European Journal of Chemistry
Journal homepage: www.eurjchem.com

A simple stereoselective synthesis of (+)-[6]-gingerdiol

Rathod Aravind Kumar, Jajula Kashanna, Paramesh Jangili, and Biswanath Das *
Organic Chemistry Division-I, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
*Corresponding author at: Organic Chemistry Division-I, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. Tel.: +91.40.27160512; fax: +91.40.27193241. E-mail address: biswanathdas@yahoo.com (B. Das).

ARTICLE INFORMATION

Received: 11 March 2013
Received in revised form: 03 April 2013
Accepted: 12 April 2013
Online: 30 September 2013

ABSTRACT

A simple stereoselective synthesis of (+)-[6]-gingerdiol has been accomplished starting from vanillin. The synthetic sequence involves Mouroka allylation, diasterioselective iodine induced electrophilic cyclization and ring-opening of an epoxide as the key steps.

KEYWORDS

Vanilline

Gingerdiol
Syn-epoxy alcohol
Maruoka allylation
Electrophilic cyclization
Stereoselective synthesis

1. Introduction

(+)-[6]-Gingerdiol (1) is an important constituent of the rhizomes of ginger (Zingiber officinale) [1,2]. The compound possesses a trisubstituted aromatic ring bearing an aliphatic chain. The side chain contains two hydroxyl groups with β configuration. The compound exhibits various important medicinal properties including anti-oxidant, anti-inflammatory and anti-fungal activities [3-5]. The synthesis of the compound was achieved earlier by a French group applying the demetallation of tricarboxyliron diene complexes [6]. In continuation of our work on the stereoselective construction of bioactive natural products here we report a simple synthesis of $(+)$-[6]-gingerdiol (1) [7-12] via alternative route.

2. Experimental

All the chemicals were purchased from Sigma Aldrich with purity not less than 99.9%. All reactions were carried out under an inert atmosphere of N_{2}. Analytical Thin Layer Chromatography (TLC) was carried out by using silica gel $60 \mathrm{~F}_{254}$ precoated plates. Visualization was accomplished with UV lamp and I_{2} stain. All products were characterized by their NMR and Mass spectra.

2.1. Instrumentation

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded on Varian Gemini 200 $\mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $50 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ spectrometers in CDCl_{3} using TMS as the internal standard and chemical shifts were reported in parts per million (ppm, δ) downfield from the tetramethyl silane. FT-IR spectra were recorded with Perkin Elmer RX1 FTIR spectrophotometer and Mass spectra were recorded with VG Autospec instrument in m / z ratio. Optical rotations were determined with Jasco Dip 360 digital polarimeter at $25^{\circ} \mathrm{C}$. Column chromatography was carried out with silica gel (BDH $100-200 \mathrm{Mesh}$) and TLC with silica gel $60 \mathrm{~F}_{254}$ precoated plates.

2.2. Synthesis

2.2.1. 4-(tert-Butyl dimethyl silyloxy)-3-methoxy benzaldehyde (5)

To a stirred solution of compound $4(1.0 \mathrm{~g}, 6.57 \mathrm{mmol})$ and imidazole ($1.78 \mathrm{~g}, 26.28 \mathrm{mmol}$) in dry DCM (15 mL) was added tert-butyl chloro (dimethyl) silane (TBS-Cl) (1.98 g, 13.15 mmol) slowly at $0^{\circ} \mathrm{C}$. The mixture was then kept at room temperature for 5 h , and then quenched with $\mathrm{H}_{2} \mathrm{O}$. The dichloro methane (DCM) layer was separated and the aqueous layer was extracted with DCM ($2 \times 10 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, and dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$). The solvent was removed in vacuo, and the residue was purified by column chromatography on silica gel (2% EtOAc/hexane) to form 5 as a colorless oil (Scheme 1). Yield: $88 \%, 1.54$ g. IR (KBr, $v, \mathrm{~cm}^{-1}$): 1728, 1636, 1512, 1462, 1282. ${ }^{1 \mathrm{H}}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): $9.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CHO}), 7.38$ (d, $1 \mathrm{H}, J=2.0 \mathrm{~Hz}, o-\mathrm{Ar}-\mathrm{H}$), $7.30(\mathrm{dd}, 1 \mathrm{H}, J=8.0,2.0 \mathrm{~Hz}, o-\mathrm{Ar}-\mathrm{H}$), 6.91 (d, 1H, J = $8.0 \mathrm{~Hz}, m-\mathrm{Ar}-\mathrm{H}$), 3.85 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{O}-\mathrm{CH}_{3}$), 1.00 (s , $\left.9 \mathrm{H}, \mathrm{Si}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.20\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}-\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta, \mathrm{ppm}): 189.8,151.4,150.8,130.4,125.8,120.6,110.0,55.2$, 25.3, 18.1. ESI-MS (m / z): $289[\mathrm{M}+\mathrm{Na}]^{+}$. $[\alpha]_{\mathrm{D}}{ }^{25}=+5.65$ (c 1.75, CHCl_{3}). Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 63.15 ; \mathrm{H}, 8.27$. Found: C, 63.05; H, 8.28\%.

2.2.2. (E)-Ethyl 3-(4-(tert-butyldimethylsilyloxy)-3-methoxy-

 phenyl) acrylate (6)To a solution of aldehyde, $5,(1.54 \mathrm{~g}, 5.78 \mathrm{mmol})$ in dry DCM (10 mL) ethyl (triphenyl phosphornylidene) acetate (3.017 g , 8.67 mmol) was added and the mixture was stirred at ambient temperature for 8 h . It was concentrated in vacuum, and the residue was purified by column chromatography (20% EtOAc/hexane) to afford compound 6 (Scheme 1). Yield: 81\%, 1.57 g . IR ($\mathrm{KBr}, \mathrm{v}, \mathrm{cm}^{-1}$): $1720,1612,1513,1443,1247$.

European Journal of Chemistry

4: $R=H$
5: $R=T B S$

6

7

Reagents and conditions: a) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2} .5 \mathrm{~h}, 88 \%$: b) $\mathrm{PPh}_{3} \mathrm{CHCOOEt}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 6 \mathrm{~h}, 81 \%$; c) $\mathrm{NiCl}_{2}, \mathrm{NaBH} 4, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}$ then $1 \mathrm{~h} \mathrm{rt}, \mathrm{N}_{2}$ condition, 91%; d) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH},-78{ }^{\circ} \mathrm{C}$ to $-10^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 77 \%$; e) $(\mathrm{COCl})_{2}, \mathrm{DMSO}^{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 81 \%$; f) $(\mathrm{S}, \mathrm{S})-\mathrm{I}, \mathrm{Bu}_{3} \mathrm{SnCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-15{ }^{\circ} \mathrm{C}$ to $-0^{\circ} \mathrm{C}, 20 \mathrm{~h}, 79 \%$; g) $\mathrm{BOC}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{MeCN}, 5 \mathrm{~h}, 77 \%$; h) $\mathrm{I}, \mathrm{MeCN},-20^{\circ} \mathrm{C}, 6 \mathrm{~h}, 67 \%$; i) TBAF, THF, $\left.5 \mathrm{~h}, 78 \% ; \mathrm{j}\right) \mathrm{K} 2 \mathrm{CO} 3, \mathrm{MeOH}, 20{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$, 84%; k) $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{MgBr}, \mathrm{CuI},-30^{\circ} \mathrm{C}, 2 \mathrm{~h}, 71 \%$.

Scheme 1
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 7.81 (d, $1 \mathrm{H}, J=16.0 \mathrm{~Hz}$, Ar$\mathrm{CH}=\mathrm{CH}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{Ar}-\mathrm{H}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ar}-$ H), 6.49 (d, 1H, $J=16.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}=\mathrm{CH}$), 4.43 (q, 2H, $J=7.0 \mathrm{~Hz}$, $0-\mathrm{CH}_{2}-\mathrm{CH}_{3}$), $4.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{O}-\mathrm{CH}_{3}\right), 1.53(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{O}-$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.18$ (s, 9H, Si-C(CH3)3), 0.19 (s, 6H, Si- $\left.\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 172.2, 150.8, 143.8, 134.0, 120.8, 120.0, 112.1, 60.0, 55.3, 25.8, 18.2, -4.9. ESI-MS (m / z): 337 $[\mathrm{M}+\mathrm{H}]^{+}$. $[\alpha]_{\mathrm{D}} 25=+22.65$ (c 0.17, CHCl_{3}). Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 64.28 ; \mathrm{H}, 8.39$. Found: C, 64.19 ; H, 8.34\%.

2.2.3. Ethyl 3-(4-(tert-butyl dimethyl silyloxy)-3-methoxyphenyl) propanoate (7)

To a solution of the compound $\mathbf{6}(1.57 \mathrm{~g}, 4.68 \mathrm{mmol})$ in dry $\mathrm{MeOH}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NiCl}_{2}(0.22 \mathrm{~g}, 0.936 \mathrm{mmol})$, after stirring 15 min at $0{ }^{\circ} \mathrm{C}$ then added $\mathrm{NaBH}_{4}(0.35 \mathrm{~g}, 9.36$ mmol) portion wise under N_{2} condition. Then allow the residue to room temperature and stirr for 1 h , and the residue was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$. The MeOH layer was separated and the aqueous layer was washed with DCM ($2 \times 10 \mathrm{~mL}$) and combined organic layer washed with $\mathrm{H}_{2} \mathrm{O}$, brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuum, and the residue was purified by column chromatography on silica gel (2% EtOAc/hexane), to afford the pure compound 7 (Scheme 1). Yield: $91 \%, 1.43$ g. IR (KBr, $v, \mathrm{~cm}^{-1}$): 1735, 1603, $1513,1465,1259 .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): $6.79(\mathrm{~d}$, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ar}-H), 6.72(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, o-\mathrm{Ar}-H), 6.66(\mathrm{dd}$, $1 \mathrm{H}, J=8.0,2.0 \mathrm{~Hz}, o-\mathrm{Ar}-H), 4.18\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$,
3.85 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{O}-\mathrm{CH}_{3}$), 2.92 (t, $2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$), 2.69$2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}=\mathrm{CH}_{2}\right), 1.30\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$, 1.08 (s, $\left.9 \mathrm{H}, \mathrm{Si}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.20\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}-\left(\mathrm{CH}_{3}\right)_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 173.3,151.2,143.8,121.0,120.2,112.5$, 60.1, 55.2, 35.6, 35.4, 25.4, 19.1, 14.8, -4.9. ESI-MS (m / z): 339 $[\mathrm{M}+\mathrm{H}]^{+} .[\alpha]_{\mathrm{D}^{25}}=+4.99$ (c 0.75, CHCl_{3}). Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 63.90 ; \mathrm{H}, 8.93$. Found: C, 63.81; H, 8.89\%.

2.2.4. 3-(4-(tert-Butyl dimethyl silyloxy)-3-methoxy phenyl)-propan-1-ol (8)

To a solution of compound $7(1.43 \mathrm{~g}, 4.23 \mathrm{mmol})$ in dry DCM (10 mL) cooled to $-78{ }^{\circ} \mathrm{C}$ DIBAL-H ($7.58 \mathrm{~mL}, 10.62 \mathrm{mmol}$) was added drop wise and the mixture was then stirred at the same temperature for 1 h . The reaction mixture was quenched by slowly addition of dry $\mathrm{MeOH}(10 \mathrm{~mL})$ and was brought to room temperature. Saturated aqueous sodium potassium tarterate solution (10 mL) was added to the reaction mixture and stirred until two layers separated (2 h). Dichloro methane was evaporated and the residue was extracted with EtOAc (2 x 50 mL). The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum, purification of the residue by column chromatography (30% EtOAc/hexane) afforded pure compound 8 (Scheme 1). Yield: $77 \%, 0.964 \mathrm{~g}$. IR ($\mathrm{KBr}, \mathrm{v}, \mathrm{cm}^{-1}$): 3363, 1512, 1466, 1285. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 6.72(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ar}-$ H), $6.66(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, o-\mathrm{Ar}-H), 6.60(\mathrm{dd}, 1 \mathrm{H}, J=8.0,2.0 \mathrm{~Hz}$, o-Ar- H), 3.79, (s, 3H, Ar-O-CH3), 3.69 (brs, $1 \mathrm{H}, 3^{\prime}-\mathrm{CH}_{2}-\mathrm{OH}$), 3.62
$\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{CH}_{2}-\mathrm{OH}\right), 2.61\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}_{2}\right)$, 1.91-1.79 (m, 2H, Ar-CH2-CH2), 1.00 (s, 9H, Si-C(CH3) $)_{3}$), 0.14 (s , $\left.6 \mathrm{H}, \mathrm{Si}-\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 150.8, 143.1, 135.2, 120.5, 120.2, 112.7, 62.1, 55.3, 34.3, 32.0, 26.1, 18.4, -4.9. ESI-MS $(m / z): 297[M+H]^{+} .[\alpha]_{\mathrm{D}}{ }^{25}=+4.32\left(c 1.50, \mathrm{CHCl}_{3}\right)$. Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$: C, 64.86; H, 9.45. Found: C, 64.78; H, 9.49\%.

2.2.5. 3-(4-(tert-butyldimethyl silyloxy)-3-methoxy phenyl)propanal (3)

To a solution of oxalyl chloride ($0.42 \mathrm{~mL}, 4.875 \mathrm{mmol}$) in dry DCM (5 mL) at $-78{ }^{\circ} \mathrm{C}$, DMSO ($0.73 \mathrm{~mL}, 10.4 \mathrm{mmol}$) was added drop wise with stirring under N_{2} condition, after 15 min compound 8 ($0.964 \mathrm{~g}, 3.25 \mathrm{mmol}$) was added to the reaction mixture. After stirring for 0.5 h at $-78{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}(2.2 \mathrm{~mL}, 16.25$ mmol) was added and the mixture was stirred for another 0.5 h at $-78{ }^{\circ} \mathrm{C}$ and then for 0.5 h at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and extracted with EtOAc (2 x 10 mL). The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The aldehyde, 3, thus obtained ($0.775 \mathrm{~g}, 2.63 \mathrm{mmol}$) was directly used after flash column chromatography for the next reaction (Scheme 1).

2.2.6. (R)-1-(4-(tert-butyl dimethyl silyloxy)-3-methoxy phenyl) hex-5-en-3-ol (2)

To a solution of $\mathrm{TiCl}_{4}(0.28 \mathrm{~mL}, 2.63 \mathrm{mmol})$ in dry DCM (10 $\mathrm{mL})$ was added dried $\mathrm{Ti}(\mathrm{OiPr})_{4}(2.48 \mathrm{~mL}, 7.89 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere and was allowed to warm to r.t., after 1 h silver(I)oxide ($0.060 \mathrm{~g}, 0.263 \mathrm{mmol}$) was added at room temperature and the mixture was stirred for 5 h under exclusion of direct light. The mixture was diluted with DCM (30 mL), and treated with (S)-BINOL ($0.150 \mathrm{~g}, 0.526 \mathrm{mmol}$) at r.t, for 2 h to furnish the chiral bis-Ti(IV)oxide (S, S)-I. The in situ generated (S, S)-I was cooled to $-15^{\circ} \mathrm{C}$ and treated sequentially with aldehyde $3(0.775 \mathrm{~g}, 2.63 \mathrm{mmol})$ and allyltributyltin (tributyl (prop-2-en-1-yl) stannane ($1.22 \mathrm{~mL}, 3.419 \mathrm{mmol}$) at the same temperature. The mixture was allowed to warm to 0 ${ }^{\circ} \mathrm{C}$ and stirred for 20 h , then the mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 30 mL). The organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvents and purification of the residue by column chromatography on silica gel (2% EtOAc/hexane) gave compound 2 (Scheme 1). Yield: 79\%, 0.699 g. IR ($\mathrm{KBr}, \mathrm{v}, \mathrm{cm}^{-1}$): 3445, 2929, 1648, 1513, 1463, 1283. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): $6.70(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ar}-$ $H), 6.62(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, o-\mathrm{Ar}-\mathrm{H}), 6.59(\mathrm{dd}, 1 \mathrm{H}, J=8.0,2.0 \mathrm{~Hz}$, $o-\mathrm{Ar}-H), 5.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.12-5.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ $\mathrm{CH}=\mathrm{CH}_{2}$), 3.79, (s, 3H, Ar-O-CH3), 3.67 (brs, $1 \mathrm{H}, 3^{\prime}-\mathrm{CH}(\mathrm{OH})$), $3.62\left(\mathrm{~m}, 1 \mathrm{H}, 3\right.$ '- $\mathrm{CH}(\mathrm{OH})$), $2.70-2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 2.46-$ $2.31\left(\mathrm{~m}, 2 \mathrm{H}, 4 \mathrm{-}-\mathrm{CH}_{2}\right), 1.30-1.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 1.00(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{Si}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.12\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}-\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$, ppm): 150.5, 143.2, 135.2, 120.6, 120.5, 116.8, 113.0, 71.0, 55.3, 34.2, 32.0, 25.9, 18.2, -4.8. ESI-MS $(m / z): 337[\mathrm{M}+\mathrm{H}]^{+} .[\alpha]_{\mathrm{D}}{ }^{25}=$ +50.65 (c 2.55, CHCl_{3}). Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 67.85 ; \mathrm{H}$, 9.52. Found: C, 67.78; H, 9.52\%.

2.2.7. (R)-tert-butyl 1-(4-(tert-butyl dimethyl silyloxy)-3methoxy phenyl) hex-5-en-3-yl carbonate (9)

To a stirred solution of compound $2(0.200 \mathrm{~g}, 0.595 \mathrm{mmol})$ in dry $\mathrm{MeCN}(10 \mathrm{~mL})$ were added (BOc) $2 \mathrm{O}(0.75 \mathrm{~mL}, 3.12$ mmol) and DMAP ($0.101 \mathrm{~g}, 0.832 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After 5 h of stirring the solvent was evaporated under reduced pressure. The residue was taken up in EtOH (15 mL), and imidazole was added in catalytic amount. The resulting mixture was washed with $5 \% \mathrm{HCl}$ solution, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered, and concentrated in vacuo, purification of the residue by column chromatography on SiO_{2} ($1 \% \mathrm{EtOAc} /$ hexane) gave compound 9
(Scheme 1). Yield: $78 \%, 0.199$ g. IR (KBr, $v, \mathrm{~cm}^{-1}$): 1710, 1631, 1520, 1486, 1263. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 6.69 (d, $1 \mathrm{H}, J=8.0, m-\mathrm{Ar}-H), 6.61(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, o-\mathrm{Ar}-H), 6.55(\mathrm{dd}$, $1 \mathrm{H}, J=8.0,2.0 \mathrm{~Hz}, o-\mathrm{Ar}-H), 5.73\left(\mathrm{~m}, 1 \mathrm{H}, 5{ }^{\prime}-\mathrm{CH}\right), 5.11-5.02(\mathrm{~m}$, $\left.2 \mathrm{H}, 6^{\prime}-\mathrm{CH}_{2}\right), 4.68\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\mathrm{CH}(\mathrm{OH})\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{O}-\mathrm{CH}_{3}\right)$, 2.69-2.52 (m, 2H, Ar-CH2-CH2), 2.41-2.32 (m, 2H, 4'-CH2), 1.90 (s, 9H, CO-O-C(CH3 $)_{3}$), 1.38-1.21 (m, 2H, Ar-CH2-CH2), 1.00 (s, $\left.9 \mathrm{H}, \mathrm{Si}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}-\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, δ, ppm): 157.2, 151.3, 143.8, 134.6, 120.8, 120.6, 112.5, 85.3, 80.2, 55.1, 35.3, 35.2, 30.8, 25.4, 18.0, -4.9. ESI-MS (m / z): 459 $[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 66.05 ; \mathrm{H}, 9.17$. Found: C, 66.09; H, 9.18\%.

2.2.8. (4R,6R)-4-(4-(tert-butyl dimethyl silyloxy)-3-methoxy phenethyl)-6-(iodomethyl)-1,3-dioxan-2-one (10)

A mixture of compound $9(0.060 \mathrm{~g}, 0.137 \mathrm{mmol})$ and I_{2} ($0.034 \mathrm{~g}, 1.374 \mathrm{mmol}$) in 10 mL of dry MeCN was stirred mechanically under N_{2} atmosphere at $-20{ }^{\circ} \mathrm{C}$ for 6 h . The mixture was partitioned between 300 mL of 20% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / 5 \%$ aqueous NaHCO_{3} and 100 mL of $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with saturated aqueous NaCl , dried over anhydrous sodium sulfate, and evaporated. The crude product was purified by column chromatography on silica gel (10% EtOAc/hexane) to give pure compound 10 (Scheme 1). Yield: $84 \%, 0.046 \mathrm{~g}$. IR (KBr, $v, \mathrm{~cm}^{-1}$): 1697, 1454, 1372, 1156. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 6.83(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ar}-H), 6.69-$ $6.61(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{Ar}-H), 4.21(\mathrm{~m}, 1 \mathrm{H}, 5 \mathrm{C}-\mathrm{CH}), 4.10(\mathrm{~m}, 1 \mathrm{H}, 3 \mathrm{~B}-\mathrm{CH})$, 3.88 (s, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{O}-\mathrm{CH}_{3}$), 3.21-3.10 (m, $\left.2 \mathrm{H}, 6 \mathrm{6}-\mathrm{CH}_{2}-\mathrm{I}\right), 2.71-2.53$ (m, 2H, Ar-CH2), $2.29\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{CH}_{\mathrm{a}}\right), 2.03\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{CH}_{\mathrm{b}}\right), 1.82-$ $1.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right) 1.21\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.01(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 150.1, 148.2, 142.7, 134.3, 120.0, 119.9, 111.8, 77.4, 75.5, 55.4, 33.8, 31.0, 25.1, 17.9, 5.2, -5.1. ESI-MS $(m / z): 507[\mathrm{M}+\mathrm{H}]^{+} .[\alpha]_{\mathrm{D}} 25=-7.27$ (c 1.15, CHCl_{3}). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{IO} 5 \mathrm{Si}: \mathrm{C}, 47.43 ; \mathrm{H}, 6.12$. Found: C, 47.50; H, 6.11\%.

2.2.9. (4R,6R)-4-(4-hydroxy-3-methoxyphenethyl)-6-(iodo-methyl)-1,3-dioxan-2-one (11)

To a ice cooled solution of compound $10(0.046 \mathrm{~g}, 0.092$ mmol), in THF (10 mL) was added TBAF (1 M THF $0.70 \mathrm{~mL}, 0.70$ mmol). After 15 min of stirring the mixture was brought to room temperature and stirred for another 5 h . After completion of the reaction the mixture was concentrated and purified by column chromatography and the compound 11 was directly utilized immediately to next reaction.

2.2.10. 4-((R)-3-hydroxy-4-((R)-oxiran-2-yl)butyl)-2-methoxy-phenol (12)

Compound 11 ($0.028 \mathrm{~g}, 0.072 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.031 \mathrm{~g}$, 0.228 mmol) in 10 mL of dry MeOH was stirred at $20^{\circ} \mathrm{C}$ for 30 $\min . \mathrm{Et}_{2} \mathrm{O}$ was added and the mixture was washed with 20% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / 5 \%$ aqueous NaHCO_{3}. The organic portion was separated, dried over anhydrous, and evaporated. The crude product was purified by column chromatography on silica gel (30% EtOAc/hexane) to give compound 12 (Scheme 1). Yield: $84 \%, 0.014 \mathrm{~g}$. IR ($\mathrm{KBr}, \mathrm{v}, \mathrm{cm}^{-1}$): $3311,1416,1369$, 1254. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): $6.82(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}$, $m-\mathrm{Ar}-\mathrm{H}), 6.68-6.60(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{Ar}-\mathrm{H}), 5.53$ (brs, $1 \mathrm{H}, p-\mathrm{Ar}-\mathrm{OH}$), 3.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{O}-\mathrm{CH}_{3}$), $3.70\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\mathrm{CH}\right.$), 3.56 (brs, 1H, 3^{\prime}-CHOH), $3.14\left(\mathrm{~m}, 1 \mathrm{H}, 6^{\prime}-\mathrm{CH}_{\mathrm{a}}\right), 3.08\left(\mathrm{~m}, 1 \mathrm{H}, 5^{\prime}-\mathrm{CH}\right), 2.65,\left(\mathrm{~m}, 1 \mathrm{H}, 6^{\prime}-\right.$ CH) , 2.61,-2.52 (m, 2H, Ar-CH2), 1.83-1.61 (m, 4H, 2'-CH2 \& 4'CH_{2}). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 150.3, 143.4, 134.6, 120.2, 120.0, 112.1, 67.8, 56.0, 51.0, 46.3, 38.2, 37.0, 32.1. ESIMS $(m / z): 238[\mathrm{M}]^{+} .[\alpha]_{\mathrm{D}} 25=+19.37\left(c 0.20, \mathrm{CHCl}_{3}\right)$. Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$: C, 65.54; H, 7.56. Found: C, 65.49 ; H, 7.51\%.

2.2.11. (3R, 5S)-1-(4-hydroxy-3-Methoxyphenyl) decane-3,5diol (1)

To copper iodide ($0.002 \mathrm{~g}, 0.0116 \mathrm{mmol}$) in anhydrous THF (5 mL) ($0.08 \mathrm{~mL}, 0.087 \mathrm{mmol}$), n-butyl magnesium chloride was added drop wise at $-30^{\circ} \mathrm{C}$ and after 5 min compound 12 ($0.014 \mathrm{~g}, 0.058 \mathrm{mmol}$) was added. The mixture was allowed to warm at $0^{\circ} \mathrm{C}$ and maintained at this temperature for 2 h , and the mixture was extracted with DCM ($2 \times 10 \mathrm{~mL}$) and the extract was dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was subjected to purification by column chromatography on silica gel (20% EtOAc/hexane) to give pure compound 1 (Scheme 1). Yield: $71 \%, 0.012 \mathrm{~g}$. IR ($\mathrm{KBr}, \mathrm{v}, \mathrm{cm}^{-1}$): 3414, 1564, 1442, 1250. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): $6.83(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ar}-$ H), $6.70(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, o-\mathrm{Ar}-H), 6.64(\mathrm{dd}, 1 \mathrm{H}, J=8.0,2.0 \mathrm{~Hz}$, o-Ar-H), 5.53 (brs, $1 \mathrm{H}, p$-Ar- OH), 4.02 (m, 1H, $3^{\prime}-\mathrm{CH}(\mathrm{OH})$), 3.88 (s, 3H, Ar-O-CH3), $3.86\left(\mathrm{~m}, 1 \mathrm{H}, 5^{\prime}-\mathrm{CH}(\mathrm{OH})\right.$), 3.58 (brs, $2 \mathrm{H}, 3^{\prime}-\mathrm{CH}-$ $\mathrm{OH} \& 5^{\prime}-\mathrm{CH}-\mathrm{OH}$), $\quad 2.72-2.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}\right), 1.78-1.62(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$), 1.47-1.22 (m, 10H, 4', $6^{\prime}, 7^{\prime} \& 8^{\prime}-\mathrm{CH}_{2}$), $0.89(\mathrm{t}, 3 \mathrm{H}, J$ $\left.=7.0 \mathrm{~Hz}, 10{ }^{\prime}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 151.3 , $142.5,134.2,120.2,120.0,112.1,67.8,56.0,51.0,46.3,38.2$, 37.0, 32.1, 20.4, 18.3, 14.2. ESI-MS (m / z): $296[\mathrm{M}]^{+} .[\alpha]_{D^{25}}=$ $+7.32\left(c 1.52, \mathrm{CHCl}_{3}\right)$. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4}: \mathrm{C}, 68.92 ; \mathrm{H}, 9.46$. Found: C, 68.81; H, 9.52\%.

3. Results and discussion

The present synthesis of (+)-[6]-gingerdiol (1) was initiated by protecting the hydroxyl group of vanillin (4) by treatment with TBSCl and imidazole to form the TBS-ether (5) (Scheme 1). The compound 5 underwent Wittig olifination with $\mathrm{PPh}_{2} \mathrm{CHCOOEt}$ to produce the unsaturated ester 6 which was reduced with $\mathrm{NaBH}_{4} / \mathrm{NiCl}_{2}$ to form the saturated ester, 7 . The reduction of this ester 7 with DIBAL-H to the corresponding alcohol, 8, followed by Swern oxidation yielded the desired aldehyde 3. This aldehyde (3) was subjected to Maruoka asymmetric allylation [13] using the titanium complex (S, S)-I (Figure 1) and allyl (tributyl) tin to produce the homoallylic alcohol, 2 (ee 97\%). The later was treated with di (tert- butyl) carbonate in the presence of DMAP to form the homoallylic tert- butyl carbonate, 9 . The treatment of compound 9 with I_{2} in MeCN at $-20{ }^{\circ} \mathrm{C}$ furnished the iodocarbonate $\mathbf{1 0}$ which was subsequently treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH to afford the synepoxy alcohol 11 The cleavage of the TBS ether group also took place simultaneously [14,15]. Finally, the reaction of compound 11 with Grignard reagent, $n-\mathrm{C}_{4} \mathrm{H} 9 \mathrm{MgBr}$ using CuI produced the target molecule, (+)-[6]-gingerdiol (1) [16]. The optical and spectral properties of the compound were found to be identical to those reported for the natural product [1,2].

Figure 1. Structure of complex catalyst (S, S)-I.

4. Conclusion

In conclusion, we have developed an efficient stereoselective synthesis of (+)-[6]-gingerdiol involving some simple steps and easily available reagents. To our knowledge, this is the second report of the synthesis of this medicinally important compound. The method may be utilized for the preparation of various analogues of this compound.

Acknowledgements

The authors thank Council of Scientific and Industrial Research and University Grants Commission, New Delhi for financial assistance.

References

[1]. Murata, T.; Shinohara, M.; Miyamoto, M. Chem. Pharm. Bull. 1972, 20, 2291-2292.
[2]. Kikuzaki, H.; Tsai, S.-M.; Nakatani, N. Phytochemistry. 1992, 31, 17831786.
[3]. Sekiva, Y.; Kubota, K.; Kobayashi, A. J. Agric. Food Chem. 2000, 48, 373377.
[4]. Schuhbaum, H.; Burgermeister, J.; Paper, D. H.; Franz, G. Pharmaceu. Pharmocol. Lett. 2000, 10, 82-85.
[5]. Ficker, C.; Smith, M. L.; Apkagana, K.; Glessor, M.; Zhang, H.; Durst, H.; Assabgui, R.; Arnason, J. T. Phytother Res. 2003, 17, 897-902.
[6]. Franck-Neumann, M.; Geoffroy, P.; Bissinger, P.; Adelaide, S. Tetrahedron Lett. 2001, 42, 6401-6404.
[7]. Das, B.; Krishnaiah, M.; Nagendra, S.; Reddy, Ch, R. Lett. Org. Chem. 2011, 8, 244-248.
[8]. Das, B.; Balasubramanyam, P.; Veeranjaneyulu, B.; Reddy, G. C. Helv. Chem. Acta. 2011, 94, 881-884.
[9]. Das, B.; Kumar, D. N. Synlett. 2011, 1285-1287.
[10]. Satyalakshmi, G.; Suneel, K.; Shinde, B. D.; Das, B. Tetrahedron: Asymm. 2011, 22, 1000-1005.
[11]. Das, B.; Laxminarayana, K.; Krishnaiah, M.; Kumar, D. N. Helv. Chem. Acta. 2009, 92, 1840-1844.
[12]. Nagendra, S.; Krishnaiah, M.; Reddy, K. R.; Das, B. Eur. J. Chem. 2012, 3, 337-339.
[13]. Hanawa, H.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 1708-1709.
[14]. Bartlett, P. A.; Predows, J. D.; Brown, E. G.; Morimoto, A.; Jernstedt, K, K. J. Org. Chem. 1982, 47, 4013-4018.
[15]. Bougini, A.; Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S. J. Org. Chem. 1982, 47, 4626-4633.
[16]. Kumar, P.; Gupta, P.; Naidu, S. V. Chem. Eur. J. 2006, 12, 1397-1402.

