then there exists ε > 0 with

the following property. Suppose that G is a K-almost-regular graph on n vertices with

minimum degree δ = ω(n
1
2k
−ε). Then, for n sufficiently large, G contains a copy of

F 2k−1.

For the rest of this section we let F be an arbitrary fixed multigraph and write H =

F 2k−1. Moreover, throughout the section we tacitly assume that n is sufficiently large.

The next definition was introduced in [23], and was used to prove Theorem 2.1.14.
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Definition 2.6.3. Let L be a positive real and let f(`, L) = L5` for 1 ≤ ` ≤ 2k. We

recursively define the notions of L-admissible and L-good paths of length ` in a graph.

Any path of length 1 is both L-admissible and L-good. For 2 ≤ ` ≤ 2k, we say a path

P = v0v1 . . . v` is L-admissible if every proper subpath of P is L-good, i.e., vivi+1 . . . vj is

L-good for every (i, j) 6= (0, `). The path P is L-good if it is L-admissible and the number

of L-admissible paths of length ` between v0 and v` is at most f(`, L).

The next lemma will be used several times later.

Lemma 2.6.4. Let ` ≥ 2 and let L > `. If a path P = v0 . . . v` is L-admissible, but

not L-good, then there exist at least L pairwise internally vertex-disjoint paths of length `

from v0 to v`.

Proof. Take a maximal set of pairwise internally vertex-disjoint paths of length ` from

v0 to v` and assume that it consists of fewer than L paths. These paths contain at most

L(` − 1) internal vertices in total and any path of length ` between v0 and v` intersects

at least one of these vertices. Since there are at least L5` L-admissible paths of length `

between v0 and v`, it follows by pigeon hole that there exist some 1 ≤ i ≤ `− 1 and some

x ∈ V (G) such that there are at least L5`

(`−1)L(`−1)
L-admissible paths of the form u0u1 . . . u`

with u0 = v0, ui = x, u` = v`. Observe that L5`

(`−1)L(`−1)
> L5iL5`−i , so either there are more

than L5i L-good paths of length i between v0 and x or there are more than L5`−i L-good

paths of length `− i between x and v`. In either case, we contradict the definition of an

L-good path.

Our strategy will be to prove that, roughly speaking, in any almost regular H-free

graph there are many good paths of length 2k. In Subsection 2.6.2 we prove that almost

all paths of length k are good. In Subsection 2.6.3 we extend this to paths of length 2k

and prove the following lemma.

Lemma 2.6.5. Let G be an F 2k−1-free K-almost-regular graph on n vertices with min-

imum degree δ ≥ L100k|V (F )||E(F )|2(k+1), and let S ⊂ V (G). Then, provided that L is

sufficiently large compared to |V (F )|, |E(F )|, k and K, |S| = ω( n
δ1/2

) and |S| = ω( n
L1/2 ),

the number of L-good paths of length 2k with both endpoints in S is Ω( |S|
2δ2k

n
).

In this result and everywhere else in the section, the asymptotic notation Ω allows the

implied constant to depend on |V (F )|, |E(F )|, k and K, which are thought of as constants,

while δ and L are functions of n. Note that this is in contrast with the previous section,

where L was independent of n.

With Lemma 2.6.5 in hand, the proof of Theorem 2.6.1 is immediate.

Proof of Theorem 2.6.1. Suppose that G does not contain F 2k−1 as a subgraph. Since

δ = ω(n
1
2k ), we may choose L with L = ω(1), L100k|V (F )||E(F )|2(k+1) ≤ δ and n2f(2k, L) =

o(nδ2k). Then we may apply Lemma 2.6.5 with S = V (G) to get that the number of

L-good paths of length 2k in G is Ω(nδ2k), which is ω(n2f(2k, L)). However, by the
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definition of L-goodness, between any two vertices there can be at most f(2k, L) such

paths, which is a contradiction.

The proof of Theorem 2.6.2 is slightly more complicated.

Proof of Theorem 2.6.2. Firstly note that F is a subgraph of Kt for some t, so it

suffices to prove the result for F = Kt. Let ε > 0 be sufficiently small, to be specified,

and let G be a K-almost-regular graph on n vertices with minimum degree δ = ω(n
1
2k
−ε).

Assume that G does not contain a copy of H = F 2k−1.

For vertices u, v ∈ V (G), let us write u ∼ v if there is a path of length 2k between u

and v. Also, let us say that u and v are distant if for every 1 ≤ i ≤ 4k− 2, the number of

walks of length i between u and v is at most δi−2k+1/2. Observe that for any u ∈ V (G) the

number of walks of length i starting from u is at most (Kδ)i, so the number of vertices

v ∈ V (G) for which there are at least δi−2k+1/2 walks of length i from u to v is at most
(Kδ)i

δi−2k+1/2 = Kiδ2k−1/2. Thus, the number of v ∈ V (G) for which u and v are not distant is

O(δ2k−1/2).

Define c0 = ε and c`+1 = (3 · 52k + 1)c` + 2kε for 0 ≤ ` ≤ t− 1. Assume that ε is small

enough so that

3 · 100k|V (F )||E(F )|2(k + 1) · c` ≤
1

2k
− ε (2.4)

for all 0 ≤ ` ≤ t. Then in particular c` ≤ 1
4k
− ε/2 holds for all 0 ≤ ` ≤ t. For future

reference, note that then

nc` ≤ n
1
4k
−ε/2 = o(δ1/2). (2.5)

Claim. For any 0 ≤ ` ≤ t, there exist distinct vertices x1, . . . , x` ∈ V (G) and a set

S` ⊂ V (G) such that

(i) there is a copy of K2k−1
` in G with the vertices of the subdivided K` being x1, . . . , x`

(ii) xi ∼ y for every 1 ≤ i ≤ ` and every y ∈ S`

(iii) |S`| = Ω(n1−c`) and

(iv) xi and xj are distant for every 1 ≤ i < j ≤ `.

Note that in particular for ` = t, condition (i) guarantees the existence of a subgraph

K2k−1
t , so it suffices to prove the claim.

Proof of Claim. We proceed by induction on `. For ` = 0, we may take S0 = V (G).

Assume now that we have verified the claim for `.

Suppose that for some y ∈ S` there exist 1 ≤ i < j ≤ ` and two paths of length 2k,

one (called Pi) from xi to y and one (called Pj) from xj to y, which share a vertex other

than y. Let they intersect at some vertex z 6= y. Now let the subpath of Pi between xi

and z have length α and let the subpath of Pj between xj and z have length β. Then
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there is a walk of length α + β from xi to xj through z. Moreover, there is a path of

length 2k − α from z to y. Observe that 2k − α ≤ 4k − (α + β)− 1.

Let Y be the set of y ∈ S` for which there exist some 1 ≤ i < j ≤ ` and a walk W of

length γ ≤ 4k− 2 between xi and xj such that for some vertex w on W the distance of y

from w is at most 4k−γ−1. By condition (iv), there are at most δγ−2k+1/2 walks of length

γ between any xi and xj so there are O(δγ−2k+1/2) vertices appearing in at least one of

these walks. Therefore the number of vertices at distance at most 4k−γ−1 from at least

one of these vertices is O(δγ−2k+1/2 · δ4k−γ−1) = O(δ2k−1/2). That is, |Y | = O(δ2k−1/2).

Notice that by the discussion above, for any y ∈ S` \ Y and any i 6= j, a path of

length 2k from xi to y, and a path of length 2k from xj to y have no common vertex

other than y. Thus, by condition (ii) there exist ` paths of length 2k, one from each xi

to y which are pairwise vertex-disjoint apart from at y. Moreover, these paths are also

vertex-disjoint from the paths forming the K2k−1
` guaranteed by condition (i), apart from

the trivial intersections at x1, . . . , x` (else, there is a path of length at most 2k − 1 from

y to a point on a path of length 2k between some xi and xj, which contradicts the fact

that y 6∈ Y ). Thus, for any y ∈ S` \ Y there is a copy of K2k−1
`+1 in G with the vertices of

the subdivided K`+1 being x1, . . . , x`, y.

Let Z be the set of z ∈ S` which are not distant to xi for at least one 1 ≤ i ≤ `. By

the second paragraph in this proof, |Z| = O(δ2k−1/2).

Let S ′` = S` \ (Y ∪Z). Recall that |Y | = O(δ2k−1/2). Note that if δ = ω(n
1
2k ), then, by

Theorem 2.6.1, G contains H as a subgraph, so we may assume that δ = O(n
1
2k ). Then

δ2k−1/2 = O( n
δ1/2

), which is o(n1−c`) by equation (2.5). Thus, |Y ∪ Z| = o(n1−c`) and so

|S ′`| = Ω(n1−c`).

Let L = n3c` . Then, by equation (2.4), we have L100k|V (F )||E(F )|2(k+1) ≤ n
1
2k
−ε = o(δ).

Moreover, by equation (2.5), we have n1−c` = ω( n
δ1/2

), and by the definition of L, we

have n1−c` = ω( n
L1/2 ). Hence, by Lemma 2.6.5, the number of L-good paths of length 2k

with both endpoints in S ′` is Ω(
|S′`|

2δ2k

n
). Between any two vertices in S ′` there are at most

f(2k, L) L-good paths of length 2k, so the number of pairs (z, y) ∈ S ′` × S ′` with z ∼ y

is Ω(
|S′`|

2δ2k

nf(2k,L)
). Thus, there exists some x`+1 ∈ S ′` such that the number of y ∈ S ′` with

x`+1 ∼ y is Ω(
|S′`|δ

2k

nf(2k,L)
) ≥ Ω(n

1−c`−2kε

L52k
) = Ω(n1−c`−2kε−3c`5

2k
) = Ω(n1−c`+1). Set S`+1 to be

the set of these y ∈ S ′`, and note that properties (i)-(iv) are satisfied for `+ 1.

2.6.2 Short paths

Our aim in this subsection is to prove the following lemma.

Lemma 2.6.6. Let G be an F 2k−1-free K-almost-regular graph on n vertices with mini-

mum degree δ ≥ L100k|V (F )||E(F )|2(k+1). Then, provided that L is sufficiently large compared

to |V (F )|, |E(F )|, k and K, the number of paths of length k that are not good is O(nδ
k

L
).

Observe that if s = |V (F )| and t = |E(F )|, then H = F 2k−1 is a subgraph of Kk−1
s,t .

Hence, Lemma 2.6.6 will follow from the following result.
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Lemma 2.6.7. Let s and t be positive integers and let G be a Kk−1
s,t -free K-almost-regular

graph on n vertices with minimum degree δ ≥ L100kst2(k+1). Then, provided that L is

sufficiently large compared to s, t, k and K, the number of paths of length k that are not

good is O(nδ
k

L
).

The next definition is for notational convenience.

Definition 2.6.8. A pair of distinct vertices (x, y) in G is said to be (`, L)-bad for some

2 ≤ ` ≤ 2k and some L if there is an L-admissible, but not L-good, path of length ` from

x to y.

In what follows, for v ∈ V (G), we shall write Γi(v) for the set of vertices u ∈ V (G)

for which there exists a path of length i from v to u and write N(v) = Γ1(v). The next

lemma will be used to show that if s and t are fixed, then in a Kk−1
s,t -free graph there

cannot be many bad pairs between N(v) = Γ1(v) and Γ`−1(v). We will take a suitable

X ⊂ N(v), Y = Γ`−1(v) and repeatedly apply the lemma to obtain (i − 1)-subdivided

t-stars. At the end, we piece these together to form a copy of Kk−1
s,t . To make sure that

this is nondegenerate, the set Z of vertices that we have already used will be avoided.

Lemma 2.6.9. Let t ≥ 1, 2 ≤ ` ≤ k and 1 ≤ i ≤ ` be integers. Let G be a K-almost-

regular graph on n vertices with minimum degree δ > 0. Let X, Y, Z ⊂ V (G) be such that

|Z| ≤ L1/10, |Y | ≤ (Kδ)`−1 and, for any x ∈ X, the number of y ∈ Y such that (x, y) is

(`, L)-bad is as at least (Kδ)`−1

f(`−1,L)2
. Then, provided that L is sufficiently large compared to t,

k and K, there exist an (i − 1)-subdivided t-star in G, disjoint from Z, whose endpoints

form a set R ⊂ Y , and a subset X ′ ⊂ X such that |X ′| ≥ |X \ Z|/(4f(` − 1, L)2)t and

(x′, r) is (`, L)-bad for every x′ ∈ X ′ and r ∈ R.

Proof. After replacing X by X \Z, we may assume X∩Z = ∅. Let Y ′ be the set of those

y ∈ Y for which the number of x ∈ X such that (x, y) is (`, L)-bad is at least |X|
2f(`−1,L)2

.

Then the number of (x, y) ∈ X × (Y \ Y ′) which are (`, L)-bad is at most |X||Y |
2f(`−1,L)2

≤
|X|(Kδ)`−1

2f(`−1,L)2
, so the number of (x, y) ∈ X×Y ′ which are (`, L)-bad is at least |X|(Kδ)

`−1

2f(`−1,L)2
. Now

there exists some x∗ ∈ X such that there are at least (Kδ)`−1

2f(`−1,L)2
choices y ∈ Y ′ for which

(x∗, y) is (`, L)-bad. If a pair (x∗, y) is (`, L)-bad, then there are at least f(`, L) paths of

length ` from x∗ to y. Hence, there are at least (Kδ)`−1

2f(`−1,L)2
· f(`, L) = Ω(f(` − 1, L)3δ`−1)

paths of length ` starting at x∗ and ending in Y ′.

The number of such paths intersecting Z is at most |Z|`(Kδ)`−1. Indeed, there are

at most |Z| choices for the element of Z in the path, at most ` choices for its position

in the path and, given a fixed choice for these, at most (Kδ)`−1 choices for the other

` − 1 vertices in the path. (Note that as X ∩ Z = ∅, the vertex in Z is not x∗.) But

|Z|`(Kδ)`−1 ≤ L1/10`K`−1δ`−1, so, for L sufficiently large there are Ω(f(` − 1, L)3δ`−1)

paths of length ` starting at x∗ and ending in Y ′ that avoid Z. Moreover, there are at

most (Kδ)`−i different initial segments of length `−i for these paths, so, by the pigeonhole
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principle, there exist Ω(f(`−1, L)3δi−1) of them which start with the same `− i edges. It

follows that there exists some u ∈ Γ`−i(x
∗) such that there are Ω(f(`− 1, L)3δi−1) paths

of length i from u to Y ′, all avoiding Z.

Take now a maximal set of such paths which are pairwise vertex-disjoint apart from

at u. We claim that there are Ω(f(` − 1, L)3) such paths. Suppose otherwise. Then

all the Ω(f(` − 1, L)3δi−1) paths of length i from u to Y ′ intersect a certain set of size

o(f(`− 1, L)3) not containing u. But there are o(f(`− 1, L)3)δi−1 such paths, which is a

contradiction.

So we have r = Ω(f(` − 1, L)3) paths P1, . . . , Pr of length i from u to Y ′ which

are pairwise vertex-disjoint except at u and avoid Z. Let the endpoints of these paths

be y1, . . . , yr. Since yj ∈ Y ′ for all j, the number of pairs (x, yj) with x ∈ X which

are (`, L)-bad is at least r|X|
2f(`−1,L)2

. Therefore, by Jensen’s inequality, there are at least

|X| ·
(
r/(2f(`−1,L)2)

t

)
choices x ∈ X, 1 ≤ j1 < j2 < · · · < jt ≤ r such that (x, yj1), . . . , (x, yjt)

are all (`, L)-bad. Since
(
r/(2f(`−1,L)2)

t

)
≥ ( 1

4f(`−1,L)2
)t
(
r
t

)
, there exist 1 ≤ j1 < · · · < jt ≤ r

such that the set

X ′ = {x ∈ X : (x, yj1), . . . , (x, yjt) are all (`, L)-bad}

has size at least |X|/(4f(`− 1, L)2)t. We can now take R = {yj1 , . . . , yjt}, and the union

of the paths Pj1 , . . . , Pjt is a suitable (i− 1)-subdivided t-star.

We now iterate Lemma 2.6.9, as promised, to find a copy of Kk−1
s,t .

Lemma 2.6.10. Let s and t be positive integers and let G be an Kk−1
s,t -free K-almost-

regular graph on n vertices with minimum degree δ ≥ L100kst2(k+1). Let 2 ≤ ` ≤ k

and v ∈ V (G). Then, provided that L is sufficiently large compared to s, t, k and K,

the number of L-admissible, but not L-good, paths of the form v0vv2v3 . . . v` is at most
2(Kδ)`

f(`−1,L)
.

Proof. Suppose otherwise. Let Y = Γ`−1(v) and note that |Y | ≤ (Kδ)`−1. For any

x ∈ N(v) and any y ∈ Y , the number of L-admissible paths of the form xvv2 . . . v`−1y

is at most f(` − 1, L). Indeed, in any such path, the subpath vv2v3 . . . v`−1y is L-good,

and for any fixed y ∈ Y there are at most f(` − 1, L) such L-good paths. Hence, by

assumption, the number of pairs (x, y) ∈ N(v) × Y such that there is an L-admissible,

but not L-good, path of the form xvv2 . . . v`−1y is at least 2(Kδ)`

f(`−1,L)2
≥ 2|N(v)|(Kδ)`−1

f(`−1,L)2
. By

definition, any such pair (x, y) is (`, L)-bad. Let X consist of those x ∈ N(v) for which

there are at least (Kδ)`−1

f(`−1,L)2
choices of y ∈ Y such that (x, y) is (`, L)-bad. Then the

number of pairs (x, y) ∈ X × Y which are (`, L)-bad is at least |N(v)|(Kδ)`−1

f(`−1,L)2
, and so

|X| ≥ |N(v)|
f(`−1,L)2

≥ δ
f(`−1,L)2

.

Our aim now is to find a copy of Kk−1
s,t in G, which will yield a contradiction. Consider

first the case ` = k. By Lemma 2.6.9 with Z = ∅, there exists a set X ′ ⊂ X of size at

least |X|/(4f(`− 1, L)2)t and a set R1 ⊂ Y of size t such that (x, y) is (`, L)-bad for any
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x ∈ X ′ and y ∈ R1. Note that this uses Lemma 2.6.9 in a rather weak sense since we

do not need the subdivided star provided by the lemma, only its leaves. Now applying

Lemma 2.6.9 with Z = R1 and with X ′ in place of X, we find a set X ′′ ⊂ X ′ of size at

least |X ′ \ R1|/(4f(` − 1, L)2)t and a set R2 ⊂ Y of size t, disjoint from R1 such that

(x, y) is (`, L)-bad for any x ∈ X ′′ and y ∈ R2. Repeat this procedure. Note that for L

sufficiently large we have

|X| ≥ δ

f(`− 1, L)2
≥ L100kst2(k+1)

f(`− 1, L)2
≥ f(`− 1, L)20st2(k+1)

f(`− 1, L)2

≥ 2L(4f(`− 1, L)2)st
2(k+1)+st, (2.6)

so we may apply Lemma 2.6.9 d s
t
e times (or even st(k + 1) + s times) as above to find a

set Xfinal ⊂ X of size at least t and a set U = R1 ∪ R2 ∪ · · · ∪ Rds/te ⊂ Y with |U | ≥ s

such that Xfinal and U are disjoint and (x, y) is (`, L)-bad for any x ∈ Xfinal and y ∈ U .

Choose distinct vertices x1, . . . , xt ∈ Xfinal and y1, . . . , ys ∈ U . Since (xi, yj) is (`, L)-bad

for every i, j, if L is sufficiently large, we can find pairwise internally vertex-disjoint paths

of length ` = k joining xi to yj for every i, j. The union of these paths forms a copy of

Kk−1
s,t .

Now assume that ` < k. Write k = j` + i with 1 ≤ i ≤ `. Note that i < k. Assume

first that j is odd. Using equation (2.6), we may apply Lemma 2.6.9 st(k + 1) + s times

to find a set Xfinal ⊂ X of size at least st(k + 1), (i − 1)-subdivided t-stars T1, . . . , Ts

with leaf sets Y1, . . . , Ys ⊂ Y and a set U ⊂ Y with |U | ≥ st(k + 1) such that the sets

Xfinal, V (T1), . . . , V (Ts), U are pairwise disjoint and (x, y) is (`, L)-bad for any x ∈ Xfinal

and y ∈ Y1 ∪ · · · ∪ Ys ∪ U .

Label the vertices of Kk−1
s,t as follows. Let the vertices in the part of size s be u1, . . . , us,

let the vertices in the part of size t be v1, . . . , vt and, for each 1 ≤ a ≤ s and 1 ≤ b ≤ t, let

the path of length k connecting ua and vb be uawa,b,1wa,b,2 . . . wa,b,k−1vb. We now embed

Kk−1
s,t in G as follows. For each 1 ≤ a ≤ s, the (i−1)-subdivided t-star Ta will take the role

of the (i − 1)-subdivided t-star in Kk−1
s,t with vertices ua, wa,1,1, wa,1,2, . . . , wa,1,i, wa,2,1,

wa,2,2, . . . , wa,2,i, . . . , wa,t,1, wa,t,2, . . . , wa,t,i. Furthermore, the roles of wa,b,i+q` for q odd

(1 ≤ a ≤ s, 1 ≤ b ≤ t, q ≥ 1) will be taken by vertices in Xfinal in an arbitrary injective

manner and the roles of wa,b,i+q` for q even (1 ≤ a ≤ s, 1 ≤ b ≤ t, q ≥ 2) will be taken by

vertices in U in an arbitrary injective manner. Finally, let v1, . . . , vt be mapped to Xfinal

in an injective manner avoiding all previous vertices. See Figure 2.2, which illustrates the

embedding in the case s = 2, t = 3, k = 7, ` = 2. It remains to define the vertices that

correspond to wa,b,c with 1 ≤ a ≤ s, 1 ≤ b ≤ t, i < c ≤ k − 1 and c− i not divisible by `.

But, since the images of wa,b,i+q`, wa,b,i+(q+1)` (1 ≤ a ≤ s, 1 ≤ b ≤ t, 0 ≤ q ≤ j − 1, where

wa,b,k = vb) are such that one is in Xfinal and the other is in R1 ∪ · · · ∪Rs ∪ U , the image

of any pair (wa,b,i+q`, wa,b,i+(q+1)`) is (`, L)-bad. Therefore, by Lemma 2.6.4, provided that

L is sufficiently large, we may join these pairs by paths of length `, all internally disjoint

from each other and from the previous vertices, yielding a copy of Kk−1
s,t .
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Figure 2.2: The embedding of Kk−1
s,t in the case s = 2, t = 3, k = 7, ` = 2.
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The case where j is even is very similar. The only difference is that the vertices

v1, . . . , vt are mapped to U .

Corollary 2.6.11. Let s and t be positive integers and let G be a Kk−1
s,t -free K-almost-

regular graph on n vertices with minimum degree δ ≥ L100kst2(k+1). Then, provided that

L is sufficiently large compared to s, t, k and K, for any 2 ≤ ` ≤ k, the number of

L-admissible, but not L-good, paths of length ` is at most n 2(Kδ)`

f(`−1,L)
.

Now we are in a position to prove Lemma 2.6.7.

Proof of Lemma 2.6.7. Suppose that the path u0u1 . . . uk is not L-good. Take 0 ≤
i < j ≤ k with j − i minimal such that uiui+1 . . . uj is not L-good. Then ui . . . uj is

L-admissible. For any fixed i, j, by Corollary 2.6.11, the number of such paths is at most

n 2(Kδ)j−i

f(j−i−1,L)
· 2(Kδ)k−(j−i) = 4Kk nδk

f(j−i−1,L)
≤ 4Kk nδk

L
. Using that i and j can take at most

k + 1 values each, it follows that the number of not L-good paths of length k is at most

(k + 1)24Kk · nδk
L

.

2.6.3 Long paths

In what follows, for a vertex x ∈ V (G) and a nonnegative integer i, we write Pi(x) for

the set of directed paths of length i starting at x. For an element P ∈ Pi(x), we let v(P )

be the endpoint of the path P . In the next definition the notion of richness also depends

on the value of δ, but we do not emphasise this.

Definition 2.6.12. Let i, j be nonnegative integers with i+ j < 2k. Call a pair (x, y) of

vertices (i, j)-rich if x 6= y and the number of pairs (P,Q) ∈ Pi(x)×Pj(y) such that there

are at least (|V (H)| + 2)(2k + 1) + 1 pairwise internally vertex-disjoint paths of length

2k−i−j between v(P ) and v(Q) is more than (2(i+j)|V (H)|(2k+1)+2(i+1)j)(Kδ)i+j−1.

Otherwise (including when x = y) call it (i, j)-poor.

Lemma 2.6.13. Let G be a graph with maximum degree at most Kδ. Let x, y ∈ V (G)

and let i, j be nonnegative integers with i+ j < 2k. If (x, y) is (i, j)-rich, then there exist

|V (H)| pairwise internally vertex-disjoint paths of length 2k between x and y.

Proof. Choose a maximal set of pairwise internally vertex-disjoint paths R1, . . . , Rα be-

tween x and y and assume that α < |V (H)|. Let T be the set of the vertices appearing

in at least one of these paths. Note that |T | < |V (H)|(2k + 1).

Claim. If there is a pair (P,Q) ∈ Pi(x)× Pj(y) such that

(i) P is disjoint from T \ {x},

(ii) Q is disjoint from T \ {y},

(iii) P and Q are vertex-disjoint and
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(iv) there are at least (|V (H)|+ 2)(2k + 1) + 1 pairwise internally vertex-disjoint paths

of length 2k − i− j between v(P ) and v(Q),

then there is a path of length 2k between x and y which is internally vertex-disjoint from

all of R1, . . . , Rα.

Proof of Claim. Clearly, it suffices to find a path of length 2k − i− j between v(P ) and

v(Q) which is disjoint from the vertices of R1, . . . , Rα, P,Q, except for v(P ) and v(Q).

But such a path exists since there are at most (α + 2) · (2k + 1) ≤ (|V (H)| + 2)(2k + 1)

vertices in one of R1, . . . , Rα, P,Q and there are at least (|V (H)|+ 2)(2k+ 1) + 1 pairwise

internally vertex-disjoint paths of length 2k − i− j between v(P ) and v(Q).

A path provided by the claim would contradict the maximality of R1, . . . , Rα, so it

suffices to prove that there are paths P,Q satisfying (i)-(iv) above.

Since the maximum degree of G is at most Kδ, the number of paths of length i − 1

in G intersecting T is at most i|T |(Kδ)i−1, so the number of P ∈ Pi(x) which have a

vertex in T \ {x} is at most 2i|T |(Kδ)i−1. Since |Pj(y)| ≤ (Kδ)j, the number of pairs

(P,Q) ∈ Pi(x)×Pj(y) failing condition (i) above is at most 2i|T |(Kδ)i−1(Kδ)j. Similarly,

the number of pairs failing (ii) is at most 2j|T |(Kδ)j−1(Kδ)i. Finally, for every P ∈ Pi(x),

the number of paths of length j − 1 which intersect P is at most (i+ 1)j(Kδ)j−1, so the

number of pairs (P,Q) ∈ Pi(x)×Pj(y) for which P and Q share a vertex other than y is at

most (Kδ)i ·2(i+1)j(Kδ)j−1. So the number of pairs which fail at least one of (i),(ii),(iii)

is at most (2(i+j)|T |+2(i+1)j)(Kδ)i+j−1 ≤ (2(i+j)|V (H)|(2k+1)+2(i+1)j)(Kδ)i+j−1.

By the definition of (i, j)-richness of (x, y) it follows that there is a pair (P,Q) satisfying

(i)-(iv).

Definition 2.6.14. For a vertex v ∈ V (G) and some 1 ≤ ` ≤ k, define an auxiliary graph

G`(v) as follows. The vertices of G`(v) are the (k + 1)-tuples (u0, u1, . . . , uk) ∈ V (G)k+1

with u0 = v such that uiui+1 ∈ E(G) for all i. Vertices (u0, . . . , uk) and (u′0, . . . , u
′
k) are

joined by an edge if v, u1, u2, . . . , uk, u
′
1, . . . , u

′
k are distinct and there exist 0 ≤ i, j ≤ k−1

such that the pair (u`, u
′
`) is (i, j)-rich. Since the vertex set of G`(v) does not depend on

`, we may define G(v) to be the union
⋃

1≤`≤k G`(v).

Lemma 2.6.15. Let G be a graph with maximum degree at most Kδ which does not

contain F 2k−1 as a subgraph. Let t = |V (F )|. Then for any v ∈ V (G) and any 1 ≤ ` ≤ k,

the graph G`(v) is Kt-free.

Moreover, let r = Rk(t) be the k-colour Ramsey number. Then G(v) is Kr-free.

Proof. Suppose that G`(v) contains Kt as a subgraph. Let the corresponding vertices be

the vectors u1, . . . , ut. Let their respective (` + 1)th coordinate be u1
` , . . . , u

t
`. For every

a 6= b, since uaub is an edge in G`(v), it follows that ua` and ub` are distinct, and, by Lemma

2.6.13, there exist |V (H)| pairwise internally vertex-disjoint paths of length 2k between

them. It is not hard to see that this implies that there is a copy of H = F 2k−1 in G
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in which the vertices of F are mapped to u1
` , . . . , u

t
`. This is a contradiction, so G`(v) is

indeed Kt-free.

Suppose there is a copy of Kr in G(v). Then each edge in this Kr can be coloured

with one of the colours 1, 2, . . . , k such that if an edge gets colour i, then it lies in Gi(v).

By the definition of r, there exists a monochromatic Kt in this k-edge-coloured Kr, which

gives a Kt in some G`(v), contradicting the first paragraph.

The next lemma provides us a large set of walks of length 2k with both endpoints in

S. Later, we will argue that most of them are L-good paths.

Lemma 2.6.16. Let r = Rk(t) denote the k-colour Ramsey number where t = |V (F )|. Let

G be an F 2k−1-free K-almost-regular graph on n vertices with minimum degree δ and let

S ⊂ V (G) such that |S| ≥ 2nr/δk. Then there are at least |S|
2δ2k

4r2n
vectors (u−k, . . . , uk) ∈

V (G)2k+1 with the following properties

(i) u−k ∈ S, uk ∈ S

(ii) u`u`+1 ∈ E(G) for every −k ≤ ` ≤ k − 1

(iii) (u−`, u`) is (i, j)-poor for every 1 ≤ ` ≤ k and every 0 ≤ i, j ≤ k − 1.

Proof. Since the minimum degree of G is δ, the number of (k+1)-tuples (v0, v1, . . . , vk) ∈
V (G)k+1 with vk ∈ S and vivi+1 ∈ E(G) for every 0 ≤ i ≤ k− 1 is at least |S|δk. Writing

T (v0) for the set of such vectors for a fixed v0 and letting g(v0) = |T (v0)|, we get that∑
v0∈V (G) g(v0) ≥ |S|δk. Note that

∑
v0∈V (G):g(v0)<r g(v0) ≤ nr ≤ |S|δk

2
, so

∑
v0∈V (G):g(v0)≥r

g(v0) ≥ |S|δ
k

2
. (2.7)

Note that T (v0) ⊂ V (G(v0)). By Lemma 2.6.15, the graph G(v0)[T (v0)] is Kr-

free. This graph has g(v0) vertices, so if g(v0) ≥ r, then the number of non-edges

in G(v0)[T (v0)] is at least 1

(r2)

(
g(v0)

2

)
≥ g(v0)2

r2
. But if v = (v0, v1, . . . , vk) ∈ T (v0) and

v′ = (v0, v
′
1, . . . , v

′
k) ∈ T (v0) are such that vv′ is not an edge in G(v0), then (u−k, . . . , uk) =

(v′k, v
′
k−1, . . . , v

′
1, v0, v1, . . . , vk) satisfies all three properties in the statement of the lemma.

Therefore the number of such (2k+ 1)-tuples with u0 = v0 is at least g(v0)2

r2
provided that

g(v0) ≥ r. By (2.7) and Jensen’s inequality, we get
∑

v0∈V (G):g(v0)≥r
g(v0)2

r2
≥ |S|2δ2k

4r2n
, and

the proof is complete.

The following simple lemma shows that most walks of length 2k are paths.

Lemma 2.6.17. Let G be a graph on n vertices with maximum degree at most Kδ. Then

the number of (2k+1)-tuples (u−k, . . . , uk) ∈ V (G)2k+1 such that uiui+1 ∈ E(G) for every

i and ui = uj for some i 6= j is at most
(

2k+1
2

)
K2k−1 · nδ2k−1.
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Proof. There are
(

2k+1
2

)
ways to choose the pair {i, j} and there are n ways to choose

ui = uj. Given any such choices, there are at most (Kδ)2k−1 ways to choose the vertices

ub for b 6∈ {i, j} since any vertex in G has degree at most Kδ.

Our strategy now is to take all the paths guaranteed by Lemmas 2.6.16 and 2.6.17 and

discard those which contain a subpath of length k which is not L-good. The next result

shows that doing this we discard only a small proportion of the paths.

Lemma 2.6.18. Let G be an F 2k−1-free K-almost-regular graph on n vertices with mini-

mum degree δ ≥ L100k|V (F )||E(F )|2(k+1). Then, provided that L is sufficiently large compared

to |V (F )|, |E(F )|, k and K, the number of paths u−ku−k+1 . . . uk of length 2k in G with

the property that there is some −k ≤ j ≤ 0 for which the path ujuj+1 . . . uj+k is not L-good

is O(nδ
2k

L
).

Proof. By Lemma 2.6.6, there are O(nδ
k

L
) paths ujuj+1 . . . uj+k which are not L-good, and

since the maximum degree of G is at most Kδ, there are at most 2(Kδ)k ways to extend

such a path to a path u−ku−k+1 . . . uk of length 2k. The result follows after summing these

terms for all −k ≤ j ≤ 0.

The next lemma relates the notion of L-goodness and the notion of (i, j)-richness.

Lemma 2.6.19. Suppose that u−ku−k+1 . . . uk is a path in G which is not L-good but each

of its subpaths of length k is L-good. Then, provided that L is sufficiently large compared

to |V (F )|, |E(F )| and k, there exist 1 ≤ α, β ≤ k with α + β > k such that there exist

(|V (H)|+ 2)(2k + 1) + 1 pairwise internally vertex-disjoint paths of length α+ β between

u−α and uβ.

Proof. Choose −k ≤ i < j ≤ k with j − i minimal such that uiui+1 . . . uj is not L-

good. By the minimality of j − i, every proper subpath of uiui+1 . . . uj is L-good, so

uiui+1 . . . uj is L-admissible. By Lemma 2.6.4 and our assumption about L, there exist

(|V (H)|+ 2)(2k + 1) + 1 pairwise internally vertex-disjoint paths of length j − i between

ui and uj.

By the assumption that every subpath of u−ku−k+1 . . . uk of length k is L-good, we

have j − i > k, so i < 0 and j > 0. Thus, the choices α = −i and β = j satisfy the

conditions described in the lemma.

The next result is the final ingredient to the proof of Lemma 2.6.5.

Lemma 2.6.20. Let G be a graph on n vertices with maximum degree at most Kδ. Then

there are O(nδ2k−1) paths u−ku−k+1 . . . uk in G with the following two properties

(i) (u−`, u`) is (i, j)-poor for every 1 ≤ ` ≤ k and every 0 ≤ i, j ≤ k − 1 and

(ii) there exist 1 ≤ α, β ≤ k with α+β > k such that there exist (|V (H)|+2)(2k+1)+1

pairwise internally vertex-disjoint paths of length α + β between u−α and uβ.

32



Proof. Fix a pair (α, β) with 1 ≤ α, β ≤ k and α + β > k. It suffices to prove that the

number of paths satisfying (i) and (ii) for this pair (α, β) is O(nδ2k−1).

Let ` = α+β−k. Note that 1 ≤ ` ≤ k. Also, let i = α−` = k−β and j = β−` = k−α.

Observe that 0 ≤ i, j ≤ k − 1.

Suppose that u−` . . . u` is a path such that (u−`, u`) is (i, j)-poor. By the definition

of (i, j)-poorness, the number of pairs of paths (u−`u−`−1 . . . u−α, u`u`+1 . . . uβ) such that

there exist (|V (H)| + 2)(2k + 1) + 1 pairwise internally vertex-disjoint paths of length

α+β = 2k− i− j between u−α and uβ is O(δi+j−1). Thus, the number of ways to extend

u−`u−`+1 . . . u` to a path u−ku−k+1 . . . uk possessing property (ii) with our fixed choice of α

and β is O(δi+j−1 · (Kδ)k−α+k−β) = O(δ2k−2`−1), where the first factor bounds the number

of possible ways to extend to u−αu−α+1 . . . uβ, and the second factor bounds the number

of possible ways to extend that to u−ku−k+1 . . . uk. The number of possible choices for

u−`u−`+1 . . . u` is O(nδ2`), so the result follows.

We are now in a position to complete the proof of Lemma 2.6.5.

Proof of Lemma 2.6.5. The condition |S| = ω( n
δ1/2

) implies that nδ2k−1 = o( |S|
2δ2k

n
),

so by Lemmas 2.6.16 and 2.6.17, there are Ω( |S|
2δ2k

n
) paths u−ku−k+1 . . . uk with both

endpoints in S such that (u−`, u`) is (i, j)-poor for every 1 ≤ ` ≤ k and every 0 ≤ i, j ≤
k− 1. Discard all those paths among these in which there is a subpath of length k which

is not L-good. By Lemma 2.6.18, we discarded O(nδ
2k

L
) paths, which is o( |S|

2δ2k

n
), by the

condition |S| = ω( n
L1/2 ). Of the remaining paths, discard all those for which there exist

1 ≤ α, β ≤ k with α + β > k such that there exist (|V (H)| + 2)(2k + 1) + 1 pairwise

internally vertex-disjoint paths of length α + β between u−α and uβ. By Lemma 2.6.20,

there are O(nδ2k−1) such paths, which is again o( |S|
2δ2k

n
). Hence, we are left with Ω( |S|

2δ2k

n
)

paths.

We claim that each such path is L-good. Suppose otherwise, and take a path

u−ku−k+1 . . . uk which is not L-good. Since each of its subpaths of length k is L-good,

by Lemma 2.6.19 there exist 1 ≤ α, β ≤ k with α + β > k such that there exist

(|V (H)| + 2)(2k + 1) + 1 pairwise internally vertex-disjoint paths of length α + β be-

tween u−α and uβ. But we discarded these paths, which is a contradiction, and the proof

is complete.

2.7 Longer subdivisions of the complete bipartite

graph

In this section we prove Theorem 2.1.17.

2.7.1 The high-level structure of the proof

Using Lemma 2.2.1, Theorem 2.1.17 reduces to the following statement.
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Theorem 2.7.1. Let s, t, k ≥ 2 be integers. Let G be a K-almost-regular graph on n

vertices with minimum degree δ = ω(n
s−1
sk ). Then, for n sufficiently large, G contains

Kk−1
s,t as a subgraph.

In what follows, let us fix the integers s, t, k ≥ 2. It will be tacitly assumed throughout

the section that n is sufficiently large compared to all other parameters.

The next definition is due to Jiang and Qiu [75].

Definition 2.7.2. Let `1, . . . , `s be positive integers. An s-legged spider S with length vec-

tor (`1, . . . , `s) consists of a vertex u, called the centre of the spider, and paths P1, . . . , Ps,

called the legs of S, of lengths `1, . . . , `s, starting at u and sharing no vertex other than

u. For convenience, we define two spiders S and S ′ to be different if Pi 6= P ′i for some

1 ≤ i ≤ s, where P ′1, . . . , P
′
s are the legs of S ′. So different spiders can form the same

graph, e.g. if `1 = `2, P1 = P ′2, P2 = P ′1 and Pi = P ′i for i ≥ 3.

Let vi be the endpoint of Pi different from u. Then we say that S has leaf vector

(v1, . . . , vs).

We say that S ′ is a subspider of S if they have the same centre and for each 1 ≤ i ≤ s,

the ith leg of S ′ is a subpath of the ith leg of S.

In Subsection 2.6.2 we showed that (roughly speaking) if a graph has many pairs of

short paths (P, P ′) such that P and P ′ are of equal length and have the same endpoints,

then the graph contains Kk−1
s,t as a subgraph. In Subsection 2.7.2 we shall prove an

analogous statement for spiders; that is, if there are many pairs of spiders (S, S ′) such

that S and S ′ have the same length vector and the same leaf vector, then the graph

contains Kk−1
s,t as a subgraph.

The next definition extends Definition 2.6.3 to spiders.

Definition 2.7.3. We define the notions of L-admissible and L-good spiders recursively

as follows.

Every s-legged spider with length vector (1, . . . , 1) is L-admissible. Now let 1 ≤
`1, . . . , `s ≤ k and assume that `i > 1 for some i. A spider with centre u and legs

Pi = uwi,1 . . . wi,`i (for 1 ≤ i ≤ s) is L-admissible if the following two conditions hold:

• for any 1 ≤ i ≤ s and any 1 ≤ j < `i, the s-legged spider with centre u and

legs P1, . . . , Pi−1, P
′
i , Pi+1, . . . , Ps is L-good, where P ′i = uwi,1 . . . wi,j

• for any 1 ≤ i ≤ s, the path Pi is L-good.

Finally, we say that a spider with length vector (`1, . . . , `s) and leaf vector (v1, . . . , vs) is

L-good if it is L-admissible and the number of L-admissible spiders with length vector

(`1, . . . , `s) and leaf vector (v1, . . . , vs) is at most f(`, L), where ` = `1 + · · ·+ `s.

Remark. (1) This is well-defined since whether a spider is L-admissible or not depends

only on the L-goodness of smaller spiders and paths.
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(2) In this section L is always a constant not depending on n.

The next lemma follows easily from Corollary 2.6.11 from the previous section, and states

that most short paths can be assumed to be good.

Lemma 2.7.4. Let G be a Kk−1
s,t -free K-almost-regular graph on n vertices with minimum

degree δ = ω(1). Then for any 1 ≤ j ≤ k, the number of paths of length j which are not

L-good is at most cLnδ
j, where cL → 0 as L→∞.

The main technical result of this section is the following lemma, which is the analogue

of Lemma 2.7.4 for spiders.

Lemma 2.7.5. Let G be a Kk−1
s,t -free K-almost-regular graph on n vertices with minimum

degree δ = ω(1) and let 1 ≤ `1, . . . , `s ≤ k. Then the number of s-legged spiders with length

vector (`1, . . . , `s) which are L-admissible but not L-good is at most c′Lnδ
`1+···+`s, where

c′L → 0 as L→∞.

We postpone the proof of this lemma to the next subsection and first show how it

implies Theorem 2.7.1. The next lemma is an easy corollary of Lemma 2.7.5.

Lemma 2.7.6. Let G be a Kk−1
s,t -free K-almost-regular graph on n vertices with minimum

degree δ = ω(1). Then the number of s-legged spiders with length vector (k, k . . . , k) which

are not L-good is at most c′′Lnδ
sk, where c′′L → 0 as L→∞.

Proof. Suppose that some s-legged spider S with length vector (k, . . . , k) and legs

P1, . . . , Ps is not L-good.

We distinguish two cases. First, assume that some Pi is not L-good. By Lemma 2.7.4,

there are at most cLnδ
k choices for Pi, where cL → 0 as L → ∞. Since the maximum

degree of G is at most Kδ, the number of ways to extend a given Pi to an s-legged

spider with length vector (k, . . . , k) is at most (Kδ)(s−1)k. Thus, the number of s-legged

spiders with length vector (k, . . . , k) such that one of the legs is not L-good is at most

s · cLnδk · (Kδ)(s−1)k = sK(s−1)kcLnδ
sk.

Now assume that all the Pi are L-good. Choose an s-legged subspider S ′ with the same

centre and legs P ′1, . . . , P
′
s which are subpaths of P1, . . . , Ps such that S ′ is minimal with

respect to the condition that S ′ is not L-good. Let `i be the length of P ′i . Suppose that S ′

is not L-admissible. Since each Pi is L-good, so is every P ′i . Thus, there must be a proper

s-legged subspider in S ′ which is not L-good. This contradicts the minimality of S ′. So

S ′ is L-admissible but not L-good. By Lemma 2.7.5, for any fixed 1 ≤ `1, . . . , `s ≤ k,

the number of s-legged spiders with length vector (k, . . . , k) whose subspider with length

vector (`1, . . . , `s) is L-admissible but not L-good is at most c′Lnδ
`1+···+`s · (Kδ)sk−`1−···−`s .

Summing over all choices for `1, . . . , `s, we find that the number of s-legged spiders with

length vector (k, . . . , k) which are not L-good but whose legs are all L-good is at most

ks ·Kskc′Lnδ
sk.

We are now in a position to complete the proof of Theorem 2.7.1.
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Proof of Theorem 2.7.1. Choose L such that the c′′L provided by Lemma 2.7.6 satisfies

c′′L ≤ 1/2. Then by Lemma 2.7.6, for n sufficiently large, the number of L-good s-legged

spiders with length vector (k, . . . , k) is at least 1
3
nδsk > f(sk, L)ns. Thus, there exists an

s-tuple (v1, . . . , vs) of vertices such that the number of L-good s-legged spiders with length

vector (k, . . . , k) and leaf vector (v1, . . . , vs) is greater than f(sk, L). This contradicts the

definition of an L-good spider.

2.7.2 Spiders

In this subsection we prove Lemma 2.7.5, after which the proof of Theorem 2.7.1 is

complete. For this subsection, we fix some 1 ≤ `1, . . . , `s ≤ k and write ` = `1 + · · ·+ `s.

In what follows, it will be crucial to look at ”spiders” some of whose legs may consist

of zero edges.

Definition 2.7.7. Let `′1, . . . , `
′
s be nonnegative integers. A generalised spider S with

length vector (`′1, . . . , `
′
s) consists of a vertex u (the centre of S) and paths P1, . . . , Ps (the

legs of S) of lengths `′1, . . . , `
′
s, starting at u and sharing no vertex other than u. Let Pi

have endpoints u and vi. Then we say that S has leaf vector (v1, . . . , vs).

The next lemma states that if there are many L-admissible but not L-good spiders

with length vector (`1, . . . , `s) in our graph, then we can find many L-admissible spiders

with length vector (`1, . . . , `s) and some useful extra properties.

Lemma 2.7.8. Let G be a K-almost-regular graph on n vertices with minimum degree

δ. Assume that L is sufficiently large compared to s, k and K and that there are at least
nδ`1+···+`s

L
L-admissible but not L-good spiders with length vector (`1, . . . , `s). Then there

exists a non-empty set S of L-admissible spiders with length vector (`1, . . . , `s) such that

the following conditions hold.

(i) For any S ∈ S, the number of spiders T ∈ S with the same leaf vector as that of S

is at least f(`,L)
2

.

(ii) For any S ∈ S, and any γ1, . . . , γs ∈ {0, 1}, the subspider of S with length vector

(`1 − γ1, . . . , `s − γs) (which is a generalised spider) is contained as a subspider in

at least δγ1+···+γs

L2 elements of S.

Proof. Define a sequence of sets T0, T1, . . . , Tm recursively as follows. Take T0 be the set

of all L-admissible but not L-good spiders with length vector (`1, . . . , `s). Then, if there

is some S ∈ Ti which violates condition (i), ie. the number of spiders T ∈ Ti with the

same leaf vector as that of S is less than f(`,L)
2

, then choose such an S arbitrarily and let

Ti+1 = Ti\{S}. Also, if no such S exists, but there is some S ∈ Ti which violates condition

(ii), ie. there exist some γ1, . . . , γs ∈ {0, 1} such that the subspider of S with length vector

(`1− γ1, . . . , `s− γs) is contained in less than δγ1+···+γs

L2 elements of Ti, then choose such an

S arbitrarily and let Ti+1 = Ti\{S}. The process eventually terminates with some set Tm.
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Let S = Tm. It is clear that S satisfies conditions (i) and (ii); all we need to prove is that

S 6= ∅. Note that every S ∈ T0 is L-admissible but not L-good, so there are at least f(`, L)

elements T ∈ T0 with the same leaf vector as that of S. Among the set of elements of T0

with a fixed leaf vector, at most f(`,L)
2

are discarded because of violating condition (i) at

some point. Thus, if S = ∅, then at least half of the elements of T0, and so at least nδ`1+···+`s

2L

spiders are discarded because of violating condition (ii) at some point. However, any

generalised spider R with length vector (`1−γ1, . . . , `s−γs) is ”responsible” for discarding

at most δγ1+···+γs

L2 elements, meaning that the number of elements discarded because they

contain R which is contained in less than δγ1+···+γs

L2 elements of some Ti is at most δγ1+···+γs

L2 .

Since the number of generalised spiders with length vector (`1 − γ1, . . . , `s − γs) is at

most n(Kδ)(`1−γ1)+···+(`s−γs), the total number of elements discarded because of violating

condition (ii) at some point is at most 2s · n(Kδ)`1+···+`s

L2 . For L > 2s+1K`1+···+`s , this is less

than nδ`1+···+`s

2L
, contradicting our earlier claim. Thus, S 6= ∅.

The next lemma is an analogue of Lemma 2.6.4 for spiders.

Lemma 2.7.9. Let L ≥ 1 be sufficiently large compared to ` and let v1, . . . , vs be vertices.

Suppose that there is a set T of at least f(`,L)
2

L-admissible spiders with length vector

(`1, . . . , `s) and leaf vector (v1, . . . , vs). Then, among these, there exist more than f(` −
1, L) spiders which are pairwise vertex-disjoint apart from their leaves.

Proof. Suppose otherwise. Take a maximal set of such spiders. By assumption, we have

chosen at most f(`−1, L) spiders. Each such spider has `+1−s ≤ `−1 non-leaf vertices,

so altogether they have at most f(` − 1, L)(` − 1) non-leaf vertices. By the maximality

assumption, each S ∈ T contains at least one of these vertices. Thus, by the pigeonhole

principle, there exist some vertex x and a set S ⊂ T of size at least f(`,L)/2
(`−1)·f(`−1,L)(`−1)

such

that the elements of S all contain the vertex x in the same non-leaf position (meaning

that there exist some i and j < `i such that in all S ∈ S, x is the jth vertex on the

ith leg, where the centre of the spider is viewed as the 0th vertex on the leg). Note that

|S| ≥ f(`,L)/2
f(`−1,L)(`−1)2

> max1≤b≤`−1 f(b, L)f(`− b, L).

We now distinguish two cases. First, let us assume that x is not the centre in the

spiders in S. Then there exists some 1 ≤ i ≤ s and some 1 ≤ j < `i such that x is the jth

vertex on the ith leg in each of these spiders. Let b = `i− j. Since |S| > f(b, L)f(`− b, L)

and each element of S is L-admissible, either there are more than f(b, L) L-good paths of

length b between x and vi or there are more than f(`− b, L) L-good s-legged spiders with

length vector (`1, . . . , `i−1, j, `i+1, . . . , `s) and leaf vector (v1, . . . , vi−1, x, vi+1, . . . , vs). The

first case contradicts the definition of an L-good path and the second case contradicts the

definition of an L-good s-legged spider.

Let us now assume that x is the centre in the spiders in S. Note that

|S| > f(`1, L)f(`2, L) . . . f(`s, L).

37



Thus, there exists some i ≤ s such that there are more than f(`i, L) L-good paths of

length `i between x and vi. This contradicts the definition of an L-good path.

In the key part of the proof of Lemma 2.7.5 it will be necessary to assume that `i = 1

holds for at most one choice of i. Accordingly, we first deal with the other case separately.

Lemma 2.7.10. Let G be a Kk−1
s,t -free K-almost-regular graph on n vertices with min-

imum degree δ = ω(1), and assume that `1 = `2 = 1. Then the number of s-legged

spiders with length vector (`1, . . . , `s) which are L-admissible but not L-good is at most

c′Lnδ
`1+···+`s, where c′L → 0 as L→∞.

Proof. If s = 2, then the result follows from Lemma 2.7.4, since a spider with length

vector (1, 1) is L-good if and only if it is L-good when viewed as a path of length 2.

Assume that s ≥ 3. Note that in this case ` ≥ 3.

Let S be an L-admissible but not L-good spider with length vector (`1, . . . , `s) and

leaf vector (v1, . . . , vs). By definition, there exist at least f(`, L) L-admissible spiders

with length vector (`1, . . . , `s) and leaf vector (v1, . . . , vs). Hence, by Lemma 2.7.9, for L

sufficiently large there exist more than f(`−1, L) L-admissible spiders with length vector

(`1, . . . , `s) and leaf vector (v1, . . . , vs) which are pairwise vertex-disjoint apart from at

their leaves. In particular, there are more than f(` − 1, L) ≥ f(2, L) paths of length 2

between v1 and v2. Note that any path of length 2 is L-admissible. Let u be the centre

of S. Then the path v1uv2 is not L-good.

The number of ways to extend a path xyz to a spider with length vector (`1, . . . , `s),

centre y and first two legs yx and yz in this order is at most (Kδ)`3+···+`s . Thus, by

Lemma 2.7.4, the number of L-admissible but not L-good spiders with length vector

(`1, . . . , `s) is at most cLnδ
2 · 2 · (Kδ)`3+···+`s with cL → 0 as L → ∞, where the factor

cLnδ
2 bounds the number of not L-good paths of length 2, the factor 2 accounts for

the two edges in this path that we can use as the first leg of the spider, and the factor

(Kδ)`3+···+`s bounds the number of ways to get a spider with fixed first two legs. Since

cLnδ
2 · 2 · (Kδ)`3+···+`s = 2K`3+···+`scLnδ

`1+···+`s , the result follows.

Using Lemma 2.7.10 and symmetry, it is enough to prove Lemma 2.7.5 in the case

where `i = 1 holds for at most one value of i.

The next result is the key step in the proof of Lemma 2.7.5, and contains the main

idea of this section. It is proved in greater generality than what is necessary for Theorem

2.1.17, to allow for use in future work. Indeed, as we will see in Section 2.8, this lemma

was used by Jiang and Qiu [74] to prove a generalisation of Theorem 2.1.17.

Lemma 2.7.11. Let `i ≤ ki ≤ k for each i. Assume that `i = 1 holds for at most

one value of i. Let G be a K-almost-regular graph on n vertices with minimum degree

δ = ω(1). Assume that L is sufficiently large compared to s, k and K and that there

exists a set S of spiders satisfying the conditions in Lemma 2.7.8. For each 1 ≤ i ≤ s,

let γi,0 ∈ {0, 1} such that ki − `i − γi,0 is even. Let R0 be the subspider with length vector
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(`1 − γ1,0, . . . , `s − γs,0) of an arbitrary element of S. Let R0 have leaf vector (v1, . . . , vs).

Let Z ⊂ V (G) be a set of size at most L, disjoint from {v1, . . . , vs}. Then there exist

vertices w1, . . . , ws and paths P1, . . . , Ps such that

(1) for each i, Pi is a path of length ki − `i between vi and wi

(2) (w1, . . . , ws) is the leaf vector of an element of S and

(3) the paths P1, . . . , Ps are pairwise vertex-disjoint and avoid Z.

Proof. Since ki−`i−γi,0 is an even number between 0 and k, there exist γi,1, . . . , γi,k−1 ∈
{0, 1} such that ki − `i − γi,0 = 2γi,1 + · · ·+ 2γi,k−1.

We now define a sequence R1, . . . , Rk−1 of generalised spiders, and sequences S1, . . . , Sk

and T1, . . . , Tk of spiders recursively.

R0 is given as a subspider of some element of S, so by property (ii) in Lemma 2.7.8, the

number of elements of S containing R0 as a subspider is at least δγ1,0+···+γs,0

L2 . Thus, there

is some S1 ∈ S containing R0 such that V (S1) \ V (R0) is disjoint from Z. Indeed, any

fixed vertex not in V (R0) is a vertex in O(δγ1,0+···+γs,0−1) elements of S containing R0, so

the number of elements of S containing R0 and intersecting Z \V (R0) is O(δγ1,0+···+γs,0−1).

Hence, as δ = ω(1) and L = O(1), a suitable S1 ∈ S indeed exists.

Now choose T1 ∈ S with the same leaf vector as that of S1 such that T1 and S1 are

disjoint apart from their leaves. This is possible, if L is sufficiently large, by property

(i) in Lemma 2.7.8 and Lemma 2.7.9. Let R1 be the subspider of T1 with length vector

(`1 − γ1,1, . . . , `s − γs,1).

More generally, for any 1 ≤ j ≤ k, given a generalised spider Rj−1 with length vector

(`1 − γ1,j−1, . . . , `s − γs,j−1) which is a subspider of an element of S, we define Sj, Tj and

Rj as follows.

Choose some Sj ∈ S containing Rj−1 such that V (Sj) \ V (Rj−1) is disjoint from

Z ∪ (V (S1)∪ · · · ∪ V (Sj−1))∪ (V (T1)∪ · · · ∪ V (Tj−1)). This is possible by property (ii) in

Lemma 2.7.8.

Also, choose Tj ∈ S with the same leaf vector as that of Sj such that Tj is disjoint

from Z ∪ (V (S1) ∪ · · · ∪ V (Sj)) ∪ (V (T1) ∪ · · · ∪ V (Tj−1)) apart from its leaves. This is

possible by property (i) in Lemma 2.7.8 and Lemma 2.7.9.

Finally, if j < k, let Rj be the subspider of Tj with length vector (`1−γ1,j, . . . , `s−γs,j).
Now for 1 ≤ i ≤ s and 0 ≤ j ≤ k− 1, let xi,2j be the endpoint of the ith leg of Rj and

let xi,2j+1 be the endpoint of the ith leg of Sj+1. Then, when we ignore the repetitions,

the vertices xi,0, xi,1, . . . , xi,2k−1 form a path of length γi,0 + 2γi,1 + · · ·+ 2γi,k−1 = ki − `i.
Indeed, if γi,0 = 0, then xi,1 = xi,0 and if γi,0 = 1, then xi,1 is a neighbour of xi,0. Moreover,

for any 1 ≤ j ≤ k − 1, if γi,j = 0, then xi,2j+1 = xi,2j = xi,2j−1 and if γi,j = 1, then xi,2j is

a neighbour of xi,2j−1 and does not belong to {xp,q : 1 ≤ p ≤ s, 0 ≤ q ≤ 2j − 1} ∪ Z, and

xi,2j+1 is a neighbour of xi,2j and does not belong to {xp,q : 1 ≤ p ≤ s, 0 ≤ q ≤ 2j} ∪ Z.

Let Pi be the path formed by the vertices xi,0, xi,1 . . . , xi,2k−1 and let wi = xi,2k−1.
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Note that (x1,0, . . . , xs,0) is the leaf vector of R0, so xi,0 = vi, therefore condition (1)

in this lemma is satisfied. Moreover, (w1, . . . , ws) = (x1,2k−1, . . . , xs,2k−1) is the leaf vector

of Sk, so property (2) is also satisfied.

By assumption, Z is disjoint from {v1, . . . , vs} = {x1,0, . . . , xs,0}, so it follows from

the above that P1, . . . , Ps avoid Z. Finally, it is clear by the above discussion that if

P1, . . . , Ps are not pairwise vertex-disjoint, then xi,j = xi′,j holds for some i 6= i′ and some

0 ≤ j ≤ 2k − 1. However, for each 0 ≤ j ≤ 2k − 1, (x1,j, . . . , xs,j) is the leaf vector of a

generalised spider whose ith leg consists of at least `i− 1 edges, so at most one of its legs

has 0 edges. Thus, the vertices x1,j, . . . , xs,j are distinct and condition (3) is satisfied.

It is not hard to connect the paths given by the previous lemma to form spiders with

length vector (k1, . . . , ks).

Lemma 2.7.12. Let `i ≤ ki ≤ k for each i. Assume that `i = 1 holds for at most

one value of i. Let G be a K-almost-regular graph on n vertices with minimum degree

δ = ω(1). Assume that L is sufficiently large compared to s, k and K and that there

exists a set S of spiders satisfying the conditions in Lemma 2.7.8. For each 1 ≤ i ≤ s,

let γi,0 ∈ {0, 1} such that ki − `i − γi,0 is even. Let R0 be the subspider with length vector

(`1 − γ1,0, . . . , `s − γs,0) of an arbitrary element of S. Let R0 have leaf vector (v1, . . . , vs).

Let Z ⊂ V (G) be a set of size at most L, disjoint from {v1, . . . , vs}.
Then there exists an s-legged spider with length vector (k1, . . . , ks) and leaf vector

(v1, . . . , vs) that avoids Z.

Proof. Choose vertices w1, w2 . . . , ws and paths P1, P2, . . . , Ps as in the conclusion of

Lemma 2.7.11. (w1, . . . , ws) is the leaf vector of an element of S, so by condition (i) in

Lemma 2.7.8 and Lemma 2.7.9, there exist at least f(`− 1, L) spiders with length vector

(`1, . . . , `s) and leaf vector (w1, . . . , ws) which are pairwise vertex-disjoint apart from at

their leaves. Thus, if L is sufficiently large, then there exists a spider S with length vector

(`1, . . . , `s) and leaf vector (w1, . . . , ws) such that V (S) is disjoint from Z and intersects⋃
1≤i≤s V (Pi) only at {w1, . . . , ws}. Let Ji be the ith leg of S, let u be the centre of S

and let Qi be the union of Ji and Pi. Then the spider with centre u and legs Q1, . . . , Qs

is suitable.

The next result, together with Lemma 2.7.10, completes the proof of Lemma 2.7.5.

Lemma 2.7.13. Assume that `i = 1 holds for at most one value of i. Let G be a K-almost-

regular graph on n vertices with minimum degree δ = ω(1). Assume that L is sufficiently

large compared to s, t, k and K and that there are at least nδ`1+···+`s

L
L-admissible but not

L-good spiders with length vector (`1, . . . , `s). Then G contains Kk−1
s,t as a subgraph.

Proof. Choose a set S with the properties described in Lemma 2.7.8. Define v1, . . . , vs

as in the statement of Lemma 2.7.12. We may repeatedly apply Lemma 2.7.12 to find

s-legged spiders S1, . . . , St, each with length vector (k, . . . , k) and leaf vector (v1, . . . , vs)
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such that V (Sj) is disjoint from (
⋃

1≤i≤j−1 V (Si)) \ {v1, . . . , vs}. Then the union of these

spiders is a copy of Kk−1
s,t .

2.8 Concluding remarks

Our main objective in this chapter was to prove upper bounds for extremal numbers. In

some cases we can use a result of Bukh and Conlon to show that there is a matching lower

bound.

Let F be a graph with a set of roots R ( V (F ). Recall from Section 2.5 that the

rooted t-blowup of this rooted graph is the graph obtained by taking t vertex-disjoint

copies of F and identifying the different copies of v for each v ∈ R. We denote this graph

by t ∗ F . For any non-empty S ⊂ V (F ) \ R, let eS be the number of edges in F with at

least one endpoint in S. Set ρF (S) = eS
|S| and ρ(F ) = ρF (V (F ) \ R). We say that (F,R)

(or F if R is clear) is balanced if ρ(F ) ≤ ρF (S) holds for every non-empty S ⊂ V (F ) \R.

Bukh and Conlon proved the following result.

Theorem 2.8.1 (Bukh–Conlon [18]). Let F be a balanced bipartite rooted graph with

ρ(F ) > 0. Then there is some t0 ∈ N such that for every t ≥ t0, we have ex(n, t ∗ F ) =

Ω(n2− 1
ρ(F ) ).

Note that if F is the s-legged spider with length vector (k, k, . . . , k) and its roots

are the leaves, then F is balanced with ρ(F ) = sk
s(k−1)+1

. Moreover, t ∗ F = Kk−1
s,t .

Thus, Theorem 2.8.1 implies that for t sufficiently large in terms of s and k, we have

ex(n,Kk−1
s,t ) = Ω(n1+ s−1

sk ). This shows that Corollary 2.1.18 follows from Theorem 2.1.17.

In order to prove Theorem 2.1.14 and to obtain a large family of realisable exponents,

together with Conlon and Lee we established the following result, which was conjectured

by Kang, Kim and Liu [79].

Theorem 2.8.2 (Conlon–Janzer–Lee [23]). Let s, k, t be positive integers such that s ≥ 2

and let S be the s-legged spider with length vector (1, k, k, . . . , k) and the roots being the

leaves. Then

ex(n, t ∗ S) = O(n1+ s−1
(s−1)k+1 ).

Since S is balanced, by Theorem 2.8.1 this is tight for t sufficiently large, so it implies

that 1 + s−1
(s−1)k+1

is a realisable exponent for every s ≥ 2 and k ≥ 1.

More generally, it is not hard to see that an s-legged spider S with length vector

(k1, . . . , ks) is balanced if and only if k1 + · · ·+ ks ≥ (s− 1) max1≤i≤s ki, where again the

roots are the leaves. If this holds, then by Theorem 2.8.1, ex(n, t ∗ S) = Ω(n
1+ s−1

k1+···+ks )

for t sufficiently large. The author conjectures that this is tight.

Conjecture 2.8.3 (Janzer [66]). Let s ≥ 2 and 1 ≤ k1 ≤ k2 ≤ · · · ≤ ks be integers

satisfying k1 + · · ·+ks ≥ (s−1)ks. Let S be the rooted graph which is a spider with length
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vector (k1, . . . , ks) and whose roots are the leaves. Then for any integer t ≥ 1,

ex(n, t ∗ S) = O(n
1+ s−1

k1+···+ks ).

Note that Theorem 2.1.17 and Theorem 2.8.2 show that the conjecture holds when

(k1, . . . , ks) = (k, . . . , k) and when (k1, . . . , ks) = (1, k, . . . , k).

As pointed out by the author in [66], the following lemma, which follows easily from

the results in the previous section, might be useful for proving Conjecture 2.8.3.

Lemma 2.8.4. Let 1 ≤ `i ≤ ki be integers for each i. Assume that `i = 1 holds for

at most one value of i. Let G be a K-almost-regular graph on n vertices with minimum

degree δ = ω(1). Assume that L is sufficiently large compared to s, t, k1, . . . , ks and K

and that there are at least nδ`1+···+`s

L
L-admissible but not L-good spiders with length vector

(`1, . . . , `s). Let S be the rooted graph which is a spider with length vector (k1, . . . , ks) and

whose roots are the leaves. Then G contains t ∗ S as a subgraph.

Proof. Choose a set S with the properties described in Lemma 2.7.8. Define v1, . . . , vs

as in the statement of Lemma 2.7.12. We may repeatedly apply Lemma 2.7.12 to find

s-legged spiders S1, . . . , St, each with length vector (k1, . . . , ks) and leaf vector (v1, . . . , vs)

such that V (Sj) is disjoint from (
⋃

1≤i≤j−1 V (Si)) \ {v1, . . . , vs}. Then the union of these

spiders is a copy of t ∗ S.

Using Lemma 2.8.4 and some new ideas, Jiang and Qiu proved the following common

generalisation of Theorem 2.1.17 and Theorem 2.8.2.

Theorem 2.8.5 (Jiang–Qiu [74]). Let s, b, k, t be positive integers with s ≥ 2 and b ≤ k,

and let S be the s-legged spider with length vector (b, k, k, . . . , k). Then

ex(n, t ∗ S) = O(n1+ s−1
(s−1)k+b ).

By Theorem 2.8.1, this is tight for t sufficiently large, so it implies that for every s ≥ 2

and b ≤ k, 1 + s−1
(s−1)k+b

is realisable. This has the following nice corollary.

Corollary 2.8.6 (Jiang–Qiu [74]). For any positive integers p, q with q > p2, 1 + p
q

is

realisable.

We finish the chapter by stating a conjecture of Kang, Kim and Liu about the extremal

number of the 1-subdivision of an arbitrary bipartite graph.

Conjecture 2.8.7 (Kang–Kim–Liu [79]). Let F be a bipartite graph with ex(n, F ) =

O(n1+α) for some α > 0. Then

ex(n, F ′) = O(n1+α
2 ).

Apart from being independently interesting, they showed that this conjecture would

imply Conjecture 2.1.2 on rational exponents.
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Chapter 3

The extremal number of blow-ups

3.1 Introduction

A graph F is called r-degenerate if each of its subgraphs has minimum degree at most

r. Generalising the Kővári–Sós–Turán theorem, Erdős in 1967 proposed the following

conjecture.

Conjecture 3.1.1 (Erdős [34]). Let F be a bipartite r-degenerate graph. Then ex(n,H) =

O(n2− 1
r ).

Note that, if true, this would also greatly generalise Theorem 2.1.3.

Alon, Krivelevich and Sudakov used dependent random choice to obtain the following

result.

Theorem 3.1.2 (Alon–Krivelevich–Sudakov [4]). Let H be a bipartite r-degenerate graph.

Then ex(n,H) = O(n2− 1
4r ).

Another partial result towards Conjecture 3.1.1 is due to Füredi and West [48], who

confirmed that ex(Ks,s\Ks−r,s−r) = O(n2−1/r). Here the forbidden graph is obtained from

the complete bipartite graph Ks,s by deleting the edges of a complete bipartite subgraph

Ks−r,s−r.

Observe that there exists a permutation of the vertices {v1, v2, . . . , vk} of any r-

degenerate graph for which every vertex vi has at most r neighbours in the set

{v1, v2, . . . , vi−1}. With this in mind, one can define the complexity of an r-degenerate

graph as follows.

Definition 3.1.3. The graph Kr,r = G(A0, B0) is considered as a graph of complexity 0

and any multiplicity. A bipartite graph G(A,B) is a complete r-degenerate bipartite graph

of complexity s and multiplicity m if it can be obtained from the complete bipartite graph

G(A′, B′) of complexity s−1 and multiplicity m by the addition of further m(
(|A′|
r

)
+
(|B′|
r

)
)

vertices such that m new vertices are assigned to each r-set in A′ and each r-set in B′,

and every new vertex is connected to the vertices of the r-set that it is assigned to. The

complexity of an r-degenerate bipartite graph H is defined to be the smallest possible
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complexity of a complete r-degenerate bipartite graph (of arbitrary multiplicity) that

contains H as a subgraph.

Figure 3.1: The complete 2-degenerate bipartite graph of complexity 2 and multiplicity
2. Note that the clone v′ of v has the same neighbours, but we did not draw those edges
in order to keep the figure transparent.
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3
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P5

P5[2]

Figure 3.2: The blow-up P5[2] of the path with 5 edges, as a subgraph of the complete
2-degenerate bipartite graph of complexity 2 and multiplicity 2.

Note that the result of Füredi and West covers precisely the complexity 1 case, while

Theorem 2.1.3 only applies to some r-degenerate bipartite graphs of complexity at most

2.

Our first contribution is a proof of Conjecture 3.1.1 for all graphs of complexity at

most 2.

Theorem 3.1.4. Let H be a complete r-degenerate bipartite graph of complexity 2 and

arbitrary multiplicity. Then

ex(n,H) = O(n2− 1
r ).

Our next result concerns the case where H has larger complexity but has a strong

structure, namely where H is a blow-up of a tree. For a graph F and a positive integer
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r, the r-blowup of F is the graph obtained by replacing the vertices and edges of F with

independent sets of size r and copies of Kr,r, respectively. We denote this graph by F [r].

The 2-blowup of P5 is shown in Figure 3.2.

Theorem 3.1.5. Let T be a tree and let r be a positive integer. Then

ex(n, T [r]) = O(n2− 1
r ).

Actually, the vertices can be replaced by sets of arbitrary sizes as long as the resulting

graph is r-degenerate, and the same conclusion holds. We say that a graph H is a blow-up

of the graph T if to get H from T we replace each vertex of T with an independent set (of

arbitrary size) and replace each edge of T with a corresponding complete bipartite graph.

Theorem 3.1.6. Let H be a graph that is r-degenerate and is a blow-up of a tree. Then

ex(n,H) = O(n2− 1
r ).

Note that Theorem 3.1.6 is a generalisation of the result of Füredi and West [48] on the

Turán number ex(n,Ks,s \Ks−r,s−r). This case corresponds to the blow-up of the path of

length 3.

In fact, we prove an even more general statement from which Theorem 3.1.6 follows.

To state this result, we need to introduce another definition.

Definition 3.1.7. Let r ≤ t and k be positive integers and let X1 = Y0, Y1, Y2, . . . , Yk

be pairwise disjoint sets with |X1| = r, |Y1| = . . . = |Yk| = t. For each 2 ≤ i ≤ k, let

Xi be a subset of some Yj with j < i such that |Xi| = r. The graph L with vertex set

Y0 ∪ Y1 ∪ . . .∪ Yk and edge set
⋃

1≤i≤k{xy : x ∈ Xi, y ∈ Yi} is called an (r, t)-blownup tree

of size k.

See Figure 3.3 for an example of a (2, 3)-blownup tree of size 4.

Observe that an (r, t)-blownup tree is r-degenerate. We are now ready to state our

most general result.

Theorem 3.1.8. Let L be an (r, t)-blownup tree of arbitrary size. Then

ex(n, L) = O(n2− 1
r ).

Note that any bipartite graph H with maximum degree at most r on one side is a

subgraph of some (r, t)-blownup tree (for a suitable t). Indeed, when the parts of H are

X and Y such that every vertex in X has degree at most r, then t can be chosen to be

|Y |. This shows that Theorem 3.1.8 generalises Theorem 2.1.3.

It is natural to ask what we can say about the extremal number of the blow-up of an

arbitrary bipartite graph. We make the following conjecture.
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Figure 3.3: A (2, 3)-blownup tree of size 4. Here X1 = Y0 = {a, b}, X2 = {a, b},
X3 = {c, d}, X4 = {d, e}, Y1 = {c, d, e}, Y2 = {f, g, h}, Y3 = {i, j, k}, Y4 = {l,m, n}.

Conjecture 3.1.9. For any 0 ≤ α ≤ 1 and any graph F , if ex(n, F ) = O(n2−α), then

ex(n, F [r]) = O
(
n2−α

r

)
.

The motivation behind this conjecture is the following. Given a graph G, define an

auxiliary graph G whose vertex set is V (G)(r) and in which U and V are joined by an

edge if U ∩ V = ∅ and uv ∈ E(G) for every u ∈ U and v ∈ V . Note that if the number

of edges in G is ω
(
n2−α

r

)
, then by supersaturation (see Lemma 3.2.1 below) there are

ω(n2r−αr) copies of Kr,r in G, i.e. there are ω (N2−α) edges in G, where N = |V (G)| =
(
n
r

)
.

Therefore there exists a copy of F in G, which provides a homomorphic copy of F [r] in G.

We conjecture that one can always embed F to G in a way that the r-sets corresponding

to the vertices of F are disjoint, providing an embedding of the blow-up F [r] to G.

Theorem 3.1.5 proves Conjecture 3.1.9 for trees. Note that Ks,t[r] = Krs,rt, so the

conjecture also holds for F = Ks,t, α = 1
s
. It would be interesting to extend this to the

family of even cycles. In this case, the conjecture can be stated as follows.

Conjecture 3.1.10. For any r, k ≥ 2,

ex(n,C2k[r]) = O(n2− 1
r

+ 1
rk ).

We prove Conjecture 3.1.10 in the first unknown case – the 2-blowup of the hexagon.

Theorem 3.1.11.

ex(n,C6[2]) = O(n5/3).

In fact, we prove a more general result about theta graphs.

Theorem 3.1.12. For any positive integer t,

ex(n, θ3,t[2]) = O(n5/3).
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Theorem 2.8.1 from the previous chapter shows that this is tight for t sufficiently large.

Indeed, if F = P3[2] with the roots being the degree 2 vertices, then θ3,t[2] is the rooted

t-blowup of F . (Note that rooted t-blowups are very different from t-blowups.) Since

ρ(F ) = 3, Theorem 3.1.12, combined with Theorem 2.8.1, has the following corollary.

Corollary 3.1.13. For sufficiently large t, we have

ex(n, θ3,t[2]) = Θ(n5/3).

In the next chapter, using a different method, we give a general upper bound

ex(n,C2k[r]) = O(n2− 1
r

+ 1
k+r−1 (log n)

4k
r(k+r−1) ) and discuss some interesting consequences.

The rest of the chapter is organised as follows. In Section 3.2 we present the proofs

of Theorem 3.1.4, Theorem 3.1.6 and Theorem 3.1.8, while in Section 3.3 we prove The-

orem 3.1.12.

3.2 Blow-ups of trees

For a graph G, d(G) denotes its average degree. Like in the previous chapter, the common

neighbourhood of a vertex set R is denoted by NG(R) and we write dG(R) = |NG(R)|.
We call a set of r vertices an r-set.

Let us briefly summarise the method we will use in this section. Roughly speaking,

we prove that if we randomly and greedily try to embed an (r, t)-blownup tree L in the

host graph, then with positive probability we do not get stuck. The way we choose the

embedded images of the first few vertices of L is not straightforward: we make use of

the stationary distribution on an auxiliary graph whose vertices are the r-sets of the

original host graph. To obtain a dense enough auxiliary graph, we apply results on graph

supersaturation. The embedding of the further vertices is also closely related to the usual

random walk on this auxiliary graph, which allows us to prove that with high probability

all r-sets that we hit in the random embedding have large enough neighbourhood.

One of the main ingredients of the proofs is a theorem on supersaturated graphs.

Lemma 3.2.1 (Erdős–Simonovits [40]). For any positive integer r, there exist positive

constants c = c(r), β = β(r) such that any graph on n vertices with e > cn2− 1
r edges

contains at least β er
2

n2r2−2r
copies of Kr,r.

This has the following simple corollary.

Corollary 3.2.2 (Erdős–Simonovits [34,47]). For any positive integer r and real number

γ > 0 there exists a constant c = cr(γ) such that any graph on n vertices with e > cn2− 1
r

edges contains at least γ
(
n
r

)
copies of Kr,r.

We start with the proof of Theorem 3.1.4 which is simpler but already contains some

of the ideas needed in the proof of Theorem 3.1.8.
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Proof of Theorem 3.1.4. Let m be the multiplicity of H and let γ = 2
(
r+m
r

)
·
(|V (H)|

r

)
.

By Corollary 3.2.2, there exists a constant c = cr(γ) such that any graph on n vertices

with e > c · n2− 1
r edges contains at least γ

(
n
r

)
copies of Kr,r.

Let G be any graph with e > c ·n2− 1
r edges. It is not hard to see that, in order to find

a copy of H in G, it suffices to find distinct vertices u1, u2, . . . , ur+m and v1, v2, . . . , vr+m

in V (G) such that

(i) uivj ∈ E(G) unless i > r and j > r;

(ii) dG({ui1 , . . . , uir}) ≥ |V (H)| and dG({vi1 , . . . , vir}) ≥ |V (H)| for 1 ≤ i1 < . . . < ir ≤
r +m.

We assign an auxiliary graph G to G as follows. The vertices of G are the r-sets in

V (G), and two such r-sets U and V are joined by an edge in G if uv ∈ E(G) for every

u ∈ U and v ∈ V . Clearly, we have d̄(G) ≥ 2γ.

Let us choose a uniformly random edge of G and let its endpoints be X and Y in

uniformly random order. Observe that for any fixed r-set U ∈ V (G), we have P(X =

U) = dG(U)
2e(G)

. Let u1, . . . , ur be a uniformly random listing of the elements of X and let

v1, . . . , vr be a uniformly random listing of the elements of Y . If dG(X) ≥ r + m and

dG(Y ) ≥ r +m, then let vr+1, . . . , vr+m be chosen uniformly at random from NG(X) \ Y
without repetition, and similarly, let ur+1, . . . , ur+m be chosen uniformly at random from

NG(Y )\X without repetition (otherwise, let vr+1, . . . , vr+m, ur+1, . . . , ur+m be undefined).

It is clear that if dG(X) ≥ r + m and dG(Y ) ≥ r + m, then these choices satisfy

condition (i) above. It remains to be shown that with positive probability condition (ii)

is also satisfied.

But note that for any 1 ≤ i1 < . . . < ir ≤ r + m, the set {vi1 , . . . , vir} is a uniformly

random neighbour in G of X, where, as noted above, P(X = U) = dG(U)
2e(G)

. Hence,

P({vi1 , . . . , vir} = V ) =
∑
U∼V

dG(U)≥r+m

P
(
X = U

)
· 1

dG(U)

≤
∑
U∼V

P
(
X = U

)
· 1

dG(U)

=
∑
U∼V

dG(U)

2e(G)
· 1

dG(U)

=
dG(V )

2e(G)
, (3.1)

where we write U ∼ V if U and V are neighbours in G.

Now let S consist of those V ∈ V (G) for which dG(V ) ≤ d̄(G)

4(r+mr )
. By inequality (3.1),

for every 1 ≤ i1 < . . . < ir ≤ r +m, we have

P({vi1 , . . . , vir} ∈ S) ≤ 1

2e(G)

∑
V ∈S

dG(V ) ≤ 1

4
(
r+m
r

) .
48



Thus, with probability at least 3/4, {vi1 , . . . , vir} 6∈ S for every 1 ≤ i1 < . . . < ir ≤ r+m.

Similarly, with probability at least 3/4, {ui1 , . . . , uir} 6∈ S holds for every 1 ≤ i1 <

. . . < ir ≤ r + m. Hence, with probability at least 1/2, we have both {ui1 , . . . , uir} 6∈ S
and {vi1 , . . . , vir} 6∈ S for every 1 ≤ i1 < . . . < ir ≤ r + m. But if U 6∈ S, then

dG(U) > γ

2(r+mr )
≥
(|V (H)|

r

)
. Therefore dG(U) ≥ |V (H)| holds for all such U . It follows

that with probability at least 1/2, the vertices u1, . . . , ur+m, v1, . . . , vr+m are well-defined

and have properties (i) and (ii).

We now turn to the proof of Theorem 3.1.8.

Proof of Theorem 3.1.8. Let k be the size of the (r, t)-blownup tree and let γ = 3
2
k ·(

10k2t2

r

)
. By Lemma 3.2.2, there exists a constant c = cr(γ) such that any graph on n

vertices with e > c · n2− 1
r edges contains at least γ

(
n
r

)
copies of Kr,r.

Let G be any graph with e > c · n2− 1
r edges. Define the auxiliary graph G as in the

proof of Theorem 3.1.4. Clearly, we have d̄(G) ≥ 2γ.

Let us define a random function f which is a partial graph homomorphism L → G,

i.e., if it is defined on S ⊂ V (L), then it is a graph homomorphism L[S]→ G. We define

f firstly on X1, then on Y1, Y2, . . . , and finally on Yk.

Let f(X1) be a random vertex of G according to the stationary distribution, that is,

f(X1) = U with probability dG(U)
2e(G)

. (Once f(X1) = U is decided, each bijection X1 → U

is chosen with equal probability.) If dG(f(X1)) ≥ t, then let f(Y1) be a uniformly random

t-subset of NG(f(X1)). Otherwise, let f be undefined on Y1.

More generally, for 2 ≤ i ≤ k, choose j < i such that Xi ⊂ Yj. If f is undefined on Yj,

then declare f to be undefined on Yi. Otherwise, let U = f(Xi). If dG(U) < t, then let f

be undefined on Yi, while if dG(U) ≥ t, then let f(Yi) be a uniformly random t-subset of

NG(U).

It is clear that this produces a partial graph homomorphism L→ G.

The key step in our proof is the following claim.

Claim. For each 1 ≤ i ≤ k and each U ∈ V (G),

P(f(Xi) = U) ≤ dG(U)

2e(G)
.

Proof of Claim. Fix 1 ≤ i ≤ k. Observe that there is a sequence j1 < . . . < j` = i such

that Xj1 = X1 and for each 1 ≤ a ≤ `−1, we have Xja+1 ⊂ Yja . We prove by induction on

a that for each 1 ≤ a ≤ ` and every U ∈ V (G), we have P(f(Xja) = U) ≤ dG(U)
2e(G)

. For a = 1,

we have Xja = X1, so P(f(Xja) = U) = dG(U)
2e(G)

. For a ≥ 2, observe that conditional on

f(Xja−1) = V , f(Yja−1) is defined if and only if dG(V ) ≥ t, and if this holds, then f(Yja−1)

is a uniformly random t-set in NG(V ). Therefore in this case f(Xja) is a uniformly random

r-set in NG(V ), so if U ⊂ NG(V ) then the probability that f(Xja) = U is 1
dG(V )

. Hence,
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we have

P(f(Xja) = U) =
∑
V∼U

dG(V )≥t

P
(
f(Xja−1) = V

)
· 1

dG(V )

≤
∑
V∼U

P
(
f(Xja−1) = V

)
· 1

dG(V )

≤
∑
V∼U

dG(V )

2e(G)
· 1

dG(V )

=
dG(U)

2e(G)
,

where we write V ∼ U if U and V are neighbours in G. This completes the induction

step, and the case a = ` proves the claim.

Now let S consist of those U ∈ V (G) for which dG(U) ≤ d̄(G)
3k

. By the claim above, for

every i, we have P(f(Xi) ∈ S) ≤ 1
2e(G)

∑
U∈S dG(U) ≤ 1

3k
. Thus, with probability at least

1/3, f(Xi) 6∈ S for every i. Moreover, for any U ∈ V (G) \ S we have dG(U) ≥ t, so if

f(Xi) 6∈ S for every i, then f is defined everywhere.

Suppose that f(Xi) = U for some U ∈ V (G) with dG(U) > d̄(G)
3k

. Then dG(U) >(
10k2t2

r

)
, so dG(U) > 10k2t2. But f(Yi) is a uniformly random t-subset of NG(U), and

|f(
⋃

0≤j≤i−1 Yj)| ≤ kt, so the probability that f(Yi) ∩ f(
⋃

0≤j≤i−1 Yj) 6= ∅ is at most 1
3k

.

It follows that with probability at least 1/3, f defines an injective graph homomor-

phism L→ G, thus G contains L as a subgraph.

Given Theorem 3.1.8, it is not hard to deduce Theorem 3.1.6. Clearly, it suffices to

prove that any r-degenerate blow-up of a tree is a subgraph of some (r, t)-blownup tree.

We will in fact prove the following stronger statement.

Lemma 3.2.3. Let H be a blow-up of some tree T , and suppose that H is r-degenerate.

For each u ∈ V (T ), write I(u) for the independent set with which the vertex u is replaced

in F . Then there exists some t = t(H) and an (r, t)-blownup tree L with sets X1, . . . , Xk,

Y0, . . . , Yk as in Definition 3.1.7 such that there is an embedding of H in L in a way that

each I(u) is a subset of some Yi for 0 ≤ i ≤ k.

Proof. The proof is by induction on the size of T . If T has one vertex, the assertion is

trivial. Now assume that T has at least two vertices. The assertion is straightforward

when T is a star, so let us assume that that is not the case. Let x be an arbitrary vertex

of T and let u be a vertex with maximum distance from x. Clearly u is a leaf. Let v be

the unique neighbour of u in T . Since T is not a star, we have v 6= x.

If |I(v)| ≤ r, then by induction there exist integers t, k and an (r, t)-blownup tree L

with sets X1, . . . , Xk, Y0, . . . , Yk such that there is an embedding of H − I(u) in L in a

way that for each y ∈ V (T ) \ {u}, I(y) is a subset of some Yi. In particular, I(v) is a
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subset of some Yi, so we can take Xk+1 = I(v) and Yk+1 = I(u) to get an embedding of

H in an (r, t′)-blownup tree L′ of size k + 1 with t′ = max(t, |I(u)|).
We may therefore assume that |I(v)| > r. Then∑

w∈V (T ): wv∈E(T )

|I(w)| ≤ r,

for otherwise H contains Kr+1,r+1 as a subgraph and so is not r-degenerate. Let z be

the unique neighbour of v on the path between v and x and let u1, . . . , um be the other

neighbours of v. Now T − {v, u1, . . . , um} is a tree, so by induction there exist integers

t, k and an (r, t)-blownup tree L with sets X1, . . . , Xk, Y0, . . . , Yk such that there is an

embedding ofH−(I(v)∪
⋃
j≤m I(uj)) in L in a way that for each y ∈ V (T )\{v, u1, . . . , um},

I(y) is a subset of some Yi. In particular, I(z) is a subset of some Yi. Now if we

replace Yi with Y ′i = Yi ∪
⋃
j≤m I(uj) and set Xk+1 = I(z) ∪

⋃
j≤m I(uj) ⊂ Y ′i and

Yk+1 = I(v), then we get an embedding of F in an (r, t′)-blownup tree L′ of size k + 1

with t′ = max(t, |Y ′i |, |I(v)|).

3.3 The 2-blowup of the hexagon

3.3.1 Outline of the proof

Before we get on with the proof of Theorem 3.1.12, let us give a brief sketch of the

argument. First, using a standard reduction lemma, we will assume that our host graph

G is nearly regular. Then we will find many copies of P3[2] in G with a fixed pair of

endpoints (x1, x2). Here and below, P3[2] has vertices x1, x2, y1, y2, z1, z2, w1, w2 and edges

xiyj, yizj, ziwj. It is not hard to see that if G has minimum degree ω(n2/3), then for some

pair (x1, x2) ∈ V (G)2, ω(n2) such copies can be found. This means that there will be

ω(1) among these copies that share the same (w1, w2). If we take t such P3[2]’s, their

union is a homomorphic copy of θ3,t[2]. However, it may be a degenerate one, i.e. some

of the internal vertices may coincide in the t copies of P3[2]. In order to prevent this

from happening, we will only use P3[2]’s in the above argument which satisfy some extra

properties. For example, we only count those P3[2]’s for which d(x1, x2, z1, z2) < 6t and

d(y1, y2, w1, w2) < 6t. Lemma 3.3.2 below will show that we do not lose too many P3[2]’s

by doing so. We will also make sure that in all our P3[2]’s, the codegree d(z1, z2) is roughly

the same. Finally, we will insist that d(x1, x2, z1) and d(x1, x2, z2) are not too large. In

Lemma 3.3.4, we show that we have many P3[2]’s possessing all these properties. Then

we find many pairs of these P3[2]’s which share the same endpoints. Using the extra

properties of our P3[2]’s, we can argue that (unless G contains θ3,t[2]) it is not possible

that most pairs share an internal vertex. Hence, using these internally vertex-disjoint

copies of P3[2], we get a θ3,t[2] in G.

The next proof naturally splits into two main parts. In Subsection 3.3.2, we show that

we have many P3[2]’s with the required properties. In Subsection 3.3.3, we show that

51



there cannot be too many pairs of these P3[2]’s which share the same endpoints and an

internal vertex.

It is well known that any graph with e edges contains a bipartite subgraph with at

least e/2 edges. This observation, combined with Lemma 2.2.1, reduces Theorem 3.1.12

to the following statement.

Theorem 3.3.1. Let K be a constant and let G be a K-almost-regular bipartite graph on

n vertices with minimum degree δ = ω(n2/3). Then, for n sufficiently large, G contains a

copy of θ3,t[2].

3.3.2 Prescribing extra properties

As mentioned in the proof outline (Section 3.3.1), our first prescribed property is that the

quadruples (x1, x2, z1, z2) and (y1, y2, w1, w2) should have few common neighbours. The

next lemma will be used to achieve this.

Lemma 3.3.2. Let G be a θ3,t[2]-free graph. Let x, x′, y and y′ be distinct vertices in G

and let R ⊂ N(y, y′) \ {x, x′}. Then the number of pairs of distinct vertices (z, z′) in R

with d(x, x′, z, z′) ≥ 6t is at most 4t|R|.

Proof. Take a maximal set of pairs (z1, z
′
1), . . . , (zs, z

′
s) ∈ R2 such that z1, z

′
1, . . . , zs, z

′
s

are all distinct and d(x, x′, zi, z
′
i) ≥ 6t for every i. If s ≥ t, then we may choose

w1, w
′
1, . . . , wt, w

′
t ∈ V (G) such that x, x′, y, y′, zi, z

′
i (1 ≤ i ≤ t) and wj, w

′
j (1 ≤ j ≤ t)

are all distinct, and wi, w
′
i ∈ N(x, x′, zi, z

′
i) for all 1 ≤ i ≤ t. Then the vertices x, x′, y, y′,

zi, z
′
i (1 ≤ i ≤ t) and wj, w

′
j (1 ≤ j ≤ t) form a copy of θ3,t, which is a contradiction.

Thus, s < t. By maximality, for any (z, z′) ∈ R2 with d(x, x′, z, z′) ≥ 6t we have

{z, z′} ∩ {z1, z
′
1, . . . , zs, z

′
s} 6= ∅. This leaves at most 2 · 2s · |R| < 4t|R| possibilities for

such (z, z′).

Roughly speaking, the next lemma will be used to find P3[2]’s with the property

that d(x1, x2, z1) and d(x1, x2, z2) are not too large. For a set S ⊂ V (G), we write

dS(v) = |N(v) ∩ S|.

Lemma 3.3.3. Let G be a graph on n vertices with minimum degree δ = ω(n2/3). Let

S ⊂ V (G) have size s ≥ n1/3. Then there exists some λ = ω(1) such that the number

of vertices v ∈ V (G) with λ
2

s
n1/3 < dS(v) ≤ λ s

n1/3 is at least cδn1/3λ−11/10, where c =

(
∑

i≥0 2−i/10)−1.

Proof. Define U0 = {v ∈ V (G) : dS(v) ≤ s
n1/3}, and for every positive integer i, let

Ui = {v ∈ V (G) : s
n1/3 2i−1 < dS(v) ≤ s

n1/3 2i}.
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Now we double count the number of edges between S and V (G) (viewed as a bipartite

graph). On the one hand, every y ∈ S has at least δ neighbours in V (G). On the other

hand, any v ∈ Ui has at most s
n1/3 2i neighbours in S. Thus,∑

i≥0

|Ui|
s

n1/3
2i ≥ sδ,

so ∑
i≥0

|Ui|2i ≥ δn1/3.

It is easy to see that then there exists some i such that |Ui| ≥ 2−
11i
10 cδn1/3. Since |Ui| ≤ n,

we have i = ω(1). So we may take λ = 2i.

The next lemma lists almost all properties that we require about the vertices x1, x2,

y1, y2, z1, z2, w1, w2 (discussed in the proof outline). The one additional property that we

will need is that d(y1, y2, w1, w2) < 6t.

Lemma 3.3.4. Let K be a constant and let G be a K-almost-regular, θ3,t[2]-free graph

on n vertices with minimum degree δ = ω(n2/3). Then there exist distinct vertices x1, x2

in G and a set S ⊂ N(x1, x2) of size at least n1/3 as follows. Writing s = |S|, there

exist λ = ω(1), µ = ω(1), and Ω( s
2n2/3λ27/10

µ11/10
) tuples (y1, y2, z1, z2) ∈ V (G)4 satisfying the

following properties.

1. y1, y2 ∈ S and yizj are edges for every i, j.

2. x1, x2, y1, y2, z1, z2 are distinct.

3. dS(z1), dS(z2) ≤ λ s
n1/3 .

4. d(x1, x2, z1, z2) < 6t.

5. µn1/3 ≤ d(z1, z2) ≤ 2µn1/3.

Proof. Let c = (
∑

i≥0 2−i/10)−1 as in Lemma 3.3.3. For every R ⊂ V (G) of size at least

n1/3, define λ(R) to be the largest λ such that the number of vertices v with λ
2
|R|
n1/3 <

dR(v) ≤ λ |R|
n1/3 is at least cδn1/3λ−11/10. By Lemma 3.3.3, this is well-defined and λ(R) =

ω(1). Since G has minimum degree ω(n2/3), for sufficiently large n, it is easy to see

that there exist distinct u, v ∈ V (G) with d(u, v) ≥ n1/3. Choose distinct x1, x2 ∈ V (G)

and S ⊂ N(x1, x2) such that |S| ≥ n1/3 and λ(S) is minimal among these choices. Let

λ = λ(S). It remains to find µ and enough number of tuples (y1, y2, z1, z2) with properties

1.-5.

This is done in two main steps.

Step 1. We find Ω(s2n2/3λ9/5) tuples (y1, y2, z1, z2) satisfying properties 1., 2. and 3.
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Let U = {v ∈ V (G)\{x1, x2} : λ
2

s
n1/3 < dS(v) ≤ λ s

n1/3}. Then |U | ≥ cδn1/3λ−11/10−2 ≥
nλ−11/10 for n sufficiently large.

Clearly, the number of triples (y1, y2, z) with y1, y2 ∈ S distinct, z ∈ U and y1z, y2z ∈
E(G) is at least |U |(λ

2
s

n1/3 )(λ
2

s
n1/3 − 1) = Ω(s2n1/3λ9/10). Hence, on average, for a pair

y1, y2 ∈ S there are Ω(n1/3λ9/10) vertices z ∈ N(y1, y2) ∩ U . By convexity, on average,

for a pair y1, y2 ∈ S there are Ω(n2/3λ9/5) pairs of distinct vertices z1, z2 ∈ N(y1, y2) ∩ U .

Since any z ∈ U has dS(z) ≤ λ s
n1/3 , this completes Step 1.

Step 2. We find Ω(s2nλ27/10) tuples (y1, y2, z1, z2, w) satisfying properties 1., 2., 3.

and 4. with the additional properties that d(z1, z2) ≥ n1/3λ4/5 and z1w, z2w ∈ E(G).

For y1, y2 ∈ S, let N(y1, y2)∗ = {v ∈ N(y1, y2) \ {x1, x2} : dS(v) ≤ λ s
n1/3}. The

conclusion of Step 1 implies that∑
y1,y2∈S distinct

|N(y1, y2)∗|2 = Ω(s2n2/3λ9/5).

Hence, ∑
y1,y2∈S distinct
|N(y1,y2)∗|≥n1/3

|N(y1, y2)∗|2 = Ω(s2n2/3λ9/5). (3.2)

We now prove that for any distinct y1, y2 ∈ S with |N(y1, y2)∗| ≥ n1/3, the number

of triples (z1, z2, w) of distinct vertices with (z1, z2) ∈ N(y1, y2)∗, d(x1, x2, z1, z2) < 6t,

d(z1, z2) ≥ n1/3λ4/5 and w ∈ N(z1, z2) is Ω(|N(y1, y2)∗|2n1/3λ9/10). Using equation (3.2),

this would complete Step 2.

Let some distinct y1, y2 ∈ S have |N(y1, y2)∗| ≥ n1/3. Let R = N(y1, y2)∗. By

definition, the number of vertices v with dR(v) > λ(R)
2
|R|
n1/3 is at least cδn1/3λ(R)−11/10.

Thus, the number of triples of distinct vertices (z1, z2, w) with z1, z2 ∈ R and w ∈ N(z1, z2)

is Ω(|R|2δn−1/3λ(R)9/10) ≥ Ω(|R|2δn−1/3λ9/10). By Lemma 3.3.2, the number of pairs of

distinct vertices (z1, z2) in R with d(x1, x2, z1, z2) ≥ 6t is at most 4t|R|. Hence, the

number of triples (z1, z2, w) involving such pairs (z1, z2) is at most 4t|R|δ. Note that

|R| ≥ n1/3 and λ = ω(1), so 4t|R|δ = o(|R|2δn−1/3λ9/10). Moreover, the number of

triples (z1, z2, w) with z1, z2 ∈ R, w ∈ N(z1, z2) and d(z1, z2) ≤ n1/3λ4/5 is clearly at

most |R|2n1/3λ4/5, which is again o(|R|2n1/3λ9/10). Thus, the number of triples (z1, z2, w)

of distinct vertices with (z1, z2) ∈ R, d(x1, x2, z1, z2) < 6t, d(z1, z2) ≥ n1/3λ4/5 and w ∈
N(z1, z2) is Ω(|R|2δn−1/3λ9/10). This is Ω(|N(y1, y2)∗|2n1/3λ9/10), as claimed.

Using the conclusion of Step 2, there exists some positive integer j such that there

exist Ω( s
2nλ27/10

2j/10
) tuples (y1, y2, z1, z2, w) satisfying properties 1., 2., 3. and 4. with the

additional properties n1/3λ4/52j−1 ≤ d(z1, z2) < n1/3λ4/52j and z1w, z2w ∈ E(G). Take

µ = λ4/52j−1 = ω(1). Then the number of tuples (y1, y2, z1, z2) satisfying properties 1.-5.

is Ω( s2nλ27/10

2j/10n1/3λ4/52j
), which is Ω( s

2n2/3λ27/10

µ11/10
).
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Figure 3.4: θ3,t[2] in the proof of Lemma 3.3.6

3.3.3 Counting the number of pairs of P3[2]’s which share an

internal vertex

Lemma 3.3.5. Let T be a tree with a special vertex v. Let G be a bipartite graph with

parts X and Y of size at most n. Assume that G has ω(n2) K2,2’s. Then G contains a

copy of T [2] with the two images of v embedded in X.

The proof of this lemma is similar to the proof of Theorem 3.1.5, so it is omitted.

Lemma 3.3.6. Let G be a θ3,t[2]-free bipartite graph. Let z1, z2 be distinct vertices in G

and let N(z1, z2) have size ` = ω(1). Let q = ω(`1/2). Let R ⊂ {v ∈ V (G) \ {z1, z2} :

d(v, z1, z2) ≥ q}. Then the number of triples (z′, w1, w2) of distinct vertices with z′ ∈ R,

w1, w2 ∈ N(z′, z1, z2) is O(`2).

Proof. Suppose that the number of triples (z′, w1, w2) of distinct vertices with z′ ∈ R,

w1, w2 ∈ N(z′, z1, z2) is ω(`2). Clearly we may assume that |R| ≤ `. By as-

sumption, on average a pair (w1, w2) ∈ N(z1, z2)2 of distinct vertices has ω(1) com-

mon neighbours in R. Hence, there exist ω(`2) many K2,2’s in G with one part in

N(z1, z2) and the other in R. Since G is bipartite, we have R ∩ N(z1, z2) = ∅. By

Lemma 3.3.5, there exist distinct vertices u, u′, w1, w
′
1, w2, w

′
2, . . . , wt, w

′
t ∈ N(z1, z2) and

v1, v
′
1, v2, v

′
2, . . . , vt, v

′
t ∈ R such that vi, v

′
i ∈ N(u, u′, wi, w

′
i) for every 1 ≤ i ≤ t. Then the

vertices z1, z2, u, u
′, w1, w

′
1, w2, w

′
2, . . . , wt, w

′
t, v1, v

′
1, v2, v

′
2, . . . , vt, v

′
t together form a copy

of θ3,t[2] (see Figure 3.4), which is a contradiction.

We are now in a position to complete the proof of Theorem 3.3.1.

Proof of Theorem 3.3.1. Assume for contradiction that G does not contain θ3,t[2]

as a subgraph. Choose x1, x2, S, λ, µ as in Lemma 3.3.4. Let Q be a set of q =

Ω( s
2n2/3λ27/10

µ11/10
) tuples (y1, y2, z1, z2) with the five properties given in Lemma 3.3.4. By

property 5. and Lemma 3.3.2, any such tuple can be extended Θ(µ2n2/3) ways to a tuple

(y1, y2, z1, z2, w1, w2) of vertices with the additional properties that w1 and w2 are distinct

55



x1

x2

y′2

y2

y1 = y′1

z2

z′2

z′1

z1

w1

w2

Figure 3.5: An element of A

elements of N(z1, z2) \ {x1, x2, y1, y2} and d(y1, y2, w1, w2) < 6t. Let R be the set of all

tuples obtained this way and let r = |R|. Note that r = Θ(qµ2n2/3), so r = ω(( λs
n1/3 )2n2).

Thus, on average a pair (w1, w2) of distinct vertices can be extended in ω(( λs
n1/3 )2) ways

to a tuple (y1, y2, z1, z2, w1, w2) ∈ R.

Assume that a pair (w1, w2) can be extended to h = ω(( λs
n1/3 )2) such tuples. Find a

maximal set of disjoint tuples (y1
1, y

1
2, z

1
1 , z

1
2), (y2

1, y
2
2, z

2
1 , z

2
2), . . . , (yk1 , y

k
2 , z

k
1 , z

k
2 ) such that

(yi1, y
i
2, z

i
1, z

i
2, w1, w2) ∈ R for every 1 ≤ i ≤ k. Since G is θ3,t[2]-free, we have

k < t. Now for any y1, y2, z1, z2 with (y1, y2, z1, z2, w1, w2) ∈ R, we have {y1, y2, z1, z2} ∩
{y1

1, y
1
2, z

1
1 , z

1
2 , y

2
1, y

2
2, z

2
1 , z

2
2 , . . . , y

k
1 , y

k
2 , z

k
1 , z

k
2} 6= ∅. By the pigeon hole principle, there ex-

ists some v ∈ {y1
1, y

1
2, z

1
1 , z

1
2 , y

2
1, y

2
2, z

2
1 , z

2
2 , . . . , y

k
1 , y

k
2 , z

k
1 , z

k
2} such that at least one of the

following holds.

(i) There are at least h
16k

tuples (y1, y2, z1, z2, w1, w2) ∈ R with y1 = v.

(ii) There are at least h
16k

tuples (y1, y2, z1, z2, w1, w2) ∈ R with y2 = v.

(iii) There are at least h
16k

tuples (y1, y2, z1, z2, w1, w2) ∈ R with z1 = v.

(iv) There are at least h
16k

tuples (y1, y2, z1, z2, w1, w2) ∈ R with z2 = v.

If (y1, y2, z1, z2, w1, w2) ∈ R, then by property 3. in Lemma 3.3.4, dS(z1) ≤ λs
n1/3 , by

property 1. we have y1, y2 ∈ S, and finally d(y1, y2, w1, w2) < 6t. Thus, there are at most

( λs
n1/3 )2 · 6t ways to extend a fixed choice of z1, w1, w2 to get (y1, y2, z1, z2, w1, w2) ∈ R. In

particular, (since in our case h = ω(( λs
n1/3 )2)), case (iii) is impossible. Similarly, case (iv)

is impossible. Thus, either case (i) or case (ii) holds.

Assume, without loss of generality, that case (i) holds. Since d(y1, y2, w1, w2) < 6t, for

any u ∈ V (G) there are at most (6t)2 tuples (y1, y2, z1, z2, w1, w2) ∈ R with y1 = v, y2 = u.

Moreover, for any u ∈ V (G) there are at most λs
n1/3 · 6t tuples (y1, y2, z1, z2, w1, w2) ∈ R

with y1 = v, z1 = u, and there are at most λs
n1/3 · 6t tuples (y1, y2, z1, z2, w1, w2) ∈ R with

y1 = v, z2 = u. Hence, almost all pairs from our at least h
16k

tuples (y1, y2, z1, z2, w1, w2) ∈
R with y1 = v are disjoint apart from y1, w1 and w2. Thus, for our fixed w1, w2, there are

Ω(h2) pairs (y1, y2, z1, z2, w1, w2), (y′1, y
′
2, z
′
1, z
′
2, w1, w2) ∈ R with y1 = y′1 but {y2, z1, z2} ∩

{y′2, z′1, z′2} = ∅.
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Summing over all pairs (w1, w2) and noting the symmetry of cases (i) and (ii)

above, we get Ω(n2 · ( r
n2 )2) = Ω( r

2

n2 ) pairs (y1, y2, z1, z2, w1, w2), (y′1, y
′
2, z
′
1, z
′
2, w1, w2) ∈ R

with y1 = y′1 but {y2, z1, z2} ∩ {y′2, z′1, z′2} = ∅. Let A be the set of all tuples

(y1, y2, z1, z2, w1, w2, y
′
2, z
′
1, z
′
2) for which (y1, y2, z1, z2, w1, w2), (y1, y

′
2, z
′
1, z
′
2, w1, w2) ∈ R

and {y2, z1, z2} ∩ {y′2, z′1, z′2} = ∅ (see Figure 3.5). Then |A| = Ω( r
2

n2 ).

Note that for any (y1, y2, z1, z2, w1, w2, y
′
2, z
′
1, z
′
2) ∈ A, we have (y1, y2, z1, z2) ∈ Q and

y′2 ∈ S, so there are at most qs choices for y1, y2, z1, z2, y
′
2. Hence, on average there are

Ω( r2

n2qs
) ways to extend such a choice to an element of A. Note that r2

n2qs
= Θ( qµ4

n2/3s
) ≥

Ω(sλ27/10µ29/10) ≥ Ω(n1/3µ29/10).

Let y1, y2, z1, z2, y
′
2 be vertices which extend in g = Ω(n1/3µ29/10) ways to an element

of A. Similarly to the pigeon hole argument above, there must exist a vertex v such that

at least one of the following holds.

(i) There are at least g
16t

ways to extend y1, y2, z1, z2, y
′
2 to an element of A with z′1 = v.

(ii) There are at least g
16t

ways to extend y1, y2, z1, z2, y
′
2 to an element of A with z′2 = v.

(iii) There are at least g
16t

ways to extend y1, y2, z1, z2, y
′
2 to an element of A with w1 = v.

(iv) There are at least g
16t

ways to extend y1, y2, z1, z2, y
′
2 to an element of A with w2 = v.

Suppose that case (iii) holds. Then there are Ω(n1/3µ29/10) ways to extend

y1, y2, z1, z2, y
′
2, w1 to an element of A. However, in any element of A, we have w2 ∈

N(z1, z2) and, by property 5., d(z1, z2) ≤ 2µn1/3. Moreover, z′1, z
′
2 ∈ N(y1, y

′
2, w1, w2) and

d(y1, y
′
2, w1, w2) < 6t, so there are at most 2µn1/3 · (6t)2 ways to extend y1, y2, z1, z2, y

′
2, w1

to an element of A. This contradicts µ = ω(1), so either case (i) or case (ii) must hold.

Without loss of generality, assume that (i) holds.

The number of ways to extend y1, y2, z1, z2, y
′
2, z
′
1 to an element of A is at most

d(z1, z2, z
′
1)2 · 6t, so we must have d(z1, z2, v) ≥ ( g

16t·6t)
1/2 ≥ n1/6µ28/20 when n is suf-

ficiently large. So for our fixed choice of y1, y2, z1, z2, y
′
2 there are at least g

16t
ways to

extend to an element of A such that d(z1, z2, z
′
1) ≥ n1/6µ28/20 holds. Summing over all

y1, y2, z1, z2, y
′
2, we obtain Θ(|A|) = Ω( r

2

n2 ) elements ofA in which d(z1, z2, z
′
1) ≥ µ28/20n1/6.

We now prove that this is impossible by counting such elements of A in a different

way. Note that (y1, y2, z1, z2) ∈ Q, so there are at most q choices for these vertices. For

any such choice µn1/3 ≤ d(z1, z2) ≤ 2µn1/3. Since µ28/20n1/6 = ω((2µn1/3)1/2), Lemma

3.3.6 implies that there are O((µn1/3)2) choices for (z′1, w1, w2). Moreover, there are at

most dS(z′1) ≤ λ s
n1/3 choices for y′2. Finally, there are at most d(y1, y

′
2, w1, w2) < 6t

choices for z′2. Altogether, we find that there are O(q · (µn1/3)2 · λ s
n1/3 · 6t) elements of

A with d(z1, z2, z
′
1) ≥ µ28/20n1/6. But we have already seen that this number is Ω( r

2

n2 ) =

Ω(q2µ4n−2/3), which is a contradiction since q = Ω( s
2n2/3λ27/10

µ11/10
), s ≥ n1/3, λ = ω(1) and

µ = ω(1).
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Chapter 4

The rainbow Turán number of even

cycles

4.1 Introduction

In this chapter we develop a method that allows us to find cycles with suitable extra

properties in graphs with sufficiently many edges. We give applications in three different

areas, which are introduced in the next three subsections.

4.1.1 Rainbow Turán numbers

The following variant of the Turán number was introduced by Keevash, Mubayi, Sudakov

and Verstraëte in [82]. In an edge-coloured graph, we say that a subgraph is rainbow if all

its edges are of different colour. The rainbow Turán number of the graph H is then defined

to be the maximum number of edges in a properly edge-coloured n-vertex graph that does

not contain a rainbow H as a subgraph. This number is denoted by ex∗(n,H). Clearly,

ex∗(n,H) ≥ ex(n,H) for every n and H. Keevash, Mubayi, Sudakov and Verstraëte

proved, among other things, that for any non-bipartite graph H, we have ex∗(n,H) =

(1+o(1))ex(n,H). Hence, the most challenging case again seems to be whenH is bipartite.

Keevash, Mubayi, Sudakov and Verstraëte showed that ex∗(n,Ks,t) = O(n2−1/s), which

is tight when t > (s− 1)! by the corresponding lower bound for ex(n,Ks,t). The function

has also been studied for trees (see [42, 77, 78]). About even cycles, Keevash, Mubayi,

Sudakov and Verstraëte proved the following lower bound.

Theorem 4.1.1 (Keevash–Mubayi–Sudakov–Verstraëte [82]). For any k ≥ 2,

ex∗(n,C2k) = Ω(n1+1/k).

They conjectured that this is tight.
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Conjecture 4.1.2 (Keevash–Mubayi–Sudakov–Verstraëte [82]). For any k ≥ 2,

ex∗(n,C2k) = Θ(n1+1/k).

They have verified their conjecture for k ∈ {2, 3}. For general k, Das, Lee and Sudakov

proved the following upper bound.

Theorem 4.1.3 (Das–Lee–Sudakov [26]). For every fixed integer k ≥ 2,

ex∗(n,C2k) = O
(
n1+

(1+εk) ln k

k

)
,

where εk → 0 as k →∞.

In this chapter we prove Conjecture 4.1.2 by establishing the following result.

Theorem 4.1.4. For any integer k ≥ 2, we have

ex∗(n,C2k) = O(n1+1/k).

We remark that our proof can be easily modified to show that ex∗(n, θk,t) = O(n1+1/k)

for any fixed k and t.

Keevash, Mubayi, Sudakov and Verstraëte also asked how many edges a properly

edge-coloured n-vertex graph can have if it does not contain any rainbow cycle. They

constructed such graphs with Ω(n log n) edges. Note that this is quite different from the

uncoloured case, since any n-vertex acyclic graph has at most n− 1 edges. Das, Lee and

Sudakov proved that if η > 0 and n is sufficiently large, then any properly edge-coloured

n-vertex graph with at least n exp
(

(log n)
1
2

+η
)

edges contains a rainbow cycle. We prove

the following improvement.

Theorem 4.1.5. There exists an absolute constant C such that if n is sufficiently large

and G is a properly edge-coloured graph on n vertices with at least Cn(log n)4 edges, then

G contains a rainbow cycle of even length.

4.1.2 Colour-isomorphic even cycles in proper colourings

Conlon and Tyomkyn [25] have initiated the study of the following problem. We say that

two subgraphs of an edge-coloured graph are colour-isomorphic if there is an isomorphism

between them preserving the colours. For an integer r ≥ 2 and a graph H, we write

fr(n,H) for the smallest number C so that there is a proper edge-colouring of Kn with

C colours containing no r pairwise vertex-disjoint colour-isomorphic copies of H. They

proved various general results about this function, such as the following upper bound.

Theorem 4.1.6 (Conlon–Tyomkyn [25]). For any graph H with v vertices and e edges,

fr(n,H) = O
(

max
(
n, n

rv−2
(r−1)e

))
.
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Regarding even cycles, they established the following result.

Theorem 4.1.7 (Conlon–Tyomkyn [25]). f2(n,C6) = Ω(n4/3).

One of the several open problems they posed is the following question.

Question 4.1.8 (Conlon–Tyomkyn [25]). Is it true that for every ε > 0, there exists

k0 = k0(ε) such that, for all k ≥ k0, f2(n,C2k) = Ω(n2−ε)?

Later, Xu, Zhang, Jing and Ge made a more precise conjecture.

Conjecture 4.1.9 (Xu–Zhang–Jing–Ge [110]). For any k ≥ 3,

f2(n,C2k) = Ω(n2− 2
k ).

We prove this conjecture in a more general form.

Theorem 4.1.10. Let k, r ≥ 2 be fixed integers. Then

fr(n,C2k) = Ω
(
n

r
r−1
· k−1
k

)
.

4.1.3 Turán number of blow-ups of cycles

Now we return to the study of the extremal number of blow-ups of cycles, which was

started in the previous chapter. In the case of forbidding all r-blowups of cycles, the

following question was formulated by Jiang and Newman [73]. To state this question, we

write C[r] = {C2k[r] : k ≥ 2}.

Question 4.1.11 (Jiang–Newman [73]). Is it true that for any positive integer r and any

ε > 0, ex(n, C[r]) = O(n2− 1
r

+ε)?

We answer this question affirmatively in a stronger form.

Theorem 4.1.12. For any positive integer r,

ex(n, C[r]) = O(n2−1/r(log n)7/r).

Erdős–Rényi random graphs show that ex(n, C[r]) = Ω(n2−1/r). It would be interesting

to decide whether the logarithmic factor in Theorem 4.1.12 can be removed.

We also establish an upper bound for the extremal number when only one blownup

cycle is forbidden.

Theorem 4.1.13. For any integers r ≥ 1 and k ≥ 2, we have

ex(n,C2k[r]) = O
(
n2− 1

r
+ 1
k+r−1 (log n)

4k
r(k+r−1)

)
.
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This is still quite a long way from the conjectured ex(n,C2k[r]) = O(n2− 1
r

+ 1
kr ). How-

ever, it can be used to disprove the following conjecture of Erdős and Simonovits.

Conjecture 4.1.14 (Erdős–Simonovits [31]). Let H be a bipartite graph with minimum

degree s. Then there exists ε > 0 such that ex(n,H) = Ω(n2− 1
s−1

+ε).

To see that this is false, note that the graph C2k[r] has minimum degree 2r, but, by

Theorem 4.1.13, for any δ > 0, we have ex(n,C2k[r]) = O(n2− 1
r

+δ) for sufficiently large k.

This means that we have, for any even s and any δ > 0, a bipartite graph H with minimum

degree s which has ex(n,H) = O(n2− 2
s

+δ), disproving Conjecture 4.1.14. On the other

hand, a simple application of the probabilistic method shows that if H is a bipartite graph

with minimum degree s ≥ 2, then there exists ε > 0 such that ex(n,H) = Ω(n2− 2
s

+ε).

The rest of this chapter is organised as follows. In Section 4.2, we prove Theorem

4.1.4. In Section 4.3, we prove Theorem 4.1.5. In Section 4.4, we prove Theorem 4.1.10.

The proofs of Theorem 4.1.12 and Theorem 4.1.13 are given in Section 4.5. We give some

concluding remarks and open problems in Section 4.6.

While we see no implication relations between our results, the proofs in the three

topics (rainbow Turán numbers, colour-isomorphic cycles and blow-ups of cycles) are

very similar. In order to avoid repeating the same argument many times, we give the

full proofs in the case of rainbow Turán problems, but we often only sketch the proofs in

the sections on colour-isomorphic cycles and blow-ups of cycles. Nevertheless, we always

indicate the necessary twists and in one case we give a proof in the appendix.

4.2 Rainbow cycles of length 2k

Notation. In what follows, for graphs H and G we write hom(H,G) for the number of

graph homomorphisms V (H)→ V (G). Pk will denote the path with k edges and we use

the convention C2 = P1. For vertices x, y ∈ V (G), homx,y(P`, G) denotes the number of

walks of length ` in G between x and y. Moreover, homx(P`, G) denotes the number of

walks of length ` in G starting at x. Finally, we write δ(G) and ∆(G) for the minimum

and maximum degree of G, respectively. Logarithms are base 2 unless stated otherwise.

4.2.1 Finding suitable short cycles

Our goal in this section is to develop a method for finding ‘suitable’ cycles of given length.

This is done in two steps. In this subsection we prove that there exist ‘suitable’ cycles of

length at most 2k, while in the next subsection we push the method further to make sure

that we get cycles of length exactly 2k. We have been deliberately vague about what we

mean by a ‘suitable’ cycle. In this section it will mean rainbow cycle, but in later sections

it will have different meanings. For example, in both Section 4.4 and Section 4.5 we will

work in auxiliary graphs whose vertices are sets, and a ‘suitable’ cycle in these auxiliary

graphs will be one whose vertices are disjoint sets.
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Our first key lemma is an upper bound on the number of those (homomorphic) 2`-

cycles which are not suitable. With a slight abuse of terminology, we call a homomorphism

H → G a homomorphic copy of H in G. That is, a homomorphic copy of C2` is a tuple

(x1, . . . , x2`) ∈ V (G)2` such that x1x2, x2x3, . . . , x2`x1 ∈ E(G). A rainbow homomorphic

copy of H is one in which the images of distinct edges of H have different colour.

Lemma 4.2.1. Let ` ≥ 2 be a positive integer and let G be a properly edge-coloured graph.

Then the number of homomorphic copies of C2` which are not rainbow is at most

16` (`∆(G) hom(C2`−2, G) hom(C2`, G))1/2 .

Proof. Let c(e) be the colour of the edge e ∈ E(G). We want to prove

that the number of (x1, x2, . . . , x2`) ∈ V (G)2` with x1x2, x2x3, . . . , x2`x1 ∈
E(G) such that c(x1x2), c(x2x3), . . . , c(x2`x1) are not all distinct is at most

16` (`∆(G) hom(C2`−2, G) hom(C2`, G))1/2. By symmetry, it suffices to prove that

the number of (x1, x2, . . . , x2`) ∈ V (G)2` with x1x2, x2x3, . . . , x2`x1 ∈ E(G)

such that c(x1x2) = c(xixi+1) for some 2 ≤ i ≤ ` + 1 is at most

8 (`∆(G) hom(C2`−2, G) hom(C2`, G))1/2.

For a positive integer s, let αs be the number of walks of length ` − 1 in G whose

endpoints y and z have 2s−1 ≤ homy,z(P`−1, G) < 2s and let βs be the number of walks of

length ` in G whose endpoints y and z have 2s−1 ≤ homy,z(P`, G) < 2s. Clearly,∑
s≥1

αs2
s−1 ≤ hom(C2`−2, G) (4.1)

and ∑
s≥1

βs2
s−1 ≤ hom(C2`, G). (4.2)

For positive integers s and t, write γs,t for the number of homomorphic copies

x1x2 . . . x2`x1 of C2` such that c(x1x2) = c(xixi+1) for some 2 ≤ i ≤ ` + 1,

2s−1 ≤ homx1,x`+2
(P`−1, G) < 2s and 2t−1 ≤ homx2,x`+2

(P`, G) < 2t. Observe that

γs,t ≤ αs · ∆(G) · 2t. Indeed, if x1x2 . . . x2`x1 is a homomorphic C2` with 2s−1 ≤
homx1,x`+2

(P`−1, G) < 2s and 2t−1 ≤ homx2,x`+2
(P`, G) < 2t, then there are at most

αs ways to choose (x`+2, x`+3, . . . , x2`, x1), given such a choice there are at most ∆(G)

choices for x2, and given these there are at most 2t choices for (x3, . . . , x`+1). On the

other hand, γs,t ≤ βt · ` · 2s. Indeed, there are at most βt ways to choose (x2, . . . , x`+2).

Given such a choice, there are at most ` possibilities for x1, since c(x1x2) = c(xixi+1)

for some 2 ≤ i ≤ ` + 1, the edges x2x3, . . . , x`+1x`+2 are already fixed and c is a proper

colouring. Finally, there are at most 2s ways to complete this to a suitable homomorphic

copy of C2`.

Clearly, the total number of homomorphic copies x1x2 . . . x2`x1 of C2` with c(x1x2) =

c(xixi+1) for some 2 ≤ i ≤ ` + 1 is
∑

s,t≥1 γs,t. We give an upper bound for this sum as
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follows. Let q be the integer for which ( `hom(C2`,G)
∆(G) hom(C2`−2,G)

)1/2 ≤ 2q < 2( `hom(C2`,G)
∆(G) hom(C2`−2,G)

)1/2.

Now, using γs,t ≤ βt · ` · 2s and equation (4.2),∑
s,t:s≤t−q

γs,t ≤ `
∑

s,t:s≤t−q

2sβt ≤ ` ·
∑
t≥1

2t−q+1βt ≤ ` · 2−q+2hom(C2`, G)

≤ 4(`∆(G) hom(C2`−2, G) hom(C2`, G))1/2.

Also, using γs,t ≤ αs ·∆(G) · 2t and equation (4.1),∑
s,t:s>t−q

γs,t ≤ ∆(G)
∑

s,t:s>t−q

2tαs ≤ ∆(G)
∑
s≥1

2s+qαs ≤ ∆(G)2q+1hom(C2`−2, G)

≤ 4(`∆(G) hom(C2`−2, G) hom(C2`, G))1/2.

Thus, ∑
s,t≥1

γs,t ≤ 8(`∆(G) hom(C2`−2, G) hom(C2`, G))1/2.

This completes the proof.

Corollary 4.2.2. Let k ≥ 2 be an integer and let G be a properly edge-coloured non-empty

graph on n vertices with hom(C2k, G) ≥ 28kk3kn∆(G)k. Then G contains a rainbow cycle

of length at most 2k.

Proof. Let ` be the smallest positive integer satisfying

hom(C2`, G) ≥ 28`k3`n∆(G)`.

This is well-defined and ` ≤ k by the condition of the lemma. Since hom(C2, G) =

2e(G) ≤ n∆(G), we have ` ≥ 2.

Note that

hom(C2`−2, G) < 28(`−1)k3(`−1)n∆(G)`−1 ≤ hom(C2`, G)

28k3∆(G)
≤ hom(C2`, G)

28`3∆(G)
,

so by Lemma 4.2.1, the number of homomorphic copies of C2` which are not rainbow is

less than hom(C2`, G).

Hence, there is at least one homomorphic copy of C2` in G which is rainbow. This

implies the existence of a rainbow cycle. Indeed, the homomorphic C2` uses every edge of

G at most once (since it is rainbow), so it is a circuit. Thus, it has a subgraph which is a

cycle. Clearly, this is a rainbow cycle.

The next lemma is another instance of an upper bound for the number of certain kind

of non-suitable homomorphic copies of C2`, namely non-injective ones. In what follows,

an injectively homomorphic copy of C2` is a homomorphic copy (x1, x2, . . . , x2`) of C2`

where the vertices x1, . . . , x2` are distinct. That is, it is a labelled genuine C2`.
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Lemma 4.2.3. Let ` ≥ 2 be a positive integer and let G be a graph. Then the number of

homomorphic, but not injective copies of C2` in G is at most

16` (`∆(G) hom(C2`−2, G) hom(C2`, G))1/2 .

Proof. The proof is almost identical to the proof of Lemma 4.2.1. The only difference is

that instead of bounding those homomorphic copies (x1, . . . , x2`) with c(x1x2) = c(xixi+1)

for some 2 ≤ i ≤ ` + 1, we bound those with x1 = xi for some 2 ≤ i ≤ ` + 1. All details

go through exactly the same way.

4.2.2 Finding a cycle of given length

In this subsection we develop the necessary tools to find a suitable cycle of length ex-

actly 2k (rather than length at most 2k as in Corollary 4.2.2).

We will need the following lemma.

Lemma 4.2.4. Let H be a bipartite graph and suppose that it does not contain a non-

empty subgraph with minimum degree at least d. Then the largest eigenvalue of H is at

most 2
√
d∆(H).

We defer its simple proof until the next subsection and proceed with the main part of

the argument. The next lemma is an easy corollary of Lemma 4.2.4. It will be used to

compare homx(C2`−2, G) with homx(C2`, G), where homx(C2j, G) denotes the number of

homomorphic copies (x1, x2, . . . , x2j) of C2j with x1 = x.

Lemma 4.2.5. Let H be a bipartite graph with parts Y and Z. Let f : Y → R be a

function and let g(z) =
∑

y∈NH(z) f(y) for every z ∈ Z. Suppose that H does not contain

a non-empty subgraph with minimum degree at least d. Then

∑
y∈Y

f(y)2 ≥ 1

4d∆(H)

∑
z∈Z

g(z)2.

The next lemma is one of our key results.

Lemma 4.2.6. Let k be a fixed positive integer and let G be a properly edge-coloured

non-empty graph on n vertices. Suppose that for some 2 ≤ ` ≤ k we have

hom(C2`, G) ≥ ck∆(G)hom(C2`−2, G),

where ck = 218k7. Then G contains a rainbow C2k.

Proof. Call a pair (x1, x`+1) of vertices nice if the number of rainbow in-

jectively homomorphic copies of C2` of the form x1x2 . . . x2`x1 is greater than(
1− 1

(4k
2 )

)(
homx1,x`+1

(P`, G)
)2

. Observe that the total number of homomorphic copies
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of C2` of the form x1x2 . . . x2`x1 is homx1,x`+1
(P`, G)2, so this means that the proportion

of those which are not injective or not rainbow is less than 1

(4k
2 )

. Hence, if we choose two

walks of length ` between x1 and x`+1 randomly with replacement, then the probability

that their concatenation is a non-injective or non-rainbow homomorphic copy of C2` is less

than 1

(4k
2 )

. In particular, if we choose 4k random walks of length ` between x1 and x`+1

with replacement, then with positive probability any two of these walks form a rainbow,

injectively homomorphic copy of C2`. Hence, there exist at least 4k pairwise internally

vertex-disjoint paths between x1 and x`+1 such that no colour appears more than once on

these paths.

By Lemmas 4.2.1 and 4.2.3, the number of non-rainbow or non-injective homomorphic

copies of C2` in G is at most

32`3/2(∆(G) hom(C2`−2, G) hom(C2`, G))1/2 ≤ 32`3/2

c
1/2
k

hom(C2`, G).

Hence, ∑
(x1,x`+1) not nice

1(
4k
2

) homx1,x`+1
(P`, G)2 ≤ 32`3/2

c
1/2
k

hom(C2`, G),

so, using
∑

x1,x`+1∈V (G) homx1,x`+1
(P`, G)2 = hom(C2`, G), we have

∑
(x1,x`+1) nice

homx1,x`+1
(P`, G)2 ≥

(
1−

(
4k

2

)
32`3/2

c
1/2
k

)
hom(C2`, G) >

1

2
hom(C2`, G)

≥ ck
2

∆(G) hom(C2`−2, G).

Thus, there exists some x ∈ V (G) such that∑
z∈V (G):(x,z) is nice

homx,z(P`, G)2 >
ck
2

∆(G) homx(C2`−2, G), (4.3)

where homx(C2`−2, G) denotes the number of homomorphic copies (x1, . . . , x2`−2) of C2`−2

with x1 = x. Let Z = {z ∈ V (G) : (x, z) is nice} and let Y = V (G). Consider the

bipartite graph H with parts Y and Z, defined by G. (We view Y and Z as disjoint sets

even though they overlap as subsets of V (G).)

Suppose that H does not contain a subgraph with minimum degree at least 4k. Let

f(y) = homx,y(P`−1, G) for every y ∈ Y = V (G) and define g as in Lemma 4.2.5. By that

lemma with d = 4k,

∑
y∈Y

f(y)2 ≥ 1

16k∆(H)

∑
z∈Z

g(z)2 ≥ 1

16k∆(G)

∑
z∈Z

g(z)2.
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However, g(z) =
∑

y∈NG(z) homx,y(P`−1, G) = homx,z(P`, G), so, using equation (4.3),

∑
y∈Y

f(y)2 ≥ 1

16k∆(G)

∑
z∈Z

homx,z(P`, G)2 >
ck

32k
homx(C2`−2, G).

However,
∑

y∈Y f(y)2 = homx(C2`−2, G), which is a contradiction.

Thus, H contains a subgraph with minimum degree at least 4k. Then we can greedily

find a rainbow path of length 2k−2` in G which avoids x and which have both endpoints

in Z. Let this path be Q with endpoints z1 and z2. Since (x, z1) is a nice pair, there exist

at least 4k pairwise internally vertex-disjoint paths of length ` between x and z1 such

that any colour appears at most once on these paths. Thus, by avoiding the vertices and

colours on Q, we can choose a path Q1 of length ` between x and z1 in a way that the

concatenation of Q1 and Q is a rainbow path of length 2k − `. Moreover, since (x, z2) is

a nice pair, we can extend this path to a rainbow cycle of length 2k.

Corollary 4.2.7. Let k be a fixed positive integer and let G be a properly edge-coloured

non-empty graph on n vertices. Suppose that for some 2 ≤ j ≤ k we have

hom(C2j, G) = ω
(
n∆(G)j

)
.

Then, for n sufficiently large, G contains a rainbow C2k.

Proof. Choose L = ω(1) such that hom(C2j, G) ≥ Ljn∆(G)j. Let ` be the smallest

positive integer satisfying hom(C2`, G) ≥ L`n∆(G)`. Clearly ` ≤ j ≤ k, and since

hom(C2, G) ≤ n∆(G), we have ` ≥ 2. Now hom(C2`, G) ≥ L∆(G) hom(C2`−2, G), so by

Lemma 4.2.6, G contains a rainbow C2k.

Corollary 4.2.7 shows in particular that if we have many homomorphic cycles of length

2k and the maximum degree is not too large, then there exists a rainbow C2k. Using

Lemma 2.2.1, we can pass to a suitable almost regular subgraph in which we can apply

Corollary 4.2.7 to find a rainbow C2k.

Proof of Theorem 4.1.4. By Lemma 2.2.1, it suffices to prove that for any fixed K,

if G′ is a properly edge-coloured K-almost regular graph on m vertices with minimum

degree δ = ω(m1/k), then, for m sufficiently large, G′ contains a rainbow C2k.

It is well known that C2k satisfies Sidorenko’s conjecture, so

hom(C2k, G
′) ≥ hom(K2, G

′)2k

m2k
≥ δ2k ≥ δk

mKk
m∆(G′)k.

Then hom(C2k, G
′) = ω(m∆(G′)k), so by Corollary 4.2.7, G′ contains a rainbow C2k.

4.2.3 The proof of Lemma 4.2.4

It remains to prove Lemma 4.2.4.
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Lemma 4.2.8. Let H be a bipartite graph with parts Y and Z. Suppose that H does not

contain a non-empty subgraph with minimum degree at least d. Then there exist bipartite

graphs H1, H2 both with parts Y and Z such that E(H) is the disjoint union of E(H1) and

E(H2), every vertex in Y has degree less than d in H1 and every vertex in Z has degree

less than d in H2.

Proof. Since H has minimum degree less than d, there is a vertex u in H which has

degree less than d. If u ∈ Y , let every edge in H of the form uv belong to H1, otherwise

let every edge of the form uv belong to H2. Set H ′ = H − u.

Since H ′ has minimum degree less than d, there is a vertex u′ in H ′ which has degree

less than d. If u′ ∈ Y , let every edge in H ′ of the form u′v belong to H1, otherwise let

every edge of the form u′v belong to H2. Set H ′′ = H ′ − u′.
Continue this procedure until all edges are placed in H1 or H2. It is easy to see that

these graphs are suitable.

The next two lemmas are well known.

Lemma 4.2.9. Let H be a bipartite graph with parts Y and Z so that every vertex in

Y has degree at most D1 and every vertex in Z has degree at most D2. Then the largest

eigenvalue of H is at most
√
D1D2.

Lemma 4.2.10. Let A and B be symmetric real matrices with largest eigenvalues λ and

µ. Then the largest eigenvalue of A+B is at most λ+ µ.

Proof of Lemma 4.2.4. Define graphs H1 and H2 as in Lemma 4.2.8. By Lemma 4.2.9,

both H1 and H2 have largest eigenvalue at most
√
d∆(H). Hence, by Lemma 4.2.10, the

largest eigenvalue of H is at most 2
√
d∆(H).

4.3 Rainbow cycles of arbitrary length

In this section we prove Theorem 4.1.5. We will use Corollary 4.2.2, but we first have to

find a ‘regular enough’ subgraph. Using Corollary 4.2.2, one can show that there exists a

constant C such that any C-almost regular graph on n vertices with at least Cn(log n)3

edges contains a rainbow cycle. Unfortunately, we think that it is not possible to find

a O(1)-almost regular subgraph on m = ω(1) vertices with ω(m(logm)3) edges in an

arbitrary n-vertex graph with ω(n(log n)3) edges. The next two lemmas give us a suitable

subgraph for which Corollary 4.2.2 is applied, but we lose a log n factor on the way, that

is why we need Cn(log n)4 edges in Theorem 4.1.5.

Lemma 4.3.1. Let d be sufficiently large and let G be a graph on n vertices with average

degree d. Then there exists a non-empty bipartite subgraph G′ of G with parts X and Y

such that e(G′) ≥ |X| · ∆(G′)
80

and e(G′) ≥ |Y | · d
10 logn

.

67



Proof. By passing to a suitable subgraph, we may, without loss of generality, assume

that every subgraph of G has average degree at most d.

Let A be the set consisting of the dn/2e largest degree vertices in G (we break ties

arbitrarily) and let B = V (G) \ A.

Suppose first that e(G[B]) ≥ e(G)
10

. Then we may partition B into sets X and Y such

that e(G[X, Y ]) ≥ e(G)
20

= nd
40

. Let G′ = G[X, Y ]. Any vertex in B has degree at most
2e(G)
dn/2e = nd

dn/2e ≤ 2d in G, so ∆(G′) ≤ 2d. Since |X|, |Y | ≤ n/2, G′ satisfies the conditions

in the lemma.

Hence, we may assume that e(G[B]) < e(G)
10

. Suppose that e(G[A]) ≥ 6e(G)
10

. Then

G[A] has larger average degree than G, which is a contradiction. Thus, e(G[A]) < 6e(G)
10

and so e(G[A,B]) ≥ 3e(G)
10

.

Let Alow = {x ∈ X : |NG(x)∩B| ≤ d
20
} and let A′ = A\Alow. Clearly, e(G[Alow, B]) ≤

n d
20

= e(G)
10

, so e(G[A′, B]) ≥ e(G)
5

. For 0 ≤ i ≤ blog nc, let Ai = {x ∈ A′ : 2i ≤ |NG(x) ∩
B| < 2i+1}. The sets Ai partition A′, so there exists some i such that e(G[Ai, B]) ≥
e(G[A′,B])

logn+1
≥ e(G)

10 logn
= nd

20 logn
≥ |B| · d

10 logn
.

Let X = Ai, Y = B and G′ = G[X, Y ]. The last inequality from the previous

paragraph gives that e(G′) ≥ |Y | · d
10 logn

. Since every x ∈ Ai has d
20
< dG′(x) < 2i+1, we

have d
20
< 2i+1. But every y ∈ B has dG′(y) ≤ dG(y) ≤ 2d, so ∆(G′) ≤ 40 · 2i+1. However,

for every x ∈ Ai, we have dG′(x) ≥ 2i, so e(G′) ≥ |X| · 2i ≥ |X| · ∆(G′)
80

.

Lemma 4.3.2. Let d be sufficiently large and let G be a graph on n vertices with average

degree d. Then there exists a non-empty bipartite subgraph G′′ of G with parts X and

Y such that for every x ∈ X, we have dG′′(x) ≥ ∆(G′′)
160

and for every y ∈ Y , we have

dG′′(y) ≥ d
20 logn

.

Proof. By Lemma 4.3.1, we may choose a non-empty bipartite subgraph G′ with parts

X ′ and Y ′ such that e(G′) ≥ |X ′| · ∆(G′)
80

and e(G′) ≥ |Y ′| · d
10 logn

. Now perform the

following simple algorithm: as long as there is a vertex in X ′ which has degree less than
∆(G′)

160
in the current graph, or there is a vertex in Y ′ which has degree less than d

20 logn

in the current graph, then discard one such vertex. Let the final graph be G′′ and let

its parts be X and Y . Clearly we have dG′′(x) ≥ ∆(G′)
160

≥ ∆(G′′)
160

for every x ∈ X and

dG′′(y) ≥ d
20 logn

for every y ∈ Y . Finally, G′′ is non-empty since the number of edges

discarded by the algorithm is less than |X| · ∆(G′)
160

+ |Y | · d
20 logn

≤ e(G′).

Now we prove that the subgraph we find by Lemma 4.3.2 has many homomorphic

C2k’s.

Lemma 4.3.3. Let G be a bipartite graph with parts X and Y such that d(x) ≥ s for

every x ∈ X and d(y) ≥ t for every y ∈ Y . Then, for every positive integer k,

hom(C2k, G) ≥ sktk.
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Proof. If k is even, then hom(Pk, G) ≥ |X|sk/2tk/2. Hence,

hom(C2k, G) ≥
∑
x,x′∈X

homx,x′(Pk, G)2 ≥ 1

|X|2

( ∑
x,x′∈X

homx,x′(Pk, G)

)2

≥
(

hom(Pk, G)

|X|

)2

≥ sktk.

Now suppose that k is odd. Without loss of generality, we may assume that |X|s ≥
|Y |t. Note that hom(Pk, G) ≥ |X|s k+1

2 t
k−1
2 . Hence,

hom(C2k, G) ≥
∑

x∈X,y∈Y

homx,y(Pk, G)2 ≥ 1

|X||Y |

( ∑
x∈X,y∈Y

homx,y(Pk, G)

)2

≥ hom(Pk, G)2

|X||Y |
≥ |X|
|Y |

sk+1tk−1 ≥ sktk.

Lemma 4.3.4. Let d be sufficiently large and let G be a graph on n vertices with average

degree d. Then there exists a non-empty bipartite subgraph G′′ of G such that for every

positive integer k,

hom(C2k, G
′′) ≥

(
d

20 log n

)k (
∆(G′′)

160

)k
.

Proof. This follows immediately from Lemma 4.3.2 and Lemma 4.3.3.

Proof of Theorem 4.1.5. Let n be sufficiently large and let G be a properly edge-

coloured graph on n vertices with at least Cn(log n)4 edges, where C = 2100. Let k =

blog nc.
By Lemma 4.3.4, G has a non-empty bipartite subgraph G′′ such that

hom(C2k, G
′′) ≥

(
C

10
(log n)3

)k (
∆(G′′)

160

)k
≥ 250kk3k∆(G′′)k ≥ 28kk3kn∆(G′′)k.

Then, by Corollary 4.2.2, G′′ contains a rainbow cycle. It has even length because G′′ is

bipartite.

4.4 Colour-isomorphic cycles

In this section we prove Theorem 4.1.10. Throughout the section, let k and r be fixed.

Definition 4.4.1. Given an edge-colouring of Kn, define an auxiliary graph G0 as follows.

Let the vertex set of G0 be the set of r-vertex subsets of V (Kn), i.e. let V (G0) = V (Kn)(r).

Now let U and V be joined by an edge if U ∩ V = ∅ and there is a monochromatic

matching between U and V .
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We will prove that if Kn is coloured with o(n
r
r−1
· k−1
k ) colours, then there exists a copy

of θk,r!+1 in G0 in which the vertices are pairwise disjoint as subsets of V (Kn). This implies

that there exist r colour-isomorphic, pairwise vertex-disjoint copies of C2k. Indeed, let

X, Yi,j for 1 ≤ i ≤ k − 1, 1 ≤ j ≤ r! + 1 and Z be pairwise disjoint r-subsets of V (Kn)

with X joined to Y1,j in G0 for 1 ≤ j ≤ r! + 1, Yi,j joined to Yi+1,j for every 1 ≤ i ≤ k− 2

and every 1 ≤ j ≤ r! + 1 and Yk−1,j joined to Z for every 1 ≤ j ≤ r! + 1. For each

1 ≤ j ≤ r! + 1, pair each vertex in X with the vertex in Z that we get to if we follow the

edges in the monochromatic matchings between X, Y1,j, Y2,j, . . . , Yk−1,j, Z. This gives, for

each 1 ≤ j ≤ r! + 1, a bijection between X and Z. Since there are r! bijections between

two sets of size r, two of these bijections must be identical, say the one corresponding to

j1 and the one corresponding to j2. Then X, Y1,j1 , . . . , Yk−1,j1 , Z, Yk−1,j2 , . . . , Y1,j2 and the

monochromatic matchings between them provide r colour-isomorphic, pairwise vertex-

disjoint copies of C2k.

Lemma 4.4.2. If Kn is properly edge-coloured with o(n
r
r−1
· k−1
k ) colours, then e(G0) =

ω(nr+r/k).

Proof. By the convexity of the function
(
x
r

)
, the number of monochromatic r-matchings

in Kn is ω
(
n

r
r−1
· k−1
k · (n2− r

r−1
· k−1
k )r

)
= ω(nr+r/k). Any monochromatic r-matching gives

rise to an edge in G0 and any edge in G0 is counted at most r times, so the statement of

the lemma follows.

For the rest of the proof, we fix a proper edge-colouring of Kn with o(n
r
r−1
· k−1
k ) colours

and define G0 as above. Since G0 has N :=
(
n
r

)
vertices and ex(N, θk,r!+1) = O(N1+1/k)

(see [44]), it is already clear by Lemma 4.4.2 that G0 contains a copy of θk,r!+1. What we

will prove is that this θk,r!+1 can be chosen in a way that the vertices are pairwise disjoint

sets.

The following simple lemma will be useful for making sure that the vertices are disjoint

sets.

Lemma 4.4.3. Let x, y ∈ V (G0). Then the number of z ∈ V (G0) such that xz ∈ E(G0)

and z ∩ y 6= ∅ is at most r2.

Proof. Since y is a set of size r, there are r ways to specify which element v ∈ y will be

contained in z. Given this choice, there are r ways to choose the colour of the monochro-

matic matching between x and z since it must be the colour of uv for some u ∈ x.

Given these two choices, z is uniquely determined (if exists) since the colouring of Kn is

proper.

The next lemma is analogous to Lemma 4.2.1.
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Lemma 4.4.4. Let ` ≥ 2 be a positive integer and let G be a subgraph of G0. Then the

number of homomorphic copies of C2` in G in which the vertices are not pairwise disjoint

(as subsets of V (Kn)) is at most

16`
(
r2`∆(G) hom(C2`−2,G) hom(C2`,G)

)1/2
.

The proof is nearly identical to that of Lemma 4.2.1, so it is only briefly sketched here.

As in Lemma 4.2.1, we count the number of (x1, . . . , x2`) ∈ V (G)2` with x1x2, . . . , x2`x1 ∈
E(G) such that x1 ∩ xi 6= ∅ for some 2 ≤ i ≤ ` + 1. The only minor difference is that

given x2, . . . , x`+2, there are at most r2`, rather than ` ways to choose x1. Indeed, there

are ` ways to choose i such that x1 ∩xi 6= ∅, and, given any such choice, by Lemma 4.4.3,

there are at most r2 ways to choose x1.

The next lemma is analogous to Lemma 4.2.6.

Lemma 4.4.5. Let G be a non-empty subgraph of G0 and suppose that for some 2 ≤ ` ≤ k

we have

hom(C2`,G) = ω (∆(G) · hom(C2`−2,G)) .

Then, for n sufficiently large, G contains a θk,r!+1 in which the vertices are pairwise disjoint

sets.

The proof of this lemma is very similar to that of Lemma 4.2.6 and is given in the

appendix, but let us list here the three minor differences.

First, whenever in the proof of Lemma 4.2.6 we said ‘rainbow, injectively homomorphic

copy of C2`’, we now say ‘homomorphic copy of C2` in which the vertices are pairwise

disjoint sets’.

We very slightly modify the definition of a ‘nice pair’ such that between any nice pair

of vertices in G we find r|V (θk,r!+1)| paths of length `, such that the vertices of G involved

in these paths are pairwise disjoint sets in V (Kn).

The last difference is that we now find a subgraph of H with sufficiently large minimum

degree so that (using Lemma 4.4.3) we can greedily embed a spider with r! + 1 legs of

length k− ` in H whose vertices are pairwise disjoint sets, and such that all the legs have

endpoints which form nice pairs with x. (A spider with t legs of length s is the union of

t paths of length s which share one endpoint but are pairwise vertex-disjoint apart from

that.) Then we can extend this spider to a copy of θk,r!+1 in G in which the vertices are

pairwise disjoint sets.

Corollary 4.4.6. Let G be a subgraph of G0 on m vertices and suppose that for some

2 ≤ j ≤ k we have

hom(C2j,G) = ω
(
m∆(G)j

)
.

Then, for n sufficiently large, G contains a θk,r!+1 in which the vertices are pairwise disjoint

sets.
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The proof of this is identical to that of Corollary 4.2.7.

We are now in a position to prove Theorem 4.1.10. Suppose that Kn is properly

edge-coloured with o(n
r
r−1
· k−1
k ) colours. By Lemma 4.4.2, we have e(G0) = ω(N1+1/k),

where N = |V (G0)| =
(
n
r

)
. By Lemma 2.2.1, G0 has a K-almost regular subgraph G

on m = ω(1) vertices with minimum degree δ = ω(m1/k) such that K = O(1). Now

hom(C2k,G) ≥ δ2k = ω(m∆(G)k), so by Corollary 4.4.6, G0 contains a θk,r!+1 in which

the vertices are pairwise disjoint sets. As we have discussed after Definition 4.4.1, this

guarantees the existence of r colour-isomorphic, pairwise vertex-disjoint copies of C2k.

4.5 Blow-ups of cycles

In this section we prove Theorem 4.1.12 and Theorem 4.1.13.

Definition 4.5.1. Given a graph G, define an auxiliary graph G0 as follows. Let the

vertex set of G0 be the set of r-vertex subsets of V (G), i.e. let V (G0) = V (G)(r). Now let

U and V be joined by an edge if U ∩ V = ∅ and uv ∈ E(G) for every u ∈ U and v ∈ V .

For the rest of the proof, we fix a positive integer r and a graph G, and define G0 as

above. In order to find a copy of C2k[r] in G, we need to find a copy of C2k in G0 in which

the vertices are disjoint as subsets of V (G). The next lemma will be useful for making

sure that the vertices in our cycles are disjoint sets, and it plays the role of Lemma 4.4.3

from the previous section.

Lemma 4.5.2. Let x, y ∈ V (G0). Then the number of z ∈ V (G0) such that xz ∈ E(G0)

and z ∩ y 6= ∅ is at most rr+1dG0(x)1−1/r.

Proof. There are r ways to choose the element of y that should belong to z, so it suffices

to prove that for any v ∈ V (G), the number of neighbours of x in G0 that contain v is at

most rrdG0(x)1−1/r. Let d be the size of the common neighbourhood (in G) of the vertices

in x. There are
(
d−1
r−1

)
ways to choose the r − 1 vertices in z that are different from v.

Since
(
d−1
r−1

)
≤ rr

(
d
r

)1−1/r
= rrdG0(x)1−1/r, the proof is complete.

The next lemma is analogous to Lemma 4.2.1 and Lemma 4.4.4.

Lemma 4.5.3. Let ` ≥ 2 be a positive integer and let G be a bipartite subgraph of G0

with parts X1 and X2 such that every x ∈ X1 has dG0(x) ≤ D1 and every x ∈ X2 has

dG0(x) ≤ D2, where D1 ≤ D2. Then the number of homomorphic copies of C2` in G in

which the vertices are not pairwise disjoint (as subsets of V (G)) is at most

32`
(
rr+1`D

1−1/r
1 D2 hom(C2`−2,G) hom(C2`,G)

)1/2

.

The proof of this lemma is similar to that of Lemma 4.2.1, but not quite identical, so

we give a sketch of the proof.
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Sketch of proof. We want to prove that the number of (x1, x2, . . . , x2`) ∈ V (G)2`

with x1x2, . . . , x2`x1 ∈ E(G) such that x1, x2, . . . , x2` are not all disjoint is at most

32`
(
rr+1`D

1−1/r
1 D2 hom(C2`−2,G) hom(C2`,G)

)1/2

. By symmetry, it suffices to prove that

the number of (x1, x2, . . . , x2`) ∈ V (G)2` with x1x2, . . . , x2`x1 ∈ E(G) such that x1∩xi 6= ∅

for some 2 ≤ i ≤ `+ 1 is at most 16
(
rr+1`D

1−1/r
1 D2 hom(C2`−2,G) hom(C2`,G)

)1/2

.

For a positive integer s, let αs be the number of walks of length ` − 1 in G whose

endpoints y and z have 2s−1 ≤ homy,z(P`−1,G) < 2s and let βs be the number of walks of

length ` in G whose endpoints y and z have 2s−1 ≤ homy,z(P`,G) < 2s.

For positive integers s and t, write γs,t for the number of homomorphic copies

x1x2 . . . x2`x1 of C2` such that x1 ∈ X1, x1 ∩ xi 6= ∅ for some 2 ≤ i ≤ ` + 1,

2s−1 ≤ homx1,x`+2
(P`−1,G) < 2s and 2t−1 ≤ homx2,x`+2

(P`,G) < 2t and write γ′s,t for

the number of homomorphic copies x1x2 . . . x2`x1 of C2` such that x1 ∈ X2, x1 ∩ xi 6= ∅
for some 2 ≤ i ≤ `+ 1, 2s−1 ≤ homx1,x`+2

(P`−1,G) < 2s and 2t−1 ≤ homx2,x`+2
(P`,G) < 2t

Here comes the main difference compared to the proof of Lemma 4.2.1. Observe that

γs,t ≤ αs · D1 · 2t. Indeed, if x1x2 . . . x2`x1 is a homomorphic C2` with x1 ∈ X1, 2s−1 ≤
homx1,x`+2

(P`−1,G) < 2s and 2t−1 ≤ homx2,x`+2
(P`,G) < 2t, then there are at most αs ways

to choose (x`+2, x`+3, . . . , x2`, x1), given such a choice, as x1 ∈ X1, there are at most D1

choices for x2, and given these there are at most 2t choices for (x3, . . . , x`+1). On the other

hand, γs,t ≤ βt ·`rr+1D
1−1/r
2 ·2s. Indeed, there are at most βt ways to choose (x2, . . . , x`+2).

By Lemma 4.5.2, given such a choice, there are at most `rr+1dG0(x2)1−1/r ≤ `rr+1D
1−1/r
2

possibilities for x1 (since x1∩xi 6= ∅ for some 2 ≤ i ≤ `+ 1). Finally, there are at most 2s

ways to complete this to a suitable homomorphic copy of C2`. Similarly, γ′s,t ≤ αs ·D2 · 2t

and γ′s,t ≤ βt · `rr+1D
1−1/r
1 · 2s.

Now similarly to the proof of Lemma 4.2.1, we can prove that

∑
s,t≥1

γs,t ≤ 8
(
rr+1`D1D

1−1/r
2 hom(C2`−2,G) hom(C2`,G)

)1/2

and ∑
s,t≥1

γ′s,t ≤ 8
(
rr+1`D

1−1/r
1 D2 hom(C2`−2,G) hom(C2`,G)

)1/2

.

Hence, the total number of homomorphic copies of C2` in G in which the vertices are not

pairwise disjoint is

∑
s,t≥1

γs,t + γ′s,t ≤ 16
(
rr+1`D

1−1/r
1 D2 hom(C2`−2,G) hom(C2`,G)

)1/2

.

Now we want to find a bipartite subgraph G in G0 which has many homomorphic cycles

but whose vertices have not too large degree in G0.

Lemma 4.5.4. Let G0 have average degree d > 0. Then there exist D1, D2 ≥ d
4

and a non-

empty bipartite subgraph G in G0 with parts X1 and X2 such that for every x ∈ X1, we have
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dG(x) ≥ D1

256r2(logn)2
and dG0(x) ≤ D1, and for every x ∈ X2, we have dG(x) ≥ D2

256r2(logn)2

and dG0(x) ≤ D2.

Proof. Let N and e denote the number of vertices and edges in G0, respectively. Observe

that the number of edges in G0 incident to vertices of degree at most d/4 is at most

Nd/4 = e/2. Hence, a random partitioning of all vertices with degree at least d/4 shows

that there exist disjoint sets A and B in V (G0) such that for every v ∈ A ∪ B we have

dG0(v) ≥ d/4 and the number of edges in G0[A,B] is at least e/4. For each 1 ≤ i ≤
dr log ne, let Ai = {v ∈ A : 2i−1 ≤ dG0(v) < 2i} and let Bi = {v ∈ B : 2i−1 ≤ dG0(v) < 2i}.
Note that the Ai’s partition A. Indeed, ∆(G0) ≤

(
n
r

)
≤ nr. Similarly, the Bi’s partition

B. Hence, there exist i, j such that e(G0[Ai, Bj]) ≥ e
4dr logne2 ≥

e
16r2(logn)2

.

Note that |Ai|2i−1 ≤ 2e(G0) = 2e, so |Ai| ≤ 2e
2i−1 . Thus, the average degree of the

vertices in Ai in the graph G0[Ai, Bj] is at least 2i−1

32r2(logn)2
. Similarly, the average degree

of the vertices in Bj in the same graph is at least 2j−1

32r2(logn)2
. Thus, by a standard vertex

removal argument, there exist non-empty X1 ⊂ Ai and X2 ⊂ Bj such that for G =

G0[X1, X2], we have dG(x) ≥ 2i−1

128r2(logn)2
for every x ∈ X1 and dG(x) ≥ 2j−1

128r2(logn)2
for every

x ∈ X2. Take D1 = 2i and D2 = 2j. Since d/4 ≤ dG0(v) < 2i holds for every v ∈ X1 ⊂ A,

we have D1 > d/4. Similarly, D2 > d/4.

We are now ready to prove Theorem 4.1.12.

Proof of Theorem 4.1.12. Let G be an n-vertex graph with ω(n2−1/r(log n)7/r) edges.

We will prove that if n is sufficiently large, then G contains an r-blownup cycle. By

the supersaturation of Kr,r (Lemma 3.2.1), G0 has ω(nr(log n)7r) edges, so it has average

degree ω((log n)7r). By Lemma 4.5.4, there exist D1, D2 = ω((log n)7r) and a non-empty

bipartite subgraph G in G0 with parts X1 and X2 such that for every x ∈ X1, we have

dG(x) ≥ D1

256r2(logn)2
and dG0(x) ≤ D1, and for every x ∈ X2, we have dG(x) ≥ D2

256r2(logn)2

and dG0(x) ≤ D2. Without loss of generality, we may assume that D1 ≤ D2.

By Lemma 4.3.3, for every positive integer k we have

hom(C2k,G) ≥
(

D1

256r2(log n)2

)k (
D2

256r2(log n)2

)k
=

(
D

1/r
1

216r4(log n)4

)k

(D
1−1/r
1 D2)k.

Let k = blog nc. Since D1 = ω((log n)7r), we have(
D

1/r
1

216r4(log n)4

)k

≥
(
n

r

)
(L(log n)3)k

for some L = ω(1). Then

hom(C2k,G) ≥
(
n

r

)
(L(log n)3D

1−1/r
1 D2)k.
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Let ` be the smallest positive integer such that

hom(C2`,G) ≥
(
n

r

)
(L(log n)3D

1−1/r
1 D2)`.

Clearly, ` ≤ k. Moreover, since G has at most
(
n
r

)
vertices and maximum degree at most

D2, we have ` ≥ 2. Now note that

hom(C2`−2,G) <
hom(C2`,G)

L(log n)3D
1−1/r
1 D2

.

Hence, by Lemma 4.5.3, the number of homomorphic copies of C2` in G in which the

vertices are not pairwise disjoint is less than

32r
r+1
2 `3/2

L1/2(log n)3/2
hom(C2`,G).

Since ` ≤ k ≤ log n and L = ω(1), this is less than hom(C2`,G) provided that n is

sufficiently large. Thus, there exists a homomorphic copy of C2` in G in which the vertices

are pairwise disjoint subsets of V (G). This gives a C2`[r] in G.

We will now prove Theorem 4.1.13. The key step is the following lemma, which is

similar to Lemma 4.2.6 and Lemma 4.4.5 from the previous sections, but very slightly

more involved.

Lemma 4.5.5. Let ` ≥ 2 and k ≥ ` be fixed integers and let G be a bipartite subgraph of

G0 with parts X1 and X2 such that every x ∈ X1 has dG0(x) ≤ D1 and every x ∈ X2 has

dG0(x) ≤ D2, where D1 ≤ D2. Assume that

hom(C2`,G) = ω
(
D

1−1/r
1 D2 hom(C2`−2,G)

)
.

Then, for n sufficiently large, G contains a copy of C2k in which the vertices are pairwise

disjoint subsets of V (G). In particular, G contains a copy of C2k[r].

To prove this lemma, we need the following strengthening of Lemma 4.2.5.

Lemma 4.5.6. Let H be a bipartite graph with parts Y and Z. Let f : Y → R be a

function and let g(z) =
∑

y∈NH(z) f(y) for every z ∈ Z. Assume that dH(y) ≤ D1 for

every y ∈ Y and that dH(z) ≤ D2 for every z ∈ Z. Also suppose that H does not contain

a subgraph H ′ with parts Y ′ ⊂ Y and Z ′ ⊂ Z such that for every y ∈ Y ′, we have

dH′(y) ≥ d1 and for every z ∈ Z, we have dH′(z) ≥ d2. Then

∑
y∈Y

f(y)2 ≥ min

(
1

4d1D2

,
1

4D1d2

)∑
z∈Z

g(z)2.

The proof of Lemma 4.5.6 is similar to the proof of Lemma 4.2.5 and is omitted.
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Let us briefly sketch the proof of Lemma 4.5.5. It is nearly identical to the proof

of Lemma 4.2.6 up to the definition of H, the only difference is that we replace each

‘rainbow, injectively homomorphic copy of C2`’ by ‘C2` in which the vertices are disjoint

sets’. Let us define the parts of H very slightly differently: let H have parts Y and Z

where Z = {z ∈ V (G) : (x, z) is nice} and let Y be the set of vertices in G which have a

neighbour in the set Z. Since there is a walk of length ` from x to any element of Z, and

G is bipartite, we have either Y ⊂ X1 and Z ⊂ X2 or Y ⊂ X2 and Z ⊂ X1. In the former

case we use Lemma 4.5.6 to find a subgraph of H with parts Y ′ ⊂ Y and Z ′ ⊂ Z such that

every y ∈ Y ′ has dH′(y) = ω(D
1−1/r
1 ) and every z ∈ Z ′ has dH′(z) = ω(D

1−1/r
2 ). In the

latter case we use Lemma 4.5.6 to find a subgraph of H with parts Y ′ ⊂ Y and Z ′ ⊂ Z

such that every y ∈ Y ′ has dH′(y) = ω(D
1−1/r
2 ) and every z ∈ Z ′ has dH′(z) = ω(D

1−1/r
1 ).

Then, using Lemma 4.5.2, we can greedily find a path of length 2k − 2` in which the

vertices are disjoint from each other and from x and which has endpoints in Z. Then we

can extend this to a cycle of length 2k through x in which the vertices are disjoint sets.

Proof of Theorem 4.1.13. Let G be a graph with ω
(
n2− 1

r
+ 1
k+r−1 (log n)

4k
r(k+r−1)

)
edges.

By Lemma 3.2.1, G0 has average degree ω
(
n

r2

k+r−1 (log n)
4kr

k+r−1

)
. By Lemma 4.5.4, G0

has a bipartite subgraph G with parts X1 and X2 such that for every x ∈ Xi we have

dG(x) ≥ Di
256r2(logn)2

and dG0(x) ≤ Di, where Di = ω
(
n

r2

k+r−1 (log n)
4kr

k+r−1

)
. Using Lemma

4.3.3, we have hom(C2k,G) ≥ Ω
(

Dk1D
k
2

(logn)4k

)
≥ ω

(
(D

1−1/r
1 D2)k−1

(
n
r

)
D2

)
. So there exists

some 2 ≤ ` ≤ k with hom(C2`,G) = ω
(

(D
1−1/r
1 D2) hom(C2`−2,G)

)
. By Lemma 4.5.5, G

contains C2k[r] as a subgraph.

4.6 Concluding remarks

Rainbow cycles. We have shown that for a sufficiently large constant C, any prop-

erly edge-coloured n-vertex graph with at least Cn(log n)4 edges contains a rainbow

cycle. However, the best known construction of a graph without a rainbow cycle has

only Θ(n log n) edges. One such example, found by Keevash, Mubayi, Sudakov and Ver-

straëte [82], is the m-dimensional cube whose vertices are the subsets of {1, 2, . . . ,m}
where A is joined to A \ {i} for every i ∈ A. The colour of the edge between A and

A \ {i} is i. This graph has 2m vertices and 1
2
m2m edges and it has no rainbow cycle.

Examples with more than 0.58n log n edges were also found by Keevash, Mubayi, Sudakov

and Verstraëte.

Colour-isomorphic cycles. Recall that fr(n,H) is the smallest number C so that there

is a proper edge-colouring of Kn with C colours containing no r vertex-disjoint colour-

isomorphic copies of H. We have shown that fr(n,C2k) = Ω
(
n

r
r−1
· k−1
k

)
. Note that our

result becomes trivial when r ≥ k since fr(n,H) ≥ n− 1 holds for any r and H (as any

proper colouring of Kn must use at least n− 1 colours).
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The best general upper bound comes from the probabilistic construction that is used in

Theorem 4.1.6 and says that fr(n,C2k) = O
(
n

r
r−1
− 1

(r−1)k

)
. Another result of Conlon and

Tyomkyn [25, Theorem 1.4], proved by a variant of Bukh’s random algebraic method [17],

states that if H contains a cycle, then there exists r such that fr(n,H) = O(n). It would

be interesting to decide what the smallest such r is when H = C2k. Our result shows that

we must have r ≥ k. This question was studied in the case H = C4 by Xu, Zhang, Jing

and Ge [110], who showed that fr(n,C4) = Θ(n) for any r ≥ 3.

The Erdős–Gyárfás function. For positive integers n, p and 2 ≤ q ≤
(
p
2

)
, the Erdős-

Gyárfás function g(n, p, q) is defined to be the smallest C such that there exists a (not

necessarily proper) colouring of the edges of Kn with C colours such that every induced

subgraph on p vertices receives at least q colours. A variant of our Theorem 4.1.10 can be

used to give a good lower bound for this function when q is close to
(
p
2

)
. Indeed, assume

that p = 2kr and q =
(
p
2

)
− (r−1)2k+ 1 for some r, k ≥ 2. If we can find r vertex-disjoint

colour-isomorphic cycles of length 2k, then the p vertices of these cycles induce at most(
p
2

)
− (r− 1)2k < q colours. Note that the proof of Theorem 4.1.10 can be adapted to the

case where the edge-colouring is not necessarily proper, but every vertex is incident to at

most O(1) edges of any given colour. Now if we have an arbitrary edge-colouring of Kn,

then either every vertex is incident to at most 2kr−2 edges of any given colour, or we can

choose vertices u0, u1, . . . , u2kr−1 such that the edges u0ui are of the same colour for every

1 ≤ i ≤ 2kr−1. In this latter case, we have p vertices which induce at most
(
p
2

)
−p+2 < q

colours. In the former case, we can use the strengthened version of Theorem 4.1.10. We

obtain the following result.

Theorem 4.6.1. For any integers r, k ≥ 2,

g

(
n, 2kr,

(
2kr

2

)
− (r − 1)2k + 1

)
= Ω(n

r
r−1
· k−1
k ).

This generalises a recent result of Fish, Pohoata and Sheffer [45, Theorem 1.1], which

is Theorem 4.6.1 in the special case r = 2.

Blow-ups of cycles. We have shown that ex(n, C[r]) = O(n2−1/r(log n)7/r). On the

other hand, a random graph with edge probabilities p = n−1/r

2
contains no r-blownup

cycles with probability at least 1/2, so ex(n, C[r]) = Ω(n2−1/r). We pose the following

question.

Question 4.6.2. Let r ≥ 2. Is it true that ex(n, C[r]) = Θ(n2−1/r)?

Finally, regarding a single forbidden blownup cycle, we reiterate our conjecture that

ex(n,C2k[r]) = O(n2− 1
r

+ 1
kr ).
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4.A Appendix

Proof of Lemma 4.4.5. Let s = r|V (θk,r!+1)|. For a graph F , call a homomorphic copy

of F in G good if the images of the vertices of F are disjoint sets (as subsets of V (Kn)). In

particular, any such copy is an injectively homomorphic copy of F . Call a pair (x1, x`+1)

of vertices in G nice if the number of good copies of C2` of the form x1x2 . . . x2`x1 is greater

than (1− 1

(s2)
)
(
homx1,x`+1

(P`,G)
)2

. Observe that the total number of homomorphic copies

of C2` of the form x1x2 . . . x2`x1 in G is homx1,x`+1
(P`,G)2, so this means that the proportion

of those which are not good is less than 1

(s2)
. In particular, if we choose s random walks

of length ` between x1 and x`+1 with replacement, then with positive probability any two

of these walks form a good copy of C2`. Hence, there exist at least s pairwise internally

vertex-disjoint paths between x1 and x`+1 such that the vertices involved in these paths

are pairwise disjoint sets in V (Kn).

By Lemma 4.4.4, the number of non-good copies of C2` in G is

Or,`

(
(∆(G) hom(C2`−2,G) hom(C2`,G))1/2

)
≤ o(hom(C2`,G)).

Hence, ∑
(x1,x`+1) not nice

1(
s
2

) homx1,x`+1
(P`,G)2 = o(hom(C2`,G)),

so, using
∑

x1,x`+1∈V (G) homx1,x`+1
(P`,G)2 = hom(C2`,G), we have

∑
(x1,x`+1) nice

homx1,x`+1
(P`,G)2 ≥ (1− o(1)) hom(C2`,G)

> (1− o(1))L∆(G) hom(C2`−2,G)

for some L = ω(1).

Thus, there exists some x ∈ V (G) such that∑
z∈V (G):(x,z) is nice

homx,z(P`,G)2 > (1− o(1))L∆(G) homx(C2`−2,G). (4.4)

Let Z = {z ∈ V (G) : (x, z) is nice} and let Y = V (G). Consider the bipartite graph H

with parts Y and Z, defined by G. (We view Y and Z as disjoint sets even though they

overlap as subsets of V (G).)

Suppose that H does not contain a subgraph with minimum degree at least r2k(r!+1).

Let f(y) = homx,y(P`−1,G) for every y ∈ Y = V (G) and define g as in Lemma 4.2.5. By

that lemma with d = r2k(r! + 1),

∑
y∈Y

f(y)2 ≥ 1

4d∆(H)

∑
z∈Z

g(z)2 ≥ 1

4d∆(G)

∑
z∈Z

g(z)2.
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However, g(z) =
∑

y∈NG(z) homx,y(P`−1,G) = homx,z(P`,G), so, using equation (4.4),

∑
y∈Y

f(y)2 ≥ 1

4d∆(G)

∑
z∈Z

homx,z(P`,G)2 >
(1− o(1))L

4d
homx(C2`−2,G).

However,
∑

y∈Y f(y)2 = homx(C2`−2,G), which is a contradiction, as L = ω(1) and n is

sufficiently large.

Thus, H contains a subgraph with minimum degree at least r2k(r! + 1). Then, by

Lemma 4.4.3 we can greedily find in H a spider whose vertices are disjoint (as subsets of

V (Kn)) from x and from each other and which has r! + 1 legs of length k − ` such that

the endpoints of these legs are in Z. Let this spider be S with endpoints z1, z2, . . . , zr!+1.

Since for every i, (x, zi) is a nice pair, there exist at least s = r|V (θk,r!+1)| paths of length `

between x and zi such that all the internal vertices in these paths are distinct and pairwise

disjoint from each other. Hence, we can choose paths of length ` between x and zi for

every 1 ≤ i ≤ r! + 1 such that all the vertices involved are disjoint from the vertices of S

and from each other. Then the union of these paths with S gives a suitable θk,r!+1.
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Chapter 5

Improved bounds for the

Erdős-Rogers function

5.1 Introduction

Let G be a graph with n vertices that contains no K4. How large a triangle-free induced

subgraph must G have? The standard proof of Ramsey’s theorem implies that G contains

an independent set of size n1/3, but can we do better?

A simple argument shows that the answer is yes. Indeed, each vertex in G has a

triangle-free neighbourhood, and either there is a vertex of degree n1/2 or one can find an

independent set of size roughly n1/2 by repeatedly choosing vertices and discarding their

neighbours.

This stronger argument still feels a little wasteful, because in the second case one finds

an independent set rather than a triangle-free subgraph. Moreover, there is no obvious

example that yields a matching upper bound, so it is not immediately clear whether 1/2

is the correct exponent.

The problem above is an example of a general problem that was first considered by

Erdős and Rogers. Given positive integers 1 < s < t and n > 2, define fs,t(n) to be the

minimum over all Kt-free graphs G with n vertices of the order of the largest induced

Ks-free subgraph of G. We have just been discussing the function f3,4. The function

fs,t is known as the Erdős-Rogers function. It has been studied by several authors: for a

detailed survey covering many of the known results on the subject, see [29]. For a more

recent exposition, see also section 3.5.2 of [22].

The first bounds were obtained by Erdős and Rogers [37] who showed that for every

s there exists a positive constant ε(s) such that fs,s+1(n) ≤ n1−ε(s). About 30 years later,

Bollobás and Hind [13] improved the estimate for ε(s) and established the lower bound

fs,t(n) ≥ n1/(t−s+1). In particular, fs,s+1(n) ≥ n1/2 (by the obvious generalization of the

argument for f3,4 above).

Subsequently, Krivelevich [90, 91] improved these lower bounds by a small power of

log n and also gave a new general upper bound, which is
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fs,t(n) ≤ O(n
s
t+1 (log n)

1
s−1 ). (5.1)

Later, the lower bound was significantly improved by Sudakov [105, 106]. He showed

that if t > s + 1, then fs,t(n) ≥ Ω(nas,t) where as,t is defined recursively. In particular,

when s is fixed and t→∞, he obtained the bound

fs,t(n) ≥ Ω(n
s
2t

+O(1/t2)).

We remark that if t ≥ 2s then (5.1) is the best known upper bound, while Sudakov’s

lower bound is the best known for every t > s + 1. In particular, the upper bound is

roughly the square of the lower bound in the range t ≥ 2s.

Recently, there has been quite a lot of progress on the case t = s + 1. First, Dudek

and Rödl [28] showed that fs,s+1(n) ≤ O(n2/3). Then Wolfovitz [109] proved that for

sufficiently large n we have f3,4(n) ≤ n1/2(log n)120, yielding the slightly surprising fact

that the exponent 1/2 is indeed the right one in that case. Finally, Dudek, Retter and

Rödl [27], generalizing Wolfovitz’s construction, showed that for any s ≥ 3 there exist

constants c1 and c2 such that

fs,s+1(n) ≤ c1n
1/2(log n)c2

so the exponent 1/2 is correct for all fs,s+1. However, the problem of finding the correct

exponent of n for general s, t remains open.

A particularly important case is when t = s + 2 since fs,t(n) ≤ fs,s+2(n) for any

t ≥ s+ 2. Sudakov’s lower bound gives fs,s+2(n) = Ω(nβs) where βs = 1/2− 1
6s−6

. Dudek,

Retter and Rödl in [27] showed that for any s ≥ 4 there exists a constant c depending

only on s such that

fs,s+2(n) ≤ cn1/2.

Note that the exponent 1/2 follows from the bound for fs,s+1, so this improves it by

removing the log factor. Having established this, Dudek, Retter and Rödl asked the

following question.

Question 5.1.1. Does there exist s ≥ 3 such that fs,s+2(n) = o(n1/2)?

Another central open problem in the area is the following question of Erdős [36].

Question 5.1.2. Is it true that

lim
n→∞

fs+1,t(n)

fs,t(n)
=∞ (5.2)

for every t > s+ 1?
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The answer has been shown to be yes when t = s + 2 ≥ 6 and when (s, t) is one of the

pairs (2, 4), (2, 5), (2, 6), (2, 7), (2, 8) or (3, 6).

5.1.1 Our results

In this chapter, we prove that the answer to the first question above is yes. We also

establish (5.2) for the families of pairs t = s+ 3 ≥ 7 and t = s+ 2 ≥ 5. We obtain these

results by proving a significant improvement for the upper bound on fs,t when s + 2 ≤
t ≤ 2s−1. The previous best upper bound for these parameters appeared in [27] and was

fs,t(n) ≤ cn1/2 (except for the pair s = 3, t = 5, where this bound was not established). We

do not just obtain bounds of the form o(n1/2), but we improve the exponents throughout

the range. Our construction is probabilistic, and has some similarities to the constructions

that established the previous best upper bounds. However, an important difference is that

we do not make use of algebraic objects such as projective planes.

To state the bound that comes out of our argument takes a small amount of prepara-

tion. Let s ≥ 3 and s+ 2 ≤ t ≤ 2s− 1. Call (s, t) regular if s ≥ 11 and s+ 3 ≤ t ≤ 2s− 4

or if (s, t) ∈ {(10, 14), (10, 15)} and call it exceptional otherwise. Let

α = αs,t =

α(1) = (s−2)(t−s)(t+s−1)+2t−2s
(2s−3)(t−s)(t+s−1)−2s+4

, if (s, t) is regular

α(2) = (s−2)(t−s)(s−1)+s−1
(2s−3)(t−s)(s−1)+2s−t , if (s, t) is exceptional

We will prove the following theorem.

Theorem 5.1.3. For any s ≥ 3, s+ 2 ≤ t ≤ 2s− 1, there exists some constant c = c(s, t)

such that

fs,t(n) ≤ nα(log n)c.

It is not hard to check that α < 1/2 for all pairs (s, t) in the given range. Thus, as

mentioned above, we obtain a strong answer to the question of Dudek, Retter and Rödl.

Corollary 5.1.4. For every s ≥ 3, we have fs,s+2(n) = o(n1/2).

The simplest case where our result is new is the case s = 3, t = 5. There we obtain an

upper bound of n6/13(log n)c. For comparison, Sudakov’s lower bound is cn5/12.

Since the exponent when t = s+ 1 is 1/2, our result also implies a positive answer to

the question of Erdős in the following family of cases.

Corollary 5.1.5.

lim
n→∞

fs+1,s+2(n)

fs,s+2(n)
→∞

That is, (5.2) holds for t = s+ 2 ≥ 5.

If t = s+ 3, then

α =

3s2−3s−3
6s2−4s−7

, if s ≥ 11

3s2−8s+5
6s2−14s+6

, if 4 ≤ s ≤ 10
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Comparing this with Sudakov’s lower bound fs+1,s+3(n) ≥ Ω(nβs+1), where βs+1 = 3s−1
6s

,

we get the following additional result.

Corollary 5.1.6.

lim
n→∞

fs+1,s+3(n)

fs,s+3(n)
→∞

That is, (5.2) holds for t = s+ 3 ≥ 7.

In the following table, we compare the exponent of n in the best known lower bound

with that in our new upper bound (both rounded to three decimal places).

Our new upper bound Best known lower bound

s = 3, t = 5 0.462 0.417

s = 4, t = 6 0.467 0.444

s = 4, t = 7 0.457 0.375

s = 5, t = 7 0.475 0.458

s = 5, t = 8 0.465 0.404

s = 5, t = 9 0.460 0.351

In the case t = s+ 2, our bound is fs,s+2(n) ≤ nα+o(1) for α = 1/2− s−2
8s2−18s+8

≈ 1/2− 1
8s

while Sudakov’s lower bound is fs,s+2(n) ≥ nβ+o(1) for β = 1/2 − 1
6s−6

≈ 1/2 − 1
6s

. It

would be very interesting to know whether either of these two estimates reflects the true

asymptotics of fs,s+2. It would be particularly interesting to know whether either of the

exponents 5/12 or 6/13 is the correct one for (s, t) = (3, 5). We have made some effort to

optimize our construction, whereas there appear to be places where Sudakov’s argument

is potentially throwing information away, so our guess is that 6/13 is correct, but this

guess is very tentative and could easily turn out to be wrong.

5.1.2 An overview of the argument

We will now sketch the key steps in our argument. For simplicity, we will focus on the s =

3, t = 5 case. Then, as mentioned above, Theorem 5.1.3 says that f3,5(n) ≤ n6/13(log n)c.

That is, we construct a K5-free graph G in which every subset of size roughly n6/13 induces

a triangle.

The basic idea is very simple. We are looking for a graph that contains “triangles

everywhere” but does not contain any K5s. The obvious way to create a large number of

triangles without creating K5s is to take a complete tripartite graph. Of course, this on

its own does nothing, since a complete tripartite graph has a huge independent set, but

we can use it as a building block by taking a union of many complete tripartite graphs. In

previous constructions, such as Wolfovitz’s graph that gives an upper bound for f3,4(n),

the vertex sets of these tripartite graphs are chosen algebraically – in Wolfovitz’s case

they are the lines of a projective plane. The main difference in our approach is that we

simply choose them at random, where the number we choose and the size of each one are
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parameters that we optimize at the end of the argument. This creates difficulties that are

not present in the earlier approaches, but in the end allows us to prove stronger bounds.

Thus, we begin by taking a graph G0, which is a union of roughly n9/13 complete

tripartite graphs with parts having size roughly n6/13 each, these parts being randomly

chosen subsets of V (G0). It is not hard to prove that G0 contains a triangle in every set

of vertices of size roughly n6/13.

However, G0 also contains many K5s, so we have to delete some edges. It is here that

the proof becomes less simple: while random constructions followed by edge deletions are

very standard, in this case we need rather delicate arguments in order to prove that it

can be done without removing all the triangles from a set of size around n6/13.

First, let us check that every set of size roughly n6/13 does indeed induce a triangle

in G0. Let A be a subset of V (G0) of size n6/13. A given tripartite copy will intersect A

in at least 3 vertices with probability roughly n−3/13. Thus, as we place n9/13 tripartites

(we write “tripartite” as a shorthand for our complete tripartite graphs with parts of

size roughly n6/13), the expected number of those tripartites that give a triangle in A is

roughly n6/13. Hence, by the Chernoff bound, the probability that A does not contain

a triangle is roughly e−n
6/13

. But the number of subsets of V (G0) of size n6/13 is very

roughly nn
6/13

. Modifying the parameters by log n factors suitably, a union bound shows

that almost surely every subset A of size roughly n6/13 will contain a triangle. In fact, a

slightly more careful examination of this argument reveals that almost surely every such

subset will contain at least n6/13 triangles, each coming from a single tripartite graph such

that the tripartites corresponding to different triangles are all distinct.

Now let us specify which edges get deleted. We shall delete them in two stages.

The first stage consists of what we call Type 1 deletions. Given any two of our random

tripartite graphs, with vertex sets A = A0 ∪ A1 ∪ A2 and B = B0 ∪ B1 ∪ B2, we remove

all edges xy such that x, y ∈ A∩B. We do not insist that xy is an edge of both tripartite

graphs: if, for example, x, y ∈ A0, x ∈ B0 and y ∈ B1, then the edge xy will be removed.

Let G1 be the resulting graph when all such edges have been deleted. The reason for

these deletions is that each of our tripartite graphs contains many copies of K3,1,1, which

are somewhat “dangerous” for us, since all it takes to convert a K3,1,1 into a K5 is the

addition of a further triangle. If we do not do Type 1 deletions, then we will obtain K5s

in this way too frequently, with the result that most edges in the graph are contained in

a K5. Indeed, the expected number of edges in G0 is roughly n9/13(n6/13)2 = n21/13 and

the expected number of K5s of the above form is roughly n5(n9/13)2(n−7/13)8 = n27/13.

Type 1 deletion is feasible in the sense that it destroys only a small proportion of

the edges of G0. That is because it is significantly less likely for a pair of vertices to be

contained in two tripartite copies than for it to be contained in one tripartite copy.

Thanks to Type 1 deletions, it has become “difficult” for K5s to appear in G1, since

now none of our random tripartite graphs can intersect a K5 in more than 3 vertices.

Indeed, if one of them intersects a K5 in say 4 vertices, then there exist two of those
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vertices between which this tripartite does not provide an edge, and if one of the other

tripartites gives an edge in G0 between those two vertices, that edge is deleted.

Thus, it is easy to check that if a K5 appears in G1, then it has to do so in one of the

following ways.

(i) All 10 edges of the K5 come from distinct tripartites.

(ii) There is one tripartite giving a triangle in the K5 but all the other 7 edges come

from distinct tripartites.

(iii) There are two tripartites that each give a triangle in the K5, these two triangles

sharing a single vertex, and all the other 4 edges come from distinct tripartites.

We now delete at least one edge from each of these remaining K5s. This will be done

probabilistically and the precise method will be explained later. The deletions in this

second round we call Type 2 deletions. Once they have been performed, the resulting

graph is our final graph G.

The graph G is K5-free, by definition, but we now have to show that we have not

inadvertently destroyed all the triangles in some set of n6/13(log n)c vertices. We begin

by checking the more basic requirement that the Type 2 deletions destroy only a small

proportion of the edges. That is, we check that the expected number of K5s in G1 is

less than the expected number of edges (which is already computed to be n21/13). To do

this, we split into the three cases mentioned above. To calculate the expected number of

K5s of type (i), observe that there are at most n5 choices for the vertex set, and (n9/13)10

choices for the copies of tripartites giving an edge (since there are n9/13 tripartites to

choose from and we need 10 of them), and the probability that the vertices of the K5 are

in these tripartites as prescribed is (n−7/13)20 (since the probability that a given vertex

is in a given tripartite is n−7/13), giving that the expected number of these K5 is n15/13.

Similarly, the expected number of K5s of type (ii) is n5(n9/13)8(n−7/13)17 = n18/13. Finally,

the expected number of K5s of type (iii) is n5(n9/13)6(n−7/13)14 = n21/13. This last number

is roughly equal to the expected number of edges, therefore we will need to modify the

parameters by log n factors. However, the main point is that after this second round of

deletions, most edges of the original graph are still present.

In order to finish off the proof, there are two main difficulties to overcome. The first

one is that even though we have made sure that globally not too many edges are deleted,

this is, as we have already mentioned, just a necessary condition for the argument to have

a chance of working. What we actually need is the stronger statement that every induced

subset of size n6/13(log n)c still contains a triangle. We can hope that the small set of edges

we have removed is “sufficiently random” for this to be the case, but actually proving that

takes some work. Let us sketch how we do it. From now on, it will be convenient to think

of each tripartite as having a colour: accordingly, we call the tripartites “colour classes”.

If a vertex belongs to, say, the red tripartite, then we say that that vertex is red.
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Let us now fix a set A of size n6/13(log n)c. As shown above, we can take it for granted

that G0 contains a big set T of triangles in A, all coming from different colour classes.

Moreover, these triangles will be uniformly distributed over A. Let TC ∈ T be a triangle

coming from the colour class C. (Note that not every colour gives a triangle, and not

every triangle in A comes from just one colour class.) Let us first deal with Type 1

deletions. An edge of some TC gets deleted by the Type 1 deletions if the endpoints of

this edge share a colour other than C. So intuitively we can imagine that G0 has already

been constructed, and then we place these triangles TC randomly inside A and hope that

most triangles will not have any edge contained in another colour class. It is not too hard

to show, under suitable assumptions, that with very high probability the density of pairs

of vertices in A sharing a colour is fairly low (this essentially comes from the fact that

the typical sizes of the tripartites are smaller - after adjusting the parameters by suitable

log factors - than the size of A). Therefore for a fixed TC it is indeed true that with fairly

high probability its edges will not be deleted by Type 1 deletions. However, these events

are not independent for different colours C. To overcome this difficulty, we define a set

Π of roughly log n partitions with the property that for any pair of distinct colours C,D

there is a π ∈ Π such that D is in the first part of π and C is in the second part. We

now define a π-dangerous pair to be a pair of vertices that share a colour from the first

part of π. If an edge xy of a TC gets deleted (by Type 1 deletions) then x and y share a

colour D 6= C and there is some π ∈ Π such that D is in the first part of π and C is in the

second part of π and therefore (x, y) is a π-dangerous pair. But note that, as indicated

above, the density of π-dangerous pairs will be fairly low, so the probability that an edge

of TC is deleted because of a colour in the first part of π is low, and, conditional on the

outcome of colours in the first part of π, these events are now independent for all C in

the second part of π. We can therefore conclude that only a small proportion of these

TCs will lose an edge thanks to colours in the first part of π. Thus, since Π is small, we

deduce that most triangles TC will not lose an edge. That is, we can find many triangles

in A even after the Type 1 deletions.

Now let us define Type 2 deletions. Given the graph G1, we order its edges randomly

and keep each edge provided that it does not form a K5 when combined with the edges

that we have already decided to keep. We remark that this construction is a variant of

the so called K5-free process. The edges we keep will form our final graph G.

To be more precise, we note here that in fact we keep an edge only if it does not form a

so called core of a K5 of G1 when combined with the edges that we have already decided

to keep. The core is a certain subgraph of a K5 defined in terms of the colours of its

edges. The reader is encouraged to think of the core of a K5 as the K5 itself (especially

as we can prove that the core of any Kt is itself, but the proof of this fact is very long

and we do not include it here).

As shown above, the number of K5s in G1 is less than the number of edges, that is,

on average an edge is contained in less than one K5. In fact, one can show that almost
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surely every edge will be contained in a relatively small number of K5s. It is not hard

to see that this means that any triangle in G1 is also present in G with probability not

very close to 0. Since the number of triangles in G1[A] is large, standard concentration

inequalities will imply that with very high probability G[A] still contains a triangle. Using

the union bound over all A (of size roughly n6/13), we conclude that almost surely every

G[A] contains a triangle, finishing the proof.

Let us briefly discuss how we determined the parameters of our construction. Let nδ

be the number of tripartite copies placed, let nβ be the size of each part of each of these

copies, and let nα be the set size that will guarantee an induced triangle. The parameters

δ, β have been chosen to optimize the result: that is, to allow α to be as small as possible.

There are three main conditions that we need to impose on these parameters.

The first one is that we need enough triangles in G0 inside every A of size nα. It is

not hard to see that this condition is equivalent to

δ + 3(α + β − 1) ≥ α. (5.3)

The second one comes from the fact that the parts of the tripartites will not contain

a triangle in G (since every edge inside a part of a tripartite gets deleted by Type 1

deletions), so we trivially need

α ≥ β. (5.4)

Finally, we want the expected number of K5s in G1 to be less than the expected number

of edges in G1 which gives (only considering those K5s which are type (iii) in the sense

described a few paragraphs above)

δ + 2β ≥ 5 + 6δ + 14(β − 1). (5.5)

It is not hard to see that these conditions force α ≥ 6/13 and that equality is achieved

by taking δ = 9/13, β = 6/13.

This leads us to the other main difficulty, which arises only when we consider more

general values of s, t. While (5.3) is essentially the same but with 3 replaced by s, and

(5.4) is exactly the same, (5.5) becomes completely different. Indeed, it will be crucial to

analyse all possible ways that a Kt can occur in G1 in some systematic way, rather than

writing down the three possibilities (i),(ii),(iii) as we did above in the s = 3, t = 5 case,

since in general there are many ways that a Kt can be formed from the contributions of

the various s-partite graphs. Analysing these decompositions of Kt, which we shall refer

to as colour schemes (again by imagining that each s-partite graph has its own colour),

is necessary to determine the best parameters δ, β, and also to prove Theorem 5.1.3 for

these parameters. The complicated formula for α is obtained by solving the system of

inequalities (5.3),(5.4),(5.5) that we obtain in the general case.

The organization of this chapter is as follows. In Section 5.2 we present our construc-

tion. In Section 5.3 we give the main part of the proof conditional on three lemmas. These
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lemmas are proved in Section 5.4. The first one, which asserts that each edge in G1 is

contained in a small number of (cores of) Kts, is proved in Subsection 5.4.1, conditional

on a lemma about colour schemes that is proved in Subsection 5.4.3. The result that says

that G1[A] contains many Kss is proved in Subsection 5.4.2. Finally, there is an appendix

that contains some tedious computations and the source code of a program relevant to

some results in Subsection 5.4.3.

5.2 The precise construction and the main result

Remark. Logarithms throughout the chapter are to base e. We will not be concerned

with floor signs, divisibility, and so on. Also, we will tacitly assume that n is sufficiently

large whenever this is needed. Moreover, throughout the rest of the chapter, it is to be

understood that s ≥ 3 and that s + 2 ≤ t ≤ 2s − 1. Recall that a pair (s, t) is regular

if s ≥ 11 and s + 3 ≤ t ≤ 2s − 4 or if (s, t) ∈ {(10, 14), (10, 15)}, and otherwise it is

exceptional.

Let

δ = s− (2s− 1)α =

δ(1) = (2s−2)(t−s)(t+s−1)+2s2−4st+2t+2s
(2s−3)(t−s)(t+s−1)−2s+4

, if (s, t) is regular

δ(2) = (2s−2)(t−s)(s−1)−st+3s−1
(2s−3)(t−s)(s−1)+2s−t , if (s, t) is exceptional

Lemma 5.2.1. δ < 2α < 1.

Proof. If (s, t) is regular, then

2α− δ =
4st− 2s2 + 2t− 6s− 2(t− s)(t+ s+ 1)

(2s− 3)(t− s)(t+ s− 1)− 2s+ 4

=
4st− 2t2 − 4s

(2s− 3)(t− s)(t+ s− 1)− 2s+ 4
> 0,

since s+ 1 ≤ t ≤ 2s− 2. If (s, t) is exceptional, then

2α− δ =
st− s− 1− 2(t− s)(s− 1)

(2s− 3)(t− s)(s− 1) + 2s− t
=

2s2 − st+ 2t− 3s− 1

(2s− 3)(t− s)(s− 1) + 2s− t
> 0,

since s+ 1 ≤ t ≤ 2s− 1.

By Lemma 5.A.2 (e) from the appendix, we have δ > 2/3 > 1/2, which implies that

α < 1/2.

Remark. Intuitively, one can think of α as 1/2−ε for ε quite small and δ = 1/2+(2s−1)ε.

This makes δ significantly greater than 1/2 but less than 1. Also, it may be helpful to

bear in mind the case s = 3, t = 5, where, as we have seen, δ = 9/13 and α = 6/13.

Let

m = nδ(log n)−c1
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γ = nα−1(log n)−c2

a = nα(log n)c3

where c1, c2, c3 are positive constants, to be specified, that depend on s and t. (In fact, c1

can be taken to be 0. All we need are that c2 is suitably large and that c3 is sufficiently

larger than c1, c2.)

The following estimates will be used several times later in the chapter.

Lemma 5.2.2. mγ > 1 and mγ2 < 1.

Proof. Note that δ + (α− 1) = (s− 1)− (2s− 2)α > 0 since α < 1/2. This implies that

mγ > 1.

Also, δ + 2(α− 1) < 4α− 2 < 0, by Lemma 5.2.1. This implies that mγ2 < 1.

We construct the graph G0 as follows. Let V = V (G0) = {1, 2, ..., n}. Define inde-

pendent random subsets S1, ..., Sm of V in such a way that each Si contains each v ∈ V
independently with probability γ. We call Si the ith colour class. If v ∈ Si, we say that v

has colour i. Now randomly partition each Si into s sets, Si1, Si2, ..., Sis by placing each

element of Si independently at random in one of these parts, and use these sets to define

a complete s-partite graph. Let G0 be the union of these s-partite graphs. We say that a

pair of vertices has colour i if both its members have colour i. We do not require the pair

to form an edge in G0. Remove all edges of G0 that have at least two colours to obtain

the subgraph G1. Again, we do not require both colours to give an edge. Another way

to state the condition is that if xy is an edge of colour i and x and y both have colour j

for some j 6= i, then we remove the edge xy even if x and y belong to the same set Sjr.

Finally, for every Kt in G1 we randomly remove a certain edge, which we shall specify in

a moment. The resulting graph is called G.

The graph G is obviously Kt-free. We shall prove that for suitable choices for the

constants c1, c2, c3, we have the following result, which is our main theorem.

Theorem 5.2.3. For n sufficiently large, there is a positive probability that every subset

A of G with |A| = a contains a Ks.

Obviously Theorem 5.2.3 implies Theorem 5.1.3.

Let us now specify which edges are removed from G1. Suppose that x1, ..., xt form a

Kt in G1. Then necessarily any two distinct vertices xi and xj share precisely one colour.

Indeed, they must share at least one colour since xixj ∈ E(G0) but they cannot share

more than one since then xixj would have been removed from G0 during the first round

of deletions.

Definition 5.2.4. A colour scheme for Kt with parameter s, or scheme for short, is a

set X of t nodes and a set D of subsets of X, which we call colours, or blocks, such that

(i) For any x, y ∈ X, there is a unique D ∈ D such that x, y both belong to D.
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(ii) Every colour appears on at least two nodes.

(iii) Every colour appears at most s times.

A pair of nodes is called an edge and the colour of an edge is the unique colour that

contains both endpoints. (Note that a node may have several colours.) If a node x

belongs to a colour D, we shall say that D labels x. We also define a label to be a pair

(x,D) such that x is a node and D labels x. The number of labels in a scheme is thus

the sum of the sizes of all the colours.

If X = {x1, ..., xt} forms a Kt in G1, then there is set of (at most
(
t
2

)
) colours such

that X is a colour scheme with respect to those colours, and no other colour labels more

than one vertex in X. Indeed, we have already observed that property (i) holds. Choosing

the colours suitably, (ii) can clearly be achieved. For property (iii), observe that if some

colour D labels at least s + 1 vertices, then there must exist distinct vertices xi and xj

that belong to the same part of the complete s-partite graph of colour D. Then D does

not provide an edge between xi and xj, so some other colour must, but then xi and xj

share at least two colours, which contradicts (i).

Thus, any Kt in G1 can be viewed as a scheme in a natural way. A simple upper

bound for the expected number of Kts associated with a scheme Q is ntmbγl, where l is

the number of labels of Q and b is the number of colours of Q. Indeed, the number of ways

choosing the t nodes is at most nt, the number of ways of choosing the b colours (from

the m colours used to construct G1) is at most mb, and the probability that any given

choice of nodes and colours realizes the scheme is γl, since for each label the probability

that the given node receives the given colour is γ, and all these events are independent.

Now ntmbγl = nt+bδ+l(α−1)(log n)f for some f = f(s, t, b, l). Also, once we know

that a certain pair u, v of vertices have a colour in common, the expected number of

Kts associated with Q that contain u and v becomes at most roughly nt−2mb−1γl−2 =

nt−2+(b−1)δ+(l−2)(α−1)(log n)f
′
. This motivates the following definition.

Definition 5.2.5. The value of a scheme Q with b colours and l labels, denoted v(Q), is

given by the formula

v(Q) = t− 2 + (b− 1)δ + (l − 2)(α− 1).

Thus, roughly speaking, the expected number of Kts associated with a scheme Q that

contain a given edge in G1 is at most nv(Q) up to log factors. The following lemma –

proved in Subsection 5.4.3 – shows that this number is small.

Lemma 5.2.6. Let Q be a scheme. Then v(Q) ≤ 0.

We shall also need a generalization of the notion of a scheme where a pair of nodes

does not need to have a colour, if it does have a colour then that colour does not have to

be unique, and a colour is allowed to label more than s nodes.
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Definition 5.2.7. A colour configuration consists of a set of nodes and a set of colours

labelling the nodes such that every colour appears on at least two nodes.

Given a colour configuration W and a subset S of its nodes, we define the subconfigu-

ration induced by S to be the configuration whose nodes are the elements of S and whose

colours are the colours of W that appear at least twice on S (which then label the nodes

in S that they labelled in W ).

The value of a configuration W is defined to be

v(W ) = h− 2 + (b− 1)δ + (l − 2)(α− 1),

where h is the number of nodes, b is the number of colours and l is the number of labels

in W (where a label is again a pair (x,D) where x is a node labelled by the colour D).

The same argument as for schemes shows that, once we condition on the event that u

and v are both coloured red, the expected number of occurrences of a colour configuration

W that contain both u and v is at most nv(W ) up to log factors. (In fact, it is smaller

unless u and v share a colour in W .)

Definition 5.2.8. The core of a scheme Q, denoted C(Q), is the induced subconfiguration

S on at least two nodes for which v(S) is minimal. If several subconfigurations have the

same value then the core is the one with the maximum number of nodes. If this is still

not unique, then we simply pick an arbitrary one with the given properties.

Remark. We can in fact prove that C(Q) = Q for every scheme Q. Although using that

fact would simplify the argument in this chapter slightly, this gain does not compensate

for the extra work needed to establish it, so we shall avoid using it. Nevertheless, the

reader is encouraged to think of a core just as a scheme: that is, as a Kt in the graph G1

with the colours given by the s-partite graphs with vertex sets that contain at least two

of its vertices.

Lemma 5.2.9. Let Q be a scheme. Then C(Q) has at least 3 nodes, v(C(Q)) ≤ 0, and

v(S) ≥ v(C(Q)) for every induced subconfiguration S of C(Q) with at least two nodes.

Proof. The first two assertions follow from Lemma 5.2.6, since an induced subconfigura-

tion of Q with two nodes has value 0. The third assertion follows immediately from the

definition of the core.

We can now define G precisely. Following an idea in [109], we assign independently

to each edge e of G1 a birthtime βe, chosen uniformly randomly from [0, 1]. Equivalently,

we order the edges of G1 uniformly at random from all the possible orderings. To define

the edge set E(G), which will be a subset of E(G1), we recursively decide for each e ∈
E(G1) whether e ∈ E(G), as follows. Suppose that the decision has been made for every

e′ ∈ E(G1) with βe′ < βe. Then let e ∈ E(G) unless there is a Kt in G1, which we view
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as a scheme Q, for which the edges of C(Q) all have birthtime at most βe and they all

(apart from e) already belong to E(G).

For any Kt in G1 there is an edge in the core of that Kt that is not an edge of G, since

if all the edges in the core apart from the last one are chosen to belong to E(G), then

the last one is not. Thus, G is Kt-free. It remains to prove that with positive probability

every set of a vertices still contains a Ks, which was Theorem 5.2.3 above.

5.3 The proof of Theorem 5.2.3

In this section, we shall prove Theorem 5.2.3 conditional on two lemmas, which we shall

prove in Section 5.4 and which are where most of the work will be. The first one says,

roughly speaking, that for any A of size a, the induced subgraph G1[A] of G1 contains

many copies of Ks.

Lemma 5.3.1. Almost surely, for every A of size a there is a set of Ω(masγs) monochro-

matic copies of Ks inside G1[A], each with a different colour.

The second tells us that any edge in G1 is contained in few cores. Here, and in what

follows, we use the word “core” to refer to the core of a Kt in G1.

Lemma 5.3.2. Almost surely, any edge in G1 is contained in at most (log n)2t cores.

We shall use McDiarmid’s inequality [95] in the next proof, which for convenience we

recall here. Let Y1, . . . , YN be independent random variables, taking values in a set S,

and let X = g(Y1, . . . , YN) for some g : SN → R with the property that if y, y′ ∈ SN only

differ in their ith coordinate, then |g(y)− g(y′)| ≤ ci. Then the inequality states that

P
[
|X − E[X]| ≥ r

]
≤ 2 exp

(−2r2∑
i c

2
i

)
.

The following lemma, together with Lemmas 5.3.1 and 5.3.2 and a union bound,

implies Theorem 5.2.3.

Lemma 5.3.3. Suppose that G1 is such that any edge in G1 is contained in at most

(log n)2t cores. Let A be a set of vertices of size a such that the induced subgraph G1[A]

contains Ω(masγs) monochromatic copies of Ks, each with a different colour. Then the

probability, conditional on the graph G1, that G[A] does not contain any Ks is o
(

1

(na)

)
.

Proof. Choose Ω(masγs) monochromatic copies of Ks in G1[A], all of distinct colours.

Let the set of these copies be T . Then by the definition of the first deletion process, the

elements of T are edge disjoint. Let T ∈ T . Let ET be the set of all edges of cores that

have at least one edge that belongs to T , together with the edges of T itself. Clearly,

|ET | ≤
(
s
2

)
+
(
s
2

)
(log n)2t

(
t
2

)
≤ (log n)3t. Let BT be the event that the birthtimes of the

edges of T precede the birthtimes of all other edges in ET . If BT occurs, then the only
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way an edge of T could be deleted from G1 and therefore fail to be present in G is if T

itself contains a core of some Kt. But note that there is no colour that labels every vertex

in a core C. Indeed, if there is such a colour, then since all edges in a core belong to

G1, there is no other colour appearing at least twice on the node set of C, therefore C,

considered as a colour configuration, has value h− 2 + (h− 2)(α− 1) = (h− 2)α (where

h is the number of nodes in C), which contradicts Lemma 5.2.9. It follows that if BT

occurs, then every edge of T is present in G.

For a fixed G1, let X be the number of events BT that occur over all T ∈ T . Then

X is a random variable with the property that if X 6= 0, then there is some T ∈ T that

belongs to G[A]. It therefore suffices to prove that P[X = 0] = o
(

1

(na)

)
.

To do this, we apply McDiarmid’s inequality when Yi is the birthtime of the ith edge.

Since the T ∈ T are edge disjoint, and any edge e in G1 is contained in at most (log n)2t

cores, it follows that e is contained in at most 1 + (log n)2t
(
t
2

)
≤ (log n)3t of the graphs

ET . Hence, changing the birthtime βe of e influences at most (log n)3t of the events BT .

Also, if e 6∈ ∪T∈TET , then βe does not influence any event BT . Thus, by McDiarmid’s

inequality (with some N ≤ |T |(log n)3t), we get

P[X = 0] ≤ 2 exp
( −2(E[X])2

|T |(log n)3t((log n)3t)2

)
.

Now note that P[BT ] ≥ |ET |−(s2) ≥ (log n)−3s2t, so E[X] ≥ |T |(log n)−3s2t, and

P[X = 0] ≤ 2 exp
( −2|T |

(log n)6s2t+9t

)
.

Finally, note that
(
n
a

)
≤ na = exp(a log n). To finish the proof we just need to verify

that |T |
(logn)6s2t+9t

= ω(a log n). Since

|T |
a

= Ω(mas−1γs) = nδ+(s−1)α+s(α−1)(log n)−c1+(s−1)c3−sc2 = (log n)−c1+(s−1)c3−sc2 ,

we are done provided that (s− 1)c3 − sc2 − c1 > 6s2t+ 9t+ 1.

5.4 The proofs of the auxiliary lemmas

In this section we shall prove Lemmas 5.2.6, 5.3.1 and 5.3.2, which are the results we used

in the proof of Theorem 5.2.3 but have not yet proved.

5.4.1 The proof of Lemma 5.3.2

Let e be an edge in G1. We would like to show that it belongs to at most (log n)2t cores.

Any core that contains e can be viewed as a core in a scheme that contains e, and as

such it has nonpositive value. But for any colour configuration W (with more than two
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labels), the expected number of occurrences of that colour configuration in G0 containing

a fixed edge in G1 is at most nv(W )(log n)−c2 (as we remarked slightly less precisely after

Definition 5.2.7), which is at most (log n)−c2 if v(W ) ≤ 0. In particular, the probability

that an edge e in G1 is contained in r cores that are pairwise disjoint apart from their

intersection on e is at most (log n)−rc2 . If r = log n then this is much less than 1/n2, and

therefore almost surely no edge is contained in log n cores of the above form.

In general, the cores containing e need not be disjoint. This adds a complication, and

we need to introduce a few definitions to handle it, but the main reason Lemma 5.3.2

holds is the one given in the previous paragraph. The next definition describes the kind

of colour configuration which – if it occurs in G0 – can produce many cores in G1 (that

is, cores of Kts in G1 that we view as schemes) that contain a given edge xy. Soon we

shall argue that almost surely no such large configuration occurs in G0.

Definition 5.4.1. An abstract core container W is a colour configuration whose nodes

are {x} ∪ {y} ∪ Z and in which every z ∈ Z is contained in at least one abstract core,

where an abstract core is defined as follows.

An abstract core in a core container is an induced subconfiguration S consisting of at

most t nodes and containing x and y such that for any induced subconfiguration S ′ ⊂ S

containing x, y, we have v(S ′) ≥ v(S) and such that for any two distinct u, v ∈ S there is

a unique colour that labels both u and v.

The size of a core container is the number of nodes it contains.

A core container is irreducible if it is not possible to remove a label or colour and still

have a core container.

Remark. Assume for a moment that we know that the core of a scheme is the scheme

itself (see the remark after Definition 5.2.8). Then Lemma 5.3.2 just asserts that each

edge in G1 is contained in few Kts. Then we can replace the technical notion of abstract

core container with the notion of abstract scheme container instead. What we mean by

that is a colour configuration whose nodes are {x} ∪ {y} ∪Z and in which every z ∈ Z is

contained in at least one colour scheme containing x and y as well. This is a configuration

that is dangerous to us since if it occurs in G0, then the edge xy is contained in many Kts

(corresponding to the various schemes in the configuration).

Note that as the vertices of G0 are coloured, we can naturally talk about G0 containing

various colour configurations. We shall now establish that:

1. If an edge in G1 is contained in many cores, then there is a large irreducible core

container in G0.

2. There are not too many irreducible abstract core containers of fixed size.

3. The expected number of occurrences in G0 of any large abstract core container is

small.
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The last two points will imply that almost surely there is no large irreducible core

container in G0, which in turn implies that there is no edge in G1 that is contained in

many cores.

Note that for the second point it is important that we count only irreducible core con-

tainers because otherwise the number of colours in the core container could be arbitrarily

large.

Lemma 5.4.2. If the edge e = uv is contained in at least r cores of Kts in G1, then there

is an irreducible core container W in G0 with x = u, y = v (as in Definition 5.4.1) and

with size between 1
2
r1/t and tr.

Proof. Define a colour configuration W0 as follows. Arbitrarily pick r cores that contain

e. The set of nodes of W0 is the set of vertices of G1 that are in one of these r cores.

The set of colours is the set of those colours in G0 that appear at least twice on this set

of nodes. This does indeed define a core container, since any core of a Kt in G1 that

contains e satisfies the two properties required of an abstract core in W0: the minimality

of v follows from the definition of a core, and the condition about the colours follows from

the fact that the Kt belongs to G1.

How many nodes does W0 have? Any core consists of between 2 and t nodes, so if

the number of nodes of W0 is h, then r ≤
∑

2≤j≤t
(
h
j

)
≤ (2h)t. Thus, h ≥ 1

2
r1/t. On the

other hand, h ≤ rt, since the vertex set of W0 is a union of r cores. Now remove labels or

colours as long as we still get a core container; the object we end up with is an irreducible

core container of the required size.

Lemma 5.4.3. The number of distinct irreducible abstract core containers of size h is at

most ht2 · 2ht2 · hht2.

Proof. First we shall prove that the number of labels in an irreducible core container of

size h is at most 2h
(
t
2

)
≤ ht2. For any occurrence of a colour D at some node u (that is,

for any label (u,D)), there must exist v ∈ {x} ∪ {y} ∪ Z such that every abstract core

containing v contains u and the colour D, or else we could remove the occurrence of D at u

and still have a core configuration. But for any v, there are at most 2
(
t
2

)
such pairs (u,D),

since u must belong to the intersection of the vertex sets of the abstract cores containing

v, and in a given abstract core there are at most 2
(
t
2

)
labels. Indeed, an abstract core is

an induced subconfiguration so each of its colours labels at least two nodes. Now if an

abstract core has q colours and they label d1, . . . , dq nodes, then
∑

i≤q
(
di
2

)
≤
(
t
2

)
because

the abstract core has at most
(
t
2

)
pairs of nodes. Since di ≥ 2 for each i, it follows that∑

i≤q di ≤ 2
(
t
2

)
.

So there are at most ht2 choices for the total number of labels. Since the partition

function p(k) is at most 2k, it follows that for each possibility for the number of labels,

there are at most 2ht
2

choices for the number of occurrences for each colour class. Suppose

we have b colours and the numbers of times that they occur are l1, . . . , lb. Then the number
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of choices for the vertices labelled by these colours is at most
(
h
l1

)(
h
l2

)
. . .
(
h
lb

)
≤ hl1+···+lb ≤

hht
2
.

Next, we shall investigate how many copies we expect to have in G0 of a given abstract

core container. Let W be more generally any colour configuration with h nodes, b colours

and l labels. Then the expected number of occurrences of such a configuration is at most

nhmbγl. Indeed, the number of ways of choosing the h nodes is at most nh. The number

of ways of choosing the b colours is at most mb. And for each label, the probability that

the given node receives the given colour is γ, and all these events are independent, so the

probability that any given choice of nodes and colours realizes the scheme is γl.

Definition 5.4.4. We call nhmbγl the frequency of the configuration W and denote it by

ω(W ).

Lemma 5.4.5. Let W be an abstract core container of size h. Then

ω(W ) ≤ n2(log n)−
h−2
t
c2 .

To prove this result, we will kill some of the nodes and colours and remove some of

the labels of the core container in steps. To keep track of which nodes and colours have

been killed, we introduce the following definition.

Definition 5.4.6. A partial configuration P consists of four pairwise disjoint sets {x},
{y}, Z0 and Z1 of nodes, and two disjoint sets B0,B1 of colours that label those nodes in

such a way that any B ∈ B1 labels at least two nodes. We write B for B0 ∪ B1 and Z for

Z0 ∪ Z1.

We now generalize the notion of frequency to this setting, which can be thought of as

the expected number of occurrences of the colour configuration for given choices of the

nodes in Z0 and colours in B0, which represent the nodes and colours that have already

been killed. Thus, we let r = |{x} ∪ {y} ∪ Z1| be the number of nodes yet to choose, we

let g = |B1| be the number of colours yet to choose, and we let u be the total number of

labels, including the labels on nodes in Z0 and of colours in B0. Then we can choose the

remaining nodes in at most nr ways and the remaining colours in at most mg ways, and

for each label there is a probability γ that the given node receives the given colour. So

we define the frequency ω(P ) to be nrmgγu.

Proof of Lemma 5.4.5. We shall define a sequence P0, . . . , Pk of partial configurations

such that ω(P0) = ω(W ), ω(Pk) ≤ n2, k ≥ h−2
t

and ω(Pj) ≥ ω(Pj−1)(log n)c2 . Clearly,

this suffices to prove the lemma.

We shall define the Pj recursively. In what follows we use the notation of Definition

5.4.1 and Definition 5.4.6. When there is ambiguity, we will write Z0(P ) to mean Z0 in

the partial configuration P , and similarly for Z1,B0,B1. The set of all nodes (respectively,

colours) for every Pj will be the same as the set of all nodes (respectively, colours) of W ,
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namely {x} ∪ {y} ∪ Z (respectively, B). However, B0,B1, Z0, Z1 and the labels will be

different for the various Pj.

Let us define P0 to be the partial configuration whose nodes, colours and labels are

the same as those of W and which has Z0 = B0 = ∅. Then ω(P0) = ω(W ).

Given Pj−1 with Z1(Pj−1) 6= ∅, we define Pj as follows. Pick some z ∈ Z1(Pj−1)

arbitrarily. As W is a core container, we can choose an abstract core S in W that contains

z. Let S1 = S ∩ Z1(Pj−1). Let D be the set of those colours B ∈ B1(Pj−1) that occur

at least twice on S in Pj−1. Then let the sets of nodes of Pj be Z0(Pj) = Z0(Pj−1) ∪ S1

and Z1(Pj) = Z1(Pj−1) \ S1, and let the sets of colours be B0(Pj) = B0(Pj−1) ∪ D and

B1(Pj) = B1(Pj−1) \ D. The labels of Pj are those of Pj−1 except that all occurrences of

colours in B0(Pj) are removed from S. It is clear that Pj is a partial configuration.

We want to prove that ω(Pj) ≥ ω(Pj−1)(log n)c2 .

Claim.
ω(Pj)

ω(Pj−1)
≥ ω(S\S1)

ω(S)
, where S and S \ S1 are identified with their induced subconfig-

urations from W .

Proof of Claim. The contribution of the nodes is (a factor of) n−|S1| to both
ω(Pj)

ω(Pj−1)
and

ω(S\S1)
ω(S)

. Hence it suffices to prove that the contribution of any colour (and its labels) to
ω(Pj)

ω(Pj−1)
is at least as much as its contribution to ω(S\S1)

ω(S)
. There are two cases to consider.

Case 1. If B is a colour that occurs at most once on S in W , then its contribution to
ω(S\S1)
ω(S)

is 1, whereas its contribution to
ω(Pj)

ω(Pj−1)
is at least 1. (Indeed, since mγ2 < 1, the

contribution of any colour to
ω(Pj)

ω(Pj−1)
is at least 1.)

Case 2. Suppose, then, that B is a colour that occurs at least twice on S in W .

Case 2a. If B ∈ B0(Pj−1), then let d be the number of occurrences of B on S1 in

W . The contribution of B to ω(S\S1)
ω(S)

is at most γ−d. Indeed, this is clear unless B occurs

exactly once on S \S1 in W . But if this is the case, then the contribution of B is precisely

m−1γ−(d+1), which is at most γ−d, by Lemma 5.2.2.

Note that any node in S1 (and in fact more generally in Z1(Pj−1)) that is labelled by

B in W is also labelled by B in Pj−1. Therefore, the contribution of B to
ω(Pj)

ω(Pj−1)
is at

least γ−d.

Case 2b. If B ∈ B1(Pj−1), then let d be the number of occurrences of B on S in W .

The contribution of B to ω(S\S1)
ω(S)

is at most m−1γ−d. Indeed, this is clear unless B occurs

at least twice on S \ S1 in W . But in this case the contribution of B is at most γ−(d−2),

which is at most m−1γ−d, by Lemma 5.2.2.

Note that any node that is labelled by B in W is also labelled by B in Pj−1. Therefore,

B ∈ D and the contribution of B to
ω(Pj)

ω(Pj−1)
is precisely m−1γ−d.

This completes the proof of the claim.

Since S is an abstract core in W , we have v(S) ≤ v(S \ S1), by the minimality of S.

Because S1 6= ∅, and every node in a core has a label on it, it follows that, considering S

and S \ S1 as induced subconfigurations of W , we have ω(S \ S1) ≥ ω(S)(log n)c2 . Using

the claim above, the inequality ω(Pj) ≥ ω(Pj−1)(log n)c2 follows.
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Eventually we obtain a partial configuration Pj with Z1(Pj) = ∅. When this happens,

we set k = j. By definition, we have in that case that ω(Pk) = n2mgγu where g = |B1(Pk)|
and u is the number of labels in Pk. Since any B ∈ B1(Pk) labels at least two nodes in

Pk and mγ2 ≤ 1, we find that ω(Pk) ≤ n2. Also note that |Z1(Pj)| ≥ |Z1(Pj−1)| − t for

any j, and |Z1(P0)| = |Z| = h− 2, so k ≥ h−2
t

.

We are now in a position to complete the proof of Lemma 5.3.2.

Proof of Lemma 5.3.2. By Lemma 5.4.2, it suffices to prove that in G0 the expected

number of irreducible core containers of size between log n and (log n)3t is o(1).

Claim. If log n ≤ h ≤ (log n)3t, then the expected number of irreducible core containers

of size h in G0 is at most n2(log n)−t
3h.

Proof of Claim. By Lemmas 5.4.3 and 5.4.5, the expected number of irreducible core con-

tainers of size h in G0 is at most ht22ht
2
hht

2
n2(log n)−

h−2
t
c2 ≤ h3ht2n2(log n)−

h−2
t
c2 . If c2 ≥

11t4, then this is at most h3ht2n2(log n)−11(h−2)t3 ≤ h3ht2n2(log n)−10ht3 ≤ n2(log n)−ht
3

so

the claim is proved.

But
∑

h≥logn n
2(log n)−t

3h = o(1), and the proof is complete.

5.4.2 The proof of Lemma 5.3.1

Our proof is based on the following two observations.

1. For any set of vertices A of size a, G0[A] contains many monochromatic s-cliques

with pairwise distinct colours.

2. If a monochromatic s-clique is present in G0, then it is present also in G1 with

high probability, and, crucially, the events that various s-cliques are preserved are

“sufficiently independent”.

First, we shall construct a small set of bipartitions of the set of colours with a suitable

property. In a moment it will become clear why we need this. We will refer to the two

parts of a bipartition as the first part/first half and the second part/second half.

Lemma 5.4.7. There exists a constant c and a set Π of c log n partitions of the set of m

colours, each into two sets of size m/2, such that for any two distinct colours C and D

there is a π ∈ Π such that D is contained in the first part of π and C is contained in the

second part of π.

Proof. Take l = c log n random partitions. For any C,D, the probability that none of

the partitions is suitable is less than (1− 1
5
)l = n−c log(5/4). For c sufficiently large this is

less than n−2, which is in turn less than m−2 and the result follows from the union bound

over all choices of C,D.
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Let xy be an edge in G0. Recall that it is not an edge in G1 if x, y have at least two

colours in common. Suppose that this is the case. Then there exists some π ∈ Π such

that x and y have a colour in common from the first half of π and also a colour in common

from the second half of π.

Remark. From now on, when we say “the first m/2 colours”, we will mean “the m/2

colours in the first part of π” provided it is clear which π we are talking about.

Definition 5.4.8. A pair (x, y) of vertices is π-dangerous for some π ∈ Π if there is a

colour class among the first m/2 colours that contains both x and y.

Fix a set A of vertices with |A| = a. Let D be the collection of colours D such that

at least one Ks inside A is entirely coloured with colour D in G0. (We require that every

edge is given by this colour: that is, the vertices of the Ks are in different parts of the

complete s-partite graph with colour D.) For each π ∈ Π, let Dπ be the set of all D ∈ D
such that D is one of the last m/2 colours.

To make sense of the statement of the next lemma, the reader should recall that aγ is

significantly less than 1. (See the beginning of Section 5.2 for their precise values.)

Lemma 5.4.9. With probability 1− o( 1

(na)
), |Dπ| = Ω(masγs) for every π ∈ Π.

Proof. Let C be any colour class. The probability that C intersects A in exactly s

elements is

P[Bin(a, γ) = s] =

(
a

s

)
γs(1− γ)a−s = Ω(asγs(1− γ)a) = Ω(asγs(e−2γ)a) = Ω(asγs),

where the last inequality follows from the fact that aγ = n2α−1(log n)c3−c2 = o(1).

Hence P[C ∈ D] = Ω(asγs). Moreover, the events {C ∈ D} are independent. Thus,

for any π, by the Chernoff bound we get P
[
|Dπ| = o(masγs)

]
≤ e−Ω(masγs). Therefore,

using the union bound over all π ∈ Π, it suffices to prove that (log n)e−Ω(masγs) = o( 1

(na)
).

But
(
n
a

)
≤ na = ea logn. Hence, we need (log n)e−Ω(masγs) = o(e−a logn). For this, it is

enough to prove that a log n = o(masγs), ie. log n = o(mas−1γs). Since

mas−1γs = nδ+(s−1)α+s(α−1)(log n)−c1+(s−1)c3−sc2 = (log n)−c1+(s−1)c3−sc2 , (5.6)

we are done provided that (s− 1)c3 − sc2 − c1 > 1.

Therefore, using the union bound over all sets A of size a, we may assume that

|Dπ| = Ω(masγs) for every π ∈ Π and every such set A.

Lemma 5.4.10. With probability 1− o(1) the following holds. For every A of size a and

for every π ∈ Π, the density of π-dangerous pairs in A is o( 1
logn

).

This result, which we shall prove later, allows us to assume for our fixed set A that the

following statement holds.
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(?) For any π ∈ Π, the density of π-dangerous pairs in A is o( 1
logn

).

For each C ∈ D, pick a Ks uniformly at random in G0[A] of colour C, and call it TC .

We can now prove that with sufficiently high probability, most TC will be present in G1.

Lemma 5.4.11. Let π ∈ Π. Then with probability 1− o( 1

(logn)(na)
), the number of colours

C ∈ Dπ for which TC has a π-dangerous pair of vertices is o( |Dπ |
logn

).

Proof. We condition everything on the already chosen first m/2 colour classes. Now let

C ∈ Dπ. (Recall that this means that there is a Ks in A in the graph G0 with all its

edges of colour C, and moreover that C is one of the last m/2 colours with respect to π.)

Label the vertices of TC by 1, 2, ..., s. Note that any pair of vertices in A is chosen with

equal probability and, by condition (?), at most o( |A|
2

logn
) of them are π-dangerous. So the

probability that the first two vertices of TC form a π-dangerous pair is o( 1
logn

). Hence, for

any C ∈ Dπ, the probability that TC has a pair of vertices which form a π-dangerous pair

is bounded above by some p = o( 1
logn

). Moreover, this holds for all such C independently

of the others. Thus, the probability that TC contains a π-dangerous pair for more than

Ω( |Dπ |
logn

) choices of C ∈ Dπ is at most P
[

Bin(|Dπ|, p) = Ω( |Dπ |
logn

)
]
. But this is e−Ω(

|Dπ |
logn

). So

it remains to show that (log n)
(
n
a

)
= o(eΩ(

|Dπ |
logn

)). Since
(
n
a

)
≤ na = ea logn, it suffices to

prove that a log n = o( |Dπ |
logn

). But |Dπ| = Ω(masγs) so it is enough to prove that (log n)2 =

o(mas−1γs). By equation (5.6), this holds provided that (s− 1)c3 − sc2 − c1 > 2.

Corollary 5.4.12. With probability 1− o( 1

(na)
), for all but o(|D|) colours C ∈ D, all the

edges of TC are present in G1.

Proof. Suppose that C ∈ D and TC has an edge e which is not present in G1. Then

there exists some π ∈ Π such that C is in the second half of π (so C ∈ Dπ) and e is

π-dangerous. But by the previous lemma, with probability 1− o( 1

(na)
) the number of such

colours C is o(|Π| · |D|
logn

) = o(|D|).

Using Lemma 5.4.9 and the union bound over all A, Lemma 5.3.1 follows.

We now return to proving Lemma 5.4.10. Recall that we want to show that almost

surely for every A and every π, the density of π-dangerous pairs in A is o( 1
logn

). This

is essentially best possible, since if we choose A to contain one of our colour classes en-

tirely (for a colour chosen from the first part of π), then the pairs of vertices in that

colour class will all be π-dangerous. Moreover, as the typical size of a colour class

is nγ = nα(log n)−c2 = a(log n)−c2−c3 , the set of these pairs will have density roughly

(log n)−2c2−2c3 .

Accordingly, the next lemma is to make sure that no colour class is exceptionally large.

Lemma 5.4.13. With probability 1− o(1), the size of every colour class is at most 2nγ.
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Proof. P[Bin(n, γ) > 2nγ] = e−Ω(nγ) = o( 1
m

). The result follows from the union bound

over all colours.

So we may assume that all colour classes have size at most 2nγ.

After applying the union bound over all π ∈ Π and A, the next result completes the

proof of Lemma 5.3.1.

Lemma 5.4.14. Fix π ∈ Π and a set A of size a. With probability 1 − o( 1

(logn)(na)
), the

number of pairs in A which are π-dangerous is at most 4 a2

(logn)2
.

Proof. The number of π-dangerous pairs in A is at most

m∑
i=1

(
min{Bin(a, γ), 2nγ}

)2
. (5.7)

Let h = a
m1/2 logn

. Note that log h = (α − 1
2
δ) log n + O(log log n) and recall that α > 1

2
δ.

Now let p = P(Bin(a, γ) ≥ h) ≤
(
a
h

)
γh ≤ (aγ)h ≤ e−Ω(h logn).

Pick some tiny positive ρ > 0. Note that

P[Bin(m, p) ≥ m1/2+ρ] ≤
(

m

m1/2+ρ

)
pm

1/2+ρ ≤ (mp)m
1/2+ρ

= e−Ω(m1/2+ρh logn)

= e−Ω(amρ) = o

(
1

(log n)
(
n
a

)).

Therefore we may assume that at most m1/2+ρ of the random variables Bin(a, γ) take

value more than h.

The total contribution to (5.7) of the terms with Bin(a, γ) ≤ h is at mostmh2 = a2

(logn)2
.

The random variable X ∼ Bin(a, γ), conditional on X ≥ h, is bounded above by h + X ′

where X ′ is an independent instance of Bin(a, γ). As we assume that all colour classes

have size at most 2nγ, it follows that the total contribution to (5.7) of the terms with

Bin(a, γ) ≥ h is bounded above by

m1/2+ρ∑
i=1

(
h+ min{Bin(a, γ), 2nγ}

)2

(5.8)

and we just need to show that this sum is less than 3 a2

(logn)2
with probability 1 −

o( 1

( m

m1/2+ρ)(logn)(na)
).

The sum in (5.8) is at most m1/2+ρh2 + (2h + 2nγ)
∑m1/2+ρ

i=1 Bin(a, γ). The first term

is at most a2

(logn)2
. Also, log(nγ) = α log n + O(log log n) and therefore nγ ≥ h, so we

just need to show that
∑m1/2+ρ

i=1 Bin(a, γ) ≤ a2

2nγ(logn)2
with the required probability. But

the left-hand side is Bin(m1/2+ρa, γ) and P
[

Bin(m1/2+ρa, γ) ≥ a2

2nγ(logn)2

]
= e

−Ω( a2

2nγ(logn)2
)
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since m1/2+ρaγ = o( a2

2nγ(logn)2
). This last inequality holds because

log(m1/2+ρaγ) =
(
(1/2 + ρ)δ + α + (α− 1)

)
log n+O(log log n)

and

log(
a2

2nγ(log n)2
) =

(
2α− 1− (α− 1)

)
log n+O(log log n),

and (1/2 + ρ)δ + α < 1 for ρ sufficiently small (since δ < 1 and α < 1/2).

Finally,
(

m
m1/2+ρ

)
(log n)

(
n
a

)
= eO(a logn) because m1/2+ρ = o(a) for ρ sufficiently small

(as δ < 2α). But a log n = o( a2

nγ(logn)2
) provided that c3 + c2 > 3, so we are done.

5.4.3 The proof of Lemma 5.2.6

It is convenient to introduce the parameter

η = 2(1− α)− δ =

η(1) = −2s2+4st−2s−6t+8
(2s−3)(t−s)(t+s−1)−2s+4

, if (s, t) is regular

η(2) = st−s−2t+3
(2s−3)(t−s)(s−1)+2s−t , if (s, t) is exceptional

Remark. −η is the contribution of a block of size two to the value of a scheme. By Lemma

5.2.1, we have η > 2− 4α > 0.

The next lemma follows easily from Definition 5.2.5 and is a convenient way to look

at the value of a scheme.

Lemma 5.4.15. Let Q be a scheme. Then

v(Q) = t+
∑
D∈D

(δ + |D|(α− 1))− (δ + 2α)

where D is the set of colours in Q and |D| is the number of nodes in Q that are coloured

with D.

We shall now identify a scheme for which equality in Lemma 5.2.6 will hold: the value

of α was chosen so that the value of this scheme would be 0. This is the (in)equality that

generalizes equation (5.5) from the introduction. This “extremal scheme” turns out to

be different in the regular and the exceptional case, which is why the formula for α also

differs in the two cases.

Definition 5.4.16. Let Q1 be the scheme where one colour gives a block of size s and

the rest of the edges are given by pairwise distinct colours.

Let Q2 be the scheme where one colour gives a block of size s, another gives a block

of size t− s+ 1 sharing a single vertex with the previous block and the rest of the edges

are given by pairwise distinct colours.

Lemma 5.4.17. (a) If (s, t) is regular, then v(Q1) = 0.
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(b) If (s, t) is exceptional, then v(Q2) = 0.

(c) If (s, t) is regular, then v(Q2) ≤ 0.

(d) If (s, t) is exceptional, then v(Q1) ≤ 0.

Proof. We have

v(Q1) = t+ (δ + s(α− 1)) + (

(
t

2

)
−
(
s

2

)
)(δ + 2(α− 1))− (δ + 2α),

and (a) follows by direct substitution.

We also have

v(Q2) = t+ (δ + s(α− 1)) + (δ + (t− s+ 1)(α− 1))

+
((t

2

)
−
(
s

2

)
−
(
t− s+ 1

2

))
(δ + 2(α− 1))− (δ + 2α),

and (b) follows by direct substitution.

The difference between Q1 and Q2 is that the former contains
(
t−s+1

2

)
edges of distinct

colours where the latter contains a block of size t− s+ 1. Using Lemmas 5.A.1 and 5.A.2

(a) from the appendix, we obtain statements (c) and (d).

Definition 5.4.18. We call a block in a scheme large if it has size at least 3 and small

otherwise. We call it an s-block if it has size s.

We shall begin by proving Lemma 5.2.6 in the special case when there is an s-block

in the scheme.

Lemma 5.4.19. If Q is a scheme and it has an s-block then v(Q) ≤ 0.

Proof. Assume that Q is such that v(Q) is maximal. It is enough to show that Q = Q1

or Q = Q2. Since Q has an s-block, any other block must have size at most t− s+ 1. By

Lemmas 5.A.1 and 5.A.2 (c) from the appendix, any large block of size smaller than t− s
gives a smaller contribution to the value than one obtains if the corresponding edges have

pairwise distinct colours. Therefore, we may assume that Q has no such block. So every

block in Q, other than the one of size s, has size 2, t− s or t− s+ 1. If there is a block of

size t− s+ 1, then Q = Q2. If there are no large blocks, then Q = Q1. Otherwise, there

is a block of size t− s ≥ 3.

If there are no other large blocks, then we claim that v(Q) ≤ v(Q1) or v(Q) ≤ v(Q2).

Indeed, the (t−s)-block can be modified to become a (t−s+1)-block (and Q then becomes

Q2) and this increases the value provided that (α − 1) ≥ (t − s)(−η), or equivalently

(t−s)η ≥ (1−α). So we may assume that (t−s)η < (1−α). But δ = s−(2s−1)α > 1−α,
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since α < 1/2. Hence, (t − s)η < δ, but then v(Q) ≤ v(Q1) by Lemma 5.A.1 from the

appendix.

We may therefore assume that there are at least two large blocks other than the one

of size s, and that both have size t−s. This forces t−s to equal 3. Moreover, by Lemmas

5.A.1 and 5.A.2 (b), we have that t = 2s − 1. It follows that s = 4 and t = 7. So Q

consists of a 4-block and several 3-blocks (there can be at most 3) and the rest of the

edges are given by distinct colours. It is easy to check that in this case v(Q) ≤ 0.

Using the previous result, to prove Lemma 5.2.6, it is sufficient to prove the following

statement.

Lemma 5.4.20. Suppose that Q is a scheme with v(Q) as large as possible. Assume also

that Q does not contain a block of size s. Then v(Q) ≤ 0.

To prove Lemma 5.4.20, we shall introduce the following definition.

Definition 5.4.21. Let P be a node in a scheme. The local value at P , which we denote

by v(P ), is defined by the formula

v(P ) = 1 +
∑

D:P∈D

(δ/|D|+ (α− 1)),

where the summation is over all blocks containing P .

Example. If P is in a block of size 2 and two blocks of size 4, then

v(P ) = 1 + 3(α− 1) + δ/2 + 2 · δ/4.

Lemma 5.4.22. For any scheme Q, we have∑
P

v(P ) = v(Q) + (δ + 2α)

where the summation is over all nodes of Q.

Proof. This statement follows easily from Lemma 5.4.15.

The next result is the key part in the proof of Lemma 5.2.6.

Lemma 5.4.23. Suppose that Q is a scheme such that v(Q) is maximal. Let P be a node

and assume that every block containing P has size less than t/2. Then v(P ) < 2δ/t.

Proof. Let the blocks of Q that contain P have sizes r1, ..., ru. Then
∑

i ri = t + u− 1.

Let k be the minimal integer greater than 2 that is equal to some ri (or, if no such integer

exists, then let k be large enough that δ/k − δ/(k + 1) < η/2). Let R = b t−1
2
c. By

assumption, ri ≤ R for all i. Moreover, by the maximality of v(Q) and Lemma 5.A.1, we

have the inequality kη ≥ δ and therefore δ/k − δ/(k + 1) = δ
k(k+1)

≤ η
k+1

< η/2.

Claim 1. There exist positive integers w and q1, ..., qw such that
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(i) 2 ≤ qj ≤ R for all j

(ii)
∑

j qj = t+ w − 1

(iii) There is at most one j for which 2 < qj < k and if there is any i with qi = 2, then

there is no j with 2 < qj < k.

(iv) v(P ) ≤ 1 +
∑

j(δ/qj + (α− 1))

(v) Either all but at most one qj are equal to R or else qj ∈ {2, R} for all j

Proof of Claim 1. Note that v(P ) = 1 +
∑

i(δ/ri + (α − 1)). Define w, q1, q2, ...qw to be

the integers that maximize the quantity 1 +
∑

j(δ/qj + (α− 1)) subject to the conditions

(i),(ii) and (iii). Since the ri satisfy (i),(ii),(iii), we get v(P ) ≤ 1 +
∑

j(δ/qj + (α − 1)).

We are left to prove (v), so let us suppose that it does not hold. There are two cases to

consider.

Case 1. If there exists some i with qi = 2, then there is a j such that qj 6∈ {2, R} and

by (iii) we have qj ≥ k. Hence, δ/qj − δ/(qj + 1) < η/2. After relabelling, we may assume

that j = w− 1, i = w. Now set w′ = w− 1, q′h = qh for all h ≤ w− 2 and q′w−1 = qw−1 + 1.

Then q′1, ..., q
′
w′ satisfy (i),(ii),(iii) and

1 +
∑
h≤w

(δ/qh + (α− 1)) < 1 +
∑
h≤w′

(δ/q′h + (α− 1)),

which is a contradiction.

Case 2. If there is no i with qi = 2, then since (v) is assumed to fail, there must exist

i 6= j with 2 < qi ≤ qj < R. Moreover, we may assume that qi is minimal among all

qhs. Without loss of generality, i = w − 1, j = w. Now define q′h = qh for all h ≤ w − 2,

q′w−1 = qw−1 − 1 and q′w = qw + 1. Then q′1, ..., q
′
w satisfy (i),(ii),(iii) and

1 +
∑
h≤w

(δ/qh + (α− 1)) < 1 +
∑
h≤w

(δ/q′h + (α− 1)),

which is a contradiction.

This completes the proof of Claim 1.

Claim 2. If q1, ..., qw satisfy the conditions (i),(ii),(v) in Claim 1, then

1 +
∑
h≤w

(δ/qh + (α− 1)) < 2δ/t.

Proof of Claim 2. For t ≤ 13, this is a straightforward check, which we performed using

a computer program, since it would have taken inordinately long to do it by hand. (The

code, written in Matlab, can be found at the end of the appendix.) So we shall assume

that t ≥ 14. Then 3R ≥ 3 · t−2
2
> t+ 2, so there are at most two qjs with qj = R. Using

(v), this leaves the following cases.
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Case 1: qj = 2 for all j

Case 2: q1 = R and qj = 2 for all j ≥ 2

Case 3a: q1 = q2 = R = t−2
2

and q3 = q4 = q5 = 2 (w = 5)

Case 3b: q1 = q2 = R = t−1
2

and q3 = q4 = 2 (w = 4)

Case 4a: q1 = q2 = R = t−2
2
, q3 = 4 (w = 3)

Case 4b: q1 = q2 = R = t−1
2
, q3 = 3 (w = 3)

By Lemmas 5.A.1 and 5.A.2 (d) we have

(l − 1)(δ/2 + (α− 1)) < (δ/l + (α− 1))

when l = t−1
2

. Moreover, we have the inequality

(
δ/
(t− 2

2

)
+ (α− 1)

)
+

1

2

(
δ/2 + (α− 1)

)
<
(
δ/
(t− 1

2

)
+ (α− 1)

)
,

since this is equivalent to 2δ
(t−1)(t−2)

< η/4, which holds because (t−1)η ≥ 2δ and t−2 > 4.

It is not hard to see that these two observations allow us to deduce all Cases 1-3 from

Case 3b. To prove Case 3b, we need the inequality

1 + 2(δ/(
t− 1

2
) + (α− 1))− η < 2δ/t,

which is given in Lemma 5.A.2 (f).

Clearly, Case 4a follows from Case 4b. To prove Case 4b, we need

1 + 2(δ/(
t− 1

2
) + (α− 1)) + (δ/3 + (α− 1)) < 2δ/t.

Using α < 1/2 and δ < 1, it suffices to prove that 4/(t− 1)− 2/t ≤ 1/6, which holds for

t ≥ 14.

This completes the proof of Claim 2, and the two claims imply the lemma.

Lemma 5.4.24. Suppose that Q is a scheme such that its v(Q) is as large as possible

and such that the largest block D of Q has size at least t/2. Then D has size s.

Proof. Suppose not. Pick a node P with P 6∈ D. Let D have size k ≥ t/2. Suppose that

P is contained in exactly r large blocks. Define a scheme Q′ as follows. Q′ has the same

blocks as Q except that

• P is removed from all large blocks,

• all small blocks containing P and a node in D are deleted,

• P is added to D,

• the missing edges are now provided by distinct colours.
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We now compare the values v(Q) and v(Q′). The node P is in only one large block in

Q′ while it is in r large blocks in Q. The number of small blocks containing P is precisely

t− k − 1 in Q′ while it is at least k − r in Q. That is because any large block containing

P contains at most one element of D. So

v(Q′)− v(Q) ≥ (r − 1)(1− α) + ((t− k − 1)− (k − r))(δ + 2(α− 1))

= (r − 1)(1− α)− (t− 2k + (r − 1))η ≥ (r − 1)(1− α− η).

But 1 − α − η = δ − (1 − α) = 1/2 + (2s − 1)ε − (1/2 + ε) > 0. This contradicts the

maximality of v(Q) if r ≥ 2.

If r = 1, then let the unique large block containing P have size l. By assumption,

l ≤ k. Hence,

v(Q′)− v(Q) = ((t− k − 1)− (t− l))(δ + 2(α− 1)) = (k + 1− l)η > 0,

a contradiction.

If r = 0, then

v(Q′)− v(Q) = −(1− α)− k(δ + 2(α− 1)) = kη − (1− α) ≥ t

2
η − (1− α).

But by Lemma 5.A.2 (d), this is at least δ− (1− α) > 0. This is a contradiction and the

lemma is proved.

We are ready to complete the proof of Lemma 5.2.6.

Proof of Lemma 5.2.6. We may assume that v(Q) is maximal possible among all

schemes Q. If Q has a block of size s, then we are done by Lemma 5.4.19. Otherwise, by

Lemma 5.4.24, there is no block of size greater than or equal to t/2. But then Lemma

5.4.22 and Lemma 5.4.23 together imply that v(Q) ≤ t2δ
t
− (δ + 2α) = δ − 2α < 0.

5.A Appendix

Lemma 5.A.1. For any k > 2, we have(
k

2

)
(δ + 2(α− 1)) > δ + k(α− 1)⇐⇒ kη < δ
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Proof. (
k

2

)
(δ + 2(α− 1)) > δ + k(α− 1)

⇐⇒ (k − 1)(δ + 2(α− 1)) > 2δ/k + 2(α− 1)

⇐⇒ (k − 1)η < 2(1− α)− 2δ/k = η + δ(1− 2/k)

⇐⇒ (k − 2)η < δ(k − 2)/k

⇐⇒ kη < δ.

Lemma 5.A.2. (a) (t− s+ 1)η < δ if and only if (s, t) is regular.

(b) (t− s)η < δ unless t = 2s− 1

(c) (t− s− 1)η < δ

(d) (t− 1)η > 2δ.

(e) δ > 2/3.

(f) 1 + 2(δ/( t−1
2

) + (α− 1))− η < 2δ/t

Proof. Assume first that (s, t) is regular. Then after some tedious calculations, one finds

that (a) is equivalent to the inequality

(s− 2)(t− s− 2)(2s− t− 3)− t− 3s+ 8 > 0

The left hand side is a quadratic in t with negative leading coefficient so it is enough to

check that the inequality holds when t = s+ 3 and when t = 2s− 4.

For t = s + 3 we require (s− 2)(s− 6)− 4s + 5 > 0, which holds for s ≥ 11, and for

t = 2s − 4 we require (s − 2)(s − 6) − 5s + 12 > 0, which holds for s ≥ 11. It therefore

suffices to check the inequality for the pairs (s, t) = (10, 14) and (s, t) = (10, 15). This can

be done by direct substitution. So (a) is proved (when (s, t) is regular) which immediately

implies (b) and (c).

Now let us assume that (s, t) is exceptional. Then the inequality (t − s + c)η < δ is

equivalent to the inequality

(s− 2)(t− s− c− 1)(2s− t− 2c− 1) + (−2c2 − 2c+ 1)s− t+ 4c2 + 3c+ 1 > 0 (5.9)

When c = 1, this says that (s−2)(t−s−2)(2s−t−3)−3s−t+8 > 0, so in order to prove

(a) we need to show that this does not hold. For t ∈ {s+ 2, 2s− 3, 2s− 2, 2s− 1} that is

clear, since (s−2)(t−s−2)(2s−t−3) ≤ 0. We are left to check that the inequality fails for

the pairs (7, 10), (8, 11), (8, 12), (9, 12), (9, 13), (9, 14), (10, 13), and (10, 16). If t = s + 3,

then we need s2− 12s+ 17 ≤ 0 which indeed holds for 7 ≤ s ≤ 10. If t = 2s− 4, then we
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need s2 − 13s + 24 ≤ 0 which indeed holds for 7 ≤ s ≤ 10. We have only (s, t) = (9, 13)

left to check. That is done by direct substitution.

When c = 0, then (5.9) says that (s − 2)(t − s − 1)(2s − t − 1) + s − t + 1 > 0. But

if s + 2 ≤ t ≤ 2s− 2, then the left hand side is minimal at t = 2s− 2 and there it takes

value (s− 3)2 > 0. (Note that s > 3 in this case.) This proves (b).

When c = −1 in (5.9), then it says that (s− 2)(t− s)(2s− t+ 1) + s− t+ 2 > 0. But

the left hand side is minimal when t = 2s− 1, and then it is 2s2− 7s+ 7 > 0. This proves

(c).

(d) In the regular case the statement is equivalent to the inequality

2s3 − s2t− 5s2 + 3st− t2 + s+ 3t− 4 > 0

But in the regular case we have 2s− t ≥ 4, so 2s3 − s2t ≥ 4s2. Since −s2 + 3st− t2 ≥ 0

and s+ 3t− 4 > 0, the statement follows.

In the exceptional case, (d) is equivalent to the inequality

(s− 2)(2s− t)2 + (t− s− 1) > 0

which is clear.

(e) In the regular case, the statement is equivalent to the inequality

2s(t+ s− 5)(t− s− 2) + 2s2 − 10s+ 6t− 8 > 0,

which is easily seen to hold.

In the exceptional case, it is equivalent to the inequality

(2s2 − 5s)(t− s− 2) + s2 − 5s+ 2t− 3 > 0,

which again clearly holds.

(f) Since (by (d)) we have δ/( t−1
2

) < η, this inequality reduces to

1 + 2(α− 1) + 2δ/(t− 1) < 2δ/t,

or, equivalently, to

2α < 1− 2δ

t(t− 1)
.

Expressing α in terms of δ and performing some routine algebraic manipulations, we find

that we need to prove that

2(2s− 1)

t(t− 1)
δ < 2δ − 1.

Since δ < 1, the left hand side of this inequality is less than 4/t < 1/3 while the right
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hand side is greater than 1/3, by part (e), so the proof is complete.

Below we present the Matlab code that we used to perform the case check in the proof

of Lemma 5.4.23.

% go through all pairs (s,t)

for t=5:13

for s=(floor(t/2)+1):(t-2)

% these pairs are all exceptional

alpha=((s-2)*(t-s)*(s-1)+s-1)/((2*s-3)*(t-s)*(s-1)+2*s-t);

delta=s-(2*s-1)*alpha;

eta=2*(1-alpha)-delta;

% bad will be changed to 1 if the inequality that we want

% to prove fails

bad=0;

R=floor((t-1)/2);

% j will count the number of q_h which are equal to R

for j=0:4

a=(t-1)-j*(R-1);

if 0<=a

% in the following case every q_h is 2 or R

v=1+a*(delta/2+alpha-1)+j*(delta/R+alpha-1);

% check that our inequality holds with a suitably large

% difference which can’t be due to rounding errors

if v>2*delta/(t)-10^(-3)

bad=1;

end

end

if (2<=a+1) && (a+1<=R)

% in the following case there is only one q_h that

% is not equal to R

v=1+(delta/(a+1)+alpha-1)+j*(delta/R+alpha-1);

if v>2*delta/(t)-10^(-3)

bad=1;

end

end

end

% tabulate the result: for each pair (s,t) we print

% whether the inequality failed (1) or not (0)

fprintf(’%5d %5d %5d \n’,s,t,bad)

end

end
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Chapter 6

Polynomial bound for the partition

rank vs the analytic rank of tensors

6.1 Introduction

6.1.1 Bias and rank of polynomials

For a finite field F and a polynomial P : Fn → F, we say that P is unbiased if the

distribution of the values P (x) is close to the uniform distribution on F; otherwise we say

that P is biased. It is an important direction of research in higher order Fourier analysis

to understand the structure of biased polynomials.

Note that a generic degree d polynomial should be unbiased. In fact, as we will see

below, if a degree d polynomial is biased, then it can be written as a function of not too

many polynomials of degree at most d− 1. Let us now make this discussion more precise.

Definition 6.1.1. Let F be a finite field and let χ be a nontrivial character of F. The bias

of a function f : Fn → F with respect to χ is defined to be biasχ(f) = Ex∈Fn [χ(f(x))].

(Here and elsewhere in the chapter Ex∈Gh(x) denotes 1
|G|
∑

x∈G h(x).)

Remark. Most of the previous work is on the case F = Fp with p a prime, in which case

the standard definition of bias is bias(f) = Ex∈Fnωf(x) where ω = e
2πi
p .

Definition 6.1.2. Let P be a polynomial Fn → F of degree d. The rank of P (de-

noted rank(P )) is defined to be the smallest integer r such that there exist polynomials

Q1, . . . , Qr : Fn → F of degree at most d − 1 and a function f : Fr → F such that

P = f(Q1, . . . , Qr).

As discussed above, it is known that if a polynomial has large bias, then it has low

rank. The first result in this direction was proved by Green and Tao [56] who showed

that if F is a field of prime order and P : Fn → F is a polynomial of degree d with d < |F|
and bias(P ) ≥ δ > 0, then rank(P ) ≤ c(F, δ, d). Kaufman and Lovett [80] proved that

the condition d < |F| can be omitted. In both results, c has Ackermann-type dependence
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on its parameters. Finally, Bhowmick and Lovett [9] proved that if d < char(F) and

bias(P ) ≥ |F|−s, then rank(P ) ≤ c′(d, s). The novelty of this result is that c′ does not

depend on F. However, it still has Ackermann-type dependence on d and s.

One of our main results is the following theorem, which improves the result of

Bhowmick and Lovett, unless |F| is very large.

Theorem 6.1.3. Let F be a finite field and let χ be a nontrivial character of F. Let P

be a polynomial Fn → F of degree d < char(F). Suppose that biasχ(P ) ≥ ε > 0 where

ε ≤ 1/|F|. Then

rank(P ) ≤ (c · 2d · log(1/ε))c
′(d) + 1

where c is an absolute constant and c′(d) = 4d
d
.

Recall that if G is an Abelian group and d is a positive integer, then the Gowers Ud

norm (which is only a seminorm for d = 1) of f : G→ C is defined to be

‖f‖Ud =
∣∣Ex,y1,...,yd∈G ∏

S⊂[d]

Cd−|S|f(x+
∑
i∈S

yi)
∣∣1/2d ,

where C is the conjugation operator. It is a major area of research to understand the

structure of functions f whose Ud norm is large. Our next theorem is a result in this

direction.

Theorem 6.1.4. Let F be a finite field and let χ be a nontrivial character of F. Let P

be a polynomial Fn → F of degree d < char(F). Let f(x) = χ(P (x)) and assume that

‖f‖Ud ≥ ε > 0 where ε ≤ 1/|F|. Then

rank(P ) ≤ (c · 2d · log(1/ε))c
′(d) + 1

where c is an absolute constant and c′(d) = 4d
d
.

Our result implies a similar improvement to the bounds for the quantitative inverse

theorem for Gowers norms for polynomial phase functions of degree d.

Theorem 6.1.5. Let F be a field of prime order and let P be a polynomial Fn → F of

degree d < char(F). Let f(x) = ωP (x) where ω = e
2πi
|F| and assume that ‖f‖Ud ≥ ε > 0

where ε ≤ 1/|F|. Then there exists a polynomial Q : Fn → F of degree at most d− 1 such

that

|Ex∈FnωP (x)ωQ(x)| ≥ |F|−(c·2d·log(1/ε))c
′(d)−1

where c is an absolute constant and c′(d) = 4d
d
.

Theorems 6.1.3 and 6.1.5 easily follow from Theorem 6.1.4.

Proof of Theorem 6.1.3. Note that when f(x) = χ(P (x)), then ‖f‖2
U1 =

|Ex,y∈Fnf(x)f(x + y)| = |Ex∈Fnf(x)|2, so ‖f‖U1 = |Ex∈Fnf(x)| = |biasχ(P )|. However,
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‖f‖Uk is increasing in k (see eg. Claim 6.2.2 in [61]), therefore ‖f‖Ud ≥ |biasχ(P )| ≥ ε.

The result is now immediate from Theorem 6.1.4.

Proof of Theorem 6.1.5. By Theorem 6.1.4, there exists a set of r ≤ (c · 2d ·
log(1/ε))c

′(d) +1 polynomials Q1, . . . , Qr such that P (x) is a function of Q1(x), . . . , Qr(x).

Then ωP (x) = g(Q1(x), . . . , Qr(x)) for some function g : Fr → C. Let G = Fr. Note

that |g(y)| = 1 for all y ∈ G, therefore |ĝ(χ)| ≤ 1 for every character χ ∈ Ĝ. Now

ωP (x) =
∑

χ∈Ĝ ĝ(χ)χ((Q1(x), . . . , Qr(x)), so

1 = Ex∈Fn|ωP (x)|2 =
∑
χ∈Ĝ

ĝ(χ)

(
Ex∈FnωP (x)χ(Q1(x), . . . , Qr(x))

)
.

Thus, there exists some χ ∈ Ĝ with |Ex∈FnωP (x)χ(Q1(x), . . . , Qr(x))| ≥ 1/|G| =

1/|F|r. But χ is of the form χ(y1, . . . , yr) = ω
∑
i≤r αiyi for some αi ∈ F. Then

χ(Q1(x), . . . , Qr(x)) = ωQα(x), where Qα is the degree d − 1 polynomial Qα(x) =∑
i≤r αiQi(x). So Q = Qα is a suitable choice.

6.1.2 Analytic rank and partition rank of tensors

Related to the bias and rank of polynomials are the notions of analytic rank and partition

rank of tensors. Recall that if F is a field and V1, . . . , Vd are finite dimensional vector

spaces over F, then an order d tensor is a multilinear map T : V1 × · · · × Vd → F.

(In this subsection, assume that d ≥ 2.) Each Vk can be identified with Fnk for

some nk, and then there exist ti1,...,id ∈ F for all i1 ≤ n1, . . . , id ≤ nd such that

T (v1, . . . , vd) =
∑

i1≤n1,...,id≤nd ti1,...,idv
1
i1
. . . vdid for every v1 ∈ Fn1 , . . . , vd ∈ Fnd (where

vk is the kth coordinate of the vector v). Indeed, ti1,...,id is just T (ei1 , . . . , eid), where ei is

the ith standard basis vector.

The following notion was introduced by Gowers and Wolf [54].

Definition 6.1.6. Let F be a finite field, let V1, . . . , Vd be finite dimensional vector spaces

over F and let T : V1× · · · × Vd → F be an order d tensor. Then the analytic rank of T is

defined to be arank(T ) = − log|F| bias(T ), where bias(T ) = Ev1∈V1,...,vd∈Vd [χ(T (v1, . . . , vd))]

for any nontrivial character χ of F.

Remark. This is well-defined. Indeed, if χ is a nontrivial character of F, then

Ev1∈V1,...,vd∈Vd [χ(T (v1, . . . , vd))] = Ev1∈V1,...,vd−1∈Vd−1
[Evd∈Vd χ(T (v1, . . . , vd))]

= Pv1∈V1,...,vd−1∈Vd−1
[T (v1, . . . , vd−1, x) ≡ 0],

where T (v1, . . . , vd−1, x) is viewed as a function in x. The second equality holds because

Evd∈Vd χ(T (v1, . . . , vd)) = 0 unless T (v1, . . . , vd−1, x) ≡ 0, in which case it is 1.

Thus, Ev1∈V1,...,vd∈Vd [χ(T (v1, . . . , vd))] does not depend on χ, and is always positive.

Moreover, it is at most 1, therefore the analytic rank is always nonnegative.
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A different notion of rank was defined by Naslund [100].

Definition 6.1.7. Let T : V1 × · · · × Vd → F be a (non-zero) order d tensor. We say

that T has partition rank 1 if there is some S ⊂ [d] with S 6= ∅, S 6= [d] such that

T (v1, . . . , vd) = T1(vi : i ∈ S)T2(vi : i 6∈ S) where T1 :
∏

i∈S Vi → F, T2 :
∏

i 6∈S Vi → F are

tensors. In general, the partition rank of T is the smallest r such that T can be written

as the sum of r tensors of partition rank 1. This number is denoted prank(T ).

Kazhdan and Ziegler [81] and Lovett [93] proved that arank(T ) ≤ prank(T ). In the

other direction, it follows from the work of Bhowmick and Lovett [9] that if an order d

tensor T has arank(T ) ≤ r, then prank(T ) ≤ f(r, d) for some function f . Note that f

does not depend on |F| or the dimension of the vector spaces Vk. However, f has an

Ackermann-type dependence on d and r. For d = 3, 4, better bounds were established by

Haramaty and Shpilka [60]. They proved that for d = 3 we have prank(T ) = O(r4), and

that for d = 4 we have prank(T ) = exp(O(r)).

Our main result is a polynomial upper bound, which holds for general d.

Theorem 6.1.8. Let T : V1 × · · · × Vd → F be an order d tensor with arank(T ) ≤ r and

assume that r ≥ 1. Then

prank(T ) ≤ (c · log |F|)c′(d) · rc′(d)

for some absolute constant c, and c′(d) = 4d
d
.

We remark that a very similar result was obtained independently and simultaneously

by Milićević [96]. Moreover, in the special case d = 4, a similar bound was proved

independently by Lampert [92].

It is not hard to see that Theorem 6.1.8 implies Theorem 6.1.4. Indeed, let P be a poly-

nomial Fn → F of degree d < char(F), let f(x) = χ(P (x)) and assume that ‖f‖Ud ≥ ε > 0,

where ε ≤ 1/|F|. Define T : (Fn)d → F by T (y1, . . . , yd) =
∑

S⊂[d](−1)d−|S|P (
∑

i∈S yi).

By Lemma 2.4 from [54], T is a tensor of order d. Moreover, by the same lemma, we have

T (y1, . . . , yd) =
∑

S⊂[d](−1)d−|S|P (x+
∑

i∈S yi) for any x ∈ Fn. Thus,

bias(T ) = Ey1,...,yd∈Fn χ(T (y1, . . . , yd)) = Ey1,...,yd∈Fn
∏
S⊂[d]

Cd−|S|f(x+
∑
i∈S

yi)

for any x ∈ Fn. By averaging over all x ∈ Fn, it follows that bias(T ) = ‖f‖2d

Ud
≥ ε2d .

Thus, arank(T ) ≤ 2d log|F|(1/ε). Note that 2d log|F|(1/ε) ≥ 1. Therefore, by Theorem

6.1.8 with r = 2d log|F|(1/ε), we get

prank(T ) ≤ (c · 2d · log(1/ε))c
′(d). (6.1)

We claim that d!P (x) − T (x, . . . , x) is a polynomial of degree at most d − 1. Clearly it

is a polynomial of degree at most d, so it suffices to check that the coefficient of xd is
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the same in d!P (x) and in T (x, . . . , x). Note that T (x, . . . , x) =
∑

S⊂[d](−1)d−|S|P (|S|x),

so if the coefficient of xd in P (x) is c, then in T (x, . . . , x) it is c
∑d

i=0

(
d
i

)
(−1)d−iid. By

the inclusion-exclusion principle, the sum
∑d

i=0

(
d
i

)
(−1)d−iid is equal to the number of

surjective functions [d]→ [d]. Hence, the coefficient of xd in T (x, . . . , x) is c · d!.

Thus, d!P (x) − T (x, . . . , x) indeed has degree at most d − 1. Since d < char(F), we

can let W (x) = P (x) − 1
d!
T (x, . . . , x). By equation (6.1), T can be written as a sum

of at most (c · 2d · log(1/ε))c
′(d) tensors of partition rank 1. Hence, 1

d!
T (x, . . . , x) can be

written as a sum of at most (c · 2d · log(1/ε))c
′(d) expressions of the form Q(x)R(x) where

Q,R are polynomials of degree at most d − 1 each. Thus, P − W has rank at most

(c · 2d · log(1/ε))c
′(d), and therefore P has rank at most

(c · 2d · log(1/ε))c
′(d) + 1.

6.2 The proof of Theorem 6.1.8

6.2.1 Notation and preliminaries

In the rest of the chapter, we identify Vi with Fni . Thus, the set of all tensors V1×· · ·×Vd →
F is the tensor product Fn1⊗· · ·⊗Fnd , which will be denoted by G throughout this section.

Also, B will always stand for the multiset {u1⊗· · ·⊗ud : ui ∈ Fni for all i}. The elements

of B will be called pure tensors. Note that G = Fn1 ⊗ · · · ⊗ Fnd can be viewed as the

set of d-dimensional (n1, . . . , nd)-arrays over F which in turn can be viewed as Fn1n2...nd ,

equipped with the entry-wise dot product.

For I ⊂ [d], we write FI for
⊗

i∈I Fni so that we naturally have G = FI ⊗ FIc , where

Ic always denotes [d] \ I.

If r ∈ F[d] = G and s ∈ F[k] (for some k ≤ d), then we define rs to be the tensor in

F[k+1,d] with coordinates (rs)ik+1,...,id =
∑

i1≤n1,...,ik≤nk ri1,...,idsi1,...,ik . If k = d, then rs is

the same as the entry-wise dot product r.s. Also, note that viewing r as a d-multilinear

map R : Fn1 × · · · × Fnd → F, we have R(v1, . . . , vd) =
∑

i1≤ni,...,id≤nd ri1,...,idv
1
i1
. . . vdid =

r(v1 ⊗ · · · ⊗ vd).
Finally, we use a non-standard notation and write kB to mean the set of elements

of G which can be written as a sum of at most k elements of B, where B is some fixed

(multi)subset of G, and similarly, we write kB − lB for the set of elements that can be

obtained by adding at most k members and subtracting at most l members of B.

We will use the next result several times in our proofs. It is a version of Bogolyubov’s

lemma, due to Sanders.

Lemma 6.2.1 (Sanders [102]). There is an absolute constant C with the following prop-

erty. Let A be a subset of Fn with |A| ≥ δ|Fn|. Then 2A− 2A contains a subspace of Fn

of codimension at most C(log(1/δ))4.

Throughout the chapter, C stands for the constant appearing in the previous lemma.
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Clearly we may assume that C ≥ 1. Logarithms are base 2.

6.2.2 The main lemma and some consequences

Theorem 6.1.8 will follow easily from the next lemma, which is the main technical result

of this chapter. See Section 7.2 for another application of this lemma.

Lemma 6.2.2. Let d ≥ 1 be an integer and let δ ≤ 1/2. Let f1(d) = 23d+3
, f2(d) = 2−3d+3

and G(d, δ,F) = ((log |F|)c1(d)(log 1/δ))c2(d) where c1(d) = C · 23d+6
and c2(d) = 4d

d
. If

B′ ⊂ B is a multiset such that |B′| ≥ δ|B|, then there exists a multiset Q whose elements

are pure tensors chosen from f1(d)B′ − f1(d)B′ (but with arbitrary multiplicity) with the

following property. The set of arrays r ∈ G with r.q = 0 for at least (1− f2(d))|Q| choices

q ∈ Q is contained in
∑

I⊂[d],I 6=∅ VI ⊗ FIc for subspaces VI ⊂ FI of dimension at most

G(d, δ,F).

Throughout the chapter, the functions G, c1, c2 will refer to the functions introduced

in the previous lemma. In fact, as F is fixed, we will write G(d, δ) to mean G(d, δ,F).

In this subsection we deduce Theorem 6.1.8 from Lemma 6.2.2.

The notion introduced in the next definition is closely related to the partition rank,

but will be somewhat more convenient to work with.

Definition 6.2.3. Let k be a positive integer. We say that r ∈ G is k-degenerate if for

every I ⊂ [d], I 6= ∅, I 6= [d], there exists a subspace HI ⊂ FI of dimension at most k such

that r ∈
∑

I⊂[d−1],I 6=∅HI ⊗HIc .

If r ∈ HI ⊗ FIc with dim(HI) ≤ k, then r ∈ HI ⊗ HIc for some HIc ⊂ FIc of

dimension at most k. (This follows by writing r as
∑

j≤m sj ⊗ tj with {sj} a basis for

HI and letting HIc be the span of all the tj.) Thus, r is k-degenerate if and only if

r ∈
∑

I⊂[d−1],I 6=∅HI⊗FIc for some HI ⊂ FI of dimension at most k, or equivalently, if and

only if r ∈
∑

I⊂[d−1],I 6=∅ FI ⊗HIc for some HIc ⊂ FIc of dimension at most k. Moreover,

note that if r is k-degenerate, then prank(r) ≤ 2d−1k. This is because if I 6= ∅, I ⊂ [d− 1]

and w ∈ HI ⊗ HIc for subspaces HI ⊂ FI and HIc ⊂ FIc of dimension at most k, then

w =
∑

i≤k si ⊗ ti for some si ∈ HI , ti ∈ HIc . But clearly, si ⊗ ti has partition rank 1.

Lemma 6.2.4. Let δ ≤ 1/2 and d ≥ 2. Suppose that Lemma 6.2.2 has been proved for

d′ = d − 1. Let r ∈ G be such that r(v1 ⊗ · · · ⊗ vd−1) = 0 ∈ Fnd for at least δ|F|n1...nd−1

choices v1 ∈ Fn1 , . . . , vd−1 ∈ Fnd−1. Then r is f -degenerate for f = G(d− 1, δ).

Proof. Write r =
∑

i si ⊗ ti where si ∈ F[d−1] and {ti}i is a basis for Fnd . Let D be

the multiset {u1 ⊗ · · · ⊗ ud−1 : u1 ∈ Fn1 , . . . , ud−1 ∈ Fnd−1} and let D′ = {w ∈ D :

rw = 0}. Since |D′| ≥ δ|D|, by Lemma 6.2.2 there is a multiset Q with elements from

23d+2D′− 23d+2D′ such that the set of arrays r′ ∈ F[d−1] with r′.q = 0 for all choices q ∈ Q
is contained in some

∑
I⊂[d−1],I 6=∅ VI ⊗ F[d−1]\I , where dim(VI) ≤ G(d − 1, δ). Note that
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for every i we have si.w = 0 for all w ∈ D′ and so also si.q = 0 for all q ∈ Q. Thus,

r ∈
∑

I⊂[d−1],I 6=∅ VI ⊗ FIc .

Now we are in a position to prove Theorem 6.1.8 conditional on Lemma 6.2.2.

Proof of Theorem 6.1.8. Let T : Fn1 × · · · × Fnd → F be an order d tensor with

arank(T ) ≤ r. By Remark 6.1.2, we have Pv1∈Fn1 ,...,vd−1∈Fnd−1 [T (v1, . . . , vd−1, x) ≡ 0] ≥
|F|−r. Writing t for the element in G corresponding to T , we get that t(v1⊗· · ·⊗vd−1⊗x) ≡
0 as a function of x for at least δ|F|n1...nd choices v1 ∈ Fn1 , . . . , vd−1 ∈ Fnd−1 , where

δ = |F|−r. But t(v1⊗· · ·⊗vd−1⊗x) =
(
t(v1⊗· · ·⊗vd−1)

)
.x, so we have t(v1⊗· · ·⊗vd−1) = 0

for all these choices of vi. The condition r ≥ 1 implies δ ≤ 1/2, therefore by Lemma 6.2.4,

t is f -degenerate for f = G(d− 1, δ). Hence,

prank(T ) ≤ 2d−1G(d− 1, δ)

= 2d−1((log |F|) · c1(d− 1) · log(|F|r))c2(d−1)

= 2d−1((log |F|)2 · c1(d− 1) · r)c2(d−1)

≤ ((log |F|)2 · c1(d) · r)c2(d−1)

But there exists some absolute constant c such that c1(d)c2(d−1) ≤ cc2(d) holds for all d.

Moreover, 2c2(d− 1) ≤ c2(d). Thus, prank(T ) ≤ (c · log |F|)c2(d) · rc2(d) = (c · log |F|)c′(d) ·
rc
′(d).

6.2.3 The overview of the proof of Lemma 6.2.2

The proof of the lemma goes by induction on d. In what follows, we shall prove re-

sults conditional on the assumption that Lemma 6.2.2 has been verified for all d′ < d.

Eventually, we will use these results to prove the induction step.

In this subsection, we give a detailed sketch of the proof in the d = 3 case. At the end

of the subsection, we also briefly sketch the d > 3 case.

6.2.3.1 The high-level outline in the case d = 3

We assume that Lemma 6.2.2 has been proven for d ≤ 2 and use this assumption to show

that it holds for d = 3. We will take Q = Q{1,2,3} ∪ Q{1} ∪ Q{2} ∪ Q{3} with elements

chosen from 23d+3B′− 23d+3B′ such that the QI have roughly equal size. This implies that

if for some r ∈ G we have r.q = 0 for almost all q ∈ Q, then r.q = 0 holds for almost

all q ∈ QI for every I = {1}, {2}, {3}, {1, 2, 3}. We define Q{1,2,3} first, in a way that if

r.q = 0 for almost all q ∈ Q{1,2,3}, then r = x + y where x ∈ V{1,2,3} for a vector space

V{1,2,3} which is independent of r and have small dimension, and y has small partition

rank. This already implies that any array r ∈ G with r.q = 0 for almost all q ∈ Q is

contained in V{1,2,3}+Fn1⊗H{2,3}(r)+Fn2⊗H{1,3}(r)+Fn3⊗H{1,2}(r) for some subspaces
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HI(r) ⊂ FI depending on r and of small dimension. We then find Q{1} such that if

r ∈ V{1,2,3} + Fn1 ⊗H{2,3}(r) + Fn2 ⊗H{1,3}(r) + Fn3 ⊗H{1,2}(r) has r.q = 0 for almost all

q ∈ Q{1}, then r ∈ V{1,2,3}+ V{1}⊗F{2,3}+Fn1 ⊗ V{2,3}+Fn2 ⊗K{1,3}(r) +Fn3 ⊗K{1,2}(r),
where V{1} ⊂ Fn1 and V{2,3} ⊂ F{2,3} are subspaces independent of r and have small

dimension, and KI(r) ⊂ FI are subspaces of small dimension (although quite a bit larger

than dim(HI(r))). Then we find Q{2} such that if r ∈ V{1,2,3} + V{1} ⊗ F{2,3} + Fn1 ⊗
V{2,3} + Fn2 ⊗ K{1,3}(r) + Fn3 ⊗ K{1,2}(r) has r.q = 0 for almost all q ∈ Q{2}, then

r ∈ V{1,2,3}+V{1}⊗F{2,3}+Fn1⊗V{2,3}+V{2}⊗F{1,3}+Fn2⊗V{1,3}+Fn3⊗L{1,2}(r), where

V{2} ⊂ Fn2 and V{1,3} ⊂ F{1,3} are subspaces independent of r and have small dimension,

and L{1,2}(r) ⊂ F{1,2} is a subspace of small dimension. Finally, we find Q{3} such that

if r ∈ V{1,2,3} + V{1} ⊗ F{2,3} + Fn1 ⊗ V{2,3} + V{2} ⊗ F{1,3} + Fn2 ⊗ V{1,3} + Fn3 ⊗ L{1,2}(r)
has r.q = 0 for almost all q ∈ Q{3}, then r ∈ V{1,2,3} + V{1} ⊗ F{2,3} + Fn1 ⊗ V{2,3} + V{2} ⊗
F{1,3} + Fn2 ⊗ V{1,3} + V{3} ⊗ F{1,2} + Fn3 ⊗ V{1,2}, where V{3} ⊂ Fn3 and V{1,2} ⊂ F{1,2} are

subspaces independent of r and have small dimension.

How will we find Q{1,2,3}, Q{1}, Q{2} and Q{3}? In this outline we will only explain how

to find Q{2} (but finding Q{1} and Q{3} is very similar). We take Q{2} =
⋃
u∈U u ⊗ Qu

where U ⊂ Fn2 is a subspace of low codimension, and for each u ∈ U , Qu ⊂ F{1,3} is a

multiset consisting of pure tensors such that if for some x ∈ F{1,3} we have x.t = 0 for

almost all t ∈ Qu, then x ∈ W{1,3}(u) +Fn1 ⊗W{3}(u) +W{1}(u)⊗Fn3 for some subspaces

WI(u) ⊂ FI not depending on x and of small dimension. Let us call a Qu with this

property forcing. We will also make sure that all the Qu have roughly the same size.

6.2.3.2 Why does this Q{2} work?

In what follows, we will sketch why this choice is suitable. We remark that in the general

case this is done in Lemma 6.2.15. Let R consist of those

r ∈ V{1,2,3} + V{1} ⊗ F{2,3} + Fn1 ⊗ V{2,3} + Fn2 ⊗K{1,3}(r) + Fn3 ⊗K{1,2}(r)

such that r.q = 0 for almost all q ∈ Q{2}. Let r ∈ R. Write r = r2 + r3 + r4 where

r2 ∈ V{1} ⊗ F{2,3} + Fn1 ⊗ V{2,3} + Fn3 ⊗K{1,2}(r), r3 ∈ V{1,2,3}, r4 ∈ Fn2 ⊗K{1,3}(r).

It is enough to prove that

r4 ∈ V{2} ⊗ F{1,3} + Fn2 ⊗ V{1,3} + Fn3 ⊗ L′{1,2}(r) (6.2)

for some small subspaces V{2} ⊂ Fn2 , V{1,3} ⊂ F{1,3} and L′{1,2}(r) ⊂ F{1,2} (in fact, we will

be able to take V{2} = U⊥).

First note that r2u has small (partition) rank for every u ∈ U . Indeed, r2u ∈ V{1} ⊗
Fn3 + Fn1 ⊗ V{2,3}u+ Fn3 ⊗K{1,2}(r)u, where, for a vector space L of tensors, Lu denotes

the space {su : s ∈ L}.
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Moreover, since the Qu all have roughly the same size, for almost every u ∈ U we have

that r.(u⊗ t) = 0 holds for almost every t ∈ Qu. But r.(u⊗ t) = (ru).t, therefore as Qu

is forcing, it follows that for any such u

ru ∈ W{1,3}(u) + Fn1 ⊗W{3}(u) +W{1}(u)⊗ Fn3

for some subspaces WI(u) ⊂ FI not depending on r and of small dimension. Since any

element of Fn1 ⊗ W{3}(u) + W{1}(u) ⊗ Fn3 has small partition rank, it follows that for

almost every u ∈ U ,

r4u = ru− r2u− r3u ∈ W{1,3}(u) + V{1,2,3}u+ s(u) (6.3)

where s(u) is a tensor of small partition rank.

Define a sequence 0 = Z(0) ⊂ Z(1) ⊂ . . . ⊂ Z(m) ⊂ F{1,3} of subspaces recursively

as follows. Given Z(j), if there is some r ∈ R such that r4u is far from Z(j) for many

u ∈ U , then set Z(j + 1) = Z(j) +K1,3(r). What we mean by r4u being far from Z(j) is

that there is no z ∈ Z(j) such that r4u− z has small partition rank. For suitably chosen

parameters, one can show that this procedure cannot go on for too long, ie. that for some

not too large m we have that for every r ∈ R, for almost all u ∈ U there is some z ∈ Z(m)

with r4u− z having small partition rank.

Now let r ∈ R. Let X(r) be the set consisting of those x ∈ K{1,3}(r) which are close

to Z(m). Then r4u ∈ X(r) for almost every u ∈ U . Let t1, . . . , tα be a maximal linearly

independent subset of X(r) and extend it to a basis t1, . . . , tα, t
′
1, . . . , t

′
β for K{1,3}(r).

Now if a linear combination of t1, . . . , tα, t
′
1, . . . , t

′
β is in X(r), then the coefficients of

t′1, . . . , t
′
β are all zero. Write r4 =

∑
i≤α si ⊗ ti +

∑
j≤β s

′
j ⊗ t′j for some si, s

′
j ∈ Fn2 . Since

r4u ∈ X(r) for almost all u ∈ U , we have, for all j, that s′j.u = 0 for almost all u ∈ U .

Since these hold for more than half of u ∈ U , we obtain s′j ∈ U⊥ for every j, therefore∑
j≤β s

′
j ⊗ t′j ∈ U⊥ ⊗ F{1,3}.

Since ti ∈ X(r) for every i, we may choose zi ∈ Z(m) such that ti = zi + yi where

yi ∈ F{1,3} has small partition rank. Now
∑

i≤α si ⊗ ti ∈ Fn2 ⊗ Z(m) +
∑

i≤α si ⊗ yi.

Moreover, as α is small and each yi has small partition rank, we have
∑

i≤α si ⊗ yi ∈
L′{1,2}(r)⊗ Fn3 for some small L′{1,2}(r) ⊂ F{1,2}. So we have proved (6.2) with V{2} = U⊥

and V{1,3} = Z(m).

6.2.3.3 Why can we find such a Q{2} inside 23d+3B′ − 23d+3B′?

Now we describe why there must exist Q{2} with elements chosen from 233+3B′ − 233+3B′

and having the required properties. We remark that in the general case this is done in

Lemma 6.2.14. We want to find a subspace U ⊂ Fn2 of low codimension, and forcing

multisets Qu ⊂ F{1,3} (u ∈ U) consisting of pure tensors such that for every u ∈ U ,

u ⊗ Qu ⊂ 233+3B′ − 233+3B′. Let D be the multiset {v ⊗ w : v ∈ Fn1 , w ∈ Fn3}. Notice

that if some set R is dense in D, then by the induction hypothesis we can find a forcing
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set in 232+3
R − 232+3

R consisting of pure tensors. Therefore it is enough to find a low

codimensional subspace U and dense sets Ru ⊂ D (for every u ∈ U) such that u⊗ Ru ⊂
32B′ − 32B′. As B′ is dense in B, we have a dense subset S ⊂ Fn2 and dense subsets

Ts ⊂ D (s ∈ S) such that s⊗ Ts ⊂ B′ for every s ∈ S. By Bogolyubov’s lemma (Lemma

6.2.1), there is a low codimensional subspace U contained in 2S − 2S. To establish the

existence of a dense Ru ⊂ D with u⊗ Ru ⊂ 32B′ − 32B′ for every u ∈ U , it is enough to

prove the following lemma.

Lemma 6.2.5. Let T1, T2, T3, T4 be dense subsets of D. Then D∩
⋂
i≤4(8Ti−8Ti) is dense

in D.

Indeed, once we have this lemma, it follows that for any s1, s2, s3, s4 ∈ S, the set

D∩
⋂
i≤4(8Tsi − 8Tsi) is dense in D. But if u ∈ U , then we can write u = s1 + s2− s3− s4

for some si ∈ S, and then u⊗
⋂
i≤4(8Tsi−8Tsi) ⊂ s1⊗

⋂
i≤4(8Tsi−8Tsi)+s2⊗

⋂
i≤4(8Tsi−

8Tsi)− s3 ⊗
⋂
i≤4(8Tsi − 8Tsi)− s4 ⊗

⋂
i≤4(8Tsi − 8Tsi) ⊂ 32B′ − 32B′.

Lemma 6.2.5 follows easily from the next two lemmas.

Lemma 6.2.6. Let A be a dense subset of D. Then there exist a dense subspace V ⊂ Fn1

and for each v ∈ V a dense subspace Wv ⊂ Fn3 such that v ⊗Wv ⊂ 8A − 8A for every

v ∈ V .

Proof. There exist a dense subset B ⊂ Fn1 and dense subsets Cb ⊂ Fn3 for each b ∈ B
such that b ⊗ Cb ⊂ A. By Bogolyubov’s lemma, 2B − 2B contains a dense subspace

V ⊂ Fn1 , and for every b ∈ B, 2Cb − 2Cb contains a dense subspace Lb ⊂ Fn3 . For any

v ∈ V , choose b1, b2, b3, b4 ∈ B with v = b1 + b2 − b3 − b4 and set Wv =
⋂
i≤4 Lbi . Note

that bi ⊗ w ∈ 2A− 2A for every i ≤ 4 and w ∈ Wv, therefore v ⊗ w ∈ 8A− 8A.

Lemma 6.2.7. Suppose that we have dense subspaces V, V ′ ⊂ Fn1, for each v ∈ V a

dense subspace Wv ⊂ Fn3, and for each v′ ∈ V ′ a dense subspace W ′
v′ ⊂ Fn3. Then

(
⋃
v∈V v⊗Wv)∩(

⋃
v′∈V ′ v

′⊗W ′
v′) =

⋃
v∈V ∩V ′ v⊗(Wv∩W ′

v). In particular, this intersection

is a dense subset of D.

Proof. The identity is trivial. Since the subspaces V ∩ V ′ and Wv ∩W ′
v are dense, the

second assertion follows.

6.2.3.4 How can this be extended to d > 3?

Now we briefly sketch what the main difficulties are in the d > 3 case and how we can

address them. The underlying strategy is similar: we take an ordering ≺ of the set of

non-empty subsets I ⊂ [d− 1], and for each such I we choose QI such that any array

r ∈ W[d] +
∑
J≺I

(WJ ⊗ FJc + FJ ⊗WJc) +
∑
J�I

FJ ⊗HJc(r) (6.4)
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with r.q = 0 for almost all q ∈ QI has

r ∈ W[d] +
∑
J�I

(UJ ⊗ FJc + FJ ⊗ UJc) +
∑
J�I

FJ ⊗KJc(r)

where UJ , UJc , KJc(r) can have dimension slightly larger than those of WJ ,WJc and HJc ,

but they are still low dimensional. In the d = 3 case, we have made use of a decomposition

r = r2 + r3 + r4 where r4 ∈ FI ⊗ HIc(r), r2u has small partition rank and r3u is in a

small subspace independent of r for every u ∈ FI . In general, such a decomposition need

not exist. For example, when d = 4 and I = {1, 2}, then an array in W{1} ⊗ F{2,3,4}

(or in Fn1 ⊗ H{2,3,4}(r) if we were to take {1, 2} ≺ {1}), when multiplied by some pure

tensor u ∈ F{1,2}, yields a tensor which need not have small partition rank and need

not lie a small space independent of r. However, by restricting the possible choices for

u, we can make sure that the product is always zero. So we will take a decomposition

r = r1 +r2 +r3 +r4 such that r4 ∈ FI⊗HIc(r); for every pure tensor u ∈ FI , r2u has small

partition rank and r3u lies in a small space depending only on u; and crucially, for every

q ∈ QI , r1.q = 0. To achieve this, we need to insist that J ≺ I whenever J ( I and that

QI is orthogonal to certain subspaces. To see this, note that in the above example where

d = 4 and I = {1, 2} we need that {1} ≺ {1, 2} and Q{1,2} is orthogonal to W{1}⊗F{2,3,4}.
(If we had {1, 2} ≺ {1}, then in (6.4) we would have a term Fn1 ⊗H{2,3,4}(r) rather than

W{1} ⊗ F{2,3,4}, which we could not control.)

We also need to generalise Lemma 6.2.5 to the case d > 3. Instead of using
⋃
v∈V v⊗Wv

as in Lemma 6.2.6, we need to define an object in B such that

1. an instance of the object can be found in kB′ − kB′ for some small k whenever B′

is dense in B (generalising Lemma 6.2.6)

2. the intersection of few instances of this object is a dense subset of B (generalising

Lemma 6.2.7)

In the next subsection we describe this object and show that it has the required

properties.

6.2.4 Construction of some auxiliary sets

Definition 6.2.8. Suppose that we have a collection of vector spaces as follows. The first

one is U ⊂ Fn1 , of codimension at most l. Then, for every u1 ∈ U , there is some Uu1 ⊂ Fn2 .

In general, for every 2 ≤ k ≤ d and every u1 ∈ U, u2 ∈ Uu1 , . . . , uk−1 ∈ Uu1,...,uk−2
,

there is a subspace Uu1,...,uk−1
⊂ Fnk . Assume, in addition, that the codimension of

Uu1,...,uk−1
in Fnk is at most l for every u1 ∈ U, . . . , uk−1 ∈ Uu1,...,uk−2

. Then the multiset

Q = {u1 ⊗ · · · ⊗ ud : u1 ∈ U, . . . , ud ∈ Uu1,...,ud−1
} is called an l-system.

The next lemma is the generalisation of Lemma 6.2.7 from the previous subsection.
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Lemma 6.2.9. Let Q be an l-system and let Q′ be an l′-system. Then Q ∩ Q′ contains

an (l + l′)-system.

Proof. Let Q have spaces as in Definition 6.2.8 and let Q′ have spaces U ′u′1,...,u′k−1
. We

define an (l + l′)-system P contained in Q ∩Q′ as follows. Let V = U ∩ U ′. Suppose we

have defined Vv1,...,vj−1
for all j ≤ k. Let v1 ∈ V, v2 ∈ Vv1 , . . . , vk−1 ∈ Vv1,...,vk−2

. We let

Vv1...,vk−1
= Uv1...,vk−1

∩ U ′v1...,vk−1
. This is well-defined and has codimension at most l + l′

in Fnk . Let P be the (l + l′)-system with spaces Vv1,...,vk−1
.

The next lemma is the generalisation of Lemma 6.2.6 from the previous subsection.

Lemma 6.2.10. Let B′ ⊂ B be a multiset such that |B′| ≥ δ|B|. Then there exists an

f1-system whose elements are chosen from f2B′ − f2B′ with f1 = C · 4d(log(2d/δ))4 and

f2 = 4d.

Proof. The proof is by induction on d. The case d = 1 is a direct consequence of Lemma

6.2.1. Suppose that the lemma has been proved for all d′ < d and let B′ ⊂ B be a multiset

such that |B′| ≥ δ|B|. Let D be the multiset {v2 ⊗ · · · ⊗ vd : v2 ∈ Fn2 , . . . , vd ∈ Fnd}.
For each u ∈ Fn1 , let B′u = {s ∈ D : u ⊗ s ∈ B′} and let T = {u ∈ Fn1 : |B′u| ≥ δ

2
|D|}.

By averaging, we have that |T | ≥ δ
2
|Fn1|. Now by the induction hypothesis, for every

t ∈ T , there exists a g1-system in Fn2 ⊗ · · · ⊗ Fnd (whose definition is analogous to the

definition of a system in Fn1 ⊗ · · · ⊗ Fnd), called Pt, contained in g2B′t − g2B′t where

g1 = C · 4d−1(log(2d/δ))4 and g2 = 4d−1. By Lemma 6.2.1, 2T − 2T contains a subspace

U ⊂ Fn1 of codimension at most C(log(2/δ))4. For each u ∈ U , write u = t1 + t2− t3− t4
arbitrarily with ti ∈ T , and let Qu = Pt1 ∩ Pt2 ∩ Pt3 ∩ Pt4 , which is a g3-system with

g3 = 4g1 = C · 4d(log(2d/δ))4, by Lemma 6.2.9. Thus, Q =
⋃
u∈U(u ⊗ Qu) is indeed an

f1-system. Moreover, for any u ∈ U, s ∈ Qu, we have u⊗s = t1⊗s+ t2⊗s− t3⊗s− t4⊗s
for some ti ∈ T and s ∈

⋂
i≤4 Pti . Then ti⊗s ∈ g2B′−g2B′, therefore u⊗s ∈ 4g2B′−4g2B′,

so the elements of Q are indeed chosen from f2B′ − f2B′.

The next lemma describes a property of systems which was not needed for us in

the d = 3 case, but is crucial in the general case. It is required for finding a suitable

decomposition r = r1 + r2 + r3 + r4 described at the end of the previous subsection.

Indeed, we need a set QI which is orthogonal to certain spaces of the form WJ ⊗ FJc (ie.

is contained in W⊥
J ⊗ FJc) to make sure that r1.q = 0 for every q ∈ QI . We will use the

following lemma to guarantee the existence of such a set QI .

Lemma 6.2.11. Let Q be a k-system and for every non-empty I ⊂ [d], let LI ⊂ FI be

a subspace of codimension at most l. Let T =
⋂
I(LI ⊗ FIc). Then Q ∩ T contains an

f -system for f = k + 2dl.
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Proof. Let the spaces of Q be Uu1,...,uj−1
. It suffices to prove that for every 1 ≤ j ≤ d,

and every u1 ∈ U, . . . , uj−1 ∈ Uu1,...,uj−2
, the codimension of (u1⊗· · ·⊗uj−1⊗Uu1,...,uj−1

)∩⋂
I⊂[j],j∈I(LI⊗F[j]\I) in u1⊗· · ·⊗uj−1⊗Uu1,...,uj−1

is at most 2dl. Thus, it suffices to prove

that for every I ⊂ [j] with j ∈ I, the codimension of (u1⊗ · · ·⊗uj−1⊗Uu1,...,uj−1
)∩ (LI ⊗

F[j]\I) in u1 ⊗ · · · ⊗ uj−1 ⊗ Uu1,...,uj−1
is at most l. But this is equivalent to the statement

that
(
(
⊗

i∈I\{j} ui)⊗Uu1,...,uj−1

)
∩LI has codimension at most l in (

⊗
i∈I\{j} ui)⊗Uu1,...,uj−1

,

which clearly holds.

6.2.5 The proof of Lemma 6.2.2

We now turn to the proof of Lemma 6.2.2. As described in the outline, the first step is

to find a Q[d] such that if r.q = 0 for almost all q ∈ Q[d], then r = x+ y where x ∈ V[d] for

a small space V[d] independent of r, and y has low partition rank.

Lemma 6.2.12. Let d ≥ 2 and suppose that Lemma 6.2.2 has been proved for d′ = d− 1.

Let B′ ⊂ B be such that |B′| ≥ δ|B| for some δ > 0. Then there exist some Q ⊂ 2B′− 2B′

consisting of pure tensors and a subspace V[d] ⊂ F[d] of dimension at most 4C(log(2/δ))4

with the following property. Any array r with r.q = 0 for at least 7
8
|Q| choices q ∈ Q can

be written as r = x+y where x ∈ V[d] and y is f -degenerate for f = G(d−1, δ

4|F|4C(log 2/δ)4
).

Proof. Let D be the multiset {u1 ⊗ · · · ⊗ ud−1 : u1 ∈ Fn1 , . . . , ud−1 ∈ Fnd−1} and let

D′ = {t ∈ D : t ⊗ u ∈ B′ for at least δ
2
|F|nd choices u ∈ Fnd}. Clearly, we have |D′| ≥

δ
2
|D|. Moreover, by Lemma 6.2.1, for every t ∈ D′, there exists a subspace Ut ⊂ Fnd of

codimension at most C(log(2/δ))4 such that t⊗Ut ⊂ 2B′− 2B′. After passing to suitable

subspaces, we may assume that all Ut have the same codimension k ≤ C(log(2/δ))4. Now

let Q = ∪t∈D′(t⊗ Ut).
Write R for the set of arrays r with r.q = 0 for at least 7

8
|Q| choices q ∈ Q.

We now define a sequence of subspaces 0 = V (0) ⊂ V (1) ⊂ . . . ⊂ V (m) ⊂ F[d]

recursively as follows.

Given V (j), if for every r ∈ R there are at least |D
′|

2
choices t ∈ D′ with rt ∈ V (j)t,

then we set m = j and terminate. (Here and below, for a subspace L ⊂ G and an array

s ∈ FI , we write Ls for the subspace {rs : r ∈ L} ⊂ FIc .)
Else, we choose some r ∈ R such that there are at most |D

′|
2

choices t ∈ D′ with

rt ∈ V (j)t. We set V (j + 1) = V (j) + span(r). Note that r.(t ⊗ s) = (rt).s for every

s ∈ Ut. If rt 6∈ U⊥t , then (rt).s = 0 holds for only a proportion 1/|F| ≤ 1/2 of all s ∈ Ut.
Thus, as r ∈ R, we have rt ∈ U⊥t for at least 3

4
|D′| choices t ∈ D′. Moreover, since

rt ∈ V (j)t holds for at most |D
′|

2
choices t ∈ D′, it follows that for at least |D

′|
4

choices

t ∈ D′ we have rt ∈ U⊥t \ V (j)t. Thus, we have dim(U⊥t ∩ V (j + 1)t) > dim(U⊥t ∩ V (j)t)

for at least |D
′|

4
choices t ∈ D′.

However, for any j we have
∑

t∈D′ dim(U⊥t ∩ V (j)t) ≤
∑

t∈D′ dimU⊥t ≤
C|D′|(log(2/δ))4. Thus, we get m ≤ 4C(log(2/δ))4. Set V[d] = V (m). Then dimV[d] ≤
4C(log(2/δ))4, as claimed.
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Now let r ∈ R be arbitrary. By definition, there are at least |D′|/2 choices t ∈ D′ with

rt ∈ V[d]t. Then there is some v ∈ V[d] such that rt = vt for at least |D′|
2|V[d]|

choices t ∈ D′,
and hence also for at least δ|D|

4|V[d]|
choices t ∈ D. Note that δ

4|V[d]|
≥ δ

4|F|4C(log 2/δ)4
, therefore

by Lemma 6.2.4, r − v is f -degenerate.

Definition 6.2.13. Let k be a positive integer and let 0 ≤ α ≤ 1. Let Q be a multiset

with elements chosen from G (with arbitrary multiplicity). We say that Q is (k, α)-forcing

if the set of all arrays r ∈ G with r.q = 0 for at least α|Q| choices q ∈ Q is contained in a

set of the from
∑

I⊂[d],I 6=∅ VI ⊗ FIc for some VI ⊂ FI of dimension at most k.

We now turn to the main part of the proof of Lemma 6.2.2. For each non-empty

I ⊂ [d− 1] we will construct QI as defined in the next result, and (roughly) we will take

Q = Q[d]∪
⋃
I⊂[d−1],I 6=∅QI , whereQ[d] is provided by Lemma 6.2.12. The properties thatQI

has are generalisations of the properties that Q{2} had in Subsection 6.2.3. Accordingly,

the next lemma is the generalisation of the discussion in Subsubsection 6.2.3.3.

Lemma 6.2.14. Let d ≥ 2 and suppose that Lemma 6.2.2 has been proved for every

d′ < d. Let B′ ⊂ B have |B′| ≥ δ|B| for some 0 < δ ≤ 1/2. Let k ≥ G(d − 1, δ) be

arbitrary, let I ⊂ [d − 1], I 6= ∅, and let WJ ⊂ FJ be subspaces of dimension at most k

for every J ⊂ I, J 6= I, J 6= ∅. Then there exist a multiset Q′, and a multiset Qs for each

s ∈ Q′ with the following properties.

(1) The elements of Q′ are pure tensors chosen from
⋂
J⊂I,J 6=I,J 6=∅(W

⊥
J ⊗ FI\J) ⊂ FI

(2) Q′ is (f1, 1− f2)-forcing with f1 = G(|I|, |F|−2d+1dk), f2 = 2−3d+2

(3) For each s ∈ Q′, the elements of Qs are pure tensors chosen from FIc

(4) For each s ∈ Q′, Qs is (f3, 1− f4)-forcing with

f3 = G
(
d− |I|, |F|−23

d+4
C(log(2d−1/δ))4

)
, f4 = 2−3d+2

(5) maxs∈Q′ |Qs| ≤ 2 mins∈Q′ |Qs|

(6) The elements of the multiset QI := {s ⊗ t : s ∈ Q′, t ∈ Qs} =
⋃
s∈Q′(s ⊗ Qs) are

chosen from f5B′ − f5B′ with f5 = 23d+3
.

Proof. By symmetry, we may assume that I = [a] for some 1 ≤ a ≤ d− 1. Let C be the

multiset {u1 ⊗ · · · ⊗ ua : ui ∈ Fni} and let D be the multiset {ua+1 ⊗ · · · ⊗ ud : ui ∈ Fni}.
For each s ∈ C, let Ds = {t ∈ D : s ⊗ t ∈ B′}. Also, let C ′ = {s ∈ C : |Ds| ≥ δ

2
|D|}.

Clearly, |C ′| ≥ δ
2
|C|. By Lemma 6.2.10, there exists a g1-system R (with respect to

FI) with elements chosen from g2C ′ − g2C ′ with g1 = C · 4d(log(2d−1/δ))4 and g2 = 4d.

By Lemma 6.2.11, R ∩
⋂
J⊂I,J 6=I,J 6=∅(W

⊥
J ⊗ FI\J) contains a g3-system T ′ for g3 = C ·

4d(log(2d−1/δ))4 + 2dk. Now |T ′| ≥ |F|−dg3 |C|. By Lemma 6.2.2 (applied to a in place of

d), it follows that there exists a multiset Q′ whose elements are pure tensors chosen from

124



g4T
′ − g4T

′ and which is (g5, 1 − g6)-forcing for g4 = 23a+3 ≤ 23d+2
, g5 = G(a, |F|−dg3)

and g6 = 2−3a+3 ≥ 2−3d+2
. Note that since δ ≤ 1/2, we have C · 4d(log(2d−1/δ))4 =

C · 4d(d− 1 + log(1/δ))4 ≤ C · 4d(d log(1/δ))4. But this is at most as G(d− 1, δ) ≤ k, so

g3 ≤ 2 · 2dk, therefore Q′ satisfies (1) and (2) in the statement of this lemma.

By Lemma 6.2.10, for each s ∈ C ′ there exists a g7-system Rs (with respect to FIc)
contained in g8Ds − g8Ds, where g7 = C · 4d(log(2d−1/δ))4 and g8 = 4d. For every s ∈ Q′,
choose s1, . . . , sl+l′ ∈ C ′ with l, l′ ≤ 23d+3

such that s = s1 + · · ·+sl−sl+1−· · ·−sl+l′ (this

is possible, since the elements of Q′ are chosen from 2g2g4C ′− 2g2g4C ′ and 2g2g4 ≤ 23d+3
),

and let Ps =
⋂
i≤l+l′ Rs. By Lemma 6.2.9, Ps contains a g9-system with g9 = 2 · 23d+3 ·

C · 4d(log(2d−1/δ))4, therefore |Ps| ≥ g10|D| for g10 = |F|−dg9 ≥ |F|−23
d+4

C(log(2d−1/δ))4 . By

Lemma 6.2.2 (applied to d− a in place of d), for every s ∈ Q′ there exists a multiset Qs

consisting of pure tensors with elements chosen from g11Ps− g11Ps which is (g12, 1− g13)-

forcing for g11 = 23d−a+3 ≤ 23d+2
, g12 = G(d− a, |F|−dg9) ≤ G(d− a, |F|−23

d+4
C(log(2d−1/δ))4)

and g13 = 2−3d−a+3 ≥ 2−3d+2
. Notice that if we repeat every element of Qs the same number

of times, then the multiset obtained is still (g12, 1− g13)-forcing, so we may assume that

maxs∈Q′ |Qs| ≤ 2 mins∈Q′ |Qs|. Thus, the Qs satisfy (3), (4) and (5).

Define QI = {s⊗ t : s ∈ Q′, t ∈ Qs} =
⋃
s∈Q′(s⊗Qs). Note that as Rs ⊂ g8Ds − g8Ds

for all s ∈ C ′, we have s ⊗ Rs ⊂ g8B′ − g8B′ for all s ∈ C ′. But the elements of Q′ are

chosen from 2g2g4C ′ − 2g2g4C ′, so s ⊗ Ps ⊂ 4g2g4g8B′ − 4g2g4g8B′ for all s ∈ Q′. Finally,

the elements of Qs are chosen from g11Ps − g11Ps, so the elements of s ⊗ Qs are chosen

from 8g2g4g8g11B′ − 8g2g4g8g11B′ for every s ∈ Q′. Since 8g2g4g8g11 ≤ 8 · (4d)2 · (23d+2
)2 =

23+4d+2·3d+2 ≤ 23d+3
, property (6) is satisfied.

The next lemma is the last ingredient of the proof. It is a generalisation of the

discussion in Subsubsection 6.2.3.2. Given a tensor r ∈ V[d] +
∑

I⊂[d−1],I 6=∅ FI ⊗HIc(r), we

turn the terms FI ⊗HIc(r) one by one into terms VI ⊗ FIc + FI ⊗ VIc where VJ are small

and do not depend on r. (Note that this is not quite the same as our approach to the

case d = 3.) As briefly explained in Subsubsection 6.2.3.4, the order in which the various

I are considered is important: we define ≺ to be any total order on the set of non-empty

subsets of [d − 1] such that if J ( I then J ≺ I. It is worth noting that unlike in the

d = 3 case, the subspaces VJ , VJc with J ≺ I are allowed to change when VI and VIc get

defined (although in fact the VJc will not change, and the VJ change only for J ( I). All

we require is that they do not become much larger.

Lemma 6.2.15. Let d ≥ 2, 0 < δ ≤ 1/2 and k ≥ G(d− 1, δ)2. Let I ⊂ [d− 1], I 6= ∅ and

let WJ ⊂ FJ ,WJc ⊂ FJc be subspaces of dimension at most k for every J ≺ I. Moreover,

let W[d] ⊂ F[d] have dimension at most k. Suppose that Q′, Qs (and QI) have the six

properties described in Lemma 6.2.14. Then any array

r ∈ W[d] +
∑
J≺I

(WJ ⊗ FJc + FJ ⊗WJc) +
∑
J�I

FJ ⊗HJc(r)
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with dim(HJc(r)) ≤ k and the property that r.q = 0 for at least (1− 1
4
(2−3d+2

)2)|QI | choices

q ∈ QI is contained in

W[d] +
∑
J�I

(UJ ⊗ FJc + FJ ⊗ UJc) +
∑
J�I

FJ ⊗KJc(r)

for some UJ ⊂ FJ , UJc ⊂ FJc not depending on r and some KJc(r) ⊂ FJc possibly

depending on r, all of dimension at most k2c2(|I|).

Proof. By (4) in Lemma 6.2.14, for every s ∈ Q′ there exist subspaces VJ(s) ⊂ FJ for

every J ⊂ Ic, J 6= ∅, with dimension at most g1 = G(d− 1, |F|−23
d+4

C(log 2d−1/δ)4) such that

the set of arrays t ∈ FIc with t.q = 0 for at least (1− g2)|Qs| choices q ∈ Qs is contained

in
∑

J⊂Ic,J 6=∅ VJ(s)⊗ FIc\J , where g2 = 2−3d+2
. Note, for future reference, that

g1 = G(d− 1, |F|−23
d+4

C(log 2d−1/δ)4) = ((log |F|)2c1(d− 1)23d+4

C(log 2d−1/δ)4)c2(d−1)

≤ ((log |F|)2c1(d− 1)23d+4

C(d log 1/δ)4)c2(d−1)

≤ ((log |F|)2(c1(d− 1))2(log 1/δ)4)c2(d−1) ≤ G(d− 1, δ)4 ≤ k2.

Let R consist of the set of arrays with r ∈ W[d] +
∑

J≺I(WJ ⊗ FJc + FJ ⊗ WJc) +∑
J�I FJ ⊗ HJc(r) with dim(HJc(r)) ≤ k and the property that r.q = 0 for at least

(1− 1
4
(2−3d+2

)2)|QI | choices q ∈ QI .

Let r ∈ R. Then by averaging and using (5) from Lemma 6.2.14, for at least (1−g3)|Q′|
choices s ∈ Q′ we have r.(s ⊗ t) = 0 for at least (1 − g2)|Qs| choices t ∈ Qs, where

g3 = 1
2
2−3d+2

. Thus, (noting that r.(s ⊗ t) = (rs).t), rs ∈
∑

J⊂Ic,J 6=∅ VJ(s) ⊗ FIc\J holds

for at least (1 − g3)|Q′| choices s ∈ Q′. Let Q′(r) be the submultiset of Q′ consisting of

those s ∈ Q′ for which rs ∈
∑

J⊂Ic,J 6=∅ VJ(s)⊗FIc\J . Then we have |Q′(r)| ≥ (1− g3)|Q′|.

Note that we can write r = r1 + r2 + r3 + r4 where

r1 ∈
∑

J⊂I,J 6=I,J 6=∅

WJ ⊗ FJc ,

r2 ∈
∑

J≺I,J 6⊂I

(WJ ⊗ FJc + FJ ⊗WJc) +
∑
J�I

FJ ⊗HJc(r),

r3 ∈ W[d] +
∑

J⊂I,J 6=I,J 6=∅

FJ ⊗WJc ,

r4 ∈ FI ⊗HIc(r).

By (1) in Lemma 6.2.14, the elements of Q′ belong to
⋂
J⊂I,J 6=I,J 6=∅(W

⊥
J ⊗ FI\J), so we

have r1s = 0 for every s ∈ Q′.
Note that for every pure tensor s ∈ FI , r2s is 2dk-degenerate. Indeed, for any J ⊂

[d − 1] with J 6⊂ I there are some s1 ∈ FI∩J , s2 ∈ FI∩Jc with s = s1 ⊗ s2. Then

(WJ ⊗FJc)s ⊂ (WJs1)⊗FIc\J . Since dim(WJs1) ≤ k, J 6⊂ I and d ∈ Ic \ J , any tensor in
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(WJs1)⊗ FIc\J is k-degenerate. Similarly, any tensor in (FJ ⊗WJc)s or (FJ ⊗HJc(r))s is

also k-degenerate, so r2s is indeed 2dk-degenerate. Since Q′ consists of pure tensors, this

holds for every s ∈ Q′.
Also, r3s ∈

∑
J⊂I,J 6=I((FJ ⊗WJc)s). It follows that for every s ∈ Q′(r), there exists

some t(s) ∈ VIc(s) +
∑

J⊂I,J 6=I((FJ ⊗ WJc)s) such that r4s − t(s) is g4-degenerate for

g4 = g1 + 2dk (we have used that dim(VJ(s)) ≤ g1). To ease the notation, write T (s) for

the space VIc(s)+
∑

J⊂I,J 6=I((FJ⊗WJc)s). We claim that the dimension of T (s) is at most

g4 = g1 +2dk. Indeed, dim(VIc) ≤ g1, so it suffices to prove that dim((FJ⊗WJc)s) ≤ k for

every J ⊂ I, J 6= I. Since s ∈ Q′, s is a pure tensor, so for any such J we have s = s1⊗ s2

for some s1 ∈ FJ , s2 ∈ FI\J . But then (FJ⊗WJc)s ⊂ WJcs2, which has dimension at most

dim(WJc) ≤ k.

Let us define a sequence of subspaces 0 = Z(0) ⊂ Z(1) ⊂ . . . ⊂ Z(m) ⊂ FIc recursively

as follows. Given Z(j), if for all r ∈ R we have that for all but at most 2g3|Q′| choices

s ∈ Q′ there is some z ∈ Z(j) such that r4s− z is (g4 + 1)g4-degenerate, then set m = j

and terminate.

Else, choose some r ∈ R such that for at least 2g3|Q′| choices s ∈ Q′ there is no

z ∈ Z(j) such that r4s − z is (g4 + 1)g4-degenerate, and set Z(j + 1) = Z(j) + HIc(r).

Recall that for every s ∈ Q′(r), and in particular, for at least (1− g3)|Q′| choices s ∈ Q′,
there exists some t(s) ∈ T (s) such that r4s− t(s) is g4-degenerate. So for at least g3|Q′|
choices s ∈ Q′ there is some t(s) ∈ T (s) such that r4s− t(s) is g4-degenerate, but there is

no z ∈ Z(j) such that r4s− z is (g4 + 1)g4-degenerate. In this case there is no z ∈ Z(j)

such that z − t(s) is g2
4-degenerate. On the other hand, since r4s ∈ HIc(r) ⊂ Z(j + 1),

there is some z ∈ Z(j+1) such that z− t(s) is g4-degenerate. For any i, let K(i, s) be the

subspace of T (s) spanned by those t ∈ T (s) for which there is some z ∈ Z(i) with z − t
being g4-degenerate. Since the dimension of T (s) is at most g4, we have t(s) 6∈ K(j, s),

else there would exist some z ∈ Z(j) such that z − t(s) is g2
4-degenerate. On the other

hand, t(s) ∈ K(j + 1, s). Thus, dimK(j + 1, s) > dimK(j, s). This holds for at least

g3|Q′| choices s ∈ Q′, so∑
s∈Q′

dimK(j + 1, s) ≥ g3|Q′|+
∑
s∈Q′

dimK(j, s).

Since K(m, s) ⊂ T (s), we have dimK(m, s) ≤ g4. Thus,

|Q′|g4 ≥
∑
s∈Q′

dimK(m, s) ≥ mg3|Q′|,

so m ≤ g4
g3

and dimZ(m) ≤ kg4
g3

. Write Z = Z(m).

Now let r ∈ R. Let X(r) be the set consisting of those x ∈ HIc(r) for which there

is some z ∈ Z with x − z being (g4 + 1)g4-degenerate. Then r4s ∈ X(r) apart from at

most 2g3|Q′| choices s ∈ Q′. Let t1, . . . , tα be a maximal linearly independent subset of

X(r) and extend it to a basis t1, . . . , tα, t
′
1, . . . , t

′
β for HIc(r). Now if a linear combination
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of t1, . . . , tα, t
′
1, . . . , t

′
β is in X(r), then the coefficients of t′1, . . . , t

′
β are all zero. Write

r4 =
∑

i≤α si ⊗ ti +
∑

j≤β s
′
j ⊗ t′j for some si, s

′
j ∈ FI . Since r4q ∈ X(r) for at least

(1 − 2g3)|Q′| = (1 − 2−3d+2
)|Q′| choices q ∈ Q′, we have, for all j, that s′j.q = 0 for at

least (1− 2−3d+2
)|Q′| choices q ∈ Q′. Thus, by (2) in Lemma 6.2.14 there exist subspaces

LJ ⊂ FJ (J ⊂ I, J 6= ∅) not depending on r, and of dimension at most G(|I|, |F|−2d+1dk)

such that s′j ∈
∑

J⊂I,J 6=∅ LJ ⊗FI\J for all j. Thus, r4 ∈
∑

i≤α si⊗ ti +
∑

J⊂I,J 6=∅ LJ ⊗FJc .
Moreover, for every i ≤ α, we have ti ∈ X(r), so there exist zi ∈ Z such that ti − zi

is (g4 + 1)g4-degenerate. It follows that r4 ∈ FI ⊗ Z +
∑

J⊃I,J 6=I,J⊂[d−1] FJ ⊗ K ′Jc(r) +∑
J⊂I,J 6=∅ LJ⊗FJ

c
for some K ′Jc(r) ⊂ FJc of dimension at most α·(g4+1)g4 ≤ k ·(g4+1)g4.

We claim that dim(Z), dim(K ′Jc) and dim(LJ) are all bounded by k2c2(|I|) − k.

Firstly, note that g4 = g1 + 2dk ≤ k2 + 2dk ≤ 2k2.

Now dim(K ′Jc) ≤ k(g4 + 1)g4 ≤ k6 ≤ k2c2(|I|) − k. Also, dim(Z) ≤ kg4
g3
≤ k4 ≤

k2c2(|I|) − k. Finally,

dim(LJ) ≤ G(|I|, |F|−2d+1dk) = ((log |F|)2c1(|I|)(2d+1dk))c2(|I|)

≤ ((log |F|)2c1(d− 1)2k)c2(|I|) ≤ G(d− 1, δ)2kc2(|I|)

≤ kc2(|I|)+1 ≤ k2c2(|I|) − k

This completes the proof of the claim and the lemma.

Proof of Lemma 6.2.2. As stated earlier, the proof goes by induction on d. For d = 1,

by Lemma 6.2.1 there is a subspace U ⊂ Fn1 of codimension at most C(log 1/δ)4 contained

in 2B′ − 2B′. Choose Q = U . Now if r.q = 0 for at least (1− 2−34)|Q| choices q ∈ Q then

the same holds for all q ∈ Q, therefore r ∈ U⊥, but dim(U⊥) ≤ C(log 1/δ)4, so the case

d = 1 is proved.

Now let us assume that d ≥ 2. Extend the total order ≺ defined above such that it

now contains ∅ which has ∅ ≺ I for every non-empty I ⊂ [d− 1]. Say ∅ = I0 ≺ I1 ≺ I2 ≺
· · · ≺ I2d−1−1 where {I0, . . . , I2d−1−1} = P ([d− 1]).

Claim. For every 0 ≤ i ≤ 2d−1 − 1 there exists a multiset QIi of pure tensors with

elements chosen from 23d+3B′ − 23d+3B′, and subspaces WIj(i) ⊂ FIj , W(Ij)c(i) ⊂ F(Ij)
c

for every j ≤ i (for j = 0, we only require W[d](i) and not W∅(i)) with the following

properties. The dimension of each of these spaces is at most g1(i) = G(d− 1, δ)α(i), where

α(i) = 4 ·Π1≤j≤i 2c2(|Ij|) . Moreover, if r ∈ G has r.q = 0 for at least (1− 1
4
(2−3d+2

)2)|QIj |
choices q ∈ QIj for all j ≤ i, then r ∈ W[d](i) +

∑
1≤j≤i(WIj(i)⊗F(Ij)

c
+FIj ⊗W(Ij)c(i)) +∑

j>i FIj⊗H(Ij)c(i, r) holds for some H(Ij)c(i, r) possibly depending on r and of dimension

at most g1(i).

Proof of Claim. This is proved by induction on i. For i = 0, by Lemma 6.2.12, there

exist Q∅ ⊂ 2B′ − 2B′ consisting of pure tensors and V[d] ⊂ F[d] of dimension at most

4C(log(2/δ))4 ≤ 4C(2 log(1/δ))4 ≤ G(d − 1, δ)4 such that if r.q = 0 for at least 7
8
|Q∅|

choices q ∈ Q∅, then r can be written as r = x + y where x ∈ V[d] and y is g2-degenerate
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for g2 = G(d− 1, δ

4|F|4C(log 2/δ)4
). Since

g2 ≤ G(d− 1, |F|−5C(log 2/δ)4) = ((log |F|)2c1(d− 1)5C(log(2/δ))4)c2(d−1)

≤ ((log |F|)2c1(d− 1)5C(2 log(1/δ))4)c2(d−1) ≤ G(d− 1, δ)4,

we can take W[d](0) = V[d].

Once we have found suitable sets WIj(i − 1) and W(Ij)c(i − 1) for all j ≤ i − 1, we

can apply Lemmas 6.2.14 and 6.2.15 with I = Ii and k = g1(i− 1) to find a suitable QIi ,

WIj(i) and W(Ij)c(i) for all j ≤ i, and the claim is proved, since g1(i) = g1(i− 1)2c2(|Ii|).

Now, after taking several copies of each QI , we may assume that additionally

maxI |QI | ≤ 2 minI |QI |. Let Q =
⋃
I⊂[d−1]QI and suppose that r.q = 0 for at least

(1 − 2−3d+3
)|Q| choices q ∈ Q. Since 2−3d+3 ≤ 1

2·2d−1 · 1
4
(2−3d+2

)2, it follows that for every

I ⊂ [d− 1] we have r.q = 0 for at least (1− 1
4
(2−3d+2

)2)|QI | choices q ∈ QI . By the Claim

with i = 2d−1 − 1, we get that r ∈
∑

I⊂[d],I 6=∅ VI ⊗ FIc for some VI ⊂ FI not depending on

r, and of dimension at most g1(2d−1 − 1) = G(d− 1, δ)α(2d−1−1). Note that

α(2d−1 − 1) = 4 · 22d−1−1 · Π1≤i≤d−1c2(i)(
d−1
i ).

But

Π1≤i≤d−1c2(i)(
d−1
i ) = 4

∑
1≤i≤d−1 (d−1

i )ii ≤ 4
∑

1≤i≤d−1 (d−1
i )(d−1)i ≤ 4(d−1+1)d−1

= 4d
d−1

.

Thus, α(2d−1 − 1) ≤ 4d
d
. This completes the proof of the lemma.
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Chapter 7

Subsets of Cayley graphs that induce

many edges

7.1 Introduction

The Unique Games Conjecture, formulated by Khot [83] in 2002, is a central conjecture in

theoretical computer science. If true, it implies that for a wide class of natural problems it

is NP-hard to find even a very crude approximate solution in polynomial time. Recently,

a weakening of the conjecture known as the 2-to-2 Games Conjecture, where the approxi-

mation is required to be less crude (so it is easier to prove hardness) was proved by Khot,

Minzer and Safra [84], a result that is considered as a major step towards the Unique

Games Conjecture itself. More precisely, after work by various authors, the problem had

been reduced to a statement about a certain Cayley graph, and Khot, Minzer and Safra

proved that statement.

The Cayley graph Γ in question has as its vertex set the set of all m×n matrices over

F2, with two vertices joined by an edge if their difference has rank 1. Let us say that a

subset A ⊂ Mm,n(F2) is η-closed if the probability that A + B ∈ A, when A is chosen

uniformly from A and B is chosen uniformly from all rank-1 matrices, is at least η. In

graph terms, this is the probability that a random neighbour of a random point in A is

itself in A.

A simple example of an η-closed set is the set {A ∈ Mm,n(F2) : Ax = y}, for some pair

of vectors x ∈ Fn2 , y ∈ Fm2 . Indeed, if Ax = y and B is a random matrix of rank 1, then

x ∈ kerB with probability roughly 1/2. But if x ∈ kerB, then (A+B)x = y, so A+B ∈ A
as well. A very similar, but distinct, example is the set {A ∈ Mm,n(F2) : ATx = y}. Let

us call sets of one of these two kinds basic sets.

We can form further examples by taking intersections of a small number of basic sets.

For example, if x1, . . . , xk are linearly independent and we take a set of the form

{A ∈ Mm,n(F2) : Ax1 = y1, . . . , Axk = yk},
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then with probability approximately 2−k each xi belongs to kerB, so for any A in the set,

A+B belongs to the set with probability approximately 2−k. The result of Khot, Minzer

and Safra is the following.

Theorem 7.1.1. For every η > 0 there exist δ > 0 and a positive integer k such that if A
is any η-closed subset of Mm,n(F2), then there exists an intersection C of at most k basic

sets such that |A ∩ C| ≥ δ|C| and C 6= ∅.

In other words, every closed set is dense inside some intersection of a small number of

basic sets.

It is well known and not hard to see that this in fact leads to a characterization (at least

qualitatively) of closed sets. Indeed, observe first that if A is η-closed, then the subgraph

induced by A has average degree at least η|B|, where B is the set of rank-1 matrices, and

maximal degree at most |B|. Therefore, any subset of A of size at least (1− η/4)|A| has

average degree at least η|B|/2. It follows from this observation and Theorem 7.1.1 that

we can find disjoint subsets A1, . . . ,Ar of A, subsets C1, . . . , Cr of Mm,n(F2), a positive

real number δ = δ(η) and a positive integer k = k(η) with the following properties.

1. The sets Ai are disjoint.

2. Each Ci is an intersection of at most k basic sets.

3. For each i, |Ai ∩ Ci| ≥ δ|Ci|.

4. |
⋃
iAi| ≥ η|A|/4.

Conversely, if such sets exist, then the probability that a random matrix A ∈ A belongs

to some Ai is at least η/4. If it belongs to Ai, then we can use the following lemma. We

write u⊗v for the rank-1 matrix M with Mij = uivj, which sends a vector x to the vector

〈x, v〉u. Note also that (u⊗ v)T sends x to 〈x, u〉v.

Lemma 7.1.2. Let C be an intersection of at most k basic sets and let A ⊂ C be a subset

of relative density at least δ. Then A is 2−k(δ − 2−(m−k))-closed.

Proof. Let us set C(x, y) = {A ∈ Mm,n(F2) : Ax = y}, and C ′(x, y) = {A ∈ Mm,n(F2) :

ATx = y}. Let x1, . . . , xk, y1, . . . , yk be non-zero vectors such that C =
⋂r
i=1 C(xi, yi) ∩⋂k

i=r+1 C ′(xi, yi).
Let u ⊗ v be a rank-1 matrix. If there exists i ≤ r such that 〈xi, v〉 6= 0, then

(A + u ⊗ v)(xi) = yi + u, so A + u ⊗ v /∈ C(xi, yi) and hence A + u ⊗ v /∈ C. Similarly,

if there exists i > r such that 〈xi, u〉 6= 0, then (A + u ⊗ v)T (xi) = yi + v and again

A+ u⊗ v /∈ C.
We shall now bound from below the probability that A+ u⊗ v ∈ A given that A ∈ A

and that 〈xi, v〉 = 0 for every i ≤ r and 〈xi, u〉 = 0 for every r < i ≤ k, noting that

the condition on u ⊗ v states that (u, v) ∈ U × V for a pair of subspaces U and V with

codimensions that add up to at most k, a condition that occurs with probability 2−k.
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Let us now condition further on the choice of v ∈ V . That means that we fix v, choose

a random u ∈ U , and add u⊗ v to A. If we allow u to take the value 0, then the resulting

matrix is uniformly distributed in the affine subspace A+ U ⊗ v, so the probability that

it is in A is equal to the relative density of A inside this affine subspace.

The translates of U⊗v by matrices in C partition C. Let us write them asW1, . . . ,Ws,

and let the relative density of A inside Wi be δi. Then, still fixing v, we have that

P[A+ u⊗ v ∈ A] =
∑
i

P[A ∈ Wi]P[A+ u⊗ v ∈ A|A ∈ Wi] =
∑
i

δ2
i

sδ
≥ δ.

This statement is true regardless of v, so we deduce that the probability that A+u⊗v ∈ A
given that A ∈ A and (u, v) ∈ U × (V \ {0}) is at least δ. If we now insist that u 6= 0, we

reduce this probability by at most 2−(m−k), so the result is proved.

Let B ∈ B be chosen uniformly at random. Given the lemma above, applied to the

sets Ai and Ci, we deduce that the conditional probability that A + B ∈ Ai given that

A ∈ Ai is at least some c(δ, k) > 0, and from that it follows that A is c(δ, k)η/4-closed.

Thus, a set A is η-closed for some not too small η if and only if an appreciable fraction

of A is efficiently covered by disjoint intersections of few basic sets.

Barak, Kothari and Steurer suggest in [7] that establishing a higher dimensional ana-

logue of Theorem 7.1.1 may be a useful step in obtaining a proof of the full Unique Games

Conjecture, though they do not actually provide a formal reduction. The main purpose of

this chapter is to formulate a suitable conjecture and prove some partial results towards

it. We say that A ⊂ Fn1
2 ⊗ · · · ⊗ Fnd2 is η-closed if with probability at least η, we have

A+ u1 ⊗ · · · ⊗ ud ∈ A, when A ∈ A and vectors ui ∈ Fni2 \ {0} are chosen independently

and uniformly at random.

Problem 7.1.3. Give a qualitative description of η-closed sets A ⊂ Fn1
2 ⊗ · · · ⊗ Fnd2 .

To see that this is indeed a generalization of the problem about matrices considered

above, we identify Mm,n(F2) with Fm2 ⊗ Fn2 in the usual way, which leads to a slight

reformulation of Theorem 7.1.1 in terms of tensor products. Note first that under this

identification, the set {M ∈ Mm,n(F2) : Mx1 = · · · = Mxa = MTy1 = · · · = MTyb = 0}
becomes the set H ⊗K, where H = 〈y1, . . . , yb〉⊥ and K = 〈x1, . . . , xa〉⊥. It follows that

an intersection of at most k basic sets is either empty or a translate of H ⊗K for some

pair of subspaces H ⊂ Fm2 , K ⊂ Fn2 with codim(H) + codim(K) ≤ k.

In the higher-dimensional case, there is a richer class of sets A ⊂ Fn1
2 ⊗ · · · ⊗ Fnd2 that

are η-closed. To describe them, we recall the notation defined in Subsection 6.2.1: given

a non-empty subset I ⊂ [d], we write FI2 for
⊗

i∈I F
ni
2 .

Now we say that C is k-simple if there exists a collection of subspaces HI ⊂ FI2 of

codimension at most k, one for each non-empty subset I ⊂ [d], such that C is a translate

of the set
⋂
I⊂[d],I 6=∅(HI ⊗ FIc2 ) (where H[d] ⊗ F∅2 is just H[d]), which is a subspace of

Fn1
2 ⊗ · · · ⊗ Fnd2 . It is not hard to see that this subspace contains at least a proportion
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c(d, k) > 0 of all rank-1 tensors u1 ⊗ · · · ⊗ ud (provided that n1, . . . , nd are sufficiently

large), so it is c(d, k)-closed. It follows that any translate of it is c(d, k)-closed too.

We now make the following conjecture.

Conjecture 7.1.4. For any η > 0 and any positive integer d, there exist k = k(d, η) and

ρ = ρ(d, η) > 0 with the following property. Let A ⊂ Fn1
2 ⊗ · · · ⊗ Fnd2 be η-closed. Then

there is a k-simple set C such that |A ∩ C| ≥ ρ|C|.

Note that in the d = 2 case, we allow translates of sets (H{1}⊗H{2})∩H{1,2} rather than

just translates of H{1}⊗H{2}, so Conjecture 7.1.4 might seem to be weaker than Theorem

7.1.1. However, this actually makes no difference, since when intersecting with H{1,2}, the

cardinality of the set drops by a factor at most 2k.

The main result of this chapter, stated later in this section, is a proof of Conjecture

7.1.4 in an important special case.

7.1.1 What can be said about more general Cayley graphs?

It is tempting to try to prove Conjecture 7.1.4 by identifying and proving a statement

that applies to a much wider class of Cayley graphs, of which Conjecture 7.1.4 would be

a special case. We would begin with an Abelian (or even non-Abelian) group G and a

pair of subsets A,B ⊂ G, where we think of B as the set of generators, satisfying the

hypothesis that |{(a, b) ∈ A × B : a + b ∈ A}| ≥ η|A||B|. We shall say in this situation

that A is (B, η)-closed (in G).

Another way of writing the condition is

〈1A ∗ µB,1A〉 ≥ ηα,

where α is the density of A, µB is the characteristic measure of B (that is, the function that

takes the value |G|/|B| on B and 0 elsewhere) and we define f ∗g(x) to be Ey+z=xf(y)g(z).

By the Cauchy-Schwarz inequality the left-hand side is at most ‖1A ∗µB‖2‖1A‖2 = ‖1A ∗
µB‖2α

1/2, where inner products and Lp norms are defined using expectations, so our

hypothesis implies that ‖1A ∗ µB‖2
2 ≥ η2α. It is easy to see that this “mixed energy”

‖1A ∗ µB‖2
2 can be at most α, with equality if and only if a + b − b′ ∈ A for every

a ∈ A, b, b′ ∈ B.

At this point let us recall the so-called asymmetric Balog-Szemerédi-Gowers theorem,

which can be found in [108] as Theorem 2.35. (For a useful alternative presentation of the

theorem, see also [55].) The main assumption of the theorem is that A,B are two finite

subsets of an Abelian group, with densities α and β, such that ‖1A ∗1B‖2
2 ≥ ηαβ2 (which

is equivalent to saying that ‖1A ∗ µB‖2
2 ≥ ηα), but there is also an assumption that A is

not too much bigger than B. The precise statement is as follows.

Theorem 7.1.5. For every ε > 0 there exists a constant C = C(ε) with the following

property. Let G be a finite Abelian group, let L ≥ 1, let 0 < η ≤ 1 and let A and B be
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finite subsets of G with densities α and β, such that α ≤ Lβ and ‖1A ∗ 1B‖2
2 ≥ 2ηαβ2.

Then there exist a subset H ⊂ G such that |H + H| ≤ Cη−CLε|H|, a subset X ⊂ G of

size at most Cη−CLε|A|/|H| such that |A ∩ (X + H)| ≥ C−1ηCL−ε|A|, and some x ∈ G
such that |B ∩ (x+H)| ≥ C−1ηCL−ε|B|.

More qualitatively speaking, if A is not too much larger than B and ‖1A ∗ 1B‖2
2 is within

a constant of its largest possible value, then there is a set H of small doubling such that a

small number of translates of H cover a substantial proportion of A, and some translate

of H covers a substantial proportion of B. It is not hard to see that the converse holds

as well.

This theorem cannot be used to prove Conjecture 7.1.4 because of the condition that

α ≤ Lβ, which does not apply here since the set A in Conjecture 7.1.4 can be much bigger

than the set B. That raises the following question, which generalizes Problem 7.1.3.

Question 7.1.6. Let G be a finite Abelian group, let η > 0, and let A,B ⊂ G be subsets

such that A is (B, η)-closed in G. What can be said about A, B and the relationship

between them?

A similar question can of course be asked with the slightly weaker hypothesis that ‖1A ∗
1B‖2

2 ≥ η2αβ2, but we shall concentrate on the question as stated, since it is more closely

related to Conjecture 7.1.4.

An immediate observation is that we cannot hope to say anything interesting about

the structure of B, even if η = 1. For example, η = 1 if A = G and B is an arbitrary

subset of G. For a more general example, one can let A be an arbitrary union of cosets of

some subgroup H and let B be an arbitrary subset of H. For a slightly different example,

let G = Fn2 , let B be the set {e1, . . . , en} of standard basis vectors, and let A be a union

of n/3-dimensional affine subspaces Vi, such that each Vi is a random translate of the

subspace generated by n/3 randomly chosen ej. Then if x ∈ Vi and b ∈ B, the probability

that x+ b ∈ Vi is 1/3, so A is 1/3-closed.

Any general statement will have to be weak enough to allow for examples like these.

The last example shows that we cannot hope to find a single set H of small doubling and

cover a large portion of A efficiently with translates of H, unless H is of constant size, in

which case the conclusion becomes trivial. To sketch briefly why not, observe first that by

Freiman’s theorem we can assume that H is a subspace. Next, note that for each vector

x, the probability that it belongs to the span of a random n/3 standard basis vectors is

exponentially small in the size of the support of x. We can also use the following simple

lemma.

Lemma 7.1.7. Let H be a subspace of dimension d and let k ≤ d. Then the number of

vectors in H of support size at most k is at most the number of vectors of support size at

most k in the subspace generated by the first d standard basis vectors e1, . . . , ed, namely∑k
i=0

(
d
i

)
.
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Proof. Let u1, . . . , ud be a basis for d. By Gaussian elimination, we can convert u1, . . . , ud

into a basis v1, . . . , vd and find coordinates t1, . . . , td such that vi(tj) = δij. Then the

support size of
∑

i λivi is at least the number of non-zero λi, which proves the result.

When d is large, it follows that the proportion of vectors in H of small support is very

small. Combining these observations, one can show that for every η there exists d such

that if H is a d-dimensional subspace, then the probability that a random subspace V

of dimension n/3 is (H, η/2)-closed is at most η/2. This in turn can be used to prove

that with high probability the set A described above (for a suitable number of Vi) is not

(H, η)-closed for any H of dimension d or above.

However, these examples do not rule out a weakening along the following lines.

Question 7.1.8. Let G be a finite Abelian group, let η > 0, and let A,B be subsets of G

such that A is (B, η)-closed in G. Does it follow that A has a non-empty subset A′ such

that A′ is (B, η′)-closed in G, and |A′ + A′| ≤ C|A′|, where η′ > 0 and C are constants

that depend on η only?

An argument similar to the one we mentioned just after the statement of Theorem 7.1.1

shows that if the answer is yes, then we can find a collection of disjoint subsets A1, . . . , Am

that cover a substantial proportion of A, each one with small doubling and each one

(B, η′)-closed (with a slightly smaller η′). Thus, we would be able to obtain a conclusion

similar to that of Theorem 7.1.5 but without the requirement that the structured sets are

all translates of one another.

A positive answer would also imply Conjecture 7.1.4. Indeed, by Freiman’s theorem

Ai is contained in a subspace Vi not much larger than Ai. This reduces the conjecture to

the case where A is a subspace. In that case, a very simple corollary of our main result,

Corollary 7.1.12 (stated later) proves the conjecture.

However, the answer to Question 7.1.8 is easily seen to be negative (which implies

that it is also negative if we assume the weaker mixed-energy hypothesis instead). The

example we are about to give was communicated to us privately by Boaz Barak as a

counterexample to a related but slightly different statement.

For convenience let n be odd, let A ⊂ Fn2 be the set of all vectors with (n ± 1)/2

coordinates equal to 1, and let B be the set of standard basis vectors. Then it is easy

to see that A is (B, η)-closed for η = (n + 1)/2n ≈ 1/2. Suppose now that we could

find a subset A′ ⊂ A such that |A′ + A′| ≤ C|A′|, and A′ is (B, η′)-closed. By Freiman’s

theorem, A′ is contained in a subspace V that is not much bigger than A′, which implies

that V is (B, c)-closed for some positive constant c = c(η). That implies that at least cn

of the standard basis vectors belong to V . Let W be the subspace spanned by these basis

vectors. The maximum number of elements of A that can belong to a translate x+W of

W is 2(cn)−1/2|W |, and therefore |A′| ≤ 2(cn)−1/2|V |. This contradicts the fact that V is

not much bigger than A′.

In this chapter we formulate a yet weaker conjecture and prove that it still implies

Conjecture 7.1.4. Unfortunately, we also give a counterexample to the weaker conjecture.
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The counterexample does not make the implication vacuous, however, because the impli-

cation depends on a non-trivial theorem that is true and of some interest: it is just that

for a general Cayley graph (on a finite Abelian group) one cannot deduce the hypotheses

of the theorem from the assumption that a set is η-closed. It is conceivable that one might

be able to prove Conjecture 7.1.4 (and thereby also give a different proof of the theorem

of Khot, Minzer and Safra) by using additional properties of the particular Cayley graph

that that conjecture is about.

How, then, might one try to find a conjecture that would not be contradicted by

the “two-layers” example just discussed? One observation that suggests a possible way

forward is the following. Suppose that we extend the set by adding a few more layers. If,

say, we take not just the middle two layers but the middle ε−1 layers (or thereabouts),

then we obtain a new set inside which the first set has relative density approximately 2ε,

and this new set is (1− 2ε)-closed, since a random element of the set will be in one of the

interior layers with probability approximately (and in fact slightly bigger than) 1 − 2ε,

and adding an arbitrary basis vector to such an element will give another element of the

set.

So perhaps we could hope that if A is (B, η)-closed, then there is a set C that is

(B, 1− ε)-closed such that |A ∩ C| ≥ δ|C| for some δ that depends on η and ε only.

However, simple modifications of the example show that this is too much to ask. For

instance, we can take as our set A the set of all x ∈ Fn2 such that m or m+ 1 coordinates

are equal to 1 and all but the first 2m coordinates are zero. If m is around n/4, say, then

the resulting set is (B, 1/4)-closed, but there is no prospect of A living densely in a set

that is almost perfectly closed, because of the need to add basis vectors corresponding to

coordinates beyond 2m.

A further example to consider is the set of all x ∈ Fn2 such that at most n/3 coordinates

are equal to 1. This set is (B, 1/3)-closed (at least – in fact it is more like (B, 2/3)-closed

because the probability that a random element of the set has exactly bn/3c coordinates

equal to 1 is approximately 1/2), but for similar reasons to the previous example, one

cannot find an almost perfectly closed set with a significant proportion of its elements in

the set.

However, the picture changes if we ask for slightly less. Let us informally call a set

C good if there is a proportional-sized subset B′ ⊂ B such that C is (B′, 1− ε)-good for

some small constant ε. Thus, now we ask only that C should be almost closed for a large

subset of B rather than for the whole set.

It is not immediately clear how to use this definition, because the statement that

|A ∩ C| ≥ δ|C| for a good set C can be true for uninteresting reasons. For example, we

could take C to be the union of a subspace V generated by n/5 basis vectors together

with an arbitrary subset of A of cardinality 2δ|V |. To remedy this, we insist that C is

“related to A” in the graph in a different sense from that of A being dense in C.

Here, then, is a question that replaces Question 7.1.8.
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Question 7.1.9. Is it true that for every η, ε > 0 there exist c > 0, δ > 0 and positive

integer l with the following property? Let G be a finite Abelian group and let A,B ⊂ G

be subsets such that A is (B, η)-closed. Then there is a subset B′ ⊂ B and a non-empty

subset C ⊂ G with the following properties.

1. |B′| ≥ δ|B|.

2. C is (B′, 1− ε)-closed.

3. C ⊂
{
x ∈ G : 1A ∗ µB ∗ · · · ∗ µB ∗ µ−B ∗ · · · ∗ µ−B(x) ≥ c

}
where the number of µBs

and µ−Bs in the convolution is l.

Condition (3) is saying that for any x ∈ C, the probability that x− b1 − · · · − bl + bl+1 +

· · ·+ b2l ∈ A, when the bi are chosen uniformly and independently at random from B, is

at least c. When the group G is Fn2 for some n, we can and will simplify it, since B = −B.

To see that this question improves on Question 7.1.8, let us consider the two prob-

lematic examples for that question. If m is odd and A ⊂ Fn2 consists of all sequences

with (m ± 1)/2 1s and with no 1s after the mth coordinate, then let C be the set of all

sequences with no 1s after the mth coordinate that have between (m − 1)/2 − ε−1 and

(m+1)/2+ε−1 1s. If l = ε−1, then for any x ∈ C, the probability that x−b1−· · ·−bl ∈ A
is at least (m

2n
)l. (This is because conditional on bi ∈ {e1, . . . , em} this probability is at

least 1
2l

.) Moreover, if B′ = {e1, . . . , em}, then for every b ∈ B′ and every c ∈ C that is not

on the boundary (in the obvious sense), we have that b+ c ∈ C, so C is (B′, 1− ε)-closed.

Now let us look at the example where A is the set of all sequences with at most n/3

1s. This time let C be the set of all sequences that are 0 after the first 2n/3 coordinates

and have at most n/3 + ε−1 1s, and let B′ = {e1, . . . , e2n/3}. Then for any x ∈ C, the

probability that x − b1 − · · · − bl ∈ A is at least (1
3
)l, where l = ε−1. Moreover, C is

(1 − ε)-closed, again because adding an element of B′ to a non-boundary element of C

gives an element of C.

7.1.2 Our main result

Let us now see why a positive answer to Question 7.1.9 would imply Conjecture 7.1.4. The

deduction will be easy once we have established the following theorem, which is the main

result of this chapter. Similarly to Chapter 6, here G denotes Fn1
2 ⊗· · ·⊗F

nd
2 and B denotes

the multiset {u1 ⊗ · · · ⊗ ud : ui ∈ Fni2 for all i}. Note that the notion of (B, η)-closedness

can be generalized in an obvious way to multisets.

Theorem 7.1.10. For any θ > 0, there exists ε = ε(d, θ) > 0 with the following property.

Let δ > 0. Then there exists a positive integer k = k(d, δ) with the following property.

For any B′ ⊂ B with |B′| ≥ δ|B| and any A ⊂ G which is (B′, 1− ε)-closed, there exists a

k-simple set D ⊂ G such that |D ∩ A| ≥ (1− θ)|D|.
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We remark that in the case where B′ = B the proof is easy, and D can be chosen to be

the whole of G.

It is convenient to state the following corollary separately, which follows from Theorem

7.1.10 by taking θ = 1/2.

Corollary 7.1.11. There exists ε = ε(d) > 0 such that for any δ > 0, there exists a

positive integer k = k(d, δ) with the following property. For any B′ ⊂ B with |B′| ≥ δ|B|
and any A ⊂ G which is (B′, 1 − ε)-closed, there exists a k-simple set D ⊂ G which has

|D ∩ A| ≥ 1
2
|D|.

Let us see why Conjecture 7.1.4 follows from Corollary 7.1.11 and a positive answer to

Question 7.1.9 in the case of the group G and the subset B ⊂ G of rank-1 tensors. Let

η > 0. Pick ε = ε(d) so that the conclusion of Corollary 7.1.11 holds. If the answer to

Question 7.1.9 is positive for G and B, then we can choose c > 0, δ > 0, and a positive

integer l such that the conclusion of the question is true. Now let A ⊂ G be η-closed. This

is saying that A is (B, η)-closed. By the conclusion of Question 7.1.9, there exist a set

B′ ⊂ B with |B′| ≥ δ|B| , and a non-empty subset C ⊂ G such that C is (B′, 1− ε)-closed

and C ⊂
{
x ∈ G : 1A ∗ µB ∗ · · · ∗ µB(x) ≥ c

}
, where the number of µBs in the convolution

is l. Define B′ to be the multiset that consists of the set B′ together with the multiset of

all u1 ⊗ · · · ⊗ ud with ui ∈ Fni2 for each i and with at least one ui equal to 0. Note that

|B′| ≥ δ|B| and C is (B′, 1 − ε)-closed. By Corollary 7.1.11, there exists a k-simple set

D ⊂ G, for some k = k(d, δ), which has |D∩C| ≥ 1
2
|D|. Now pick x ∈ D and b1, . . . , bl ∈ B

uniformly and independently at random. The probability that x− b1 − · · · − bl ∈ A is at

least c/2. Therefore, there exists some y ∈ G such that when x ∈ D is randomly chosen,

the probability that x− y ∈ A is at least c/2. That is, |(D− y)∩A| ≥ 1
2
c|D| = 1

2
c|D− y|.

But D − y is a k-simple set, which finishes the proof of Conjecture 7.1.4.

Another simple corollary of Theorem 7.1.10 is the following result, which is Conjecture

7.1.4 in the case where A is a subspace.

Corollary 7.1.12. For any η > 0 and any positive integer d, there exists some k = k(d, η)

with the following property. If V ⊂ G is a subspace which is η-closed, then V contains

a k-simple subspace. That is, V ⊃
⋂
I⊂[d],I 6=∅(HI ⊗ FIc2 ) for some collection of subspaces

HI ⊂ FI2 of codimension at most k.

Proof. Since V is a vector space, the condition that V is η-closed says that u1⊗· · ·⊗ud ∈
V for at least a proportion of η of all rank-1 tensors u1⊗· · ·⊗ud. Thus, there exists some

B′ ⊂ B with |B′| ≥ η|B| such that V is (B′, 1)-closed. Taking θ sufficiently close to 0 in

Theorem 7.1.10, it follows that V ⊃ D for a k-simple set D, where k depends only on d

and η. Then D is a translate of
⋂
I⊂[d],I 6=∅(HI ⊗ FIc2 ) for some HI ⊂ FI2 of codimension at

most k. Since V is a vector space, it follows that V ⊃
⋂
I⊂[d],I 6=∅(HI ⊗ FIc2 ).

In the next section, we shall prove Theorem 7.1.10. In the last section, we show that the

answer to Question 7.1.9 is negative.
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7.2 The proof of Theorem 7.1.10

In this section we shall use the notation introduced in Subsection 6.2.1. That is, G =

Fn1
2 ⊗ · · · ⊗ Fnd2 is viewed as the set of d-dimensional (n1, . . . , nd)-arrays over F2 which in

turn is viewed as Fn1n2...nd
2 , equipped with the entry-wise dot product.

In order to prove Theorem 7.1.10, we recall Lemma 6.2.2 from Chapter 6. Qualitatively

(and taking F = F2), that lemma states the following.

Lemma 7.2.1. For all δ > 0 and d ∈ N there exist f1(d), f3(d) > 0 and f2(d, δ) ∈ N with

the following property. Let B′ ⊂ B be a multiset such that |B′| ≥ δ|B|. Then there exists a

multiset Q whose elements are chosen from f1(d)B′ (but with arbitrary multiplicity) with

the following property. The set of arrays r ∈ G with r.q = 0 for at least (1 − f3(d))|Q|
choices q ∈ Q is contained in

∑
I⊂[d],I 6=∅ VI⊗FIc2 for a collection of subspaces VI ⊂ FI2 that

each have dimension at most f2(d, δ).

In order to deduce Theorem 7.1.10 from this lemma, we shall use Fourier analysis.

Recall that if A is a subset of G of density α, then by Parseval’s identity we have α =∑
r |1̂A(r)|2. Also, if B is a multiset in G, then by Parseval’s identity and the convolution

law, 〈1A∗µB,1A〉 =
∑

r |1̂A(r)|2µ̂B(r) (for a multiset B, we define µB(x) = |G|
|B|B(x) where

B(x) is the multiplicity of x in B). Thus, the condition that A is (B, η)-closed can be

rewritten as the inequality ∑
r

|1̂A(r)|2µ̂B(r) ≥ η
∑
r

|1̂A(r)|2.

Another fact we shall use later is that if W is a subspace of G, then µ̂W (r) equals

Ew∈W (−1)r.w, which is 1 if r belongs to the orthogonal complement of W and 0 oth-

erwise.

Lemma 7.2.2. Let G be an Abelian group, let A ⊂ G be a finite subset, let η1, η2 > 0,

and let b1, b2 ∈ G. Suppose that A is ({b1}, 1− η1)-closed and ({b2}, 1− η2)-closed in G.

Then A is ({b1 + b2}, 1− η1 − η2)-closed in G.

Proof. Let Abad = {a ∈ A : a + b2 6∈ A}. Then |Abad| ≤ η2|A|, by hypothesis. So when

a ∈ A is chosen randomly, we have that

P[a+ b1 + b2 6∈ A] ≤ P[a+ b1 6∈ A] + P[a+ b1 ∈ Abad] ≤ η1 + η2.

The result follows.

We are now in a position to deduce Theorem 7.1.10 from Lemma 7.2.1. In the proof,

whenever a new function gi appears, we mean that there exists a function gi with the

claimed property.
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Proof of Theorem 7.1.10. Let θ, δ > 0, B′ ⊂ B with |B′| ≥ δ|B|, and suppose that

A ⊂ G is (B′, 1 − ε)-closed, where ε is to be specified. Let B′′ = {b ∈ B′ : A is ({b}, 1 −
2ε)-closed}. Clearly, |B′′| ≥ 1

2
|B′|. Using Lemma 7.2.1, we can find a multiset Q with

elements chosen from g1(d)B′′ such that the set of arrays r ∈ G with r.q = 0 for at least

(1 − g2(d))|Q| choices q ∈ Q (where g2(d) > 0) is contained in
∑

I⊂[d],I 6=∅ VI ⊗ FIc2 for

subspaces VI ⊂ FI2 of dimension at most g3(d, δ). Then, by Lemma 7.2.2, A is ({b}, 1 −
2g1(d)ε)-closed for every b ∈ Q, since each such b is an element of g1(d)B′′. In particular,

A is (Q, 1− 2g1(d)ε)-closed, and therefore∑
r

|1̂A(r)|2µ̂Q(r) ≥ (1− 2g1(d)ε)
∑
r

|1̂A(r)|2.

By Markov’s inequality, it follows that

∑
r:µ̂Q(r)<1−2g2(d)

|1̂A(r)|2 ≤ g1(d)ε

g2(d)

∑
r

|1̂A(r)|2.

Choosing ε = ε(d, θ) > 0 to be at most θg2(d)/g1(d), we therefore have∑
r:µ̂Q(r)≥1−2g2(d)

|1̂A(r)|2 ≥ (1− θ)
∑
r

|1̂A(r)|2.

Now if µ̂Q(r) ≥ 1 − 2g2(d) then r.q = 0 for at least (1 − g2(d))|Q| choices q ∈ Q. Thus,

we have ∑
r∈T

|1̂A(r)|2 ≥ (1− θ)
∑
r∈G

|1̂A(r)|2 (7.1)

where T =
∑

I⊂[d],I 6=∅ VI ⊗ FIc2 . Let R = T⊥ =
⋂
I⊂[d],I 6=∅ V

⊥
I ⊗ FIc2 . Because µ̂R is the

characteristic function of T , (7.1) is equivalent to the inequality∑
r∈G

|1̂A(r)|2µ̂R(r) ≥ (1− θ)
∑
r∈G

|1̂A(r)|2,

which in physical space is the inequality

〈1A ∗ 1A, µR〉 ≥ (1− θ)‖1A‖2
2 = (1− θ)α,

where α is the density of A. Equivalently,

〈µA ∗ µR,1A〉 ≥ 1− θ,

which tells us that if a random element of A is added to a random element of R, then

the sum belongs to A with probability at least 1− θ. The number of triples (a1, a2, r) ∈
A×A×R with a1 +a2 = r is therefore at least (1−θ)|A||R|, and therefore, by averaging,

there exists a ∈ A such that |(R − a) ∩ A| ≥ (1 − θ)|R| = (1 − θ)|R − a|. But R − a is

g3(d, δ)-simple, so we can take k = g3(d, δ) and D = R− a.
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7.3 The counterexample to Question 7.1.9

We shall now present an example that gives a negative answer to Question 7.1.9. The

example is easy to define, but it takes a little work to prove that it has the properties

we require. In what follows, let G = Fn2 . For a vector v ∈ G write |v| for the number of

entries equal to 1 in v. Then our set A will be {v ∈ Fn2 : |v| ≤ n/2 − 1020n3/4}, and our

set B will be {v ∈ Fn2 : |v| = n1/2}.
Note first that A is η-closed with respect to B where η > 0 is some absolute constant.

Indeed, by the central limit theorem, when n sufficiently large, the probability that a

random element u ∈ A has |u| ≤ n/2− 1020n3/4 − n1/4 is at least some absolute constant

η1, and conditional on this, the probability that |u+ v| ∈ A for a random element v ∈ B
is at least some other absolute constant η2, so we may take η = η1η2. What we shall prove

is that for this η, with ε = 0.99, say, there do not exist c, δ and l with the properties

described in Question 7.1.9. In fact, we shall prove the slightly stronger statement that

for any δ > 0 and positive integer l, if n is sufficiently large then there do not exist

C ⊂ A + lB and B′ ⊂ B with |B′| ≥ δ|B| such that C is (B′, 0.99)-closed. Since for

sufficiently large n, we have A + lB ⊂ A′ = {v ∈ Fn2 : |v| ≤ n/2 − 1015n3/4}, it suffices

to prove the same statement but with A + lB replaced by A′. From now on, we always

assume that n is sufficiently large.

The proof relies on two lemmas and a definition.

Lemma 7.3.1. If B′ ⊂ B has |B′| ≥ δ|B|, then µ̂B′(u) ≥ 0.98 for at most exp(n2/3)

vectors u ∈ Fn2 .

Definition 7.3.2. Given B′ ⊂ B, we say u ∈ A′ is B′-compatible if the number of w ∈ B′

with |u+ w| ≤ |u| is at least |B′|/3.

Note that if we fix some u ∈ A′ and take a random w ∈ B, then the probability that

|u+w| ≤ |u| is much less than 1/3. Indeed, writing X for the expected number of indices

i for which wi = 1 and ui = 0, and Y for the expected number of indices i for which

wi = 1 and ui = 1, we have E[X − Y ] ≥ 2 · 1015n1/4, while the standard deviation of

X − Y is around n1/4. So X ≤ Y holds with quite small probability.

Thus, for any large B′ ⊂ B, intuitively we expect only a small proportion of elements

of A′ to be B′-compatible. The next lemma makes this precise.

Lemma 7.3.3. Let B′ ⊂ B have |B′| ≥ δ|B|. Then the number of those u ∈ A′ which

are B′-compatible is at most exp(−n3/4)|A′|.

Let us see why these two lemmas are sufficient. Suppose that C ⊂ A′ is (B′, 0.99)-closed

for some B′ ⊂ B with |B′| ≥ δ|B|. Let w ∈ B′ be chosen at random. Then the expected

number of u ∈ C such that u+w ∈ C is at least 0.99|C|, so by considering all such pairs

{u, u + w} and noting that (u + w) + w = u, we see that there are on average at least
0.99

2
|C| choices of u ∈ C such that |u+w| ≤ |u|. Therefore, if u ∈ C is chosen at random,
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the average number of w ∈ B′ such that |u + w| ≤ |u| is at least 0.99
2
|B′|. It follows that

for at least |C|/10 elements of C the number of such w is at least |B′|/3, so at least |C|/10

elements of A′ are B′-compatible. Lemma 7.3.3 then implies that C has density at most

10 exp(−n3/4) in G. Let us write γ for this density.

On the other hand, since C is (B′, 0.99)-closed, we have the inequality∑
u∈G

µ̂B′(u)|Ĉ(u)|2 ≥ 0.99
∑
u∈G

|Ĉ(u)|2,

which implies that ∑
u∈G:µ̂B′ (u)≥0.98

µ̂B′(u)|Ĉ(u)|2 ≥ 0.01
∑
u∈G

|Ĉ(u)|2.

Using Lemma 7.3.1, together with the observations that µ̂B′(u) ≤ 1 and |Ĉ(u)| ≤ γ

for every u ∈ G and that
∑

u∈G |Ĉ(u)|2 = γ, we deduce that exp(n2/3)γ2 ≥ 0.01γ, so

γ ≥ 0.01 exp(−n2/3). For sufficiently large n, this contradicts the upper bound for γ that

we obtained a few lines above.

It remains to prove the two lemmas. The next two results are preparation for the

proof of Lemma 7.3.1.

Lemma 7.3.4. Let V be a subspace of Fn2 of dimension d such that every non-zero v ∈ V
has |v| ≥ n8/15. Then V has a basis {v1, . . . , vd} such that for every i, the set Ii = {k ≤
n : vi(k) = 1, vj(k) = 0 for all j 6= i} has size at least n8/15/2d−1. Here and below, the kth

entry of a vector v is denoted by v(k).

Proof. We use induction on d. The case d = 1 easily follows from the assumption

on V . Let V ′ have dimension d + 1 and suppose that for a d-dimensional subspace

V ⊂ V ′, v1, . . . , vd and I1, . . . , Id have been chosen satisfying the requirements. Choose

some v ∈ V ′ \ V . Replacing v by v − v1 if necessary, we may assume that v(k) = 0 for

at least |I1|/2 choices k ∈ I1. Similarly, we may assume that v(k) = 0 for at least |Ii|/2
choices k ∈ Ii for every i ≤ d. Thus, there exist subsets J1, . . . , Jd of {1, . . . , n} of size

at least n8/15/2d each such that for every i ≤ d and every k ∈ Ji we have vi(k) = 1 but

vj(k) = 0 for all j with j 6= i, j ≤ d, and v(k) = 0. Let J = {k ≤ n : v(k) = 1}. By the

assumption on V ′, we have |J | ≥ n8/15. Now it is easy to see that we can define v′1 to be

v1 or v1 − v and achieve that v′1(k) = 0 for at least |J |/2 choices of k ∈ J . Similarly, we

can define v′2, . . . , v
′
d such that each v′i is vi or vi − v and v′1(k) = · · · = v′d(k) = 0 for at

least |J |/2d choices k ∈ J . Then for any i, j ≤ d, we have v′i(k) = vi(k) for every k ∈ Jj,
and it follows that for any i ≤ d and k ∈ Ji, we have v′i(k) = 1 but v′j(k) = 0 for all j 6= i,

and v(k) = 0. Thus, the set {v′1, . . . , v′d, v} is suitable so the lemma is proved.

Corollary 7.3.5. Let t be a positive integer not depending on n and let V be a subspace

of Fn2 of dimension t such that every non-zero v ∈ V has |v| ≥ n8/15. Then the density of

those w ∈ B with w · v = 0 for all v ∈ V is less than (1.9)−(t−1).
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Proof. We shall be slightly sketchy about the some of the details when they are very

standard. As always, we assume that n is sufficiently large. Let v1, . . . , vt be a basis given

by Lemma 7.3.4 with d = t. Let w be a random vector in B, let i < t, and let us consider

the probability that w.vi = 0 given that w.vj = 0 for every j < i.

The expected number of non-zero coordinates of w in the union of the two intervals Ii

and Ii+1 is at least n1/30/2t−1, which tends to infinity, and the probability that it is at least

half this number tends to 1 (very rapidly). If we condition further on this number, and if

it is indeed at least n1/30/2t, then the probability that the number of non-zero coordinates

of w in Ii is even is almost exactly 1/2. Therefore, the probability that w.vi = 0 given

that w.vj = 0 for every j < i is less than 1/(1.9).

Since this is true for every i ≤ t− 1, we obtain the result.

Proof of Lemma 7.3.1. Suppose that the result is not true. Let r be a positive integer

to be specified later and pick R = {u1, . . . , ur} such that µ̂B′(ui) ≥ 0.98 for i = 1, 2, . . . , r.

Then for each i, we have ui·w = 0 for at least 99% of all w ∈ B′. Therefore there is a subset

B′′ ⊂ B′ with |B′′| ≥ |B′|/2 such that each w ∈ B′′ has ui ·w = 0 for at least 98% of the ui.

The number of subsets of R of size 49
50
r is at most

(
r

49r/50

)
=
(

r
r/50

)
≤ (50e)r/50 ≤ (1.8)49r/50.

Let t = 49r/50. Then there exists a subset T of R of size t such that the number of w ∈ B
with w · u = 0 for all u ∈ T is at least |B′′|

(1.8)t
≥ δ

2·(1.8)t
|B|. Choose the smallest positive

integer t with δ
2·(1.8)t

≥ (1.9)−(t−1) (and with r = 50t/49 an integer). Then the density of

those w ∈ B with w · u = 0 for all u ∈ T is at least (1.9)−(t−1).

Now let Q be the set of all u ∈ Fn2 with µ̂B′(u) ≥ 0.98 and assume that |Q| ≥ exp(n2/3).

Let t and r be as above and choose u1, . . . , ur ∈ Q such that for every j, the (Hamming)

distance of uj from span(u1, . . . , uj−1) is at least n8/15. (This is possible because the

number of u ∈ Fn2 with Hamming distance at most n8/15 from an r-dimensional vector

space is at most 2r exp(O(n8/15 log n)) < exp(n2/3).) Applying Corollary 7.3.5 to V =

span(T ), where T is a subset of {u1, . . . , ur} of size t, we find that the density of those

w ∈ B with w · u = 0 for all u ∈ T is less than (1.9)−(t−1), which is a contradiction.

Proof of Lemma 7.3.3. In this proof, unless specified otherwise, we will view Fn2 as a

subset of Rn and accordingly, the dot product is defined as u · w =
∑

i u(i)w(i) where

the summation is in R. Then |u + w| ≤ |u| is equivalent to u · w ≥ |w|/2. Hence u is

B′-compatible if u · w ≥ |w|/2 for at least |B′|/3 vectors w ∈ B′.
Let t be a fixed positive integer, not depending on n, to be specified later. For

a multiset T = {u1, . . . , ut} ⊂ A′ write sT =
∑t

i=1 ui −
t
2
q where q is the vector in

Fn2 consisting of ones. Let ak = sT (k) and σ2
T =

∑n
k=1 a

2
k. We say that T is bad if

σ2
T ≥ 1000tn.

Claim 1. If T is not bad, then the number of w ∈ B with ui · w ≥ |w|/2 for all i is at

most |B|
100t

.

Proof of Claim 1. If ui·w ≥ |w|/2 for all i, then sT ·w ≥ 0. Note that sT ·w =
∑

k≤n akw(k).

We shall view w as a random variable, chosen uniformly of all elements of B. What we
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need to prove is that P[
∑

k≤n akw(k) ≥ 0] ≤ 1
100t

.

Let m = n1/2 and let w1, . . . , wm be standard basis vectors of Fn2 , chosen independently

and uniformly at random. Note that the expected number of i 6= j such that wi = wj is at

most 1, so almost surely this number is at most log n. In particular, almost surely we have

n1/2−2 log n ≤ |w1+· · ·+wm| ≤ n1/2. Choose uniformly randomly an element w ∈ B with

minimal Hamming distance from w1 + · · ·+wm ∈ Fn2 . This algorithm defines a uniformly

random element of w ∈ B such that almost surely we have
∑

k≤n |
∑

i≤mwi(k)−w(k)| ≤∑
k≤n |

∑
i≤mwi(k) − (

∑
i≤mwi)(k)| +

∑
k≤n |(

∑
i≤mwi)(k) − w(k)| ≤ 2 log n + 2 log n =

4 log n, where all the summations are taken in R, except
∑

i≤mwi, which is taken in Fn2 .

At this point, we apply the following version of Chernoff’s inequality, which appears

as Theorem 3.4 in [19].

Let Xi (1 ≤ i ≤ m) be independent random variables satisfying Xi ≤ E[Xi] + M , for

1 ≤ i ≤ m. We consider the sum X =
∑

iXi with expectation E[X] =
∑

i E[Xi] and

variance Var(X) =
∑

i Var(Xi). Then, we have P(X ≥ E[X]+λ) ≤ exp(− λ2

2(Var(X)+Mλ/3)
).

We now take Xi =
∑

k≤n akwi(k) for 1 ≤ i ≤ m. Since |ak| ≤ t, the conditions of the

theorem hold with M = 2t. As ui ∈ A′ for all i, we have
∑

k≤n ak ≤ t(n/2− 1015n3/4)−
tn/2 = −1015tn3/4. Then E[X] = m

∑
k≤n ak
n

≤ −1
2
1015tn1/4, and by the assumption that

T is not bad, Var(X) ≤ m
∑
k≤n a

2
k

n
≤ 1000tn1/2. Thus, taking λ = 1014tn1/4 in the above

theorem it follows that

P

[∑
i≤m

∑
k≤n

akwi(k) ≥ −1014tn1/4

]
≤ exp

(
− 1028t2n1/2

2(1000tn1/2 + 2t · 1014tn1/4/3)

)
≤ 1

2 · 100t
.

But ∑
k≤n

akw(k) =
∑

i≤m,k≤n

akwi(k) +
∑
k≤n

ak(w(k)−
∑
i≤m

wi(k))

≤
∑

i≤m,k≤n

akwi(k) + t
∑
k≤n

|(w(k)−
∑
i≤m

wi(k))|,

and
∑

k≤n |(w(k)−
∑

i≤mwi(k))| ≤ 4 log n almost surely, it follows that P[
∑

k≤n akw(k) ≥
0] ≤ 1

100t
and Claim 1 is proved.

Claim 2. If u1, u2, . . . , ut are independently and uniformly randomly chosen elements of

A′ then the probability that T = {u1, . . . , ut} is bad is o(exp(−n7/8)).

Proof of Claim 2. Recall that T is bad if and only if
∑

k≤n(
∑

i≤t ui(k)− t/2)2 ≥ 1000tn.

u1, . . . , ut are randomly chosen from A′ but with probability 1− o(exp(n−7/8)) all of them

have |ui| ≥ n/2− n99/100 so we may assume that u1, . . . , ut are randomly chosen from the

set A′′ = {v ∈ Fn2 : n/2−n99/100 ≤ |v| ≤ n/2−1015n3/4}. It is not hard to see that we can

write ui = xi + yi where xi and yi are random variables taking values in Fn2 and having

the property that xi(k) are independent Bernoulli with parameter 1/2 and |yi| ≤ 2n99/100
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with probability 1− o(exp(−n7/8)). Then it suffices to prove that

P

[∑
k≤n

(
∑
i≤t

xi(k)− t/2)2 ≥ 500tn

]
= o(exp(−n7/8))

Let Xi = (
∑

i≤t xi(k) − t/2)2 for 1 ≤ k ≤ n. Then the Xi are iid random variables with

E[Xi] = t/4 and Var(Xi) = O(1). Thus, by Theorem 3.4 from [19] (which is the theorem

stated above), taking λ = 100tn and M = t2, it follows that

P

[∑
k≤n

(
∑
i≤t

xi(k)− t/2)2 ≥ 500tn

]
≤ exp

(
− (100tn)2

2(nO(1) + t2 · 100tn/3)

)
= o(exp(−n7/8)),

finishing the proof of Claim 2.

We are now in a position to complete the proof of the lemma. Let t be the smallest

positive integer with 1
100t

< δ
100(6e)t

. Let the density of B′-compatible elements in A′ be α.

Pick v1, . . . , v6t independently and uniformly randomly from A′. Then with probability

α6t, every vi is B′-compatible. If that is the case, then for every i, there are at least

|B′|/3 vectors w ∈ B′ with vi · w ≥ |w|/2. It follows that there is some B′′ ⊂ B′ with

|B′′| ≥ |B′|/100 such that for every w ∈ B′′ we have vi · w ≥ |w|/2 for at least t choices

of i. The number of t-sets in {v1, . . . , v6t} is at most (6e)t so there must exist a t-set

T = {u1, . . . , ut} ⊂ {v1, . . . , v6t} (multisets are allowed) such that the number of w ∈ B
with ui ·w ≥ |w|/2 for each i is at least |B′′|/(6e)t ≥ δ|B|

100(6e)t
> |B|

100t
. By Claim 1, it follows

that T is bad. Thus, the probability that T = {u1, . . . , ut} is bad when u1, . . . , ut are

independently and uniformly randomly chosen from A′, is at least α6t

(6t
t )

. Hence, by Claim

2, we have α6t

(6t
t )

= o(exp(−n7/8)), and we get α = o(exp(−n3/4)).
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Chapter 8

The two-step local density of graphs

8.1 Introduction

Kopylov [87] asked and answered the following question. Say that a graph G has the

(p, q)-property if every set of p vertices contains a subset of q vertices which induces a

complete graph. What is the minimal number of edges in a graph on n vertices having

the (p, q)-property?

For k ≤ p−1
q−1

, consider the following graph Gk on n vertices. Let Gk have m =

p − 1 − k(q − 1) isolated vertices and let the remaining n − m vertices induce a graph

which is a union of k disjoint cliques of size as equal as possible. It is easy to see that Gk

has the (p, q)-property. Indeed, let X be a set of p vertices. Then at least k(q − 1) + 1

of those vertices lie in one of the k disjoint cliques, so at least one of the cliques contains

at least q vertices of X. In [87] it is shown that any extremal graph is of the form Gk for

some k.

In this chapter, we consider a generalization of the above problem where instead of

looking for a complete subgraph on q vertices inside every induced subgraph on p vertices,

we look for a subgraph with q vertices and at least e edges. Let us choose parameters

α, β, γ such that p = αn, q = βn and e = γ
(
βn
2

)
. The parameters α, β, γ can depend on

n. We shall be interested in graphs satisfying the following property.

Definition 8.1.1. Let G be a graph on n vertices. Say that G has the (α, β, γ)-property

if any subset A ⊂ V (G) of size at least αn contains a further subset B ⊂ A of size at

least βn such that the edge density of G[B] is at least γ.

This generalization makes the problem more complicated, because there is more flex-

ibility to create extremal examples. To see this, consider the case α = β. An easy

averaging argument implies that a graph with the (α, α, γ)-property has density at least

γ. This bound is essentially attained by a random graph with edge-probability γ. (If one

wants it to be attained exactly, one can generalize the problem and allow weighted graphs

with weights in [0, 1]. Then the graph with constant edge-weight γ obviously has the

(α, α, γ)-property.) If γ = 1/k for some integer k > 1, then an alternative example (for
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convenience, with loops) is given by taking k disjoint cliques with vertex sets V1, . . . , Vk

of size n/k: if X is any set of vertices, then the number of ordered pairs (x, y) ∈ X2 such

that xy is an edge of G is
∑

i |X ∩ Vi|2, which is minimized when the sets X ∩ Vi have

equal size n/k, so the density is at least 1/k = γ. And that is not all. For instance, we can

also take a convex combination of these two examples. That is, we can choose λ ∈ (0, 1)

and set the edge weight of a pair (x, y) to be λ + (1− λ)γ if (x, y) ∈ V 2
i for some i, and

(1− λ)γ otherwise. And that is just the start: we can take convex combinations of more

examples, with completely unrelated vertex partitions for the different examples.

The extra flexibility when α = β leads directly to extra flexibility for smaller β. For

example, if α/β is an integer r, then we can partition the vertices into r sets X1, . . . , Xr

of equal size, and then every set of vertices of density α intersects some Xi in a subset of

density at least β. If we also arrange that every subset of Xi of density β (and therefore

relative density α in Xi) induces a subgraph of density at least γ, then we have an example.

And that can be achieved in different ways for different Xi, using the range of examples

discussed in the previous paragraph.

One might still hope that every example is obtained by partitioning the vertices into

a few sets, placing appropriate (β, β, γ) examples in each set, and using the pigeonhole

principle to argue that every set of density α intersects one of the cells of the partition in

a set of density at least β. However, a simple example shows that this does not work. Let

α = 1/2 and β = 1/4 + η for some very small η. Then the best example of the above kind

that has the (α, β, γ)-property is a block of size (3/4 + η)n with edge density γ, whereas

we could instead take two blocks of size n/2 with edge densities slightly greater than γ

each to get a sparser example. When γ is close to 1, this might not be possible as the

edge density in the blocks cannot be greater than 1. In this case, we have to take a few

edges between the two blocks of size n/2 as well, further complicating the picture.

In the light of these examples, it seems difficult to characterize the extremal examples

for all α, β, γ. However, our first result gives a lower bound which is asymptotically sharp

for various values of the parameters, in particular when α/β is an integer.

Theorem 8.1.2. Let 0 < β ≤ α ≤ 1/2 and 0 < γ ≤ 1 be functions of n such that

α = ω( 1
n
) and βγ = ω( (logn)10

n
). If G is a graph on n vertices which has the (α, β, γ)-

property, then G has edge density at least (1− o(1))βγ
α

.

We will in fact prove a version of Theorem 8.1.2 for weighted graphs, from which

Theorem 8.1.2 follows immediately. A weighted graph in this chapter has a non-negative,

symmetric weight w(u, v) assigned to each pair {u, v} of vertices. Then, if G is a weighted

graph, e(G) is defined to be 1
2

∑
u,v∈V (G) w(u, v). Similarly to the simple graph case, we

say that G has the (α, β, γ)-property if for every A ⊂ V (G) of size at least αn, there

exists a B ⊂ A of size at least βn with e(G[B]) ≥ γ
(|B|

2

)
. Our generalization of Theorem

8.1.2 can now be stated as follows.

Theorem 8.1.3. Let 0 < β ≤ α ≤ 1/2, 0 < γ ≤ 1 and M ≤ n be functions of n such
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that α = ω( 1
n
) and βγ = ω

(M(logn)10

n

)
. If G is a weighted graph on n vertices with edge

weights at most M and G has the (α, β, γ)-property, then e(G) ≥ (1− o(1))βγ
α

(
n
2

)
.

The condition α ≤ 1/2 in these results is necessary. Indeed, take a set of (1−α+ β)n

vertices and place edges between them with probability roughly γ. Now any set of size

αn intersects this set in at least βn vertices, and those βn vertices induce a graph with

edge density roughly γ. The total density in this graph is roughly (1−α+β)2γ. So there

is a graph having the (α, β, γ)-property with density roughly (1−α+β)2γ. Note that the

inequality (1−α+β)2 < β
α

is equivalent to the inequality (β−α)(β− (α+ 1/α− 2)) < 0.

If α > 1/2, then for α+ 1/α− 2 < β < α, this inequality is satisfied, so the conclusion of

Theorem 8.1.2 fails.

In many cases, Theorem 8.1.2 is tight. To see this, consider the following family of

graphs. Let p ≤ q be positive integers. If p
q
≥ β

α
and pγ ≤ 1, then we can construct graphs

Gn on n vertices which have the (α, β, γ)-property and which have average degree roughly
p
q
γn. Indeed, let the vertex set of Gn be S1 ∪ S2 ∪ · · · ∪ Sq where the sets S1, . . . , Sq are

pairwise disjoint and have size roughly n
q
. Define Gn[Si] to be an Erdős-Rényi random

graph with density pγ, independently for all 1 ≤ i ≤ q. Let all other pairs be non-

edges. Almost surely, Gn has average degree at most roughly pγ n
q
. Moreover, it is not

hard to see that if βγ = ω( logn
n

), then by the Chernoff bound, for every Q ⊂ V (Gn) of

size at least βn with
∑

1≤i≤q |Q ∩ Si|2 = Ω( (βn)2

p
), we have that

∑
1≤i≤q e(Gn[Q ∩ Si])

is at least roughly
∑

1≤i≤q pγ
(
Q∩Si

2

)
. If this holds, then Gn has the (α, β, γ)-property

(approximately). Indeed, let A ⊂ V (Gn) have |A| ≥ αn. Since p
q
≥ β

α
, there exist 1 ≤

i1 < i2 < · · · < ip ≤ q such that |A∩ (Si1 ∪· · ·∪Sip)| ≥ βn. Take B = A∩ (Si1 ∪· · ·∪Sip).
Then |B| ≥ βn and

∑
1≤j≤p |B ∩ Sij |2 ≥

(βn)2

p
. Thus, e(Gn[B]) =

∑
1≤j≤p e(Gn[B ∩ Sij ])

is at least roughly pγ |B|
2

2p
= γ |B|

2

2
, so Gn indeed has the (α, β, γ)-property approximately.

Given this construction, it is easy to see that Theorem 8.1.2 is tight when γ = o(1).

This is because in this case we can take p = b1/γc and choose a maximal positive integer

q with p
q
≥ β

α
. Since p = ω(1), we have p

q
= (1 + o(1))β

α
.

The same construction shows that for every γ, Theorem 8.1.2 is tight when α/β is an

integer. Moreover, if we place edges of weight pγ instead of taking edges with probability

pγ in the construction above, we get a weighted graph that shows that Theorem 8.1.3 is

tight for every α, β, γ. However, when β is close to α and γ is not too small, Theorem

8.1.2 is not tight for simple graphs. This is confirmed by the following theorem, which is

our second main result.

Theorem 8.1.4. Let 0 < β ≤ α ≤ 1/2 and 0 < γ ≤ 1 be functions of n such that

α − β ≤ β3γ
1000

and β3γ = ω( logn
n1/2 ). If G is a (simple) graph on n vertices which has the

(α, β, γ)-property, then G has edge density at least (1− o(1))(1− α + β)2γ.

Unlike in Theorems 8.1.2 and 8.1.3, the condition α ≤ 1/2 here is not necessary.

Indeed, we can extend our result to α > 1/2, but the proof of that is somewhat tedious,

so we do not include it.
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Note that (1 − α + β)2 − β
α

= (α − β)( 1
α
− 2 + (α − β)), so Theorem 8.1.4 improves

Theorem 8.1.2 when α−β = Ω(1). Moreover, Theorem 8.1.4 is tight, by the construction

described immediately after Theorem 8.1.3.

We also consider the bipartite version of the above problem.

Definition 8.1.5. Let G be a bipartite graph with vertex sets X and Y of size n each. Say

that G has the bipartite (α, β, γ)-property if for any A ⊂ X and B ⊂ Y with |A|, |B| ≥ αn,

there exist C ⊂ A and D ⊂ B with |C|, |D| ≥ βn such that the bipartite edge density of

G[C,D] is at least γ.

We are interested in the minimal edge density of a bipartite graph with the bipartite

(α, β, γ)-property.

Note that the bipartite case is somewhat more difficult than the graph case since

already when γ = 1, when we are looking for a complete Kβn,βn, it is not clear what the

extremal construction is. Indeed, the natural generalization of Kopylov’s construction,

namely a disjoint union of Kθn,θns with θ ≈ β/α, clearly does not work. Instead we

take the following probabilistic construction. Let θ = β/α, let m = cθ−1 log(1/α), let

A1, . . . , Am be independent random subsets of X of size roughly θn and let B1, . . . , Bm

be independent random subsets of Y of size roughly θn. The graph Gi is then defined by

picking each edge between Ai and Bi independently at random with probability roughly

γ. Finally, set G = ∪i≤mGi. As we shall prove later, almost surely G has density at most

C β
α
γ log(1/α) and it has the (α, β, γ)-property. We obtain the following result.

Proposition 8.1.6. There exists an absolute constant C with the following property. For

any 0 < β < α ≤ 1/2 and 0 < γ ≤ 1 depending on n ∈ N and satisfying βγ = ω( 1
n
),

for n sufficiently large there is a bipartite graph Gn on n + n vertices with the bipartite

(α, β, γ)-property and edge density at most C βγ
α

log(1/α).

We see that compared with Theorem 8.1.2, we have an extra log(1/α) factor. We

prove that this is necessary. More precisely, we prove the following theorem.

Theorem 8.1.7. There exists an absolute constant c > 0 the following property. Let 0 <

β < α ≤ 1/2 and 0 < γ ≤ 1 be parameters depending on n ∈ N such that β
α

log2(1/α) ≤ 1
10

,

αβγ = ω( (logn)3

n
) and β2γ = ω( logn

n
). Then, for n sufficiently large, if G is a bipartite

graph on n + n vertices having the (α, β, γ)-property, then it has edge density at least

cβγ
α

log(1/α).

Observe that a condition of the form β
α

log(1/α) = O(1) is necessary for the theorem

to hold. Indeed, we can easily find a bipartite graph with density roughly γ having the

(α, β, γ)-property, so if β
α

log(1/α) = ω(1), then cβγ
α

log(1/α) is not a lower bound.

We also prove a structural result in both the bipartite and the non-bipartite case (in

fact, we prove an analogous result about r-partite graphs as well). Here we state the

non-bipartite version.
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Theorem 8.1.8. Let α, β, γ be constants independent of n. Let G be a graph on n vertices

having the (α, β, γ)-property. Then there exists a set D ⊂ V (G) of size at least β
α
n such

that G[D] has edge density at least (1− o(1))γ.

The rest of this chapter is organized as follows. In the next section, we prove lower

bounds on the number of long paths in a weighted graph of given density. We then

use these results in Sections 8.3 and 8.4 to prove Theorems 8.1.3 and 8.1.4, respectively.

In Section 8.5, we prove Proposition 8.1.6 and Theorem 8.1.7. In Section 8.6 we prove

Theorem 8.1.8. In the last section we give some concluding remarks and open problems.

8.2 The number of long paths in a weighted graph of

given density

Recall from the introduction that a weighted graph has a nonnegative weight w(u, v)

assigned to each pair {u, v} of vertices. The degree of the vertex u is du =
∑

v∈V (G) w(u, v)

while the average degree is d̄ = 1
n

∑
u∈V (G) du.

Definition 8.2.1. Let G be a weighted graph (with edge weights w). For a positive

integer ` and a vertex v ∈ V (G), write

g`(v,G) =
∑

v1,...,v`∈V (G)

w(v, v1)w(v1, v2) . . . w(v`−1, v`).

Let

h`(G) =
∑

v∈V (G)

g`(v) =
∑
v0,...,v`

w(v0, v1) . . . w(v`−1, v`).

For convenience we also set g0(v,G) = 1 and h0(G) = n.

Note that h`(G) can be viewed as the number of walks of length ` in G, whereas

g`(v,G) is the number of walks of length ` starting at v.

We shall use the following fact relating the number of walks of various lengths.

Lemma 8.2.2 (Erdős–Godsil–Simonovits [39]). Let ` ≤ k be positive integers and assume

that k is even. Then (
hk(G)

n

)1/k

≥
(
h`(G)

n

)1/`

.

We will also need a classical result of Mulholland and Smith [99] and Blakley and

Roy [10] which gives a lower bound for the number of walks of given length in a graph of

given density.

Theorem 8.2.3 (Mulholland–Smith, Blakley–Roy). Let G be a weighted graph on n

vertices with average degree d̄. Then

hk(G) =
∑

v0,...,vk∈V (G)

w(v0, v1) . . . w(vk−1, vk) ≥ nd̄k.
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We need a lower bound for the number of paths, rather than walks. The following

lemma is the main result of this section.

Lemma 8.2.4. Let G be a weighted graph on n vertices with average degree d̄ and edge

weights |w(u, v)| ≤ M ≤ n such that d̄ = ω(Mk4(log n)2). Let k = ω(1) be an even

positive integer. Then ∑
v0,...,vk distinct in V (G)

w(v0, v1) . . . w(vk−1, vk) ≥ n(d̄− o(d̄))k.

Proof. We distinguish between two cases. First, let us assume that there exists a set

S ⊂ V (G) of size at most n
logn

such that the total weight of edges in G with at least

one endpoint in S is Ω(nd̄). Write t for this total weight. Define sequences of sets

X0 ⊃ X1 ⊃ . . . and Y0 ⊃ Y1 ⊃ . . . as follows. We take X0 = S and Y0 = V (G). Having

defined Xi and Yi, if there exists some u ∈ Xi such that
∑

v∈Yi w(u, v) < t logn
4n

, then set

Xi+1 = Xi \{u} and Yi+1 = Yi. If such vertex does not exist, but there exists some u ∈ Yi
such that

∑
v∈Xi w(u, v) < t

4n
, then set Yi+1 = Yi \ {u} and Xi+1 = Xi. In both cases,

we say that u is discarded. Note that the process eventually stops with sets Xj and Yj.

Let ti =
∑

u∈Xi,v∈Yi w(u, v). Note that t0 ≥ t. If in the (i+ 1)th step a vertex from Xi is

discarded, then ti+1 ≥ ti− t logn
4n

, while if a vertex from Yi is discarded, then ti+1 ≥ ti− t
4n

.

Since |X0| ≤ n
logn

and |Y0| ≤ n, it follows that tj ≥ t0 − n
logn

t logn
4n
− n t

4n
= t− t

4
− t

4
= t

2
.

Moreover, for every u ∈ Xj we have
∑

v∈Yj w(u, v) ≥ t logn
4n

, and for every u ∈ Yj we have∑
v∈Xj w(u, v) ≥ t

4n
. Note that t

4n
= Ω(d̄), so by assumption (for n sufficiently large)

t
4n
≥ 2Mk, hence it is easy to see that

∑
v0,v2,...,vk∈Yj

v1,v3,...,vk−1∈Xj
all distinct

w(v0, v1)w(v1, v2) . . . w(vk−1, vk) ≥
∑

v0∈Yj ,v1∈Xj

w(v0, v1)

(
t log n

8n

)k/2(
t

8n

)k/2−1

= tj

(
t log n

8n

)k/2(
t

8n

)k/2−1

≥ t

2

(
t log n

8n

)k/2(
t

8n

)k/2−1

≥ nd̄k,

provided that n is sufficiently large, where in the last inequality we used that t = Ω(nd̄).

We can therefore assume that for every set S ⊂ V (G) of size at most n
logn

the total

weight in G[V (G) \ S] is nd̄
2

(1 − o(1)). Define a sequence Z0 ⊃ Z1 ⊃ . . . of subsets of

V (G) and corresponding induced subgraphs Gi = G[Zi] as follows. We take Z0 = V (G).

Let λ = 8k2(logn)2

n
. If there exists some 1 ≤ ` ≤ k and some vi ∈ Zi with g`(vi, Gi) >

λh`(Gi), then choose such a vi arbitrarily and set Zi+1 = Zi \ {vi}. In this case we have

h`(Gi+1) < (1− λ)h`(Gi).
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Observe that for every 1 ≤ ` ≤ k, we have h`(G) ≤ n(Mn)` ≤ n2k+1. On the other

hand, (1 − λ)
n

2k logn ≤ e−λ
n

2k logn = e−4k logn = n−4k, so h`(G)(1 − λ)
n

2k logn < 1. Thus,

throughout the process of defining Z1, Z2, . . . , for any fixed 1 ≤ ` ≤ k, it happens at

most d n
2k logn

e ≤ n
k logn

times that the removed vertex vi has g`(vi, Gi) > λh`(Gi). In

particular, the process must stop after at most k · n
k logn

= n
logn

steps. Hence, the final set

Zj satisfies |Zj| ≥ n − n
logn

. By our earlier discussion, it follows that the total weight in

Gj is nd̄
2

(1− o(1)). Moreover, since the process terminates at Zj, for every 1 ≤ ` ≤ k and

every v ∈ Zj, we have g`(v,Gj) ≤ λh`(Gj).

We claim that ∑
v0,...,vk∈Zj not all distinct

w(v0, v1) . . . w(vk−1, vk) = o(hk(Gj)). (8.1)

Once this is proved, we have∑
v0,...,vk∈Zj distinct

w(v0, v1) . . . w(vk−1, vk) ≥ (1− o(1))hk(Gj)

≥ (1− o(1))|Zj|(d̄(1− o(1)))k

≥ n(d̄(1− o(1)))k,

where the second inequality follows from Theorem 8.2.3.

Therefore it remains to prove equation (8.1). For any 0 ≤ a < b ≤ k,∑
v0,...,vk∈Zj with va=vb

w(v0, v1) . . . w(vk−1, vk)

≤
∑

v0,...,vk∈Zj with va=vb

w(v0, v1) . . . w(vb−2, vb−1) ·M · w(vb, vb+1) . . . w(vk−1, vk)

=
∑

v0,...,vb∈Zj with va=vb

w(v0, v1) . . . w(vb−2, vb−1) ·M · gk−b(vb, Gj)

≤
∑

v0,...,vb−1∈Zj

w(v0, v1) . . . w(vb−2, vb−1) ·M · λhk−b(Gj)

= hb−1(Gj) ·M · λhk−b(Gj)

≤ n

(
hk(Gj)

n

) b−1
k

·M · λn
(
hk(Gj)

n

) k−b
k

(by Lemma 8.2.2)

= Mλn

(
hk(Gj)

n

)− 1
k

hk(Gj)

≤Mλn

(
h1(Gj)

n

)−1

hk(Gj) (by Lemma 8.2.2)

= Mλn(d̄(1− o(1))−1hk(Gj)

=
8k2(log n)2M

d̄
(1 + o(1))hk(Gj),

where the o(1) term does not depend on a and b. Summing over all 0 ≤ a < b ≤ k, we
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get

∑
v0,...,vk∈Zj

not all distinct

w(v0, v1) . . . w(vk−1, vk) ≤
(
k + 1

2

)
8k2(log n)2M

d̄
(1 + o(1))hk(Gj).

By d̄ = ω(Mk4(log n)2), equation (8.1) follows.

The next result will not be needed in our paper, but we state it as it is a cleaner

version of the previous lemma.

Corollary 8.2.5. Let k be a positive integer and let G be a simple graph on n vertices

with average degree d̄ such that d̄ = ω(k4(log n)2). Then the number of (directed) paths of

length k in G is at least n(d̄− o(d̄))k.

Proof. For k = O(1), this follows from Theorem 5 in [39]. In the k = ω(1) case, when k

is even, this is immediate from Lemma 8.2.4. Moreover, in the case where k = ω(1) and

k is odd, the corollary follows from Lemma 8.2.4 with k replaced by k − 1, applied to a

subgraph G′ of G with at least e(G)
2

edges, average degree at least d̄ and minimum degree

at least d̄
4
. We leave the details to the interested reader.

8.3 Weighted graphs

In this section we prove Theorem 8.1.3. It is easy to see that it suffices to prove the

following result.

Theorem 8.3.1. Let 0 < β ≤ α ≤ 1/2, 0 < γ ≤ 1 and M ≤ n be functions of n such

that α = ω( 1
n
) and βγ = ω

(M(logn)10

n

)
. Let 0 < ε < 1 be a constant. Suppose that G is a

weighted graph on n vertices with edge weights at most M such that e(G) ≤ (1− ε)βγ
2α
n2.

Then, if n is sufficiently large, there exists a set A ⊂ V (G) of size at least αn such that

for every B ⊂ A of size at least βn, we have e(G[B]) ≤ (1− ε
4
)γ|B|

2

2
.

For the rest of this section, fix some 0 < ε < 1 constant, let n be sufficiently large

and let G be a weighted graph on n vertices with edge weights at most M and e(G) ≤
(1− ε)βγ

2α
n2, where α, β, γ,M satisfy the conditions in the theorem.

Definition 8.3.2. Let D = (1− ε
2
)βγn. For vertices v ∈ V (G), define

pv =

1 if dv < D

D
dv

if dv ≥ D.

Our strategy is to prove that if we define A to be a random subset of V (G) where

the vertex v is in A with probability pv, then with positive probability A satisfies the

conclusion of Theorem 8.3.1. The first step is to verify that with high probability A is

large enough.
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Lemma 8.3.3. ∑
v∈V (G)

pv ≥
(

1 +
ε

32

)
αn.

Proof. Let s = |{v ∈ V (G) : dv < D}|. Then

∑
v∈V (G)

pv = s+
∑

v:dv≥D

D

dv

≥ s+ (n− s) D

2e(G)/(n− s)

= s+ (n− s)2 (1− ε
2
)βγn

2e(G)

≥ s+ (n− s)2α

n
·

1− ε
2

1− ε

≥ s+ (n− s)2α

n

(
1 +

ε

2

)
= s+ (n− s)2α

n
+
εα

2

(n− s)2

n
.

If s ≥ (1 + ε
32

)αn, then we are done. Otherwise, by α ≤ 1/2, we have s ≤ 1+ε/32
2

n < 3
4
n.

Thus,
εα

2

(n− s)2

n
≥ ε

32
αn.

Moreover,

s+ (n− s)2α

n
= αn+ s

(
α

n
s+ (1− 2α)

)
≥ αn,

which completes the proof of the lemma.

This has the following simple corollary.

Corollary 8.3.4. Let A be a random subset of V (G) where each v ∈ V (G) belongs to A

with probability pv, independently of the other vertices. Then almost surely |A| ≥ αn.

Proof. By Lemma 8.3.3, E[|A|] ≥ (1 + ε
32

)αn. By the Chernoff bound (see, for example,

[50]),

P
(
|A| ≤

(
1− ε

64

)
E[|A|]

)
≤ exp

(
− ε2E[|A|]

2 · 642

)
≤ exp

(
−

(1 + ε
32

)ε2

2 · 642
αn
)

= o(1)

since α = ω( 1
n
). Since (1− ε

64
)(1 + ε

32
) ≥ 1, the corollary follows.

To prove that for every B ⊂ A of size at least βn, G[B] is not too dense, we argue

as follows. First, we prove that the expected number of paths in G[A] of length roughly

(log n)2 is small, so in particular it is small with probability at least 1/2. However, if we

have some B ⊂ A of size at least βn such that G[B] is fairly dense, then by our results from

Section 8.2, G[B], and consequently, G[A], must contain many paths of length (log n)2,

which is a contradiction.
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Lemma 8.3.5. Let A be a random subset of V (G) where each v ∈ V (G) belongs to A

with probability pv, independently of the other vertices. Then for any positive integer k,

E
[ ∑
v0,...,vk∈A distinct

w(v0, v1)w(v1, v2) . . . w(vk−1, vk)

]
≤ nDk.

Proof. Let V ′ consist of the set of all vertices in V (G) which have non-zero degree. Now

E
[ ∑
v0,...,vk∈A distinct

w(v0, v1)w(v1, v2) . . . w(vk−1, vk)

]
=

∑
v0,...,vk∈V ′ distinct

w(v0, v1)w(v1, v2) . . . w(vk−1, vk)P(v0 ∈ A, . . . , vk ∈ A)

=
∑

v0,...,vk∈V ′ distinct

w(v0, v1)w(v1, v2) . . . w(vk−1, vk)pv0 . . . pvk

≤
∑

v0,...,vk∈V ′ distinct

w(v0, v1)w(v1, v2) . . . w(vk−1, vk)pv0 . . . pvk−1

≤
∑

v0,...,vk∈V ′
w(v0, v1)w(v1, v2) . . . w(vk−1, vk)

D

dv0
· · · · · D

dvk−1

= Dk
∑
v0∈V ′

∑
v1,...,vk∈V ′

w(v0, v1)

dv0

w(v1, v2)

dv1
. . .

w(vk−1, vk)

dvk−1

However, for any v0 ∈ V ′,∑
v1,...,vk∈V ′

w(v0, v1)

dv0

w(v1, v2)

dv1
. . .

w(vk−1, vk)

dvk−1

=
∑

v1,...,vk−1∈V ′

w(v0, v1)

dv0

w(v1, v2)

dv1
. . .

w(vk−2, vk−1)

dvk−2

∑
vk∈V ′

w(vk−1, vk)

dvk−1

=
∑

v1,...,vk−1∈V ′

w(v0, v1)

dv0

w(v1, v2)

dv1
. . .

w(vk−2, vk−1)

dvk−2

= 1

by induction on k. This completes the proof of the lemma.

Lemma 8.3.6. Let A be a random subset of V (G) where each v ∈ V (G) belongs to A with

probability pv, independently of the other vertices. Then, with probability at least 1/2, for

every set B ⊂ A of size at least βn, the average degree in G[B] is at most (1 + ε
4
)D.

Proof. Let k = d(log n)2e or k = d(log n)2e + 1 chosen so that k is even. By Lemma

8.3.5, with probability at least 1/2, we have∑
v0,...,vk∈A distinct

w(v0, v1)w(v1, v2) . . . w(vk−1, vk) ≤ 2nDk. (8.2)
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We claim that if this holds, then for every B ⊂ A of size at least βn, the average degree

of G[B] is at most (1 + ε
4
)D. Indeed, suppose that there is some B ⊂ A contradicting this

claim. Then, using the condition βγ = ω
(M(logn)10

n

)
in Theorem 8.3.1, G[B] has average

degree at least (1 + ε
4
)D ≥ D = (1 − ε

2
)βγn = ω(Mk4(log n)2). Thus, by Lemma 8.2.4

applied to G[B], we have∑
v0,...,vk∈B distinct

w(v0, v1)w(v1, v2) . . . w(vk−1, vk) ≥ |B|
(
(1− o(1))(1 +

ε

4
)D
)k

≥ βn
(
(1 +

ε

4
− o(1))D

)k
Comparing this with equation (8.2), we obtain

2nDk ≥ βn
((

1 +
ε

4
− o(1)

)
D
)k
,

so
2

β
≥
(
1 +

ε

4
− o(1)

)k
.

Since k ≥ (log n)2 and β ≥ 1/n, this is a contradiction.

It is now easy to complete the proof of Theorem 8.3.1.

Proof of Theorem 8.3.1. Let A be a random subset of V (G) where each v ∈ V (G)

belongs to A with probability pv, independently of the other vertices.

By Corollary 8.3.4, almost surely |A| ≥ αn.

Moreover, by Lemma 8.3.6, with probability at least 1/2, every set B ⊂ A of size at

least βn has average degree at most (1 + ε
4
)D ≤ (1− ε

4
)βγn. It follows that every such B

has e(G[B]) ≤ (1− ε
4
)γ|B|

2

2
.

So A is a suitable set with positive probability.

8.4 Simple graphs

In this section we prove Theorem 8.1.4. It is easy to see that it suffices to prove the

following result.

Theorem 8.4.1. Let 0 < β ≤ α ≤ 1/2 and 0 < γ ≤ 1 be functions of n such that

α − β ≤ β3γ
1000

and β3γ = ω( logn
n1/2 ). Suppose that G is a simple graph on n vertices with

e(G) ≤ (1− ε) (1−α+β)2γ
2

n2. Then there exists a set A ⊂ V (G) of size at least αn such that

for every B ⊂ A of size at least βn, the number of edges in G[B] is at most (1− ε
4
)γ|B|

2

2
.

For the rest of this section, fix some 0 < ε < 1/10 constant, let n be sufficiently large

and let G be a simple graph on n vertices with e(G) ≤ (1 − ε) (1−α+β)2γ
2

n2, where α, β, γ

satisfy the conditions described in the theorem. In what follows we shall ignore integrality

issues as they do not make a genuine difference in the proofs.
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Before turning to the proof of Theorem 8.4.1, let us outline the strategy, which is

similar to that in the previous section, with one extra twist. Again, we will choose a

suitable set A randomly. First we define probabilities pv in a very similar fashion as

before. If we defined pv by the same formula as in the previous section, then they would

not quite add up to αn because in this section the graph G has slightly more edges, hence

higher average degree. Our key observation is the following. By the Chernoff bound,

almost surely, for every v ∈ V (G), the degree of v to A will be concentrated tightly

around
∑

u∼v pu. Hence, intuitively it makes sense for us to keep those vertices v with

probability 1 for which this sum is small, since those vertices will almost surely have low

degree in G[A]. Accordingly, we define a new probability p′v for each vertex v, which is

the actual probability that we will keep the vertex with.

Definition 8.4.2. Recall from Definition 8.3.2 that D = (1− ε
2
)βγn and

pv =

1 if dv < D

D
dv

if dv ≥ D.

Let f(v) =
∑

u∼v pu. Let T be the set of those (α − β)n vertices with the smallest value

of f(v). Let R be the subset of vertices v ∈ T which have dv ≥ βγn
2

. Let r = |R|.
Define

p′v =

1 if v ∈ R or dv < D′

D′

dv
otherwise

where D′ = (1− ε
2
)(βγn− β2γ

2(1−α+β)2
r).

We need to check that p′v is not too far from pv since we used
∑

u∼v pu to estimate the

degree of v to A.

Lemma 8.4.3. If v 6∈ R, then |pv − p′v| ≤
β

(1−α+β)2
r
n

.

Proof. If dv < D′, then pv = p′v = 1. If D′ ≤ dv < D, then pv = 1 and p′v = D′

dv
. Then

|pv − p′v| =
|dv−D′|
dv
≤ D−D′

D′
. Note that α− β ≤ β3γ

1000
≤ 1

1000
, so

D′ =
(

1− ε

2

)(
βγn− β2γ

2(1− α + β)2
r

)
≥
(

1− ε

2

)(
βγn− β2γ

2(1− α + β)2
(α− β)n

)
≥ βγn

2
.

Thus, D−D′
D′
≤

(1− ε
2

) β2γ

2(1−α+β)2
r

βγn
2

≤ β
(1−α+β)2

r
n
. Finally, if dv ≥ D, then pv = D

dv
and pv = D′

dv
,

so |pv − p′v| = D−D′
dv
≤ D−D′

D
≤ D−D′

D′
, which is at most β

(1−α+β)2
r
n

as before.

Similarly to the previous section, we need to check that the expected size of A is large

enough.
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Lemma 8.4.4. ∑
v∈V (G)

p′v ≥
(

1 +
ε

64

)
αn.

Proof. Let S be the set of those v ∈ V (G) which have p′v = 1. We claim that S ⊃ T .

Indeed, if v ∈ T , then either dv ≥ βγn
2

and v ∈ R, or dv <
βγn

2
≤ D′. Let |S| = s. Thus,

s ≥ |T | = (α− β)n. Then

∑
v∈V (G)

p′v = s+
∑
v:p′v<1

D′

dv
≥ s+ (n− s) D′

(
∑

v:p′v<1 dv)/(n− s)
= s+

(n− s)2D′∑
v:p′v<1 dv

≥ s+
(n− s)2D′

2e(G)− r βγn
2

≥ s+
(n− s)2D′

(1− ε)(1− α + β)2γn2 − r βγn
2

≥ s+
(n− s)2D′

(1− ε)((1− α + β)2γn2 − r βγn
2

)

= s+
1− ε/2
1− ε

(n− s)2 β

(1− α + β)2n

≥ s+ (1 + ε/2)(n− s)2 β

(1− α + β)2n

= s+ (n− s)2 β

(1− α + β)2n
+
ε

2
(n− s)2 β

(1− α + β)2n
. (8.3)

Now note that s+ (n− s)2 β
(1−α+β)2n

is increasing in s in the range s ≥ 0. Indeed, the

coefficient of s in this expression is 1− 2β
(1−α+β)2

, which is non-negative as α ≤ 1/2.

Thus, since we know that s = |S| ≥ (α− β)n, we have

s+ (n− s)2 β

(1− α + β)2n
≥ (α− β)n+ βn = αn.

If s ≥ (1 + ε
64

)αn, then clearly (8.3) is at least (1 + ε
64

)αn. Otherwise, by α ≤ 1/2, we

have s ≤ 1+ε/64
2

n < 3
4
n. Then

ε

2
(n− s)2 β

(1− α + β)2n
≥ ε

32
βn ≥ ε

64
αn.

This completes the proof.

Corollary 8.4.5. Let A be a random subset of V (G) where each v ∈ V (G) belongs to A

with probability p′v, independently of the other vertices. Then almost surely |A| ≥ αn.

Define G′ to be the graph obtained by discarding all edges of G with at least one

endpoint in R. Let d′v be the degree of the vertex v ∈ V (G′) = V (G) in G′. For distinct

vertices u, v ∈ V (G), write u ∼G′ v if uv is an edge in G′. The next lemma shows that

the expected number of paths in G′ is small. We will use this to conclude that G′ does

not have large dense subgraphs.
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Lemma 8.4.6. Let A be a random subset of V (G) where each v ∈ V (G) belongs to A

with probability p′v, independently of the other vertices. Then for any positive integer k,

E
[ ∑
v0,...,vk∈A distinct

1{v0 ∼G′ v1 ∼G′ · · · ∼G′ vk}
]
≤ n(D′)k.

Proof. Note that for every v ∈ V (G′), p′v ≤ D′

d′v
. So the proof of Lemma 8.3.5 (in the

special case where the graph is a simple graph) works here.

Lemma 8.4.7. Let A be a random subset of V (G) where each v ∈ V (G) belongs to A with

probability p′v, independently of the other vertices. Then, with probability at least 1/2, for

every set B ⊂ A of size at least βn, the average degree in G′[B] is at most (1 + ε
4
)D′.

The proof of this is nearly identical to the proof of Lemma 8.3.6, so it is omitted.

Proof of Theorem 8.4.1. Let A be a random subset of V (G) where each v ∈ V (G)

belongs to A with probability p′v, independently of the other vertices. By Corollary 8.4.5

and Lemma 8.4.7, with positive probability |A| ≥ αn and for every B′ ⊂ A of size at least

βn we have

e(G′[B′]) ≤
|B′| · (1 + ε

4
)D′

2
≤
(

1− ε

4

)(
1− β

2(1− α + β)2

r

n

)
γ
|B′|2

2
. (8.4)

Assume that there exists some B ⊂ A with |B| ≥ βn and e(G[B]) > (1− ε
4
)γ |B|

2

2
. By

passing to a suitable subset, we may assume that |B| = βn. Recall the sets R, T ⊂ V (G)

from Definition 8.4.2. Note that |R| = r ≤ (α − β)n. Let U = B ∩ R. Choose U ′ ⊂
(A \ B) \ T arbitrarily with |U ′| = |U |. Note that this is possible since |(A \ B) \ T | =

|A| − |B| − |T | + |B ∩ T | ≥ αn − βn − (α − β)n + |B ∩ T | ≥ |B ∩ R| = |U |. Let

B′ = (B \ U) ∪ U ′.

Claim. Almost surely we have e(G[B])− e(G[B′]) ≤ β3γ
8(1−α+β)2

rn.

Given this claim, since B′ ∩R = ∅ we have

e(G′[B′]) = e(G[B′]) >
(

1− ε

4

)
γ

(βn)2

2
− β3γ

8(1− α + β)2
rn

≥
(

1− ε

4

)(
1− β

2(1− α + β)2

r

n

)
γ

(βn)2

2
,

which contradicts equation (8.4).

Thus, we are left to prove the claim.

Proof of Claim. Note that

e(G[B])− e(G[B′]) ≤ e(G[U ]) +
∑
v∈U

dv(B ∩B′)−
∑
v∈U ′

dv(B ∩B′), (8.5)
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where dv(S) denotes the number of neighbours of v in the set S. Since |U | ≤ |R| = r, we

have

e(G[U ]) ≤
(
r

2

)
. (8.6)

Also, |B ∩ B′| ≥ βn − r, so |A \ (B ∩ B′)| ≤ (α − β)n + r ≤ 2(α − β)n. Hence, for any

v ∈ V (G) we have dv(B ∩B′) ≥ dv(A)− 2(α− β)n, so∑
v∈U ′

dv(B ∩B′) ≥
∑
v∈U ′

dv(A)− 2r(α− β)n. (8.7)

Note that by Chernoff’s bound (e.g. Corollary 5 in [50]),

P
(
|dv(A)− E[dv(A)]| ≥ (log n)(E[dv(A)])1/2

)
≤ 2 exp(−(log n)2/3) = o(1/n).

Thus, almost surely we have

|dv(A)− E[dv(A)]| ≤ (log n)(E[dv(A)])1/2 ≤ n1/2 log n (8.8)

for every v ∈ V (G). Note that E[dv(A)] =
∑

u∼Gv p
′
u. By Lemma 8.4.3, we have

|
∑
u∼Gv

p′u −
∑
u∼Gv

pu| ≤ n · β

(1− α + β)2

r

n
+ r =

(
β

(1− α + β)2
+ 1

)
r. (8.9)

However, by the definition of T , for every v ∈ T and v′ 6∈ T we have
∑

u∼Gv pu ≤∑
u∼Gv′ pu, so the same holds for every v ∈ U and every v′ ∈ U ′. Thus, by equations (8.8)

and (8.9), for every v ∈ U and every v′ ∈ U ′, dv(A) ≤ dv′(A)+2( β
(1−α+β)2

+1)r+2n1/2 log n,

and therefore∑
v∈U

dv(A) ≤
∑
v∈U ′

dv(A) + 2

(
β

(1− α + β)2
+ 1

)
r2 + 2rn1/2 log n. (8.10)

Now by equations (8.5), (8.6), (8.7) and (8.10), we get

e(G[B])− e(G[B′]) ≤
(
r

2

)
+ 2r(α− β)n+ 2

(
β

(1− α + β)2
+ 1

)
r2 + 2rn1/2 log n

≤ r(α− β)n+ 2r(α− β)n+ 2

(
β

(1− α + β)2
+ 1

)
r(α− β)n+ 2rn1/2 log n.

Note that by the condition α − β ≤ β3γ
1000

in the theorem, the first three terms on the

right hand side are at most β3γrn
30

each, while by the condition β3γ = ω( logn
n1/2 ), the fourth

term is o(β3γrn), which completes the proof of the claim.
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8.5 The bipartite case

Proof of Proposition 8.1.6. First, note that the condition βγ = ω( 1
n
) implies βn =

ω(1) and therefore also αn = ω(1) and βn
α

= ω(1).

Let X and Y be sets of size n; these will be the parts of Gn. Let m = dK α
β

log(1/α)e
for some large absolute constant K. For each 1 ≤ i ≤ m, define subsets Ai ⊂ X and

Bi ⊂ Y of size b2β
α
nc uniformly at random (and independently). The graph Hi is then

defined by picking each edge between Ai and Bi independently at random with probability

min(2γ, 1). Finally, set G = Gn = ∪i≤mHi. Notice that almost surely the bipartite edge

density of G is at most m(2β
α

)24γ ≤ 20K βγ
α

log(1/α).

Fix some A ⊂ X and some B ⊂ Y of size dαne each. Note that P[|A ∩ A1| ≤ βn] ≤
exp(−cβn) for some absolute constant c > 0. Similarly, P[|B ∩ B1| ≤ βn] ≤ exp(−cβn).

Now condition on the event that |A ∩ A1|, |B ∩ B1| ≥ βn. The probability that the

bipartite graph H1[A∩A1, B∩B1] has edge density less than γ is at most exp(−c′γ(βn)2)

for some absolute constant c′ > 0. Thus, the probability that there do not exist U ⊂ A

and V ⊂ B with |U |, |V | ≥ βn such that the edge density of H1[U, V ] is at least γ is

at most 2 exp(−cβn) + exp(−c′γ(βn)2). Since βγn = ω(1), for n sufficiently large it is

at most 3 exp(−cβn). Hence, the probability that the pair (A,B) witnesses that G does

not have the bipartite (α, β, γ)-property is at most (3 exp(−cβn))m ≤ exp(− c
2
βnm) ≤

exp(−10α log(1/α)n) if K is sufficiently large. But the number of choices for A ⊂ X

and B ⊂ Y of size dαne each is
(

n
dαne

)2 ≤ (e/α)2dαne = exp(log(e/α)2dαne) = exp((1 +

log(1/α))2dαne) ≤ exp(6 log(1/α)dαne). It follows by the union bound that almost surely

G has the bipartite (α, β, γ)-property.

We now turn to the proof of Theorem 8.1.7.

Lemma 8.5.1. Let 0 < β < α ≤ 1 and 0 < γ ≤ 1 be parameters depending on n ∈ N
such that αβγn = ω((log n)3) and β2γn = ω(log n). Let n be sufficiently large and let G

be a bipartite graph with vertex sets X and Y such that |X| = n and |Y | ≤ n. Suppose

that for all A ⊂ X with |A| ≥ αn there exist B ⊂ A and C ⊂ Y such that |B| ≥ βn,

|C| ≥ m ≥ βn and G[B,C] has edge density at least γ. Then there exist D ⊂ X and

E ⊂ Y with |D| ≥ β
α
n and |E| ≥ m such that G[D,E] has edge density at least γ/400.

We remark that we will only need the weaker condition that for a positive proportion

of all A ⊂ X with |A| ≥ αn there exist B ⊂ A and C ⊂ Y with the above properties.

The proof of the lemma is somewhat technical, so let us give a brief sketch first. For

simplicity, we assume that α, β and γ are constants not depending on n. For a set S ⊂ Y

and a positive integer j ≤ log n, write Nj(S) for the set of vertices x ∈ X which have

roughly 2−j|S| neighbours in S. This way, for each S ⊂ Y we get a dyadic partition

of X. Let us consider all S ⊂ Y of size roughly log n. The number of such sets is at

most roughly exp((log n)2). Thus, if A is a uniformly random subset of X of size αn,

then by the union bound and Chernoff bound, almost surely |Nj(S) ∩ A| ≈ α|Nj(S)|
for every S of size roughly log n and every j ≤ log n. (This fails if Nj(S) is very small,
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but let us ignore this issue here.) Thus, we can take some A ⊂ X for which all these

approximations hold. By assumption, there exist B ⊂ A and E ⊂ Y with |B| ≥ βn and

|E| ≥ m such that G[B,E] has density at least γ. This means that
∑

j≤logn |Nj(E) ∩
B| · 2−j|E| ≈ e(G[B,E]) ≥ γ|B||E|. Let S be a uniformly random subset of E of size

log n. If x ∈ Nj(E), then almost surely x ∈ Nj(S) (note that this is not quite true; it can

happen with non-negligible probability that x ∈ Nj−1(S) or x ∈ Nj+1(S), but this is easily

dealt with in the proof below). Thus, with a bit of oversimplification Nj(S) and Nj(E)

are roughly the same sets. Since Nj(S) ∩ B ⊂ Nj(S) ∩ A and |Nj(S) ∩ A| ≈ α|Nj(S)|,
we may choose Dj ⊂ Nj(S) such that |Dj| ≈ |Nj(S)∩B|

α
. Set D = ∪j≤lognDj. Then

|D| =
∑

j≤logn |Dj| ≈ |B|
α
≥ β

α
n. Since Dj = Nj(S) ∩ D, we have (roughly) Dj =

Nj(E) ∩D. Thus, e(G[D,E]) ≈
∑

j≤logn |Nj(E) ∩D| · 2−j|E| ≈
∑

j≤logn |Dj| · 2−j|E| ≈∑
j≤logn

|Nj(S)∩B|
α

· 2−j|E| ≈ 1
α

∑
j≤logn |Nj(E) ∩ B| · 2−j|E| ≈ 1

α
e(G[B,E]) ≥ 1

α
γ|B||E| ≈

γ|D||E|, so D and E are suitable.

The proof below makes this sketch precise without any significant new ideas. Note

that we only get density γ/400 between D and E. However, by refining the partition

Nj(S) so that Nj(S) = {x ∈ X : λj|S| < |ΓG(x)∩S| ≤ λj−1|S|} for some λ = 1−o(1), we

could obtain density (1− o(1))γ in G[D,E], at least when α, β, γ are constants. This will

be done (in the more general setting of r-partite graphs) in the next section. Nevertheless,

we include this proof here as it is easier to read than the more general one later.

Proof of Lemma 8.5.1. For a set S ⊂ Y and an integer 1 ≤ j ≤ dlog2 ne + 1, define

Nj(S) to be {x ∈ X : 2−j|S| < |ΓG(x) ∩ S| ≤ 2−(j−1)|S|}. For 1 ≤ j ≤ dlog2 ne + 1, let

sj = dK · 2j log ne for a sufficiently large absolute constant K, and let tj = b2j γβn
100 log2 n

c.

Let A be a uniformly random subset of X of size dαne. If a set R ⊂ X has size at

least tj, then by the Chernoff bound

P[|R ∩ A| ≥ 2α|R|] ≤ exp(−cα|R|) ≤ exp(−cαtj) (8.11)

for some absolute constant c > 0. On the other hand, the number of sets of size sj in Y is at

most
(
n
sj

)
≤ nsj = exp(sj log n). Let Fj be the event that there exists some Sj ⊂ Y of size

sj such that |Nj−1(Sj)∪Nj(Sj)∪Nj+1(Sj)| ≥ tj and |Nj−1(Sj)∪Nj(Sj)∪Nj+1(Sj)∩A| ≥
2α|Nj−1(Sj) ∪ Nj(Sj) ∪ Nj+1(Sj)|. From the assumption αβγn = ω((log n)3) it follows

that cαtj = ω(sj log n), therefore by (8.11), for n sufficiently large we have P(Fj) <
1

10 log2 n

say. Thus, with positive probability none of the events Fj (1 ≤ j ≤ dlog2 ne+ 1) occurs.

Pick some set A ⊂ X of size dαne for which this is the case. By assumption, there are

B ⊂ A and E ⊂ Y such that |B| = dβne, |E| ≥ m and G[B,E] has edge density at least

γ. Then

dlog2 ne+1∑
j=1

|Nj(E) ∩B| · 2−j+1|E| ≥ e(G[B,E]) ≥ γ|B||E| ≥ βγn|E|.
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After dividing both sides by |E| and since |Nj(E) ∩B| ≤ n for every j, we get

d− log2(βγ/4)e∑
j=1

|Nj(E) ∩B| · 2−j+1 ≥ βγn/2.

Thus, there is some ε ∈ {0, 1, 2, 3, 4} such that∑
1≤j≤d− log2(βγ/4)e

j≡ε mod 5

|Nj(E) ∩B| · 2−j+1 ≥ βγn/10.

Suppose that |Nj(E)∩B| < tj. Then by the definition of tj, we have |Nj(E)∩B| ·2−j+1 <
βγn

50 log2 n
. Thus ∑

1≤j≤d− log2(βγ/4)e
j≡ε mod 5
|Nj(E)∩B|≥tj

|Nj(E) ∩B| · 2−j+1 ≥ βγn/20. (8.12)

Claim. If j satisfies 1 ≤ j ≤ d− log2(βγ/4)e and |Nj(E) ∩ B| ≥ tj, then we have

|Nj−2(E) ∪Nj−1(E) ∪Nj(E) ∪Nj+1(E) ∪Nj+2(E)| ≥ 1
2α
|Nj(E) ∩B|.

Proof of Claim. First notice that since j ≤ d− log2(βγ/4)e, we have sj ≤ d2K 4
βγ

log ne.
Therefore the condition β2γn = ω(log n) implies that for n sufficiently large we have

sj ≤ βn ≤ m ≤ |E|. Pick a random subset S ⊂ E of size sj. Let x ∈ Nj(E). Then, by

the Chernoff bound, P[x 6∈ Nj−1(S)∪Nj(S)∪Nj+1(S)] ≤ exp(−c2−jsj) for some absolute

constant c > 0. This is at most 1/n2 for K sufficiently large. On the other hand, again by

the Chernoff bound, if |i−j| ≥ 3 and x ∈ Ni(E), then P[x ∈ Nj−1(S)∪Nj(S)∪Nj+1(S)] ≤
exp(−c′2−jsj) ≤ 1/n2. Thus, almost surely we have that

Nj(E) ⊂ Nj−1(S)∪Nj(S)∪Nj+1(S) ⊂ Nj−2(E)∪Nj−1(E)∪Nj(E)∪Nj+1(E)∪Nj+2(E).

In particular, |Nj−1(S) ∪ Nj(S) ∪ Nj+1(S)| ≥ |Nj(E)| ≥ |Nj(E) ∩ B| ≥ tj, therefore

|Nj−1(S)∪Nj(S)∪Nj+1(S)∩A| ≤ 2α|Nj−1(S)∪Nj(S)∪Nj+1(S)| from the definition of

A. Thus,

|Nj−2(E) ∪Nj−1(E) ∪Nj(E) ∪Nj+1(E) ∪Nj+2(E)|

≥ |Nj−1(S) ∪Nj(S) ∪Nj+1(S)|

≥ 1

2α
|Nj−1(S) ∪Nj(S) ∪Nj+1(S) ∩ A|

≥ 1

2α
|Nj(E) ∩ A|

≥ 1

2α
|Nj(E) ∩B|.

This completes the proof of the claim.

By the claim, if 1 ≤ j ≤ d− log2(βγ/4)e and |Nj(E) ∩ B| ≥ tj, then we may choose
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sets Dj ⊂ Nj−2(E) ∪ · · · ∪ Nj+2(E) with |Dj| = d 1
2α
|Nj(E) ∩ B|e. Note that these are

pairwise disjoint for all j ≡ ε mod 5. By (8.12), we have

∑
1≤j≤d− log2(βγ/4)e

j≡ε mod 5
|Nj(E)∩B|≥tj

|Dj| · 2−j+1 ≥ βγn

40α
.

Since any x ∈ Dj has at least 2−j−2|E| neighbours in E, we get

e
(
G
[⋃

j

Dj, E
])
≥
∑
j

|Dj| · 2−j−2|E| ≥ βγn|E|
320α

.

On the other hand,
∑

j |Dj| ≤ 1
2α

∑
j |Nj(E)∩B|+ dlog2 ne+ 1 ≤ |B|

2α
+ dlog2 ne+ 1 ≤ βn

α

for n sufficiently large. So we may choose arbitrary D ⊃ ∪jDj with |D| = dβn
α
e; then

G[D,E] has edge density at least γ
400

.

Corollary 8.5.2. Let α, β, γ satisfy the conditions described in Lemma 8.5.1 and let n

be sufficiently large. Let G be a bipartite graph with vertex sets U, V of size n having the

bipartite (α, β, γ)-property. Then there exist S ⊂ U and T ⊂ V of size at least β
α
n such

that G[S, T ] has density at least γ/4002.

Proof. Fix R ⊂ V with |R| ≥ αn. By the bipartite (α, β, γ)-property of G, Lemma

8.5.1 applies with X = U, Y = R and m = βn. Thus, we get that for every R ⊂ V

with |R| ≥ αn there are A ⊂ R and B ⊂ X with |A| ≥ βn and |B| ≥ β
α
n such that

the edge density of G[A,B] is at least γ/400. But now we can apply Lemma 8.5.1 with

X = V, Y = U,m = β
α
n and γ/400 in place of γ to find S and T with the required

properties.

Corollary 8.5.3. Let α, β, γ satisfy the conditions described in Lemma 8.5.1 and assume

in addition that β/α ≤ 1/10. Let n be sufficiently large and let G be a bipartite graph with

vertex sets X, Y of size n having the bipartite (α, β, γ)-property. Then there exist pairwise

disjoint sets S1, . . . , St ⊂ X and T1, . . . , Tt ⊂ Y such that each Si and Tj has size d β
2α
ne,

G[Si, Ti] has edge density at least γ/4002 for each i, t is even and t ≥ α
2β

.

Proof. Suppose we have chosen the first k ≤ α
2β

+ 1 sets Si and Ti. Let X ′ = X \ ∪i≤kSi
and Y ′ = Y \ ∪i≤kTi. Then |X ′| ≥ n − ( α

2β
+ 1)d β

2α
ne ≥ n/2 and similarly |Y ′| ≥ n/2.

Let G′ = G[X ′, Y ′]. Then G′ has the bipartite (α′, β′, γ)-property for α′ = |X|
|X′|α and

β′ = |X|
|X′|β. Thus, by Corollary 8.5.2, there exist Sk+1 ⊂ X ′ and Tk+1 ⊂ Y ′ of size at

least β′

α′
|X ′| ≥ β

2α
n such that G[Sk+1, Tk+1] has edge density at least γ/4002. We can now

replace both sets with suitable subsets of size d β
2α
ne such that the density condition is

still satisfied.

We are in a position to complete the proof of Theorem 8.1.7.
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Proof of Theorem 8.1.7. The proof goes by induction on log2(1/α). Let us first assume

that 1/4 < α ≤ 1/2. It is enough to prove that there is an absolute constant c′ > 0 such

that the edge density of G is at least c′βγ. Let X and Y be the parts of G. It is not

hard to see that we may find pairwise disjoint sets S1, . . . , Sk ⊂ X and T1, . . . , Tk ⊂ Y of

size dβne each such that kdβne ≥ n/2 and G[Si, Ti] has edge density at least γ for each

i. This implies that e(G) ≥ k(dβne)2γ ≥ βγ
2
n2.

Suppose now that α ≤ 1/4. Choose sets Si and Tj as provided by Corollary 8.5.3.

Write t = 2r. Choose a uniformly random subset I ⊂ [2r] of size r. Assume, for

convenience, that n is even. Let X ′1 =
⋃
i∈I Si and Y ′1 =

⋃
i∈[2r]\I Ti. Moreover, let X ′2

be a uniformly random subset of X \
⋃
i Si of size 1

2
|X \

⋃
i Si| and let Y ′2 be a uniformly

random subset of Y \
⋃
i Ti of size 1

2
|Y \

⋃
i Ti|. Let X ′ = X ′1 ∪X ′2 and let Y ′ = Y ′1 ∪ Y ′2 .

Consider the graph G′ = G[X ′, Y ′]. Note that |X ′| = |X|/2 and |Y ′| = |Y |/2, therefore

G′ is a bipartite graph on n/2 + n/2 vertices having the (2α, 2β, γ)-property. By the

induction hypothesis, we have

e(G′) ≥ c
βγ

α
(log2(1/α)− 1)

n2

4
(8.13)

We shall now estimate E[e(G′)]. Any edge in G which has an endpoint outside
⋃
i Si∪⋃

j Tj is present in G′ with probability exactly 1/4. Any edge in G[Si, Ti] for some i is

present in G′ with probability 0. Finally, any edge in G[Si, Tj] for some i 6= j is present

in G′ with probability r
2(2r−1)

= 1/4 + 1
4(2r−1)

. Since
∑

i e(G[Si, Ti]) ≥ 2r · γ
4002

( β
2α
n)2, it

follows that

E[e(G′)] ≤
(

1/4 +
1

4(2r − 1)

)
e(G)− 1

4
2r

γ

4002

(
β

2α
n

)2

.

Thus, by (8.13),

c
βγ

α
(log2(1/α)− 1)

n2

4
≤
(

1/4 +
1

4(2r − 1)

)
e(G)− 1

4
2r

γ

4002

(
β

2α
n

)2

.

Recall that our aim is to prove that e(G) ≥ cβγ
α

log2(1/α)n2. Suppose for contradiction

that e(G) < cβγ
α

log2(1/α)n2. Then we get

c
βγ

α
(log2(1/α)− 1)

n2

4
<

(
1/4 +

1

4(2r − 1)

)
c
βγ

α
log2(1/α)n2 − 1

4
2r

γ

4002

(
β

2α
n

)2

,

so

−cβγ
α

n2

4
<

1

4(2r − 1)
c
βγ

α
log2(1/α)n2 − 1

4
2r

γ

4002

(
β

2α
n

)2

.

Dividing through by βγ
4α
n2, we get

−c < 1

(2r − 1)
c log2(1/α)− 2r

1

4002

β

4α
,
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so
β

2 · 4002α
r <

(
log2(1/α)

2r − 1
+ 1

)
c. (8.14)

Since r = t/2 ≥ α
4β

, the left hand side is at least 1
8·4002

. On the other hand, the right hand

side is at most (1
r

log2(1/α) + 1)c ≤ (4β
α

log2(1/α) + 1)c ≤ (4/10 + 1)c. Thus, if c is a

sufficiently small absolute constant (eg. c = 1
16·4002

would do), then (8.14) does not hold.

This completes the proof of the theorem.

8.6 Structural results

In this section we prove Theorem 8.1.8. We first need to generalize Lemma 8.5.1 from

the previous section to r-partite graphs for all r. We also need to be more careful and

obtain edge density (1 − o(1))γ between our sets, rather than γ/400 as in Lemma 8.5.1.

These make the notation in the proof rather involved, but the main ideas are essentially

the same.

Lemma 8.6.1. Let r be a positive integer (independent of n) and let α, β, γ = Ω(1) be

functions of n. Let G be an r-partite graph with parts X, Y1, . . . , Yr−1 such that |X| = n

and |Y1|, . . . , |Yr−1| ≤ n. Assume that for at least half of all A ⊂ X of size dαne there

exist B ⊂ A and C1 ⊂ Y1, C2 ⊂ Y2, . . . , Cr−1 ⊂ Yr−1 such that |B| ≥ βn, |Ci| ≥ mi ≥ βn

for every i, and between any two of B,C1, . . . , Cr−1, the bipartite subgraph induced by

G has density at least γ. Then there exist D ⊂ X and Ei ⊂ Yi for every i such that

|D| ≥ β
α
n, |Ci| ≥ mi for every i, and between any two of D,E1, . . . , Er−1, the bipartite

subgraph induced by G has density at least (1− o(1))γ.

Proof. Let λ = exp(− 1
(logn)2

) and let k = b(log n)2 log log nc. For a set S ⊂ Y1∪· · ·∪Yr−1

and an integer 1 ≤ j < k, let Nj(S) = {x ∈ X : λj|S| < |ΓG(x)∩S| ≤ λj−1|S|}. Moreover,

let Nk(S) = {x ∈ X : |ΓG(x) ∩ S| ≤ λk−1|S|}. Given an (r − 1)-tuple ~j = (j1, . . . , jr−1)

of integers and ~S = (S1, . . . , Sr−1) such that 1 ≤ ji ≤ k and Si ⊂ Yi for every i, write

N~j(
~S) =

⋂
1≤i≤r−1Nji(Si). For ~S = (S1, . . . , Sr−1) and sets J1, . . . , Jr−1 ⊂ {1, 2, . . . , k},

define

N ′(J1,...,Jr−1)(~S) =
⋃

j1∈J1,...,jr−1∈Jr−1

N~j(
~S).

Moreover, for a vector ~v and nonnegative integers a, b, we write

[~v − a,~v + b] = ([v1 − a, v1 + b]k, . . . , [vr−1 − a, vr−1 + b]k),

where [c, d]k denotes [c, d] ∩ {1, 2, . . . , k}.
Let s = d(log n)7e, t = bn2/3c and ` = dlog ne.
Let A be a uniformly random subset of X of size dαne. If T ⊂ X has size at least t,
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then by the Chernoff bound

P
[
|T ∩ A| ≥ α|T |+ α|T |

n1/20

]
≤ exp

(
− c α|T |

n1/10

)
≤ exp(−n1/2) (8.15)

for n sufficiently large. On the other hand, the number of ~S = (S1, . . . , Sr−1) with Si ⊂ Yi

and |S1| = · · · = |Sr−1| = s is at most
(
n
s

)r ≤ nrs = exp(rs log n) ≤ exp((log n)9) for n

sufficiently large. Let F be the event that there exist 1 ≤ v1, . . . , vr−1 ≤ k and some S1 ⊂
Y1, . . . , Sr−1 ⊂ Yr−1 of size s such that |N ′[~v−1,~v+`−4](

~S)| ≥ t and |N ′[~v−1,~v+`−4](
~S) ∩ A| ≥

α(1 + 1
n1/20 )|N ′[~v−1,~v+`−4](

~S)|. Then, by the union bound and (8.15), we have P(F ) = o(1).

Thus, we may choose some A ⊂ X of size dαne such that F does not hold but

there exist B ⊂ A and E1 ⊂ Y1, E2 ⊂ Y2, . . . , Er−1 ⊂ Yr−1 with the property that

|B| ≥ βn, |Ei| ≥ mi for every i, and between any two of B,E1, . . . , Er−1, the bipartite

subgraph induced by G has density at least γ. Write ~E = (E1, . . . , Er−1). Then for every

1 ≤ i ≤ r − 1, ∑
~j

|N~j( ~E) ∩B| · λji−1|Ei| ≥ e(G[B,Ei]) ≥ γ|B||Ei|, (8.16)

where the summation is over all ~j = (j1, . . . , jr−1) with 1 ≤ j1, . . . , jr−1 ≤ k.

Recall that ` = dlog ne. For 1 ≤ I ≤ r − 1, choose integers 1 ≤ uI ≤ ` independently

and uniformly at random. Clearly, for any 1 ≤ i, I ≤ r − 1,

E
[ ∑

~j:
jI∈{uI−4,uI−3,uI−2,uI−1} mod `

|N~j( ~E) ∩B| · λji−1

]
=

4

`

∑
~j

|N~j( ~E) ∩B| · λji−1,

and so

P
[ ∑

~j:
jI∈{uI−4,uI−3,uI−2,uI−1} mod `

|N~j( ~E) ∩B| · λji−1 >
4r2

`

∑
~j

|N~j( ~E) ∩B| · λji−1

]
<

1

r2
.

Thus, there exist 1 ≤ u1, . . . , ur−1 ≤ ` such that for every 1 ≤ i, I ≤ r − 1,

∑
~j:

jI∈{uI−4,uI−3,uI−2,uI−1} mod `

|N~j( ~E) ∩B| · λji−1 ≤ 4r2

`

∑
~j

|N~j( ~E) ∩B| · λji−1,

and so for every 1 ≤ i ≤ r − 1,

∑
~j:

jI 6∈{uI−4,uI−3,uI−2,uI−1} mod `
for every I

|N~j( ~E) ∩B| · λji−1 ≥
(

1− 4r3

`

)∑
~j

|N~j( ~E) ∩B| · λji−1

≥
(

1− 4r3

`

)
γ|B| by (8.16).
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Using the compact notation introduced at the beginning of the proof, we get that for

every 1 ≤ i ≤ r − 1,

∑
~v:

~v≡~u mod `

|N ′[~v,~v+`−5]( ~E) ∩B| · λvi−1 ≥
(

1− 4r3

`

)
γ|B|.

However, ∑
~v:

|N ′
[~v,~v+`−5]

( ~E)∩B|<t

|N ′[~v,~v+`−5]( ~E) ∩B| · λvi−1 ≤ kr−1t = o(γ|B|),

so ∑
~v:

~v≡~u mod `
|N ′

[~v,~v+`−5]
( ~E)∩B|≥t

|N ′[~v,~v+`−5]( ~E) ∩B| · λvi−1 ≥ (1− o(1))γ|B|. (8.17)

Claim. For every ~v, if |N ′[~v,~v+`−5](
~E) ∩B| ≥ t, then

|N ′[~v−2,~v+`−3]( ~E)| ≥ 1

α(1 + n−1/20)
· |N ′[~v,~v+`−5]( ~E) ∩B|.

Proof of Claim. For every 1 ≤ i ≤ r − 1, pick random subsets Si ⊂ Ei of size s and

write ~S = (S1, . . . , Sr−1). Let x ∈ Nj(Ei) for some 1 ≤ i ≤ r − 1 and some 1 ≤ j < k.

If x 6∈ Nj−1(Si) ∪Nj(Si) ∪Nj+1(Si), then the random variable |{y ∈ Si : xy is an edge}|
deviates by at least (1 − λ)µ from its mean µ. Hence, by the Chernoff bound, P[x 6∈
Nj−1(Si)∪Nj(Si)∪Nj+1(Si)] ≤ exp(−c(1−λ)2µ) for some absolute constant c > 0. Since

µ ≥ λjs ≥ λj(log n)7, λj ≥ λk ≥ exp(− log log n) = 1
logn

and 1 − λ ≥ 1
2(logn)2

, we have

exp(−c(1 − λ)2µ) ≤ 1
n2 . It is not hard to see that also in the case x ∈ Nk(Ei), we have

P[x 6∈ Nk−1(Si) ∪ Nk(Si)] ≤ 1
n2 . Thus, almost surely, for every 1 ≤ i ≤ r − 1 and every

1 ≤ j ≤ k, Nj(Ei) ⊂ Nj−1(Si) ∪ Nj(Si) ∪ Nj+1(Si). Then we also have that for every

1 ≤ i ≤ r − 1 and every 1 ≤ j ≤ k,

Nj(Ei) ⊂ Nj−1(Si) ∪Nj(Si) ∪Nj+1(Si)

⊂ Nj−2(Ei) ∪Nj−1(Ei) ∪Nj(Ei) ∪Nj+1(Ei) ∪Nj+2(Ei).

Hence,

N ′[~v,~v+`−5]( ~E) ⊂ N ′[~v−1,~v+`−4](~S) ⊂ N ′[~v−2,~v+`−3]( ~E).

In particular, |N ′[~v−1,~v+`−4](
~S)| ≥ |N ′[~v,~v+`−5](

~E)| ≥ |N ′[~v,~v+`−5](
~E) ∩B| ≥ t, therefore

|N ′[~v−1,~v+`−4](~S) ∩ A| ≤ α
(

1 +
1

n1/20

)
|N ′[~v−1,~v+`−4](~S)|
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from the definition of A. Thus,

|N ′[~v−2,~v+`−3]( ~E)| ≥ |N ′[~v−1,~v+`−4](~S)|

≥ 1

α(1 + n−1/20)
|N ′[~v−1,~v+`−4](~S) ∩ A|

≥ 1

α(1 + n−1/20)
|N ′[~v,~v+`−5]( ~E) ∩ A|

≥ 1

α(1 + n−1/20)
|N ′[~v,~v+`−5]( ~E) ∩B|.

This completes the proof of the claim.

By the claim, if |N ′[~v,~v+`−5](
~E)∩B| ≥ t, then we may choose sets D~v ⊂ N ′[~v−2,~v+`−3](

~E)

with |D~v| =
⌈

1
α(1+n−1/20)

|N ′[~v,~v+`−5](
~E) ∩ B|

⌉
. Note that these are pairwise disjoint for all

~v ≡ ~u mod `. By (8.17), for every 1 ≤ i ≤ r − 1, we have∑
~v:

~v≡~u mod `
|N ′

[~v,~v+`−5]
( ~E)∩B|≥t

|D~v| · λvi−1 ≥ (1− o(1))
γ

α
|B|.

If vi > k − `, then λvi−1 ≤ λ
1
2

(logn)2 log logn = 1√
logn

, so

∑
~v:

~v≡~u mod `
|N ′

[~v,~v+`−5]
( ~E)∩B|≥t

vi>k−`

|D~v| · λvi−1 ≤ 1√
log n

∑
~v:

~v≡~u mod `
|N ′

[~v,~v+`−5]
( ~E)∩B|≥t

|D~v| ≤
1√

log n
|X| = n√

log n
,

therefore ∑
~v:

~v≡~u mod `
|N ′

[~v,~v+`−5]
( ~E)∩B|≥t

vi≤k−`

|D~v| · λvi−1 ≥ (1− o(1))
γ

α
|B|.

If vi ≤ k − `, then vi + `− 3 < k. But D~v ⊂ N ′[~v−2,~v+`−3](
~E) ⊂

⋃
vi−2≤j≤vi+`−3Nj(Ei), so

any x ∈ D~v has at least λvi+`−2|Ei| neighbours in Ei. Thus,

e
(
G
[⋃

~v

D~v, Ei
])
≥
∑
~v

|D~v| · λvi+`−2|Ei| ≥ (1− o(1))
γ

α
|B||Ei|,

where the union and the summation are over all ~v with ~v ≡ ~u mod `, |N ′[~v,~v+`−5](
~E)∩B| ≥

t and vi ≤ k − `. On the other hand,

∑
~v:

~v≡~u mod `
|N ′

[~v,~v+`−5]
( ~E)∩B|≥t

|D~v| ≤
∑
~v:

~v≡~u mod `
|N ′

[~v,~v+`−5]
( ~E)∩B|≥t

⌈ 1

α(1 + n−1/20)
|N ′[~v,~v+`−5]( ~E) ∩B|

⌉
≤ |B|

α
.

Now if |
⋃
~vD~v| ≥ β

α
n, then choose D =

⋃
~vD~v, otherwise choose arbitrary D ⊃

⋃
~vD~v
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with |D| = dβ
α
ne; then for every 1 ≤ i ≤ r − 1, G[D,Ei] has edge density at least

(1− o(1))γ.

The next result is the generalization of Corollary 8.5.2 from the previous section.

Corollary 8.6.2. Let r be a positive integer (independent of n) and let α, β, γ = Ω(1) be

functions of n. Let G be an r-partite graph with parts X1, . . . , Xr of size n each. Suppose

that for a proportion 1−o(1) of all choices A1 ⊂ X1, . . . , Ar ⊂ Xr with |Ai| = dαne, there

exist Bi ⊂ Ai of size at least βn each such that G[Bi, Bj] has edge density at least γ for

every i 6= j. Then there exist sets Si ⊂ Xi of size at least β
α
n each such that G[Si, Sj] has

edge density at least (1− o(1))γ for every i 6= j.

Proof. We prove by induction on k that for every 0 ≤ k ≤ r, for a proportion 1 − o(1)

of all Ak+1 ⊂ Xk+1, . . . , Ar ⊂ Xr of size dαne there exist U1 ⊂ X1, . . . , Uk ⊂ Xk and

Vk+1 ⊂ Ak+1, . . . , Vr ⊂ Ar such that |Ui| ≥ β
α
n for every i, |Vj| ≥ βn for every j, and

the edge density between any two of U1, . . . , Uk, Vk+1, . . . , Vr is at least (1 − o(1))γ. In

particular, when k = r, this proves the corollary.

The case k = 0 is guaranteed by the conditions of the corollary. Let k ≥ 1 and assume

that we have already proved the statement for k−1. Assume that Ak+1 ⊂ Xk+1, . . . , Ar ⊂
Xr are sets of size dαne such that for at least half of all Ak ⊂ Xk there exist U1 ⊂
X1, . . . , Uk−1 ⊂ Xk−1 and Vk ⊂ Ak, . . . , Vr ⊂ Ar such that |Ui| ≥ β

α
n for every i, |Vj| ≥ βn

for every j, and the edge density between any two of U1, . . . , Uk−1, Vk, . . . , Vr is at least (1−
o(1))γ. Note that this holds for a proportion 1−o(1) of all Ak+1, . . . , Ar. But for any such

Ak+1, . . . , Ar, we can apply Lemma 8.6.1 to find D ⊂ Xk, E1 ⊂ X1, . . . , Ek−1 ⊂ Xk−1 and

Ek+1 ⊂ Ak+1, . . . , Er ⊂ Ar such that |D| ≥ β
α
n, |E1|, . . . , |Ek−1| ≥ β

α
n, |Ek+1|, . . . , |Er| ≥

βn, and the edge density between any two of E1, . . . , Ek−1, D,Ek+1, . . . , Er is at least

(1− o(1))γ. This completes the inductive step.

Proof of Theorem 8.1.8. It suffices to prove that for every fixed positive integer r, if

n is sufficiently large, then there exists a set T ⊂ V (G) of size at least β
α
n such that G[T ]

has edge density at least (1− 2
r
)γ.

For simplicity, assume that r divides n. Partition the vertex set of G into sets

X1, . . . , Xr of equal size uniformly at random.

Claim. Almost surely, for a proportion 1− o(1) of all A1 ⊂ X1, . . . , Ar ⊂ Xr of size dαn
r
e

each, there exist Bi ⊂ Ai of size at least β n
r

such that each G[Bi, Bj] (i 6= j) has edge

density at least (1− o(1))γ.

Proof of Claim. Let A ⊂ V (G) have size rdαn
r
e. Since G has the (α, β, γ)-property,

there exists some B ⊂ A of size at least βn such that G[B] has edge density at least γ.

Conditional on the event that |A ∩ Xi| = dαn
r
e for every i, almost surely we have that

(1− o(1))βn
r
≤ |B ∩Xi| for every i and that the edge density of G[B ∩Xi, B ∩Xj] is at

least (1 − o(1))γ for every i 6= j. But if these hold, then there exist Bi ⊂ A ∩Xi of size

at least β n
r

such that each G[Bi, Bj] has edge density at least (1− o(1))γ.
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So for every A ⊂ V (G) of size rdαn
r
e, conditional on the event that |A∩Xi| = dαnr e for

every i, almost surely there exist Bi ⊂ A ∩Xi of size at least β n
r

such that G[Bi, Bj] has

edge density at least (1−o(1))γ. Hence, on average, the proportion of A1 ⊂ X1, . . . , Ar ⊂
Xr of size dαn

r
e for which there exist suitable Bi ⊂ Ai is 1 − o(1), which completes the

proof of the claim.

Using the claim, there exists a partition of V (G) to sets X1, . . . , Xr of size n
r

such that

for a proportion 1− o(1) of all A1 ⊂ X1, . . . , Ar ⊂ Xr of size dαn
r
e, there exist Bi ⊂ Ai of

size at least β n
r

such that each G[Bi, Bj] (i 6= j) has edge density at least (1− o(1))γ. Let

G′ be the r-partite graph G[X1, . . . , Xr]. By Corollary 8.6.2 applied to G′, there exist sets

Si ⊂ Xi of size at least β
α
n
r

each such that G′[Si, Sj] has edge density at least (1− o(1))γ

for every i 6= j. Choose, for each i, a uniformly random subset Ti ⊂ Si of size dβ
α
n
r
e. Let

T = T1 ∪ · · · ∪ Tr. Then β
α
n ≤ |T | ≤ β

α
n + r and the expected number of edges in T is

at least
(
r
2

)
(β
α
n
r
)2(1− o(1))γ = (1− 1

r
− o(1))γ (βn/α)2

2
. Thus, for sufficiently large n, with

positive probability G[T ] has edge density at least (1− 2
r
)γ.

8.7 Concluding remarks

In this section we focus exclusively on the case where α, β, γ do not depend on n.

Definition 8.7.1. Let f(α, β, γ, n) be the minimum edge density of an n-vertex graph

with the (α, β, γ)-property. Define g(α, β, γ) = limn→∞ f(α, β, γ, n).

It is not hard to see, using Szemerédi’s regularity lemma, that the limit exists.

When γ = 1, the problem is completely resolved by Kopylov’s result [87], so let us

assume that γ < 1. It is not hard to see that in this range g is continuous. Let us

summarise what our main results say about g. Theorem 8.1.2 gives the following.

Theorem 8.7.2. Let α ≤ 1/2. Then

g(α, β, γ) ≥ β

α
γ.

The next result follows from the second construction defined after Theorem 8.1.3.

Proposition 8.7.3. Let p, q be positive integers with p
q
≥ β

α
and pγ ≤ 1. Then

g(α, β, γ) ≤ p

q
γ.

In particular, if α ≤ 1/2, p
q

= β
α

and pγ ≤ 1, then

g(α, β, γ) =
β

α
γ.

Theorem 8.1.4 and the first construction after Theorem 8.1.3 yield the following.
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Theorem 8.7.4. If α ≤ 1/2 and α− β ≤ β3γ
1000

, then

g(α, β, γ) = (1− α + β)2γ.

We remark that this holds for α > 1/2 as well.

The next result is an easy corollary of Theorem 8.1.8.

Corollary 8.7.5. Let 1 ≤ λ ≤ 1/α. Then any graph G on n vertices having the (α, β, γ)-

property also has the (λα, λβ, (1− o(1))γ)-property.

Proof. Let us ignore ceilings and floor signs as they are not significant. Let A ⊂ V (G)

have size λαn. Note that G[A] has the ( 1
λ
, β
λα
, γ)-property. Thus, by Theorem 8.1.8, there

exists a set D ⊂ A of size at least β/(λα)
1/λ

λαn = λβn such that G[D] has density at least

(1− o(1))γ.

Corollary 8.7.6. For any 1 ≤ λ ≤ 1/α,

g(α, β, γ) ≥ g(λα, λβ, γ).

It would be interesting to understand the function g even better. Analogously to

Theorem 8.7.4, we think that when β < α
2
, but α

2
− β is small compared to β and γ, then

the extremal construction is given by the disjoint union of two blocks of size (1
2
− α

2
+β)n

with internal edge density roughly γ. Accordingly, we make the following (somewhat

imprecise) conjecture.

Conjecture 8.7.7. Let α, β, γ be constants. Assume that β < α
2

, but α
2
− β is small

compared to β and γ. Then

g(α, β, γ) = 2
(1

2
− α

2
+ β

)2

γ.
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Chapter 9

The maximum number of induced

C5’s in a planar graph

9.1 Introduction

The problem of maximizing the number of induced copies of a fixed graph H in a graph on

n vertices has attracted a lot of attention recently, see, for example, [43,62,101]. Morrison

and Scott determined the maximum possible number of induced cycles, without restriction

on length, that can be contained in a graph on n vertices [97]. The maximal number of

induced complete bipartite graphs and induced complete r-partite subgraphs have also

been studied [12, 14, 16]. The problem of determining the maximum number of induced

C5’s has been elusive for a long time and was finally solved by Balogh, Hu, Lidický and

Pfender [6].

In this chapter we determine asymptotically the maximum possible number of induced

C5’s in planar graphs on n vertices. Before we state our main result, let us mention some

known results about the number of (not necessarily induced) subgraphs in planar graphs.

Let the maximum number of (not necessarily induced) copies of the graphH in an n-vertex

planar graph be denoted by f(n,H). Győri et al. [58] proved that f(n,C5) = 2n2−10n+12

for n ≥ 8 (and they also determined the value of f(n,C5) for n ≤ 7). Hakimi and

Schmeichel [59] showed that f(n,C4) = 1
2
(n2 + 3n − 22) for n ≥ 4 and classified the

extremal graphs attaining this bound (a small correction to their result was given in [2]).

It can be observed that if we take a planar graph on n vertices given by K2,n−2 (see Figure

9.1 (b)), it contains exactly 1
2
(n2− 5n+ 6) induced 4-cycles. It follows that the maximum

number of induced 4-cycles in a planar graph with n vertices is 1
2
n2 +O(n).

Very recently, Huynh, Joret and Wood [63] determined the order of magnitude of

f(n,H) for every graph H.

In this chapter, we give a tight asymptotic bound on the number of induced 5-cycles

in a planar graph with given number of vertices.

Theorem 9.1.1. Let G be a planar graph on n vertices. Then G contains at most
n2

3
+O(n) induced C5’s.
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A
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v3

v1

v2

(a) (b)

u

Figure 9.1: Planar graphs containing asymptotically maximum number of induced 5-cycles
and 4-cycles, respectively

Let 3|(n− 4) and let A,B and C be pairwise disjoint sets with |A| = |B| = |C| = n−4
3

.

We define an n-vertex planar graph G as follows. The vertex set of G is the union of A,

B and C together with four other vertices, say v1, v2, v3 and u. We define the edges of

G as E(G) = {v1v2, v2v3, v3v1} ∪ {v1a, au : ∀a ∈ A} ∪ {v2b, bu : ∀b ∈ B} ∪ {v3c, cu :

∀c ∈ C} (see Figure 9.1 (a)). It can be checked that G contains exactly 3 · (n−4
3

)2 = (n−4)2

3

induced C5’s. Thus, this construction shows that the bound we have in Theorem 9.1.1 is

asymptotically best possible.

Our strategy to prove Theorem 9.1.1 is the following. We show that if n is sufficiently

large, then there exists a vertex which is contained in at most 2n/3 induced C5’s, unless

the graph has a specific structure (see Lemma 9.4.1), in which case we argue directly that

the graph contains at most (2
9

+ o(1))n2 induced C5’s (see Lemma 9.4.2). This, combined

with induction on n, implies Theorem 9.1.1.

9.2 A preliminary lemma

We start with a basic lemma, which we are going to use throughout the chapter.

Lemma 9.2.1. Let G be a planar graph, let v ∈ V (G), and let u and w be distinct

neighbours of v. Let X0 = N(u)\ (N(w)∪{w}) and let Y0 = N(w)\ (N(u)∪{u}). Let X

be the subset of X0 consisting of those vertices that have at least one neighbour in Y0, and

let Y be the subset of Y0 consisting of those vertices that have at least one neighbour in

X0. Then the number of induced C5’s in G containing u, v and w is at most |X|+ |Y |−1.
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Proof. Clearly any such C5 contains precisely one vertex from each of X and Y . Hence,

the number of such induced C5’s is at most the number of edges between X and Y .

However, the induced bipartite subgraph of G with parts X and Y is acyclic. In-

deed, suppose that there is a cycle x1y1x2y2 . . . xkykx1 with xi ∈ X and for all i and

yj ∈ Y for all j. The subgraph of G with vertices u, v, w, x1, y1, . . . , xk, yk and edges

uv, vw, ux1, ux2, wy1, wy2, x1y1, y1x2, x2y2, y2x3, . . . , ykx1 is a subdivision of K3,3 with the

parts being {u, y1, y2} and {w, x1, x2}. Indeed, the only edge of this K3,3 which is poten-

tially not present in G is x1y2, but we have a path y2x3y3 . . . xkykx1 in G. Hence, G is not

planar, which is a contradiction. Thus, the induced bipartite subgraph of G with parts

X and Y is a forest, therefore it has at most |X|+ |Y | − 1 edges.

9.3 Finding an empty K2,7

In this section we prove that if G does not contain an empty K2,7, then there is even

a vertex which is contained in at most 11n/20 induced C5’s. Here an empty K2,7 in a

drawing of G means distinct vertices u and w, and z1, . . . , z7 ∈ N(u) ∩ N(w) in natural

order such that the bounded region with boundary consisting of uz1, z1w, wz7 and z7u

contains no vertex other than z2, . . . , z6.

Lemma 9.3.1. Let n be sufficiently large and let G be a plane graph on n vertices. If G

does not contain an empty (not necessary induced) K2,7, then there is a vertex in G which

is contained in at most 11n/20 induced C5’s.

To prove this, we need some preliminaries.

Lemma 9.3.2. Let n be sufficiently large and let G be a planar graph on n vertices. If

G does not contain a (not necessary induced) K2, n
106

, then there is a vertex in G which is

contained in at most n/2 induced C5’s.

Proof. Suppose otherwise. Let v be a vertex of degree at most 5 in G. Then v has distinct

non-adjacent neighbours u and w such that the number of induced C5’s containing u, v

and w is at least n/20. Define X and Y as in Lemma 9.2.1. By the same lemma, we have

|X| + |Y | ≥ n/20. Let G′ be the induced bipartite subgraph of G with parts X and Y .

By assumption, there is no vertex of degree at least n/106 in G′. Then since G′ has at

least |X|+|Y |
2
≥ n/40 edges, there must exist a set of at least 104 independent edges in G′.

Let they be x1y1, x2y2, . . . , x104y104 such that x1, x2, . . . , x104 ∈ X, the edges

ux1, ux2, . . . , ux104 are in anti-clockwise order, and the bounded region with bound-

ary consisting of edges ux1, x1y1, y1w,wy104 , y104x104 , x104u contains all xi and yi.

For 1 ≤ i ≤ 104 − 1, let Ri be the bounded region with boundary consisting of

uxi, xiyi, yiw,wyi+1, yi+1xi+1, xi+1u. Choose 11 ≤ i ≤ 104 − 12 such that the number

of vertices in Ri−10 ∪Ri−9 ∪ · · · ∪Ri+11 is at most n/300. Let R = Ri ∪Ri+1.

175



Let S be the set of vertices ofG in the interior of R which do not belong toN(u)∩N(w).

Note that xi+1 ∈ S, so S 6= ∅. Now the graph G′′ = G[S] is planar, so there exists some

z ∈ S which has degree at most 5 in G′′. But it is joined to at most 2 elements of

N(u) ∩ N(w), so it has at most 7 neighbours in the interior of R. Hence (together with

u, xi, yi, w, yi+2 and xi+2), z has at most 13 neighbours.

By assumption, z is contained in at least n/2 induced C5’s. It is easy to see that any

such C5 is either contained entirely in Ri−10 ∪Ri−9 ∪ · · · ∪Ri+11 or it contains both u and

w. In the former case, it can only use a set of at most n/300 vertices, and since z has

degree at most 13, by Lemma 9.2.1 there are at most
(

13
2

)
· n/300 < n/3 such induced

C5’s. So there are at least n/6 induced C5’s containing z, u and w. Recall that u and w

are non-adjacent and z 6∈ N(u) ∩ N(w). If z ∈ N(u), then all these induced C5’s are of

the form uzswt for some s ∈ N(z) and t ∈ N(u)∩N(w), while if z ∈ N(w), then all these

induced C5’s are of the form uszwt for some s ∈ N(z) and t ∈ N(u) ∩ N(w). In either

case, since |N(z)| ≤ 13, it follows that |N(u) ∩N(w)| ≥ n
6·13

> n
106

. This contradicts the

condition in the lemma.

Lemma 9.3.3. Let n be sufficiently large and let G be a plane graph on n vertices. Let

u and w be distinct vertices, and let v1, v2, . . . , v6 be some of their common neighbours, in

natural order. Assume that the number of vertices in the interior of the bounded region

with boundary consisting of uv3, v3w, wv4 and v4u is at least one but at most n1/5 and

that there is no common neighbour of u and w in the same region. Then G has a vertex

which is contained in at most 11n/20 induced C5’s.

Proof. Suppose otherwise. Let R be the bounded region with boundary consisting of uv3,

v3w, wv4 and v4u. Let x be an arbitrary vertex inside R. By assumption, x 6∈ N(u)∩N(w).

Since there are at most n1/5 + 4 vertices in R (including its boundary), the number of

induced C5’s containing x which lie entirely in R (possibly touching the boundary) is at

most (n1/5 +4)4 ≤ n/20. Thus, since x is contained in at least 11n/20 induced C5’s, there

exist at least n/2 induced C5’s containing x which contain vertices outside R.

Take such an induced C5 and call it C. We claim that C must contain both u and w,

but does not contain v3 and v4. Indeed, if we go through the vertices of C one by one in

natural order, starting with x, then there will be a vertex from the set {u, v3, w, v4} right

before the walk first leaves R, and then one in the same set when the walk first returns

to R. Call these two vertices y and z, respectively. Since C contains the vertex x, which

is in the interior of R, it follows that y and z are not neighbours in C, so they are also

not neighbours in G. Thus, either {y, z} = {u,w} or {y, z} = {v3, v4}. In the latter case,

again since C is induced and contains x, C contains neither u nor w. So there exists a

path of length at most 3 in C, and therefore also in G, from v3 to v4 outside of R which

avoids both u and w. This is clearly not possible because of the vertices v1, v2, v5 and v6.

Thus, C indeed contains both u and w, and it is easy to see that it does not contain

v3 and v4. Since x 6∈ N(u) ∩ N(w), it follows that either x ∈ N(u) and C = uxqwr for

176



some q ∈ N(x) ∩N(w) \ {v3, v4} and r ∈ N(u) ∩N(w), or x ∈ N(w) and C = uqxwr for

some q ∈ N(x)∩N(u) \ {v3, v4} and r ∈ N(u)∩N(w). In particular, it follows that N(u)

and N(w) both have vertices in the interior of R.

Let X be the set of vertices of N(u) in the interior of R and let Y be the set of vertices

of N(w) in the interior of R. Similarly as in the proof of Lemma 9.2.1, the induced

bipartite subgraph of G with parts X and Y is acyclic. Thus, there is a vertex in that

graph of degree at most one. Without loss of generality we may assume that some x ∈ X
has at most one neighbour in Y . Then, by the previous paragraph, there are at most

|N(u)∩N(w)| induced C5’s containing x as well as vertices outside R. Thus, by the first

paragraph, |N(u) ∩N(w)| ≥ n/2.

By a simple averaging, it follows that there exist distinct t1, t2, . . . , t7 ∈ N(u) ∩N(w)

(in natural order) such that the region S bounded by ut1, t1w,wt7, t7u contains at most

100 vertices. Now any induced C5 which contains t4 and has vertices outside S must

contain u and w. Such an induced C5 cannot contain any vertices from N(u) ∩ N(w)

other than t4, so by Lemma 9.2.1, there are at most n/2 such induced C5’s. The number

of induced C5’s containing t4 but no vertices outside S is at most 1005, so t4 satisfies the

conclusion of the lemma.

Corollary 9.3.4. Let n be sufficiently large and let G be a plane graph on n vertices with

the property that G contains a (not necessarily induced) subgraph K2,7·dn4/5e. Then in this

K2,7·dn4/5e there is an empty K2,7 or there is a vertex in G which is contained in at most

11n/20 induced C5’s.

Proof. Assume that there is no vertex in G which is contained in at most n/2 in-

duced C5’s. Choose distinct u and w in G with |N(u) ∩ N(w)| ≥ 7 · dn4/5e. Let

v1, v2, . . . , v7·dn4/5e ∈ N(u) ∩ N(w) in natural order. For each 1 ≤ i ≤ 7 · dn4/5e − 1,

let Ri be the bounded region with boundary consisting of the edges uvi, viw, wvi+1 and

vi+1u. By Lemma 9.3.3, each Ri with 3 ≤ i ≤ 7 · dn4/5e−3 contains either zero or at least

n1/5 vertices in its interior. Hence, the number of non-empty Ri’s is at most n4/5 + 4.

Thus, there exists some 1 ≤ i ≤ 7 · dn4/5e − 6 for which u,w, vi, vi+1, . . . , vi+6 define an

empty K2,7.

Now Lemma 9.3.1 follows from Lemma 9.3.2 and Corollary 9.3.4.

9.4 Structure of the exceptional graphs

Lemma 9.4.1. Let n be sufficiently large and let G be a planar graph on n vertices.

Suppose there does not exist a vertex in G which is contained in at most 2n/3 induced

C5’s. Then there exist distinct non-adjacent vertices u and w with the following properties.

1. |N(u) ∩N(w)| ≥ n/3− n6/7.
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2. There exist sets X ⊂ N(u)\N(w) and Y ⊂ N(w)\N(u) such that |X|+ |Y | ≥ 2n/3

and every x ∈ X is adjacent to at least 1 but at most n5/6 elements of Y and every

y ∈ Y is adjacent to at least 1 but at most n5/6 elements of X.

Proof. Suppose otherwise. Take an arbitrary drawing of G. By Lemma 9.3.1, there

exists an empty K2,7 in G. Let u and w be the two vertices in the part of size 2 in K2,7,

and let v be the centre vertex in the part of size 7. Define X and Y as in the statement

of Lemma 9.2.1. Since every induced C5 containing v also contains u and w, and by

assumption v is contained in more than 2n/3 induced C5’s, it follows by Lemma 9.2.1

that |X| + |Y | > 2n/3 + 1. Moreover, since there exists an induced C5 containing u, v

and w, it follows that u and w are non-adjacent.

Let G′ be the induced bipartite subgraph of G with parts X and Y .

Suppose first that G′ has maximum degree at least n5/6. By symmetry, we may assume

that some y ∈ Y has degree at least n5/6 in G′. Then |N(y)∩X| ≥ n5/6. For large enough

n, together with u and y, these vertices form a K2,7dn4/5e. Thus, by Corollary 9.3.4, there

are vertices x1, . . . , x7 ∈ N(y) ∩X such that together with u and y they form an empty

(not necessarily induced) K2,7. By assumption, x4 is contained in at least 2n/3 induced

C5’s. However, note that any such induced C5 also contains u and y. Let Z be the set of

all vertices in X ∪ Y \ {y, x4} which are contained in an induced C5 containing x4. Order

the elements of Y as y1, y2, . . . , yk such that the edges wv,wy1, . . . , wyk are in clockwise

order.

Then yiyj is an edge only if j = i + 1. Indeed, for any 1 ≤ ` ≤ k there exists a path

from v to y` (through u and some x ∈ X) which avoids {w} ∪ Y \ {y`}. But if yiyj is an

edge for some j > i+ 1, then the triangle wyiyj separates yi+1 from v.

Now y = yi for some i.

Claim 1. If k = 1, then Z = ∅. Suppose that k ≥ 2. If i = 1, then Z ⊂ (N(y2) ∩
X) ∪ {y2} \ N(y1). If i = k, then Z ⊂ (N(yk−1) ∩ X) ∪ {yk−1} \ N(yk). Otherwise

Z ⊂ ((N(yi−1) ∪N(yi+1)) ∩X) ∪ {yi−1, yi+1} \N(yi).

Proof. If k = 1, then Y = {y} and X ⊂ N(y) ∩N(u), so the first assertion is straightfor-

ward.

Suppose that k ≥ 2. Let z ∈ Z. First assume that z ∈ Y . Then z is not a neighbour

of u, so it must be a neighbour of y = yi. Thus, z = yi−1 or z = yi+1.

Now assume that z ∈ X. Observe that since y, x4, u and z are contained in an induced

C5, we have z 6∈ N(y), and the fifth vertex in the C5 is some q ∈ N(y) ∩N(z).

Let us first assume that 2 ≤ i ≤ k− 1. Let r1 be an arbitrary element in N(yi−1)∩X
and let r2 be an arbitrary element in N(yi+1) ∩ X. Note that the edges wyi−1, yi−1r1,

r1u, ur2, r2yi+1, yi+1w divide the plane into two regions; let R be the one which contains

yi. Then either z is also in R (possibly on the boundary), or q is on the boundary of R.

But ux4yqz is an induced C5, so q 6∈ N(u). Thus, q 6∈ X so q 6= r1 and q 6= r2. Also,

z ∈ X, so z 6∈ N(w), hence q 6= w. Moreover, q is distinct from u. Thus, if q is on the
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boundary of R, then q = yi−1 or q = yi+1. In either case z ∈ N(yi−1) ∪ N(yi+1). If q is

not on the boundary of R, then z is in R (possibly on the boundary). Also, z ∈ X, so z

has a neighbour in Y . But z 6∈ N(yi), so z ∈ N(yi−1) ∪N(yi+1), as claimed.

Assume now that i = 1. Let r be an arbitrary element in N(y2) ∩ X. The edges

wv, vu, ur, ry2 and y2w divide the plane into two regions; let R be the one containing y1.

Then either z is also in R (possibly on the boundary), or q is on the boundary of R. But

q 6∈ N(u) so q 6= r and q 6= v. Also, z ∈ X, so z 6∈ N(w), hence q 6= w. Moreover, q is

distinct from u. Thus, if q is on the boundary of R, then q = y2. Hence, z ∈ N(y2). If q

is not on the boundary of R, then z is in R (possibly on the boundary). Also, z ∈ X, so

z has a neighbour in Y . But z 6∈ N(y1), so z ∈ N(y2).

The case i = k is very similar, so the claim is proved.

Since x4 is contained in at least 2n/3 induced C5’s, and any such C5 contains u and y

as well, it follows by Lemma 9.2.1 and Claim 1 that n−|X ∪Y |+ |((N(yi−1)∪N(yi+1))∩
X) ∪ {yi−1, yi+1} \ N(yi)| ≥ 2n/3 + 1. Since |X ∪ Y | ≥ 2n/3 − 1, by symmetry we

may assume that |N(yi−1) ∩X| ≥ 7 · dn4/5e. Then, by Corollary 9.3.4, there must exist

vertices x′1, x
′
2, . . . , x

′
7 ∈ N(yi−1) ∩ X which together with u and yi−1 form an empty

(not necessarily induced) K2,7. Let Z ′ be the set of all vertices in X ∪ Y \ {yi−1, x
′
4}

which are contained in an induced C5 containing x′4. Then, by the same argument as in

Claim 1, it follows that Z ′ ⊂ ((N(yi−2) ∪ N(yi)) ∩ X) ∪ {yi−2, yi} \ N(yi−1), and that

n−|X ∪Y |+ |Z ′| ≥ 2n/3 + 1. Thus, |Z|+ |Z ′| ≥ 2|X ∪Y |−2n/3 + 2. However, Z and Z ′

are disjoint, so |Z|+ |Z ′| ≤ |X ∪ Y |. Thus, |X ∪ Y | ≤ 2n/3− 2, which is a contradiction.

So G′ has maximum degree less than n5/6.

Let x ∈ X be an arbitrary vertex. We give an estimate for the number of induced

C5’s containing x. We first count those C5’s which contain both u and w as vertices.

Let us call these type 1 C5’s. Since w is non-adjacent to both x and u, the number of

type 1 C5’s containing x is at most dG′(x) · t, where dG′(x) is the degree of x in G′ and

t = |N(u) ∩N(w)|.
Call those induced C5’s which do not contain both u and w type 2. To bound the

number of such C5’s, we will use the following claim.

Claim 2. For every q ∈ V (G), the number of vertices z ∈ X ∪ Y for which there exists a

path of length at most 3 between q and z avoiding both u and w is at most 100n5/6.

Proof. Take a maximal matching between X and Y . Let the edges in this matching be

xi1yi1 , . . . , xisyis such that xij ∈ X, yij ∈ Y and the edges wyi1 , . . . , wyis are in clockwise

order. For each 1 ≤ j ≤ s−1, letRj be the bounded region with boundary consisting of the

edges uxij , xijyij , yijw,wyij+1
, yij+1

xij+1
, xij+1

u, and let R0 be the unbounded region with

boundary consisting of the edges uxi1 , xi1yi1 , yi1w,wyis , yisxis , xisu. Let 0 ≤ j ≤ s−1. By

the maximality of our matching, any element of X ∪Y in the interior of Rj is a neighbour

in G′ of some vertex in X ∪Y on the boundary of Rj. Since there are 4 vertices in X ∪Y
on the boundary of Rj, and G′ has maximum degree less than n5/6, there are at most

4n5/6 elements of X ∪ Y in the interior of Rj.
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Let q ∈ V (G) \ {u,w}. Then q is in Rj (possibly on the boundary) for some 0 ≤ j ≤
s− 1. If there exists some z ∈ X ∪ Y for which there is a path of length at most 3 from

q to z avoiding both u and w, then z is in Rj−4 ∪ Rj−3 ∪ . . . Rj+4 (with the subscripts

considered modulo s). But there are at most 9 · 4n5/6 such vertices z, which finishes the

proof of the claim.

Recall that G′ is acyclic, so the number of edges in G′ is at most |X|+ |Y | − 1. Thus,

if ` is the number of vertices of degree at least 3 in G′, then 3` ≤ 2(|X| + |Y |), so the

number of vertices of degree at most 2 in G′ is |X|+ |Y | − ` ≥ |X|+|Y |
3
≥ 2n

9
.

The number of edges in G is at most 3n, so the number of vertices in G of degree at

least 60 is at most n/10.

Moreover, it follows from Claim 2 that the number of vertices z ∈ X ∪ Y for which

there exist at least 1000n5/6 vertices q ∈ V (G) with a path of length at most 3 between

z and q and avoiding both u and w is at most n/10.

Thus, there exists a vertex z ∈ X ∪ Y which has degree at most 2 in G′, degree at

most 60 in G and for which the number of q ∈ V (G) with a path of length at most 3

between z and q avoiding u and w is at most 1000n5/6.

Suppose that q ∈ V (G) is distinct from z, u and w, and that there exists a type 2

induced C5 containing both z and q. Then there exists a path of length at most 3 from

q to z which contains neither u nor w. But there are at most 1000n5/6 such vertices

q ∈ V (G), so by Lemma 9.2.1, the number of type 2 induced C5’s containing z is at most(
60
2

)
· (1000n5/6 + 2). Moreover, the number of type 1 induced C5’s containing z is at most

2t, where t = |N(u) ∩ N(w)|. Since the total number of induced C5’s containing z is at

least 2n/3, it follows that |N(u) ∩ N(w)| ≥ n/3 − n6/7. This completes the proof of the

lemma.

The next result completes the proof of Theorem 9.1.1.

Lemma 9.4.2. Suppose that G is a planar graph in which there are distinct non-adjacent

vertices u and w satisfying properties 1 and 2 from Lemma 9.4.1 and that there is no

vertex which is contained in at most 11n/20 induced C5’s. Then the number of induced

C5’s in G is at most (2
9

+ o(1))n2.

Proof. In this proof we use the notation defined in the statement of Lemma 9.4.1.

Take a drawing of G. Let N(u)∩N(w) = {v1, . . . , vt} such that uv1, uv2, . . . , uvt are in

anticlockwise order and the bounded region with boundary consisting of uv1, v1w,wvt, vtu

contains all the vi’s. For 1 ≤ i ≤ t − 1, let Ri be the bounded region with boundary

consisting of uvi, viw,wvi+1, vi+1u. Suppose that there are at least 7 · dn4/5e values of i for

which the interior of Ri contains a vertex of G. Then we can easily find a K2,7·dn4/5e in G

in which no K2,7 is empty, so by Corollary 9.3.4 there is a vertex in G that is contained

in at most 11n/20 induced C5’s, which is a contradiction. Thus, for all but o(n) choices

6 ≤ i ≤ t− 6 the regions Ri−5, Ri−4, . . . , Ri+5 contain no vertex in their interior. But for

all such i, by property 1 we have that vi is contained in at most 2n/3 +o(n) induced C5’s.
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Let us remove the vertices vi for these values of i from G and note that with this

we remove at least n/3 − o(1) vertices but at most (2
9

+ o(1))n2 induced C5’s (since, by

property 2, we have |N(u) ∩ N(w)| ≤ n/3). It suffices to show that in the remaining

graph G′ there are at most o(n2) induced C5’s. Let S = V (G′) \ (X ∪ Y ∪ {u,w}). Note

that |S| = o(n).

Now we remove the vertices in S one by one in careful order, such that in each step we

remove O(n) induced C5’s. Note that any v ∈ V (G) is joined to at most 6 vertices from

X ∪ Y ∪ {u,w}. Thus, since G′ is planar, we may remove the vertices of S one by one

in a way that in each step the removed vertex has at most 11 neighbours in the current

graph. This way, by Lemma 9.2.1, we remove at most
(

11
2

)
· n induced C5’s in each step.

Thus, while removing the vertices in S, we remove at most o(n2) induced C5’s.

It remains to prove that in G′′ = G[X ∪ Y ∪ {u,w}] there are o(n2) induced C5’s.

To show this, we prove that we may remove the vertices in X ∪ Y one by one such that

in each step we remove o(n) induced C5’s. Clearly, in each step we can remove a vertex

q ∈ X ∪ Y which has degree at most 6 in the current graph. We claim that q is then

contained in at most o(n) induced C5’s. Let Z be the set of vertices z ∈ X ∪ Y for which

there is a path of length at most 3 from q to z which avoids both u and w. Similarly as in

Claim 2 in the previous lemma, it follows by property 2 that we have |Z| = o(n). Since

N(u) ∩ N(w) ∩ (X ∪ Y ) = ∅, there is no induced C5 with vertices from X ∪ Y ∪ {u,w}
which contains both u and w, so any induced C5 which contains q must consist of vertices

from the set Z ∪ {u,w}. Thus, as q has degree at most 6, by Lemma 9.2.1 there are at

most o(n) induced C5’s containing q.
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[5] N. Alon, L. Rónyai, and T. Szabó. Norm-graphs: variations and applications.

Journal of Combinatorial Theory, Series B, 76(2):280–290, 1999.
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[96] L. Milićević. Polynomial bound for partition rank in terms of analytic rank. Geo-

metric and Functional Analysis, pages 1–28, 2019.

[97] N. Morrison and A. Scott. Maximising the number of induced cycles in a graph.

Journal of Combinatorial Theory, Series B, 126:24–61, 2017.
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