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Abstract Carbon-based pastes and inks are used
extensively in a wide range of printed electronics
because of their widespread availability, electrical
conductivity and low cost. Overcoming the inherent
tendency of the nano-carbon to agglomerate to form a
stable dispersion is necessary if these inks are to be
taken from the lab scale to industrial production.
Plasma functionalization of graphite nanoplatelets
(GNP) adds functional groups to their surface to
improve their interaction with the polymer resin. This
offers an attractive method to overcome these prob-
lems when creating next generation inks. Both dynamic
and oscillatory rheology were used to evaluate the
stability of inks made with different loadings of
functionalized and unfunctionalized GNP in a thin
resin, typical of a production ink. The rheology and the
printability tests showed the same level of dispersion
and electrical performance had been achieved with
both functionalized and unfunctionalized GNPs. The
unfunctionalized GNPs agglomerate to form larger,
lower aspect particles, reducing interparticle interac-
tions and particle–medium interactions. Over a 12-
week period, the viscosity, shear thinning behavior and
viscoelastic properties of the unfunctionalized GNP
inks fell, with decreases in viscosity at 1.17 s�1 of 24,
30, 39% for the / = 0.071, 0.098, 0.127 GNP suspen-
sions, respectively. However, the rheological proper-

ties of the functionalized GNP suspensions remained
stable as the GNPs interacted better with the polymer
in the resin to create a steric barrier which prevented
the GNPs from approaching close enough for van der
Waals forces to be effective.

Keywords Dynamic rheology, Functional inks,
GNP, Plasma functionalization, Stability

Introduction

Carbon-based pastes and inks are used extensively in a
wide range of printed electronic devices, including
resistive heater panels, electrochemical sensors, pres-
sure sensors, printed batteries, and supercapacitors.1

Advantages of carbon inks include their relatively low
cost, disposability, ease of use, chemical inertness, the
ability to be modified or functionalized and their
controllable electronic properties.2–5 Dispersion of
nano-fillers is a key issue in governing the properties
of composites.6,7 However, achieving good dispersion
of nano-carbons within a fluid has proved difficult as a
result of the inert, hydrophobic, ultra-high interfacial
area per volume and highly agglomerated nature of
carbon nanomaterials.8–11 Atomic motions in neigh-
boring particles drive carbon nanomaterials together
and, if not counteracted, the van der Waals forces
cause particles to adhere to each other upon con-
tact.12,13

Altering the surface chemistry of the carbon nano-
materials is an efficient method for helping to over-
come these problems9, and this can be achieved using
either wet or dry processing. The chemical functional-
ization of graphene may lend further advantages to the
polymer nanocomposite due to the nanoscale struc-
ture’s enhanced dispersion and interaction with the
polymer matrix.14 Acid treatments have been used
with the aim of adding carboxyl and hydroxyl groups to
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the surface of carbon nanotubes (CNTs) to improve
solubility with common solvents and epoxy resins.8,15

Further, there is an enhancement in the number of
defects in graphene with chemical functionalization.6,14

Surfactants improve the dispersion of CNTs in poly-
mers and solvents8 and have been used to promote
steric repulsion, which forces CNTs far enough apart to
prevent agglomeration.15 However, the addition of any
polymer to the surface of a particle must be accounted
for by increasing the effective particle radius.12,16

Plasma functionalization offers a dry, scalable, one-
step method of surface modification with the aim of
making carbon nanomaterials more hydrophilic by
adding polar groups to aid dispersion.8–10,17 A wide
variety of plasma treatments have been used including
oxygen (O2), ammonia (NH3) and carbon tetrafluoride
(CF4)9,17 with a view to increasing the polarity of the
surface of CNTs and the overall adhesion of CNTs to
the surrounding polymer matrix.9,10,17 NH3 plasma
treatment has been shown to increase the surface
nitrogen content on CNTs8–10 and graphite nanoplate-
lets (GNPs), in the form of amine, imine, nitrile and
imide groups.9,10 These plasma-treated CNTs showed
higher free surface energy and smaller contact angles
with water, attributed to the additional polar hydroxyl,
carboxyl and amide groups on their surface,8 with this
increased surface polarity leading to chemical affinity
to polar resins and solvents and with it improved
dispersion. Interactions between the binder in the ink
system are important for preventing agglomeration, as
the pigment is dispersed within the binder, with the
pigment enclosed by a binder shell that prevents finely
dispersed particles from associating into agglomerates
and being deposited.18 Amine groups attached to CNT
walls have even led to the formation of covalent bonds
with an epoxy resin, improving the interface between
the nanotubes and the epoxy.19

A fluid with well-dispersed nanoparticles will show
different rheological behaviors compared to their
agglomerated or flocculated counterparts.15,20,21 The
viscosity of suspensions is largely a function of particle
volume fraction, /, particle shape, particle aspect ratio,
surface properties, adsorbed species and the hydro-
philic nature of particles/polymer.11–13,15,22 A suspen-
sion in which the particles have agglomerated to form
pairs, or agglomerates of higher numbers, can be
considered a suspension of single particles of new
shape and as such must be expected to have rheological
properties different from a suspension in which the
particles remain well dispersed no matter how low the
phase volume.23 Therefore, any changes to the disper-
sion quality of the GNPs would be expected to result in
changes to the rheological profile of the fluids.

A physically stable ink would be expected to show no
change in its rheological properties over an extended
period in storage.24 The quality of screen-printed
patterns is generally dependent on the ink rheology,
printer hardware (screen, squeegee, substrate) and the
printing process parameters.25 The flow of the ink
through the stencil is significant as it determines the

uniformity of the printed surface which is an important
feature of conductive circuits.25 The more viscous and
elastic the ink, the less easily it flows through the screen
and spreads to make an even film,18 but if the viscosity
of the ink is too low, it will not recover and gives
‘‘slurred’’ prints.26 Therefore, any changes to the rheo-
logical properties of the inks over time would be
expected to impact subsequent print quality.

The effect of concentration of ammonia plasma
functionalized graphite nanoplatelets (NH3 GNP) on
the rheological properties of a thermoplastic polyur-
ethane (TPU)/diacetone alcohol (DAA) suspension
has previously been reported.27 This study aims to
establish whether plasma functionalization provides an
effective means of maintaining particle dispersion by
comparing changes in time to the shear and complex
rheology of suspensions of ammonia plasma function-
alized graphite nanoplatelets (NH3 GNP) and unfunc-
tionalized graphite nanoplatelet (R1 GNP),

Materials and methods

Materials and ink synthesis

Graphite nanoplatelets were identified as a candidate
for the main conductive filler to create a new flexible
conductive ink, combining the in-plane electrical con-
ductivity of graphitic carbon with a high surface area
and potential to be functionalized to improve compat-
ibility with the TPU resin system. A commercially
available TPU was dissolved in DAA to create the
resin/solvent system. Commercially available ammonia
plasma functionalized GNPs (NH3 GNP) were sup-
plied by Haydale Ltd. using their standard plasma
treatment, as well as an oven-dried (130�C) unfunc-
tionalized GNP (R1 GNP) and used as received. These
were used to compare the effect of plasma function-
alization on GNP dispersion. The R1 GNPs were oven
dried to simulate the pre-treatment of the GNPs before
plasma functionalization. Haydale’s patented process
uses a low temperature, low pressure, split plasma,
often referred to as glow discharge, to create function-
alized GNPs from a graphite feedstock at high yields
and volumes.28 Nanomaterials are introduced into a
plasma emitted from a central electrode into which a
source of free radicals is introduced which chemically
bond to the particle surfaces and edges.29

Three phase volumes (/), / = 0.071, 0.098, 0.127 of
each type of GNP (Table 1) were used. In the print
industry, ink concentrations are commonly displayed in
wt%, and therefore, a conversion is displayed in
Table 1.

The nano-carbons used in the inks were weighed
directly into their pots. TPU/DAA resin was then
added to the dry nano-carbons, and these were stirred
by hand and left for 24 h to allow the particles to wet.
These were then further dispersed using a paint shaker
(Minimix MK 4, Merris Development Engineering
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Ltd., Maidenhead, UK) to ensure good dispersion of
the mill base. This procedure was a proven dispersion
method for carbons and was developed within the
Welsh Centre for Printing and Coating.30

The mill bases of all the inks were stirred to ensure
the particles were evenly distributed throughout then
dispersed using a three roll mill (EXAKT Advanced
Technologies GmbH) using the same procedure out-
lined by Phillips et al.2 (Table 2), with the mill cleaned
between passes 3 and 4.

Methods

A stress-controlled rheometer (Malvern Kinexus Pro)
was used to assess the rheological properties of the
dispersions. A 40-mm diameter roughened parallel
plate geometry was used to negate the risk of wall slip
due to the heavily filled nature of the fluids. A gap of
0.5 mm was found experimentally to minimize wall slip
and prevent particles jamming. The temperature was
kept constant at 25�C using a Peltier plate system. The
inks were first ramped to 100 s�1 to ensure consistent
pre-shear throughout the samples, as it was hypothe-
sized this shear rate would be greater than any applied
during the application and stirring of the sample. Shear
viscosity values were taken from the down shear ramp
from 100 to 0.1 s�1. The viscosity values from the shear
ramp were compared to measured equilibrium viscos-
ity values and showed little difference suggesting the
absence of any significant thixotropic effects for these
inks. The linear viscoelastic range (LVR) was identi-
fied as being between 0.5 and 1% complex shear strain
percent using a strain amplitude sweep and a value
within this range used as the amplitude in the small

amplitude oscillatory shear (SAOS) testing to identify
the materials viscoelastic properties. In a previous
work, the standard deviation across 3 separate mea-
surements was calculated to be < 0.13 Pa.s at 1 s�1;
therefore, for the rheological measurements, each data
set represents a different rheological measurement. As
this variation is so small, error bars are not shown on
the graphs that display rheology properties.

To assess the time-stability of the suspensions, the
rheological properties of the inks were sampled at 4-
week intervals to quantify any changes to the profiles
of the inks. The inks were only opened for rheological
sampling to reduce the effects of solvent evaporation
and to ensure a consistent phase volume of particles
within the sample. A sample of the resin was measured
over the same time period to ensure that any change to
the rheological profile of the filled suspension was not a
result of changes to the resin. The GNPs would be
expected to show sedimentation owing to the density
difference between the particles and the suspension
medium, with any particle agglomeration enhancing
sedimentation.31 The suspensions were lightly stirred
by hand with a flat tipped spatula to redistribute any
sedimentation of particles to ensure a sample repre-
sentative of the whole ink was extracted for measure-
ment. This process was chosen over mechanical stirring
with these low shear rates unlikely to redisperse any
agglomerated particles, while redistributing any larger
particles. There was little resistance provided to the
spatula upon stirring and any sediment was readily
redispersed, confirming that no hard cake had formed
at the bottom of the pot.32 The first shear ramp is up to
100 s�1 and therefore would be a greater force than
that applied during hand mixing; therefore, the level of
hand mixing had little effect on the consistency of the
measurement.

The inks were printed on a DEK 248 semi-auto-
mated flatbed screen printing press with a polyester
mesh with 61 threads per cm, 64 lm thread diameter, a
13 lm emulsion, 2.5 mm snap off, 130 mm length
diamond squeegee, a 12 kg squeegee force and
70 mm/s speed. The screen design included a 4.5-mm
square patch for bulk thickness and sheet resistance
measurements. To characterize the electrical and
surface properties, the inks were printed onto PET
DuPont Melinex (HiFi Films). The first four prints
were ignored as they could be contaminated by the
cleaning fluid used to prepare the screen and may have
been subject to any initial process transients.33 Diace-
tone alcohol was used as the solvent within the ink,
with the prints dried in an SC technical dryer at 70�C
for a residence time of 10 min and left for a further
24 h on drying racks before any characterization.

To calculate the print thickness, 4 measurements
were taken from the edges of each of 4.5 9 4.5 mm2

squares using white light interferometry (NT9300,
Veeco Instruments, Inc., Plainview, NY, USA), with
standard deviation used for the error bars. For the
characterization of the ink’s electrical performance,
the sheet resistance of the 45 mm square was measured

Table 1: Composition of GNP inks, where GNP
(graphite nanoplatelets), TPU (thermoplastic
polyurethane resin), DAA (diacetone alcohol)

wt%

Name GNP TPU DAA

/ = 0 0 12.5 87.5
/ = 0.071 15 10.625 74.375
/ = 0.098 20 10 70
/ = 0.127 25 9.375 65.625

Table 2: Three roll milling procedure

Pass Back gap (lm) Front gap (lm) Speed (rpm)

1 60 15 200
2 40 10 200
3 20 5 200
4 20 5 200
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using the four-point probe method. A SDKR-13 probe
(NAGY Messsysteme GmbH) with a tip distance of
1.3 mm was used with a Keithley 2000 multimeter. A
correction factor of 4.5 was used as proposed by
Smits.34 The value used is the mean of 8 measurements
of the block square, with the standard deviation used
for the error bars.

Results

The viscosity of suspensions is a function of particle
shape, particle size distribution, particle–particle inter-
actions, particle–polymer interactions and suspension
structure. It was hypothesized that any differences in
the morphological characteristics, interparticle or par-
ticle–medium interactions as a result of improved
dispersion following plasma functionalization would be
visible as a difference in the rheological properties of
the suspensions.

Similar patterns of increase in viscosity were found
for both the NH3 and R1 GNP suspensions (Fig. 1).
The authors previously found that using the intrinsic
viscosity, [g] = 6.33, and the maximum packing frac-
tion, /m = 0.184, as fitting parameters for the Krieger-
Dougherty provided a very good fit to experimental
data for NH3 GNP.27 The viscosity of the R1 GNP
suspensions showed good fit to the model developed
for NH3 GNP.27 The NH3 GNPs were shown to be well
dispersed following three roll milling. The particles
have a similar effect upon the suspensions, showing
similar increases in viscosity with concentration, sug-
gesting that plasma functionalization treatment has no
impact on viscosity.

The GNP suspensions show a similar viscosity
profile to the unfilled resin with a low shear rate
Newtonian plateau as the nanoscale GNPs are well

dispersed, and there is no long-range order in the fluid
(Fig. 2). Increasing GNP concentration increases vis-
cosity as the greater volume of high aspect nanopar-
ticles in the flow increases streamline diversion and
interparticle interactions. Flow influences the viscosity
of suspensions as weak particle interactions can be
broken down to allow particles to align with the flow.
Below / = 0.098, the suspensions show a similar
viscosity at all shear rates. At the highest concentra-
tion, / = 0.127, the unfunctionalized R1 GNP suspen-
sions have a similar viscosity and shape flow curve but
a small increase in viscosity at all shear rates, suggest-
ing a slight difference in particle morphology or
particle interactions that is not broken down by flow.

SAOS was used to explore the viscous and elastic
components of the fluid and involves imposing a shear
stress of known frequency and amplitude within the
LVR of the fluid and measuring the strain response of
the fluid. This strain response of the material can be
split into an in-phase elastic response, G¢, and a 90� out
of phase viscous response, G†.12,35,36 SAOS has been
used to study the dispersion of suspensions with G¢
becoming increasingly frequency independent as a
network of interacting particles forms.20,37–39

Increasing concentration of GNP similarly increases
the viscous and elastic forces for both the NH3 GNP
and R1 GNP inks (Fig. 3). G† � G¢ for all inks as
viscous properties dominate elastic forces to give
largely liquid like behavior. Increasing concentration
of GNP increases G¢ as the interparticle distance
between GNPs decreased, increasing the likelihood of
GNP–GNP interactions, as well as the increased
volume of GNPs giving increased particle–polymer
interactions. Increases in G† with increasing concen-
tration result from increased energy dissipation due to
increased flow distortion as a result of the increased
volume of particles within the flow.

Both the NH3 and unfunctionalized R1 GNPs had a
similar effect on both the shear and viscoelastic
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properties of the suspensions. There is a similar
dispersion quality irrespective of functionalization as
the particles are of a similar size and shape and
therefore have a similar effect on both the shear and
viscoelastic properties of the suspensions.

White light interferometry was used to study the
surface of the coatings to determine the presence of
any large agglomerates within the coating with average
surface roughness, Ra, used to quantify the quality of
dispersion (Fig. 4). Irrespective of plasma functional-
ization, the coatings show low surface roughness,
< 800 nm, at all phase volumes. At < 800 lm, the
surface roughness of the GNP inks is significantly
lower than that of the 2.8 lm found for a 22.5 wt%
graphite ink used by Potts et al.4 and shows good

agreement with the 800 nm found for oxygen plasma
functionalized GNPs used in the same study.

Inspection of the white light images (Fig. 5) shows
the absence of any large agglomerates within the final
print, with a thicker more established layer of GNPs
developing at increasing GNP concentration, with the
GNPs well dispersed throughout the coating.

Chemical functionalization of materials has been
shown to increase the number of surface defects in
graphene,6 which would be expected to negatively
impact the electrical properties. Consequently, the
impact of plasma functionalization on the electrical
properties of the coatings was also explored. Once
printed, the NH3 and R1 GNP coatings have similar
electrical properties irrespective of pre-treatment
(Fig. 6). This indicates that plasma functionalization
has not damaged the structure of the GNPs, and
therefore, the electrical properties of the final coating
have not been affected. In line with previous literature
in the area,2,26,33 increasing the volume of conductive
material decreased the bulk resistivity of the coatings
as a greater volume of conductive material results in an
increased number of conductive pathways through the
insulative polymer matrix.

The rheological properties of the suspension were
measured periodically over 12 weeks to identify any
changes to the dispersion of the GNP suspensions over
time. It was hypothesised that any changes to the size,
shape or dispersion quality of the GNPs in time as a
result of particle agglomeration would change the
effect that the GNPs had upon the rheological prop-
erties of the suspension. Therefore, monitoring the
rheological properties of the suspension in time could
provide an effective means of monitoring any changes
to the dispersion of the particles.

The viscosity of the TPU resin remains effectively
constant over the 12-week period while the viscosity of
the R1 GNP suspensions drops continuously over time,
with the highest concentration inks showing the fastest
decrease in their viscosity (Fig. 7a). Over the same
time period, the ammonia plasma functionalized NH3

GNPs follow a similar trend to the unfilled TPU with
viscosity maintained at all concentrations (Fig. 7b).

The unfilled TPU resin maintains its viscosity and
flow properties over 12 weeks and therefore can be
considered stable over the measured time frame. Any
slight increase in the viscosity is likely to be a
consequence of solvent evaporation increasing the
polymer concentration within the resin system. This
leads to increased interaction between neighboring
polymer chains and associated with this an increased
resistance to flow.

The viscosity of the R1 GNP suspensions decreases
over time at all measured shear rates and volumes
(Fig. 8a, c, e) with the decreases in suspension being
most significant at low shear rates. These decreases in
viscosity in time are greatest for the higher concentra-
tion suspensions, with percentage decreases in viscosity
at 1.17 s�1 over 12 weeks at / = 0.071, 0.098, 0.127 of
24, 30, 39%, respectively.
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Over the same period, the NH3 GNP suspensions
maintain their rheological properties at all shear rates
and concentrations, with slight increase in viscosity due
to solvent evaporation (Fig. 8b, d, f).

Both the elastic, G¢, and viscous, G†, shear moduli of
the unfunctionalized R1 GNP inks decrease over time
(Fig. 9a, c), while the G† of the NH3 GNP inks remains
consistent in time (Fig. 9d) and the G¢ of the NH3 GNP
inks and the unfilled TPU resin increases as solvent
evaporates to leave an ink of higher solids content,
increasing particle–particle, particle–polymer and poly-
mer–polymer interactions (Fig. 9b).

Initially both the plasma functionalized NH3 GNPs
and the unfunctionalized R1 GNPs had a similar effect

on the rheological properties of the TPU carrier at all
concentrations as the particles were of a similar size,
shape and dispersion quality following three roll
milling (Figs. 1, 2). As there were no large agglomer-
ates present in the final coating (Fig. 5), three roll
milling has proved an effective method for breaking
down any agglomerates in the dry powder and then
dispersing the GNPs throughout the liquid medium.

Following three roll milling, the viscosity of the
GNP suspensions is high as the well dispersed,
nanoscale, high aspect GNPs cause enhanced flow
diversion and increased interparticle interaction, with
these effects especially significant at low shear rates
when the particles are randomly oriented with the flow
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= 0.127 NH3 GNP= 0.127 R1 GNP (e) (b) 
0.9

1.0
0

5

10

15
16

1.2 1.3

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2
0.0

0.0

m
m µm

0.9

1.0
0

5

10

15
16

1.2 1.3

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2
0.0

0.0

m
m

mmmm

µm

0.9

1.0
0

5

10

15
16

1.2 1.3

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2
0.0

0.0

m
m µm

0.9

1.0
0

5

10

15
16

1.2 1.3

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2
0.0

0.0

m
m

mmmm

µm

0.9

1.0
0

5

10

15
16

1.2 1.3

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2
0.0

0.0

m
m µm

0.9

1.0
0

5

10

15
16

1.2 1.3

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2
0.0

0.0

m
m

mmmm

µm

Fig. 5: White light images at 35 magnification of the coatings of (a), (c), (e) unfunctionalized R1 GNP suspensions and (b),
(d), (f) NH3 GNP suspensions at (a), (b) / = 0.071, (c), (d) / = 0.098 and (e), (f) / = 0.127

J. Coat. Technol. Res.



(Fig. 10a). The well-dispersed, high surface area GNPs
also have a large area in contact with the fluid,
increasing particle–carrier interactions and therefore
suspension viscosity and elasticity.

In time, the relatively chemically inert, high surface
area, nanoscale unfunctionalized R1 GNPs approach
one another through the low viscosity carrier under the
action of Brownian motion and upon touching agglom-
erate under van der Waals forces. The viscosity and
elasticity of the suspensions decrease in time, with
these decreases largest at low shear rates and highest
concentrations, as the GNPs agglomerate to form
larger, lower aspect ratio particles giving reduced flow
diversion, a reduction in interparticle interactions as

interparticle distance increases with increasing particle
size and a reduction in the surface area of the particles
in contact with the fluid (Fig. 10b).

Larger agglomerated particles would also be ex-
pected to sediment faster under the action of gravity.
To counteract this, the pots were lightly stirred before
measurement to ensure any agglomerates that may
have sedimented particles were redistributed through-
out the mixture and a sample consistent of the whole
pot taken.

The NH3 GNPs maintain their viscosity, shear
thinning behavior and viscoelastic properties over the
same twelve-week period. The NH3 plasma function-
alization is able to prevent agglomeration and aid the
GNPs in maintaining their nanoscale size and high
aspect ratio, and therefore their effect on suspension
viscosity and elasticity. NH3 plasma functionalization
has previously been shown to increase the surface
nitrogen content of nano-carbons, increasing surface
polarity.8 Addition of the polar N groups to the surface
of the NH3 GNPs would provide improved chemical
affinity for the polar segment of the TPU, allowing the
TPU to better wet the GNPs, enclosing the GNPs in a
binder shell, to create a steric barrier that helps to hold
the GNPs far enough apart to prevent agglomeration.
This allows the GNPs to maintain their dispersion and
with it their rheological properties. The plasma func-
tionalization and enhanced wetting did not affect the
electrical properties of the GNPs.

Overcoming the inherent tendency of the nano-
carbon to agglomerate to form a stable dispersion of
nano-carbons is important if nano-carbons are to be
taken from the laboratory scale to industrial produc-
tion where an ink must have sufficient shelf life for
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them to become an economically viable competitor for
existing carbon inks such as graphite and carbon black-
based inks largely used in industry. Ammonia plasma
functionalization has been shown to improve the
dispersion and time stability of GNPs in a low-viscosity
TPU resin for use in printing inks, while not negatively
affecting its electrical properties, giving it an advantage
over other methods of chemical functionalization.

Conclusions

Both ammonia plasma functionalized NH3 GNPs and
unfunctionalized R1 GNPs were dispersed into a low-
viscosity resin system at various concentrations and
their rheological properties, print performance and
time stability were studied. Both the unfunctionalized
R1 GNP and the ammonia plasma functionalized NH3

GNP inks had a similar rheological and print perfor-
mance irrespective of plasma functionalization. White
light interferometry was used to demonstrate the
absence of any large agglomerates in the final print.

Over a twelve-week period, the viscosity and
viscoelasticity of the R1 GNP suspensions drop con-
tinuously, with the rate fastest for the highest concen-
tration. The unfunctionalized R1 GNPs approach each
other under Brownian motion in the low-viscosity fluid
before agglomerating due to van der Waals forces to
form larger, lower aspect ratio particles, reducing their
effect on the viscosity of the suspensions.

The ammonia plasma functionalized NH3 GNP
suspensions maintain their rheological properties at
all concentrations over the same period, with small
increases in elasticity and viscosity attributed to solvent
loss. Ammonia plasma functionalization has previously
been shown to increase the nitrogen content and
surface polarity of nano-carbons,8 which would give
the NH3 GNPs improved chemical compatibility with
the TPU resin allowing the TPU to better wet the
particles to create a steric barrier to hold the particles
far enough apart to prevent agglomeration. Therefore,
the NH3 GNP suspensions maintain their rheological
properties over the same twelve-week period.

Selecting an appropriate plasma functionalization
treatment can lead to improved particle–polymer
interactions that can create a steric barrier to help
hold nano-carbons far enough apart to avoid agglom-
eration. The use of this work will be highly significant
for highly filled nano-carbon systems, such as those
used in electrically conductive inks, where typically the
binder is of lower viscosity than those used in melt
polymers, and therefore, interparticle forces play an
increasingly significant role.
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