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As a composite material, the mechanical properties of bone are highly dependent on its hierarchical
organisation, thus, macroscopic mechanical properties are dictated by local phenomena, such as micro-
damage resulting from repetitive cyclic loading of daily activities. Such microdamage is associated with
plastic deformation and appears as a gradual accumulation of residual strains. The aim of this study is to
investigate local residual strains in cortical bone tissue following compressive cyclic loading, using in situ
X-ray computed tomography (XCT) and digital volume correlation (DVC) to provide a deeper insight on
the three-dimensional (3D) relationship between residual strain accumulation, cortical bone microstruc-
ture and failure patterns. Through a progressive in situ XCT loading-unloading scheme, localisation of
local residual strains was observed in highly compressed regions. In addition, a multi-scale in situ XCT
cyclic test highlighted the differences on residual strain distribution at the microscale and tissue level,
where high strains were observed in regions with the thinnest vascular canals and predicted the failure
location following overloading. Finally, through a continuous in situ XCT compression test of cycled spec-
imens, the full-field strain evolution and failure pattern indicated the reduced ability of bone to plasti-
cally deform after damage accumulation due to high number of cyclic loads. Altogether, the novel
experimental methods employed in this study, combining high-resolution in situ XCT mechanics and
DVC, showed a great potential to investigate 3D full-field residual strain development under repetitive

loading and its complex interaction with bone microstructure, microdamage and fracture.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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(O’Brien et al., 2007). Microcracks, in particular, are thought to play
an important role in bone fracture behavior as well as in bone

1. Introduction

Cortical bone is a complex composite material whose structure
is hierarchically organized from the nano- to the macroscale to
withstand physiological loads and resist fracture (Wolfram and
Schwiedrzik, 2016). Yet, the mechanical competence of bone is
often impaired by the accumulation of microdamage due to iso-
lated overloading events (Gauthier et al., 2019; Morgan et al.,
2005) or after suffering fatigue from a large number of loading
cycles (Burr et al., 1997; Diab et al., 2006; Schaffler et al., 1995;
Zioupos and Currey, 1998). Microdamage in cortical bone tissue
is manifested in the form of microcracks or diffuse damage
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remodelling, mechanotransduction and the bone toughening
mechanism (Voide et al., 2009). The formation of microcracks is
dependent on the loading mode, (Mirzaali et al., 2015; Reilly and
Currey, 1999) and they are also influenced by the morphological
complexity and porosity of cortical bone (Loundagin et al., 2020;
Turnbull et al., 2014). Under cyclic loading, microcracks can grow
and cause fractures in bone, clinically known as stress fracture
(Zioupos et al., 1996), thus there is considerable interest in under-
standing the failure mechanism of cortical bone following cyclic
loading.

The mechanics of cortical bone subjected to cyclic loading has
been previously investigated with a focus on the fatigue life and
microcrack propagation (Fletcher et al., 2014; Kim et al., 2007;
Nalla et al., 2005; Zioupos et al.,, 2008; Zioupos et al., 2001).

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiomech.2020.110105&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jbiomech.2020.110105
http://creativecommons.org/licenses/by/4.0/
mailto:martapf@kth.se
https://doi.org/10.1016/j.jbiomech.2020.110105
http://www.sciencedirect.com/science/journal/00219290
http://www.elsevier.com/locate/jbiomech
http://www.elsevier.com/locate/jbiomech
http://www.JBiomech.com

M. Pefia Ferndndez, A.P. Kao, F. Witte et al.

Traditionally, the degradation in the mechanical properties due to
repetitive loads has been derived from micromechanical tests (i.e.
cyclic tensile/compressive loading) using damage indicators such
as modulus reduction in relation to the cycle number and residual
strains upon unloading (Bajaj et al., 2014; Fleck and Eifler, 2007;
Winwood et al., 2006a, 2006b). Residual strains are generally
assessed as the translation along the strain axis at zero stress from
traditional stress-strain curves, thus being a measurement of the
plastic deformation of the material (Winwood et al., 2006a,
2006b). The influence of residual strain in the fatigue life and
strength of cortical bone has been characterized in several studies
(Fleck and Eifler, 2007; Morgan et al., 2005; Winwood et al., 2006a,
2006b); however, how the microarchitecture affects the fatigue life
of bone and, in particular, the residual strain accumulation is still
lacking, mainly due to the difficulty of relating the macroscopic
mechanical behavior to the cortical bone microstructure. Since
the structure-mechanics relationship is a key factor in bone dam-
age, a three-dimensional (3D) characterization of the residual
strains due to cyclic loading remains essential.

To date, the only experimental technique that allows for 3D
full-field strain is digital volume correlation (DVC), which in com-
bination with X-ray computed tomography (XCT) has been exten-
sively used in bone mechanics to investigate the deformation
mechanism under different loading conditions (Christen et al.,
2012; Pefia Fernandez et al., 2020, 2019). Particularly, Christen
et al. (2012) investigated the role of cortical bone microstructure
in the initiation and propagation of microcracks in notched cortical
bone specimens under compression by measuring the local strains
in the tissue, revealing the complex interaction between microc-
rack propagation and bone microarchitecture. However, the mea-
sured strains resulted from time-lapsed compression testing,
while the effect of cyclic loading and residual strains upon unload-
ing were not the object of that study. The potential of DVC in eval-
uating residuals strains under cyclic compression has been
previously explored by Tozzi et al. (2014) in bone-biomaterial
composites. The progressive damage accumulation under cyclic
loading at the bone-biomaterial interface was shown, as evidenced
by the initiation of cracks associated with high residual strains.
Nevertheless, the intricacy of such biphasic structure together with
the limited resolution of the XCT images (i.e. 20 pm) achieved,
could not allow the characterization of local residual strain within
bone tissue as well as its spatial correlation with bone microstruc-
ture. Therefore, by using high-resolution XCT in combination with
cyclic mechanical testing and DVC an in depth understanding of
the local residual strain in cortical bone tissue will be enabled.

In this work, a series of experiments were carried out in order to
assess the ability of DVC based on high-resolution XCT images to
evaluate 3D full-field residual strains in cortical bone tissue sub-
jected to low-cycle compressive loading. In particular, this study
aims at investigating the residual strain accumulation in relation
to the applied level of compression and number of cycles as well
as the spatial correlation of local residual strains, intracortical
porosity and failure patterns following a compressive overload.

2. Materials and methods
2.1. Specimen preparation

Cortical bone specimens were obtained from the diaphysis of a
fresh bovine femur. A 20 mm-thick section was cut from the mid-
dle of the femur and a diamond-coated coring tool was used to
extract 4 mm diameter cylindrical plugs. The ends of the speci-
mens were then trimmed with a bandsaw to achieve a 10 mm
length. All cutting occurred under constant water irrigation and
all specimens were wrapped in gauze, soaked in phosphate
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buffered saline (PBS) and stored at —20 °C until testing. Prior to
the experiment the ends of the specimen were cleaned, dried
and embedded into brass endcaps using a custom jig to minimize
testing uncertainties and achieving a nominal final length of
8 mm (2:1 aspect ratio).

2.2. In situ XCT mechanical testing

The specimens were divided in three groups and underwent
three different in situ XCT mechanical tests, as described in Table 1
and Fig. 1.

2.2.1. Progressive compression test

Cortical bone specimens (n = 3) were placed within an environ-
mental chamber filled with PBS in a micromechanical device
(CT500, Deben Ltd, UK) that was positioned in the chamber of a
high-resolution X-ray microscope (Versa 510, Zeiss, USA) (Fig. 1-
I). First, a preload of ~50 N was applied to ensure end contact prior
to testing followed by in situ uniaxial compression test at incre-
mental strains of 0.5%, 1% and 2% using a progressive load-
unload-reload scheme (Fig. 1-I, right) (Nyman et al., 2009a,
2009b). In each cycle, the specimen was first loaded under dis-
placement control to the target deformation level at a rate of
1 mm/min; then held steady for image acquisition. Thereafter,
the specimen was unloaded to zero-strain state (preload configura-
tion) and held there for image acquisition, and then reloaded again
to the next strain level. At each loaded-unloaded state XCT images
were acquired (80 keV, 7 W, 3.5 um voxel size, 2.5 s exposure time,
1800 projections), after two repeated scans in the preload configu-
ration for DVC zero-strain error analysis (Dall’Ara et al., 2017). In
total, eight tomographic datasets were acquired for each specimen.

2.2.2. Multi-scale cyclic compression test

In situ XCT uniaxial cyclic compression testing of cortical bone
specimens (n = 3) was performed using a loading stage (CT5000,
Deben Ltd, UK) placed in the X-ray microscope (Versa 510, Zeiss,
USA) (Fig. 1-II). Specimens were mounted within a custom-made
chamber and immersed in PBS throughout the test. Prior to cyclic
testing, XCT images of the intact specimens were acquired at two
different resolutions for a multi-scale evaluation. First, an overall
XCT scan (110 keV, 10 W, 5 um voxel size, 5 s exposure time,
1200 projections) was performed to include the entire specimen
diameter within the field of view (FOV, 5 mm x 5 mm); then, a
high-resolution XCT scan (80 keV, 7 W, 2 um voxel size, 12 s expo-
sure time, 1600 projections) of the centre of the specimen (FOV:
2 mm x 2 mm) was acquired. Following acquisition of the first pair
of XCT images, each of the specimens was subjected to 5, 30 or 100
cycles of uniaxial compression at a maximum strain of 0.5% and a
frequency of 0.2 Hz, after which the XCT imaging procedure was
repeated (unloaded state). Finally, specimens were loaded mono-
tonically up to failure and XCT scans acquired after the load was
released. In total, three (i.e. intact, cycled and failed) pairs (i.e.
5 um and 2 um voxel size) of images were acquired for each sam-
ple. Two additional cortical bone specimens were imaged in the
same conditions twice consecutively to allow for DVC zero-strain
error analysis (Dall’Ara et al., 2017).

2.2.3. Continuous compression test after cyclic loading

In situ SR-XCT continuous compression testing (n = 3) was per-
formed at the Diamond-Manchester Imaging Branchline 113-2 of
Diamond Light Source (UK) (Fig. 1-1II). A filtered, partially coherent,
polychromatic ‘pink’ beam (5-35 keV) of near-parallel geometry
with an undulator gap of 5 mm was used. Projections were
recorded by a sCMOS pco.edge 5.5 (PCO AG, Germany) detector,
coupled to a 500 pm-thick CdWO, scintillator and a visual light
microscope with a 2x objective lens. Pixel binning (4x) was used
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Table 1
Description and aims of the in situ XCT mechanical tests performed in this study. n: number of cortical bone specimens. DLS: Diamond Light Source.
Experiment XCT Loading n Aim
system stage
Progressive compression  Zeiss Versa Deben 3 To explore the capability of DVC to assess differences between volumetric and residual strains.
test 510 CT500
Multi-scale cyclic Zeiss Versa  Deben 3 To examine the spatial correlation between localized strains, intracortical porosity and failure patterns
compression test 510 CT5000 after overloading in a multiscale manner.
Continuous compression ~ 113-2 DLS Deben 3 Toinvestigate differences in volumetric strain progression and failure mechanism in relation to the number
test CT5000 of applied cyclic loads.
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Fig. 1. Summary of in situ XCT experiments performed for this study. I) in situ XCT progressive compression test; II) multi-scale in situ XCT cyclic compression test; III) in situ
SR-XCT continuous compression test. The different experimental setups (left) are shown next to a representative XCT cross-section (middle) of the cortical bone specimens

and a typical stress-strain curve (right) for each experiment.

to achieve better signal and faster framerates, resulting in an effec-
tive voxel size of 6.5 um and a FOV of 4.2 x 3.5 mm. 1441 projec-
tion images were collected over 180° of continuous rotation with a
exposure time of 15 ms (plus 2 ms read-out), resulting in an esti-
mated radiation dose of ~0.53 kGy/tomogram (Pefia Fernandez
et al., 2018). Specimens were placed within the PBS-filled environ-
mental chamber of the loading device (CT5kN, Deben Ltd, UK) and
subjected to 5, 30 or 100 cycles of uniaxial compression (0.5% max-
imum strain, 0.2 Hz). Following the cyclic loading scheme, a pre-
load (50 N) was applied to ensure end-contact and continuous
loading was performed at a constant crosshead speed of
0.01 mm/min up to failure, with SR-XCT images acquired simulta-
neously. For all specimens, two repeated scans (preload state) prior
to loading were acquired for DVC zero-strain error analysis
(Dall’Ara et al., 2017). In total, 18, 16 and 13 tomograms were
acquired for the specimen cycled 5, 30 and 100 times, respectively;
thus, the total radiation dose remained below 15 kGy, minimizing

the possibility of radiation-induced damage (Barth et al., 2010;
Marta Pefla Ferndndez et al., 2018; Barth et al., 2010; Pefia
Fernandez et al., 2018).

2.3. Image postprocessing

XCT images acquired in the lab-system were reconstructed
using the manufacture’s software (TXM Reconstructor, Zeiss,
USA). Following image reconstruction, the XCT datasets were
rigidly aligned using as reference the first acquired tomogram
and denoised using a non-local means filter (Avizo 9.4, Thermo-
Fisher, US). Intracortical porosity was segmented using Otsu’s
thresholding and the vascular canal network was separated from
the osteocyte lacunae by removing the unconnected objects with
a volume below 500 pm? (Cardoso et al., 2013). The morphometry
of the canal network was determined by the total canal volume
(Ca.V), canal volume density (Ca.V/Ct.TV) and mean canal diameter
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(Ca.D) using Bone] (Doube et al., 2010) plugin in FIJI (Schindelin
et al,, 2012).

SR-XCT images were flat-field and dark-field corrected prior to
image reconstruction using Savu (Atwood et al., 2015), which
incorporated ring artefact suppression. Dedicated Matlab
(v2018a, MathWorks, USA) scripts were developed to rigidly
aligned the deformed datasets to the reference (unloaded) and to
denoise them using an anisotropic diffusion filter.

2.4. Digital volume correlation

DVC (DaVis v10.05, LaVision, Germany) analysis was performed
to evaluate the 3D full-field strains in cortical bone specimens sub-
jected to the different mechanical tests. The DaVis software is
based on a local approach of deformable registration and further
details on the operating principles of the algorithm are detailed
elsewhere (Pefia Fernandez et al., 2018). The acquired zero-strain
repeated scans were used to evaluate strain uncertainties (i.e.
mean absolute strain (MAER) and standard deviation of the error,
SDER (Palanca et al., 2016)) with sub-volumes ranging from 8 to
80 voxels. The final DVC-schemes used for each in situ XCT test
and the corresponding strain errors are summarized in Table 2.

Volumetric strain (Eq. (1)) was computed for the evaluation of
the strain distribution in specimens under compressive load
(Fig. 1-I, III), whereas von Mises Equivalent strain (Eq. (2)) was
used to assess the residual strain distribution after unloading
(Fig. 1-I) or cyclic testing (Fig. 1-II).

Epol = €1+ &2 + &3 (1)

With €, €; and &3 being the principal strains.

2 [3(&rehrer) 3(h+o% %)
4

b =3 2
1 1
exx:§8xx_§8yy_§gzz
1 1
Gy =38y — 37— 382
PSP NP P
zz—3 74 3 XX 3 Yy
Vi = 28 (2)
3. Results

3.1. In situ XCT progressive compression

Cortical bone specimens subjected to progressive compression
test presented small differences in their morphology (i.e. Ca.V/Ct.
TV = 2.6 £ 0.4% and Ca.Dm = 55.8 + 8.5 pm) and apparent elastic
modulus (E,pp = 2.82 + 0.11 GPa). The highest modulus correlated
to the lowest canal volume and the thinnest canals. The internal
strain distribution (i.e. €, and &eq) showed a similar pattern for

Table 2
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the three specimens. A progressive strain accumulation for both
loaded (&) and unloaded (&eq) states was observed at increasing
applied strain amplitudes, with the absolute value of &, higher
than geq at all steps (Fig. 2). Maximum local compressive strains
(&vol < 0) were higher than tensile (€, > 0) and residual strains
(€eq) (Fig. 2a), with more than 10% of cortical bone volume showing
local compressive values below —4000 pg at 2% compression for all
specimens; whereas tensile strains remained always below 4000
ue and less than 2% of bone volume experienced residual strains
above 4000 pe. All specimens showed a non-uniform strain distri-
bution, with local strains building up during compression (Fig. 2b,
c). The spatial co-localization of highly strained regions in loaded
and unloaded states is shown in Fig. 3 and it highlights the pre-
dominance of negative &,,.. Residual strains after each incremental
applied compression accumulated in cortical bone regions that
were previously highly compressed.

3.2. In situ multiscale XCT cyclic testing

Increasing the resolution from 5 um to 2 um for the multiscale
XCT imaging allowed to identify not only the cortical canal net-
work but also the osteocyte lacunae (Fig. 1-II), resulting in
improved DVC spatial resolution from 320 pm to 96 pm, which
led to different internal strain distributions for the overall scan
(Fig. 4a) compared to the zoom-in region (Fig. 4b). The overall
residual strains (g.q) were highly homogeneous for all the speci-
mens and a slight increase of €., values after 100 cycles was
observed compared to the less cycled specimens (Fig. 4a). A more
complex and heterogeneous &.q distribution was experienced at
tissue level (Fig. 4b), with local strains exceeding those measured
at a lower resolution and reaching maximum values over 2000
pe in some areas. Such local strain concentrations were more
important after 100 cycles of compression. Highly strained regions
were found around thinnest canals for all the specimens (Fig. 5a,
b). The specimens subjected to 5 and 30 cycles showed longitudi-
nal cracks after failure (Fig. S3), which were localised in proximity
to the previously identified areas with high residual strains
(Fig. 5¢). No visible damage was identified within the FOV of the
highest resolution image of the most cycled specimen (Fig. 5c¢)
and only small cracks were observed when examining the entire
FOV (Fig. S3).

3.3. In situ SR-XCT continuous compression

The evolution of &, during continuous compression for the
specimens subjected to 5, 30 and 100 cycles is shown in Fig. 6 in
terms of average and standard deviation of strain in the analysed
volumes. All samples presented an almost linear increasing trend
on the average &, values prior to failure. Strain heterogeneity
increased after yielding and built-up on the onset of crack forma-
tion (Supplementary Video 1). Failure occurred earlier for the most
cycled specimen at a lower average €, (~—1600 pe) compared to
the specimens cycled 5 or 30 times, which experienced minimum
€yo1 Of ~—4000 pe before failure (Fig. 6). The strain distribution was
highly homogeneous for the all specimens prior to failure and
heterogeneity in the strain field only increased when cracks were

Summary of DVC-schemes used for each experiment and the corresponding strain uncertainties (MAER, SDER) for the n number of specimens analysed. MAER and SDER are

reported as mean (standard deviation).

Experiment Voxel size (um) DVC scheme (voxel) n MAER (pe) SDER (pe)
Progressive compression test 35 64-56-48-40 3 401 (126) 101 (37)
Multi-scale cyclic compression test 5.0 88-80-72-64 2 207 (11) 82 (8)
2.0 72-64-56-48 2 220 (33) 122 (16)
Continuous compression test 6.5 72-64-56-48 3 467 (24) 112 (11)
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Fig. 2. DVC-computed strains for in situ XCT progressive compression test. (a) The maximum tensile (&,0 > 0), compressive (&,o < 0) and equivalent von Mises (€.q) local
strains is shown (color-coded) at each incremental compression step, with straight lines joining the mean values and error bars indicating the standard deviation between the
three analysed specimens. Full-field (b) volumetric (&) and (c) equivalent von Mises equivalent (geq) strain distribution of a representative specimen for the three
incremental steps of compression. Strain maps for all specimens may be found in supplementary material Fig. S1, S2.

visible (Fig. 7), with positive &, in regions of crack opening and
negative &, in regions highly compacted. The damage initiation
and progression between the specimens was different, with the
less cycled specimens displaying a structural collapse due to the
presence of a main longitudinal crack running through the entire
cortical volume, while cracks in the more cycled specimen did
not pierce the volume longitudinally (Supplementary Video).

4. Discussion

The accumulation of microdamage during cyclic loading plays a
key role in weakening cortical bone and leading to complete frac-
ture as a result of the degradation in its mechanical properties,
which is evidenced by the development of residual strains upon
unloading. The main goal of this study was to explore the capabil-
ity of DVC to assess local residual strains in cortical bone tissue fol-
lowing in situ XCT cyclic loading in order to gain a greater
understanding of the 3D relationships between residual strain
accumulation, cortical bone microstructure and failure pattern.

The first experiment herein presented aimed at investigating
the spatial correlation between volumetric strains in loaded corti-
cal bone specimens and residual strains upon unloading following

a progressive loading scheme (Fig. 1-I) similar to that introduced
by Wang and Nyman (2007). Maximum &y, and €q local strains
in the tissue increased in a nearly linear relationship with the
applied deformation (Fig. 2), consistent with the observations of
Nyman et al. (2009a, 2009b). DVC-computed €.q were used as a
non-directional measurement of the residual (plastic) local strains
(Morgeneyer et al., 2014); this enabled a good representation of
the strain localization with respect to bone microstructure and
allowed a direct comparison with g, in the loaded specimens
(Figs. 2 and 3). In this study, the DVC computation successfully
showed the coupling of residual strain accumulation and highly
compressed regions at low levels of global strains (Fig. 3). Similar
findings were observed by Tozzi et al. (2014) in bone-biomaterial
composites, where high residual strains after cyclic loading were
found in the most strained regions during uniaxial compression.
However, the XCT spatial resolution achieved in that study (i.e.
20 um) did not allow for an in-depth characterization of localized
residual strain within the bone tissue.

The multi-scale in situ XCT cyclic test evidenced differences on
the residual strain distributions after cyclic loading at different
dimensional scales (Fig. 4). Despite the €.q was found to slightly
increase with higher number of cycles at the microscale (Fig. 4a),
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Fig. 3. 3D representation of highly strained regions in cortical bone specimen in Fig. 2 subjected to progressive compression test. (Top) High tensile (&0 > 2000 pe) and
compressive (&0 < —2000 pg) strains are displayed for the specimen under each step of applied compression and (bottom) high residual strains (g.q > 2000 pg) for the

unloaded specimen.
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Fig. 4. 3D full-field von Mises equivalent strain distribution (&.q) after 5, 30 and 100 cycles of uniaxial compression computed using DVC on the (a) entire specimen diameter
(5 um voxel size images, with 320 um DVC-spatial resolution) and (b) a volume of interest (VOI) in the centre of the specimen (2 um voxel size images, with 96 um DVC-
spatial resolution). eq distribution is shown for the entire volume and a representative longitudinal cross-section.

the presence of high local residual strains as an indicator of micro- described by Nicolella et al. (2005) and Hoc et al. (2006) at a higher
damage could only be appreciated at the tissue level (Fig. 4b). The resolution (up to 0.4 um) using digital image correlation based on
inhomogeneity of local strains in the bone matrix was previously optical microscopy images. In agreement with those studies, local
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Fig. 5. Spatial correlation of local residual strains, cortical canal network morphometry and microdamage in cortical bone specimens subjected to 5, 30 and 100 cycles of
uniaxial compression. (a) Local von Mises equivalent strain distribution (&.q) around the canal network (over 20 pm dilation of canals); (b) Colour map of canal network
diameter (Ca.D) distribution; (c) Overlaid of the segmented canal network pre-failure (white), after failure (blue) and microcracks (red).
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Fig. 6. DVC-computed volumetric strains (&,0;) during continuous uniaxial compression after 5, 30 and 100 cycles. The solid lines represent the mean &vol values, with the
shaded areas representing the standard deviation. The insert details the points (x symbols) prior to visible failure (i.e. microcracks).

residual tissue strains here were mostly above 2000 pe, whereas
microscopic average strains only accounted for 500 pe. These
results highlight the need for a multi-scale mechanical characteri-
zation of bone, as the macroscopic properties (i.e. modulus reduc-
tion, global residual strains) are not sufficient to accurately predict
the source and potential incidence of damage due to local residual
strains build-up in the tissue.

Cortical bone mechanical properties are strongly governed by
its microstructure and intracortical porosity has previously been
reported to explain a significant amount of variance in bone
strength and fatigue life (Carter et al., 1976; Loundagin et al.,
2020; Turnbull et al., 2014; Zioupos et al., 2008). Particular atten-
tion has also been given to the contribution of canal diameter as a

predictor of the overall fatigue behavior of cortical bone
(Loundagin et al., 2020; Yeni et al., 1997), with vascular canals as
stress concentrators. In the current study, highest local residual
strains (i.e. above 1500 pe) following cyclic loading were observed
in regions with thinnest canals (Fig. 5). Despite the presence of a
high number of smaller canals in cortical bone may increase its
fracture toughness and fatigue life (Loundagin et al., 2020; Yeni
et al., 1997), the DVC-computed &4 suggested that localized areas
with the thinnest canals may accumulate more microdamage due
to larger amount of stress concentration in which microcracks typ-
ically initiate. Interestingly, such highly strained regions after 5
and 10 compressive cycles could predict the location where frac-
ture occurred following overloading (Fig. 5). Conversely, fracture
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Fig. 7. 3D full-field volumetric strain distribution (&,4) (a) before and (b) after failure during continuous compression after 5, 30 and 100 cycles of uniaxial compression.
Microcracks after failure are indicated with black arrows. The evol evolution during continuous compression can be seen in the supplementary video.

in the more cycled specimen (i.e. 100 cycles) could not be identi-
fied within the imaged FOV despite an evident force drop was
observed in the mechanical curve (Fig. S4), suggesting the main
failure may have occurred outside the FOV. To better understand
the effect that damage accumulation may have had on the overall
fracture outcome, the final in situ SR-XCT test investigated the full-
field €, distribution during continuous compression, showing a
major fracture throughout the specimens subjected to 5 and 10
cycles and several cracks progressively propagating through the
most cycled specimen (100 cycles) (Supplementary Video 1). Fol-
lowing cyclic loading, some damage had already occurred and
the ability of bone to progress further damage would decrease,
leading to a decrease in fracture initiation toughness (Fletcher
et al., 2014). This in line with the lower &,, magnitudes (i.e. below
3000 pe in compression) that such specimen (100 cycles) accumu-
lated during continuous compression prior to failure, which even-
tually led to fracture in a more brittle way due to the reduced bone
plasticity when compared to the less cycled specimens. Addition-
ally, following failure, DVC-computed strains based on real-time
compression indicated tensile strain in regions where cracks
opened and compressive strain in highly compacted areas
(Fig. 7b, Supplementary video 1).

This study has some limitations. A small number of specimens
were used, making the study unable to support statistical analysis;
therefore, providing a more qualitative than quantitative evalua-
tion as typically achieved in high-resolution XCT-based DVC stud-
ies. Additionally, all experiments presented were performed on
different specimens, hence a correlation between the observations
could not be determined. Finally, the accumulation of residual
strains at increasing compressive cycles was not conducted, due
to the long acquisition time needed for high-resolution imaging;
extending the duration of the test could impact the mechanical
properties of bone due to the effect of X-ray irradiation (Barth
et al., 2010; Marta Pefia Fernandez et al., 2018). Nonetheless, the
combination of in situ high-resolution XCT imaging and DVC
employed in this study allowed for a deeper understanding on
the mechanical behavior and failure mechanisms of cortical bone
following cyclic loading, showing for the first time 3D full-field

residual strain accumulation at low cycles as a potential predictor
of tissue failure due to overloading. The results reported in this
study have the potential to produce a significant impact in the
understanding of fracture mechanism in pathological conditions
(i.e. osteoporosis), by further investigating the complex interplay
of local residual strain accumulation, increased porosity and fati-
gue microcracks initiation/propagation pattern.

CRediT authorship contribution statement

Marta Peiia Fernandez: Conceptualization, Methodology, Vali-
dation, Formal analysis, Investigation, Data curation, Writing -
original draft, Writing - reviewing & editing, Visualization, Project
administration, Funding acquisition. Alexander P. Kao: Investiga-
tion, Writing - reviewing & editing. Frank Witte: Resources, Writ-
ing - reviewing & editing, Funding acquisition. Hari Arora:
Investigation, Writing - reviewing & editing, Funding acquisition.
Gianluca Tozzi: Conceptualization, Resources, Writing - reviewing
& editing, Supervision, Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

The authors would like to acknowledge Roxane Bonithon,
Andrew Bodey and Kazimir Wanelik for support during the exper-
imental session at the Diamond-Manchester Imaging Branchline
[13-2 at Diamond Light Source (UK) under proposal MG-22575.
The Zeiss Global Centre (University of Portsmouth) provided X-
ray facilities and software for image analysis. Funding from Biotrics
biomaterials AG (Germany) supporting this study are gratefully
acknowledged.



M. Pefia Ferndndez, A.P. Kao, F. Witte et al.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jbiomech.2020.110105.

Reference

Atwood, R.C.,, Bodey, AJ., Price, S\W.T., Basham, M., Drakopoulos, M., 2015. A high-
throughput system for high-quality tomographic reconstruction of large
datasets at Diamond Light Source. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
373. https://doi.org/10.1098/rsta.2014.0398.

Bajaj, D., Geissler, J.R., Allen, M.R., Burr, D.B., Fritton, ].C., 2014. The resistance of
cortical bone tissue to failure under cyclic loading is reduced with alendronate.
Bone 64, 57-64. https://doi.org/10.1016/j.bone.2014.03.045.

Barth, H.D., Launey, M.E., MacDowell, A.A., Ager, ]J.W., Ritchie, R.O., 2010. On the
effect of X-ray irradiation on the deformation and fracture behavior of human
cortical bone. Bone 46, 1475-1485. https://doi.org/10.1016/j.bone.2010.02.025.

Burr, D.B., Forwood, M.R., Fyhrie, D.P., Martin, R.B., Schaffler, M.B., Turner, C.H.,
1997. Bone microdamage and skeletal fragility in osteoporotic and stress
fractures. J. Bone Miner. Res. 12, 6-15. https://doi.org/10.1359/
jbmr.1997.12.1.6.

Cardoso, L., Fritton, S.P., Gailani, G., Benalla, M., Cowin, S.C., 2013. Advances in
assessment of bone porosity, permeability and interstitial fluid flow. J. Blomech.
46, 253-265. https://doi.org/10.1016/j.jbiomech.2012.10.025.

Carter, D.R., Hayes, W.C., Schurman, D.J., 1976. Fatigue life of compact bone—II.
Effects of microstructure and density. ]. Biomech. 9, 211-218. https://doi.org/
10.1016/0021-9290(76)90006-3.

Christen, D., Levchuk, A., Schori, S., Schneider, P., Boyd, S.K., Miiller, R., 2012.
Deformable image registration and 3D strain mapping for the quantitative
assessment of cortical bone microdamage. ]. Mech. Behav. Biomed. Mater. 8,
184-193. https://doi.org/10.1016/j.jmbbm.2011.12.009.

Dall’Ara, E., Pefia-Fernandez, M., Palanca, M., Giorgi, M., Cristofolini, L., Tozzi, G.,
2017. Precision of digital volume correlation approaches for strain analysis in
bone imaged with micro-computed tomography at different dimensional levels.
Front. Mater. 4. https://doi.org/10.3389/fmats.2017.00031.

Diab, T., Condon, KW., Burr, D.B., Vashishth, D., 2006. Age-related change in the
damage morphology of human cortical bone and its role in bone fragility. Bone
38, 427-431. https://doi.org/10.1016/j.bone.2005.09.002.

Doube, M., Ktosowski, M.M., Arganda-Carreras, 1., Cordeliéres, F.P., Dougherty, R.P.,
Jackson, ].S., Schmid, B., Hutchinson, J.R., Shefelbine, S.J., 2010. Bone]J: Free and
extensible bone image analysis in Image]. Bone 47, 1076-1079. https://doi.org/
10.1016/j.bone.2010.08.023.

Fleck, C., Eifler, D., 2007. Influence of the loading rate on the cyclic deformation
behaviour and the damage accumulation of cortical bone specimens under
three-point bending. Adv. Eng. Mater. 9, 1069-1076. https://doi.org/10.1002/
adem.200700281.

Fletcher, L., Codrington, J., Parkinson, 1., 2014. Effects of fatigue induced damage on
the longitudinal fracture resistance of cortical bone. J. Mater. Sci. - Mater. Med.
25, 1661-1670. https://doi.org/10.1007/510856-014-5213-5.

Gauthier, R, Langer, M., Follet, H., Olivier, C., Gouttenoire, P.-]., Helfen, L., Rongiéras,
F., Mitton, D., Peyrin, F., 2019. Influence of loading condition and anatomical
location on human cortical bone linear micro-cracks. J. Biomech. 85, 59-66.
https://doi.org/10.1016/j.jbiomech.2019.01.008.

Hoc, T., Henry, L., Verdier, M., Aubry, D., Sedel, L., Meunier, A., 2006. Effect of
microstructure on the mechanical properties of Haversian cortical bone. Bone
38, 466-474. https://doi.org/10.1016/j.bone.2005.09.017.

Kim, J.H., Niinomi, M., Akahori, T., Toda, H., 2007. Fatigue properties of bovine
compact bones that have different microstructures. Int. J. Fatigue 29, 1039-
1050. https://doi.org/10.1016/j.ijfatigue.2006.09.018.

Loundagin, L.L., Haider, L.T., Cooper, D.M.L, Edwards, W.B., 2020. Association
between intracortical microarchitecture and the compressive fatigue life of
human bone: a pilot study. Bone Reports 12. https://doi.org/10.1016/j.
bonr.2020.100254.

Mirzaali, M.J., Biirki, A., Schwiedrzik, J., Zysset, P.K., Wolfram, U., 2015. Continuum
damage interactions between tension and compression in osteonal bone. J.
Mech. Behav. Biomed. Mater. 49, 355-369. https://doi.org/10.1016/j.
jmbbm.2015.05.007.

Morgan, EF., Lee, ]J., Keaveny, T.M. 2005. Sensitivity of multiple damage
parameters to compressive overload in cortical bone. ]. Biomech. Eng. 127.
https://doi.org/10.1115/1.1933916.

Morgeneyer, T.F., Taillandier-Thomas, T., Helfen, L., Baumbach, T., Sinclair, I., Roux,
S., Hild, F., 2014. In situ 3-D observation of early strain localization during
failure of thin Al alloy (2198) sheet. Acta Mater. 69, 78-91. https://doi.org/
10.1016/j.actamat.2014.01.033.

Nalla, RK., Kruzic, J.J., Kinney, ].H., Ritchie, R.0., 2005. Aspects of in vitro fatigue in
human cortical bone: time and cycle dependent crack growth. Biomaterials 26,
2183-2195. https://doi.org/10.1016/j.biomaterials.2004.05.024.

Nicolella, D., Bonewald, L., Moravits, D., Lankford, J., 2005. Measurement of
microstructural strain in cortical bone. Eur. J. Morphol. 42, 23-29. https://doi.
0rg/10.1080/09243860500095364.

Journal of Biomechanics 113 (2020) 110105

Nyman, J.S., Leng, H., Neil Dong, X., Wang, X., 2009a. Differences in the mechanical
behavior of cortical bone between compression and tension when subjected to
progressive loading. J. Mech. Behav. Biomed. Mater. 2, 613-619. https://doi.org/
10.1016/j.jmbbm.2008.11.008.

Nyman, J.S., Roy, A., Reyes, M.J., Wang, X., 2009b. Mechanical behavior of human
cortical bone in cycles of advancing tensile strain for two age groups. . Biomed.
Mater. Res. 89, 521-529. https://doi.org/10.1002/jbm.a.31974.

O’Brien, FJ., Taylor, D., Clive Lee, T., 2007. Bone as a composite material: the role of
osteons as barriers to crack growth in compact bone. Int. J. Fatigue 29, 1051-
1056. https://doi.org/10.1016/].ijfatigue.2006.09.017.

Palanca, M., Cristofolini, L., Dall'Ara, E., Curto, M., Innocente, F., Danesi, V., Tozzi, G.,
2016. Digital volume correlation can be used to estimate local strains in natural
and augmented vertebrae: an organ-level study. ]. Biomech. 49, 3882-3890.
https://doi.org/10.1016/j.jbiomech.2016.10.018.

Pefla Fernandez, M., Barber, AH. Blunn, G.W., Tozzi, G., Fern, A.A, 2018a.
Optimization of digital volume correlation computation in SR-microCT images
of trabecular bone and bone-biomaterial systems. ]. Microsc. 272, 213-228.
https://doi.org/10.1111/jmi.12745.

Peiia Fernandez, M., Black, C., Dawson, ]., Gibbs, D., Kanczler, ]., Oreffo, R.0.C., Tozzi,
G., 2020. Exploratory full-field strain analysis of regenerated bone tissue from
osteoinductive biomaterials. Materials (Basel). 13, 168. https://doi.org/
10.3390/ma13010168.

Peifia Fernandez, M., Cipiccia, S., Dall'Ara, E., Bodey, AJ., Parwani, R., Pani, M., Blunn,
G.W., Barber, AH., Tozzi, G., 2018b. Effect of SR-microCT radiation on the
mechanical integrity of trabecular bone using in situ mechanical testing and
digital volume correlation. J. Mech. Behav. Biomed. Mater. 88, 109-119. https://
doi.org/10.1016/j.jmbbm.2018.08.012.

Pefia Fernandez, M., Dall'Ara, E., Bodey, A]., Parwani, R., Barber, A.H., Blunn, G.W.,
Tozzi, G., 2019. Full-field strain analysis of bone-biomaterial systems produced
by the implantation of osteoregenerative biomaterials in an ovine model. ACS
Biomater. Sci. Eng. 5, 2543-2554, https://doi.org/10.1021/
acsbiomaterials.8b01044.

Reilly, G.C,, Currey, J.D., 1999. The development of microcracking and failure in bone
depends on the loading mode to which it is adapted. J. Exp. Biol. 202, 543-552.

Schaffler, M.B., Choi, K., Milgrom, C., 1995. Aging and matrix microdamage
accumulation in human compact bone. Bone 17, 521-525. https://doi.org/
10.1016/8756-3282(95)00370-3.

Schindelin, J., Arganda-Carreras, 1., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, ].-Y., White, D].,
Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: an open-source
platform for biological-image analysis. Nat. Methods 9, 676-682. https://doi.
org/10.1038/nmeth.2019.

Tozzi, G., Zhang, Q.H., Tong, ]., 2014. Microdamage assessment of bone-cement
interfaces under monotonic and cyclic compression. J. Biomech. 47, 3466-3474.
https://doi.org/10.1016/j.jbiomech.2014.09.012.

Turnbull, T.L, Baumann, A.P., Roeder, R.K.,, 2014. Fatigue microcracks that initiate
fracture are located near elevated intracortical porosity but not elevated
mineralization. ]. Biomech. 47, 3135-3142. https://doi.org/10.1016/j.
jbiomech.2014.06.022.

Voide, R., Schneider, P., Stauber, M., Wyss, P., Stampanoni, M., Sennhauser, U., van
Lenthe, G.H., Miiller, R., 2009. Time-lapsed assessment of microcrack initiation
and propagation in murine cortical bone at submicrometer resolution. Bone 45,
164-173. https://doi.org/10.1016/j.bone.2009.04.248.

Wang, X., Nyman, J.S., 2007. A novel approach to assess post-yield energy
dissipation of bone in tension. ]. Biomech. 40, 674-677. https://doi.org/
10.1016/j.jbiomech.2006.02.002.

Winwood, K., Zioupos, P., Currey, ].D., Cotton, J.R., Taylor, M., 2006a. Strain patterns
during tensile, compressive, and shear fatigue of human cortical bone and
implications for bone biomechanics. J. Biomed. Mater. Res. 79A, 289-297.
https://doi.org/10.1002/jbm.a.30796.

Winwood, K.L., Zioupos, P. Currey, J.D., Cotton, J.R., Taylor, M., 2006b. The
importance of the elastic and plastic components of strain in tensile and
compressive fatigue of human cortical bone in relation to orthopaedic
biomechanics. J. Musculoskelet. Neuronal Interact. 6, 134-141.

Wolfram, U., Schwiedrzik, J., 2016. Post-yield and failure properties of cortical bone.
Bonekey Rep. 5, 1-10. https://doi.org/10.1038/bonekey.2016.60.

Yeni, Y.N., Brown, CU., Wang, Z., Norman, T.L, 1997. The influence of bone
morphology on fracture toughness of the human femur and tibia. Bone 21, 453-
459. https://doi.org/10.1016/S8756-3282(97)00173-7.

Zioupos, P., Currey, ].D., 1998. Changes in the stiffness, strength, and toughness of
human cortical bone with age. Bone 22, 57-66. https://doi.org/10.1016/S8756-
3282(97)00228-7.

Zioupos, P., Currey, ].D., Casinos, A., 2001. Tensile fatigue in bone: are cycles-, or
time to failure, or both, important?. J. Theor. Biol. 210, 389-399. https://doi.org/
10.1006/jtbi.2001.2316.

Zioupos, P., Gresle, M., Winwood, K., 2008. Fatigue strength of human cortical bone:
age, physical, and material heterogeneity effects. J. Biomed. Mater. Res. - Part A
86, 627-636. https://doi.org/10.1002/jbm.a.31576.

Zioupos, P., Wang, X.T., Currey, ].D., 1996. The accumulation of fatigue microdamage
in human cortical bone of two different ages in vitro. Clin. Biomech. 11, 365-
375. https://doi.org/10.1016/0268-0033(96)00010-1.


https://doi.org/10.1016/j.jbiomech.2020.110105
https://doi.org/10.1098/rsta.2014.0398
https://doi.org/10.1016/j.bone.2014.03.045
https://doi.org/10.1016/j.bone.2010.02.025
https://doi.org/10.1359/jbmr.1997.12.1.6
https://doi.org/10.1359/jbmr.1997.12.1.6
https://doi.org/10.1016/j.jbiomech.2012.10.025
https://doi.org/10.1016/0021-9290(76)90006-3
https://doi.org/10.1016/0021-9290(76)90006-3
https://doi.org/10.1016/j.jmbbm.2011.12.009
https://doi.org/10.3389/fmats.2017.00031
https://doi.org/10.1016/j.bone.2005.09.002
https://doi.org/10.1016/j.bone.2010.08.023
https://doi.org/10.1016/j.bone.2010.08.023
https://doi.org/10.1002/adem.200700281
https://doi.org/10.1002/adem.200700281
https://doi.org/10.1007/s10856-014-5213-5
https://doi.org/10.1016/j.jbiomech.2019.01.008
https://doi.org/10.1016/j.bone.2005.09.017
https://doi.org/10.1016/j.ijfatigue.2006.09.018
https://doi.org/10.1016/j.bonr.2020.100254
https://doi.org/10.1016/j.bonr.2020.100254
https://doi.org/10.1016/j.jmbbm.2015.05.007
https://doi.org/10.1016/j.jmbbm.2015.05.007
https://doi.org/10.1115/1.1933916
https://doi.org/10.1016/j.actamat.2014.01.033
https://doi.org/10.1016/j.actamat.2014.01.033
https://doi.org/10.1016/j.biomaterials.2004.05.024
https://doi.org/10.1080/09243860500095364
https://doi.org/10.1080/09243860500095364
https://doi.org/10.1016/j.jmbbm.2008.11.008
https://doi.org/10.1016/j.jmbbm.2008.11.008
https://doi.org/10.1002/jbm.a.31974
https://doi.org/10.1016/j.ijfatigue.2006.09.017
https://doi.org/10.1016/j.jbiomech.2016.10.018
https://doi.org/10.1111/jmi.12745
https://doi.org/10.3390/ma13010168
https://doi.org/10.3390/ma13010168
https://doi.org/10.1016/j.jmbbm.2018.08.012
https://doi.org/10.1016/j.jmbbm.2018.08.012
https://doi.org/10.1021/acsbiomaterials.8b01044
https://doi.org/10.1021/acsbiomaterials.8b01044
http://refhub.elsevier.com/S0021-9290(20)30529-7/h0150
http://refhub.elsevier.com/S0021-9290(20)30529-7/h0150
https://doi.org/10.1016/8756-3282(95)00370-3
https://doi.org/10.1016/8756-3282(95)00370-3
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1016/j.jbiomech.2014.09.012
https://doi.org/10.1016/j.jbiomech.2014.06.022
https://doi.org/10.1016/j.jbiomech.2014.06.022
https://doi.org/10.1016/j.bone.2009.04.248
https://doi.org/10.1016/j.jbiomech.2006.02.002
https://doi.org/10.1016/j.jbiomech.2006.02.002
https://doi.org/10.1002/jbm.a.30796
http://refhub.elsevier.com/S0021-9290(20)30529-7/h0190
http://refhub.elsevier.com/S0021-9290(20)30529-7/h0190
http://refhub.elsevier.com/S0021-9290(20)30529-7/h0190
http://refhub.elsevier.com/S0021-9290(20)30529-7/h0190
https://doi.org/10.1038/bonekey.2016.60
https://doi.org/10.1016/S8756-3282(97)00173-7
https://doi.org/10.1016/S8756-3282(97)00228-7
https://doi.org/10.1016/S8756-3282(97)00228-7
https://doi.org/10.1006/jtbi.2001.2316
https://doi.org/10.1006/jtbi.2001.2316
https://doi.org/10.1002/jbm.a.31576
https://doi.org/10.1016/0268-0033(96)00010-1

	Low-cycle full-field residual strains in cortical bone and their influence on tissue fracture evaluated via in&blank;situ stepwise and continuous X-ray computed tomography
	1 Introduction
	2 Materials and methods
	2.1 Specimen preparation
	2.2 In situ XCT mechanical testing
	2.2.1 Progressive compression test
	2.2.2 Multi-scale cyclic compression test
	2.2.3 Continuous compression test after cyclic loading

	2.3 Image postprocessing
	2.4 Digital volume correlation

	3 Results
	3.1 In situ XCT progressive compression
	3.2 In situ multiscale XCT cyclic testing
	3.3 In situ SR-XCT continuous compression

	4 Discussion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Supplementary data
	Reference


