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A B S T R A C T   

Analytical and computational techniques for finding solutions to the equations describing shoreline evolution are 
widely known and the advantages and disadvantages of both are well documented. Initial analytical solutions to 
the 1-line models were restricted to constant wave conditions and simple beach/structure configurations. Recent 
developments in analytical treatments have allowed solutions to be found for an arbitrary sequence of wave 
conditions, but again for simple configurations. Here, we propose a method of linking several analytical solutions 
together in order to describe the unsteady evolution of a beach within a groyne field, allowing for both perm
ability of the groynes and by-passing. The method relies on specifying boundary conditions in each groyne cell 
that mimic the transmission and by-passing of sediment. The conditions are generalisations of boundary con
ditions that are well-known. Solutions for groyne fields on straight and convex shorelines are presented to 
illustrate the method for constant and time varying wave conditions.   

1. Introduction 

1.1. Background 

Groynes are elongated coastal structures placed normal to the shore. 
They are usually made of timber, concrete or rock and their purpose is to 
interrupt the wave-driven longshore transport of sand along the beach in 
order to mitigate erosion. However, given a predominant longshore 
drift, accretion is expected on the updrift side of the groyne and erosion 
on the downdrift side, due to the blockage of longshore sediment 
transport by the groyne. Thus the application of groynes as a means of 
coastal protection is only partly effective as every area of accretion is 
balanced by a corresponding area of erosion. Extremes of accretion and 
erosion can be avoided by placing a sequence of groynes along a stretch 
of beach between two control points such as headlands which place a 
natural limit on the movement of sand. Alternatively, on a long open 
stretch of beach groyne fields might be constructed to taper the amount 
of sediment retained by the groynes near the edge of the groyne field. In 
this case, reducing the length of the groyne promotes bypassing of sand 
around the seaward tip, reducing the height allows sediment in sus
pension to overtop the groyne and increasing the permeability allows 
the transmission of sediment through the trunk of the groyne, as illus
trated in Fig. 1. 

It is, as a result, not uncommon to see series of groynes along a beach. 
Such an arrangement is called a groyne field; and example is shown in 

Fig. 2. 
A groyne field must be carefully designed to maintain the sediment 

material in the beach fronting the area being protected. Specifically, if 
the groyne length is too short sediment bypassing at the tips of the 
groynes may occur to an excessive degree resulting in poor sediment 
retention, (Coghlan et al., 2013). If the groynes are too long or too high 
or impermeable (e.g. mass concrete), an inadequate amount of sediment 
flow may pass to their downdrift side, and consequently, the sediment 
material which has already been lost in this area will not be replaced 
causing erosion downdrift of the groynes, (Hanson et al., 2008). 

Terminal groyne syndrome refers to the erosion which is expected to 
occur downdrift of the terminal groyne in a groyne field. Examples of 
extreme negative impacts of this phenomenon include Southwick beach 
in West Sussex, UK, as shown in Fig. 3a, (Clarke et al., 2017), as well as 
Westhampton beach in New York, shown in Fig. 3b, (Dean and Dal
rymple, 2002) (see Fig. 4). 

Further details of principles governing groyne design may be found 
in Fleming (1990), Kraus et al. (1994), Basco and Pope (2004). Here, our 
focus is on techniques to assist in predicting how a beach will respond to 
the construction of a groyne field. 

1.2. Beach model background 

The One-Line model, a simplified physics-based model, is generally 
used for simulating medium to long-term shoreline morphodynamic 
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evolution, on shorefronts extending up to approximately 30 km, 
(Gravens et al., 1991). The One-Line model has successfully served over 
time as a robust and reliable tool for assessing beach morphodynamic 
evolution, (e.g. US Army Corps, 2002), and is considered a suitable tool 
for testing the performance of groyne-fields for certain wave and hy
drodynamic conditions with respect to specific beaches, and for a variety 
of different geometric parameters as far as the groyne length, groyne 
permeability and groyne spacing is concerned. 

The One-Line model is based on a combination of the continuity of 
mass equation and a longshore sediment transport equation (e.g. Larson 
et al., 1987). The primary assumptions are: (a) the beach profile is in 
equilibrium and is unchanging in time, (this implies the bathymetric 
contours are parallel to each other so that one contour is sufficient to 
predict the entire beach movement; (b) The longshore sediment trans
port takes place up to a specific depth, the depth of closure Dc. No 
longshore sediment transport is considered to occur seaward of this. 

Early analytical solutions to the One-Line Model were based on the 
assumption of constant wave forcing, mild shoreline gradient and small 
wave angle with respect to the shoreline orientation. With these re
strictions the equations may be condensed into a single diffusion-type 
equation (Eq. (1)), (Pelnard-Considère,1956): 

∂y
∂t

= ε ∂2y
∂x2 (1)  

where x is the longshore distance on an axis X parallel to the shoreline 
trend, y is the shoreline position on a Y axis vertical to X, ε is the 
diffusion coefficient, and t is time. 

Computational integration of the one-line model is based on the 
simultaneous solution of three equations: continuity; longshore trans
port; and a geometrical expression relating the wave and beach angles. 
Time varying wave conditions, larger wave angles and nearshore wave 
transformation such as diffraction can be incorporated into computa
tional schemes to enhance their general applicability, (see e.g. Gravens 
et al., 1991; Hanson, 1989; Hanson and Kraus, 1989). They have been 
used to investigate the evolution of more complex situations such as 
groyne fields, and for design purposes. 

The one-line framework can also be extended to include one or more 
additional contours in order to provide a better description of the cross- 
shore variation in the dynamics. Nevertheless, the cross-shore exchange 
of sediment between the contours is usually parameterised in the form of 
a relaxation towards an equilibrium shape. Two-line models, in the form 
of the analytical approach of Bakker (1969) and the computational so
lution of Horikawa et al. (1979) provided the simplest description of 
changes in beach slope, while the multi-line, (or N-line), models pro
posed by Perlin and Dean (1979, 1983) and Steetzel et al. (1988) pro
vided additional fidelity to the description of cross-shore transport 

dynamics. However, N-line models have yet to find wide acceptance and 
usage in practice. This has been attributed to the greater data demands 
they make and, to a lesser extent, the longer computing time they 
require. Another reason may be their susceptibility to numerical insta
bility noted by Perlin and Dean (1983) and Shibutani et al. (2009). Their 
inherent instability under certain conditions was subsequently estab
lished by Reeve and Valsamidis (2014) for small wave and shoreline 
angles. 

On the other hand, analytical solutions to the One-Line model can be 
utilized for isolating and remotely studying specific coastal phenomena, 
and consequently validating testing computational models, (Hanson, 
1987; Wind, 1990; Walton, 1994). Further, analytical solutions can be 
evaluated immediately for any chosen time, rather than timestepping 
over many small intervals as in computational approaches. With addi
tional efforts, researchers have loosened some of the fundamental re
strictions of analytical solutions. For instance, Larson et al. (1997) 
produced an analytical solution to the One-Line Model, via Laplace 
transform techniques, for a single groyne and a groyne-compartment, 
assuming sinusoidally time-varying wave angle. An approximate 
method for allowing arbitrary time varying conditions was proposed by 
Walton and Dean (2011) and Valsamidis et al. (2013). This combined 
previous analytical solutions for constant wave conditions with a 
Heaviside scheme to allow a solution for arbitrarily varying wave 
time-series to be constructed. The same approach was adopted by Val
samidis and Reeve (2017) to develop solutions for the case of a beach 
with a groyne and a river-mouth, with the latter acting as a source or 
sink of sediment discharge influencing the shoreline evolution near the 
groyne. 

Analytical solutions to Eq. (1) produced via Fourier transform tech
niques can include time-varying wave conditions without needing 
modifications such as the application of a Heaviside scheme to do so. 
Reeve (2006) presented an analytical solution, based on Fourier trans
form techniques, for the case of an impermeable groyne on an arbitrary 
initial shoreline shape subject to arbitrarily varying wave conditions. 
The solution was presented in the form of integrals that required nu
merical evaluation to capture the effect of arbitrary wave conditions. 
Such kinds of solutions have been termed ‘semi-analytical’ because 
although they are derived analytically, they require numerical integra
tion for their evaluation. In this paper we extend the range of applica
bility of semi-analytical solutions by proposing new boundary 
conditions that mimic by-passing around the groyne tip and groyne 
permeability, as well as extending solutions to describe a groyne field. 

2. Methodology 

The strategy is to combine semi-analytical solutions for a single 

Fig. 1. For a specific direction of the littoral drift (shown by the orange arrows along the beach), accretion is caused on the updrift side of the groyne (denoted by the 
vertical double line) and erosion downdrift-wards. Sediment material is illustrated to pass through the body of the groyne, and to bypass its tip. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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groyne and a groyne compartment to form a model suitable for 
describing an extended groyne field. Specifically, the semi-analytical 
solution regarding shoreline evolution near a groyne (Reeve, 2006) 
was coupled with the one derived by Zacharioudaki and Reeve (2008) 
for a groyne compartment, with an appropriate internal boundary 
condition. 

2.1. The semi-analytical solution for shoreline evolution near a groyne 

Reeve (2006) used a Fourier cosine transform to develop a solution 
to Eq. (1) for arbitrary initial beach shape and wave conditions for 
shoreline evolution near a groyne. 

This solution consists of the sum of the following 3 terms: 

yG
1 =

1
π

⎛

⎝π
∫t

0

ε(u)du

⎞

⎠

− 1/2 ∫+∞

0

g(ξ)

[

exp

(

−
(x − ξ)2

4
∫ t

0 ε(u)du

)

+ exp

(

−
(x + ξ)2

4
∫ t

0 ε(u)du

)]

dξ (2)  

where g(x) is the initial shoreline position, and ξ is a dummy variable 
used in the integration process. In many cases the initial beach is taken 
as a straight line with g(x) = 0 in which case this term is identically zero. 
y1

G describes the contribution of the initial shoreline shape to the 
consequent evolution; 

yG
2 =

2
π

∫+∞

0

⎛

⎝
∫t

0

exp

⎛

⎝ −

∫t

w

[
ω2ε(u)

]
du

⎞

⎠q̃(ω,w)dw

⎞

⎠cos(ωx)dω (3)  

where ω is the transform variable used in the Fourier cosine transform 
operation, q̃ is the Fourier cosine transformed variable of q; the latter 
parameter describes the sediment flow from a source or sink of sediment 
discharge, and w is a variable related to time. Again, in case that there 
are no sources or sinks q(t) may be considered equal to zero, and the 
second term is zero as well. This term corresponds to the impact of a 
source or sink of sediment discharge on shoreline evolution; 

yG
3 =

1̅
̅̅
π

√

∫t

0

ε(w)j(w)

⎛

⎜
⎝

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

π
∫ t

w ε(u)du
√ exp

(

−
x2

4
∫ t

w ε(u)du

)
⎞

⎟
⎠dw (4)  

where j(w) is the boundary condition at the groyne. The third term y3
G 

corresponds to the impact of the combination of wave action and the 

boundary condition at the groyne on the shoreline evolution. If the time 
variation of ε(t) has a specified functional form, the integration of Eq. (4) 
may be performed analytically. Alternatively, if ε(t) is specified by an 
arbitrary time-series then the integrals must be evaluated numerically. 

Finally, the shoreline position is given as the summation of Eqs. (2)– 
(4): 

yG = y1
G + y2

G + y3
G (5) 

The semi-analytical solution has been tested, for a range of simple 
conditions, against analytical solutions by Valsamidis (2016) and Val
samidis and Reeve (2017). 

2.2. The semi-analytical solution for a groyne compartment 

Zacharioudaki and Reeve (2008) provided a semi-analytical solution 
to the One-Line model for the case of shoreline evolution in a groyne 
compartment (Fig. 5): 

The shoreline evolution in a groyne compartment is described by a 
solution to Eq. (1), which is derived via finite Fourier cosine transforms. 
This solution comprises of the following 4 terms: 

yGC
1 =

1
a
g(0) +

1
a

∫t

0

ε(w)(j(w) − k(w)+ ŝ(0,w))dw (6)  

yGC
2 =

2
a
∑+∞

ψ=1
cos
(ψπx

a

)
ĝ(ψ)exp

⎛

⎝ −

∫t

0

π2ψ2

a2 ε(u)du

⎞

⎠ (7)  

yGC
3 =

2
a
∑+∞

ψ=1
cos
(ψπx

a

)∫t

0

exp

⎛

⎝

−

∫t

w

ε(u)
(ψπ

a

)2
du

⎞

⎠

⎛

⎝ε(u)((− 1)ψ j(w) − k(w))dw (8)  

yGC
4 =

2
a
∑+∞

ψ=1
cos
(ψπx

a

)∫t

0

exp

⎛

⎝ −

∫t

w

ε(u)
(ψπ

a

)2
du

⎞

⎠ŝ(ψ,w)dw (9) 

In the above equations g(x) corresponds to the initial shoreline po

sition, ĝ(ψ) =
∫a

0
g(x)cos

(
ψπx

a

)
dx thus, ĝ(0) =

∫a

0
g(x)dx; ′a′ refers to the 

groyne compartment’s length; ĝ(ψ) is the finite-Fourier cosine transform 
of g(x); ψ is an integer transform variable; j(w) is the time-varying 

Fig. 2. Groyne field in Mudeford, England (extracted from Google Earth).  
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boundary condition on the left side of the groyne compartment; k(w) is 
the corresponding boundary condition on the right side of the groyne 
compartment; w is a dummy variable of integration running from time 
0 to arbitrary time t. The integrals with respect to u yield a number for a 
given value of t while those with respect to w require numerical evalu
ation. Finally, the source term appearing in Eq. (6) is given by: 

ŝ(0,w)=
∫a

0

s(x,w)dx 

The term y2
GC incorporates the initial shoreline shape while y3

GC the 
boundary conditions at the groynes. The source term is described by the 
fourth term y4

GC. However, the term y1
GC involves the initial shoreline 

position, the source term and the boundary conditions. Finally, the 
shoreline evolution in a groyne compartment is given by the summation 
of Eqs. (6)–(9): 

yGC = y1
GC + y2

GC + y3
GC + y4

GC (10)  

where j(w) and k(w) are the boundary conditions on the left-hand side 
and right-hand side groynes of the groyne compartment, respectively. 

2.3. A new internal boundary condition for combining different solutions 

A groyne field can be considered as the concatenation of single 
groynes and groyne compartments. The solutions for these cases may be 
combined to give a solution for a groyne field as shown in (Fig. 6): 

Thus, a groyne field might be modelled for a chosen number of 
groynes, with the option to consider open external boundaries, and as 
initial condition, an arbitrary shoreline shape (Fig. 7): 

Early analytical solutions treated the case of impermeable groynes of 
infinite length. Here we seek an internal boundary condition that reflects 
real life more closely. That is, a condition that allows sediment transport 
to take place through and around groynes. In other words, a condition 
that mimics groynes of finite length that are permeable with the po
tential of sediment bypassing around their seaward tip. Hanson (1989) 
proposed the following formula for describing the portion of longshore 
sediment flux ra that bypasses a groyne (Eq. (10)): 

ra= 1 −
DG

DLT
consideringDLT > DG (11) 

However, if DLT ≤ DG, then ra = 0, 
where DG is the depth at the groyne’s tip and DLT is the depth of 

active longshore transport. The latter is given by the formula (Hanson, 
1989): 

DLT =
1.27

γ

(

Нs,b) (12)  

where γ is the breaking wave index and here was taken equal to 0.78, 
while Hsb is the significant wave height at breaking position. Eq. (11) is 

postulated on the assumption that the longshore transport is distributed 
uniformly across the active profile. As Hanson (1989) noted, a thorough 
analysis of sand transport around groynes would require the cross-shore 
distribution of the longshore sand transport rate, as well as the 2-d 
horizontal pattern of sand transport. In the absence of a reliable pre
dictive expression to account for this Eq. (11) is the simplest assumption 
giving reasonable results. There remains a lack of reliable predictive 
expressions, verified under prototype conditions, so we have adopted 
this pragmatic approach here. As is clear from Eq. (12), DLT, the 
offshore-ward limit of longshore sediment movement, varies in time 
according to the corresponding significant wave height value in a 
sequence of wave events. The relationship between Dc and DLT is best 
considered in terms of time scale. Dc is usually defined in terms of an 
extreme wave height, corresponding to storm conditions experienced 

Fig. 3. (a) The terminal groyne syndrome occurring in Southwick beach in West Sussex where the net littoral drift is from left to right. (b) The same phenomenon is 
observed in Westhampton beach in New York where the net littoral drift is from right to left (photos extracted from Google Earth). 

Fig. 4. The grey, vertical bar on the y axis symbolizes a groyne; g(x) refers to 
the initial shoreline position, wave time-series of wave height H(t), wave period 
T(t) and wave direction α(t) can be incorporated as input-data to the semi- 
analytical model, as well as a time-varying sediment flow q(t) from a source 
(in case q > 0) or sink (in case q < 0) of sediment discharge. 

Fig. 5. The two vertical, grey bars denote the two groynes that confine a beach 
section having initial shoreline position g(x). Apart from a time-varying wave 
forcing, the groyne compartment might be imposed to a source or sink of 
sediment material with sediment flow s(t). 
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once every few years. DLT defines the instantaneous value of the seaward 
extent of the active profile. Under extreme conditions it will equal Dc, 
but under calmer ones it will be smaller than Dc. The concept of Dc is 
inextricably linked to wave height, and thus the period over which wave 
heights are measured to determine their maximum value. A longer 
period of observation is more likely to include a major storm event in 
which the cross-shore profile is altered, thus leading to a greater value of 
Dc. In practice there is a finite limit to the length of records and a 
pragmatic choice for Dc has to be made. Various authors have suggested 
formulae, (e.g. Birkemeier 1985), but all are quite close to the formu
lation of Hallermeier (1983) that gives the annual depth of closure as 
being approximately twice the annual maximum wave height. 

However, as the depth at the groyne tip, DG, may change in time due 
to the shoreline movement, and in addition, DG may be different on the 
updrift and downdrift side off the groyne, Eq. (11) cannot be applied 
without taking into consideration a time-varying DG (Fig. 8): 

Consequently, a time-varying water depth DG(t) is introduced in this 
study, assuming a constant cross-shore seabed slope sl and the horizontal 
distance between the shoreline position y(t) and the tip of the groyne, 
where the water-depth DG(t) is taken into account (Fig. 9). Subse
quently, DG(t) is given by Eq. (13): 

DG(t) = sl(yGB +LG − y(t)) (13)  

where LG is the groyne’s length measured from the point it intersects the 

initial shoreline up to the groyne’s seaward tip, yGB is the distance from 
the shore-ward end of the groyne (namely, the point where the initial 
shoreline intersects the groyne) to the x-axis, and y(t) is the shoreline 
position at time t, (Fig. 9). The physical meaning of Eq. (13) is that as the 
shoreline near the groyne changes in time, the depth DG(t) is expected to 
change as well. 

The horizontal distance between the shoreline at the groyne and the 
calculated depth of active longshore transport is denoted by yLT, (Fig. 9). 
yLT(t) describes the cross-shore zone of active longshore sediment 
transport. yLT(t) is expected to alter in time as the shoreline evolves, and 
consequently, the depth of active longshore transport, DLT(t), changes 
due to the time-varying hydrodynamic forcing (Eq. (12)). Thus, yLT(t) is 
given via Eq. (14): 

yLT(t) =
DLT(t)

sl
(14) 

Bypassing will occur under the following condition given from Eq. 
(11), namely DLT(t) > DG(t). This condition ensures that the active 
water-depth DLT is greater than the water-depth at the groyne so that 
sediment bypassing can occur. 

Thus, the portion of longshore sediment flux ra that bypasses a 
groyne is given by Eq. (15): 

Fig. 6. With the proper internal boundary, the semi-analytical models can be combined to describe a groyne field.  

Fig. 7. A groyne field comprising of 5 groynes, and open external boundary conditions. The black intermittent line corresponds to the initial shoreline position.  

Fig. 8. The morphodynamic evolution on the updrift and downdrift side of a groyne alter the water depth DG at the tip of the groyne. The solid line corresponds to 
the shoreline and the intermittent lines to the bathymetric contours. 
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ra= 1 −
LG − (y(t) − yGB)

yLT(t)
(15) 

The physical meaning of Eq. (15) is that only the part of the cross- 
shore beach profile up to the depth of active longshore transport, 
which is not shadowed by the groyne, contributes to the bypassing 
process. Therefore, in the case where y-yGB = LG, in other words, the 
updrift side of the groyne is full, then, ra = 1, and the full amount of 
sediment flux passes from the updrift side of the groyne to the downdrift, 
while, if yLT ≤ LG -(y-yGB), namely, the whole zone of active longshore 
transport yLT is shadowed by the groyne, then, ra = 0, and no bypassing 
takes place. 

With the above assumptions, an internal impermeable groyne of 
finite length may be simulated according to the following boundary 
condition: 

∂y
∂x

= a0(1 − ra) (16)  

where ∂y
∂x is the local gradient of the shoreline curve; and α0 is the angle of 

breaking wave crests in relation to the shore normal. 
In addition to the possibility of bypassing, sediment material might 

pass through the body of a groyne such as when it is made of rocks. 
Hanson (1989) proposed a relation to describe the total amount of 
sediment movement from the updrift to the downdrift side of the groyne: 

F = p(1 − ra)⋅ + ⋅ra ​ (17)  

where F is the portion of the longshore sediment flow which passes to the 
downdrift side of a groyne; while p is the portion of the longshore 
sediment transport which corresponds to the permeability of the groyne. 

Under the combined effect of sediment bypassing and permeability 
the internal boundary condition at the groyne is as follows: 

∂y
∂x

= a0(1 − F) (18) 

It should be noted that the condition described by Eq. (16) embodies 
a modification of the physics described by the more familiar imperme
able condition. The physical meaning of Eq. (16), (and Eq. (18)), can be 
understood as follows. In the case of an impermeable, infinitely long 
groyne all sediment transport past the groyne is halted. This is equiva
lent to the beach plan shape being parallel to the incoming wave crests. 
This doesn’t prevent accumulation of sediment on the updrift beach but 

fixes the angle of the beach at the groyne. In a computational model 
based on a staggered grid, the transport rates are calculated at half- 
points while groynes are placed at whole points. A by-passing formula 
akin to Eq. (16) can thus be implemented by using the transport rates 
near but not at the groyne, (Hanson 1989). In an analytical model the 
boundary condition is implemented at the location of the groyne and a 
by-passing criterion embedded within it at this point. To represent 
by-passing the condition of zero transport must be modified. Within the 
constraints of the 1-line model this require the beach plan shape 
gradient to be modified so that it is not parallel to the wave crests at the 
groyne. This was recognised by Larson et al. (1997) who proposed a 
formula to mimic by-passing based on the fullness of the groyne (i.e. the 
proportion of the groyne length to which the beach on the updrift side 
had reached), that also adjusted the beach angle at the groyne. 

For small wave angles the sediment transport rate along the shoreline 
is given by the following formula: 

Q=Q0

(

2a0 − 2
∂y
∂x

)

(19)  

where Q0 is the amplitude of longshore sediment transport rate. The 
combination of Eqs. (18) and (19) yields Eq. (20) which describes the 
sediment flow due to bypassing of sediment material around the 
seaward tip of an impermeable groyne: 

Q= 2a0Q0 F (20) 

Following the principle of continuity of mass, the sediment flow on 
the updrift side of the groyne is the same as on the downdrift side, thus, 
according to Eq. (21): 

Qup =Qdown⇒2a0Q0Fup = 2a0Q0Fdown⇒Fup = Fdown (21) 

Therefore, from Eq. (18), it can be concluded that the boundary 
conditions on the updrift and the downdrift side of a groyne are the same 
whether bypassing takes place or not: 
(

∂y
∂x

)

up
=

(
∂y
∂x

)

down
(22) 

The semi-analytical solutions of Reeve (2006) and Zacharioudaki 
and Reeve (2008) may be used with the internal boundary conditions 
above and so may be used to include a sufficiently general form of 
boundary condition that encompasses beach evolution within a groyne 

Fig. 9. Schematic illustration of the internal boundary condition introduced in this study.  
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field. 

3. Evaluation of the analytical solution 

To illustrate the type of situations in which the methodology 
described in Section 2 can be applied solutions for several cases are 
presented here. Calculations are performed for a period of one year. As 
test cases we consider two initial beach configurations: a straight, north- 
facing shorefront whose normal is 0◦N; and a beach with the same 
orientation but with an initial Gaussian shape, given by the mathe
matical expression: y(x, 0) = 50e− (x− 5100)2/500000. This initial condition 
corresponds to the following curve in the domain 0 m < x < 10,200 m 
and is shown in Fig. 10. 

Fig. 10. The convex initial beach condition. 
Two forms of wave conditions have been used. The first is a sequence 

of weekly wave conditions over the one year period. These were created 
using the method described in Valsamidis and Reeve (2017) and the full 
set of conditions is provided in Appendix A. The summary statistics are 
provided in Table 1. 

The second wave condition is a constant one, consisting of the mean 
values of wave height, period and direction from the weekly sequence. 
The corresponding values are shown in the second column of Table 1. 
The longshore sediment transport rate was calculated using the CERC 
longshore sediment transport formula (CERC, 1984), 

ε= K
DC + DB

(
Cgb

8
(
Sg − 1

)
(1 − po)

)

Hsb
2, (23)  

where K is a dimensionless calibration parameter depending on the 
special characteristics of the coastal system which is under investigation. 
Here, we set K = 0.39 following the guidance in USACE (1984). Dc is the 
depth of closure taken equal to 6m, DB is the berm height which was set 
equal to 1m; Cgb is the group velocity of the waves at breaking and sg is 
the dimensionless magnitude of the specific gravity assigned the value 
2.65; po is the porosity, set to 0.4 which is typical of sandy beaches; and 
Hsb is the significant wave height. Table 2 summarises the different cases 
for which results are shown. 

In the first case, the initially straight beach is identical to the x-axis in 
a Cartesian system, and the y-axis measures the shoreline position 
relative to the x-axis, as shown in Fig. 11. This beach extends 10,200 m 
in length and it includes a groyne field consisting of 3 groynes denoted 
Groyne 1, Groyne 2 and Groyne 3 located at x = 4650 m, 5100 m and 

5550 m respectively. Each groyne extends 50 m in the offshore direction 
from the initial shoreline position, and also extends landward in the 
negative y-axis direction, to avoid undercutting. The seabed gradient is 
taken to be 1%. The external boundary conditions are free, allowing 
sediment material to enter and leave the domain. 

Fig. 11. The model was firstly evaluated for constant incident wave 
conditions that are the mean values of the wave time-series included in 
Table 1, namely, Hs = 0.52 m; T = 5.93 s; and α = + 0.04 rad. 

The first three cases listed in Table 2 correspond to this situation for, 
respectively: a) infinitely long impermeable groynes; b) sediment 
bypassing around the seaward tips of impermeable groynes; and c) 
sediment bypassing around the seaward tips of groynes which are 
considered to be 20% permeable. 

The shoreline positions for these three cases, after 1 year, are shown 
in Fig. 12. 

Fig. 12. The choice of a 1 year period is arbitrary but typical of the 
periods used for the type of simulation made using 1-line models. Fig. 12 
shows the qualitative behaviour that would be anticipated in the three 
different cases, with by-passing and permeability alleviating the ‘ter
minal groyne syndrome’ often encountered on the downdrift edge of 
groyne systems that interrupt the littoral drift. Fig. 13 shows the time 

Fig. 10. A Gaussian curve was chosen as an initial condition in the modelling process, alternatively to an initially straight shoreline position.  

Table 1 
Statistical characteristics of the wave time-series.   

Range of values Mean value Standard deviation 

Wave height (Hs) 0 m–1.30 m 0.52 m 0.22 m 
Wave Period (T) 1 s–12 s 5.93 s 2.02 s 
Wave direction (α) − 0.13 rad–0.19 rad 0.04 rad 0.05 rad  

Table 2 
Summary of illustrative test cases.  

Case No. Initial condition Wave condition Groynes 

1 Straight Constant Infinite, impermeable 
2 Straight Constant Impermeable, by-passing 
3 Straight Constant Permeable, by-passing 
4 Gaussian Constant Infinite, impermeable 
5 Gaussian Constant Impermeable, by-passing 
6 Gaussian Constant Permeable, by-passing 
7 Straight Varying Impermeable, by-passing 
8 Gaussian Varying Impermeable, by-passing  
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history of the transport rate at Groyne 3 over the one year period. This 
shows low rates initially, due to permeability. After a few weeks accu
mulation on the updrift side of the groyne is sufficient to activate some 
by-passing, which continues to increase slightly over the remainder of 
the period, demonstrating that an equilibrium state has not yet been 
reached. 

Fig. 13. The three groynes divide the domain into four sections, 1 to 
4, from left to right. Thus Section 1 is 0 m < x < 4650 m, Section 3 is 
5100 m < x < 5550 m and so on. Table 3 summarises the net transport 
rates within the domain over the 1 year period, by quarter for Case 3. 
Results are quoted with units of m2/yr/linear metre and are calculated 
from the area change in each section, divided by the length of the section 
and the duration. 

For each quarter, summing the products of the quoted rate and the 
respective lengths of each section yields a value of effectively zero, (to 
rounding error), confirming the overall conservation of sediment. The 
rates for the first quarter are slightly below those for the remaining 
quarters due to inaccuracies in evaluating Eqs. (2) and (4) for very small 
values of t. 

The corresponding shoreline positions after 1 year for Cases 4 to 6 
are shown in Fig. 14 and the net transport rates in Table 4. 

Fig. 14. 
In this case the diffusion of the initial hump across the boundaries of 

the finite domain will result in the net loss of sediment from the domain. 
The semi-analytical solutions are valid on an infinite domain so the 
apparent sediment loss arises from performing the calculations on a 
finite portion of the infinite domain which does not fully contain the 
disturbance of the beach from a straight line. The initial condition in
troduces an asymmetry into the problem with outward spreading of the 
hump is combined with wave-driven transport from left to right in 
Fig. 14. As a result the transport rates in Section 1 and 4 are not equal 
and opposite as for the initially straight beach, which results in rapid 
erosion in the lee of Groyne 1, even with permeable groynes and by- 
passing occurring. 

Finally, the shoreline response after 1 year for Cases 7 and 8, for a 
randomly varying wave climate described in Table 1, are shown in 
Fig. 15. 

Fig. 15. The instantaneous transport rates at Groyne 3 for Case 8 are 
plotted in Fig. 16 and illustrate intermittent drift reversal throughout the 
year. Net transport rates for cases 7 and 8 are presented in Table 5. 

Fig. 16. 

4. Discussion 

Semi-analytical solutions for beach evolution within a groyne field 
have been presented. The range of situations for which analytical solu
tions can be derived has been extended to include an extended groyne 
field in which the initial shoreline shape is not restricted to be straight, 
the groynes may be permeable and of finite length which allows by- 
passing. The shoreline response to wave forcing, as predicted by the 
new semi-analytical solution is in agreement with physical consider
ations sediment transport and sediment conservation. For instance, in 
Fig. 12 accretion is observed on the updrift side of the groynes and 
erosion on the downdrift side. Moreover, depending on the internal 
boundary condition, namely, absolute blockage of sediment transport; 
impermeable groyne with sediment by-passing; or permeable groyne 
with sediment by-passing, the amount of accretion observed on the 
updrift side of the groynes decreases, respectively, and as a result, the 
amount of erosion on the downdrift side of the groynes decreases pro
portionally. Also, in the case where the groynes are permeable or by- 
passing the start of sequential filling of the groyne compartments is 
evident, in accordance with the direction of the longshore transport. 
This process is far from completed and the beach configuration shown in 
Fig. 12 is not an equilibrium state, as evident from the sediment trans
port rates, (Fig. 13), which show a continuing but gradual rise after one 
year. 

The case where the beach shape is not a straight line introduced some 

Fig. 11. The modelled area is characterized by free boundary conditions at x = 0 m and x = 10,200 m, and 3 groynes in the middle, obstructing sediment transport 
along the shore. 

Fig. 12. The double vertical lines symbolize the 3 groynes. Three different 
scenarios are shown: impermeable groynes with no by-passing (blue); imper
meable groynes with by-passing (orange); and permeable groynes with by- 
passing (grey). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

A. Valsamidis and D.E. Reeve                                                                                                                                                                                                                



Continental Shelf Research 211 (2020) 104288

9

interesting features. It may be noticed that in Fig. 14 the amount of 
accretion on the updrift side of Groynes 3 and 2 with the Gaussian initial 
shoreline appears smaller than the corresponding amount of accretion 
for the case of an initially straight shoreline. Further, the magnitude of 
erosion on the downdrift side of Groyne 1 is larger for Case 1 than Case 
2. These observations may be explained by the diffusive behaviour of the 
One-Line model Eq. (1) which tends to smooth salients formed along the 
shoreline. Specifically, the peak of a salient retreats over time towards 
the baseline while at locations on its flanks may experience accretion 
due to the sideways spreading, (Larson et al., 1987). To amplify this 
point, Case 1 which is illustrated in Fig. 14 was repeated with the wave 
direction fixed so that α = 0, and the internal boundary conditions set to 
impermeable groynes of theoretically infinite length. The shoreline will 
evolve to align itself to the incoming wave crests. The beach in the 
groyne compartments straightens while the beach outside this area 
spreads, with the peak retreating fastest and the flanks accreting 
slightly, as shown in Fig. 15. 

Fig. 15. 
All results show that there is greater accumulation of sediment ma

terial in the first groyne compartment encountered by the predominant 
longshore drift, namely between Groynes 2 and 3, than in the subse
quent groyne compartment, defined by Groynes 1 and 2. This arises from 
the greater sensitivity of the beach response to the groyne that first in
tercepts the longshore transport. This phenomenon can be understood 
physically from the greater mobilization and supply of sediment in an 

area with an open boundary as opposed to a groyne compartment in 
which the supply of sediment is more confined. Thus, when sediment 
material is allowed to pass from the one compartment to another, (for 
instance Cases 2 and 3 in Fig. 12), more sediment material may be 
entering the updrift groyne compartment (the area between Groynes 2 
and 3) than leaving. In contrast, there is an approximate balance in 
sediment material entering and exiting the downdrift groyne compart
ment (between Groynes 1 and 2). This is apparent in Fig. 12 (cases 2 and 
3), where the shoreline position is almost the same for all the 3 cases, 
indicating that there is virtually no net sediment material accumulation 
or loss. One way to produce an accretion trend in the second groyne 
compartment (the area between Groynes 1 and 2) would be to decrease 
the permeability of Groyne 1 to prevent sediment material from exiting 
this groyne compartment. Thus, Case 3 which is illustrated in Fig. 12, 

Fig. 13. Time history of the sediment transport rate at Groyne 3 in Case 3.  

Table 3 
Net transport rates by quarter and section, (m2/yr/m), for Cases 1 to 3.  

Period \ Region Section 1 Section 2 Section 3 Section 4 

Case 1 
1st Quarter − 1.72 0.00 0.00 1.72 
2nd Quarter − 1.80 0.00 0.00 1.80 
3rd Quarter − 1.80 0.00 0.00 1.80 
4th Quarter − 1.80 0.00 0.00 1.80 
Case 2 
1st Quarter − 0.75 0.00 0.24 0.72 
2nd Quarter − 0.88 0.02 0.73 0.81 
3rd Quarter − 0.88 0.06 0.99 0.78 
4th Quarter − 0.88 0.10 1.17 0.76 
Case 3 
1st Quarter − 0.61 0.00 0.03 0.60 
2nd Quarter − 0.71 0.01 0.49 0.66 
3rd Quarter − 0.70 0.03 0.66 0.64 
4th Quarter − 0.70 0.05 0.79 0.62  

Fig. 14. Shoreline position at the end of 1 year for Cases 4 to 6. The Gaussian- 
shaped initial shoreline position is depicted with a green line. The double 
vertical lines symbolize the 3 groynes. Three different cases are shown: 
impermeable groynes with no by-passing (blue); impermeable groynes with by- 
passing (orange); and permeable groynes with by-passing (grey). (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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was slightly altered considering the permeability to be p = 0 at Groyne 1. 
The resulting calculation produced the complementary Case 3* which is 
plotted versus Case 3 in Fig. 16. 

Fig. 16 shows that if Groyne 1 is impermeable then accretion occurs 
on its updrift side, however, the terminal groyne effect (Fig. 3) is 
exacerbated on the downdrift side. 

The concept of varying the permeability of groynes is being imple
mented in a new generation of groynes which can be adjusted to the 

prevailing morphodynamic conditions (e.g. MENA Report, 2014). An 
example is shown in Fig. 17. This type of structure will have a perme
ability that varies with beach position, and therefore with time (see 
Fig. 19) (see Fig. 18). 

Fig. 17.Just such behaviour can be incorporated directly into the new 
semi-analytical solution through the time varying internal boundary 
conditions. (In this regard it is worth noting that the sediment movement 
through a permeable groyne is activated in the modelling process only 
when y(t)-yGB(t) > 0.) 

Finally, a comparison between the beach response to constant wave 
conditions and varying wave conditions, (comparing Figs. 11 and 14 
with Fig. 15), shows that including for the occurrence of temporary drift- 
reversal ameliorates the beach response. 

5. Conclusions 

One limitation of analytical solutions has been their applicability 
solely to simple situations such as a single groyne or single groyne 
compartment. In this paper we have proposed a means of accounting for 
sediment transmission through permeable groynes and by-passing 
groynes of finite length under time varying wave conditions. The un
derlying concept is based on the concept of the instantaneous active 
depth of longshore transport introduced by Hanson (1989) for compu
tational modelling; modified to account explicitly for non-zero transport 
at the groyne by adjusting the gradient of the beach planshape at the 
groyne according to the extent of the active depth beyond the groyne tip. 
This has provided an analytical means of calculating the beach plan 
shape evolution in a groyne field consisting of an arbitrary number of 
groynes, which represents a considerable increase in the complexity of 
beach configurations amenable to analytical treatment. 

The internal boundary conditions have been combined with the so
lutions for shoreline evolution near a groyne (Reeve, 2006) and 

Table 4 
Net transport rates by quarter and section, (m2/yr/m), for Cases 4 to 6.  

Period \ Region Section 1 Section 2 Section 3 Section 4 

Case 4 
1st Quarter − 1.57 0.00 0.00 1.44 
2nd Quarter − 1.84 0.00 0.00 1.76 
3rd Quarter − 1.84 0.00 0.00 1.76 
4th Quarter − 1.84 0.00 0.00 1.76 
Case 5 
1st Quarter − 0.84 − 0.22 0.70 0.66 
2nd Quarter − 0.89 − 0.31 0.20 0.83 
3rd Quarter − 0.90 − 0.29 0.26 0.82 
4th Quarter − 0.90 − 0.27 0.28 0.82 
Case 6 
1st Quarter − 0.71 − 1.16 1.24 0.57 
2nd Quarter − 0.73 − 0.40 0.24 0.67 
3rd Quarter − 0.73 − 0.18 0.03 0.67 
4th Quarter − 0.73 − 0.17 0.02 0.66  

Fig. 15. Shoreline positions after 1 year for Cases 7 and 8. The wave conditions 
are described in Table 1, and the internal boundary conditions correspond to 
permeable groynes allowing bypassing. 

Fig. 16. The instantaneous transport rates at Groyne 3 for Case 8.  

Table 5 
Net transport rates by quarter and section, (m2/yr/m), for Cases 7 and 8.  

Period \ Region Section 1 Section 2 Section 3 Section 4 

Case 7 
1st Quarter − 1.83 0.00 1.38 1.70 
2nd Quarter − 1.26 − 0.93 2.92 1.03 
3rd Quarter − 0.15 − 0.87 0.74 0.19 
4th Quarter − 0.26 − 0.25 0.60 0.25 
Case 8 
1st Quarter − 1.83 − 0.62 0.87 1.68 
2nd Quarter − 1.23 − 1.78 2.11 1.10 
3rd Quarter − 0.11 − 1.54 − 0.04 0.25 
4th Quarter − 0.24 − 0.81 − 0.10 0.29  

Fig. 17. Shoreline evolution after 1 year of an initially Gaussian shaped 
shoreline, for wave direction α = 0 and impermeable groynes, (denoted with 
double vertical lines). 
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shoreline evolution in a groyne compartment (Zacharioudaki and Reeve, 

2008). A range of solutions have been presented to illustrate the type of 
situations that may be modelled. These are all based on a one year period 
with a groyne field comprising three groynes in which the groynes were 
impermeable and of infinite length; impermeable and of finite length, 
permitting sediment bypassing; permeable and of finite length permit
ting bypassing. Two initial beach conditions were also considered: a 
straight shoreline and a Gaussian-shaped curve that mimicked a large 
nourishment or ness. Two forms of wave condition were considered: 
constant, as commonly assumed in early analytical solutions; and 
time-varying on a weekly basis. 

The solutions capture the qualitative beach behaviour observed in 
practice. Quantitative results have also been provided, expressed as 
instantaneous and net transport rates. The different internal boundary 
conditions mimic the effect of impermeable and permeable groynes, as 
well as by-passing. The description of these processes is a simplified 
version of reality that is consistent with the 1-line concept. One caveat of 
the method is that it can be difficult to evaluate for very small time 
periods; in the cases studied here this equated to periods of a week or 
less. However, as the 1-line concept is applied to problems simulating 
periods of months to years this is not seen as a major impediment. The 
methodology proposed in this paper also provides the means to develop 
new analytical solutions of more complicated situations for testing 
computational models. 
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Appendix A. Wave time series used as input-data to the semi-analytical solution  

Wave Height (m) Wave Period (sec) Wave Direction (rad) 

0.39 3.5 0.04 
0.20 2.3 − 0.09 
0.55 3.4 0.01 
0.98 5.1 0.17 
0.42 4.8 0.19 
0.12 2.2 − 0.14 
0.46 3.1 0.10 
0.73 3.9 0.07 
0.96 4.9 0.16 
0.67 4.0 0.16 
1.08 5.1 0.18 
0.66 3.8 0.22 
0.61 4.4 0.01 
0.35 4.3 0.17 
0.74 3.9 − 0.09 
0.37 3.4 − 0.04 
0.17 2.6 − 0.03 
0.76 4.0 0.24 
0.57 4.3 0.13 
0.73 3.8 0.28 

(continued on next page) 

Fig. 18. Case 3* is the same as Case 3 except for the fact that Groyne 1 is 
impermeable. 

Fig. 19. The innovative groyne design concept that allows for adjustment of 
groyne permeability by adding/removing pre-cast concrete blocks (photo: 
Cortez beach, Florida). 
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(continued ) 

Wave Height (m) Wave Period (sec) Wave Direction (rad) 

0.29 2.7 0.18 
0.59 3.8 0.14 
0.82 4.6 0.17 
0.57 3.6 0.08 
0.66 3.6 0.13 
0.83 4.2 0.18 
0.86 4.7 0.07 
1.08 5.4 0.03 
0.96 4.8 0.16 
1.11 5.6 0.17 
0.88 4.6 0.04 
1.00 5.4 − 0.02 
1.10 5.2 0.04 
1.02 5.1 0.12 
1.22 6.4 0.21 
0.98 5.2 0.18 
1.04 5.7 0.04 
0.33 1.8 0.09 
0.42 2.8 0.04 
0.96 5.2 0.16 
0.25 1.3 − 0.02 
0.22 2.3 0.05 
0.93 4.8 0.13 
0.92 5.1 0.18 
1.04 6.0 0.12 
0.57 4.6 0.11 
0.58 4.1 − 0.09 
0.42 2.6 − 0.03 
0.79 4.4 0.16 
0.93 5.1 0.12 
0.42 2.7 0.06 
0.76 4.5 0.09  
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