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Abstract

Multistable Shell Structures by Paul M. Sobota

Multistable structures, which possess by definition more than one stable equilibrium

configuration, are capable of adapting their shape to changing loading or environ-

mental conditions and can further improve multi-purpose ultra-lightweight designs.

Whilst multiple methods to create bistable shells have been proposed, most studies fo-

cussed on free-standing ones. Considering the strong influence of support conditions

on related stability thresholds, surprisingly little is known about their influence on

multistable behaviour. In fact, the lack of analytical models prevents a full understand-

ing and constitutes a bottle-neck in the development process of novel shape-changing

structures. The relevance becomes apparent in a simple example: whilst an unsuppor-

ted sliced tennis ball can be stably inverted without experiencing a reversion, fixing

its edge against rotation erodes bistability by causing an instantaneous snap-back to

the initial configuration. This observation reveals the possibility to alter the structural

response dramatically by a simple change of the support conditions.

This dissertation explores the causes of this behaviour by gaining further insight into

the promoting and eschewing factors of multistability and aims to point out methods to

exploit this feature in optimised ways. The aforementioned seemingly simple example

requires a geometrically nonlinear perspective on shells for which analytical solutions

stay elusive unless simplifying assumptions are made. In order to captures relevant

aspects in closed form, a novel semi-analytical Ritz approach with up to four degrees

of freedom is derived, which enforces the boundary conditions strongly. In contrast to

finite element simulations, it does not linearise the stiffness matrix and can thus explore

the full solution space spanned by the assumed polynomial deflection field. In return,

this limits the method to a few degrees of freedom, but a comparison to reference

calculations demonstrated an excellent performance in most cases.

First, the level of influence of the boundary conditions on the critical shape for en-

abling a bistable inversion is formally characterised in rotationally symmetric shells.

Systematic insight is provided by connecting the rim to ground through sets of ex-

tensional and rotational linear springs, which allows use of the derived shell model

as a macro-element that is connected to other structural elements. It is demonstrated

that bistability is promoted by an increasing extensional stiffness, i.e. bistable roller-

supported shells need to be at least twice as tall compared to their fixed-pinned coun-

terparts. The effect of rotational springs is found to be multi-faceted: whilst preventing



rotation has the tendency to hinder bistable inversions, freeing it can even allow for ex-

tra stable configurations; however, a certain case is emphasised in which an increasing

rotational spring stiffness causes a mode transition that stabilises inversions.

In a second step, a polar-orthotropic material law is employed to study variations

of the directional stiffness of the shell itself. A careful choice of the basis functions

is required to accurately capture stress singularities in bending that arise if the radial

Young’s modulus is stiffer than its circumferential equivalent. A simple way to cir-

cumvent such singularities is to create a central hole, which is shown not to hamper

bistable inversions. For significantly stiffer values of the radial stiffness, a strong coup-

ling with the support conditions is revealed: whilst roller-supported shells do not show

a bistable inversion at all for such materials, fixed-pinned ones feel the most disposed

to accommodate an alternative equilibrium configuration. This behaviour is explained

via simplified beam models that suggest a new perspective on the influence of the hoop

stiffness: based on observations in free-standing shells, it was thought to promote bista-

bility, but it is only insofar stabilising, as it evokes radial stresses; if these are afforded

by immovable supports, it becomes redundant and even slightly hindering.

Finally, combined actuation methods in stretching and bending that prescribe non-

Euclidean target shapes are considered to emphasise the possibility of multifarious

structural manipulations. When both methods are geared to each other, stress-free

synclastic shape transformations in an over-constrained environment, or alternatively,

anticlastic shape-changes with an arbitrary wave number, are achievable. Considering

nonsymmetric deformations offers a richer buckling behaviour for certain in-plane ac-

tuated shells, where a secondary, approximately cylindrical buckling mode as well as

a ‘hidden’ stable configuration of a higher wave number is revealed by the presented

analytical model.

Additionally, it is shown that the approximately mirror-symmetric inversion of cyl-

indrical or deep spherical shells can be accurately described by employing a simpler,

geometrically linear theory that focusses on small deviations from the mirrored shape.

The results of this dissertation facilitate a versatile practical application of multistable

structures via an analytical description of more realistic support conditions. The un-

derstanding of effects of the internal stiffness makes it possible to use this unique struc-

tural behaviour more efficiently by making simple cross-sectional adjustments, i.e. by

adding appropriate stiffeners. Eventually, the provided theoretical framework of emer-

ging actuation methods might inspire novel morphing structures.
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Chapter 1

Introduction

Most structures are designed to be stiff, strong and stable to resist versatile loading

cases without undergoing larger deformations. However, in living organisms a dif-

ferent behaviour is often observed: to avoid direct exposure to load, leaves and grass

stalks adapt by large changes of their shape. The first design is predominant in man-

made structures, because it spares engineers from distinguishing between an initial

and deformed state, which drastically simplifies statical calculations and provides a

powerful tool suitable for the unique planning process of each building. With the de-

velopment of more efficient calculation methods and the requirement to save costs and

materials, engineers began to adapt the latter, nonlinear designs. Even though grass

stalks are not a suitable blue print for skyscrapers, the idea to use the advantage of

more elastic structures has become common in the structural engineering community

[1]. In tunnel design, for instance, material usage is minimised by taking a certain

amount of deformations into account to activate the self-supporting capabilities of the

overlaying soil [2].

More advanced, well-behaving nonlinearities can be found in recent developments

in aerospace engineering, where the increased analytical effort of ultra-lightweight

designs is economical due to a more controllable manufacturing environment, bulk

production and concomitant fuel savings during the life cycle. These developments

motivated engineers to create adaptable structures with multiple purposes that include

controlled shape changes geared to a certain type of usage. An example is a morph-

ing wing-tip that transforms according to changing flight conditions in order to reduce

drag [3]. Such structures are often inspired by nature, where some of the most fascin-

ating structural phenomena occur. The Venus Fly Trap, for instance, is able – despite

1
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a) b)

Figure 1.1: a) A spherical cap in its initial configuration; b) the same cap turned inside-out; it
rests in this alternative equilibrium configuration in the absence of other loads than self-weight.

the lack of muscles – to ensnare its prey within 50 ms due to a triggered propagating

instability known as snap-through buckling [4]. A similar mechanism is employed by

one of the fastest moving animals, the hummingbird. When hunting fruit flies, it opens

and over-stretches its beak just to let it snap back during the closing process, where the

movement exceeds velocities explainable by muscle force alone [5].

These examples emphasise an important difference: whilst the Venus Fly Trap re-

lies on an external stimulus of the prey, hummingbirds actively use muscle force to

cull their targets. The related philosophical difference between a tragic accident and

a ruthless murder is also reflected in a structural perspective: the reaction to load

changes characterises passive systems, whereas the employment of actuators defines

active structures. While the latter grants an increased flexibility that may, for example,

be employed to damp an excitation from an earthquake, they also require an energy

source to exert the desired effect. This may be problematic, since extreme scenarios,

like the aforementioned earthquake, are often concomitant with a power cut. In con-

trast, bistable passive systems are fail-safe and remain in one equilibrium position

unless they are forced into an alternative stable configuration. An illustration of a

bistable structure - though without a particular application - is a spherical cap that can

be turned inside out, cf. Fig. 1.1. While shape-changing structures have many different

applications, a particular one initially inspired this research project.

1.1 Motivation

This research project aims to enable novel applications of bistable structures for nano-

scale surface texturing. While the changing shape itself may not be visible for the

naked eye, the effect of it becomes apparent, when used for structural colouring.
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Figure 1.2: Example of structural colour: a) the dry wing of a morpho-butterfly; b) when
immersed in isopropanol, it unveils the real colour of its pigments: green; c) SEM image of the
wing shows the undulated surface structure [6].

Structural colour is a well-known surface effect that can be observed in several bio-

logical structures such as the wings of Morpho butterflies, whose surface is textured

with repeated undulations, see Fig. 1.2(c). Since the gaps in between each ‘ridge’ are

just a few hundred nanometres wide, they interfere with waves in the visible spectrum.

For Morpho butterflies, the distance corresponds to the wave length of yellow light so

that this wavelength gets filtered out by getting lost in the ‘valleys’. Hence, the wings

of Morpho butterflies appear in their famous brilliant blue. However, once a liquid

gets spilled over the wing, the valleys get flooded and the effect shifts to a different,

non-visible spectrum; hence, it appears in its real colour, green, cf. Fig. 1.2(b).

In order to reproduce this example of a colour-changing structure in artificially cre-

ated smart materials, it is desirable to be able to control this effect. One approach is

to produce sheets with nano-cavities like in Fig. 1.3, and coating them with a thin

layer that can be actively controlled, say by magnetic attraction. While such an active

method seems suitable in general, passive structures are advantageous since they do

not require energy to sustain the deformation. Thus, the colour change of a passive

structure persist, until it is forcefully altered.

In order to derive a mechanical model of a passive (=bistable) structure, let us start

with choosing a relatively simple structure of a uniformly curved cap mounted on top of

one of the aforementioned micro-cavities. This example points towards the following

questions which will be addressed in this dissertation:

1. Existing research has mainly focussed on free-standing shells. By mounting a

shell on a substrate, horizontal as well as rotational spring supports are added.
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Figure 1.3: Substrate with micro-cavities : a) cross section of a single cavity; b) substrate with
several, periodically arranged cavities [7]

While an additional horizontal constraint is expected to support a bistable in-

version of spherical shells, an additional rotational spring stiffness at the edge

is likely to hamper a bistable response. So, is it more likely that a shell on a

substrate possesses an alternative stable state? In order to estimate the influence

on bistability, it is important to quantify these effects separately.

2. While the diameter of the cavities is prescribed by the frequency of the op-

tical branch, the thickness of the shell depends mainly on current manufactur-

ing methods. Even modern methods currently lead to relatively thick shells with

span-to-thickness ratios of approximately 15. Hence, it is desirable to find ways

to reduce the required height for a bistable response.

3. A sharp kink in between the mounted shell and the flat substrate is not desirable.

More suitable shapes possess smooth transitions in order to avoid stress con-

centrations. Thus, the mechanical model, which is going to be developed here,

should be capable to cover more complex shapes than just uniformly curved

caps.

4. The manufacturing methods have to be taken into account: in order to manu-

facture doubly-curved structures on the micro- and nanoscale, most commonly

interference lithography is used. The effect is, in principle, similar to a photo-

graphy, where the energy of impacting photons triggers a chemical reaction of a

photoresist, see Fig. 1.4(a)-(d) . In a second step, either the product or the re-

agent is dissolved in order to get the positive or negative structure, respectively.

While a single laser suffices for 2D structures, multiple, interfering lasers are re-

quired to create more complex 3D structures. However, creating plain surfaces is

non-trivial, since concomitant refraction-, reflection- and absorption processes in
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Figure 1.4: (a) - (d): Manufacturing via interference lithography: a) UV-light transmits energy
into a photoresist; b) in areas with high energy input, a chemical reaction was triggered; hence,
either the previously illuminated area is dissolved (c) or remains (d). e) Nano-pillars with
undulations caused by refraction, reflection and adsorption. Rearranged from [8]

the material cause undulations, as exemplified in the nano-pillars in Fig. 1.4(e).

The obvious questions are: how will such undulations affect the structural re-

sponse, in particular, the shells bistable properties? Can they even be used in

beneficial ways?

5. If such bistable structures are produced, they may initially be convex. Once

popped through, they take a concave shape, but how can they be transformed

back to their initial shape? Several options do exist: the trigger could be

pressure-related, or alternatively, caused by swelling and shrinking. The lat-

ter consideration leads to a rich field of advanced structural manipulations. We

could, for instance, create shells that are bistable in a, say, dry environment, but

temporarily lose this property in a humid environment. Hence, high humidity

would trigger the transformation towards their initial shape.

The first three points will be addressed when developing a mechanical nonlinear

model for shallow shells in §5. The undulations caused by interference lithography are

considered via a polar-orthotropic material law in §6. Alterations by swelling and the

use of actuators are analysed in §7.

1.2 Methodology

Numerical approaches like the finite element method (FEM) are predominantly used

for nonlinear analysis of shell structures. Unfortunately, such methods are not able

to explore the cause of a structural response and require tedious numerical parameter
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studies to analyse influencing factors. This lack of understanding constitutes a bottle-

neck in the development of novel smart structures [9]. In response to this, the central

goal of this dissertation is to gain insight into the structural behaviour and identify

the promoting and eschewing factors of multistable shell structures. This may inspire

novel applications or improve existing ones by increasing the versatility of bistable

structures, using less material and/or increasing their efficiency.

In contrast to commonly employed bistable beam structures, shells offer a more ver-

satile and often advantageous behaviour that makes use of their unique geometrical

interaction of bending and stretching. The challenge of this research project is that

the advantages of shells come at a cost: the mathematical complexity of the governing

equations, especially in the nonlinear domain, is so intricate that closed-form solutions

are notoriously difficult to obtain. The aim is to develop a theory that is simplifying

the governing equations enough to capture certain bistable properties in closed-form,

without affecting the accuracy significantly.

For this purpose, a novel semi-analytical model based on the Ritz method is de-

veloped. It is capable of describing a shell’s post-buckling behaviour and detecting

when a certain structure becomes bistable. A geometric restriction to initially rotation-

ally symmetric shells, which do not necessarily deform in the same manner, is imposed

to make the problem amenable to an analytical treatment.

1.3 Scope and Objective

The questions outlined in §1.1 shall be addressed within the following framework:

In order to analyse also non-shallow bistable shells, it will be shown that - despite

their more complex geometry - their mathematical treatment is in fact simpler: for cyl-

inders as well as deep and thin spherical shells, which buckle into an approximately

mirror-symmetric stable form, a particular simplification is possible, where geomet-

rically linear theories suffice to predict the in fact small deviations from the mirrored

shape. The limits of applicability of this simplification are also analysed in this study.

For the more intricate case of shallow shells analytical solutions are scarce and re-

stricted to particularly simple geometries, since nonlinear approaches are required. A

semi-analytical model of a shell connected to ground or other structural elements in all

kinds of ways is developed in order to analyse the boundary interaction. Considering
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the ubiquity of this problem and that (horizontal) support conditions are an indispens-

able requirement to produce bistable beam structures, surprisingly little is known about

their effects on the bistable behaviour in shells. Hence, a systematic analysis of the in-

fluence of various support conditions is conducted. Furthermore, new light is shed on

how existing methods for the achievement of bistability interact with varying support

conditions:

• First, the bistable performance of rotationally symmetric, doubly curved shells

with in-plane as well as rotational edge supports is considered, which allows

approximation of familiar boundary conditions of hinged, clamped, and self-

evidently free edges via the limits of a vanishing or infinite spring stiffness.

Since these may introduce additional complexity to the deflection field, a refined

approach with superior accuracy is required.

The analytical model is employed to investigate the minimum height of shallow

shells required to cause a bistable inversion, where the focus is on manipulating

this threshold in beneficial ways by variations in support conditions and shape.

The coupling of multiple shells is then analysed in order to explore ways to

create structures with more than two stable equilibrium configurations.

• Another aspect concerns the domain of a shell itself rather than its boundary in

order to address the aforementioned interference patterns. While it is known

that a certain hoop-stiffness of caps assists their bistable inversion, the exact

quantity and possible limits are unknown. By employing a polar-orthotropic

constitutive law, the effects of variations of a shell’s stiffness on their bistable

behaviour is analysed in detail. This enables engineers to enhance and control a

shell’s bistable performance as well as its inverted shape by adding appropriate

stiffeners or cutting out less relevant areas to save material as it is common in

other structural disciplines. By analysing the limits of the orthotropic ratio, the

commonalities and differences between bistable shell and beam structures are

explored, where the presence of horizontal supports plays a vital role. Further-

more, methods to prevent concomitant stress singularities that arise directly from

the employed material law are investigated.

• Eventually, an analytical framework for spatially nonlinear actuation methods is

developed, which allows to model complex swelling and shrinkage processes.

Emerging actuators are capable of imposing in-plane strains not only at certain
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points, but continuously distributed over an area. An employment in a layered

build-up makes it also possible to induce a strain gradient through the thickness.

The combined actuation in stretching and bending allows for novel multifarious

structural manipulations and the related design space is explored.

In particular it is investigated if the presence of additional supports prevents a

structure from morphing into different shapes without evoking changes of the

strain energy when precisely matched actuation patterns are employed. In a final

step, possibilities are explored to use nonlinear in-plane actuation patterns in

order to trigger versatile shape changes by symmetry-breaking buckling.

1.4 Outline of Dissertation

The layout of this dissertation is as follows: in §2, background concepts that are essen-

tial in this dissertation are presented. In order to introduce the reader to contextual re-

search, relevant literature about multistable shell structures and their actuation methods

is reviewed in §3. An accurate description for a broad range of deep shells is given in

§4, where the suitability of linear theories to predict approximately mirror-symmetric

post-buckling shapes of spherical shells is evaluated and the limits of applicability are

analysed. In order to overcome demonstrated linear shortcomings in shallow shells,

a geometrically nonlinear analytical model is developed in §5 to study the effects of

different support conditions on the existence of alternative stable configurations. Then

follows an extension for polar-orthotropic materials in §6, where the effects of direc-

tional stiffness variations on bistable thresholds are analysed. In §7 the interaction of

spatially nonlinear in-plane and out-of-plane actuation methods are investigated. Fi-

nally, a summary and conclusion are given in §8.



Chapter 2

Background Concepts

The analysis of shells has a long-standing history with rewarding outcomes, such as the

realisation of structures with unprecedented slenderness ratios. The source of their high

efficiency is their inherent static indeterminacy that causes an interaction of bending

and stretching, which simultaneously adds a mathematical complexity.

For the sake of clarity, this chapter outlines fundamental concepts that are relevant

in the context of this dissertation: a key factor for a shell’s efficiency is the underlying

geometric relations of surfaces, as described in §2.1, from which the shell kinematics

can be derived. In over a century, several shell theories have been developed, see [10]

for a historic review. The most widely used theory for the analysis of bistable shells is

based on the geometrically nonlinear Föppl-von-Kármán (FvK) shallow shell theory,

which is introduced in §2.2. Aspects of the duality of stretching and bending are then

outlined in §2.3, and finally, the Ritz method is addressed in §2.4.

2.1 Fundamentals of Differential Geometry of Surfaces

First, the fundamental aspects of the geometry of surfaces required to quantify bending

and stretching deformations of a surface are given. An arbitrarily shaped surface, S, in

a Euclidean space can either be described in convective coordinates within its plane as

a two-dimensional object embedded in a three-dimensional space, or in a fixed three-

dimensional coordinate system. Let us refer to the first as an intrinsic description,

since it can be imagined as a coordinate system that is carved into the surface and thus,

9
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2.1 FUNDAMENTALS OF DIFFERENTIAL GEOMETRY OF

SURFACES

it describes the surface from within; the latter characterises an extrinsic perspective,

since it refers to an external observer.

The shape of this surface can be completely described by two measures of curvature:

the mean curvature, H, and the Gaussian curvature, K. The former is the semi-sum

of the principal curvatures, H = (κ1 + κ2)/2 . Since it can only be observed from

outside the plane, it is an extrinsic measure. The mean curvature does not contain

information about the distortion of the metric of a surface: for example, a sphere of

radius R (κ1 = κ2 = 1/R) and a cylinder of half its radius (κ1 = 2/R, κ2 = 0) have the

same mean curvature, but only the latter is developable.

In order to describe such internal distortions, the Gaussian curvature, K, needs to

be considered. It can be used to judge a surface’s developability and distinguishes

Euclidean (K = 0) from non-Euclidean geometries (K , 0). The Gaussian curvature

can be derived independently of a coordinate system and is invariant under coordinate

transformations, see [11, 12] for details. Due to its central role in structural mechanics,

a recapitulation following the concept of Calladine [13] is given: for each point on a

differential surface element dS on S that is bounded by dΓ, a unit normal vector, n, can

be defined. In order to measure the subtended solid angle by dΓ, which is defined as dγ,

it can be mapped onto a unit sphere via a Gauss map, see Fig. 2.1 for an illustration: by

shifting the initial point of each unit normal vector from the surface (right) towards the

centre of a unit sphere (left), all vectors are preserved during the mapping process and

the mapping function gives every normal vector a unique representation on the sphere;

however, multiple points on the surface can have coinciding surface normal vectors.

By mapping all normal vectors on the boundary dΓ, the measurement of angles on

curves is generalised to a measurement of angles subtended by a differential surface

element dS . The enclosed surface area on the unit sphere, dA, is equal to the subtended

dimensionless solid angle on the sphere, dγ = dA/R2, since the sphere’s radius is ‘1’.

This local quantity can be interpreted as an angular defect of an infinitesimal planar

element; it is, for instance, found in a cone that is constructed by cutting a certain

angle, dγ, out of a sheet and gluing the free edges together. The Gaussian curvature is

defined as the ratio of this solid angle and the differential surface element dS , and in

the limit of dS → 0, we obtain:

K =
dγ
dS

. (2.1)
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b) d)

a) c)

K > 0

K > 0

K < 0

K = 0

dSdγ

Figure 2.1: Surfaces (right) and their corresponding Gauss map (left): when both centres of the
principle radii of curvature lie on the same side of a surface, it has positive Gaussian curvature,
see (a); in contrast to the mean curvature, the value of Gaussian curvature does not depend
on the spatial orientation of the surface, cf. (b). Negative Gaussian curvature arises, when the
centres’ orientations lie on opposite sides of the surface, cf. (c). In this case a clockwise path on
the surface causes a counter-clockwise projection on the unit sphere of the Gauss map. If one
principal direction of curvature is zero, the surface is developable and the spherical projection
of the normal does not enclose any area.

Points with positive Gaussian curvature are called elliptic, negative ones are hyper-

bolic, and points with K = 0 are either planar (κ1 = κ2 = 0) or parabolic otherwise.

Surfaces that contain only elliptic points are called synclastic, while their entirely hy-

perbolic counterparts are known as anticlastic surfaces. The four examples in Fig. 2.1

illustrate relevant curvature characteristics: in a doubly curved surface with principal

directions that lie on the same side of the surface, the Gaussian curvature is positive,

see (a). This intrinsic property does not depend on the orientation of the surface, cf.

the mirror image of (a) in (b); note that their mean curvature, however, has an op-

posing sign. Negative values of Gaussian curvature are caused by centres of principal

curvature on opposing sides of the surface, see (c); note that the negative sign arises

because a counter-clockwise rotation on dΓ causes a clockwise rotation in the Gauss

map. If one principal curvature is zero, the mapping degenerates to a line, see (d), since

all normals on any generator line are identical, and thus, the enclosed area is zero. For

planar dS the mapped area reduces to a point on the sphere (not shown). Note that
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the Gaussian curvature at a cone’s apex is undefined and zero elsewhere; however, the

surface integral is well defined via a Dirac δ-function and recovers the solid angle, dγ.

It can easily be shown that the Gaussian curvature’s extrinsic definition is the product

of principal curvatures, K = κ1κ2 . A compact generalisation of this equations for non-

principal directions of curvatures reads:

K = κ1κ2 − κ
2
12 . (2.2)

where the lower indices ’1’ and ’2’ now denote orthogonal in-plane coordinates and

’12’ the twisting curvature. Relations to other curvature definitions include that K is

the dot product of the Ricci curvature tensor and the metric tensor or the double dot

product of the Riemann curvature tensor with the metric tensor.

The ‘remarkable’ characteristic of Gauss Theorema Egregium (Latin for ‘remarkable

theorem’) is that the Gaussian curvature is an intrinsic measure and thus, the angular

defect can be expressed in terms of in-plane quantities only. It allowed the inventor,

Carl Friedrich Gauss, who was inspired by his work as surveyor, to determine the

curvature of the earth based on his measurements of length and angles in triangulated

meshes on its surface. In contrast to Gauss, structural engineers usually know the

measurements of the objects they analyse, but they aim to quantify deformations to

calculate concomitant stresses and strains. Hence, rather than the Gaussian curvature,

K, itself, the change in Gaussian curvature, g, is of particular interest. Its intrinsic

definition expressed in terms of in-plane strains, ε, reads:

−g =
∂2ε22

∂x2
1

− 2
∂2ε12

∂x1 ∂x2
+
∂2ε11

∂x2
2

. (2.3)

In contrast to Eqn (2.2), this equation has a linear relation between the strains. This

result is not only of fundamental importance in differential geometry but has a direct

physical interpretation in shell theories, as described in the following section.

2.2 Föppl-von-Kármán Plate Equations

The complexity of the mathematical treatment of shells required mathematicians, phys-

icists and engineers to use reasonable simplifications to make this field of mechanics

amenable to an analytical treatment. In the following an outline of the Föppl-von
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Kármán (FvK) equations and its implied assumptions is described in Euclidean space

and Cartesian coordinates, (x, y, z).

Von Kármán’s motivation was to extend Love’s theory [14] for the bending of flat

plates to the geometrically nonlinear domain. Love’s linear theory neglects all higher-

order displacement terms since all of them are regarded as small compared to the plates

in-plane dimensions in the xy-plane, Lx and Ly. Since the thickness of a plate, t, is

by definition small compared to Lx and Ly, it was additionally assumed by Love that

plates under transversal loading deform by bending in a way that avoids stretching

entirely. This assumption requires g = 0 and is justified by differing scaling laws of

the stretching and bending rigidity. Love’s theory is accurate in the range of small

deflections of up to w = 0.2t, but for w ' 0.3t, the load-bearing behaviour changes,

since concomitant stretching of the mid-plane significantly increases the stiffness, and

for w ≈ t, the stretching energy is of the same order of magnitude as the bending energy

for common dimensions [15].

The Föppl-von-Kármán equations stretch these assumptions by distinguishing

between in-plane and out-of-plane displacements. Even though all displacements u, 3

and w in x, y and z-direction, respectively, are small compared to the planform dimen-

sions, the deflection, w, is significantly larger than the other two displacements and

may exceed the thickness of the plate ({Lx, Ly} � {w, t} � {u, 3}). In order to over-

come the shortcoming of Love’s theory whilst preserving the possibility of an analy-

tical treatment at the same time, the FvK strain definition incorporates the nonlinear

deflection term, but neglects higher-order gradients of u and 3:

εx =
∂u
∂x

+
1
2

(
∂w
∂x

)2

εy =
∂3

∂y
+

1
2

(
∂w
∂y

)2

and εxy =
∂u
∂y

+
∂3

∂x
+
∂w
∂x

∂w
∂y

. (2.4)

Note that these original equations are derived for a flat plate without an initial deflec-

tion in their stress-free state, w0, and thus, the deflection, ŵ and the resulting shape

w = ŵ + w0 coincide; suitable extensions for considering initially shallow shells and

such with imposed strains are introduced in the respective chapter in which they are

needed. Since this strain definition is not invariant under rotations, it includes the

assumption of a shallow shell with shallow gradients:∣∣∣∣∣∂w
∂x

∣∣∣∣∣ � 1 and
∣∣∣∣∣∂w
∂y

∣∣∣∣∣ � 1 . (2.5)
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Despite considering moderate deflections, small strains are assumed, and thus it is ad-

missible to approximate the energy integral via the original surface area. The Kirchhoff

assumptions, which assume the absence of shear deformations, plane cross-sections

and a vanishing through-thickness stress are retained, and other common kinematic

assumptions, such as neglecting higher-order curvatures are implied.

The FvK equations [16] consider the interaction of bending and stretching by com-

bining Love’s bending theory with Föppl’s membrane theory [17]. For linear elastic

isotropic homogeneous materials, the resulting nonlinear and coupled system of partial

differential equations reads:

D∇4w − t
(
∂2Φ

∂y2

∂2w
∂x2 − 2

∂2Φ

∂x ∂y
∂2w
∂x ∂y

+
∂2Φ

∂x2

∂2w
∂y2

)
= pN (2.6a)

1
E
∇4Φ +

(
∂2w
∂x ∂y

)2

−
∂2w
∂x2

∂2w
∂y2 = 0 , (2.6b)

where D, ∇, Φ, pN and E denote the flexural rigidity of D = Et3/[12(1 − ν2)], the nabla

operator, the Airy stress function, a pressure loading and the Young’s modulus, respect-

ively. Eqn (2.6a) is an equilibrium equation, in which Love’s term from plate bending,

∇4w, is extended by a nonlinear term that accounts for the diverted in-plane force due

to the plate’s deflection. The second equation ensures the compatibility of bending and

stretching deformations by equating the intrinsic definition of the Gaussian curvature

with its extrinsic counterpart.

The constants of integration arising from the solution for w and Φ are required to

satisfy boundary conditions, which can be either Dirichlet, Neumann or mixed type

conditions: whilst the first concern a prescribed displacement condition, for instance

by a clamped edge, the second impose stresses on the boundary, e.g. by an edge-

load. Mixed type conditions exist, for instance, at spring-supported boundaries, where

the reaction force of the spring is coupled with a certain displacement via the spring

stiffness, k.

2.3 Two-Surface Perspective

The compatibility equation, Eqn (2.6b), highlights a fundamental geometric effect in

shells around which several shell theories have developed: the interaction between

bending and stretching. Love’s plate theory assumed isometric deformations with
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a) b)
Bending surface Stretching surface

Figure 2.2: Two-surface perspective [13]. (a) Cut view of a surface without stretching rigidity;
(b) cut view of a surface without bending rigidity.

g = 0 to avoid a consideration of stretching effects of the mid-plane, and thus only

considers bending within the aforementioned limits of small deflections. Föppl’s mem-

brane theory takes into account that the bending rigidity scales with the thickness’s

third power, while the rigidity against stretching scales linearly and concludes that a

consideration of the latter is sufficient for very thin shells.

In contrast to plates, shells possess double curvature, but their bending rigidity is

generally non-negligible. Nevertheless, certain incompatible loads can create very stiff

and efficient membrane responses during which the full cross-section experiences a

constant stress over the height, and thus, the material can be used to its full capacity.

While similar constructions can also be achieved by beams of a particular shape, the

defining characteristic of shells is that they may react to several load cases with a

pure membrane response. These bending-free configurations enable engineers to cre-

ate highly efficient shell structures with slenderness levels that are unprecedented in

beam structures. However, a pure membrane response is only possible for certain sup-

port conditions, and practicable solutions commonly include a bending disturbance at

the edge which fades away at a certain distance of the centre.

Hence, a distinction between these two fundamentally different load-bearing beha-

viours is advantageous to understand under which conditions the one or the other apply,

see Calladine [13] for details. In this context the concept of the two-surface perspective

[18], which is elaborated next, is relevant. We may understand a shell as a construction

as depicted in Fig. 2.2, where a bending surface, (a), and a stretching surface (b) bear

the load like two parallel springs. The first possesses a finite bending rigidity, but is

free to expand in-plane and the latter one is free to rotate, but has a finite stretching

stiffness. A shell can now be thought of as such two surfaces of different stiffness

that are spatially overlapping and glued together. Thus, the final response of the shell

must be compatible everywhere with respect to their Gaussian curvature. This com-
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patibility equation extends the well-known duality of form and force to shells with

non-isometric deformations and the similarity is also reflected mathematically in the

governing equations: consider an initially stress-free but curved shell with in general

differing principal radii of curvature, R1 and R2, respectively. The behaviour of each

surface is governed by a single potential function of the Airy stress function, Φ, and the

displacement field, w, which are related to the in-plane and out-of-plane response, re-

spectively. While the first potential is related to in-plane stresses, σ, the latter describes

the change of curvatures, κ:

σx =
∂2Φ

∂y2 , σxy = −
∂2Φ

∂x ∂y
and σy =

∂2Φ

∂x2 , (2.7a)

κx = −
∂2w
∂x2 , κxy = −

∂2w
∂x ∂y

and κ̂y = −
∂2ŵ
∂y2 . (2.7b)

The curvature relation arises directly from geometric considerations, whereas the

former potential was designed in such a way that the in-plane equilibrium equations

are fulfilled for arbitrary choices of Φ. The duality between the term of a pressure load-

ing and the Gaussian curvature become apparent, when the compatibility equation and

the transversal equilibrium equations of each surface in a shallow shell are considered

[18]:

σx

R1
+
σy

R2
= pN (2.8a)

κx

R1
+
κy

R2
= g (2.8b)

∇4 Φ

E
=
∂2εy

∂x2 −
∂2εxy

∂x∂y
+
∂2εx

∂y2 = −g (2.8c)

∇4w =
∂2mx

∂x2 −
∂2mxy

∂x∂y
+
∂2my

∂y2 = −pN , (2.8d)

where m and ε denote bending moments and membrane strains as before. The

first equation describes the equilibrium in normal direction, whilst the resembling

Eqn (2.8b) expresses the change in Gaussian curvature due to changes of the curvatures

κx and κy. Similarly, the two equations on the right, Eqn (2.8c) and Eqn (2.8d), describe

the corresponding other quantity after applying the biharmonic operator; isotropy is

assumed here. The identical differential operators reveal how a change in Gaussian

curvature acts as a ‘forcing term’ and suggest that a pressure loading on the bending

surface can be transferred to the stretching surface via such a change and vice versa.

The two-surface concept also illustrates for which load cases interactions are expec-

ted: the uniform heating of a centrally fixed plate for example will cause stretching

without any bending-interactions, since g = 0 according to Eqn (2.3), whilst a uniform
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through-thickness gradient will change the metric, cf. Eqn (2.2). It also elucidates

how any change of the shell’s metric can be interpreted as a ‘forcing-term’ that causes

an interaction with the other surface. The perspective is particularly helpful in cases

of combined actuation in stretching and bending, which allow, for instance, shape

changes without evoking strain energy; such transformations are discussed in detail in

§7.

So far, the governing equations were discussed, but due to the coupled and nonlinear

nature of the FvK equations, analytical solutions are notoriously difficult to achieve.

An eminently successful approach to obtain semi-analytical solutions, which will also

be applied in the context of this dissertation, is discussed next.

2.4 Ritz Method

The principle of Ritz was developed to give further insight into the experiments of

Chladni [19] who discovered the mesmerizing sand patterns that form on vibrating

plates in 1787. The problem arose significant interest and inspired several advance-

ments in the field of elastic plate theory with contributions from Lagrange, Poisson,

Germain and Kirchhoff, among others, see Meleshko [20] for a historic review. How-

ever, it took more than a century to find a satisfying answer to the geometrically linear

problem of arbitrarily shaped vibrating plates and the related biharmonic equation.

Noteworthy contributions that eventually lead to Ritz’s method are an approximation

by Wheatstone, the work of Voigt [21] and later Rayleigh’s approach [22], which was

refined and corrected more than 30 years later by Ritz [23].

The key idea is to approximate a solution to a differential equation by using trial

functions and applying Hamilton’s principle of stationary action instead of finding a

solution directly to the equation itself. It requires the Lagrangian, L, which is defined

as the difference between kinetic energy and potential energy,L = T−Π, to be constant

over time, τ:

δ

∫ t1

t0
L dτ = 0 (2.9)

where δ indicates the variation. It follows that the action in a system is stationary. Ritz

argues that by applying a variational formulation the differential equation arises and a

stationary solution is found. However, since it is known that the energy functional is
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stationary in a specific problem, arbitrary test functions can be chosen to achieve an

approximated solution [23].

In the absence of dynamic effects, T = 0 and, thus, the integral simplifies for shells

into an integral over the domain, Ω, which is described in terms of the mid-plane

coordinates xk and xl:

δ

∫
Ω

Π dA = 0 (2.10)

For a mechanical system it is reasonable to assume a deflection field

w =

n∑
i=1

ηiwi(xk, xl) (2.11)

which consists of a summation of n weighting factors, ηi, multiplied by a trial function

of the deflection, wi, that satisfies the boundary conditions. The potential energy, Π, of

the system is calculated and stationary values, for which a structure is at equilibrium,

are identified via

∂Π

∂ηi
= 0 . (2.12)

However, these equations do not contain information about the stability. If every

possible perturbation of an equilibrium configuration causes an energy increase, it is

stable, and this condition requires the stiffness matrix, ∂2Π/∂ηi∂η j, to be positive def-

inite. Ritz demonstrated the suitability of his principle by calculating the solution of

vibrating strings and was able to approximate the first natural frequency with a error of

3e−9 by employing only three polynomial terms. Such a variational approach ensures

that the best possible fit within the assumed deflection fields is found and thus, the

choice of a suitable pair of basis functions is crucial. The method is particularly useful

to gain insight into observed experimental data, where the measured deflection can be

used to identify and quantify the influence of relevant terms.

2.5 Summary

This chapter discussed established theories that are essential in the context of this re-

search. The fundamental concepts of differential geometry allow readers to familiar-
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ise themselves with relevant quantities and jargon in non-Euclidean geometry, such

as the Gaussian curvature. These mathematical concepts find an engineering applic-

ation in the Föppl-von-Kármán equations, which provide the theoretical framework

to describe the geometrically nonlinear deformations of thin-walled structures under

certain, well-defined assumptions. The importance of geometry in shell theories was

emphasised by the two-surface perspective, which grants further insight into the in-

terplay between bending and stretching for non-isometric deformations. Finally, the

Ritz method provides an analytical, energy-based approach to approximate equilib-

rium. These theories are not only relevant for this dissertation, but also to understand

key concepts of existing approaches in the literature, which are discussed next.





Chapter 3

State of the Art

The aforementioned background concepts have been applied in various differing

morphing shell structures. This chapter reviews inventions in literature that are rel-

evant in the context of this dissertation. Since the FvK equations provide a suitable

framework to describe a broad range of bistable structures, methods of their analytical

treatment are discussed first in §3.1. In §3.2 follows an overview of advances in the

field of transformable shell structures that possess at least one stable alternative equi-

librium configuration. Finally, §3.3 discusses existing actuation methods in structural

engineering and nature.

3.1 Analytical Treatment of the FvK Equations

Due to their coupled and nonlinear nature, the Föppl-von-Kármán equations are rarely

amenable to pure analytical methods, and hence, closed-form solutions are elusive. For

the particular case of a flat circular plate, Way [24] introduced an infinite power series,

that solely depends on two coefficients that have the physical interpretation of the in-

plane stresses and the curvature at the centre of the plate. In order to obtain analytical

solutions in other cases, several simplifying approaches have been proposed.

Simplification of the Governing Equations

Berger [25] decouples the FvK equations by neglecting the second invariant of the

in-plane strain tensor based on his observations of available data. Banerjee & Datta

[26] however point out that inaccuracies in Berger’s equations exist for certain support

21
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conditions of initially flat plates (w0 = 0), since his simplification ignore a term related

to the radial stresses,

σr =
E

1 − ν2
(εr + ν εθ) =

E
1 − ν2

du
dr

+
1
2

(
dw
dr

)2

+ ν
u
r

 , (3.1)

where ν, r, u, and w denominate the Poisson’s ratio, the polar radial variable, the radial

mid-plane displacement and the transversal displacement, respectively. Within the

limit of shallow gradients, |dw/dr| � 1, Berger’s method provides a fair approximation

for fixed-pinned supports, and even better results for clamped edges, but the theory is

not applicable in roller-supported shells, where the nonzero edge displacement of u

significantly affects the structural behaviour. Based on this observation, Sinharay &

Banerjee [27] proposed an alternative method to decouple the FvK equations that holds

also for movable supports: by substituting a nonlinear displacement term in the strain

energy functional of shallow shells with an initial out-of-plane deflection, w0, via

(u
r

)2
≈

λBC

1 − ν2

1
2

(
dw
dr

)2

+
dw
dr

dw0

dr

 , (3.2)

it becomes possible to adjust the parameter λBC by an approximation that depends on

the support conditions, which ultimately leads to an improved accuracy.

Ritz Approaches

The most prevalent approach does not simplify the governing equations – it strictly

speaking violates them. Inspired by the approximately uniformly curved shape, several

investigators employed a uniform curvature (UC) approach, by assuming the following

deflection field with three degrees of freedom, η1, η2, η3, according to Ritz’s method:

w = η1x2 + η2y2 + η3xy . (3.3)

The concomitant drastic simplification of the problem gives compact closed-form solu-

tions that are in fair agreement with finite element (FE) simulations as well as exper-

imental results. This seems insofar surprising, as several aspects are contradictory or

seed uncertainty:

(i) The edge moment does not vanish:

The assumption of a deflection field of uniform curvature is not capable of mod-
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elling the boundary conditions of a vanishing edge moment at the outer edge

in free standing or hinged shells. It is often justified by the argument that this

concerns a boundary layer problem that is rapidly damped out so that the overall

structural behaviour is not strongly affected [28]. This statement will be analysed

in detail in §4 and §5.

(ii) Polynomial basis function cannot exactly satisfy the equilibrium equation:

Sobota & Seffen [29] point out that the choice of polynomials basis functions

cannot exactly satisfy the equilibrium equations, since a dimensional mismatch

exists: for any polynomial of order p the first term of the equilibrium equa-

tion in Eqn (2.6a) is of order p − 4, whilst the second (mixed) terms order is

p − 2 + deg(Φ′′), where the primes indicate a partial second derivative. Thus,

for matching orders, the Airy stress function requires a logarithmic component

to match the deflection term of the highest order. However, in closed shells, such

a component in the stress function evokes inadmissible in-plane stress singular-

ities that would cause an infinite strain energy. This incompatibility cannot be

overcome by increasing the number of terms, since every additional term also

requires an additional correction term, and a mismatch will always remain. In

contrast to the equilibrium condition, matching orders can easily be achieved in

the compatibility equation (2.6b), where the quadratic nature of the nonlinear

displacement terms in the mid-plane strain definition is reflected by the fact that

deg(Φ) = 2 · deg(w). Since equilibrium has the same axiomatic nature as work,

the equilibrium equation, (2.6a), is ignored and a deflection is assumed instead

to find an approximate yet accurate solution via energy minimisation.

(iii) Reliability of the Ritz method:

The quality of the results when employing the Ritz method strongly depends

on the suitable choice of the basis functions that span the solution space. In

geometrically linear problems, it is straightforward to employ a large number of

degrees of freedom to approximate the real solution, for instance with an infinite

Fourier series [13, 30]. However, geometrically nonlinear problems require con-

sidering the interaction of degrees of freedom, and without a linearisation the

energy functional becomes too complex to solve when more than a few degrees

of freedom are used. Thus, the question arises if a Ritz approach is suitable to

describe buckling problems. While the shape observed in reality constitutes the

energetically most favourable, the approximation will always overestimate the
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strain energy in static problems. Thus, in the analysis of the natural frequency,

for instance, a Ritz approach yields an upper limit; however, the same cannot be

stated for buckling problems, since the ratio of the bending-to-stretching energy

is the decisive factor. Additionally, even slight deviations of the shape may cause

significant errors of the buckling threshold, since instabilities are imperfection

sensitive [31]. Unfortunately, some researchers do not see the requirements to

validate their approximated results with other methods, which leaves a range of

uncertainty, see e.g. [32–34]. This, however, ignores Ritz’s intention, since he

developed his method to gain insight into the underlying structural mechanics of

experimental problems to which solutions would stay elusive otherwise; hence,

a validation of results obtained by Ritz’s method is crucial. Interestingly, even

simple UC approaches have been demonstrated to represent experimental res-

ults in several occasions, e.g. [28, 35–44] adequately. Thus, the Ritz method

can be regarded as a useful tool to explore design spaces and to understand the

structural behaviour better.

Recent developments overcame the uniform curvature assumption by introducing ad-

ditional degrees of freedom that are used to satisfy the boundary conditions precisely.

These higher-order models are advantageous due to their capability to depict more

complex structural behaviour and having increased accuracy compared to their uni-

formly curved counterparts [45]. The additional degrees of freedom allow for an in-

creased flexibility that is required to depict a wider range of shapes, versatile loading

cases, or more intricate geometric constraints.

3.2 Methods to Achieve Bistability

In the context of this dissertation, multistability is defined as: the existence of at least

one alternative stable equilibrium configuration under unchanged loads to which a

transition within the elastic limit can be marshalled. Note that this definition permits

shape manipulations via imposed inelastic strains, e.g. through actuators, as long as

the transition between two stable states is purely elastic. The term ‘unchanged load-

ings’ is interpreted in such a way that it does include constant pressure loadings since

one might argue that the load itself stays unchanged even though the direction of the

resulting force might change in consequence of a deformation of the structure.
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Figure 3.1: Structural concept of elasticity (blue) and possible ways to create bistable struc-
tures (green).

In order to create bistable structures, an energy barrier that prevents them from bend-

ing back to their initial configuration has to be put in place; this may lock the inverted

configuration at a higher energy level by making the transition to the lower level en-

ergetically even more costly. The fact that this energy barrier must be a stretching

barrier becomes apparent, when one considers that alternative isometric embeddings

only exist for a 2D object in a 3D space, but not for 3D objects [46]. Hence, it is

possible to find an alternative embedding for the stretching surface, where all lengths

are preserved, and no stretching energy arises. However, it is not possible to find an al-

ternative configuration of the bending surface in which the bending energy vanishes –

presuming that the structure is continuous and does not contain hinges.

In general, structural manipulations to create a stretching barrier can be undertaken

on all structural levels, cf. Fig. 3.1. The lack of a clear categorisation of methods to

achieve bistability in literature is owed to the variety of multifaceted approaches that

often combine more than one method, and thus, often there is no sharp distinction. In

particular, a distinction between external loads and pre-stressing is somewhat arbitrary

because, in general, both can cause the same stress-patterns; similarly, pre-stressing

and pre-straining are often tantamount, since one is concomitant with the other and

there is a causality dilemma. Additionally, imposing bending and mid-plane strains

in a coordinated manner can also alter the stress-free natural shape, but this special

case is treated separately, and it is discussed in detail in §7. The author believes that a

categorisation is nevertheless helpful and thus, distinguishes in the following between

structures:
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(i) that are pre-stressed or pre-strained,

(ii) that possess globally non-isotropic material laws,

(iii) with initial Gaussian curvature or that require non-Euclidean deformations,

and finally,

(iv) structures with additional displacement boundary conditions.

Where multiple methods are used, the most relevant part of each invention is chosen

and where an interaction plays a vital role, a separate description is given.

3.2.1 Pre-Stressed or Pre-Strained Structures

A broad class of bistable structures are manufactured by pre-stressing uniaxially

curved shells or by imposing inelastic strains, e.g. by heating. Any of such impos-

itions can ultimately lead to out-of-plane buckling. For instance, an initially flat plate

may buckle under a radial edge load [47, 48], where the sign of the resulting out-of-

plane displacement is theoretically indeterminate and depends in practice on imperfec-

tions. The buckling threshold also marks the point of bistability, since the structure

can either move upwards, or downwards, and if an elastic transition between those two

stable states is marshalled, the structure will remain in one of them without requiring

additional energy to sustain it.

Kebadze et al. [38] showed that coiling a cylindrical panel outwards in longitudinal

direction creates a suitable pattern of residual bending stresses to promote a bistable

response. By assuming uniform and inextensional deformations, two stable config-

urations are identified: an extended and a coiled one (see Fig. 3.2). Each of them is

cylindrical, and thus, possesses one preferred direction of curvature. Due to the inex-

tensional assumption the only path in between the two configurations involves twisting,

a) c)b)

Figure 3.2: (a) Extended configuration, (b) oppositely bent unstable transitional shape, and
(c), coiled configuration resulting from (b). [38].
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and whilst the isotropic twisting rigidity is usually not sufficient, the bending moment

aids to create an additional local minimum in the strain energy landscape.

Bistability through pre-straining frequently occurs in shells exposed to a thermal

through-thickness gradient or multi-layered structures with a differing thermal expan-

sion coefficient. A related problem in which a circular substrate is attached to a mis-

matching top layer was investigated by Freund [36]: by taking a geometrically non-

linear deformation profile into account, he derives a buckling criterion of an imposed

normalised curvature of κrA a2/t ≥ 8
√

1/(1 + ν).

The bistable behaviour evoked by spatially nonlinear thermal profiles or tantamount

growth patterns has been analysed by Seffen & Maurini [49] via a uniform curvature

approach. The study considers in-plane as well as out-of-plane actuation pattern and

explores a wide range of design spaces of nonlinear actuation patterns within the lim-

its of constant changes of Gaussian curvature throughout the shell’s domain. Other

actuation methods using the piezo-effect [50–52] or employing shape memory alloys

to impose strains [53] have been successfully demonstrated and may be extended by

other actuation methods described in §3.3.

3.2.2 Structures with Initial Gaussian Curvature
& Structures That Require Non-Euclidean Deformations

An isotropic centrally fixed cylindrical panel will always bend back to its initial con-

figuration, since it is developable and thus has an initial Gaussian curvature of K0 = 0.

During the inversion process there is a smooth isometric transition where the panel is

bend in such a way that it flattens out and then bends into the opposite direction, and

hence, a change of Gaussian curvature that would cause a stretching barrier is not ob-

served. However, if an initial positive Gaussian curvature exists, say in a cap as depic-

ted in Fig. 3.3, a uniform transformation between the initial and inverted state requires

both principal curvatures, κ1 and κ2, to change sign. Thus, the Gaussian curvature –

initially K0 = κ1κ2 – diminishes and rises again in the inverted configuration which can

ultimately prevent the cap from reverting due to the involved changes in the metric.

Several studies analyse the critical shape at which a structure becomes bistable dir-

ectly or indirectly: Wittrick et al. [35] extend the work of Timoshenko & Woinowsky-

Krieger [54] on beams to shallow shells and analyse the critical temperature and geo-

metry at which uniformly heated bimetallic caps buckle. The analysis focusses in
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a) b)

Figure 3.3: Initially doubly curved, but stress-free shell in (a) as well as its stable inversion in
(b) in the absence of other loads than self-weight.

particular on the critical initial central rise, w0∗
M , at which the cap becomes bistable.

By employing a nonlinear shell model this threshold is found to slightly more than

four times the thickness – the exact value depends on the Poisson’s ratio, but not the

Young’s modulus. As expected, this result closely resembles the findings of Freund

[36] in the pre-strained case. Seffen [55] employed a uniform curvature approach to

calculate the bistable threshold of initially curved elliptic and in general orthotropic

disks of constant thickness, which simplifies for isotropic shells with circular plan-

form to a minimum required initial midpoint displacement of

∣∣∣w0
M

∣∣∣ ≥ 4 t
√

1 − ν
, (3.4)

where t denotes the thickness and ν the Poisson’s ratio. The study shows that initial

twisting curvature, which is for shallow shells the only way to cause negative Gaussian

curvature in the bending surface, diminishes bistability, and hence, an isotropic saddle

is never bistable. An intuitive explanation for the latter example is that the inverted

configuration can be reverted by a rigid body rotation of 90° around the normal at the

centre, and since such a rotation is isometric, no stretching barrier is formed.

Mansfield [56] analysed bistable properties of uniformly curved shells with an elliptic

planform and a lenticular cross-section. The latter form was chosen to find an exact

solution that avoids a conflict with the edge condition of a vanishing edge moment

through a vanishing thickness at this location. The keystone in his derivation is the

proportional relation between the Airy stress function and the bending stiffness, which

varies in the same way due to the chosen thickness profile. The analysis provides an

elegant exact nonlinear solution and states that bistability occurs if the initial central
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rise of a disk of circular planform exceeds:

∣∣∣w0
M

∣∣∣ ≥ √
14 + 2ν
1 − ν

t . (3.5)

Further insight into the transition in between two stable configurations was provided

by Gomez et al. [57], who considered the Donnel-Mushtari-Vlasov equations that re-

semble the FvK equations but contain an additional term that accounts for an initial

curvature explicitly. They employ a numerical solution scheme that is accompanied

by a leading order term analysis to revise Pogorelov’s problem of propagating mirror

buckling [58] and distinguish between seven spatial regions in which the shell be-

haves fundamentally different. A consecutive study dealt with a secondary, symmetry-

breaking bifurcation that is observed in deeper shells [59].

The work of Brinkmeyer et al. [60] considered caps made from viscous materials and

identified the narrow range of geometric parameters under which these show a ‘pseudo-

bistable’ behaviour where the material damping causes a belayed, self-actuated rever-

sion process.

An interesting bistable structure is presented in Walker & Seffen [61]: despite not

possessing any initial Gaussian curvature, an isotropic metallic strip with a longitudinal

crease is bistable, when it is deformed by opposite side bending. It was shown that the

driving factor is not plastic yielding, but a localisation effect caused by non-isometric

deformations that evoke changes of the metric.

Two other examples of developable structures that possess a stable inversion are a

cone and a cylinder: whilst the first structure’s Gaussian curvature is undefined at

the centre and zero elsewhere, its angular defect is well defined. However, the lat-

ter example elucidates that this is not the key to bistability: a second equilibrium

state becomes possible as soon as the reversion process requires a change of Gaus-

sian curvature. In the case of circumferentially closed structures like a cone and a

cylinder, the only path for reversion is bending the initially uncurved longitudinal axis,

where the involved double curvature causes a stretching barrier.

3.2.3 Bistable Structures Made from Anisotropic Materials

Instead of causing a change in the metric, the constitutive relations of the material can

assist to stabilise an alternative equilibrium configuration. The material law relates
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the stress tensor σ̄ = [σ,m] = [σ1, σ2, σ12,m1,m2,m12] to the work conjugated strain

tensor ε̄ = [ε, κ] = [ε1, ε2, ε12, κ1, κ2, κ12] – both expressed in Voigt notation – via a

tensor of fourth order, C:

σ̄ = C ε̄ with C =

 A B
BT D

 . (3.6)

The ( ¯ )-quantities distinguish the total strain components from the decomposed mid-

plane quantities σ = [σ1, σ2, σ12] and ε = [ε1, ε2, ε12]. The 3×3 sub-tensors A, D and

B denote the stretching rigidity, bending rigidity and the coupled bending-stretching ri-

gidity; the latter arises only in fully anisotropic materials, e.g. unsymmetrically layered

laminates, since the pre-integration of a symmetrically layered material tensor in thick-

ness direction gives: ∫ t/2

−t/2
z2dz = 0 .

Hence, using composite materials gives rise to various manipulations of the con-

stitutive equations that favour bistable responses. Strengthening A compared to D will

increase the stretching barrier, and the stretching-curvature coupling gives even more

elaborate opportunities: when producing non-symmetric laminates at high temperat-

ures, Hyer [37] observed that these take bistable cylindrical shapes after cooling down

to room temperature. However, classical linear lamination theory predicted a contra-

dictory saddle-shape, and the problem was resolved by a geometrically nonlinear Ritz

approach for shallow shells that confirmed the experimental observations.

A study of Eckstein et al. [44] considers initially uniaxially curved but stress-free

laminated plates and explores the design space for bistability with respect to their ini-

tial curvature and temperature via a uniform curvature approach. Pirrera et al. [62]

and also [63] analyse the bistable response of heated fibre-reinforced composite plates

in a numerical higher-order path-following Ritz approach and conclude that the dis-

placement fields are well resolved by a 5th order approximation, but that higher-order

functions are required to capture details of the snap-through process.

Instead of employing fully anisotropic materials, orthotropic materials, in which the

ratio between A and D is unchanged by definition, also offer the opportunity to create

multistable structures. Guest & Pellegrino [28] showed that cylindrical panels with
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Figure 3.4: Cylindrical panel from Guest & Pellegrino [28] with two stable configurations
made from a composite material: initial configuration (left) and deformed configuration (right).

κ1 , 0 and κ2 = 0 can exhibit an extra stable configuration as depicted in Fig. 3.4, if

(D12)2
(
2

D33

D11
+ 2

D12

D11
− 2

D22

D12

)
> 0 . (3.7)

This implies that even isotropic cylindrical panels, where D22/D11 = 1, D12/D11 = ν

and D33/D11 = (1 − ν), can be bistable: while common materials with ν > 0 are mono-

stable, auxetic materials (ν < 0) are bistable. The physical interpretation of this equa-

tion is that the twisting mode plays an essential role. Guest & Pellegrino [28] first de-

rived the results under the assumption of inextensible deformations, and thus, a mode

involving twisting via κ1κ2 − κ12 = 0 is the only transition between the two configura-

tions that show a distinct major axis of bending. Hence, a strong twisting rigidity, D33,

is essential to create the required energy barrier. This does not change when the inex-

tensibility assumption is relaxed since a refined analysis revealed that the results are

unchanged if B = 0; otherwise the values have to be substituted by D̃ = D− BT A−1B,

which causes only slight deviations in common materials.

Applications of such systems are commonly encountered in aerospace structures,

such as deployable storable extensible members (STEM), [64, 65], morphing aerofoils

[66], and are also part of novel nanotube manufacturing methods [67].

3.2.4 Displacement Boundary Conditions

Dirichlet boundary conditions are well-known to have a vital influence on multistabil-

ity. The presumably simplest continuous structure that exemplifies the nature of this
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problem is a fixed-pinned shallow arch with a central rise of at least w0
M = 1.1 t, which

was first described by Timoshenko [68]. This problem exemplifies that the support

conditions can be crucial: as soon as horizontal reaction forces are absent, beams will

always bend back to their initial configuration. If the supports are present, they become

stiffer and build up additional stretching energy before buckling; its release during the

snap-through stabilises the inverted configuration against the reverting endeavour of

the bending component. Timoshenko’s criterion quantifies the critical geometry at

which arches become too shallow to cause a sufficient stretching barrier that could

prevent a snap-back to the initial configuration.

However, if an arch is too deep, the horizontal reaction forces become large enough

to cause asymmetric buckling modes of higher order; an upper bound of this load is

the second critical Euler load. Such modes diminish the stretching barrier and Qiu

et al. [69] showed that such an unwanted response can be overcome by preventing

the rotation at the centre. Alternatively, buckling into higher-order mode shapes can

be prevented by allowing for some horizontal displacements by employing in-plane

springs, rather than fixed-pinned supports. An even simpler problem than an arch is

the ‘von Mises truss’, but it is not considered here, since the central hinge allows the

structure to rotate without bending. This, however, eradicates the competition between

bending and stretching and, thus, trivialises the problem.

Despite these well-known examples that elucidate the vital influence of the support

conditions in stability problems, their effect on the bistable response of shells has not

been investigated in detail. Existing analytical studies in this context are scarce and

confined themselves to unsupported shells with a single fixed edge: Brunetti et al. [70]

analysed the design space of initially stress-free, orthotropic, cantilever-like shells.

In a higher-order Ritz approach, alternative stable configurations of initially pseudo-

conical shaped shells were found to possess a strongly nonuniform curvature; the find-

ings were in fair agreement with finite element analysis and experimental results [71].

The nonuniform shape highlights that the clamped support condition introduces an ad-

ditional complexity that cannot be tackled with conventional UC approaches. While

these more intricate structures demonstrate, that fixing rotations can enrich the solu-

tion, the opposite is also possible, since a uniformly curved cap with clamped edges

was never observed to be bistable [29].
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3.2.5 Combinations and Further Manipulations

The categories mentioned above showed general ways to create bistable structures. In

several cases that are presented in the following, these methods can be combined to

create structures with advantageous characteristics.

Tristability in Orthotropic Doubly Curved Shells

A)

a) b)
-6 0 6

-6

0

6

κx

κy

A

B

C

B)

C)

Figure 3.5: (a) Energy landscape according to a higher-order model for a tristable shell taken
from [40]. An initially doubly curved shell with κx > κy, (A), has two stable inverted con-
figurations: mode (B) is separated by a twisting barrier and shows one dominant direction of
curvature, while (C) is approximately uniformly curved. The contour plot indicates energy
levels where dark =̂ low and white =̂ high. (b) Related experiment that demonstrates the prac-
tical feasibility [41].

By manufacturing initially doubly curved shells from orthotropic materials, con-

tinuous shells with three stable equilibrium states can be created, see Fig. 3.5. Such

tristable structures offer different modes of structural adaptation for multiple loading

cases and thus, a broader field of potential application. The initially stress-free struc-

ture is orthotropic and doubly curved but possesses one dominant curvature direction.

The double curvature is required to cause a stretching barrier that stabilises configura-

tion (C) in Fig. 3.5 – similar to the previously discussed example of a cap, cf. §3.2.2;

the orthotropic material introduces a twisting barrier as in Fig. 3.4 that favours one

principal direction of bending. Analytical studies investigated the required curvature

ratios and material properties to manufacture such tristable shells by employing a non-
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linear shallow shell approach under the assumption of uniform Gaussian curvature [40]

and, more recently, by implementing a ‘reduced’ higher-order model [45], where the

term ‘reduced’ indicates that only a few terms are employed in the Ritz approach. The

experimental feasibility of these predictions was demonstrated by Coburn et al. [41]

and Hamouche et al. [72], respectively.

Neutral Stability

Figure 3.6: Neutrally stable structure in [73]: for particular values of the twisting stiffness
and fine-tuned bending pre-stressing in the longitudinal direction, neutrally stable behaviour is
observed. The structure is stable in every depicted configuration and can be morphed effortless
in between an extended and a coiled configuration via a zero-stiffness twisting mode. The top
layer differs from the bottom layer by an opposing direction of applied twist.

Neutral stability describes an equilibrium state in which a structure can be trans-

formed into several other states that possess the same strain energy, and thus, none

of them is preferable to another; a common example is the self-equilibrating spring-

linkage system of an Anglepoise lamp. A zero-stiffness shell made from an isotropic

uniaxially pre-stressed cylindrical panel is depicted in Fig. 3.6. Interestingly, it is only

achievable with isotropic materials, since the use of orthotropic materials causes a

bistable response instead [42].

The key factor is a precisely imposed pre-stressing bending moment: if it is too

small only the extended configuration will be bistable, and if it is chosen too large, the

structure buckles into a then stable coiled configuration. However, at the critical value

of an outwards pointing bending moment of R/D(1 − ν), where R is the panel’s initial

radius of curvature and D the flexural rigidity, a neutrally stable twisting behaviour as
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depicted in Fig. 3.6 with an infinite number of equilibrium solutions is observed [42].

An additional finding showed that particular caps can even be bistable and neutrally

stable at the same time, since they may possess a stable inversion in addition to their

zero-stiffness twisting mode.

The unusual behaviour of neutral stability inspired several inventions such as morph-

ing wind-turbine blades [74], morphing aerofoils [75] and a discrete twistable I-beam

structure [76, 77]. A concept of an actively controllable zero-stiffness structure was

shown by Hamouche et al. [52] who created a gear-less motor by attaching several

individually controllable Macro-Fibre-Composite actuators on the top of a shell to in-

duce the required pre-stressing. After the imposition of plastic deformations, the shell

can be twisted with the help of actuators at a vanishingly low energetic cost.

Pentastability by Slicing

Figure 3.7: Sliced shell structure with five stable configurations [78]: experimental results
(top) and finite element simulation (bottom) of an initially uniformly curved spherical cap
with a slit, (a), that can be inverted into (b); additional stable configurations include a partial
reversion, which can be triggered separately as in (c)-(d) or in combination, (e).

The multistable response of a doubly curved shell may be enhanced by adding slits

or slots to a shell, as shown by Sobota & Seffen [78]. This imposes additional free-

edge boundary conditions that loosen constraints in the shell by allowing for rotation

and stopping bending from propagating. Thus, a shell may partially invert without dir-

ectly affecting the other part of the structure. The example in Fig. 3.7 shows in total

five stable configurations, and is thus pentastable: the initially stress-free state, depic-
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ted in (a), inverts in an approximately mirror-symmetric manner in (b). The inverted

shape shows strong resemblance to the one of a shell of the same initial geometry

but without a slit. The presence of a sufficiently large slit allows for additional stable

configurations, in which the shell partially reverts, cf. (c-e). Since these can be con-

trolled independently on each side of the slit, they allow for three additional stable

configurations. It is notable that similar semi-inversions are not stable before the shell

was inverted; an FE analysis confirmed that the inversion acts similar to pre-stressing,

since it builds up bending energy and its release during a semi-reversion in (c-e) sta-

bilises those configurations. An analytical model of this structure is currently under

investigation.

Macrostructures with Bistable Unit Cells: Morphing Metal

a)

Bistable
unit cell

b) c)

Inverted
row

All unit cells inverted

Figure 3.8: Morphing metal adopted from [79]: (a) initial configuration, (b) inverting one row
locally induces curvature into the macrostructure, (c) inverting all cells imposes an approxim-
ately uniform curvature throughout the shell’s domain.

When multiple bistable unit cells are placed on an array, a multistable morphing

macrostructure is created, where the inversion of a single cell affects the neighbouring

substrate [79]. By inverting different patterns, the global shape can undergo dramatic

shape transformations, see Fig. 3.8. Since each shell can be inverted individually, a

structure with n dimples has in theory 2n stable configurations. The expected shape

changes have been predicted by tedious finite element simulations but gaining analy-

tical insight into the structural behaviour is nontrivial: the manufacturing process in-

volves plastic deformation that impose residual stresses in the dimple; however, these

are not essential for the bistable behaviour of the unit cell since it is governed by the
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initial Gaussian curvature. Hence, the results of this dissertation may provide further

insight into the interaction of unit cells in the future.

Whilst ways to create bistable shells were discussed in this section, actuation methods

that may trigger the transition between stable configurations are presented next.

3.3 Actuation Methods in Shells

In contrast to passive systems that rely on a stimulus from a certain load-case, active

structures can transform at any desired point in time by using actuators. Several differ-

ent methods have been developed and their particular application depends on the scale,

environment and preferred form of usage. Here, structural engineering applications are

presented before bioinspired actuators are discussed.

3.3.1 Actuators in Structural Engineering

Engineers frequently employ pre-stressing to increase the resistance of large-scale

structures against self-weight or as an economic manufacturing method to produce

doubly curved surfaces [80]. In order to vary the amount of pre-stress and regulate

the structural response to variable loads like excitations from earthquakes and wind

loads, active-control mechanisms have recently enjoyed an increased interest within

the structural engineering community. The possible gains in structural efficiency are

crucial when realising ultra-lightweight designs, and in addition, actuation mechan-

isms provide a momentous component in morphing structures. The first actively con-

trolled large scale structure was realised by Neuhäuser et al. [81], who used linear

pneumatic actuators at four corner points that react to external loads and provide act-

ive damping against vibrations. Senatore et al. [82] placed such actuators in a truss

structure that encloses a volume to minimise the sum of embodied and operational

energy in the structure’s life cycle.

Rather than using actuators at certain points, continuous Macro Fiber Composite

(MFC) actuators can be employed for a directional in-plane actuation using the inverse

piezoelectric effect that induces strain proportional to an applied electric current; such

actuators can trigger snap-through buckling [83], damp a shells vibration [84] or con-

trol its periodic movement [52], or – by using the direct piezoelectric effect instead

of its inverse – harvest energy from vibrations [50, 51]. By using a layered build-up,
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these actuators are also capable of directly inducing curvatures in shells. Alternatively,

a constant bending deformation throughout a shell’s domain is commonly caused by

the uniform heating of bimetallic strips [35], a pre-strained top-layer [36], or a temper-

ature through-thickness gradient [85] in a homogeneous shell.

A novel manufacturing method of ‘printed magnetisation’ gives rise to a highly non-

linear actuation by offering the possibility to magnetize materials in almost arbitrary

patterns [86, 87]. Thus, in addition to the spatial variations of the magnetised pattern,

the magnetic actuation force itself depends on the displacements. While elaborated

magnetisation patterns have not yet been employed in bistable structure, a recent study

of Seffen & Vidoli [88] captured the magnetically initiated snap-through buckling of a

cap with constant magnetisation analytically.

3.3.2 Bioinspired and Natural Actuators

Biological bodies are by definition smart structures since they are capable of sensing,

controlling and actuating; in fact, engineers often took inspiration from flora, fauna

and fungi, and Cao et al. [89] describes smart structures even as a their ‘primitive

analogue’. In nature, we find elaborated mechanisms that allow plants to undergo

dramatic shape changes: they grow from small seeds to trees, track the solar movement

with their leaves, develop flowers and transform back to an energy preserving mode

before winter.

Due to the lack of a nervous system, plants cannot react consciously to stimuli, but

show nevertheless complex ways to react to them. Seeds, for instance, sense gravity to

find the upwards growth orientation [90], and the directional growth of tendrils along

a supporting structure [91] requires pressure-sensing. Similarly, the growth process

of plants as well as bones is highly dependent on the stress state. The former vary

the wood’s cellulose-concentration to alter the material strength and show increased

growth rates in highly stressed areas to optimize themselves [92, 93]. Floral actuators,

which are required to perform such structural transformations, are usually based on

changes of turgor pressure due to osmosis or on the accretion of material [94]. In

general, the actuation patterns in biological shell structures exist in stretching as well

as in bending. The growth of leaves is an example of in-plane actuation, while the

motor organ (pulvinus) in the Mimosa Pudica or other solar tracking plants induces a

curvature through an ex-centric expansion, see Fig. 3.9. A purer form of out-of-plane
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a) b) c)

Figure 3.9: Floral bending actuation in a motor organ taken from Charpentier et al. [94]: (a)
top view of the motor organ that surrounds a rigid core. (b) undeformed configuration with
highlighted active motor cells (red). (c) the in-plane expansion of the ex-centric motor cells
deform the stem predominantly in bending.

actuation in plants is the humidity-dependent opening of a pine-cone [95] that involves

rotations of approximately 50°.

These observations in nature have inspired scientists from different disciplines to

create actuators that resemble the pine-cone [95], muscular contraction [96], and an

adaptation of the Venus fly trap was employed as a shading device [97]; shape changes

can for instance be triggered by variations in humidity [95], pH [98, 99], light intensity

[100] or temperature [85, 101].

In contrast to engineering applications, spatially non-Euclidean actuation and growth

patterns are common in floral shell structures, since evolution favoured these doubly

curved shapes due to their high stiffness. They can be realised experimentally by an

established method of Klein et al. [101] in which gels of different thermal expansion

coefficients are mixed to produce a very thin disk with a nonuniform expansion coeffi-

cient, see Fig. 3.10(a). When these are exposed to a uniform heating, these will trans-

form into non-Euclidean shapes that remarkably resemble floral ones, see Fig. 3.10(b).

The resulting shapes were predicted without considering the shell’s bending rigidity,

and thus, the problem was transformed into an entirely geometric one of finding the

three-dimensional embedding, i.e. the target shape, of a nonlinear in-plane actuation

pattern.

More recently, Gladman et al. [102] manufactured structures with programmable,

anisotropic expansion coefficients by 3D-printing layers of composite hydrogels that
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a) b)Non-uniform gel disc “Activation“ of the metric

A “programmed“ flat disc

Controllable
Mixer

High concen-
tration solution

Low concen-
tration solution

Figure 3.10: (a) Manufacturing of a spatially nonlinear in-plane actuated shell by mixing
hydrogels with differing expansion coefficients and printing a ’programmed’ structure [101].
Swelling is triggered by immersing the structure into hot water, which creates shapes of double
curvature depicted in in (b); shapes in (b) arose from a flat disk (left) and a cylinder (right).

are reinforced with cellulose fibres to control the expansion behaviour. This enabled

them to manufacture bioinspired structures resembling a blossom that opens up when

immersed in water, see Fig. 3.11.

α

α

αα   >
EE   >

b)a) t=0 t= 5min

Figure 3.11: (a) Manufacturing of anisotropic nonlinear actuated shells: by 3D-printing layers
with a varying cellulose fibre density, the effect expansion coefficient can be tailored in every
region of the shell. (b) Petals curve after the immersion in water and mimic a closing blossom
[102].

Another kind of actuated structures, so called baromorphs [103], use internal pres-

sure to cause a shape transformation by inflation: they consist of networks of elastic

tubes that – when pressurized – undergo significantly larger cross-sectional expansions,

and thus, directional growth paths can be predefined by a particular pattern of chan-
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nels, see Fig. 3.12. This actuation method offers the possibility to impose stretching

strains – and when layered also curvatures – on rubber materials. This is promising,

since a very flexible material with a relatively high ultimate tensile strength becomes

suitable for spatially nonlinear actuation methods. As shown in (c), this allows engin-

eers to impose deformations with positive or alternatively negative Gaussian curvature.

a) b)

c)

d)

Figure 3.12: Baromorphs [104]: (a) When the depicted plate with hollow inclusions is pres-
surised, the lateral expansions exceed the longitudinal ones; this creates a similar directional
expansion as in Fig. 3.11. (b) Mould in which plates with pre-defined pattern of inclusions
are cast. (c) Transformation of a plate with radial channels: when the pressure is reduced, an
elliptic geometry forms, whereas an increased pressure transforms the initially flat plate into a
hyperbolic mode. The bioinspired nature of this actuation method is illustrated by a compar-
ison to the observed growth modes of the Acetabularia alga in (d). Figure taken from Siéfert
et al. [104].

3.4 Summary

This chapter first reviewed relevant literature around shell structures that possess more

than one stable equilibrium configuration and categorised different methods to create
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them. Besides ‘pre-stressing and pre-straining’, ‘the use of non-isotropic materials’,

and ‘structures with non-Euclidean deformations’, a barely explored, fourth category,

‘adding displacement boundary conditions’, was presented. Throughout this disserta-

tion the combination of the latter category with the former ones will be systematically

analysed.

The second part of this chapter focussed on novel actuation methods, which can

be used to impose nonlinear strain patterns continuously throughout a shell’s domain.

Such methods are employed in §7 in order to expand the analysis from passive to active

structures.

Even though it was pointed out that nonlinear approaches are usually required to

model bistable behaviour, the suitability and limitations of simpler, linear methods for

shells with approximately mirror symmetric inverted shapes are explored next.



Chapter 4

Inversion of Deep Shells

When structures made from highly elastic materials buckle, they do not necessar-

ily fail: an isotropic rubber cap of radius R as shown in Fig. 4.1, for instance, be-

comes unstable under a critical downwards pointing load and thereby transforms from

a strongly compressed structure into a more efficient one in tension that stiffens un-

der additional loading. The transition process may involve a secondary, asymmetric

buckling mode [57, 105, 106], since large bending deformations become energetically

favourable compared to predominant deformations in stretching, but the resulting, in-

verted shape gains rotational symmetry again. Provided that the shell is deep and thin

enough, it stays inverted even when the applied load is removed, and interestingly, the

resulting configuration takes approximately an isometric shape of mirror symmetry.

The focus of this chapter is to predict this shape and concomitant stresses precisely in

deep spherical shells and cylinders.

An isometric shape minimises stretching at the expense of large bending deforma-

tions with changes of both principal curvatures of κ̂1 = κ̂2 = −2/R, which come at

Inverted

Initial

a) b) c)

Figure 4.1: (a) Initial configuration, (b) inverted configuration, (c) sketch of both profiles: the
inverted shape shows slight deviations from a mirror image of the former.

43
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a much lower energetic cost in these structures of low bending rigidity. The evoked

bending stresses of m1 = m2 = −2D(1+ν)/R in such an ideal state are, however, incom-

patible with the boundary condition, since the meridional edge moment must vanish,

and thus, an opposing edge moment of the same magnitude has to be superposed to

calculate the deviations from the mirrored shape. In order to model the inverted con-

figuration, a geometrically linear approximation that assumes deflections within the

limits of small deflection theory is presented in this chapter. Note that decreasing the

depth or employing thicker shells increases the relative bending rigidity so that ulti-

mately the edge bending moment may become large enough to trigger a reversion.

This limiting state adds additional complexity since it requires a nonlinear analysis,

which is presented in the subsequent chapter §5. The aim of this chapter is to identify

the region, in which geometrically linear approximations are suitable. Since the ex-

act solution involves a hypergeometric series that complicates the analytical treatment,

several approximations are presented and compared.

The proposed methodology may seem paradox at first glance since the employed

geometrically linear theory usually only quantifies the critical pressure but does not

give any information about the post buckled shape. In addition, it is well-known that

a discrepancy between observed and experimental values of the buckling threshold

exist: Mandal & Calladine [107] elucidated that the linear critical axial compressive

stress in cylindrical shells shows a dimensional mismatch that scales with the thick-

ness via t1.5. The causes of such erroneous predictions of linear theories that also

affect spherical shells have long been debated [31, 107–111]. However, it turns out

that these arguments are of limited relevance here: by considering only the deviations

from the mirror-symmetric shape, the problem is transformed, and the post-buckled

shape is predicted by considering the pre-buckled shape of a spherical cap loaded by

a continuously distributed bending moment. This theoretical tweak is possible, since

the resulting shape strongly resembles the initial one, and whilst linear theories are

unable to describe the transition they become valid again in the inverted state. For

analysis, the well understood linear shell theory based on the Kirchhoff assumptions

is used, which include that (1) normals stay normal, (2) cross-sections remain plane

and (3) small displacements. It is applied in the context of deep spherical shells, and

additionally, an extension for inverted cylinders is presented.

The governing equations are given next. Hereafter, an asymptotic method for spher-

ical shells is presented before a related method for cylindrical shells is described. A



45

second simplifying method for shallow spherical shells follows in §4.5. Subsequently,

the predictions of the shape of inverted shells are compared to finite element results

and the suitability with respect to their mathematical complexity and accuracy of the

differing methods is evaluated. The chapter closes with a summary and conclusion.

4.1 Geometrically Linear Governing Equations
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Figure 4.2: (a) Cut through rϕ-plane of a spherical shell: illustration of the coordinate system;
(b) resulting inverted configuration, Ω, and idealised mirror symmetric shape, Ω̂; (c) equilib-
rium at a differential element of the same shell.

Let us consider an isotropic, ideal elastic deep spherical shell of radius R with an

opening angle α in spherical coordinates, (r, θ, ϕ), as shown in Fig. 4.2(a). While lin-

ear theories usually spare us from distinguishing between different configurations, the

current case differs since a small displacement theory is applied in the context of a

large displacement problem. The mid-plane of the initial, stress-free configuration is

denoted by Ω0, its mirror image by Ω̂, whereas the resulting, observable shape is in-

dicated by Ω, cf. Fig. 4.2(b). Whilst the transition from the initial to the inverted state

is described by the displacements u0 = Ω̂ − Ω0, the additional small displacements

that arise due to the edge effect are given by û = Ω − Ω̂. The transformation from Ω0

to Ω is thus described by u = (u, 3,w) = û + u0, where u, 3 and w describe the meri-

dional, circumferential and outward normal displacement, respectively. Note that this

notation differs from other chapters insofar as the displacement vector u0 = (u0, 30,w0)
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evokes bending stresses here, whereas elsewhere a small initial stress-free transversal

displacement, w0, is taken into account to extend the FvK plate theory to the context

of shallow shells.

Since linear theories allow the superposition of results, the governing equations are

written in terms of the observable displacements, u; they can easily be adapted to a par-

ticular transformation by substituting all involved stresses, strains and displacements,

e.g. using û instead of u, etc. Due to rotational symmetry, three of the linearised

equilibrium equations are trivial, and the remaining in-plane equilibrium in the two

tangential directions (ϕ and θ) as well as the balance of momentum in meridional dir-

ection require [112]:

d
dϕ

(
σϕ sinϕ

)
− σθ cosϕ − qϕ sinϕ + pT R sinϕ = 0

σϕ sinϕ + σθ sinϕ +
d

dϕ

(
qϕ sinϕ

)
+ pN R sinϕ = 0

d
dϕ

(
mϕ sinϕ

)
− mθ cosϕ − qϕ R sinϕ = 0 .

(4.1)

where pT and pN denote a meridional in-plane loading per unit area and a pressure

loading, respectively. The shear stress in circumferential direction is absent due to

rotational symmetry, and thus qθ = 0. The considered problem is statically indeterm-

inate, since three equilibrium equations contain five unknowns: the meridional and

circumferential in-plane stresses, σϕ and σθ, respectively, the corresponding bending

stress resultants, mϕ and mθ, and the meridional shear force qϕ; note that all stress res-

ultants are pre-integrated in thickness direction and are thus expressed as force per unit

length [N/m] or bending moment per unit length [Nm/m].

By making use of the kinematic relations and the material law, the in-plane and bend-

ing stress resultants can be rewritten as a function of displacements in the meridional

and the outwards positive normal direction, u and w, respectively, to reduce the num-

ber of unknowns to three. While the kinematic relation of the mid-plane strains, ε,

requires:

εϕ =
1
R

(
du
dϕ
− w

)
and εθ =

1
R

(u cotϕ − w) , (4.2)

the geometric relation between the curvature changes and displacements is expressed

by:

κϕ =
1
R2

d
dϕ

(
u +

dw
dϕ

)
and κθ =

(
u +

dw
dϕ

)
cotϕ
R2 . (4.3)
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Due to the isometry of the mirror image, no elastic in-plane strains are initially imposed

(ε0
ϕ = ε0

θ = 0), and thus ε = ε̂. The constitutive law relates those strains to the stress

resultants via

σϕ =
Et

1 − ν2

(
εϕ + ν εθ

)
,

mϕ = D
(
κϕ + ν κθ

)
and

σθ =
Et

1 − ν2

(
εθ + ν εϕ

)
,

mθ = D
(
κθ + ν κϕ

)
,

(4.4)

where D = Et3/[12(1 − ν2)] denotes the flexural rigidity.

These four stress resultants can be expressed in terms of displacements. By substitut-

ing the strain expressions with the kinematic relations in Eqn 4.2, the in-plane stresses

transform to

σϕ =
Et

1 − ν2

[
du
dϕ
− w + ν (u cotϕ − w)

]
1
R

and σθ =
Et

1 − ν2

[
u cotϕ − w + ν

(
du
dϕ
− w

)]
1
R
,

(4.5)

and a substitution of the curvatures via Eqn (4.3) in Eqn (4.4) converts the bending

stresses to

mϕ = −
D
R2

[
d

dϕ

(
u +

dw
dϕ

)
+ ν

(
u +

dw
dϕ

)
cotϕ

]
and mθ = −

D
R2

[
ν

d
dϕ

(
u +

dw
dϕ

)
+

(
u +

dw
dϕ

)
cotϕ

]
.

(4.6)

With these expressions at hand, the equilibrium equation (4.1) can be rewritten in terms

of two displacements u,w and the shear force, qϕ:

Et
R

(
1 − ν2) (

d2u
dϕ2 + cotϕ

du
dϕ
− u

(
cot2 ϕ + ν

)
− (1 + ν)

dw
dϕ

)
− qϕ + R pT = 0

Et
R(1 − ν)

(
u cotϕ +

du
dϕ
− 2w

)
+

dqϕ
dϕ

+ qϕ cotϕ + R pN = 0

−
D
R2

[
d2u
dϕ2 +

d3w
dϕ3 + cotϕ

(
du
dϕ

+
d2w
dϕ2

)
−

(
cot2 ϕ + ν

) (
u +

dw
dϕ

)]
− R qϕ = 0 .

(4.7)
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4.2 Simplification of the Governing Equations

The set of three equilibrium equations can be simplified considerably to two second

order differential equations by changing variables according to the methodology of

[112–114] via:

V =
1
R

(
u +

dw
dϕ

)
and U = R qϕ , (4.8)

where V has the physical interpretation of the angle of rotation around the axis of the

circle of latitude, θ. A substitution of first expression into Eqn (4.6) simplifies the

bending stresses to

mϕ = −
D
R

(
dV
dϕ

+ ν cotϕV
)

and mθ = −
D
R

(
ν

dV
dϕ

+ cotϕV
)
. (4.9)

In order to establish a relation between the newly introduced variables and the in-plane

force σϕ, the first two equilibrium equations in Eqn (4.1) can be used: by multiplying

the first with sinϕ and the second with cosϕ, the two equations may be added and σθ

cancels out. Integrating this expression then simplifies for shells without an opening at

the top to:

sinϕ
(
σϕ sinϕ + qϕ cosϕ

)
+ R F(ϕ) = 0

with F(ϕ) =

∫ ϕ

0
sinϕ (pT sinϕ + pN cosϕ) dϕ .

(4.10)

A second relation for σθ is obtained by substituting the previous result into the second

equilibrium equation in Eqn (4.1), and eventually, both in-plane stress resultants can

be expressed in terms of the shear force, or more conveniently U, via

σϕ = −
1
R

U cotϕ and σθ = −
1
R

dU
dϕ

. (4.11)

The term of the force potential, F(ϕ) has been omitted in this expression since only

equilibria in the absence of (pressure) loadings are considered; the only relevant ‘for-

cing terms’ are the initial bending moments m0
ϕ = m0

θ = −2D(1 + ν)/R and a counter-

balancing edge moment. In order to establish a compatibility condition between U and

V , the two previous equations are equated with Eqns (4.5) from which the following
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simplification can be derived:

du
dϕ
− w =

R
Et

[
σϕ(U) − νσθ(U)

]
and u cotϕ − w =

R
Et

[
σθ(U) − νσϕ(U)

]
.

(4.12)

Now, w can be eliminated from these equations, and after differentiating the second

equation, the term du/dϕ can be eliminated as well, and the compatibility equation is

eventually obtained:

u +
dw
dϕ

=
1
Et

[
(1 + ν)

(
σϕ − σθ

)
cotϕ − R

d
dϕ

(
σθ − νσϕ

)]
. (4.13)

Substituting the displacement variables on the left-hand side with V and using

Eqn (4.11) to express the stress resultants in terms of U, the following reduced equi-

librium equation arises:

d2U
dϕ2 + cotϕ

dU
dϕ
−

(
cot2 ϕ − ν

)
U = Et R V . (4.14)

A second equilibrium equation in terms of U and V is obtained by substituting the

expressions from Eqn (4.9) into the third equilibrium equation in Eqn (4.1), which

reduces to:

d2V
dϕ2 + cotϕ

dV
dϕ
−

(
cot2 ϕ + ν

)
V = −

U R
D

. (4.15)

This gives the desired coupled set of two second order equilibrium equations. By

introducing a differential operator,

L(. . .) =
1
a

[
d2(. . .)

dϕ2 + cotϕ
d(. . .)

dϕ
− cot2 ϕ (. . .)

]
, (4.16)

the two preceding equations can be written more compactly as:

L(U) +
ν

R
U = Et V

and L(V) −
ν

R
V = −

U
D
.

(4.17)
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In order to decouple these equations, the first is substituted into the second equation.

Hence, a single expression that relates U and V is obtained:

L(V) =
ν

Et R

(
L(U) +

ν

R
U

)
−

U
D
. (4.18)

By applying the above defined differential operator on both sides of the first equation

of Eqn (4.17) and substituting Eqn (4.18), this system can be converted into a single

differential equation of fourth order depending solely on U:

LL(U) + µ4U = 0 (4.19)

with µ4 = Et/D−ν2/R2. This equation can finally be reduced to two uncoupled second

order differential equations,

L(U) ± iµ2U = 0 , (4.20)

which are complex conjugates. Their solution is also a solution to Eqn (4.19) since

applying the L-operator on Eqn (4.20) transforms it back into Eqn (4.18). For the sake

of clarity, the two equations in Eqn (4.20) are explicitly rewritten in terms of qϕ:

d2qϕ
dϕ2 + cotϕ

dqϕ
dϕ
− cot2 ϕ qϕ ± iµ2R qϕ = 0 . (4.21)

Now, the solution, which was first obtained by Meissner [112], can be calculated

using commercial mathematical software, such as Mathematica [115]. It reads for
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shells with an opening angle of α < 90°:

qϕ = sinϕ
(
C̄1V1 + C̄2V2 + C̄3V3 + C̄4V4

)
with V1 = 2F1

(
1
4

(
3 −

√
5 − 4iRµ2

)
,

1
4

(
3 +

√
5 − 4iRµ2

)
; 2; sin2(ϕ)

)
,

V2 = 2F1

(
1
4

(
3 −

√
5 + 4iRµ2

)
,

1
4

(
3 +

√
5 + 4iRµ2

)
; 2; sin2(ϕ)

)
,

V3 = Ḡ2,0
2,2

sin2(ϕ)|
1
4

(
1 −

√
5 − 4iRµ2

)
, 1

4

(
1 +

√
5 − 4iRµ2

)
−1, 0

 ,
V4 = Ḡ2,0

2,2

sin2(ϕ)|
1
4

(
1 −

√
4iRµ2 + 5

)
, 1

4

( √
4iRµ2 + 5 + 1

)
−1, 0

 ,
and C̄1, C̄2, C̄3, C̄4 ∈ C ,

(4.22)

where 2F1 denotes Gauss’s hypergeometric function and Ḡ the even more general

Meijer G function [116]. When the analysis is additionally confined to closed shells,

two constants of integration vanish (C̄3 = C̄4 = 0) to avoid stress singularities and

indeterminate expressions at ϕ = 0.

The hypergeometric function is an infinite series that can be defined using the gamma

function, Γ(·), via:

2F1 (a, b; c; z) =

∞∑
k=0

Γ(a + k)Γ(b + k)Γ(c)
Γ(a)Γ(b)Γ(c + k)

zk

k!
. (4.23)

Its convergence rate depends mainly on µ and has a historic importance, since it was

a decisive factor for the practical applicability that limited it to shells with a radius-to-

thickness ratio of R/t / 100 [54, 117]. However, nowadays, increased computational

performance easily allows the numerical analysis of slenderer shells, even though the

series solution complicates an analytical treatment.

Since the solution was obtained by the consideration of two complex conjugate dif-

ferential equations, the real and imaginary part of V1 and V2 may be separated to obtain

two real functions:

I1 =
V1 + V2

2
and I2 = i

V1 − V2

2
(4.24)
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Hence, the constants of integration in Eqn (4.22) can be changed accordingly to obtain

a real solution:

qϕ = sinϕ (C1 I1 + C2 I2) with C1,C2 ∈ R . (4.25)

By using U = Rqϕ, the first equation in Eqn (4.17) gives V , which then allows the

calculation of all stress resultants with the previously introduced substitutions in the

Eqns (4.11) and (4.9). These are then used to satisfy the Neumann boundary condi-

tions. The outer edge of a centrally fixed shell, for instance, requires the tantamount

conditions of σϕ = qϕ = 0 to be satisfied, and additionally a vanishing edge moment

of mϕ = m̂ϕ + m0
ϕ = 0. Hence, the two constants of integration suffice to enforce the

boundary conditions, but their values are not presented here due to a lack of compact-

ness. Note that it is the balance of the bending moment that prevents a trivial solution

of C1 = C2 = 0 and thus evokes the boundary layer effect. The resulting displacements

u and w are obtained by considering both kinematic relations in Eqn (4.2): solving for

the meridional displacement leads to the integral expression of

u = R sinϕ
(∫

εϕ − εθ

sinϕ
dϕ + C5

)
, (4.26)

and substituting this result into the latter equation gives the normal displacement:

w = R cosϕ
(∫

εϕ − εθ

sinϕ
dϕ + C5

)
− Rεθ . (4.27)

The constant C5 is used to satisfy a boundary condition, e.g. u = w = 0 at ϕ = 0

for the considered centrally fixed shell; it represents a rigid body mode that does not

directly affect the strain energy. By substituting these two expressions into Eqn (4.8),

the relation between the angle of rotation and in-plane strains is revealed:

V = cotϕ
(
εϕ − εθ

)
−

dεθ
dϕ

. (4.28)

The horizontal displacement, which is of central importance in practical application

since it transfers a shearing force to the subjacent walls, takes the particular simple

form:

δh = R sinϕ εθ . (4.29)
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Hence, all relevant quantities for a shell’s design can be derived from U and V . Note

that the expressions in Eqn (4.26) and Eqn (4.27) involve integrals of a hypergeo-

metric series, which can be expressed via a Meijer G function. However, such series

expressions add additional arduousness that makes analytical solutions elusive, and

thus, simplifying methods are discussed next.

4.3 Thin Shell Approximation

The historic limitation to slenderness ratios of R/t / 100 for practical application led

to a series of simplifications in the beginning of the 20th century, since lightweight

shell constructions during that time encountered ratios of up to R/t = 600, which

corresponds to µ ≈ 45 [117]. Blumenthal [118] analysed the accuracy of an asymptotic

method and considers µ → ∞ to propose a solution that employs a series expansion

with k terms for deep shells; he concludes that using four terms gives very accurate

results since the error is approximately proportional to (µ2)k as long as ϕ does not take

very small values. However, for most practical application the consideration of a single

term suffices. In his approach, he first substitutes z = qϕ
√

sinϕ and approximates

Eqn (4.21) in its asymptotic limit. The substitution has the advantage that the term

containing the first derivative of qϕ in Eqn (4.21) vanishes. It can be shown that for

large values of µ, the derivative of the function will be large compared to the original

function, and the same holds for higher derivatives. Thus, it is justified to neglect the

function qϕ in (4.21), but not its derivatives, which then gives:

d2qϕ
dϕ2 = Et V and

d2V
dϕ2 = −

R
D

qϕ , (4.30)

and eliminating V results in:

d4z
dϕ4 + 4λ4 z = 0 with 4λ4 = (1 − ν2)

(
1 + 12

R2

t2

)
≈ R2µ4 . (4.31)

For a more compact notation the variable of the opposing angle that is measured from

the outer edge at ϕ = α is introduced: ϕ = α − ϕ; note that both variables, ϕ and ϕ̄, are

used to write the solution of Eqn (4.30):

qϕ =
e−λϕ√
sinϕ

[
C1 cos(λϕ) + C2 sin(λϕ)

]
+

eλϕ√
sinϕ

[
C3 cos(λϕ) + C4 sin(λϕ)

]
. (4.32)
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The variables of C3 and C4 are related to the non-decaying term and are zero in the con-

sidered case of closed shells. After calculating V via the second equation in Eqn (4.30),

the in-plane and out-of-plane stress resultants are calculated according to Eqn (4.11)

and Eqn (4.9), respectively, and finally, relevant displacements are obtained as before

via Eqns (4.26)-(4.29). The free edge condition requires σϕ(ϕ = 0) = qϕ(ϕ = 0) = 0,

and thus, C2 = −C1 cot(αλ), which reduces the previous expression in Eqn (4.32) to:

qϕ = C1eλ ϕ
sin(λϕ)

sin(αλ)
√

sinϕ
. (4.33)

A vanishing edge moment is ensured by taking into account that the inversion process

applied a uniform bending moment of mr = −2(1 + ν)D/R everywhere; thus, an edge

moment of opposing sign is required. It follows:

C1 =
2Eλ2t3√sin(α)

3R2(1 − ν) [(1 − 2ν) cot(α) − 2λ]
. (4.34)

Substituting these constants into the equations of the stress resultants and displace-

ments gives all results in closed form, where the only remaining variables are the geo-

metric and material parameters.

A further simplification of these equations for shells with α = 90° was presented

by Geckeler [119], where the substitution of z = qϕ sinϕ becomes negligible. The

solution resembles a boundary problem in cylinders, and thus, it can also be applied

for inverted tubes as described in the following for the sake of completeness.

4.4 Inversion of Cylindrical Shells

The equations of a cylinder of length, L, and mid-plane radius, R, in cylindrical co-

ordinates, (r, θ, x), can be considered as a special case of the equations of Meiss-

ner [112] for rotationally symmetric structures with in general two differing radii of

curvature; when the meridional radius of curvature approaches infinity, the angular

coordinate becomes the vertical axis, x. In inverted cylinders, a similar edge effect is

observed, where – depending on the sign of the Poisson’s ratio – the edge either rotates

outwards (ν > 0) or inwards (ν < 0) around the circumferential axis, θ, see Fig. 4.3.
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a) b) c) d)

R

L

Figure 4.3: Initial stress-free cylinder, (a), and its inversion, (b). The corresponding sketches
in (c) and (d) illustrate that the inversion forces the outer radius the become the inner radius
and vice versa, which imposes a constant bending moment of mθ = −2D/R on the mirror-
symmetric shape. For positive Poisson’s ratios, an outwards rotation of the edges is observed.

The kinematic relations in a cylinder with rotationally symmetric deformations read:

εx =
dux

dx
and εθ =

w
R
, (4.35)

where w describes the outwards normal deflection [13]. The strains are related to forces

as before, see Eqn (4.4) with εϕ ≡ εx. It is assumed that the boundary condition σx = 0

for x = 0 and x = L is also satisfied everywhere else in the boundary region since axial

constraints are absent; hence, εx = −νεθ. Rotational symmetry excludes variations in

the circumferential direction from which follows qθ = 0. The balance of momentum

requires dmx/dx = qx , and for the normal equilibrium of forces follows:

−
d2mx

dx2 +
σθ

R
= 0 . (4.36)

The kinematics of curvatures simplify to:

κx = −
d2w
dx2 and κθ = −

w
R2 .

(4.37)

Substituting the stress resultants in Eqn (4.36) with their expressions in terms of strain

components according to Eqn (4.4), and using the kinematic relations in Eqn (4.37)

and Eqn (4.35), respectively, gives the governing equation:

d4w
dx4 +

ν

R2

d2w
dx2 +

Et(1 − ν2)
DR2 w = 0 . (4.38)
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Let us now consider the particular case of the small deflections from the mirror sym-

metric shape: the change in circumferential curvature of this configuration are negli-

gible, κ̂θ ≈ 0, since ŵ ≤ t � R, and thus, the term containing the second derivative in

Eqn (4.38) vanishes:

d4ŵ
dx4 + 4λ4

cŵ = 0 with 4λ4
c =

12(1 − ν2)2

R2t2 . (4.39)

Note the similarity to the method of [118] resulting in Eqn (4.31), where higher-order

derivatives dominate the structural behaviour. The relevant terms of the solution of this

simplified equation reads:

ŵ = e−λc x (C1 sin λcx + C2 cos λcx) . (4.40)

The similarity to Geckelers solution is apparent, and the only difference is the para-

meter λc , λ. From the shear force boundary condition, d3ŵ/dx3 = 0 at x = 0 follows

C1 = −C2. In contrast to the spherical case, one principal curvature (κ0
x = 0) does

not change during inversion, and thus, the continuously imposed bending moment in

longitudinal direction is solely evoked by the Poisson’s effect, m0
x = −2νD/R. Since

κθ ≈ κ
0
θ = −2/R, the resulting longitudinal bending moment can be approximated via:

mx ≈ D(κ̂x + νκ0
θ) = −2λ2

cC1e−λc x [sin(λcx) + cos(λcx)] + m0
x (4.41)

and enforcing the vanishing edge moment gives the remaining constant of integration

with the physical interpretation of the normal edge displacement:

C1 = −
ν

λ2
cR

= ν
t

3(1 − ν2)2 . (4.42)

This amplitude is a function of the Poisson’s ratio and the thickness, only, and does not

depend on the radius of the cylinder.

4.5 Linear Shallow Shell Theory

The simplification in §4.2 excluded cases of shallow shells where the angle ϕ is very

small throughout the shell, and it can be shown [117] that the quality of the solution of
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the method of Blumenthal [118] depends on the smallness of the value

cotϕ
√

2R/t
[
3(1 − ν2)

]1/4 . (4.43)

The exact method, however, requires a high number of terms if the considered shell

is very thin, and this leaves a theoretical gap of suitable methods for shells that are

shallow and thin. In order to close it, a Taylor series expansion of the exact governing

equations can be used to approximate cotϕ via 1/ϕ, which causes an error of not more

than an 1.0% for ϕ < 10°. The governing equations in Eqn (4.21) then become:

d2U
dϕ2 +

1
ϕ

dU
dϕ
−

1
ϕ2 U ± iµ2U = 0 . (4.44)

Using the same reasoning as for Eqn (4.21) and taking into account that the solutions

are complex conjugates, it suffices to solve only one of these equations. Hence, the

real (<) and imaginary (=) part can be separated to obtain:

U = C1<
[
J1

( 4√
−1ϕµ

)]
+ C2=

[
J1

( 4√
−1ϕµ

)]
+C3<

[
Y1

(
−

4√
−1ϕµ

)]
+ C4=

[
Y1

(
−

4√
−1ϕµ

)]
,

(4.45)

where J1 and Y1 denote Bessel functions of the first order of the first and second

kind, respectively. Meissner [112] pointed out that the hypergeometric function in

Eqn (4.22) resembles the series representation of Bessel functions, which can be writ-

ten as:

Jp(ϕ) =
(ϕ/2)p

Γ(p + 1) 0F1

(
; p + 1;−ϕ2/4

)
=

∞∑
k=0

(−1)k
(
ϕ

2

)2k+p

Γ (p + k + 1) k!

and Yp(ϕ) = lim
x→p

Jp cos(pπ) − J−p(ϕ)
sin(pπ)

,

(4.46)

where p denotes the Bessel function’s order and 0F1(...) the generalized hypergeomet-

ric function. For closed shells, the constants C3 and C4 vanish, since Y1 is singular at

ϕ = 0. The solution of U is employed to find the corresponding expression V via the

first equation of Eqn (4.17):

V =
1

Eha

[
dU
dϕ2 +

1
ϕ

dU
dϕ
−

1
ϕ2 U

]
, (4.47)
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and consequently all stresses in Eqn (4.8), Eqn (4.9) and Eqn (4.11) now read:

σϕ = −
1
ϕ

U
R

, mϕ = −
D
R

(
ν

ϕ
V +

dV
dϕ

)
, qϕ = R U

σθ = −
1
R

dU
dϕ

and mθ = −
D
R

(
1
ϕ

V + ν
dV
dϕ

)
.

(4.48)

The displacements are then calculated in the same manner as before in Eqn (4.26)-

(4.29).

4.6 Results

In the following, the presented methods are evaluated and compared to finite element

simulations. First, the simulation details are described, before the results of inverted

cylindrical and spherical shells are evaluated in §4.6.2 and §4.6.3, respectively.

4.6.1 Finite Element Modelling

The geometrically nonlinear finite element simulations were computed with the com-

mercially available code LS -DYNA [120]. The software was chosen, since it offers a

wide variety of solution control parameters that turned out to be vital for a reliable cal-

culation; similar attempts to produce accurate results in ABAQUS were not successful.

In order to produce a reference solution for analytical approaches, the inversion of

cylindrical and spherical shells were studied. The first are relatively thick (R/t = 20.5)

and approach the limit of the shear-neglecting shell theory of Love, whilst in the latter

case thick and thin shells with R/t = 20 and R/t = 100, respectively, were analysed.

In both cases, axisymmetric volume weighted solid elements were employed to model

one side of a section. An implicit dynamic analysis was conducted to stabilise the finite

element simulation when static stability is lost and to guarantee that a valid equilibrium

is found after dynamic effects are rapidly damped out by a high mass and stiffness

damping. The numeric time integration parameters of the Newmark method [121] were

chosen to be unconditionally stable. The linear elastic material law was employed with

E = 107, density equal to 0.05 and a varying positive Poisson’s ratio; all values refer

to SI units.
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Figure 4.4: Sequence of the inversion of a cylindrical shell in LS-Dyna. Initial shape (left),
followed by unstable transition modes, and finally, a stable inversion forms (right). Since the
potentially non-symmetric transition is not of particular interest here, only a section with axial
symmetry has been modelled.

Before the inversion process of the cylinder was initiated by a displacement con-

trolled vertical movement of the mid-node, an outwards pointing force at the cylinder’s

top was applied temporarily to cause a sufficiently large eccentricity of approximately

1.5t, see Fig. 4.4. Since only the resulting inverted shapes are compared, no con-

tact was considered during analysis; this avoids the introduction of a potential error

source to the implicit time integration scheme that is known to be prone to rounding

errors. The model contained 120 × 4 elements in longitudinal and thickness direction,

respectively.
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Figure 4.5: Sequence of inversion of a spherical shell with α = 75°in LS-Dyna. Due to axial
symmetry only a section has been modelled.

In the spherical case, at least 50 × 4 elements in meridional and thickness direction,

respectively, were used. First, the horizontal and vertical movement of the most outer

point was temporarily prevented before a prescribed displacement was imposed to all

central nodes at the axis of revolution to ensure a smooth inversion process, see Fig.

4.5. The outer horizontal supports turned out to increase the stability of the analysis

and were just released at the end of the inversion process (not depicted). The maximum

time step size was chosen to 0.01 and the analysis was terminated after all oscillations

were damped out.

A key factor to guarantee the stability of the analysis and to prevent inaccuracies is

to control the solutions energy and displacement convergence tolerance and specifying

an extremely small value of 10−14, which self-evidently requires a double precision

analysis. It is required since the stresses during the inversion process are extremely

large compared to the only slightly stressed inverted shape, and thus, even slight devi-
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ations during the inversion process may cause significant deviations in the alternative

equilibrium state.

4.6.2 Inversion of Cylindrical Shells

The suitability of the presented analytical approach in §4.4 is evaluated by considering

an example of an inverted cylinder with a midline-radius of R = 10.25, length L = 20

and thickness t = 0.5. The dimensionless outwards normal deflection, ω̂ = ŵ/t, is

shown for differing values of the Poisson’s ratio in Fig 4.6. The analytical predictions

(lines) for the amplitude as well as the wavelength show a very good agreement with

FE simulations (dots) and confirm that the edge bending is solely caused by Poisson’s

effect.

0.0 0.5 1.0 1.5

0.0

0.1

0.2

0.3 w

ν = 0

ν = 0.25

ν = 0.45
● FE (Dots)

Analy�cal (Lines)

ω

x

x

Figure 4.6: Normalised horizontal deflection, ω̂ = ŵ/t, of an inverted cylinder with mid-plane
radius, R = 10.25, t = 0.5 and L = 20 for variations in the Poisson’s ratio. Dots represent
FE-results, while lines denote analytical results.

Note that the amplitude,

ŵ(x = 0) =
ν t

√
3(1 − ν2)

, (4.49)
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is independent of the radius of the cylinder. The deflection function

ŵ =
ν

Rλ2
c
e−λc x [cos(λcx) − sin(λcx)] (4.50)

decays quickly and after the first, second and third zero, the maximum deflections do

not exceed 21 %, 0.9 % and 0.04 % of the amplitude, respectively. Thus, the doubly

curved boundary layer is predominantly hyperbolic for ν > 0 and elliptic for ν < 0.

The position of the nth root of the displacement function is:

ŵ = 0 for x =
π + 8(n − 1)

4λc
with n ∈ N , (4.51)

where N denotes the set of natural numbers ≥ 1. In contrast to the amplitude, the char-

acteristic wavelength, l∗, which is here defined as the first zero, is directly proportional

to the square root of the radius:

l∗

R
=

π

4Rλc
=
π

4

√
t

√
3 R(1 − ν2)

. (4.52)

4.6.3 Inversion of Spherical Shells

The suitability of the presented linear approaches is evaluated by considering three

different cases: first, horizontal variations from the mirror-symmetric shape of thin

shells in the range of α = 30° and α = 75° are evaluated. In a second step, the thickness

is increased to analyse the changes in the amplitude and wavelength. Finally, a shell

on the brink of being shallow (α = 20°) is chosen in which the effects of changes in

the thickness are analysed to demonstrate the limits of linear theories.

The predictions of the horizontal displacement, δh (= δ̂h due to mirror symmetry),

are depicted in Fig 4.7 and compared to a finite element reference solution. The value

of ν = 0.45 increases the acting edge moment by the factor of 1 + ν and causes dis-

placements of the order of the thickness; despite pushing the limit of validity of small

displacement theory, all predictions are in good agreement with finite element results:

Blumenthal’s method (cf. §4.3) as well as the shallow shell approximation (cf. §4.5)

produce virtually indistinguishable results from the exact approach calculated with a

series expansion up to 100th order; the working precision in the calculations of the lat-

ter was set to 100 digits to prevent rounding errors of significant extent. The accuracy
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Figure 4.7: Horizontal displacement of two inverted spherical shells of slenderness λ = 12.44
with α = 75° and α = 30°. Dots represent FE-results, while (dashed) lines denote analytical
results; dashed lines were employed where necessary to better depict the resembling analytical
predictions.

of the shallow shell approximation is insofar surprising, as the range of validity of the

former is clearly violated. However, since it is applied to a boundary layer problem

in which the edge perturbation rapidly fades out, the shell can be considered as loc-

ally shallow. Besides being computationally more efficient than the exact method, the

shallow shell approach has the advantage that is does not require the user to specify an

order of the series expansion; hence it can be calculated analytically without further

simplification.

When relatively thick shells (λ = 5.56) are considered, the analytical predictions of

the horizontal displacement are still in fair agreement with finite element results, see

Fig. 4.8; the results are shown for opening angles of α = 75° and α = 45°, where the

latter value was chosen, because an equivalent thicker version of the shell in Fig. 4.7

with α = 30° is not bistable any more according to finite element simulations. The

accuracy levels of all analytical models evince only minor differences. This is insofar

surprising, as Blumenthal’s method is expected to deteriorate since the theory was

based on the thinness and depth of a shell; in contrast to that, the exact solution’s

quality, which does not depend on such an assumption, is expected to stay the same

or to even increase due to an increasing convergence rate of the hypergeometric series.
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Figure 4.8: Horizontal displacement of two inverted spherical shells of decreased slenderness
(λ = 5.56) with an opening angle of α = 75° in (a) and α = 45° in (b). Dots represent
FE-results, while (dashed) lines denote analytical results; dashed lines were employed where
necessary to better depict the resembling analytical predictions.

However, in all cases, the solution quality deteriorates slightly once the thickness is

increased.

While neglected shear deformations become increasingly important in thicker shells,

it can be deduced from equally shear-neglecting FvK approaches in literature that this

factor is not decisive. More importantly, the bending rigidity increases disproportion-
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ally, and thus, a stronger bending-stretching interaction is observed. This causes an

increased wavelength that may become large enough to result in a reversion, and ap-

parently this is the case for a shell that with R/t = 20 and α = 30°.

In order to estimate the wave length in closed form, the thin shell model of Blu-

menthal is used: The expression for the horizontal displacement in Eqn (4.29) can be

rewritten as:

δh =
R sinϕ

Et

[
dqϕ
dϕ
− νqϕ cotϕ

]
, (4.53)

and substituting the solution of Eqn (4.33) into this equation gives:

δh =
aλC1e−λϕ

√
sin(ϕ)

Et

[
cos(λϕ) − sin(λϕ)

(
1 −

1 + 2ν
2λ

cot(ϕ)
)]
. (4.54)

It can now be seen that the quantity containing the cot(ϕ)-term, which arises due to

the νqϕ-term in Eqn (4.53), is negligible, since λ and ϕ were considered to be suffi-

ciently large, and thus, the cot(ϕ) is small enough to apply the underlying assumption

of qϕ � dqϕ/dϕ in this context. Using this approximation, the roots of this expression

are readily determined to be:

δh = 0 for ϕ =
π + 8n

4λ
with n ∈ N , (4.55)

where n denotes the nth zero. This gives the characteristic wavelength of:

Rϕ∗ = l∗ =
πR
4λ

=
πR

4
√

64(1 − ν2)
(
1 + 12(R/t)2) ≈ π

4

√
Rt√

3(1 − ν2)
(4.56)

Note that both, the methodology and solution closely resemble the cylindrical case:

in Eqn (4.41), the small quantity of κ̂θ – that described the deviation from the mirror-

symmetric shape – was neglected to obtain a wavelength in Eqn (4.52) that differs by

the factor of 4
√

(1 − ν2), since λc , λ. The factor arose through the consideration of

σx = 0 at the cylinder’s edge. An alternative derivation of the cylindrical equations

with ux = const. would lead to identical characteristic wavelength; however, the viola-

tion of the support condition would deteriorate the quality of the cylindrical model and

diminish the amplitude by more than 10 % for ν = 0.45.
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According to Blumenthal’s method, the wavelength in spherical shells does not de-

pend on the opening angle, which reveals the limits of this thin shell approximation:

it was developed for practical applications in domes, where the lower part is usually

of particular interest, since the highest stresses are observed here due to the induced

perturbations to the membrane state that are evoked by the boundary conditions; al-

ternatively, open domes can be calculated as long as the central hole is large enough.

However, as a remnant of the neglected expressions containing sinϕ-terms in the de-

nominator, shallow angles are not approximated appropriately, and consequently, a

singularity of the displacement function arises at the apex (ϕ = 0→ ϕ = α). Thus, it is

vital that any perturbation is damped out rapidly in closed shells so that it is reasonable

to neglect the poorly approximated upper part.

A final example of relatively shallow shell (α = 20°) illustrates the limits of both the-

ories: whilst the angle is kept constant, the thickness ratio varies between R/t = 585

and R/t = 88.6, which corresponds to slenderness ratios of λ = 30.1 and λ = 11.7,

respectively. The first value was chosen since it represents common slender shells in

practice, whereas the latter is and upper bound, since a further increase of the thick-

ness prevented stable inversions. In order to facilitate a comparison with the results

of the following chapter, the graphs are plotted over the projected planform radius,

r0 = R sinϕ; for the chosen parameters of α = 20° and R = 2.9238, it follows that the

outer planform radius is equal to one.

While all results of Blumenthal’s method, shown in Fig. 4.9(a), are indeterminate at

the apex of the shell, the neighbouring values for the two thickest shells with R/t = 97.5

and R/t = 88.6 are unphysical, since they do not approximate zero at the centre; thus,

either a non-permissible large in-plane displacement gradient is required to enforce

uϕ = 0, or the shell is predicted to be torn apart at the centre. The latter case, though,

goes beyond the scope of the employed framework of linear elasticity and would re-

quire fracture mechanical considerations. This conflicting behaviour is concomitant

with vanishing roots of the displacement function, and thus, an upper bound estim-

ate for the opening angle at which Blumenthal’s approximation becomes unsuitable is

when the characteristic wavelength is longer than the opening angle: α < l∗/R. Shells

with high slenderness ratios, however, can extend their range of validity to such shallow

angles and show a fair agreement with FE simulations, since a high λ values remedi-

ate some of the errors evoked by small values of ϕ, but ultimately, for even shallower

angles, the theory becomes unsuitable even for very large values of λ.
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Figure 4.9: Predictions of the dimensionless horizontal displacement, δh/t, compared to FE
simulations for shells of α = 20° and R = 2.9238 and a variable thickness. The results are
plotted over the coordinate of the projected planform radius, r0 = R sinα. (a) Blumenthal’s
method, (b) linear shallow shell theory (cf. §4.5).

Unlike Blumenthal’s method, the shallow shell approximation is expected to im-

prove its performance in shallower regions for which it was derived. As depicted in

Fig. 4.9(b), its approximation is superior since all boundary conditions are satisfied

in all cases and the wavelength is still in fair agreement with finite element results.

In contrast to Blumenthal’s method, the horizontal displacement is now predomin-

antly underestimated. While the normalised horizontal displacement, δh/t, at the outer
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Figure 4.10: (a) Resulting inverted shape for the same geometric parameters as before: analy-
tical predictions (lines) compared to FE results (markers) for differing thicknesses plotted over
the projected planform radius, r0 = R sinα. (b) Normal deviations from the mirror symmetric
shape.

edge is almost constant in all cases, the normal displacement constantly increases, see

Fig. 4.10, and as soon as the deflection rises above the value of ŵ/t = 1 the results

significantly deteriorate. This indicates that geometrically linear theories exceed their

range of validity. Since the pre-buckled shape already shows significant deviations that

are not small, the results of a linear stability analysis are not expected to give mean-

ingful results and are thus omitted here. In order to achieve an accurate description of
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shells in this range, a geometrically nonlinear shallow shell approach is employed in

the following chapter.

4.7 Summary

The inversion of cylindrical shells as well as deep spherical shells was investigated in

this chapter. Even though this process involves large deflections, classical geometric-

ally linear Kirchhoff-Love shell theory has been employed to drastically simplify the

problem. The close resemblance of the initial and the inverted shape makes it possible

to model the first by considering a uniformly imposed change in curvature of −2/R

throughout the shell and enforcing the free boundary condition of a vanishing bending

moment. Thus, a linear theory was capable of capturing the small deviations from the

mirror-symmetric, inverted shape in deep shells. The resulting boundary effect, which

causes the observed deviations, has been analysed by using three different methods

from literature for spherical shells: first, the exact method containing a hypergeomet-

ric series was presented; second, an asymptotic thin shell approximation according to

Blumenthal was used; and finally, the suitability of a linear shallow shell theory was

analysed. In addition, the cylindrical case was treated by deriving an approximated

method that makes use of a small thickness-to-radius ratio.

While it was shown that Poisson’s effect is the driving factor of the observed edge

effect in cylinders, the spherical problem was found to also depend on the initial radius

of curvature. Since the edge effect is damped out rapidly, the shallow shell approxima-

tion was found to show an excellent agreement even for clearly non-shallow shells with

angles of up to 75° – and presumably even for angles beyond this value; in such shells,

Blumenthal’s method leads to almost identically accurate results. The mathematical

simplicity of the latter made it possible to approximate the wavelength of the boundary

value problem, which closely resembles the cylindrical result, in closed form. Differ-

ences in performance were observed, when the limits of linear theories were analysed:

it was found that the predictive performance of the shallow shell theory exceeded Blu-

menthal’s approximation in this region; however, since thicker shells experience a dis-

proportionally increasing normal displacement it eventually becomes larger than the

thickness, and this ultimately requires a geometrically nonlinear approach.

In summary, linear approaches are suitable to describe the approximately mirror-

symmetric, post-buckled shape of deep, thin shells, since the evoked rotation leads
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to small changes of the radius’s absolute value, which affect only a small portion of

the shell; however, for thick shallow shells, linear shell theory is unsuitable, since the

edge effect may decrease the already small curvatures significantly. In addition, the

length of the boundary layer extends and begins to affect the whole shell, which may

ultimately cause a reversion. Thus, the seemingly more complicated case of a deep

shell can be treated with a simpler, linear theory, whilst shallow shells often require

a more detailed, nonlinear analysis to model the long wave solution of the boundary

layer accurately. Such a nonlinear approach is presented next.



Chapter 5

Nonlinear Shell Theory:
Inversion of Shallow Shells

In order to establish a suitable framework for the analytical description of bistable shal-

low shells, a nonlinear approach is provided in this chapter to describe the behaviour

of inverted shallow shells. The aim is to analyse and identify the critical geometry and

related influencing factors at which alternative stable equilibria become possible. The

accurate modelling of the inverted shape and concomitant stresses provides further in-

sight into the governing factors and allows use of bistability in optimised ways. Whilst

approaches in literature, e.g. [35, 36, 39, 45, 56, 72], focus on unsupported shells, the

boundary conditions have recently been shown to be a vital factor: in an initial study

Sobota & Seffen [29] point out that while a simply supported uniformly curved cap can

be bistable, finite element analysis of a clamped cap for a wide range of parameters did

not show any alternative stable configurations. Inspired by this observation, the influ-

ence of support conditions on bistability is analysed and quantified in a systematic way

by employing linear elastic springs as edge supports. To the knowledge of the author,

this aspect has not been studied before with the exception of the mentioned prelimin-

ary study [29] that was conducted in the context of this dissertation and of which some

results are presented here. The findings are then applied to explore possibilities of

further structural manipulations to produce bistable shells with annular planform. In a

next step, the enriched solution space of two rotationally symmetric interacting shells

is studied. In order to identify where the complex geometrical interaction of shells

is required, and where simpler beam structures can be employed instead, a simplified

beam model is derived for the purpose of comparison.

71
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CHAPTER 5. NONLINEAR SHELL THEORY: INVERSION OF

SHALLOW SHELLS

initial

inverted

initial

inverted

R ≈ const. R ≠ const.

a) b)

r
z

axis of symmetry

r
zw0

M

a

t

Figure 5.1: Illustration of the inverted configurations of: (a) a uniformly curved cap with
fixed-pinned supports; (b) the same model with additional rotational spring supports that are
soft enough to allow for a stable inversion. Whilst (a) is approximately uniformly curved, (b)
possesses a more intricate deflection field with local variations in Gaussian curvature.

The higher-order FvK model developed here follows a Ritz approach that relates

the assumed deflection field to the in-plane properties via Gauss Theorema Egregium

and identifies stable inverted shapes via energy minimisation. This novel approach

of higher order is required since existing models are not capable of describing the

strongly nonuniformly curved deflections caused by the more elaborate supports, see

Fig. 5.1. The model presented here overcomes the uniform curvature (UC) assumption,

and since an increased number of degrees of freedom allows for additional latitude of

the solution space, it can be applied to a wide range of different geometries. Without

claiming to depict the details of the snap-through process, the employed approach aims

to provide an accurate model of the resulting inverted shape.

This chapter is organised as follows: first, the mathematical framework of the analy-

tical approach is developed and its general solution is described in §5.1. Several par-

ticular applications are then presented, of which the first in §5.2.1 considers a macro-

element of an in general nonuniformly curved shell whose edges are supported by

linear elastic rotational and in-plane springs. The following section, §5.2.2, deals with

a changed topology of an annular planform, whereas §5.2.3 exemplifies the versatility

of the presented methodology by considering two coupled shells, where a richer re-

sponse is expected due to interaction. A brief simplification for corresponding beam

structures is given in §5.2.4 to compare the behaviour of shells to their dimensionally

reduced counterpart. Results are then presented in §5.3, followed by a summary.
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5.1 Derivation of an Analytical Model:
General Solution

In the framework of the employed shallow shell model, it is beneficial to employ a

cylindrical coordinate system, (r, θ, z), and to describe the shell in terms of its planform

radius, a, and thickness, t, cf. Fig. 5.1. Whilst the original FvK equations consider a

flat plate, it is straightforward to extend them for shallow shells by considering a small

initial transversal displacement, w0, that does not evoke stresses. It is convenient to

assume that this displacement is imposed without affecting the radial or circumferential

displacement, u0 or 30, respectively, so that the z component of Ω0 is described by

w0, whereas all its other displacement components are zero; note the difference to

§4, where w0 denoted the displacements towards the mirror symmetric configuration.

The transition from Ω0 to the deformed configuration is, as before, established via

Ω − Ω0 = u = (u, 3,w) so that the transversal component of the current configuration

is given by w0 + w.

For uniformly curved shells, the geometric parameters of shallow shells are expressed

in terms of the parameters of the previous chapter via

a = R sinα and w0
M = R(1 − cosα) . (5.1)

For a � w0
M, the radius of curvature can be approximated by R ≈ a2/2w0

M, and thus,

the slenderness parameter transforms to λ ≈ a 4
√

3(1 − ν2)/
√

w0
M t for shallow shells.

Instead of the angular coordinate, ϕ, its projection to the planform, r = R sinϕ, is used

in the presented approach, which is outlined in Fig. 5.2. By assuming a deflection

field, w, as a polynomial series with n degrees of freedom, ηi, two types of boundary

conditions (BC) are satisfied on the boundary, Γ: these can either be Neumann condi-

tions that specify stresses of σN on ΓN , or impose certain displacements, uD, on ΓD via

Dirichlet conditions. All related properties of the bending surface are derived from this

and the coupling with in-plane stresses is realised by relating the changes in Gaussian

curvature, g, to the Airy stress function, Φ, according to Gauss Theorema Ergregium.

From Φ, the in-plane stresses and mid-plane strains, σ and ε, are derived in terms of

the degrees of freedoms of the deflection field. The constants of integration that arise

in Φ are employed to satisfy in-plane boundary conditions on ΓN and ΓD. By differ-

entiating the strain energy functional, Π, which is the sum of the bending energy, ΠB,
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Figure 5.2: Overview of the coupled nature of the Föppl-von Kármán equations and the Ritz
solution approach.

and the stretching energy, ΠS , with respect to the degrees of freedom, equilibria are

approximated. Their stability is then assessed via the definiteness of the stiffness mat-

rix. The general solution is outlined next, before particular applications are discussed.

Governing Equations

The nonlinear FvK strain definition of Eqn (2.4) reads for rotationally symmetric de-

formations in cylindrical coordinates:

εr =
du
dr

+

(
d(w0 + w)

dr

)2

−

(
dw0

dr

)2

and εθ = u /r . (5.2)

The considered shell is connected to ground along its circumference by linear elastic

in-plane springs that may resist a radial expansion of u. Additionally, an edge rota-

tion at r = a may evoke a holding bending moment via attached rotational springs

of stiffness kϕ. For a radial variation alone, the Föppl-von Kármán plate equations of

Eqn (2.6) can be rewritten as [16, 17]:

D∇4w −
t
r

d
dr

[
d
dr

(
w0 + w

) dΦ

dr

]
= pN (5.3a)
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1
E
∇4Φ +

1
r

d
dr

(
w0 + w

) d2

dr2

(
w0 + w

)
−

dw0

dr
d2w0

dr2 = 0 , (5.3b)

where ∇2 denotes the familiar Laplacian operator in polar coordinates, equal to

d2(..)/dr2 + (1/r)d(..)/dr. The external transverse pressure load is denoted by pN , and

the parameters D, E, and ν have the same meaning as in the previous chapters.

In order to decouple Eqns (5.3a) and (5.3b), the out-of-plane problem is solved first,

and later a surjective and not injective stress function, Φ(w), is defined, which implies

that a unique surjective inverse function, w(Φ), does not exist.

Out-of-plane curving

The initially stress-free shape is specified by a function f 0(r) w0
M, where w0

M is the ini-

tial midpoint deflection. Since the focus is on finding load-free alternative equilibrium

configurations, the load that is required to marshal the transition between two stable

equilibria is not specified directly; instead, a ‘forcing term’ of the deflection is used:

w = f (r) wM ; (5.4)

f (r) and f 0(r) are an arbitrary polynomial expression of order p, and both are specified

when the particular solution of a problem is discussed. In axisymmetric structures, the

change in gradient, ϕr, radial curvature, κr, as well as hoop-wise curvature, κθ, are

related to the deflection via

ϕr = −
dw
d r

, κr = −
d2w
d r2 and κθ = −

1
r

dw
d r
. (5.5)

The principal bending moments, mr and mθ, as well as the shear force, qr, which do not

depend on the stress-free initial configuration, read for shells made from linear elastic,

isotropic materials:

mr = D (κr + νκθ) , mθ = D (κθ + νκr) and qr =
dmr

dr
+

mr − mθ

r
. (5.6)
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In-plane stretching

The Airy stress function, Φ, is a potential function that ensures in-plane equilibrium.

The mid-plane stresses can be derived via

σr =
1
r

dΦ

dr
and σθ =

d2Φ

dr2 .
(5.7)

The corresponding strains are connected via an isotropic constitutive law,

εr =
1
E

(σr − νσθ) and εθ =
1
E

(σθ − νσr) , (5.8)

which implies that no pre-stain is specified here, so that ε0
r = ε0

θ = 0 holds. By using

either the radial or circumferential strain definition in Eqn (5.2), the radial displace-

ment is expressed either as a mixed formulation that includes an integral over in-plane

strains as well as a nonlinear out-of-plane deflection term, or solely in terms of in-plane

variables, respectively:

u =

∫
εr dr −

1
2

∫ (
d(w0 + w)

dr

)2

−

(
dw0

dr

)2

dr , or u = r εθ . (5.9)

Bending-stretching interaction

The coupling of in-plane and out-of-plane responses is achieved by equating the ex-

trinsic definition of Gaussian curvature to its intrinsic counterpart according to Gauss’s

Theorema Egregium, recall §2.1. Since the Gaussian curvature of the bending and

stretching surface has to equal in every configuration, the same holds for its change,

g. The nonlinear nature of the extrinsic definition makes this change in Gaussian

curvature also dependent on the initial shape:

g = K − K0 =
(
κ0

r + κr

) (
κ0
θ + κθ

)
− κ0

r κ
0
θ . (5.10)

In contrast, the linear differential equation of the intrinsic definition,

g =
1
r

dεr

dr
−

1
r

d2(r εθ)
dr2 , (5.11)
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does not show such a dependency. It is convenient to substitute Eqn (5.7) into Eqn (5.8)

to express Eqn (5.11) in terms of the stress function,

g = −
1
E

[
d4Φ

dr4 +
2
r

d3Φ

dr3 −
1
r2

d2Φ

dr2 +
1
r3

dΦ

dr

]
, (5.12)

since it reduces the description of the stretching surface to a single variable. Unlike

in uniform curvature approaches where g is constant throughout the shell, this term is

now a polynomial expression of order 2p − 4 in r. In order to employ a series solution

that sums the results of each polynomial degree, the coefficients αi are introduced to

sort g by order:

g =

2p−4∑
i=0

αi

( r
a

)i
. (5.13)

Thus, it suffices to substitute the term ‘αi(r/a)i’ of Eqn (5.13) into Eqn (5.12) and to

integrate it with respect to r to obtain:

Φ = E
2p−4∑
i=0

αi r4

(i + 2)2(i + 4)2

( r
a

)i
+

1
2

C1r2 + C2 log(r) +
1
2

C3r2
[
log(r) −

1
2

]
. (5.14)

The relevant constants of integration C1,C2 and C3 are determined by the boundary

conditions, but before particular examples are discussed in §5.2, the general solution

procedure is further outlined.

Boundary conditions

Boundary conditions can either be a Dirichlet, Neumann or mixed-type conditions.

Whilst Dirichlet types impose displacements or rotations on a boundary ΓD, Neumann

boundary conditions prescribe generalised stresses on ΓN . When springs are connected

to the boundary, these conditions are coupled, and the specific stresses (either in-plane

forces or bending moments) are related to an in-plane displacement or rotation via the

spring stiffness, ku or kϕ, respectively, by

−tσr = ku u (5.15a) and −mr = kϕ ϕr . (5.15b)

The minus sign in both expressions accords a resistive force or bending moment for

positive directions of u and ϕr. By employing springs of arbitrary stiffness, the com-

plete range of physical supports can be described by combining two out-of-plane



78

5.1 DERIVATION OF AN ANALYTICAL MODEL: GENERAL

SOLUTION

boundary conditions and one additional in-plane condition as follows:

free edge: qr = 0, mr = 0, u = 0 (5.16a)

roller support: w = 0, mr = 0, σr = 0 (5.16b)

hinged support: w = 0, mr = 0, tσr = −ku u (5.16c)

fixed-pinned support: w = 0, mr = 0, u = 0 (5.16d)

clamped support: w = 0, ϕr = 0, u = 0 (5.16e)

dual spring support: w = 0, mr = −kϕ ϕr , tσr = −ku u (5.16f)

These are later applied in several examples of §5.3. Note that the term ‘hinged support’

does not contain any information about the in-plane stiffness, while the terms ‘roller

support’ and ‘fixed-pinned support’ refer to a vanishing horizontal force and radial dis-

placement, respectively. The dual spring-supported case is a generalisation that unifies

all of the conditions in Eqn (5.16): the free edge condition as well as roller supported

case require kϕ = ku = 0 and allow for an unrestricted displacement; in shells with

rotationally symmetric deformations, both conditions are equivalent, since neither a

rigid body movement nor a constant term of the shear force affects the strain energy.

Fixed-pinned supports and clamped supports in Eqn (5.16d) and (5.16e), respectively,

require a theoretically infinite spring stiffness and can be modelled by setting ku and

kϕ to large values in Eqns (5.16c) and (5.16f). In addition, dual spring supports al-

low to specify intermediate values in order to analyse the transition between idealised

conditions.

In order to determine the three arising constants in Eqn (5.14), three equations are

required: these are provided by the in-plane boundary condition at the inner and outer

edge, and an additional equation that enforces the geometric compatibility of the two

expressions of the radial displacement in Eqn (5.9). For closed shells, the inner bound-

ary at r = 0 has to ensure that the surface stays smooth and does not intersect itself,

which requires:

ϕr = 0, and u = 0 . (5.17)

The latter condition can be transformed to σr = σθ at the limit of r → 0 [122].
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Identifying stable configurations

After all constants are determined, these are substituted into the expressions of the

stress and strain resultants to calculate the strain energy functional, Π = ΠB + ΠS ,

that solely depend on geometric parameters and the degrees of freedom. The bending

and stretching energy components, ΠB and ΠS respectively, which include the spring

contributions, can be calculated via:

ΠB =
1
2

∫
Ω0

(κrmr + κθmθ) dS + πakϕϕ2
r

∣∣∣
ρ=1

= π

∫ a

0
(κrmr + κθmθ) r dr + πakϕϕ2

r

∣∣∣
ρ=1

,

ΠS =
t
2

∫
Ω0

(εrσr + εθσθ) dS + πakuu2
∣∣∣
ρ=1

= πt
∫ a

0
(εrσr + εθσθ) r dr + πa kuu2

∣∣∣
ρ=1

.

(5.18)

These integrals are solvable since all expressions are derived from polynomials. The

integral over the initial rather than the deformed domain is a valid approximation in the

framework of the FvK equations since they include the assumptions of small strains as

well as moderate rotations. Load-free equilibria are identified via stationary points of

Π:

∇ηΠ = 0 , (5.19)

where ∇η denotes the nabla operator applied in the solution space spanned by the n

degrees of freedom, ηi . These equilibria are stable if, and only if, all eigenvalues

of the strain energy function are positive, which is guaranteed by a positive definite

Hessian matrix of stiffness, H, where

Hi j =
∂2Π

∂ηi ∂η j
. (5.20)

5.2 Particular Solutions

The generality of the presented methodology makes it a suitable tool for a wide range

of inversion problems. However, a solution to a particular problem requires to consider

a given initial shape of w0 as well as a suitable set of basis functions in w. These

are problem specific and depend on the shape as well as the support conditions (cf.

Fig. 5.1). Here, three particular classes of shell structures are discussed; each pursues
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the objective to preserve as much generality as possible. The first class considers a

closed cap with dual spring supports as defined in Eqn (5.16f), which allow the analysis

of a wide range of initial shapes. Another class deals with the topologically differing

case of a uniformly curved shell with annular planform subjected to in-plane spring

supports, for which a different set of basis function is required, since a central hole

loosens some constraints of the deflection field. Finally, both methods are eventually

combined by considering the coupling of shells, where two separate deflection fields

are assumed – one for a central closed shell and another one of the surrounding annular

shell. In addition, the simplification to a beam model is briefly discussed in order to

compare the results for shells to their lower dimensional equivalent.

5.2.1 Particular Solution of a Hole-Free Shell

Whilst the initial shape can in general have the form of any arbitrary polynomial ex-

pression, two approximations of very well-known examples are chosen for evaluation

in §5.3:

w0 =
(
1 − ρ2

)
w0

M (5.21a) or w0 =
(
1 − ρ2

)2
w0

M , (5.21b)

where ρ denotes the dimensionless radius r/a and the lower index ‘M’ refers to the

midpoint value at ρ = 0. The first shape describes a uniformly curved shallow cap and

is inspired by a study of initially curved bistable beams [68] using a half cosine-wave;

the latter represents a full cosine wave akin to the deflection field of a plate with a

clamped edge[54, 122], where the gradient is zero.

Out-of-plane bending

In order to describe the transverse deflections of a shell bounded by rotational springs,

the deflection, w, is subdivided into two fields: one satisfies a ‘hinged’ deflection field,

wh, while the other is fixed with regards to rotations, wc. The first field is a polynomial

series with n degrees of freedom, ηi, which by itself is the solution for simply supported

cases where the boundary of shell is free to rotate for all time. The rotational spring

equation, Eqn (5.15b), guarantees the compatibility between these two fields and is

later employed to express the clamped midpoint deflection, wc
M, in terms of the n de-

grees of freedom, cf. Eqn (5.31). Correspondingly, the total deflection, w = wh + wc,
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Figure 5.3: Schematic of the formulation of the deflection field components.

is obtained by summing both deflection components. A detailed derivation of each

deflection field according to the scheme in Fig. 5.3 is given next.

Hinged subset (wh):

The hinged subset has to satisfy the boundary conditions of a vanishing bending mo-

ment and deflection at ρ = 1. In order to ensure this, Eqn (5.5) is combined with

Eqn (5.6) and a polynomial series of even powers is chosen for the radial bending

moment:

D
[
−

d2wh

d r2 − ν
1
r

dwh

d r

]
=

D
a2

n∑
i=1

[
1 − ρ2i

]
ηi . (5.22)

The solution of this differential equation is of order p = 2n + 2 and gives the hinged

deflection field:

wh =

n∑
i=1

1
2

[
1 − ρ2

1 + ν
−

1 − ρ2i+2

(i + 1)(1 + 2i + ν)

]
ηi , (5.23)

where the constant of integration enforces a zero edge displacement, wh|ρ=1 = 0 . Ac-

cordingly, the changes in curvatures read:

κh
r =

n∑
i=1

[
1

1 + ν
−

1 + 2i
1 + 2i + ν

ρ2i

]
ηi

a2 and κh
θ =

n∑
i=1

[
1

1 + ν
−

1
1 + 2i + ν

ρ2i

]
ηi

a2 ,

(5.24)
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whilst the change in radial gradient is given by ϕh
r = r κh

θ , and the radial- and circum-

ferential bending moments become:

mh
r = D

n∑
i=1

[
1 − ρ2i

] ηi

a2 and mh
θ = D

n∑
i=1

[
1 −

1 + ν + 2νi
1 + 2i + ν

ρ2i

]
ηi

a2 . (5.25)

This higher-order approach ensures that the bending moment vanishes at the edge by

using additional terms in the series of the deflection field. Hence, even for a single

degree of freedom, η1, the curvatures show a quadratic variation in ρ.

Remark 5.1: Note the difference to uniform curvature approaches, e.g. in [39], where

the curvatures take a constant value throughout the shell. Since the presented method

is later also compared to UC approaches, it shall be pointed out that a UC approach

can be obtained by setting w = ρ2wM without any further manipulations to satisfy the

boundary conditions. In such an approach, the midpoint deflection, wM = η1, serves as

a single degree of freedom.

Clamped subset (wc):

A common approach for a clamped deflection field [54, 122] considers a full cosine

wave, which is here approximated by a polynomial expression:

wc =
(
1 − ρ2

)2
wc

M . (5.26)

According to Eqn (5.5), the corresponding change in gradient and curvatures reads:

ϕc
r = 4ρ

(
1 − ρ2

) wc
M

a
, κc

r = 4
(
3ρ2 − 1

) wc
M

a2 and κc
θ = 4

(
ρ2 − 1

) wc
M

a2 . (5.27)

From Eqn (5.6) follows that the expressions for both bending moments,

mc
r = 4D

(
ρ2(3 + ν) − ν − 1

) wc
M

a2 and mc
θ = 4D

(
ρ2(1 + 3ν) − ν − 1

) wc
M

a2 , (5.28)

are generally nonzero at the edge (ρ = 1). Note also that the two conditions concerning

the deflection in Eqn (5.16e) are satisfied for arbitrary values of the midpoint deflection

wc
M in the clamped deflection field.

Resulting deflection field (w):

Now, the z-component of the resulting shape is described by the sum of all displace-

ment components, w0 + wh + wc, but the relation between the hinged and clamped
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deflection field still needs to be established. Since only the former contributes to a

change of gradient at the edge, the expression of ϕr can easily be found:

ϕr

∣∣∣∣∣
ρ=1

=

n∑
i=1

[
1

1 + ν
−

2i
1 + 2i + ν

]
ηi

a
. (5.29)

The hinged subset’s edge is free to rotate (mr = 0 at ρ = 1), and hence, the bending

moment is solely evoked by the clamped part in Eqn (5.28):

mr

∣∣∣∣∣
ρ=1

= −8D
wc

M

a2 . (5.30)

In order to enforce the compatibility of the hinged and clamped deformation modes,

these two expressions are substituted into the rotational spring equation, Eqn (5.15b),

which eventually gives the clamped subset’s midpoint deflection as a function of the n

degrees of freedom, ηi:

wc
M = −

kϕa2

8D
ϕr

∣∣∣∣∣
ρ=1

=
kϕ a
8D

n∑
i=1

[
−1

1 + ν
+

2i
1 + 2i + ν

]
ηi . (5.31)

For a vanishing spring stiffness, kϕ = 0, the clamped contribution vanishes; for kϕ
tending to infinity, the edge rotation takes a very small value, but it is not allowed to

vanish because the solution is calculated in terms of the hinged degrees of freedom.

The consequences of this procedure are addressed in §5.3.

Remark 5.2: The clamped mode’s deflection field variation in ρ is always of order

four, cf. Eqn (5.26), while the corresponding order of the hinged mode in Eqn (5.23),

2n + 2, increases with n. Both deflection fields were separated in order to maintain an

intuitive perspective on the deformation modes that also facilitates the use of a subset

of the solution in simplified one-term approaches; however, it is not strictly required,

since the variational formulation ensures an optimised solution of the specified shape

functions nevertheless. Since the clamped subset is of fourth order, it can also be

represented by any other polynomial that does not impose the particular shape a priori.

Bending-stretching interaction

In order to calculate the Gaussian curvature, the curvatures changes, κr = κh
r + κc

r and

κθ = κh
θ + κc

θ , are substituted into Eqn (5.10). Because these expressions become rather
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convoluted with increasing order, the reader is referred to the appendix where the val-

ues for κr, κθ, g and the corresponding αi terms of Eqn (5.13) are presented for a

three degrees-of-freedom model with dual spring-supported edge; lower-order models

can straightforwardly be derived from these expressions by setting ‘unused’ degrees

of freedom to zero. Since the initial curvatures also affect g, the αi terms are given

separately for the two differing initial shapes stated in Eqn (5.21a) and Eqn (5.21b).

For instance, the curvatures for a hinged (kϕ = 0), initially uniformly curved cap

(κ0
r = κ0

θ = 2w0
M/a

2) with a single degree of freedom (n = 1) are equal to

κr =
1
a2

[
w0

M

2
+ η1

(
1

ν + 1
−

3ρ2

ν + 3

)]
and κθ =

1
a2

[
w0

M

2
+ η1

(
1

ν + 1
−

ρ2

ν + 3

)]
,

(5.32)

which both vary quadratically in ρ. The corresponding change in Gaussian curvature,

g =
1
a4

[
w0

M

2
+ η1

(
1

ν + 1
−

3ρ2

ν + 3

)] [
w0

M

2
+ η1

(
1

ν + 1
−

ρ2

ν + 3

)]
−

(
w0

M

2 a2

)2

, (5.33)

is of fourth order. For the chosen series in Eqn (5.23), the upper bound of summation in

Eqn (5.13) is 4n, but since all variations of g in ρ are of even order, only the following

2n + 1 out of 4n + 1 terms of αi are nonzero:

α0 =

(
2η1 + (1 + ν)w0

M

)
2

4a4(1 + ν)2 , α2 = −
2η1

(
2η1 + (1 + ν)w0

M

)
a4(ν + 1)(ν + 3)

, α4 =
3η2

1

a4(ν + 3)2 .

(5.34)

Note that in this particular case it follows from Eqn (5.31) with kϕ = 0 that wc
M = 0, as

expected.

In-plane stretching

Substituting the values of the previous equation into Eqn (5.14) gives the Airy stress

function, from which all in-plane stresses are derived via Eqn (5.7):

σr = E
2p−4∑
i=0

αiρ
i+2a2

(i + 2)2(i + 4)
+ C1 +

C2

a2ρ2 + C3[log(ρ) + log(a)],

σθ = E
2p−4∑
i=0

αi(i + 3)ρi+2a2

(i + 2)2(i + 4)
+ C1 −

C2

a2ρ2 + C3[1 + log(ρ) + log(a)] .

(5.35)
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In order to restrict the stretching energy to finite values, the constants C2 and C3 are

set to zero and consequently Eqn (5.35) simplifies to

σr = σpr + C1 and σθ = σpθ + C1 , (5.36)

where σpr and σpθ denote the summation terms of the particular solution that contain

αi. It is easy to prove that these expressions satisfy the condition σr = σθ at the centre

of the plate, which is consistent with the requirement of u|ρ=0 = 0. The remaining

constant, C1, is employed to satisfy the compatibility equation of the linear elastic

in-plane spring. Since u = rεθ, the radial displacement reads:

u =
r
E

(
σpθ − νσpr + (1 − ν) C1

)
. (5.37)

It follows from substituting u and σr from Eqn (5.36) into the extensional spring rela-

tionship, Eqn (5.15a), and setting ρ = 1, that

C1 = −
E tσpr + ku a

(
σpθ − νσpr

)
E t + ku a (1 − ν)

∣∣∣∣∣
ρ=1

. (5.38)

For the limit of a vanishing or infinite stiffness, this expression simplifies to

C1 = −σpr

∣∣∣
ρ=1

for ku = 0 or C1 = −
E
a

up

∣∣∣
ρ=1

= −
σpθ − νσpr

1 − ν

∣∣∣∣∣
ρ=1

for ku → ∞ ,

(5.39)

respectively. The appropriate expression for C1 can be substituted into the equations

for the stresses and strains, in order to calculate and then minimise the strain energy.

5.2.2 Initially Curved Shells with Annular Planform

The methodology can readily be extended to shells of an annular planform with an

outer and inner radius of a and b, respectively. Inspiration is taken from the bending

deformation of a Kirchhoff–Love plate to find a suitable estimate for the deflection

field: the compatibility of geometrically linear deformations requires D∇4w = 0 in the

absence of load, and the rotationally symmetric solution to this homogeneous bihar-

monic problem reads:

A1ρ
2 +

(
A2 + A3ρ

2
)

log(ρ) + A4 . (5.40)
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The latter two terms were energetically incompatible for closed shells but provide now

additional terms that inspire the deflection field of the alternative load-free configura-

tion. The series expansion of the log-term at an arbitrary point 0 ≤ ρi ≤ 1,

log ρi +

∞∑
n=1

(−1)n−1 (ρ − ρi)n

n ρn
i

, (5.41)

suggests that a simple polynomial series is a suitable approximation, and thus, the trial

function of the deflection field with ηi degrees of freedom is chosen as:

w = A0 + A1ρ + A2ρ
2 + A3ρ

3 + η1ρ
4 + η2ρ

5 + η3ρ
6 . (5.42)

Note that the series now allows for exponents of odd order, which include a conical de-

formation mode with a linear gradient. In general, it is straightforward to consider the

logarithmic terms without the series expansion to satisfy the boundary conditions. In

this case, the same supplementary linear polynomial terms related to η1 - η3 are chosen

as additional degrees of freedom and the obtained results are virtually indistinguish-

able. The polynomial series, however, is computationally slightly more efficient and

thus the method of choice. The four constants, Ai, are used to satisfy the four boundary

conditions that are here assumed to be a hinged outer edge in combination with a free

inner edge that require:

w = 0 and mr = 0 at ρ = 1

qr = 0 and mr = 0 at ρ = b/a ;
(5.43)

the solution is given in the appendix. If we wish to consider different support condi-

tions, any of the cases in Eqn. (5.16) can be substituted for these expressions. This

possibility is not systematically explored here, since the focus is on investigating the

topological difference between closed and planform annular shells, and thus, the study

of additional parameters is omitted. After calculating the bending moments and the

change in Gaussian curvature as before in Eqn. (5.6) and (5.10), respectively, a geo-

metric compatible stress function has to be found. In the case of annuli with rotation-

ally symmetric deformation, it is beneficial to manipulate the compatibility equation to

reduce the number of arising constants. By substituting u′ = (rεθ)′, the radial displace-

ment is eradicated from the nonlinear strain definitions in Eqn (5.2). The remaining

quantities are expressed in terms of stresses by using the material law; a further substi-
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a) b)

Figure 5.4: Example of a coupled shell: (a) A flat annulus with vertical supports at the inner
edge is rigidly connected to a central doubly curved shell. (b) Strongly non-uniformly curved
inverted shape.

tution that uses the Airy stress function according to Eqn (5.7) eventually leads to:

−r
d3Φ

dr3 −
d2Φ

dr2 +
1
r

dΦ

dr
=

E
2

(d(w0 + w)
dr

)2

−

(
dw0

dr

)2 (5.44)

The full solution (given in the appendix) contains two terms related to constants of

integration, C1ρ
2 and C2 log[ρa], which ensure that the in-plane boundary conditions

according to Eqn (5.15a) are satisfied at the inner and outer edge. For instance, an

outer boundary on rollers in combination with an inner free edge gives:

C1 =

a2b2
(

A 2
1

4 log
(

a
b

)
− σh

r

∣∣∣
r=a

+ σh
r

∣∣∣
r=b

)
a2 − b2

and C2 =
A 2

1

(
b2 log(b) − a2 log(a)

)
+ 4a2σh

r

∣∣∣
r=a
− 4b2σh

r

∣∣∣
r=b

4
(
a2 − b2) .

(5.45)

After substituting these values, the energy functional solely depends on the degrees of

freedoms and the known geometric and material parameters, and thus, stable equilibria

can be identified by energy minimisation.

5.2.3 Interaction of Two Shells

The established models shall now be combined to analyse the interaction of connected

shells; an example is shown in Fig. 5.4. For each segment, it is required to define a sep-

arate set of shape functions since a common set is in general not capable of describing

the response of both parts accurately. The initial shapes are given by two functions,

w0
1 and w0

2, that are defined on the interval 0 ≤ r ≤ c and c ≤ r ≤ a, respectively,

where a denotes the planform radius of the outer shell and c the radial coordinate at

which the shells are linked. The segments can generally have different geometric and
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material parameters, but at their linkage they have to fulfil mutual coupling conditions.

The equilibria of the radial bending moment, the shear force and the radial in-plane

stresses require in the absence of other forces at the linkage:

mr1 = mr2 , qr1 = qr2 and σr1 = σr2 at r = c , (5.46)

where indices 1 and 2 refer to the outer and inner shell, respectively. In practical

applications, connections do not allow a relative displacement of one shell to another,

from which follows:

w1 = w2 and ur1 = ur2 at r = c . (5.47)

Additionally, in rigidly connected structures, the changes in gradients are equal:

ϕr1 = ϕr2 at r = c . (5.48)

In view of the choice of the shape function, it has to be considered, that the number

of degrees of freedom is still limited to four at maximum – but now this limit concerns

the sum of both subsets. Thus less elaborated approaches compared to the previous

examples are used. In order to avoid a potential loss of accuracy for the outer shell

with annular planform, the original terms of the linear solution in Eqn (5.40) are em-

ployed rather than its Taylor series approximation in Eqn (5.41). Hence, the resulting

deflection field reads:

w1 = log(ρc)A1 + log(ρc)ρ2
cA2 + (1 − ρ2

c)η1 , (5.49)

where the dimensionless coordinate ρc = r/c is represented by ρc. For the inner closed

shell, a polynomial series,

w2 = (1 − ρ2
c)A3 + (1 − ρ4

c)A4 + (1 − ρ6
c)η2 + (1 − ρ8

c)η3 , (5.50)

is assumed without the loss of generality since it is also capable of transferring a bend-

ing moment and modelling a clamped deformation mode, as mentioned in remark 5.2.

It may be possible to consider an additional, fourth degree of freedom, but it will later

be shown that the accuracy of the employed function is entirely satisfactory. Both

functions already incorporate the requirement of equal transversal displacements at
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the connection point, ρc = 1, and the remaining constants, Ai, are employed to satisfy

the out-of-plane boundary conditions specified in Eqn (5.46) and Eqn (5.48) as well as

the familiar conditions at the outer edge..

The coupling with the in-plane properties is established as before via Eqn (5.44) to

obtain a separate Airy stress function for each segment according to the respective

method described in §5.2.1 for closed shells and §5.2.2 for planform annuli. Whilst

a single constant arises for the central part, two constants of integration exist for the

outer, annular shell. This number matches with the three in-plane boundary conditions:

two in-plane coupling conditions arise from Eqn (5.46) and Eqn (5.47) to ensure equi-

librium and displacement compatibility, respectively, and a third equation considers a

spring-supported outer edge via kuu = −tσr at r = a. Thus, all constants can be determ-

ined straightforwardly. With the known constants, the energy minimising procedure is

then conducted as before to identify stable configurations.

5.2.4 Simplification to a Beam Model

Similar to cylindrical shells that can be described by the same set of differential equa-

tions as a beam on an elastic foundation, the hoop stiffness of rotationally symmetric

shallow shells resembles an elastic nonlinear bedding. Thus, a simplified version of

the developed shell model can be applied to beams by setting the hoop components to

zero. The compatibility condition is drastically simplified since the complex geometric

interaction of shells simplifies to a boundary value problem.

By assuming the same series with n degrees of freedom as in §5.2.1, the radial

curvatures can be calculated as before to obtain the bending energy per unit width,

which now reads:

ΠB =π

∫ a

0
κrmr dr + πakϕϕ2

r

∣∣∣
ρ=1

. (5.51)

The absence of circumferential curvatures gives K = g = 0 and thus the compatibility

equation (5.12) simplifies to a homogeneous biharmonic problem of ∇4Φ = 0 . The

solution gives Φ = 1
2C1r2 with a corresponding constant radial stress, σr = C1, which

result in a stretching energy per unit width of

ΠS = π
a t
E

C2
1 + πa kuu2

∣∣∣
ρ=1

. (5.52)
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The value of the radial force is determined by using Eqn (5.15a) that becomes

−C1t = ku u. For roller supports, where ku = 0, no in-plane stresses arise, and thus,

a stretching barrier that could prevent the structure from snapping back is absent in

this case.

5.3 Results

The result section is arranged as follows: first, details of the finite element simulation

which are used as a reference solution are given. The predictions of the presented

method are then compared to the linear theories of the previous chapter and available

nonlinear results in literature, for which the simplest example of a centrally fixed shell

is discussed in §5.3.2. It follows an analysis of the influence of horizontal spring

supports on the bistable response of a uniformly curved cap in §5.3.3. In §5.3.4, the

versatility of the presented methodology is demonstrated by analysing a fully spring-

supported shell with a nonuniformly curved shape. Hereafter, the suitability of the

annular model is evaluated in §5.3.5, where the influence of in-plane support conditions

as well as the size of the central hole are quantified. Finally, §5.3.6 considers two

cases of initially stress-free connected shells: firstly, a cap that is rigidly linked to a flat

annulus of the same thickness and material is analysed; second, a hinge is added to a

uniformly curved cap to model a local thickness variation that enriches the number of

possible solutions.

Remark 5.3: For a moderate compaction of notation, the following dimensionless

parameters are used:

ω =
w
t

, S =
σ

Et
, M =

m
Et3 , kU =

ku a
E t

and kφ =
kϕ a
Et3 .

(5.53)

5.3.1 Finite Element Modelling

The finite element simulations in this section were conducted with the commercial

package ABAQUS [123]. The decisive argument to prefer ABAQUS to LS-DYNA –

with which the reference solutions in the previous section were computed – was the

user-friendly Python [124] interaction of the former programme. This facilitated the

realisation of extensive parameter studies that serve as reference solution; note that the

inversion process of shallower shells is less sensitive to specific solver configurations,
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which allowed the calculation of reliable results. In order to identify critical geometric

parameters for the bistable inversion, such as the critical initial rise of a cap required

for bistable inversion, ω0∗
M , a Python algorithm successively approximates this value

in nested intervals as illustrated in Fig. 5.5: after specifying a range that confines the

solution space of the desired parameter as input, the algorithm uses the arithmetic mean

between the two values at which the transition from monostability to bistability occurs

in order to obtain a better approximation of the threshold. This procedure is updated in

each step and repeated until the range of uncertainty becomes smaller than a specified

tolerance of 0.25 %; the mean value of the interval is regarded as the critical geometric

parameter, ω0∗
M .

For analysis, a quasi-static implicit dynamic time integration scheme is used to

provide a stable numerical environment after static stability is lost. Only one quarter of

the shell was modelled, with biaxial symmetry applied to over 600 S8R elements and

the following parameters (specified in SI units): E = 107, t = 0.01, a = 1, and density

equal to 10−5; see [125] for details. Mesh refinement of randomly picked samples did

not lead to any changes in the critical properties.

Input Values:

- boundary condi�ons
- range of geometric parameters
- range of material parameters
- min/max central rise

Evalua�on of results:

Detect errors 
(e.g. did snap-through happen)

Is structure bistable?

No

Decrease central riseIncrease central rise

Start nested loop over:

1. Geometric ra�o

2. material parameter

3. height of central rise

Execute

Create input file & calculate:
(for one par�cular geometry) Yes

Is devia�on < aimed tolerance?

No Cri�cal geometry iden�fied  
      write result to file; next

Yes

Figure 5.5: Schematic overview of overseeing python script to automatise iterative finite ele-
ment simulations with the aim of finding the critical shape parameters for which bistable inver-
sion becomes possible.
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5.3.2 Centrally Fixed Examples

Centrally fixed shells and their simply supported equivalents are discussed next. First,

the performance of the nonlinear approach is evaluated in the area where linear theories

began to fail, and hereafter, the suitability of the presented approach is compared to

other geometrically nonlinear approaches from literature.

Overcoming the Limitations of Linear Theory

As shown in the previous chapter, linear shell theory provides an excellent agreement

for deep, thin shells, but struggles when these become shallow or very thick. Whilst

the performance was reasonably accurate for shells with α = 20°, a = 1, ν = 0.45

and t ≤ 0.1, see Fig. 4.9 and Fig. 4.10, significant deviations were observed when the

thickness was further increased. In this case, the solution transitioned from a rapidly

damped out edge perturbation to a long wave problem that affects the entire shell. The

maximum value of t = 0.033 was chosen, since the edge effect in even thicker shells

becomes so pronounced that it causes a reversion; hence, those shells do not possess

an alternative stable equilibrium state. The same shells are now analysed with the

derived geometrically nonlinear shallow shell approach, see Fig. 5.6. For all thickness

ratios, the inverted shapes in Fig. 5.6(a) are in good agreement with the finite element

results. A closer look at the corresponding normalised out-of-plane deviations from the

mirror-symmetric shape in Fig. 5.6(b) reveals that examples with (t ≥ 0.2), in which

the linear theory previously failed, are now accurately captured by the analytical model

with three degrees of freedom. With regards to the slight remaining deviations, it shall

be mentioned that the quality of the results is expected to increase with a decreasing

total angle since the non-shallow angle of 20° introduces an additional error due to the

rotationally noninvariant strain formulation of the FvK equations.

Comparison to Nonlinear Approaches in Literature

Since linear approaches failed due to nonlinear effects that sharply increase in the

proximity of the critical value at which bistable inversion becomes possible, predic-

tions of this limit are analysed in detail; note that henceforth all stability thresholds

are denoted by an asterisk. The dimensionless threshold of the initial central rise, ω0∗
M ,

at which a shell is on the brink of possessing an alternative stable equilibrium con-

figuration is shown in Fig. 5.7 as a function of the Poisson’s ratio. The span of the
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Figure 5.6: Comparison of analytical predictions (lines) and FE results (markers). (a) Inverted
shape of a shell with α = 20°, a = 1, ν = 0.45 and varying thickness; (b) corresponding
normalised transversal deviations from mirror-symmetric shape, 2ω0 − ω for t ≥ 0.2. Note the
different notation compared to §4, where w0 denoted the dimensionless deflection towards the
mirror-symmetric shape, whereas it refers to the initial configuration here.

abscissa, (−1 ≤ ν ≤ 0.5), covers the whole range of theoretically admissible values

for isotropic materials. The threshold is independent of the only other material para-

meter, E, since the bending-to-stretching energy ratio of homogeneous shells is not

affected by the Young’s modulus. Figure 5.7(a) first compares results from previous

studies to finite elements for the sake of revision before the predictions of the presen-
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Figure 5.7: Dimensionless critical initial midpoint deflection, ω0∗
M , for bistable inversion of

a shallow spherical cap with respect to the Poisson’s ratio, ν. (a) Comparison of different
approaches from key studies; (b) current models with up to three degrees of freedom [29].

ted method are disclosed in Fig. 5.7(b). All results depicted in Figs 5.7(a) and (b)

yield the same rising trend in ω0∗
M with the Poisson’s ratio. The effect is mainly caused

by the increasing edge moment that scales with 1/(1 − ν): the term arises since the

Poisson’s effect amplifies the bending moment via 1 + ν, while the bending rigidity is

proportional to 1/(1 − ν2). It follows that shells made from materials with ν = 0.5 are

the least likely to show a bistable inversion, but an initial height-to-thickness ratio of

at least six guarantees bistable inversion in all cases. Considering that the reversion

process is driven by an edge effect, the methodology of uniform curvature approaches,

which neglects precisely such an effect, may seem paradox at first glance. However,

since the equilibrium equations are satisfied on average, its predictions are reasonably

accurate, see e.g. Seffen & McMahon [39]. Wittrick et al. [35] employ a slightly dif-

ferent UC approach and deduce that the height must exceed ω0∗
M = 4.82 for ν = 1/3

and ω0∗
M = 4.36 for ν = 1/4. The reason for including these simpler UC models is that
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it produces results surprisingly close the FE trend, and in fact, they yield a better ap-

proximation of the critical geometry than the presented QVC model with quadratically

varying (Gaussian) curvature (QVC) for ν > 0. Similarly, the QVC model of Vidoli

[45] in Fig. 5.7(a) shows a better approximation of the FE solution in this range of ν,

but the presented QVC approach in Fig. 5.7(b) is superior for auxetic materials that

possess by definition a negative ratio. The results of Mansfield [56] are also presented

in Fig. 5.7(a), even though the solution concerns a slightly different problem of a len-

ticular shell with tapering thickness that is subjected to a uniformly imposed curvature.

The particular thickness profile allows him to find an elegant closed-form solution of

(ω0∗
M )2 = 4(14 + 2ν)/(1 − ν) that is consistent with the support conditions, and aston-

ishingly, it predicts the critical initial deflection precisely (±0.39 %) for ν ≥ 0, but for

negative Poisson’s ratios the deviations rise up to 12.8%.

Although not plotted again in Fig. 5.7(b), the results of UC approaches of Vidoli [45]

and Seffen & McMahon [39] are identical to the current case using w = (1 − ρ2) wM

where (ω0∗
M )2 = 16/(1 − ν). The approaches depicted in Fig. 5.7(b) all satisfy the

boundary conditions exactly, and more interestingly, the presented single degree-of-

freedom QVC solution, which was obtained with Mathematica [115], takes the form:(
ω0∗

M

)2
=

160
[
−9ν5 − 211ν4 − 1986ν3 − 9486ν2 − 23221ν − 23583

]
27ν7 + 691ν6 + 7527ν5 + 43967ν4 + 138001ν3 + 184089ν2 − 64915ν − 309387

.

(5.54)

The equivalent expression for two- and three degrees of freedom are not compactly ex-

pressed, as noted before. When the number of degrees of freedom is increased to three,

the obtained approximation of ω0∗
M is better than any other found so far in literature; it

shows a maximum deviation of 0.67% from the FE results in Fig. 5.7(b) for all values of

ν. Since the stability thresholds only concerns the bending-to-stretching energy ratio,

its correct prediction does not necessarily imply that a model captures the local vari-

ations of strains and stresses accurately. An analysis of the latter, given in Fig. 5.8(a)

and (b) for bending and in-plane stresses, respectively, shows that the presented QVC

approach yields better results for the stress resultants than UC approaches, and simil-

arly, its approximation of the inverted shape is more accurate (not depicted here). This

is relevant since the presented QVC model’s predictions of the stability threshold are

less accurate for ν ' 0, which highlights that the close accuracy of the UC model is
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Figure 5.8: Stress resultants in the inverted configuration for models with a varying number of
degrees of freedom: normalised bending stresses (M = m/[Et3]) and in-plane stress resultants
(S = σ/[Et]) in (a) and (b), respectively [78].

fortuitous to some extent. The solution quality successively improves with an increas-

ing number of degrees of freedom, and the results for both, bending as well as in-plane

stresses, obtained by models with three degrees-of-freedom are virtually identical to

FE values.

5.3.3 Spherical Cap with Extensional Spring Supports

In a further example, the effects of extensional in-plane springs on the bistable

threshold are analysed. The Poisson’s ratio is first set to be 0.5 because this correl-

ates to the worst case in Fig. 5.7 in terms of the accuracy of the presented QVC model

for a roller-supported cap. The performance of this model in the present case is in-

dicated in Fig. 5.9 along with uniform curvature predictions (cf. remark 5.2) With

both approaches, closed-form solutions of the critical bistable height, ω0∗
M , have been

obtained, and the less complex but more accurate UC solution reads as:

(
ω0∗

M

)2
=

16
1 − ν

·
1 + (1 − ν) kU

1 + (7 − ν) kU
, (5.55)

which converges to the solution in Eqn (3.4) of Seffen & McMahon [39] for kU = 0,

and to 16/(7 − ν) when kU → ∞. The predictions from using two- and three degrees

of freedom are also plotted and are almost identical to the FE solutions with maximum

absolute deviations of 0.78% and 0.73%, respectively.
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Figure 5.9: Dimensionless critical initial midpoint deflection, ω0∗
M , for bistability of a shallow

spherical cap supported on extensional springs of stiffness kU with ν = 0.5 [29].

For small values of kU , in-plane displacements of the outer edge are largely unres-

tricted, and the edge conditions resemble roller supports, Eqn (5.16b). The most ac-

curate prediction of the associated critical height is 5.5 times the thickness, which

matches that in Fig. 5.7. The critical height continuously decreases as kU increases,

and moreover, at kU ≈ 1 the bistable threshold, ω0∗
M , falls below its previous minimum

value of 2.8 in Fig. 5.7 for the lowest Poisson’s ratio value: by increasing the spring

stiffness, the critical height can be smaller than that of the first case in view of promot-

ing bistability. Once the dimensionless spring stiffness exceeds the value of 10, only

little variation in the stability threshold is observed; this value corresponds to an equi-

valent spring stiffness of at least 10Et/a acting on the circumferential length of 2πa.

The lowest values of ω0∗
M = 1.5 is concomitant with kU → ∞, for which the in-plane

boundary displacement is entirely restricted, and thus, the caps supports are virtually

fixed-pinned, as specified in Eqn (5.16d).

Note that this tendency is independent of the particular value of the Poisson’s ra-

tio, since an increasing in-plane stiffness favoured bistable inversions in all cases, see

Fig. 5.10(a), where a similar accuracy as before is provided by using a three degrees-

of-freedom model. The variation in critical height is now plotted as a ‘landscape’ with

respect to ν and to kU , and the graph of Fig. 5.9 corresponds to the line of ν = 0.5 in

the back of the diagram. The discrete contours in Fig. 5.10(b) allow values of ω0∗
M to

be read more accurately; alternatively, the formula in Eqn (5.55) provides an approx-

imation within an accuracy of 8% by comparison.
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Figure 5.10: Dimensionless critical initial midpoint deflection w0∗
M for bistability of a shallow

spherical cap supported on extensional springs. (a) Comparison of FE results with analytical
model using three polynomial degrees of freedom: w0∗

M vs spring-stiffness, log (kU), and Pois-
son’s ratio, ν. Dots indicate results from FE simulations, which virtually ‘float’ on the surface
such is the accuracy of correlation, and lines are contour intervals of w0∗

M of 0.5. When kU is
large, the cap’s edge tends towards being a fixed-pinned support, as shown, and when kU is
very small, the rim is virtually roller-supported. (b) Top view with discrete colouring between
contours [29].

The landscape-plot employs the same range for kU as Fig. 5.9, and similarly, little

variation in ω0∗
M is observed beyond kU = 10. The logarithmic scale of the spring

stiffness allows us to infer robustly the asymptotic performances and increases in ad-

dition the figure’s conciseness. For the roller-supported case (kU → 0), the variation

with Poisson’s ratio is the most distinct, and for each particular value of ν, the bistable

threshold is the largest. The fact that the influence of the Poisson’s effect becomes less

pronounced with increasing kU suggests that bistability is more and more dominated by

geometrical effects. The assisting effect of the spring stiffness on bistable behaviour is

not surprising from what is known about the inversion of a simpler structure: a curved

beam [68]. Whilst beams with an initial rise of ω0
M ≥ 1.1 are bistable if their ends

are horizontally immoveable, they are always monostable if one end is unsupported;

however, bistability can be restored by connecting both ends by a horizontal spring of

sufficient stiffness, and the beam’s critical initial rise decreases with increasing spring

stiffness. Whilst the qualitative trend was predictable, the current approach quantifies

these tendencies for shells: depending on the Poisson’s ratio, the critical initial height

for a roller-supported cap must be between two- and four times larger than that of a

fixed-pinned cap.
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Out of interest in the inversion of other geometric shapes, the FE algorithm was

employed to conduct separate parameter studies of shells with rhomboidal and ellipt-

ical planforms with aspect ratios of up to 7:1. Their initial shape was given by a

bi-directional sinusoidal profile of a half-wave, and hence, their entire boundary curve

lies in a plane. When the edge is fixed-pinned, the variations of the critical height

for bistable inversion were remarkably small: for both types of shell, the value varied

between 1.45 < ω0∗
M < 2 provided that ν > 0 for the rhombuses and independently

of ν for the ellipses. Interestingly, this range shows a close resemblance to the results

of fixed-pinned shells with circular platform, see Fig. 5.10, which suggests a universal

height for bistability of around two thicknesses for this type of boundary connection

irrespective of the planform shape.

5.3.4 Dual Spring-Supported Nonuniformly Curved Shell

Since neither the initial shape nor the deformation field have uniform curvature, recall

Eqn (5.21b), UC approaches are no longer suitable. As discussed in the beginning of

the chapter, see Fig. 5.1, the presence of rotational springs introduces extra complexity

by causing a nonuniform deformation field. A moderate value of kU = 1 is chosen to

estimate the number of required degrees of freedom, and the predictions for a vary-

ing stiffness of 10−3 < kφ < 100 are compared to FE results in Fig. 5.11. Again, a

logarithmic abscissa was used to include the asymptotic limits in the analysis: for the

smallest values of kφ in this range, the outer edge approximates a hinged edge and

no significant variations are observed if the value is further decreased; similarly, lar-

ger values resemble a clamped boundary condition and ω0∗
M reaches an apparent upper

bound.

Whilst models with one or two degrees of freedom turn out to be suitable for a mod-

erate stiffness of kφ < 1, the error in ω0∗
M increases considerably through its further

increase. Thus, at least three degrees-of-freedom are required to achieve a good ap-

proximation (< 2%) of the FE predictions. In order to analyse the combined effect of

extensional and rotational spring stiffnesses on the bistability threshold, a landscape

plot is given in Fig. 5.12 for a fixed value of the Poisson’s ratio, ν = 0.3.

Note that the direction of the axes for kU and kφ has been reversed in Fig. 5.12(a) for a

more open perspective of the solution landscape, and that larger values of kU have been

used compared to previous figures in order to reveal the relevant variation. A discrete
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Figure 5.11: Dimensionless critical initial midpoint deflection ω0∗
M of a nonuniformly curved

shell, Eqn (5.21b), supported on extensional (kU) and rotational (kφ) springs. Convergence to
FE results occurs when the number of degrees of freedom is increased, for kU = 1 and ν = 0.3
[29].
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Figure 5.12: Dimensionless critical initial midpoint deflection ω0∗
M for a nonuniformly curved

shell supported on extensional (kU) and rotational (kφ) springs. (a) Comparison of FE results
(dots) with analytical model using three degrees of freedom, with ν = 0.3 [29]. (b) Top view
of the same plot with discrete colouring and indicating the asymptotic support conditions for
extreme values of spring stiffnesses. Red dots indicate four representative points for which the
mode shapes are further analysed.

contour plot is also given in Fig. 5.12(b) where the asymptotic support conditions are

also indicated in the four corners of the plot. In the sense of in-plane vs rotational

freedoms, these are fixed-fixed (kU & kφ → ∞), fixed-free (kU → ∞, kφ → 0), free-

fixed (kU → 0 kφ → ∞) and free-free (kU & kφ → 0). The landscape topography

shows apparent nonlinear variations, albeit the linear nature of the spring equations.
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Interestingly, a similar trend with respect to kU as in the previous example is observed,

despite the different initial shape and the newly added rotational supports: by resisting

in-plane edge displacements, bistability is promoted. In opposition to this, a rotational

spring tends to revert the shell by definition since a radial edge bending moment in the

sense of the initial shape is exerted. So, by reducing the applied moment by decreasing

kφ, a stable inversion is facilitated. Such a qualitative explanation, however, is an over-

simplification and might easily miss the anomalous ‘dimple’ in the stability landscape

diagram that is observed for moderate values of kφ in combination with large values

of kU . Importantly, the lowest value of the critical height is in fact encountered for a

nonzero value of kφ (≈ 0.4), which suggests that a moderate rotational spring stiffness

can actually engender bistability; this value of kφ is equivalent to a spring stiffness of

4.37D/a.

Analysis of the Stability Diagram’s Anomaly

A closer inspection of the corresponding inverted shapes shall reveal the driving factor

of the anomaly. For the purpose of analysis, four representative shapes calculated

with a three degree-of-freedom model with kU → ∞ and a rotational spring stiffness

of kφ = 0.001, 0.4, 1 and 100 are plotted; note that the red dots in the stability land-

scape diagram of Fig. 5.12(b) indicate these positions, which denote: (1) the fixed-

pinned case, (2) the particular value at which the minimum is encountered, (3) a super-

critical value, and (4) the virtually clamped case, respectively. Fig. 5.13(a) shows the

corresponding normalised inverted configurations of shells at the brink of bistability

(ω0
M = ω0∗

M ) so that the slightest reduction in height would cause a reversion; since

the value of the initial rise varies, the shapes are normalised by the initial midpoint

deflection.

It is conspicuous, that the clamped inverted shape qualitatively resembles the mirror-

symmetric shape, while the hinged inversion is concave and approximately uniformly

curved. At the minimum, only little variations from the hinged mode shape are ob-

served, and a corresponding sub-critical point in between is not depicted, since barely

any difference is observed. However, increasing kφ beyond the position of the ‘min-

imum’ causes rapid changes of inverted shape: the shape becomes strongly curved, an

inflexion point is formed, and concavity is lost. Hence, it begins to resemble a mirror

image of the initial shape. The shape transition is reasonable, since an increased stiff-

ness against rotation at the edge, causes a shift of the deflections towards the centre. By
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Figure 5.13: (a) Normalised inverted shapes, (ω0 + ω)/ω0
M, for shells with critical initial

geometries (ω0
M = ω0∗

M ) and different rotational stiffnesses; the black dashed line denotes the
normalised initial shape, ω0/ω0

M, whose shape is identical for all cases. The terms ‘hinged’,
‘minimum’, ‘super-critical’ and ‘clamped’ refer to the spring stiffnesses indicated in (b), where
the corresponding arc length of normalised inverted shapes is plotted over the dimensionless
rotational spring stiffness. The depicted values relate to the topmost row in Fig. 5.12(b).

considering the arc length of the inverted shapes, see Fig. 5.13(b), it can be shown that

the intermediate range, at which the minimum occurs, increases the stretching barrier;

the related displacement functions were normalised via the initial midpoint displace-

ment to ensure comparability: the shortest arc length is observed for kφ = 0.40, which

is precisely within the plateau in the region of 0.32 ≤ kφ ≤ 0.42, for which the smallest

value of ω0∗
M = 2.40 is observed.

In order to find out if a similar behaviour is observed in simpler structures, a beam

model, which can be obtained by only considering a section of the shell and neglecting

circumferential quantities, has been employed, see §5.2.4. The corresponding stabil-

ity diagram in Fig. 5.14(a) is plotted for a horizontally immovable edge with varying

rotational stiffness. The critical height for bistability is lower in all cases, when it is

compared directly to the shell version. In beams, a similar ‘dimple’ is present, but

in contrast to shells it constitutes only a local minimum. As before, it is associated

with a mode transition of the inverted shape; see Fig. 5.14(b), where the two extreme

cases (kφ = 0.001 and kφ = 100), the local minimum (kφ = 0.6) and a super-critical

shape (kφ = 1.5) are depicted. The general response to an increasing rotational stiffness

resembles the previous case where an edge rotation is avoided by increased central de-

formations, but unlike shells, the mode shape of inverted hinged beams displays a cent-

ral dimple that indicates a barely deformed central region. This shape is energetically

favourable, since most of the rotation focusses at the edge without any bending resist-
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Figure 5.14: (a) Dimensionless critical initial midpoint deflection, ω0∗
M , for a nonuniformly

curved beam with horizontally immovable edges (kU → ∞) over dimensionless rotational
spring stiffness, kφ. Comparison of FE results (black dots) with analytical model using three
degrees of freedom. (b) Normalised initial shape, ω0/ω0

M, and corresponding inverted shapes,
(ω0 + ω)/ω0

M, of a beam for particular values of the spring stiffness indicated in (a).

ance, but in contrast to shells, an additional inflexion point does not cause a complex

bending-stretching interaction. With increasing rotational spring stiffness, the shape

becomes approximately uniformly curved in the region of the local minimum, before

the deformation focusses further in the centre at the supercritical state that closely re-

sembles the inverted shape of the fully clamped case.

In conclusion, it was shown that the mode transition, which is also observed in beams,

explains the phenomena partially, but the global minimum is a unique feature of shells

caused by the highly nonlinear interaction between bending and stretching.

Accuracy of the Clamped Solution

Because the deflection field comprises a clamped as well as a hinged deformation

mode, an ideal clamped support cannot be captured outright because the hinged mode

is inherently coupled to the overall solution. An ideal clamp can only be approached

by setting Kφ to a very large finite value. In the earlier derivation, the total strain en-

ergy, Π, depends on Kφ’s fourth power (whilst KU evinces a quadratic relation), which

compounds further the effect that large values of Kφ can have upon the numerical solu-

tion procedure, especially when solving for the eigenvalues of the Hessian matrix,

Eqn (5.20). A sensible limit for Kφ should be correlated to the range of numerical

floating-point precision of the particular software package. Basic packages employ a

double precision analysis which covers 16 decimal places, so setting 0 < K4
φ < 1016
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should not produce inaccuracies. Here, the general analysis software package Math-

ematica [115] was employed, which can express much higher precision levels, and the

results up to Kφ ≤ 104 were found to be indistinguishable from those of Sobota & Sef-

fen [78] who deal with a clamped support shell from the outset. Hence, a modification

towards a numerically slightly more robust methodology is possible but not required

here, and thus, a perspective with a direct physical interpretation was chosen, see also

remark 5.2.

5.3.5 Extension for Shells with Annular Planform

Another manipulation of the support conditions concerns the inner edge of a shell.

Whilst examples in literature mainly focussed on continuous shells, the effects of cent-

ral holes are not well understood. The inverted shapes of shells with annular planform

are shown in Fig. 5.15, where analytical predictions with three degrees of freedom

(lines) are in excellent agreement with finite element simulation (bars); the dash-dotted

line indicates the mirror-symmetric shape as an orientation. The figure illustrates the

changing response when a central hole of b/a = 0.2 is created and successively en-

larged up to a value of b/a = 0.8. The initial height of ω0
M = 8.7 was chosen in such a

way that all analysed cases are bistable.
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Figure 5.16: (a) Critical initial curvature for bistability, κ0∗, for differing Poission’s ratios and
hole sizes, b/a. Analytical results with three degrees of freedom (full lines) are compared to
FE results. (b) Same threshold as a function of the critical initial height of the inner edge, ω0∗

I .

By cutting a hole, the value of ω0
M becomes less representative as it describes an

imaginary height of a shell before the hole was created. Since several publications,

e.g. [39, 45, 71, 72], express the bistable threshold in terms of critical curvatures,

Fig. 5.16(a) employs the same notation. While it was mainly used due to its suitability

to describe uniformly curved shallow caps, where the simple relation 2ω0
M = κ0

r · a
2/t

holds, it is less meaningful in the novel context of nonuniformly curved shells dis-

cussed in the previous section, §5.3.4. It can be seen that shells with large holes

(b/a > 0.7) require a higher initial curvature, and it follows that the decisive case

which required an ‘imaginary initial height’ of ω0
M = 8.7 possesses the largest hole

size of b/a = 0.8. However, if the same stability threshold is plotted against the initial

height of the inner edge, ω0∗
I = ω0∗

M · [1 − (b/a)2], see Fig. 5.16(b), it becomes appar-

ent that creating a hole allows the production of bistable shells of a smaller physical

height. Thus, the required curvature in (a) primarily increases because the hole reduces

the shell’s height.

The diminishing influence of the only relevant material parameter, ν, with increasing

hole sizes is caused by a transition towards a beam-like behaviour. This is illustrated in

Fig. 5.17(a)-(c), where in-plane stresses (black, left axis) and bending moments (blue,

right axis) are shown for small, moderate and large holes with b/a = 0.2, 0.5 and 0.8,

respectively. Whilst the radial in-plane stresses always have a minor influence once a

hole is present, the radial bending moments still affect shells with b/a = 0.2 and 0.5

but virtually vanish if the hole is large. Thus, the latter case is entirely governed by the

circumferential response, and the Poisson’s effect becomes negligible. The excellent
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Figure 5.17: Comparison of analytical predictions with FE results: stress resultants for in-
verted uniformly curved shells with annular planform (ω0 = 8.7, a/t = 200, ν = 0.1) with
different ratios of inner/outer radius b/a = 0.2 (a), 0.5 (b), and 0.8 (c). The left axis refers to
in-plane stress resultants (black) and the right axis to bending moments (blue); each ordinate
has the same range in all plots; thus, the adjacent axes were omitted in (a)-(b).

agreement of the analytical predictions and FE results further underline the suitability

of the model presented here.

Fixed-pinned shells with annular planform (not shown) require at most half of the

height of their roller-supported counterparts to be bistable. In this case, the results

of the analytical model with three degrees of freedom showed an even better agree-

ment with finite element reference solutions than roller-supported shells. The bistable

threshold, ω0∗
I , is less affected by variations of the hole size (reduction < 10 % from
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closed shell to b/a = 0.8), and the influence of the Poisson’s ratio on ω0∗
I was similarly

small as in fixed-pinned caps (5 % between ν = 0 and ν = 0.5), cf. the right boundary

in Fig. 5.10(b). The reason for this behaviour is examined in detail in §6, where a

polar-orthotropic material behaviour is employed to analyse the interaction of radial

and hoop-stresses in isolation.

5.3.6 Multishell Coupling

The following two examples combine the previous results of uniform curved shells

with circular and annular planform in order to model two shells that are connected at

their edge. First, a nonuniformly curved shell with a geometry of the fully spring-

supported case, see §5.3.4 or Eqn (5.21b), is linked to a flat annulus of the same thick-

ness. Second, two shells of the same curvature are connected via a hinge-line, which

enriches the multistable response.

Influence of an Inverted Shell on a Neighbouring Substrate

The shape was chosen since it approximates a unit cell of bistable ‘morphing metal’ ar-

rays in Fig. 3.8 from [79] where bistable shells are arranged periodically on a substrate.

Whilst the global behaviour of such arrays was described phenomenologically, a theor-

etical framework to quantify involved stability thresholds and energy levels is lacking.

The initial shape of w0
1/t = (1 − ρ2

c)2ω0
M and w0

2 = 0 resembles a full cosine wave of

wavelength 2ρc with a smooth transition to an attached annulus. Thus, the shear force

condition in Eqn (5.46) is relaxed, and the constant A4 in Eqn (5.50) is used to ensure

a vanishing shear force at the outer edge of the annulus instead. This example is used

as a benchmark test to measure the performance of the presented methodology with

reduced order. It is challenging since a connecting edge moment is present, which was

previously shown to require higher-order approaches for large values.

First, the inverted shapes of a shell with ω0
M = 4 are considered in Fig. 5.18(a): it is

conspicuous that inversions become shallower with an increasing width of the annulus,

which reflects that the reverting bending moment increases, while an additional stabil-

ising in-plane force is exerted simultaneously. Since the shape approximations as well

as the stress resultants, see Fig. 5.18(b), are in fair agreement with finite element calcu-

lations, the methodology demonstrates its suitability despite using less elaborate trial

functions as in the previous examples. The slight stress deviations at the centre barely
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Figure 5.18: Comparison of analytical predictions (full lines) with finite element results (mark-
ers): (a) Inverted configurations of a shell with roller supports at c, an initial apex height of 4t,
a thickness of c/t = 100, and differing annular width between B = 0.1c and B = 2c. (b)
Corresponding radial mid-plane stress resultants in comparison to finite element results.

affect the energy functional since these are weighted by the area. Based on the previous

observations in lower order approaches that allowed an accurate description of the sta-

bility threshold despite not capturing every aspect of the stress resultants precisely, cf.

Fig. 5.7 and Fig. 5.8, the current predictions of the bistable threshold can be regarded

as accurate. It is noteworthy that in this particular case, the finite element reference
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a) b) c) d)

Figure 5.19: ‘Quadstable’ shell with four stable inversions due to added hinges: (a) initial
configuration, (b) inner segment inverted, (c) outer segment inverted, (d) fully inverted config-
uration.

solutions were obtained by using a rotationally symmetric shell element to ease the

modelling process, and thus, the occurrence of a nonsymmetric buckling mode cannot

be excluded with absolute certainty. The analysis of the bistable threshold shows that

the added annulus of a width of 0 < B < 2c affected the bistable threshold, ω0∗
M , by less

than 15 %; for annular widths of more than 1.7c, the bistable threshold approached a

constant value of ω0∗
M = 3.77. Thus, the distance that is required to avoid a significant

interaction of two bistable unit cells can roughly be estimated as 3.5 times the cells ra-

dius for ρc/t = 100. A quantification of the edge layer for arbitrary ρc/t ratios and the

consideration of noncircular planforms are problems that are crucial for application,

but these shall be addressed in a separate future study. Instead, the developed model is

now employed to study the effect of local thickness variations at the linkage.

Influence of Local Thickness Variations on Multistability

The second example concerns a uniformly curved shell to which local thickness vari-

ations are added, as shown in Fig. 5.19. These are realised by diminishing a narrow

part’s thickness to a fifth, which reduces the flexural rigidity locally by the factor of

1/125. Since this region is virtually free to rotate, it can be idealised as a hinge, which

isolates the bending response of two shells by stopping the reverting bending moment

from propagating. This enriches the solution by allowing for separate inversions of

segments without significantly affecting the other parts. In the example depicted in

Fig. 5.19, two hinges were added to illustrate two possible cases with regards to their

location: the lower linkage allows for stable semi-inverted configurations where only

one region of the shell is turned inside-out, see Fig. 5.19(b)-(c), since all segments are

of sufficient size and curvature; the upper linkage, however, separates a part that is too

shallow to invert in isolation, and thus, it only inverts in combination with the interme-
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Figure 5.20: Stability diagram showing the number of possible stable configurations of a shell
with a hinge-line at c/a =

√
1/2 as a function of the Poisson’s ratio and the initial apex height;

stable shapes of each region are illustrated in framed rectangles. Black dots indicate finite
element results that confirmed the analytical predictions of mode shapes.

diate segments which resembles a fully connected shell. Note that in addition to the

semi-inverted states of (b)-(c) a combined, full inversion is possible, see (d).

Whilst the analytical model requires equal displacements (in particular ϕ1 = ϕ2) and

stress compatibility (e.g. mr1 = mr2) at the linkage at each side of the narrow part,

the idealisation neglects this condition by using a simplifying substitution: instead of

modelling the strip with a separate set of basis functions, a hinge condition is employed

that allows a free relative rotation, and hence, in general ϕ1 , ϕ2. It follows that only

in-plane forces, the shear force, and a circumferential bending moment are transmitted,

but a radial bending moment is avoided via an evading rotation. In order to calculate

the deflection fields from Eqn (5.49) and Eqn (5.50), the two out-of-plane conditions

of Eqn (5.46) are enforced, and additionally, the radial bending moment is required to

vanish at the linkage (ρc = 1) and the outer edge.

The model is employed to analyse two shells that are linked via a single hinge located

at c/a =
√

1/2. Thus, each shell segment possesses the same height of w0
M/2. The sta-

bility diagram in Fig. 5.20 depicts the number of stable configurations as a function of
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the critical apex height and the Poisson’s ratio of a shell with fixed-pinned supports at

the outer edge. As previously discussed, the bistable threshold is only slightly affected

by the Poisson’s ratio for such supports, cf. Eqn (5.55). More interestingly, the dia-

gram shows a triple point at ω0∗
M ≈ 4.8 and ν = −0.38 at which a direct transition from

bistabily to quadstability with four stable configurations exist. This coordinate also

constitutes a point of a mode transition: whilst the isolated inversion of the outer part

required the lowest initial apex height in all cases (bistable threshold, orange shape),

tristable shells with ν < −0.38 possess a third stable configuration in which both parts

are inverted (green shape); tristable shells with ν > −0.38, however, exhibit two semi-

inverted configurations (drawn in orange and red). This mode transition as well as the

quadstable behaviour were confirmed in FE simulations at the indicated points (dots),

but an extensive FE parametric study was not conducted since it would require a high

amount of tedious user interaction. Note that a simplified model, which employed sep-

arate UC models for each segment, lead to similar stability thresholds (≈ ±10%) but it

failed to predict the mode transition.

5.3.7 Limitations

The nature of the chosen nonlinear Ritz approach differs from FE analysis, and whilst

some features outperform the latter, additional limitations arise: both methods can the-

oretically lead to ‘false negatives’ or to ‘false positives’, but the first is more likely

in FE analysis, whilst the choice here not to linearise the work equation increases the

possibility of the latter. When using FE, alternative equilibrium states can easily be

missed since the linear stiffness matrix would require to evaluate an infinite number

of possible combinations in static equilibrium to obtain certainty. However, because

of linearisation, the problem becomes amenable to a numerical solution process even

for discretisations with a large number of degrees of freedom, which allow for a high

accuracy. The current method considers a nonlinear stiffness matrix, H, which implies

that computational efficiency is imposing a limit of a few degrees of freedom. Hence,

the set of shape functions is not necessarily accurate enough. This problem can be il-

lustrated by the example of a uniformly curved cap now clamped on its edge, where the

gradient remains nonzero for all time. Although bistable behaviour was never observed

in finite element simulations for a wide range of initial geometries, the theoretical ana-

lysis suggests its feasibility for an initial central rise, ω0
M, of more than 25t. In can

be observed in FE simulations that the radial curvature becomes highly concentrated
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just before the clamped edge, which gives way to a large restoring moment despite the

‘holding’ effects of significant in-plane circumferential tension. Even though the pre-

dicted shapes were not precisely marshalled in FE simulations so that a narrow stable

region may have simply been missed, it seems more likely that the presented models

fail to capture the strongly curved domain next to the edge. However, simply increas-

ing the order is not a viable solution approach because the midpoint deflections and,

more importantly, deflection gradients (recall dw/dr � 1), increase beyond the limits

acceptable for shallow shell behaviour and thus beyond the scope of this study.

5.4 Summary

The influence of edge effects and related support conditions on the bistable properties

of shallow shells has been addressed in this chapter. For the purpose of analysis, a

higher-order FvK model employing a Rayleigh Ritz approach with up to four degrees

of freedom was presented. By considering additional terms in the assumed deflection

field, all boundary conditions were satisfied precisely, and a relation to the in-plane

response was established via Gauss Theorema Egregium before stable inversions have

been identified by energy minimisation.

The suitability of this geometrically nonlinear shell model has been demonstrated for

a range of problems in which the linear theory of the previous chapter has failed, since

the involved normal displacements were not small. The performance was then com-

pared to existing nonlinear approaches in literature and finite element reference solu-

tions to highlight the superior accuracy of the approach presented here. The bistable

threshold for uniformly curved shells with horizontal supports was captured in closed

form and it was shown that an increasing stiffness favours a bistable response; in partic-

ular, fixed-pinned shells became in all analysed cases bistable when being at most half

as shallow as their roller-supported counterparts. An additional finite element study

revealed that structures with fixed-pinned supports are less affected by their geometric

shape and that a wide range of different geometries becomes bistable when the ini-

tial apex height exceeds twice the thickness; thus, the obtained analytical results for a

fixed-pinned cap provide a rough estimate of this threshold.

Whilst uniform curvature models were shown to be suitable to describe hinged shells,

their applicability is limited by the presence of rotational spring supports and ini-

tially nonuniformly curved shells. In such cases, the response becomes more intricate
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and higher-order models are required to capture the inversion process accurately. An

increasing rotational stiffness has the tendency to diminish bistable responses, even

though it was demonstrated for a particular case of a nonuniformly cap that a moderate

rotational spring stiffness in combination with a horizontally-immovable support leads

to a global minimum of the required apex height at which bistable inversion becomes

possible. It was shown that the minimum is concomitant with a mode transition of the

inverted shape at which its arclength is minimised. This behaviour has been compared

to the inversion of bistable beams of the same profile, which displayed a similar mode

transition but evinced only a local minimum of the stability threshold.

The shell model was then extended for shells with an annular planform. The analysis

of the bistable threshold revealed that an increasing hole size favours the production

of bistable shells of a smaller height that are at the same time required to possess a

smaller radius of curvature.

Finally, it has been shown that ‘quadstable’ shells with four stable configurations

can be manufactured by adding certain local thickness variations: these act like hinges

and enable structural parts to invert in isolation since a reverting bending moment is

stopped from propagating. While restricting (edge) rotations has the tendency to hinder

bistable inversions, freeing it can allow for extra stable configurations. In addition, the

analysis identified a point of mode transitions in the stability diagram where the order

of possible inversions changes; this point constitutes simultaneously a triple point at

which an infinitesimal increase of the apex height causes a transition from bistable to

quadstable behaviour.





Chapter 6

Bistable Polar-Orthotropic Shells

Whilst the previous chapter elucidated the influence of outer spring supports on the

bistable performance of shells, this chapter analyses how bistability is affected by

variations of the internal stiffness of shells. Such an investigation employs a polar-

orthotropic constitutive law, which allows us to increase or decrease the radial stiffness

compared to its circumferential counterpart and to study each contribution in isolation.

The reason to study this rather unusual material is to obtain further insight into the

governing factors of bistability, which paves the way for exploiting this characteristic

more efficiently. Modifying the stiffness ratio β between circumferential and radial

direction aims at the identification of stabilising and diminishing factors for bistability,

which can then be applied in favourable ways. It can be realised in a simple set of table

top experiments with cast silicone rubber by adding directional stiffeners, see Fig. 6.1,

and the results indicate a strong variation of the way in which initially uniformly caps

invert. It is notable that also the minimum height required for a bistable inversion

differs significantly. Hence, it is possible to gain control over the bistable response of a

shell by using appropriate stiffeners, grooves or similar structures, such as grid shells,

which behave approximately polar-orthotropic in consequence of a smeared-stiffness,

and the study of this particular aspect on bistability is to the best knowledge of the

author completely novel.

The presented analytical model extends the approach from the previous chapter, §5,

for rotationally symmertric polar-orthotropic shells that are free to rotate around the

outer rim support with a variable radial spring stiffness, ku. The more general material

law requires a different set of basis functions, which are based on the geometrically

linear solution of a bent plate. By employing polynomials of real powers in a Ritz

115
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Initial

Inverted

Initial

Inverted

Initial

Inverted

Initial

Inverted

b)

c) d)a) b)

Figure 6.1: Initially stress-free shells (top), their stable inversions (middle), and a sketch of
their profiles (bottom). (a) Isotropic shell with an approximately uniformly curved counterpart.
(b) Circumferentially stiffened shell (β > 1), mimicking globally an orthotropic shell, since
radial stresses cannot efficiently build up in the stiffened regions. The inverted configuration
exhibits a central dimple, which becomes even more distinct, when the orthotropic ratio is in-
creased, cf. (c). (d) Radially stiffened shell (β < 1) with a central plug due to the manufacturing
process; its inversion evinces concentrated deformations at the centre.

approach, the analytical treatment is expedited, and stable inversions are found via

energy minimisation.

First, this study focusses on the effects of the stiffness ratio, β, as well as the influence

of additional horizontal supports on the required apex height for bistable inversion.

The presented model is then drastically simplified by using a single degree of freedom

to approximate the threshold of bistability in closed form. Furthermore, the stress

distribution of a cap is compared to FE results and to an alternative approach inspired

by a competing theory in literature, in order to emphasise the importance of a suitable

set of basis functions that are capable of modelling central stress singularities precisely.

Since such singularities are usually not acceptable in practical applications, the bistable

behaviour of caps, in which the area around the singularity is cut out, is investigated.

In the subsequent section, the geometrically linear bending solution of a polar-

orthotropic circular plate is discussed. The results inspire the choice of trial functions

in the geometrically nonlinear model, given in §6.2. An extension for annular shells is
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derived in §6.3 before results are presented in §6.4. The chapter is eventually summar-

ised in §6.5.

Remark 6.1: The bistable response of polar-orthotropic shells differs from the often-

studied rectilinear orthotropy, since the possible misalignment of principal strain dir-

ections and material-orientations in the latter evokes a strain-energy performance more

conducive to forming extra stable equilibrium configurations; recall that in such cases

one principal direction dominated so that a transition towards an alternative stable

equilibrium became costly due to a high twisting rigidity. In polar-orthotropic ma-

terials however, this misalignment is not observed as long as rotational symmetry is

preserved, since the absence of in-plane shear is tantamount to principal strains that

align with the principal material-orientations. Hence, polar orthotropic caps are not

expected to show additional stable configurations beyond bistability.

6.1 Geometrically Linear Bending of a Plate

The consideration of polar orthotropy introduces an additional parameter to the con-

stitutive equations, which specifies the ratio of circumferential stiffness, Eθ, to radial

stiffness, Er via

β =
Eθ

Er
. (6.1)

If the material law is approximated by using cross-sectional variations, e.g. stiffeners,

different values of β in bending and stretching will arise, since flexural and in-plane

rigidities scale differently with the thickness. This problem is addressed qualitatively

in §6.4, but for the quantitative analysis, a unique β-value is assumed, since the focus

is on gaining a fundamental understanding of effects of directional stiffness variations

and furthermore, this choice avoided additional complexity in the finite element model

to which the analytical results are later compared.

The Poisson’s ratio is not symmetric with respect to indices, since an associ-

ated lateral contraction depends on the stiffness ratio, and their compliance requires

Erνθr = Eθνrθ. Hence, the stiffness ratio also describes the ratio of the Poisson’s effects

in particular directions via β = νθr/νrθ. By using a more succinct notation of E = Er

and ν = νθr within this chapter, the material tensor, E, and its inverse E−1 read:

E =
E

1 − ν2/β

 1 ν

ν β

 and E−1 =
1
E

 1 −ν/β

−ν/β 1/β

 . (6.2)
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These take the form of 2 × 2 matrices, since the constitutive equations can be writ-

ten in terms of the principal directions only due to the assumed rotational symmetry.

This tensor requires β > ν2 since it must be positive definite to ensure energetically

permissible deformations. Its pre-integration in thickness direction gives the stretch-

ing and flexural rigidity matrices of A = Et and D = Et3/12, respectively, with

D = D11 = Et3β/12(β − ν2); these relate the bending and in-plane stresses to their cor-

responding work conjugated strain expressions via

[mr,mθ]T = D [κr, κθ]T and [σr, σθ]T = A [εr, εθ]T , (6.3)

respectively. In contrast to the constitutive equations, the kinematic relations and equi-

librium conditions stay unchanged. Hence, the balance of moments and the vertical

force,

qr =
dmr

dr
+

mr − mθ

r
and

(
d
dr

+
1
r

)
qr = −pN , (6.4)

respectively, can be merged into a single differential equation. By substituting the

strain expressions of Eqn (5.6) for mr and mθ in this equation and employing further-

more the geometric relations according to Eqn (5.5) the governing differential equation

for the geometrically linear bending of plates under a transversal load pN is obtained:

d4w
dr4 +

2
r

d3w
dr3 −

β

r2

d2w
dr2 +

β

r3

dw
dr

=
pN

D
. (6.5)

The solution in the absence of load (pN = 0) without considering rigid body modes

takes the form:

wh =

 for β = 1 : A1r2 +
(
A2 + A3r2

)
log(r)

else: A1r1+
√
β + A2r1−

√
β + A3r2

(6.6)

It degenerates for isotropic materials (β = 1) that have been discussed in §5.2.2 and

which are thus not further investigated here. In polar-orthotropic materials the situation

is more intricate, since all constants evoke some kind of singularity when β < 1. First,

we calculate the curvatures according to Eqn (5.5) as well as the corresponding bending

moments and shear force via Eqn (6.3) and Eqn (6.4), respectively, and then the related

bending strain energy via Eqn (5.18). Since β > 0, a pure deformation mode in A1

has finite bending energy, whereas A2 would engender an infinite energy barrier in
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closed shells and is thus not observed; in annular shells, however, even stress resultants

containing terms in r raised to powers less than −1 are energetically admissible.

For A1 the curvatures vary with r raised to −1 +
√
β, whereas A3 causes a uniform

curvature throughout the shell. Note that the first term signifies a vanishing shear force

throughout the shell, whereas A3 causes central shear-stress singularities for β , 1; this

rather unintuitive detail is a consequence of the material law employed. The singularity

of the latter would necessitate shear-deformable Reissner-Mindlin theory, but since it

is energetically favourable for thin shells to evade shear deformation by flexure, the

A3-term can be neglected. Hence, we assume the dominant deformation mode in the

absence of load to be A1r1+
√
β, despite causing bending-stress singularities at the centre

for β < 1.

Admissibility of stress singularities

The governing equation suggests that stress singularities arise directly from the geo-

metrically linear solution of a bent plate, and similarly, Woinowsky-Krieger [47] iden-

tified singularities in stretching as soon as membrane forces exist. In practice, however,

elastic stresses are constrained by yielding or fracture limits, and thus, Woinowsky-

Krieger as well as others [126, 127] limit the validity of their theories.

Regarding whether or not infinite stresses from singularities are ever acceptable in

elasticity problems, the perspective of Barber [128, p. 142ff.] is adopted: from a math-

ematical point of view, they are acceptable as long as a unique and converging solution

exists. While this argument may not convince the Engineering community per se, en-

gineers commonly encounter and accept singularities at sharp corners and under point

loads from an idealisation of geometry or the boundary conditions; here, the singular-

ities arise directly from idealised constitutive equations. Just as there are no corners

without a small fillet radius [129], perfectly polar-orthotropic materials do not exist,

since fibre orientations would be undefined precisely at the singular point of r = 0 (cf.

Fig. 6.1 (b)-(d) tantamount to a central isotropic spot). Thus, the stress definitions are

predisposed for singularities. Consequently, knowing that results next to singularities

are not applicable in practice, they are accepted here as long as they are energetically

admissible, which requires stresses of order greater than −1 in r for closed shells.



120 6.2 NONLINEAR SOLUTION FOR SHALLOW CAPS

6.2 Nonlinear Solution for Shallow Caps

In the context of polar-orthotropy, the nonlinear governing equation of equilibrium

transforms similar to Eqn (6.5), but it contains the familiar additional nonlinear term

that accounts for the momentum that is induced through in-plane stresses in deflected

plates:

d4w
dr4 +

2
r

d3w
dr3 −

β

r2

d2w
dr2 +

β

r3

dw
dr

=
1
D

[
pN +

t
r

d
dr

(
dΦ

dr
d(w + w0)

dr

)]
. (6.7)

The compatibility equation can be stated in terms of the Airy stress function after the

following manipulations: first, by substituting u′ = (rεθ)′, the radial displacement, u,

can be eliminated in the first equation of Eqn (5.2). A further substitution of εr and εθ
with their corresponding stress expressions, σ = Aε, then introduces the orthotropic

parameter to the compatibility equation. Eventually, the stresses are expressed through

the familiar Airy stress function, see Eqn (5.7), to obtain:

1
β

d4Φ

dr4 +
2
βr

d3Φ

dr3 −
1
r2

d2Φ

dr2 +
1
r3

dΦ

dr
= −Eg . (6.8)

The integration of this expression with respect to r gives, after substituting the corres-

ponding expressions of w, for the term of the Gaussian curvature:

−
r
β

d3Φ

dr3 −
1
β

d2Φ

dr2 +
1
r

dΦ

dr
=

1
2

(
d(w + w0)

dr

)2

−
1
2

(
dw0

dr

)2

. (6.9)

and thus, the number of potentially relevant constants of integration reduces to two.

The solution of Φ suggests that similar homogeneous terms as in (6.6) arise: the r2-

term vanished due to the reduction of constants and, for full plates, r1−
√
β is energetic-

ally not admissible. Hence, the term r1+
√
β is the only remaining one in such a case.

Order of polynomial basis functions

In order to find alternative equilibrium configurations in shells of a shape given by w0,

the assumption of the mode shape is crucial. However, in literature two different per-

spectives have been taken: while the linear deflection field, which is pointing towards

singularities via Eqn (6.6), inspired some authors [130–132] to employ the non-integer

deflection term, r1+
√
β, others may have been influenced by the fully clamped case,
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where bending-stress singularities do not occur, and chose polynomial approaches of

integer powers for shells simply supported at their rim [133–135]. Some authors cir-

cumvent singularities entirely by either considering a small isotropic plug at the centre,

or considering planform annuli [136–138], but here, this problem shall be addressed

directly. The approach presented here takes the first perspective, and rather than avoid-

ing the problem, such singularities are used to assess the robustness of the methodology

by comparing the stress resultants to those from finite-element simulations. This grants

further insight since the averaging nature of global values, such as buckling loads or

natural frequencies, might yield valid results without capturing singular aspects pre-

cisely.

While the linear solution inspires only a single term of the employed trial function,

further terms are required to satisfy the boundary conditions. Other nonlinear ap-

proaches, e.g. in [130], consider an additional quartic term in consequence of a uni-

formly applied pressure, but here any loading is absent in the inverted state: thus, there

is no other reference point for the choice of mode shapes. An alternative approach

might take its inspiration from shallow shell theory in §5, but more intricate Bessel

functions would severely complicate to obtain closed-form solutions, and thus poly-

nomials are the matter of choice to approximate the solution. Terms of integer power

approach are not considered, since these would be equivalent to terms in Eqn (6.6) for

specific β values. Consequently, the solution quality would deteriorate due to unsatis-

fied boundary conditions or a reduction of degrees of freedom in these particular cases.

In order to address these shortcomings, the following simple series is assumed:

w = A0 + A1ρ
1+
√
β + η2ρ

2+
√
β + η3ρ

3+
√
β + η4ρ

4+
√
β (6.10)

with the dimensionless radius, ρ = r/a, as before, and, in total, five constants, Ai and ηi.

The first two, A1 and A2, are used to satisfy the boundary conditions of w(ρ = 1) = 0

and a vanishing radial bending moment at the edge, whilst the remaining constants,

η1, η2, η3 serve as degrees of freedom. The formulas for Ai as well as the further par-

ticulars of the derivation of the Airy stress function are given in the appendix. By

considering more than one degree of freedom, some latitude is given to mitigate the

penalty of using a reasonable approximation rather than the (unknown) exact function.

This increases the robustness of the methodology and allows us to cover a wider range

of varying parameters.
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6.3 NONLINEAR SOLUTION FOR SHALLOW PLANFORM

ANNULI

The relevant homogeneous solution of the Airy stress function, Φh = C1a2ρ1+
√
β in-

dicates that bending and stretching stresses exhibit qualitatively similar singularities at

the centre. The constant C1 is used to satisfy the boundary condition of an in-plane

spring-supported edge of stiffness ku as specified in Eqn (5.15a). As described in §5,

it tends in its limits to be either a roller-supported boundary (ku = 0) or a fixed-pinned

edge (ku → ∞). After substituting the solution of C1 (see appendix), the stress and

strain resultants only depend on the remaining unknowns, η1, η2 and η3, and thus, the

strain energy functional can be calculated and minimised according to the procedure

in Eqns (5.18)-(5.20).

6.3 Nonlinear Solution for Shallow Planform Annuli

Even though annuli do not encounter central stress singularities, a thorough choice of

the assumed deflection field is required. Following the same reasoning as before, the

linear equilibrium solution in Eqn (6.6) is used as a part of the solution space, which

now permits the usage of a second term, A2 ρ
1−
√
β.

Since polynomials with negative powers are permissible now, the number of possible

mode shapes increases. Choosing a similar series as in Eqn (6.10) with ρi±
√
β would, in

general, violate the boundary condition of ur = 0 for ν , 0, and thus a slightly different

approach is employed where:

w = η2 ρ
1−2
√
β + η1 ρ

1−
√
β + A0 + A1 ρ

1+
√
β + A2 ρ

1+2
√
β + A3 ρ

1+3
√
β . (6.11)

Four out of the six constants are used to satisfy the boundary conditions of a hinged

outer edge (r = a) and a free inner edge (r = b)

w|ρ=1 = 0 , mr |ρ=1 = 0 , mr |ρ=b/a = 0 and qr |ρ=b/a = 0 , (6.12)

leaving the system with two degrees of freedom, η1 and η2; A0 − A3 are given in the

appendix. Further terms are not considered, since the increased number is simply

not required in most cases and including an additional degree-of-freedom signific-

antly deteriorates computational efficiency, since the deflection function is squared

twice: once when computing the Airy stress function and the second time when cal-

culating the stretching energy. The procedure of the preceding section can straight-

forwardly be extended to negative powers to compute the corresponding Airy stress
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function that is compatible with the assumed deflection field. The constants of

Φh = C1a2ρ1+
√
β + C2a2ρ1−

√
β are used to ensure that the free inner and outer edge con-

ditions, σr(b) = 0 and Eqn (5.15a), respectively, hold; details of the calculation are

given in the appendix. In order to identify alternative stable configurations, the energy

minimising procedure of the previous chapter is employed.

6.4 Results

First, a quantitative analysis of stiffeners is presented in §6.4.1, before a detailed ana-

lysis of the effects of polar-orthotropic materials on the inverted shape and stress res-

ultants is given in §6.4.2. In §6.4.3, the minimum apex height required for a stable

inversion as a function of the orthotropic ratio is analysed and simplifying one-term

approaches that capture this threshold in closed form are presented. The results ob-

tained inspired to think of shells with extreme orthotropic ratios in a geometrically

decoupled way and a straightforward explanation is provided by using a beam analogy

in §6.4.4. Eventually the effects of central holes in §6.4.5 are analysed to demonstrate

a suitable method to avoid stress singularities.

6.4.1 Qualitative Influence of Stiffeners on Bistable Inversion

In general, separate β-values for stretching, βs, and bending, βb, need to be considered

when stiffeners are added, since the stretching rigidity relates linearly to the cross-

sectional height, whereas the flexural rigidity has a cubic relation. Since the internal

bending stresses always try to overcome the stretching barrier by forcing the shell back

to its initial configuration, stiffeners tend to erode bistability by increasing the bending

rigidity disproportionally. For a quantitative analysis, one can calculate the out-of-

plane solution including the assumed deflection field using βb, while the homogeneous

terms of the Airy stress function depend on βs. The following quantitative analysis is

conducted by using a unique value in bending and stretching, β = βs = βb, since the aim

is to analyse the effects of variations in the directional stiffness in isolation. If, however,

a detailed analysis is desired, the orthotropic parameters may be approximated in view

of the comparatively small width of each stiffener by only considering the stiffeners in

their longitudinal direction since stresses cannot effectively build up in its orthogonal
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b)a)

edge with σ  = 0θedge with σ  = 0r

t

sθ dθ

tsθ

effective cross sectional area (stiffened) 

effective cross sectional area (unstiffened) 

Figure 6.2: (a) Sectional view of a circumferentially stiffened shell: approximated effect-
ive areas in radial (blue hatched) and circumferential direction (beige + blue hatched). The
stiffened area is neglected in radial direction, since stresses cannot evenly distribute through
the stiffener’s width due to the free edge boundary conditions of σr = 0 (yellow lines). (b)
Full view of a radially stiffened shell: highlights exemplify now the effective area in circum-
ferential direction (blue hatched) and the free edge condition σθ = 0 (yellow); here, the full
cross-section of ribs is only considered during the calculation of the smeared stiffness in radial
direction. For these stiffeners, the nomenclature of the values tsr, dr and sr is analogous to the
one is circumferential direction, see (a).

direction (cf. Fig. 6.2), which leads to [15]:

βs ≈

t
1−ν2

(
1 − dθ

sθ

)
+ tsθ

dθ
sθ

t
1−ν2

(
1 − dr

sr

)
+ tsr

dr
sr

and βb ≈

t3
1−ν2

(
1 − dθ

sθ

)
+ t3

sθ
dθ
sθ

t3
1−ν2

(
1 − dr

sr

)
+ t3

sr
dr
sr

. (6.13)

6.4.2 Quantitative Analysis:
Inverted Shapes and Corresponding Stress Resultants

Analytical (lines) and FE predictions (dots) of stable inverted configurations for pinned

and roller-supported shells are depicted in Fig. 6.3(a) and (b), respectively, for the

indicated values of β. The finite element simulations were conducted with ABAQUS

[123] by employing the overseeing Python routine described in §5.3.1; see [139] for

details of the numerical analysis.

All shells have the same initial height of ω0
M = 4, which ensures that all cases in (a)

exhibit bistability, where roller-supported shells of that height are only bistable for the

range 0.5 < β < 6.1. For β < 1, displacements are more focussed at the centre, and

increasing β shifts the deformation towards the outer regions, so that shells with β ' 3

evince an inflexion point viz. a central dimple. Both responses are also observed in

the stiffened shells in Fig. 6.1(d) and (b)/(c), respectively. Note that smaller β-values

do not always correspond with larger central deformations, since the roller-supported
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case with β = 0.5 has a decreased, yet centrally more focussed, deformation than the

corresponding isotropic case. While a concentrated deformation points towards highly

stressed areas, the barely deformed central region of the dimple indicates low bending

stresses. Correspondingly, the resulting stresses, depicted by full lines in Fig. 6.4 for

β = 0.1, 0.5, 1, 5, 10, are absent at the very centre for β > 1. These are in good agree-

ment with FE results (dots), whereas even a higher-order approach of integer power as

discussed in §5 (dashed line) shows slight deviations; note that lower-order integer ap-

proaches from literature that apply simpler basis functions to polar-orthotropic shells,

e.g. [133–135], lead to less accurate results. A transition point with finite central

stresses is encountered for the degenerated case of β = 1, where the integer power

approach coincides with the basis functions of the presented approach in Eqn (6.10).

Below this value (β < 1), FE calculations confirm induced stress singularities in bend-

ing and stretching, which are accurately captured by the presented analytical model

using Eqn (6.10). It now becomes apparent that integer power approaches are inferior

since they only capture singularities in stretching but not in bending, which under-

estimates peak stresses. The loss of accuracy cannot be overcome by increasing the

number of degrees of freedom since the polynomial order does not match. A closer

inspection of the central region in a doubly logarithmic plot of mθ in Fig. 6.5 shows that

the use of real powers in Eqn (6.10) accurately captures the asymptotic behaviour for

ρ � 1, where the approximately linear relation in the diagram confirms the dominating

influence of the ρ−1+
√
β term. This insight motivates a simplified approach which solely

β= 0.5

0.0 0.2 0.4 0.6 0.8 1.0
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

ρ

ω
/ω

M0

a) b)
0.0 0.2 0.4 0.6 0.8 1.0

-0.6

-0.4

-0.2

0.0

ρ

β= 10

β= 5

β= 1

β= 2.5

β= 7.5

β= 5

β= 2.5

β= 1

β= 0.5

β= 0.1
β= 0.25

analytical results: full lines
finite elements: dots

ω
/ω

M0

analytical results: full lines
finite elements: dots

Figure 6.3: Sectional view of stable inverted shapes normalised by height of initial rise,
ω0

M = 4, for (a) fixed-pinned and (b) roller-supported edges with 0.1 ≤ β ≤ 10 for ν = 0.
FE results (dots) for β = 0.1, 0.5, 1, 5, 10 are compared to analytical predications with three
degree of freedom (full lines) that are also given for intermediate values; missing results in (b)
for β < 0.5 or β > 6.1 do not possess a stable inversion.
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Figure 6.4: Dimensionless bending stress (M = m/[Et3], left) and membrane stress resultants
(S = σ/[Et3], right) for differing stiffness-ratios of a fixed-pinned shell withω0

M = 4 and ν = 0.
FE values (dots) are compared to analytical predictions (full lines) according to a model with
three degrees of freedom; dashed lines illustrate the shortcomings of integer-power approaches
which fail to reflect the central stress singularities
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Figure 6.5: Finite element results (dots) of radial bending moments in inverted configuration
on doubly logarithmic scale with linear-reciprocal regression (blue line) compared to dominant
term, C1ρ

−1+
√
β, (orange) of mθ (green) for β = 0.1 and β = 0.5 with w0

M = 4t, ν = 0 and
fixed-pinned edges.

depends on this term, which knowingly ignores the boundary conditions of a vanish-

ing edge moment. While it is not expected to depict the stress resultant accurately

everywhere, it can be employed to approximate the stability threshold in the follow-

ing section. Insofar it can be regarded as a polar-orthotropic equivalent to the uniform

curvature assumption.

6.4.3 Minimum Apex Height Required for Bistable Inversion:
Refined Approaches and Simplifications

The threshold for bistable inversion in terms of the nondimensional initial apex height

as a function of β is given for various choices of the deflection field in Fig. 6.6 for roller-

supported (top) and pinned edges (bottom). In general, in-plane supports strongly fa-

vour bistable inversion, which confirms the observations in §5. More interestingly, the

influence of the stiffness ratio differs significantly, depending on the support condi-

tions. For a pinned edge, smaller values of β seem to generally favour bistable inver-

sion, whilst the same values for roller-supported shells hamper and eventually erode

bistable behaviour altogether. A global minimum in the latter case is found for β = 3.2,

which coincides approximately with the β-ratio at which the deflection field is about

to first form an inflexion point in Fig. 6.3.

In terms of computational accuracy, the results are virtually indistinguishable from

FE results, with an average deviation of 0.35% whereas the FE accuracy range was set

to 0.25%. The approximation is superior to results obtained by adapted lower-order

models from the literature with a single degree of freedom e.g. by Dumir [130], which
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Figure 6.6: Predictions of the critical dimensionless initial apex height, ω0∗
M , over stiffness

ratio, β, for roller-supported (top) and fixed-pinned supports (bottom) for ν = 0.3. Full lines
indicate analytical predictions, whilst dots represent results from FE simulations. For pinned
supports only the current approach in Eqn (6.10) and the simplified one-term approach accord-
ing to Eqn (6.14) are compared to FE results for the sake of clarity.

shows an average deviation of 5.2%. Closed-form solutions are found with simplifying

one-term assumptions of w = η1ρ
1+
√
β for β < 1 and w = η1ρ

2 for β ≥ 1:

(
ω0∗

M

)2
=

(1+
√
β)4(2+

√
β)(2−ν+5

√
β)

3[16β3/2+2β2+β(20−8ν)−(3−ν)2 √β+2] for β < 1(
ω0∗

M

)2
=

(3+
√
β)2(1+2ν+β)

2[β+6
√
β−ν(ν−6)] for β ≥ 1

 pinned

(
ω0∗

M

)2
=

(1+
√
β)4(2+

√
β)

3(β−√βν) for β < 1(
ω0∗

M

)2
=

(3+
√
β)2(1+2ν+β)

2(β−ν2) for β ≥ 1

 rollers .

(6.14)

These results emphasise the importance of the transition around β = 1: for small

values, the deflection is governed by the homogeneous term of the linear bending solu-

tion, η1ρ
1+
√
β, and the singular stress field has a decisive influence on the bistable re-

sponse; for β > 1, however, the averaging nature of a uniform curvature approach

is suitable to predict the stability threshold for β ≥ 1. This is insofar surprising, as

the clearly nonuniform displacement field in Fig. 6.3 does not reflect its assumed uni-

form curvature and furthermore, the assumed quadratic deflection term causes shear

stress singularities at the centre even for β > 1. Note that the fair agreement of the

UC approach in its invalid regime (dashed line, β < 1) in the roller-supported case is

coincidental and was not observed for other Poisson’s ratios than ν ≈ 0.3.
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A major finding is that the influence of the stiffness ratio differs significantly, depend-

ing on the support conditions. For a pinned edge, smaller values of β seem to generally

favour bistable inversion, whilst the same values for roller-supported shells hamper

and eventually completely erode bistable behaviour. A global minimum in the latter

case is found for β = 3.2, which coincides approximately with the β-ratio at which the

deflection field is about to first form an inflexion point in Fig. 6.3(b).

6.4.4 Beam Analogy

The influence of the boundary conditions on bistability is elucidated by considering

the limits of β → ν2 and β → ∞: If ν = 0 is assumed for simplicity, the circumferen-

tial stiffness tends towards zero and the first two terms of the compatibility equation,

Eqn (6.8), tend to infinity in the limit of β→ 0. Hence, even large changes in Gaussian

curvature do not evoke any stresses. This is reasonable, since the shell is virtually free

to expand or contract in circumferential direction, and thus, the load path aligns with

the stiff radial direction. Consequently, the shell’s response resembles the one of sym-

metric beams with a wedge-planform with vanishing width at the centre, similar to the

shape of a single stiffener in Fig. 6.2(b). The compatibility equation then becomes a

simplified version of Eqn (6.9):

σr =
Φ′

r
=

1
2

(
d(w + w0)

dr

)2

−
1
2

(
dw0

dr

)2

. (6.15)

and reflects the entirely geometric strain relation in Eqn (5.9) without hoop-interaction.

The singularities arise because the area of the tapered cross section vanishes at the

centre, even though the radial force is well defined. Interestingly, the bistable threshold

of fixed-pinned shells with β = 0.1 precisely matches the threshold of fixed-pinned

beams, ω0∗
M = 1.1. The beam analogy gives a simple explanation for the observed

trend in Fig. 6.6 for β � 1: an initially curved beam with fixed-pinned supports has

a lower threshold than isotropic shells, whereas a beam on rollers does not possess an

alternative stable equilibrium configuration.

This decoupled perspective also points towards ways to improve the bistable beha-

viour of shells in response to their particular boundary conditions. In roller-supported

shells, an increase of the hoop stiffness assists the shell to form a stretching barrier

required to prevent a bending recovery to the initial configuration, and an optimum

value that minimises ω0∗
M is found to be β ≈ 3.2. Hence, the bistable performance of
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an isotropic shell can be improved by a moderate increase of the hoop stiffness. Inter-

estingly, a similar trend is not observed in fixed-pinned shells that exert a contrasting

influence. With respect to the hoop stiffness, it can be concluded: whilst vital in case

of roller supports, it becomes redundant and even slightly hindering once a stabilising

radial force is assured by an immovable support.

In the case of β→ ∞, the radial stiffness becomes negligibly small, but unlike before,

the equations are not entirely decoupled, since the shell may be imagined as multiple

adjacent ring beams, and thus, the radial displacements interact with circumferential

strains via εθ = u/r. This interaction ensures a certain degree of statical indeterminacy

and hence, a bistable response in roller-supported shells is observed even for large

values of β.

6.4.5 Bistable Inversion of Planform Annuli

Figure 6.7: Stability map of critical initial dimensionless physical height, ω0∗
I , over central

hole size, b/a, and stiffness ratio, β, with ν = 0 for (a) fixed-pinned and (b) roller-supported
edges; dots indicate FE results

The influence of a central hole on the critical minimum physical height required for

bistable inversion, ω0∗
I = (1−b2/a2)ω0∗

M , as a function of β is presented in Fig. 6.7 for (a)

fixed-pinned and (b) roller-supported edges. For a more open perspective on both plots,

the axes have been reversed in both plots and the values of log10 β have been plotted

that cover the same range as before (0.1 ≤ β ≤ 10). Note that the smallest hole size

calculated with annular model was b/a = 0.05; the results of the closed shell model

have been added for b/a = 0 and intermediate values were linearly interpolated; hence,

slight kinks are observed in the transition zone. These are owed to the slightly different

choice of basis functions; for β < 1, the additional challenge to approximate local stress

peaks in the proximity of a free edge boundary condition arises. The influence of the



131

Poisson’s ratio is not studied here, since it was subject of the analysis in §5.3.5; instead,

ν is set to the value at which it had the lowest influence (ν = 0). Here, the focus is on

the interdependency of the stiffness ratio β and the hole size, b/a, with respect to their

effect on the critical height for bistable inversion, ω0∗
I . Note that a value of β = 0.1

is now further away from its theoretical minimal value, 0, than in the previous case,

where β > ν2 = 0.09, and thus, it has a less hindering influence on bistability. In fixed-

pinned shells, see Fig. 6.7(a), the hole size and the orthotropic ratio correlate positively

with the bistable threshold. Hence, the smallest required height is found in a full plate

with β → 0. In contrast to bistable isotropic shells, creating a hole requires for small

values of β a slight increase of the physical height; however, even for largest holes,

the bistable threshold changes only by 12 %, and thus, stress singularities can easily

be prevented by cutting a hole, or alternatively, allowing plastic deformations in the

central region. In roller-supported shells, (b), with small hoop stiffness, bistability can

be significantly enhanced by removing a small central region, e.g. a hole of b/a = 20 %

reduces ω0∗
I by over 30 % for shells with β = 0.1, whilst an isotropic shell improves

only by 3 % when a hole of the same size is created.

For large hole-sizes shell (b/a > 0.5), the structure resembles a (doubly) curved beam

with abating radial stresses. Since the structure is already ‘decoupled’ geometrically,

the radial stress components are of diminished relevance even for β = 1, and thus, the

same is true for the orthotropic ratio in general; hence, results similar to the isotropic

case in §5.3.5 are found.

6.5 Summary

The higher-order geometrically nonlinear Ritz approach of §5 has been extended for

polar-orthotropic constitutive equations. It was employed to analyse the effects of vari-

ations of the directional stiffness via the parameter β = Eθ/Er. The analytical model

employed an assumed deflection field that is based on the linear solution of a bent

plate, and its predictions appropriately captured central stress singularities for high ra-

dial stiffnesses (β < 1). This finding has demonstrated the superiority in comparison

to other analytical approaches in literature that utilise polynomial deflection fields of

integer power: whilst the stability threshold can also be captured accurately by the lat-

ter, these fail to depict bending stress singularities that may constitute a decisive factor

in a structure’s design process.
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The developed model was then employed to study how the critical apex height re-

quired for bistable inversion is affected by variations in β. While the derived higher-

order approach precisely portrayed the finite element reference solution, simplified av-

eraging single-term approaches have reasonably approximated the bistable threshold

in closed form, even though they fail to predict stress resultants appropriately. A key

finding is that the bistable response strongly depends on the in-plane boundary condi-

tions. Less surprisingly, the tendency of §5 regarding the enhancement of bistability

via fixed-pinned edges has been confirmed in all discussed examples. More interest-

ingly, it was shown that the support conditions significantly affect the influence of

other parameters, such as β and the hole size: in contrast to roller-supported shells,

where no alternative equilibrium configurations were found for β → 0, fixed-pinned

shells showed the lowest required apex height. The difference is caused by a quasi-

decoupling of the radial and circumferential response for very low values of the hoop

stiffness, which causes the structure to evince a beam-like behaviour. The stiffness

variation also elucidated the influence of the hoop stiffness on bistability: for roller

supports, the presented study confirmed observations in literature [85] that identify its

stabilising influence that prevents reversions. However, the opposite is true for the

fixed-pinned case, where an increasing β-ratio hampers bistability. It is concluded that

the circumferential stiffness is insofar stabilising as radial stresses arise from a strong

coupling with a surrounding ring beam of a high stiffness. However, if radial stresses

are assured by the support conditions, the hoop stiffness is a redundant feature that

becomes a slight impediment. In order to circumvent stress singularities for β < 1,

central holes were found to be suitable: while even large holes do not significantly

increase the critical physical height of fixed-pinned shells, roller-supported ones were

significantly more inclined to stay inverted once a circular hole measuring ≈ 20 % of

the outer radius was created.



Chapter 7

Combined Actuation Methods

In this chapter, the presented analytical model is extended to explore ways to actively

control shell structures. Employing actuators broadens possible areas of application

by allowing engineers, for instance, to counteract external loads to minimise concom-

itant deformations. It is not a coincidence that nature inspired many active structures,

since the sophistication of shape-changing capabilities in floral systems has a similar

objective as modern multifunctional morphing structures. Leaves, for instance, grow

into stiff non-Euclidean shapes of double curvature that maximise their surface area

in order to optimise photosynthesis; nevertheless they are flexible enough to evade

strong wind loads by rolling up rather than resisting them. Whilst leaves obtain their

shape by spatially nonlinear extensional growth in direction of their mid-plane, other

‘solar-tracking’ plants, e.g. Mimosa Pudica, deform in bending by imposing a through-

thickness strain gradient; recall Fig. 3.9. Growth, or actuation, can thus stem from

in-plane or out-of-plane actions, whose interaction gives rise to a variety of solutions.

In particular, well attuned, compatible actuation modes offer the theoretical possibility

for large stress-free transformations, which are known as natural growth modes [49].

Here, a theoretical framework for making use of the synergies of both methods is

developed: in-plane actuation patterns are investigated in combination with a simul-

taneously imposed linear through-thickness strain gradient profile, which are both free

to vary locally throughout the shell’s domain. Since floral shapes are versatile and

not confined to synclastic geometries – some even show repetitive undulations, see

Fig. 7.1 and [140, 141] for related studies – the assumption of rotational symmetric

deformations is relaxed. However, growth processes are a complex matter: the current

stress state, for instance, affects not only where new material is added, but also the

133



134 CHAPTER 7. COMBINED ACTUATION METHODS

Figure 7.1: Non-Euclidean geometries in nature: (a) Elliptic example of Euphorbia characias
subspecies wulfenii with approximately rotationally symmetric outer petals. (b,c) Hyperbolic
examples: saddle-shaped petals of Bergenia Ciliata (b), and leaves of Brachyglottis monroi
with higher wave number.

amount of cellulose fibres, which correlates with the stiffness, and additionally, juven-

ile leaves may grow differently than adult leaves. Such important subtleties result from

millions of years of evolution and their modelling would involve a refined analysis of

bio-chemical processes on smaller scales.

It is acknowledge here that nature is too sophisticated, adroit and elegant to employ

solutions that are solely based on structural mechanics, and thus, the aim of this study

is not to explain why leaves obtain a certain shape. Instead, inspiration is taken from

floral growth processes to present a simplified model that mimics observed shapes. It

assumes an initially flat circular plate made from an isotropic linear elastic material

that is subjected to polynomial growth patterns. The imposed strains are inelastic,

since they do not directly evoke stresses as a reaction (similar to a thermal load-case),

but if such expansions or contractions are restricted either by support conditions or by

an internal incompatibility, an elastic reaction arises.

Whilst the latter aspect has been analysed for growth patterns of uniform Gaussian

curvature in free-standing shells, the investigation of the interaction with extensional

in-plane spring supports at a shell’s rim presented here is completely novel. The

over-constrained environment enriches the solution and requires a refined perspect-

ive that goes beyond an analysis of a shell’s internal compatibility between the bend-

ing and stretching surface. The additional displacement compatibility condition ne-

cessitates a distinction between two different in-plane actuation methods that induce

non-Euclidean target geometries using a quadratic strain-field in either the radial or
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circumferential direction. In addition, the interaction is enhanced by imposing an extra

uniform constant expansion term and a radial force applied to the shell edge. Ma-

nipulations of buckling thresholds and the post-buckling behaviour within all of these

specifications are analysed in detail by employing a uniform curvature approach, where

in particular the conditions for natural growth modes are established.

A second novel aspect was inspired by the recent development of elaborated ac-

tuators, e.g. the possibility of 3D printing gels with tailored expansion coefficients

[101, 102] in Fig. 3.10-3.11: these make it possible to impose arbitrary growth strains

and thus also an actuation of nonuniform Gaussian curvature, which gives rise to, in

particular, hyperbolic periodically varying out-of-plane target shapes. The present

study investigates also an unsupported shell subjected to growth strains with spatial

variations of higher-order polynomials. The requirements for natural growth into such

hyperbolic shapes are analysed before ways to obtain similar transformations by leaf-

like in-plane actuation alone are explored. The concomitant richer stability landscape

that involves secondary buckling requires the employment of a higher-order model.

In the following, the, in general, non-rotationally symmetric analytical model for

actuated shells is described in §7.1. The obtained results are discussed in §7.2 and

compared to FE reference solutions. Finally, a summary is given in §7.3.

7.1 Analytical Model

For analysis, the same cylindrical coordinate system, (r, θ, z), as in the previous two

chapters is employed to describe an isotropic shallow shell in terms of the familiar

parameters, a, t, E and ν. The consideration of the actuation parameters requires to

distinguish between three different configurations as illustrated in Fig. 7.2: the initial

stress-free state, Ω0, a target shape of the actuation, ΩA, which is in general not ob-

servable except when elastic responses are absent, and finally, the resulting shape, Ω.

The transition of a material point from the first to the second configuration is described

via actuation-related displacements, uA, whilst elastic displacements, uE express the

deformation in between the target and resulting shape; their sum, u, describes the ob-

served transformation from Ω0 to Ω. Similarly, the total strains are expressed via the

sum of both subsets, e.g. εr = εrA + εrE. Without the loss of generality, the initially

stress-free configuration is assumed to be a flat plate, (w0 = 0). The approach is never-
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theless capable of considering initially curved examples by letting the shell morph into

the desired shape via superposed natural growth modes, which are discussed later.

ini�al shape

target shape
(not observable)

final shape

imposed strains

ε κA,

elas�c strains

εE κE,

observed change

ε κ,

Ω0

ΩA

Ω

Au Eu

u

Figure 7.2: The mathematical model distinguishes between three configurations: the stress-
free initial shape, Ω0, a target shape of the imposed actuation strains, ΩA, and the observable
resulting shape, Ω. Values with an index ‘E’ or ‘A’ refer to elastic responses or imposed values
due to actuation, respectively.

Whilst rotationally symmetric deformations simplified the compatibility equation to

an ordinary differential equation, the present case involves circumferential variations

that require a consideration of all three nonlinear terms of the FvK strain definitions,

εr =
∂u
∂r

+
1
2

(
∂w
∂r

)2
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u
r

+
1
r
∂3
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,
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−
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r
+
∂w
r ∂θ

∂w
∂r

)
,

(7.1)

where circumferential displacements are denoted by 3.

In the context of combined actuation, it is convenient to think of a shell as two dif-

ferent surfaces: one that solely bends and another one that only stretches (recall §2.3);

quantities related to one surface are denoted by a lower index ‘B’ and ‘S ’, respect-

ively. According to Calladine [18], the Gaussian curvature of the bending surface acts

like a ‘forcing term’ on the stretching surface and vice versa. Hence, it is the incom-

patibility of actuation modes with respect to their change in Gaussian curvature that

triggers an elastic reaction that eventually enforces compatibility of the resulting shape

via gB = gS . This incompatibility is expressed by ∆gA = gBA − gS A, which denotes the
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difference of the changes in Gaussian curvature caused by actuation. Consequently,

imposed isometric deformations of one surface do not affect the counterpart, and thus

do not directly evoke an elastic response; conversely, non-isometric stress-free de-

formations are possible when the actuation patterns of both surfaces are geared to each

other. This becomes apparent, when the linear nature of the intrinsic definition of the

Gaussian curvature is considered, which reads for for non-axisymmetric deformations

in polar coordinates [13]:

gS =
1
r

(
∂ εr

∂r
−
∂2 (r εθ)
∂r2 −

1
r
∂2 εr

∂θ2 +
∂

∂θ

(
εrθ

r

)
+
∂2 εrθ

∂r∂θ

)
. (7.2)

The contribution of the imposed mid-plane strains, gS A, and the elastic mid-plane

strains, gS E, can thus be calculated separately by using the same formula with corres-

ponding substitutions, and the total value within the plane is their sum, gS = gS A +gS E.

The same does not, however, hold for its extrinsic counterpart,

gB = κrκθ − κ
2
rθ, (7.3)

where a nonlinear interaction of elastic and actuated values (κ = κA + κE) is caused

even in initially flat shells. By rewriting the compatibility equation as

gB − gS A = gS E , (7.4)

the forcing term of the elastic mid-plane response can be isolated on the right-hand

side. This allows the calculation of the Airy stress function in the familiar manner via

∇4Φ = −E(gB − gS A). While the in-plane equilibrium of the elastic stresses is given

by the Airy stress function, imposed strains, e.g. thermal heating, do not cause an

immediate response via the material law, and hence ΦE = Φ. Note that a potential

formulation exists only for the elastic response, but not in general for the imposed

strains of independent magnitude and direction.
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The strain energy functional of an in-plane-supported shell of stiffness ku now in-

cludes twisting terms:

Π =
1
2

∫ a

0

∫ 2π

0
(mrκrE + mθκθE + mrθκrθE) r dθ dr + a

∫ 2π

0

(
kuu2

2
− nru

)∣∣∣∣ρ=1
dθ

+
t
2

∫ a

0

∫ 2π

0
(σrεrE + σθεθE + σrθεrθE) r dθ dr ;

(7.5)

it also considers an additional term, nr, that describes an outward pointing radial force

per unit circumference, which introduces additional complexity to the solutions by

triggering an elastic reaction without need of the forcing term related to g in Eqn (7.4).

The strain energy functional can be calculated in closed form for suitable sets of func-

tions for the deflection and actuation fields, which are described next. First, the case

of imposed strains with positive Gaussian curvature is considered, before anticlastic

actuation patterns are discussed.

7.1.1 Growth Modes of Constant Positive gA:
Rotationally Symmetric Deflections

Positive values of gA without circumferential variations prescribe elliptic target shapes,

and here, the analysis is restricted to those with a rotationally symmetric planform.

Hence, the strain definitions simplify to the familiar form of Eqn (5.2). For the out-of-

plane actuation mode, a function that produces a constant Gaussian curvature through-

out the shell is considered:

wA = ηA (1 − ρ2) , (7.6)

where ηA specifies the magnitude with the physical interpretation of the midpoint de-

flection. One possible way to realise such actuation pattern is via a temperature gradi-

ent through thickness, and various alternatives have been presented in §3.

For simplicity, the shape function of the actuation pattern is also assumed for the

elastic deflection field, wE = ηE (1 − ρ2), and thus, a uniform curvature approach is

employed. This assumes that the elastic response is also rotationally symmetric, even

though it has been shown that buckling in which one direction of curvature is preferred

may occur in response to such a bending actuation pattern [49]. However, in the present
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case, such a deformation mode is prevented by vertical edge supports and potential

concomitant higher-order buckling modes are not considered here, which leaves space

for future explorations.

As discussed in §5, the UC assumption drastically simplifies the problem by ignoring

edge effects, whilst satisfying the equilibrium conditions on average across the shell; in

return, it allows one to obtain compact closed-form solutions for the buckling threshold

and the post-buckled geometry. The corresponding changes in curvatures,

κr =
∂2 w
∂r2 =

2
a2

(ηE + ηA) ,

κθ =
1
r
∂w
∂r

+
1
r2

∂2w
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2
a2

(ηE + ηA) and κrθ =
∂

∂r

(
1
r
∂w
∂θ

)
= 0

(7.7)

are constant throughout the shell. They evoke bending stresses that solely depend on

elastic strain components:

mr = D (κrE + νκθE) =
2
a2 D (1 + ν) ηE ,

mθ = D (κθE + νκrE) =
2
a2 D (1 + ν) ηE and mrθ = D(1 − ν)κrθE = 0 ;

(7.8)

the actuation strains may later cause an elastic response in order to enforce compatib-

ility, though.

With respect to in-plane actuation, the analytical model considers a nonlinear in-

elastic strain distribution that resembles commonly encountered but simplified growth

patterns in nature:

εrA = εr ρ
2 + ε0 , εθA = εθ ρ

2 + ε0 and εrθA = 0 . (7.9)

The first two strain-parameters εr and εθ describe an orthotropic growth process of

quadratic order, and ε0 denotes an additional spatially constant isotropic growth strain

similar to a uniform thermal expansion; according to Eqn (7.2), their corresponding

Gaussian curvature amounts to gS A = 2(εr−3εθ)/a2, where ε0 does not appear due to its

isometry. By considering rotational symmetry and substituting the strain expressions

in Eqn (7.2) with equivalent stresses before using σr = 1/r ·∂ Φ/∂r and σθ = ∂2Φ/∂r2,

the compatibility equation in Eqn (7.4) can be rewritten as:

gB − gS A = −
1
E

(
∂4Φ

∂r4 +
2
r
∂3Φ

∂r3 −
1
r2

∂2Φ

∂r2 +
1
r3

∂Φ

∂r

)
. (7.10)
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The solution of this differential equation,

Φ =
Eρ4

32

(
a2(εr − 3εθ) − 2(ηE + ηA)2

)
+ C1ρ

2 , (7.11)

possesses a constant of integration that is used to satisfy the boundary condition in

Fig. 7.3: in order to guarantee a compatible radial displacement u at ρ = 1 with an

in-plane spring of stiffness, ku, and an outward pointing radial force per unit circum-

ference, nr, at the edge, the following condition must hold:

kuu |ρ=1 = −tσr |ρ=1 + nr . (7.12)

The strain energy functional depends after this substitution solely on the only remain-

ing unknown, ηE, and equilibrium configurations are determined by ∂Π/∂ηE = 0. Their

stability depends on the sign of ∂2Π/∂η2
E, which changes at the resulting buckling-

thresholds, as discussed in §7.2 in terms of the chosen actuation parameters as well as

the boundary parameters.

a

η  + ηE A
ku

n

z

r r

Figure 7.3: Rotationally symmetric spring-supported boundary with radial force acting on the
shell edge.

7.1.2 Higher-Order Growth Modes Including g < 0

Actuation patterns

Actuation patterns that impose negative Gaussian curvature offer a richer behaviour

that includes symmetry breaking buckling and more elaborate approaches are required.

Inspired by wavy shapes of leaves, that result from in-plane growth, a simplified poly-

nomial growth pattern is considered:

εrA = εθA = ε ρm and εrθA = 0 , (7.13)
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where m ≥ 2. The support conditions now also resemble floral systems in which a

leaf is rigidly connected to the stem at a single point. Since gravity is not considered

here, the fixed point can be assumed without a loss of generality at the plate’s centre

for the sake of simplicity. In contrast to the previous case, vertical supports are absent,

and thus, the assumption of rotational symmetry is relaxed. Even though it would not

significantly complicate the analytical methodology, isolated horizontal supports are

not considered, since these are neither present in plants nor are these easily realisable

in engineering applications.

Without them, the distinction between expansions in circumferential and radial direc-

tion is not required, since the only relevant parameter is the forcing term of the imposed

Gaussian curvature of gS A = −ε m2 ρ−2+m/a2. This actuation mode can be thought of as

a locally nonuniform thermal in-plane expansion across the shell’s domain. One way

to realise such a pattern has been demonstrated in 3D printed disks made from swelling

gels with a variable thermal expansion coefficient, in which a uniform heating causes

nonuniform expansions [101, 102], see also §3.3. The target shapes can either be el-

liptic or hyperbolic when cooled (ε < 0) or heated (ε > 0), respectively. The latter case

imposes an excess in circumferential expansions and induces periodic ‘wavy’ shapes.

The out-of-plane actuation pattern is chosen in such a way that it is capable of im-

posing a polynomial pattern of Gaussian curvature that matches the one evoked by

the in-plane actuators in Eqn (7.13). However, finding the analytical expression for

a shape for an arbitrary function of the Gaussian curvature is in general a nontrivial

inverse problem. For polynomials however, it is straightforward to obtain the func-

tion via the following procedure: the simplest example of an anticlastic structure is a

saddle, which is described by a pure twist that is given by ρ2 cos(2θ) in polar coordin-

ates. By considering a generalisation of this case, wA = ηAρ
i cos( jθ) , all curvatures

can be calculated according to Eqn (7.7) and Eqn (7.3). It can be shown that the Gaus-

sian curvature does not vary in circumferential direction for j = ±i, for which it takes

a polynomial form: g = −(i − 1)2i2η2
Aρ

2i−4/a4. Thus, the actuation pattern is chosen to

be

wA = ηAρ
i cos(iθ) , (7.14)

where continuity at wA(θ = 0) = w(θ = 2π) as well as the differentiability of w is guar-

anteed by choosing i as an integer greater than one. The realisation of such actuation

patterns has to the knowledge of the author not been shown in practice, yet, but the
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3D-printing method of Klein et al. [101] could be extended to introduce through thick-

ness variations of the thermal expansion coefficient via a layered setup that accounts

for such a periodic variation across the shell’s domain.

Shape functions

A more elaborate deflection field is required here since the absence of rotational sym-

metry requires not only the radial bending moment, but also the twisting moment to

vanish at the edge. The latter, however, is known to influence (bi-)stability thresholds

significantly. In order to choose a set of shape functions that can adapt to several tar-

get shapes, anticlastic as well as synclastic functions, wg− and wg+, respectively, are

considered as part of the elastic displacement field, wE = wg+ + wg−. Suitable choices

for hyperbolic geometries are obtained by extending the actuation shape in Eqn (7.14)

with a polynomial series of (1 + C1ρ
2 + C2ρ

4) and determining the constants via the

boundary conditions in order to obtain:

wg− = ηiρ
i · cos(iθ)

(
1 − 2

(
1 −

2(3 + i)
3 + 3ν + 4i + i2

)
ρ2 +

1 − 3ν − i2

3 + 3ν + 4i + i2ρ
4
)
, (7.15)

with an integer i > 1 as before. By neglecting the circumferential variations in the

same trial function, appropriate elliptic shape functions are found:

wg+ = η0ρ
2 + η1ρ

4 −

(
η0(1 + ν) + η12(3 + ν)

3(5 + ν)

)
ρ4 , (7.16)

where two degrees of freedom, η0 and η1 arise, since the twisting condition is satisfied

automatically. Since the approach is limited to only a few degrees of freedom, only

the first two functions of wg− are considered, see Fig. 7.4; higher-order one-term ap-

proaches may be used though to calculate the response in particular modes with a wave

numbers greater than three.

Coupling with in-plane stretching

Even though the Gaussian curvature of each mode in isolation is constant in circumfer-

ential direction, the geometrically nonlinear mode interaction, cf. Eqn (7.3), introduces

such variations nevertheless. In order to determine the corresponding stress function, a

solution for a the general case of ∇4Φ = ρi cos( jθ) without the requirement of i = j is
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a) b)

c) d)

Figure 7.4: Elliptic (top) and anticlastic mode shapes (bottom): (a) and (b) illustrate a pure
deformation of η0 and η1 according to Eqn (7.16), respectively, while the (c) and (d) show
considered mode shapes of Eqn (7.15) with wave number of i = 2 and i = 3; colour indicates
vertical displacement.

constructed. The terms of Gaussian curvature are sorted in a matrix, gmn, with respect

to their polynomial order and wave number to apply a series solution: Michell [142]

showed that the solution to the homogeneous problem, ∇4Φ = 0, gives

Φh = A0 log(ρ) + B0ρ
2 log(ρ − 1) + C0ρ

2 + D0θ

+
(
A1ρ + B1ρ

−1 + B′1θρ + C1ρ
3 + D1ρ log(ρ)

)
cos(θ)

+
(
E1ρ + F1ρ

−1 + F′1θρ + G1ρ
3 + H1ρ log(ρ)

)
sin(θ)

+

∞∑
n=2

(
Anρ

n + Bnρ
−n + Cnρ

n+2 + Dnρ
−n+2

)
cos(nθ)

+

∞∑
n=2

(
Enρ

n + Fnρ
−n + Gnρ

n+2 + Hnρ
−n+2

)
sin(nθ) .

(7.17)

This solution extends the rotationally symmetric case – where only A0, B0,C0 arose –

by similar terms that vary with θ. In the case of a closed cap, exponents ≤ 1 are

energetically not permissible, and are thus ignored; the same holds for all components

that contain log(ρ)-terms or depend on θ outside of a trigonometric function. The

constants A1 and E1 are irrelevant since they do not evoke any stresses. Thus, the
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homogeneous solution simplifies to:

Φh = C0ρ
2 + C1ρ

3 cos(θ) + G1ρ
3 sin(θ)

+

∞∑
n=2

(
Anρ

n + Cnρ
n+2

)
cos(nθ) +

∞∑
n=2

(
Enρ

n + Gnρ
n+2

)
sin(nθ) .

(7.18)

The particular solution is constructed by representing the stress function as a Fourier

series,

Φ(ρ, θ) =

∞∑
n=−∞

Φ(ρ)n cos(nθ) , (7.19)

where Φ(ρ) is a function in ρ only, while the circumferential variation is expressed

through the summation term. Trying to find a solution to a single non-homogeneous

term ∇4Φ(ρ)n cos(nθ) = ρi cos( jθ) then gives:

Φ(ρ)n =
ρi+4

(−i + n − 4)(−i + n − 2)(i + n + 2)(i + n + 4)

+ Anρ
n + Bnρ

−n + Cnρ
n+2 + Dnρ

−n+2 ,

(7.20)

which is only a valid function in ρ for coinciding wave lengths, j = n. Note that the

constants arising in this solution recover the infinite series part of the Michell [142]

solution in Eqn (7.18). For the chosen basis functions, the singularity for ±n = i + 2

and ±n = i + 4 are not relevant. However, the singularity can easily be removed and

the solutions,

Φ(ρ)n =
ρi+4(2(i + 2)(i + 3) log(ρ) − i(i + 7) − 11)

16(i + 2)2(i + 3)2 for ± n = i + 2 ,

and Φ(ρ)n =
ρi+4(2(i + 3)(i + 4) log(ρ) + i(i + 5) + 5)

16(i + 3)2(i + 4)2 for ± n = i + 4 ,
(7.21)

show that the interaction of such modes would cause an infinite stretching energy due

to the log-term.

The presented solution set is employed to relate a corresponding stress term

to each entry in the coefficient matrix of the Gaussian curvature, gi j, in which

squared trigonometric entries are prevented by using the power reduction identities of

cos2(θ) = [1 + cos(2θ)]/2 and sin2(θ) = [1 − cos(2θ)]/2. Despite the arbitrary choice

to use a Fourier series with cos-terms, it is required to also consider the constants of
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integration containing sin-terms, En − Hn, since these are needed in some cases to ac-

count for twisting terms that have a sinusoidal component due to the application of a

power reduction identity. Thus, a complete solution for Φ(ρ, θ) can be calculated, and

the stress resultants are derived from it via:

σr =
1
r
∂Φ

∂r
+

1
r2

∂2Φ

∂θ2 , σθ =
∂2 Φ

∂r2 and σrθ = −
∂

∂r

(
1
r
∂Φ

∂θ

)
. (7.22)

The constants of integration are employed to satisfy the in-plane boundary conditions

of σr = σrθ = 0 at ρ = 1. By sorting the stress terms with respect to their polynomial

order and wave number before enforcing the outer edge condition on each subset, a

unique and contradiction-free solution for all constants is found; their expressions are

given in detail in the appendix. With these, the strain energy functional can be calcu-

lated, which allows the identification of stable configurations via energy minimisation

as before.

7.2 Results

First, details about the FE reference simulations are described in §7.2.1. The solution

is then compared to analytical predictions of synclastic actuation patterns in §7.2.2,

before anticlastic cases are considered in §7.2.3. Each section emphasises the pos-

sibility of stress-free transformations via natural growth as well as the possible ways

of in-plane actuation alone, where a shape change is evoked by accumulated internal

stresses that ultimately trigger buckling.

7.2.1 Finite Element Modelling

In order to evaluate the suitability of the presented method, the results are compared

to finite element simulations conducted with the commercial software ABAQUS [123].

The quasi-static, implicit calculation uses a default time integration scheme with a

free, quad-dominated mesh using over 1000 quadratic S8R elements for the disk, with

a = 1, t = 0.01, E = 107, ν = 0, and a density of 2.58 · 10−4; all values refer to

SI units. A small imperfection with an amplitude of t/1000 consisting of the first ten

eigenvalues was prescribed, in order to seed out-of-plane buckling modes. The analysis

required to specify a very small growth increment step of ∆ε = 0.01t2/a2 to ensure
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that bifurcation points are captured accurately. The growth strains were modelled as

a spatially nonuniform thermal expansion in a material with polar-orthotropic thermal

expansion coefficients.

7.2.2 Synclastic Cases (g>0)

First, several examples of growth modes with positive imposed Gaussian curvature

are discussed: natural growth modes, for which the problem simplifies to an entirely

geometric one, are considered before the buckling behaviour of an initially flat plate

under various in-plane actuations is analysed.

Synclastic Natural Growth

By combining in-plane and out-of-plane actuation methods, it is possible to create

‘deformed’, stress-free non-Euclidean shapes. The geometric nature of this problem

requires to find compatible actuation patterns in which the stretching and bending sur-

face deform in compatible ways; if gS A − gBA = 0, the forcing term becomes zero,

and no elastic deformations are required. However, in the present over-constrained

problem, the support conditions may introduce an additional source of elastic in-plane

deformations, and thus, an additional in-plane compatibility equation arises that allows

– if satisfied – for stress-free growth modes even in cases where out-of-plane actuation

according to Eqn (7.6) imposes Gaussian curvature.

One way to determine the in-plane parameters, εr, εθ and ε0, is to declare two of

them as additional degrees of freedom, and to minimize the energy by ensuring that all

eigenvalues of the stiffness matrix are positive. More intuitively, the in-plane stresses,

σr and σθ, can be set to zero, which provides two required equations to determine εr

and εθ as:

εr =
2η2

A

a2 +
3nr

kua
− 3ε0 and εθ =

nr

kua
− ε0 . (7.23)

The coinciding results impose a Gaussian curvature gBA = gS A = 4η2
A/a

4 without

elastic components (ηE = 0) and cause a central out-of-plane displacement of ηA.

Natural growth modes in roller-supported shells are possible if nr = 0, since ku = 0

causes a singular expression otherwise. If a spring is present, it balances the external

radial force via a resulting radial edge displacement of u = nr/ku, whereas the change
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due to the quadratic terms, εr and εθ, is compensated by a thermal expansions of ε0

that prevents an additional edge displacement; all values are limited by the underlying

assumption of small strains, which requires for instance a sufficiently stiff spring if

an edge force is present. Fixed-pinned shells are a particular case of spring-supported

shells, in which the radial force does not affect the response any more; all other values

stay unchanged. For all support cases, natural growth can be achieved by using radially

quadratic variations of the actuated strain only via εrA = 2(ρ ηA/a)2 and εθA = 0, when

other influencing factors are absent (nr = ε0 = 0).

Note that these shells become bistable, once the out-of-plane displacement exceeds

η2
A = 16t2/(1−ν) for roller-supported shells or η2

A = 16t2(1−ν)/(7−ν) for fixed-pinned

shells; for details about these thresholds, see §5.

Synclastic Buckling due to In-Plane Actuation

If growth modes are not compatible, stresses arise and these will ultimately lead to

buckling: whilst it is energetically favourable to first deform in plane, at a certain

threshold, out-of-plane deformations avoid additional stretching. In the following

study of the post-buckling behaviour of an initially stress-free disk, the interaction of

the in-plane actuation parameters εr, εθ and ε0 (see Eqn (7.9)) and additional boundary

conditions, nr and ku (Eqn (7.12)) is emphasized.

Buckling due to radial force and constant expansion (εr = εθ = ηA = 0→ gA = 0):

Before cases with induced Gaussian curvature, gA, are analysed, the buckling

thresholds of a radial force and a constant expansion is discussed to evaluate the suitab-

ility of the presented approach. From the stability criterion, ∂2Π/∂η2
E = 0, the critical

radial load is derived:

(nr)cr = ε0 kua −
kut2

3a
−

Et3

3a2(1 − ν)
. (7.24)

In the limiting cases of roller supports (ku = 0) and pinned supports (ku → ∞), this

simplifies to

(nr)cr = −
Et3

3a2(1 − ν)
or (ε0)cr =

t2

3a2 , (7.25)

respectively. The uniform thermal expansion, ε0, drops out in the first case since the

imposed deformation is compatible (gA = 0) and there is no support reaction in re-

sponse to a radial displacement u; in the second case, the radial force does not affect
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the strain energy equation anymore since u = 0. For ν = 0, the result of ncr = 3.33

differs from the finite element result of ncr = 2.85 by 16 % and provides a competit-

ive and even slightly superior accuracy compared to ‘exact’ approaches using Bessel

functions [48], where ncr is found to be 3.5.

After buckling, the midpoint deflection becomes

ηE = ±2a

√
−3

nr − (nr)cr

Et + kua(7 − ν)
with lim

ku→∞
ηE = ±2a

√
3
ε0 − (ε0)cr

7 − ν
; (7.26)

the square root term is positive, since nr is negative and has a larger magnitude than

(nr)cr. These structures are also bistable in their post-buckled state, because they can be

inverted to precisely form their mirrored shape; each shape is separated by an energy

barrier commensurate with snap-through buckling.

Buckling due to imposed in-plane strains (ηA = 0):

In a more general case, additional in-plane actuations are considered, which impose a

non-Euclidean shape via gS A = 2(εr − 3εθ)/a2. Using the previous solution, a buckling

threshold, g∗S A, at which out-of-plane deformations begin, is found:

g∗S A =
16
a4

Et3/(1 − ν) + t2kua − 3kua3(εθ + ε0) + 3nra2

Et + kua(7 − ν)
; (7.27)

it simplifies to

g∗S A =
16
a2

[
t2

a2(1 − ν)
+

3nr

Et

]
for ku = 0

and g∗S A =
16
a2

t2 − 3a2(εθ + ε0)
a2(7 − ν)

for ku → ∞ .

(7.28)

The corresponding post-buckled midpoint deflection takes a particularly compact form

of

ηE = ±
a2

2

√
gS A − g∗S A , (7.29)

where the ± sign indicates a mirror-symmetric bistable response in either the up or

down direction. For the simple case of ku = nr = ε0 = εθ = 0, a buckling limit of

g∗S A = 16t2/(1 − ν)a4 and a post buckled shape that is identical to the finding of [49] is

obtained. For other values of ku, the shape differs only by the buckling threshold, g∗S A

in Eqn (7.27).
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Figure 7.5: Disk subjected to a radially quadratically varying temperature field with
εr = εθ = −ε0: FE results (full line) with a/t = 100 compared to analytical model (dashed
line). The results are in excellent agreement with up to ω = 50. The inset-figure shows the
buckling threshold in close-up.

The predictions for the midpoint deflection are compared to finite element results in

Fig. 7.5 for ku → ∞ and, interestingly, they show an excellent agreement far beyond

the limits of shallow shell theory, up to a value of 50 t, equal to one half of the shell’s

planform radius. Such an excellent agreement, however, cannot be explained without

overlapping effects from several assumption that cancel out each other. The most rel-

evant assumptions in this context are: (1) a small strain assumption, whilst the imposed

in-plane strains for gS A = 1 amount to 21 %; (2) the strain energy is calculated on the

initial configuration, even though the surface area changed by 15 %; (3) the deriva-

tion employed only nonlinear displacement components of the transversal components

and is thus not invariant under rotation, but the outer edge rotates up to 60°; (4) the

condition of a vanishing edge moment is neglected by the uniform curvature approach.

Hence, further investigations are required to shed more light into the governing factors.
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7.2.3 Anticlastic Cases (g<0)

Relaxing rotational symmetry offers an interesting variety of achievable hyperbolic

geometries. In contrast to elliptic geometries (g > 0), the asymmetry of hyperbolic

geometries (g < 0) leads to out-of-plane shapes described by periodic ‘waves’. In

order to make this nontrivial problem amenable to an analytical solution procedure,

only case of free plates without boundary supports are considered.

Higher-Order Natural Growth Modes Without Rotational Symmetry

For the considered polynomial growth patterns of order m according to Eqn (7.13), a

matching out-of-plane actuation growth pattern with wave number i as described in

Eqn (7.14) is found by setting gBA = gS A. If elastic deformations are absent, gB = gBA,

and thus, the natural growth mode can be found by comparison of coefficients via:

−(i − 1)2i2η2
Aρ

2i−4/a4 = −ε m2 r−2+m/am . (7.30)

Matching orders require i = m/2 + 1 or equivalently m = 2(i−1) to cause a compatible

deflected shape of:

w = ηAρ
i · cos(iθ) with i > 1 and i ∈ N . (7.31)

The corresponding in-plane actuation strains in Eqn (7.13) prevent an elastic response

if they take the value:

εrA = εθA =

(
(2 + m)ηA

4a
ρi−1

)2

and εrθA = 0 . (7.32)

The squared term arises due to the nonlinear influence of the out-of-plane displacement

on the in-plane strains and ultimately requires in-plane actuation modes of even order

for natural growth modes. The latter wave number is restricted to integers due to

compatibility in closed shells. As a result, an additional wave can be formed as soon

as the polynomial order of in-plane actuation strains is increased by two.
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Anticlastic Buckling

Since out-of-plane actuation modes (ηA , 0) complicate the manufacturing process due

to their circumferential variations, it appears tempting to control the wave number by

solely using a rotationally symmetric in-plane actuation mode of εrA = εθA = ε ρm .

Figure 7.6: Magnitude of displacements according to FE results analysing the post-buckled
shape of very thin disks with a/t = 1000 subjected to grow strains proportional to ρ2 (a), ρ4

(b), ρ6 (c), ρ8 (d), and ρ10 (e). Increasing powers in the grow strain polynomial correlate with
the wave number in the post-buckled shape via ρi/2+1 giving i waves.

Finite element simulations in Fig. 7.6 confirmed that imposing solely in-plane strains,

εrA and εθA, of order ρ2i−2 without stipulating out-of-plane actuation modes results

in stable configuration with i waves if a transition to such a shape was marshalled.

However, entirely in-plane actuated shells do not straightforwardly deform into those

shapes, since buckling into shapes of lower wave number occurs first. This becomes

apparent, when a polynomial in-plane growth strain of order m is considered and a

simplified shape function of a single mode of order i of the form wE = ρi cos(iθ) is

taken into account: in order to obtain a compact estimate of the buckling threshold, the

boundary conditions are ignored here for the moment, so that the buckling threshold

of imposed in-plane strains according to Eqn (7.13) reads:

ε ≥
5i(m + 2)(m + 2i)t2

48m(1 + ν)
. (7.33)

Since i is an integer greater than one, this value is lowest for i = 2 for any polynomial,

and thus, an initially flat plate will – independently of the growth strain’s order, m –

first buckle into a saddle. This result is reasonable since it aligns with the scaling law

of the energies: whilst the stretching energy scales with ΠS ∝ Eta2ε2, the bending

energy is proportional to ΠB ∝ Et3ε; thus, at a certain threshold, ε∗, that scales with

the slenderness, t2/a2, bending becomes favourable to stretching – and hence, the shell

buckles. Responses of lower wave numbers, however, that consequently include less
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Figure 7.7: Strain energy predictions of simplified one-term models over dimensionless actu-
ation parameter ε ·a2/t2 for an actuation strain of εrA = εθA = ερ4 that prescribes a target shape
with three waves: pure stretching response (dashed), compared to mode with two waves (blue)
and three waves (orange). A close up of (b) is depicted in (a). Buckling into a saddle shape
is energetically favourable for small ε, while shapes with three waves that resemble the target
geometry become energetically favourable for larger values of the imposed strain.

Table 7.1: Buckling threshold for in-plane actuation strains of differing orders: comparison of
analytical predictions to FE results.

Dimensionless buckling threshold ε∗ · a2/t2

Order FE Analytical |Deviation| [%]
ρ2 3.19 3.03 5.01
ρ4 3.28 3.28 0.00
ρ6 3.74 3.84 2.80
ρ8 4.25 4.49 5.60

ρ2 + 1
4ρ

4 + 1
8ρ

8 2.92 1.96 32.9

bending, become energetically favourable at an earlier point; see the energy plot for

different mode shapes in Fig. 7.7 for an illustration.

The values for the buckling threshold in Eqn (7.33) were obtained by a simplified

approach that neglected the vanishing edge moments. They deviate by approxim-

ately 25 % from the finite element results for polynomial orders between 2 and 8.

The employed higher-order model with shape functions specified in Eqn (7.15) has

a significantly improved accuracy, which is listed in Tab. 7.1. Since nature does

not necessarily restrict itself to polynomials with a single term, the model addition-

ally considered a more intricate, arbitrarily chosen polynomial actuation pattern of

εrA = εθA = ρ2 + 1
4ρ

4 + 1
8ρ

8, which combines multiple terms of different order to illus-

trate the versatility of the presented approach: whilst the finite element reference solu-

tion shows that the buckling threshold differs by almost a third, the deflection field,
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Figure 7.8: Dimensionless midpoint deflection over dimensionless in-plane strain actuation
parameter, ε · a2/t2 ∝ gS A for a polynomial actuation pattern.

depicted in Fig. 7.8, is approximated well; the difference in ε∗ however, causes an

offset that remains.

Secondary buckling modes:

Since all considered shells buckle into a saddle first, the question arises, if a shape that

evinces the wave number of the target shape will actually be achieved due to a further

increase of the actuation strain for orders of m ≥ 4, or if the saddle stabilises itself and

prevents the required additional buckling transition. As an example, let us consider an

initially flat plate that is subjected to a constantly increasing in-plane actuation strain of

εrA = εθA = ερ4 that corresponds to a target shape with three waves. The corresponding

minima and maxima of the displacement curve for ωM ≤ 20 are shown in Fig. 7.9(a)

as a function of ε, where full lines indicate analytical predictions that are compared

to FE simulations (dashed lines). The finite element reference solution was obtained

by preventing the radial rotation at one outer node, since the shell is neutrally stable

otherwise and would allow for circumferential wave propagations in the post-buckled

state; for the analytical model, the mirror-symmetric buckling modes were omitted for

the sake of clarity.

Before the existing deviations between the two methods are discussed, the qualitat-

ive buckling behaviour, which is captured consistently by both methods and depicted
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in Fig. 7.9(b), is described: the initially flat plate first buckles into a saddle and a sec-

ondary bifurcation is observed at a significantly larger value of ε. However, instead

of increasing the wave number, the additional instability causes the saddle to develop

a dominant direction of curvature via a deformation mode that is approximately cyl-

indrical. This form of symmetry breaking buckling is a known effect in out-of-plane

actuated shells [49], but it has to the knowledge of the author not been modelled in in-

plane actuated shells. The reason for this buckling is that the Gaussian curvature of the

deformed configuration evinces a significant mismatch with the target configuration,

and thus, additional stretching as well as bending stresses arise; the latter eventually

induce the second instability. According to the presented analytical method, an ad-

ditional configuration with three waves becomes stable at ε = 8.9t2/a2, but its strain

energy is higher, and thus, no mode transition is expected in the framework of shallow

shell theory with ωM / 20. Finite element simulations confirmed the existence and

stability of the additional mode, but as expected it required to marshal the transition by

applying a temporary external load.

Whilst FE reference simulations and the analytical model are qualitatively concur-

ring, the quantitative predictions of the secondary buckling threshold are not satisfying

in the latter case since they show significant differences. These are partially caused by

existing deviations in the post-buckled shape and the buckling-sensitivity of shells. It is

well-known that imperfections as small as t/10 can cause significant reductions of the

buckling threshold, and here, the discrepancy between FE simulations and the analyti-

cal model at the point of the secondary buckling is of the order of the thickness. This

suggests that more elaborate shape functions are required to accurately approximate

the post-buckled shape.

The results demonstrate that the presented approach and FE method complement

each other in growth problems: first, the estimates of the buckling threshold obtained

by the higher-order model are vital to estimate the growth increment size required

in finite element simulations. If it was chosen too high, e.g. a value as small as

∆ε = 0.1t2/a2 in the considered example, the correct bifurcation point is missed in

a transient analysis. Note that an arc-length method would require a user-defined sub-

routine in ABAQUS , in which the load-proportionality factor is substituted by a growth

proportionality factor. Second, the knowledge about the target shape allows us to un-

derstand the structural behaviour and interpret the observed results. Lastly, and most

importantly, the ‘hidden’ alternative stable configuration with three waves would have
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Figure 7.9: (a) Deflection over growth parameter: the shell buckles first into a saddle before a
secondary buckling occurs. Additional stable configurations with three waves exist and show
the lowest amplitude. (b) Illustration of the buckling behaviour: solid arrows show the observed
response in the absence of load, while dashed arrows show load-free stable configurations that
are separated by an additional energy barrier.

easily been missed in FE simulations since a load that closely resembles the target

shape is required to foster the transition. The analytical predictions were crucial in

order to prove the existence of such a state since they pointed towards this result and

provided an estimate of the threshold of stabilisation.

7.3 Summary

A shallow shell model for differential actuation patterns that mimic simplified nonlin-

ear growth patterns in floral systems was presented. In a first step, a Ritz approach
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assuming uniform curvature was employed. In order to analyse the interaction of actu-

ation methods on their post-buckling behaviour, a three-parameter in-plane actuation

mode, a uniform out-of-plane actuation mode, an additional radial force on the bound-

ary as well as horizontal supports with variable stiffness were considered. The pre-

dictions of the buckling thresholds and post-buckled shapes were found to be in good

agreement with available data in literature as well as FE results, for which some pre-

dictions showed an excellent fit even far beyond the limits of shallow shell theory. It

was demonstrated that natural growth modes, in which no stresses arise, are achievable

in the presence of horizontal supports by combining in-plane with out-of-plane actu-

ation modes. In particular, it sufficed to employ a single in-plane actuation parameter

that imposes only radial growth strains with a quadratic variation to match a uniformly

applied out-of-plane actuation.

In order to analyse hyperbolic shape transformations, the assumption of rotational

symmetry was then relaxed and a centrally fixed shell was considered. First, it was

demonstrated that natural growth modes with circumferential variations of cos πn exist,

if the imposed deformation is matched by a polynomial in-plane actuation patterns that

only vary radially by an even order of 2n − 2. In a subsequent step, the response of

shells to an isolated in-plane actuation was investigated: when subjected to anticlastic

actuation patterns, shells are forced to buckle into a saddle-shape first, even when the

target shape possesses more than two waves. In such cases, a second instability was

observed, but instead of transforming towards a higher wave number, shells buckled in

a symmetry-breaking manner that caused a flattening out via a cylindrical deformation

mode.

Whilst a transition towards a shape of the target shape’s wave number was not

achieved directly through in-plane actuation alone, such a stable shape was predicted

by the analytical model and its existence was confirmed in FE simulations; however,

the transition had to be marshalled to observe it. This finding emphasises the syner-

gistic relation between the developed analytical model and numerical approaches: the

qualitative predictions, which evinced remaining quantitative discrepancies, captured

the qualitative behaviour appropriately, and thus, it was possible to confirm and refine

the analytical predictions; without those, however, tedious numerical parameter stud-

ies that might nevertheless easily miss a certain feature are required. So, while the first

provides insight into the structural behaviour with a certain degree of uncertainty, the

latter can be employed for the purpose of reassurance.



Chapter 8

Conclusions and Future Work

This dissertation investigated the bistable behaviour of shells in the presence of addi-

tional support conditions and aimed at gaining further insight into the promoting and

eschewing factors of bistability by employing a (semi-)analytical methodology. For

deep spherical or cylindrical shells, it was shown that geometrically linear theories

are suitable to describe their inversion. Since only small deviations from an idealised

mirror-symmetric post-buckled shape are evoked through an edge effect of a vanish-

ing bending moment, accurate predictions were obtained. However, for shallower and

thicker shells, more elaborate approaches that consider geometric nonlinearities are

required, which constituted the main focus of this dissertation.

In the framework of the Föppl-von Kármán plate theory, a novel semi-analytical Ritz

approach was derived with the aim to get hold of relevant aspects via closed-form

solutions. The assumtion of a polynomial deflection field contained up to four degrees

of freedom and satisfied all boundary conditions strongly – in contrast to simplifying

uniform curvature approaches. The relation between out-of-plane bending and in-plane

stretching was established via Gauss Theorema Egregium and stable configurations

were identified via energy minimisation. The analysis focussed on three particular

aspects for which the interaction with the support conditions were studied.

First, a macro-element for isotropic, homogeneous and rotationally symmetric shal-

low shells was developed by considering extensional in-plane springs as well as rota-

tional springs at the outer rim. The familiar clamped or hinged boundary conditions

were approximated via the limits of the respective spring stiffness, and intermediate

values allowed investigations of the transition between these extreme states. It was

demonstrated that the superior accuracy of the employed approach with a higher-order
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deflection field is required to investigate (initially) nonuniformly curved shells as well

as more intricate deformations that result from clamped edges. In all studied examples,

it was found that an increased in-plane stiffness promotes bistable inversions, whereas

the influence of rotational springs was multi-faceted. Whilst in general, an increased

resistance against rotation has a hindering effect, an intermediate stiffness value may

cause a mode transition that is in fact stabilising bistable inversions.

Another boundary condition – the one of a free inner edge – was then imposed by cut-

ting a hole into a cap. It was found that these have a beneficial effect, since bistable

shells of a smaller physical height can be produced. In a further step, the developed

macro-element was employed to study the interaction of shells. It has been shown that

shells with at least four stable configurations can be manufactured by adding hinges

that enable structural parts to invert in isolation by stopping bending from propagat-

ing. So, while restricting edge rotations has the tendency to hinder bistable inversions,

freeing them can allow for extra stable configurations and widen the space for further

structural manipulations.

Second, variations of the internal directional stiffness of shells were analysed. The

constitutive equations were aligned with the rotational symmetry of the concerned

structure and a polar-orthotropic material law was considered that has not been studied

in the context of bistability before. Based on the linear solution for plate bending, the

approach presented here was extended to include deflection terms that capture stress

singularities in bending as well as stretching that arise if the radial stiffness exceeds

the circumferential one. A detailed investigation of the stress resultants and a compar-

ison to finite element reference solutions confirmed the validity of this assumption and

demonstrated the superiority of the approach compared to existing nonlinear shallow

shell models. An analysis of the interaction between the support conditions and the or-

thotropic parameter elucidated a strong coupling with respect to the bistable perform-

ance: in contrast to roller-supported shells, where no alternative equilibrium configura-

tions were found for a very small circumferential stiffness, fixed-pinned shells showed

the lowest required apex height for such materials. The difference is engendered by a

quasi-decoupling of the radial and circumferential response for very low values of the

hoop stiffness, which causes the structure to evince a beam-like behaviour. The ana-

lysis of stiffness variations pointed towards a new perspective on the influence of the

hoop stiffness with respect to bistability. Whilst the circumferential rigidity is usually

perceived as a promoting factor in free-standing shells, an contradicting trend was ob-

served here in fixed-pinned caps. It was found that the circumferential stiffness is only
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insofar stabilising as it evokes radial in-plane stresses through a strong ring beam ef-

fect, but if radial stresses are assured by horizontally-immovable supports, it becomes

a redundant feature that is even a slight impediment. It was then demonstrated that

stress-singularities can straightforwardly be avoided by creating a central hole in the

centre of the shell. Whilst the bistable performance of fixed-pinned shells was barely

affected by such a cut, roller-supported ones showed a significant stabilisation and were

more likely to stay inverted.

Finally, the analytical model was extended by considering imposed in-plane stretch-

ing as well as out-of-plane bending strains. These had non-Euclidean target metrics

due to spatially nonlinear varying actuation patterns. Additional horizontal supports

required a refined perspective of the actuation parameters, so that the interaction of

six parameters in total was investigated. When all of them are fine tuned in a compat-

ible way, it becomes possible to evoke non-Euclidean shape transformations without

changes of the strain energy known as ‘natural growth modes’. In particular, it was

found that imposing only two actuation parameters allowed initially flat plates the

stress-free transformation into the target shape of a cap even when horizontal supports

are present. In a final example, the assumption of rotational symmetry was relaxed in

exchange for the simpler supports conditions of a free-standing shell: by considering

more elaborated growth patterns, it was found that natural growth into anticlastic tar-

get shapes with n sinusoidal waves is possible, if the out-of-plane actuation pattern is

matched by a particularly simple pattern of imposed in-plane strains, which is a poly-

nomial of order 2(n−1) in r without circumferential variations. The result inspired the

analysis of a shell’s response to such an in-plane actuation of order m in isolation: it

was demonstrated that independently of the order, all shells buckle into a saddle-shape

first, even though actuation strains of order m ≥ 4 have a target shape with a higher

wave number. A further increase of such growth strains caused a secondary buckling,

but instead of increasing the wave number, an approximately cylindrical deformation

mode was observed. Interestingly, an additional, ‘hidden’ stable mode with a matching

wave number was identified, but it could not be observed without arranging a transition

via a temporary applied external load. Whilst the qualitative behaviour was accurately

captured by the presented analytical model, quantitative differences of the secondary

buckling threshold indicated that an even more elaborated approach can further in-

crease the accuracy. The results highlighted the importance of analytical approaches,

since they point towards results that might easily be missed otherwise. Insofar, the syn-
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ergistic nature with finite element simulations was demonstrated: while the first give

inspiration in the design stage, the latter is used for validation and a refined analysis.

The derived shallow shell model is capable of adapting to various requirements in

shape-changing structures and can be applied as a macro-element in future studies. It

might in particular inspire further investigations of array applications of bistable unit

cells as in ‘morphing metal’, cf. Fig. 3.8. The new understanding of the influence

of support conditions on the inversion of doubly curved shapes allows one to decide

where simpler beam structures suffice, and where shells provide indispensable com-

ponents. A possible application involves morphing solids, where multiple arrays with

bistable unit cells are stacked in thickness direction. By collapsing one layer into an

approximately mirror-symmetric shape, it would become possible to produce, for in-

stance, façades with adaptable thermal isolation properties, or novel meta-materials

with a multistable ‘memory effect’. Prototypes with beam-like structures were pro-

duced during this research project and serve as a proof of concept, but the employment

of shells might offer a richer and an even more robust design space in the future.
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Appendix A

Isotropic Nonlinear Shell Model

Closed shells

For a n degree-of-freedom model, the current radial and circumferential curvatures, κr

and κθ, respectively, read:

κr = κ0
r + κh

r + κc
r

=κ0
r +

n∑
i=1

[
1

1 + ν
−

1 + 2i
1 + 2i + ν

ρ2i

]
ηi

a2 − 4
(
3ρ2 − 1

) Kϕ a
8D

n∑
i=1

[
1

1 + ν
−

2i
1 + 2i + ν

]
ηi

a2 ,

κθ = κ0
θ + κh

θ + κc
θ

=κ0
θ +

n∑
i=1

[
1

1 + ν
−

1
1 + 2i + ν

ρ2i

]
ηi

a2 − 4
(
ρ2 − 1

) Kϕ a
8D

n∑
i=1

[
1

1 + ν
−

2i
1 + 2i + ν

]
ηi

a2 ,

(A.1)

where the initial values κ0
r and κ0

θ follow from Eqn (5.21). The change in Gaussian

curvature according to Eqn (5.10) is found to be:

g =

κ0
r +

n∑
i=1

[
1

1 + ν
−

1 + 2i
1 + 2i + ν

ρ2i

]
ηi

a2 − 4
(
3ρ2 − 1

) wc
M

a2

×κ0
θ +

n∑
i=1

[
1

1 + ν
−

1
1 + 2i + ν

ρ2i

]
ηi

a2 − 4
(
ρ2 − 1

) wc
M

a2

 − κ0
rκ

0
θ ,

(A.2)

where wc
M is defined in Eqn (5.31). The corresponding αi-terms for Eqn (5.13), where

2p − 4 = 4n, for three degrees of freedom and a uniformly curved initial shape [c.f.

Eqn (5.21a)] read:
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α0 =

(
2
(
η1 + η2 + η3 + 4(ν + 1)wc

M

)
+ (ν + 1)w0
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2
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(A.3)

For non-uniformly curved initial shapes defined in Eqn (5.21b), the corresponding α-

terms of a model with three degrees of freedom are calculated to be:
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M

)
2
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Annular Shells

Constants Ai for an initially uniformly curved shell with annular planform and a de-

flection field according to Eqn (5.42) subjected to boundary conditions as specified in

Eqn (5.43):

A0 = − (A1 + A2 + A3 + η1 + η2 + η3)

A1 = −
2A2(1 + ν) + 3A3(2 + ν) + 4η1ν + 5η2ν + 6η3(5 + ν) + 12η1 + 20η2

ν
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[
3a3A3(2 + ν)(a + b) + 4a2η1(3 + ν)

(
a2 + ab + b2

)
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·
(
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)
+ 6η3(5 + ν)

(
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]
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(
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3a3(a(2 + ν) − 3bν)

]
(A.5)

It is convenient to write the solution to Eqn (5.44) in form of a series:

Φ
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2 + C2 log[ρa] ,

(A.6)

where the following substitution was employed in order to allow for a compact nota-

tion: A1 = ξ1, A2 = ξ2, A3 = ξ3, η1 = ξ4, η2 = ξ5, η3 = ξ6.





Appendix B

Polar-Orthotropic Nonlinear Shell
Model

Closed Cap

In order to satisfy the boundary conditions of w(a) = 0, mr(a) = 0, substitute the

following values in Eqn. (6.10).

A0 = −a1+
√
β
(
η1 + aη2 + a2η3 + a3η4

)
A4 =

η1a(1 +
√
β)(
√
β + ν) + η2a2(2 +

√
β)(1 +

√
β + ν) + η3a3(3 +

√
β)(2 +

√
β + ν)

−a4(4 +
√
β)(3 +

√
β + ν)

(B.1)

Using the compatibility Eqn (6.9), the Airy stress function, Φ = Φp + Φh, can be

expressed in terms of the η constants as:

Φp =
Eβ
2

4∑
i=1

4∑
j=1

( √
β + i

)
ηiρ

√
β+i

[
4w0

Mρ
2 δi j
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) (
2
√
β + i + 1

)
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(√
β + j

)
η jρ

√
β+ j(√

β + i + j − 1
) (

2
√
β + i + j

) (
3
√
β + i + j − 1

)] (B.2)

where δi j denotes the Kronecker delta.

173



174
APPENDIX B. POLAR-ORTHOTROPIC NONLINEAR SHELL

MODEL

Denoting the stresses arising from the particular solution, Φp, with σαr and σαθ, the

remaining constant takes the value:

C1 = −
σpr (ν kua + βE) − kuaσpθ(√
β + 1

) [
kua

(
ν −
√
β
)

+ βE
] ∣∣∣∣∣

ρ=1
, (B.3)

which simplifies to

C1 =
−σpr

1 +
√
β

∣∣∣
ρ=1

for ku = 0

(rollers)

and C1 = −
σpθ − νσpr(

1 +
√
β
) (√

β − ν
) ∣∣∣∣∣

ρ=1

for ku → ∞

(fixed pins)
.

(B.4)

Annulus

First, substitute η2 = ξ−2, η1 = ξ−1, A0 = ξ0, A1 = ξ1, A2 = ξ2 and A3 = ξ3 for the

constants in Eqn (6.11). In order to satisfy the boundary conditions of w(a) = 0,

mr(a) = 0, mr(b) = 0 and qr(b) = 0 then substitute the following values one after

another.
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Then use the same substitution to calculate the Airy stress function in terms of the

remaining two degrees of freedom, ξ−2 and ξ−1:

Φ′p = −
Eβ
2 a
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Constants for annulus with ku → 0 (roller supports):
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Constants for annulus with ku → ∞ (fixed pins):
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Appendix C

Actuation

The constants of integration for a nonlinear shell model of an initially flat plate are

given in the following. The shell is subjected to a polynomial in-plane actuation pattern

of order m according to Eqn (7.13). The deflection field possesses four degrees of

freedom: the first two, η0 and η1, according to Eqn (7.16) relate to synclastic modes,

whilst the latter two, η2 and η3 as specified in Eqn (7.14), arise in anticlastic modes

shapes with wave numbers of 2 and 3, respectively.
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11η2
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G2 = −η2
η0 [ν(1118 + 153ν) + 1805] + 2η1 [ν(479 + 48ν) + 1215]

315(5 + ν)2

E3 = 32η3
5η0 [20ν(327 + 44ν) + 9209] + η1 [8ν(2603 + 298ν) + 37065]

135135(5 + ν)(15 + 8ν)
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(C.1)


