European Journal of Chemistry

Synthesis, reactions and biological evaluation of benzyltriazolophthalazine derivatives

Ashraf Hassan Fekry Abd El-Wahab a,b,*, Hany Mostafa Mohamed a,c, Ahmed Mohamed El-Agrody a,d, Mohamed Ahmed El-Nassag a and Ahmed Hammam Bedair ${ }^{\text {a }}$
a Chemistry Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
${ }^{\text {b }}$ Chemistry Department, Faculty of Science, Jazan University, 2097, Jazan, Saudi Arabia
c Chemistry Department, Faculty of Medicine, Jazan University, 82621, Jazan, Saudi Arabia
d Chemistry Department, Faculty of Science, King Khalid University, 9004, Abha, Saudi Arabia
*Corresponding author at: Chemistry Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt. Tel.: +2.0100 .8199893 ; fax: +2.02 .22629358 . E-mail address: ash abdelwahab@yahoo.com (A.H.F.A. El-Wahab).

ARTICLE INFORMATION

Received: 09 November 2012

Received in revised form: 02 December 02012
Accepted: 17 December 2012
Online: 31 March 2013

ABSTRACT

A series of triazolophthalazine derivatives (4-22) were synthesized and characterized. The structures of the newly synthesized compounds were confirmed by spectral data. The newly synthesized compounds were also screened for their antimicrobial activity.

KEYWORDS

Thioglycolic acid
Aromatic aldehyde
Knoevenagal reaction
Cyanoacetohydrazide
Antimicrobial activity
4-Benzyl-1-chlorophthalazine

1. Introduction

Reports of the synthesis of phthalazine-1(H)-one derivative have been recently published [1-9]. Phthalazine derivatives are important heterocyclic and are known to possess variety of biological activities such as antimicrobial, anticonvulsant, cardiotonic, vasorelaxant, antifungal, anticancer, antitumor agent, antianxiety drug, and anti-inflammatory activities [1019]. Multiple reports indicates that arylaminophthalazine derivative (Figure 1, A) act as inhibitor of vascular endothelial growth factor (VEGFR-2) has entered clinical testing against various cancers [20]. Also, a series of 1-(isoquinoline-5-yl)-4arylaminophthalazine (Figure 1, B) were studied as a potent inhibitors of VEGFR and the later compound inhibit VEGFR-1, a related receptor tyrosine kinase [21,22]. γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain [23]. 3-Phenyl-6-(pyrid-2-ylmethloxy)-[1,2,4]triazolo[3,4-a] phthalazine (Figure 1, C) was identified as a class of GABA-A receptor ligands with large improvement in binding affinity due to hydrogen-bond-donating interaction from the receptor adjacent to that portion of the molecule [24] (Figure 1, C).

In view of the above aforementioned facts, the author, undertook synthesis of some newly benzo-fused ring of 4 benzylphthalazine, such derivatives could possess interesting and useful biological properties.

2. Experimental

2.1. Instrumentation

Melting points were determined on a Stuart melting point apparatus and are uncorrected. IR spectra were recorded in

KBr using a FT-IR 5300 spectrometer and Perkin Elmer spectrum RXIFT-IR system ($\mathrm{v}, \mathrm{cm}^{-1}$). The ${ }^{1} \mathrm{H}$ NMR at 300 MHz and ${ }^{13} \mathrm{C}$ NMR spectra at 75 MHz were recorded in DMSO- d_{6} on a Varian Mercury VX-300 NMR spectrometer. Chemical shifts (δ) are related to that of the solvent. Mass spectra were measured on a Shimadzu GC-MS-QP-1000 EX mass spectrometer at 70 eV . The elemental analyses were performed at the Microanalytical Center, Cairo University, Cairo, Egypt.

A

B

C

Figure 1. Structures of arylaminophthalazine (A and B) and triazolophthalazine derivatives (C).

2.2. General procedure for the synthesis of 4-benzylphthalazine derivatives (2 and 3)

A mixture of 4-benzyl-1-chlorophthalazine (1) ($0.25 \mathrm{~g}, 10$ $\mathrm{mmol})$ and thiosemicarbazide or thiocarbohydrazide (10 mmol) in absolute ethanol (30 mL) was refluxed for 3 hours. The solvent was evaporated in vacuum. The obtained solid was filtered off and washed with ethanol (Scheme 1).

Scheme 1

4-Benzylphthalazin-1-yl-thiol (2): Yellow crystals. Crystallization from ethanol. Yield: 85%. M.p.: $160-162^{\circ} \mathrm{C}$. FTIR (KBr, v, cm^{-1}): 3150 (NH), 2908 (SH). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- $d_{6}, \delta, p p m$): 14.32 (brs, $1 \mathrm{H}, \mathrm{SH}$, exchangeable by $\mathrm{D}_{2} \mathrm{O}$), 8.75 (d, 1H, Ar-H), 8.61 (brs, $1 \mathrm{H}, \mathrm{NH}$, cancelled by $\mathrm{D}_{2} \mathrm{O}$), 8.057.88 (m, 3H, Ar-H), 7.37-7.18 (m, 5H, Ar-H), 4.40 (s, 2H, CH2 Ph). MS (m/z (\%)): 252 (${ }^{+}$, 83.8), 251 (100), 220 (3.3), 219 (14.34), 218 (39.8), 191 (3.2), 165 (7.4), 89 (11.1), 76 (9.4). Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}$: C, 71.40; H, 4.79; N, 11.10. Found: C, 71.33; H, 4.65; N, 11.04\%.

4-Benzylphthalazin-1-yl-amine (3): Yellow crystals. Crystallization from ethanol. Yield: 65%. M.p.: 178-179 ${ }^{\circ} \mathrm{C}$. FTIR (KBr, $v, \mathrm{~cm}^{-1}$): 3274, $3204\left(\mathrm{NH}_{2}\right), 1640(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $\left.d_{6}, \delta, \mathrm{ppm}\right): 8.65-7.28(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 4.48 (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$, exchangeable by $\mathrm{D}_{2} \mathrm{O}$). MS (m / z (\%)): 235 ($\mathrm{M}^{+}, 4.6$), 107 (7.2), 106 (100), 105 (73.0), 76 (5.7). Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3}$: C, 76.57; H, 5.57; N, 17.86. Found: C, 76.38; H, 5.36; N, 17.73\%.

2.3. General procedure for the synthesis of triazolophthalazine derivatives (4 and 5)

A mixture of 4-benzyl-1-chlorophthalazine (1) (0.25 g, 10 mmol) and (4-benzyl-1-oxo-1H-phthalazin-2yl)acetic acid hydrazide ($0.30 \mathrm{~g}, 10 \mathrm{mmol}$) or cyanoacetohydrazide (0.09 g , 10 mmol) in absolute ethanol (30 mL) and 2 drops of TEA was refluxed for 3 hours. The solvent was evaporated in vacuum. The obtained solid was filtered off and washed with ethanol (Scheme 1 and 2).

4-Benzyl-2-((6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl) methyl)phthalazin-1(2H)-one (4): White crystals. Crystallization from dioxane. Yield: 85%. M.p.: 200-202 ${ }^{\circ} \mathrm{C}$. FT-IR (KBr, v, cm^{-1}): 3186 (NH), 3026 (C-H aromatic), 1650 (CO). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $d_{6}, \delta, \mathrm{ppm}$): 11.35, 11.14 ($2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$), 10.13, 9.93 (2s, 1H, NH), 7.90-7.15 (m, 18H, Ar-H), 5.31, 4.96 (2s, 1H, $=\mathrm{CHPh}), 4.33\left(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.16(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}). ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- $d_{6}, \delta, \mathrm{ppm}$): 167.77 (CO), 158.86, 144.87, 144.74, 143.83, 138.19, 136.77, 133.26, 131.27, 131.05, 128.79, 128.45, 128.39, 128.35, 128.29, 127.53, 127.46, 127.22, 126.42, 126.32, 125.68, 125.357, 125.136, 125.00, 123.58, 120.74, 120.69, $52.31\left(\mathrm{NCH}_{2} \mathrm{C}\right), 37.66\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 37.56\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$. MS (m / z (\%)): $508\left(\mathrm{M}^{+}, 95.6\right), 417$ (100), $\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{Ph}\right), 361$ (15.5), 259 (5.6), 249 (17.3), 92 (11.0), 91 (95.6). Anal. calcd. for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}$: C, 75.57 ; $\mathrm{H}, 4.76$; $\mathrm{N}, 16.52$. Found: $\mathrm{C}, 75.34$; H , 4.67; N, 16.42\%.

6-Benzyl([1,2,4]triazolo[3,4-a]phthalazin-3-yl)acetonitrile
(5): Yellow crystals. Crystallization from ethanol. Yield: 85\%. M.p.: $160-162{ }^{\circ} \mathrm{C}$. FT-IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 2900 (CH aliphatic),

2250 (CN). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6, δ, ppm): 8.48, 8.22 (2d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.81(\mathrm{~d}, J=7.2,1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.99-7.19(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.62,7.28$ ($2 \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 4.72 (s, 2 H , $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right)$. MS ($\mathrm{m} / \mathrm{z}(\%)$): $299\left(\mathrm{M}^{+}, 59.5\right), 298$ (100), 271 (16.8), 205 (7.0), 128 (15.2), 102 (18.1), 91 (74.7), 66 (5.1), 53 (3.5). Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{5}$: C, 72.23; H, 4.38; N, 23.40. Found: C, 72.07 ; H, 4.20; N, 23.29\%.

2.4. General procedure for the synthesis of triazolophthalazineacrylonitrile derivatives (6a-d)

A mixture of (6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)aceto-nitrile (5) ($0.29 \mathrm{~g}, 10 \mathrm{mmol}$) and aromatic aldehydes (10 mmol) in absolute ethanol (30 mL) and 2 drops of piperidine was refluxed for 2 hours. The solvent was evaporated in vacuum. The obtained solid was filtered off and washed with ethanol (Scheme 2).

2-(6-Benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-3-phenylacrylonitrile (6a): Yellow crystals. Crystallization from dioxane. Yield: 80%. M.p.: $230-232{ }^{\circ} \mathrm{C}$. FT-IR (KBr, $v, \mathrm{~cm}^{-1}$): 3038 (CHaromatic), 2917 (CH aliphatic), 2223 (CN). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- $\left.d_{6}, \delta, p p m\right): 8.48,8.22(2 \mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.81(\mathrm{~d}, J$ $=7.2,1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.00-7.22(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.64,7.30(2 \mathrm{~d}, \mathrm{~J}=7.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 4.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}$ (\%)): 387 (M+, 5.3), 386 (12.3), 91 (100). Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{5}$: C, 77.50; H, 4.42; N, 18.08. Found: C, 77.41; H, 4.35; N, 17.97\%.

2-(6-Benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-3-p-tolylacrylonitrile (6b): Yellow crystals. Crystallization from dioxane. Yield: 90\%. M.p.: 258-260 ${ }^{\circ} \mathrm{C}$. FT-IR (KBr, $v, \mathrm{~cm}^{-1}$): 2910 (CH aliphatic), 2216 (CN). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $d_{6}, \delta, \mathrm{ppm}$): $8.49,8.27$ ($2 \mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.85(\mathrm{~d}, J=7.2,1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.02-7.21 (m, 8H, Ar-H), 7.63, 7.29 (2d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.08(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 4.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}$ (\%)): $401\left(\mathrm{M}^{+}, 40.6\right), 400$ (100), 91 (70.7). Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{5}$: C, 77.79; H, 4.77; N, 17.44. Found: C, 77.65; H, 4.64; N, 17.37\%.

2-(6-Benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-3-(4-methoxyphenyl)acrylonitrile (6c): Yellow crystals. Crystallization from dioxane. Yield: 87%. M.p.: $264-266{ }^{\circ} \mathrm{C}$. FT-IR (KBr, v, cm^{-1}): 2924 (CH aliphatic), 2216 (CN). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- $\left.d_{6}, \delta, p p m\right): 8.45,8.19(2 d, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.88(\mathrm{~d}, J$ $=7.2,1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.11-7.24 (m, 8H, Ar-H), 7.61, 7.27 (2d, $J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.14(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 4.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}). MS ($\mathrm{m} / \mathrm{z}(\%)$): 417 (M+, 6.6), 416 (49.5), 91 (100). Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 74.80 ; \mathrm{H}, 4.59$; $\mathrm{N}, 16.78$. Found: C, 74.63; H, 4.7; N, 16.66\%.

Scheme 2

2-(6-Benzyl[1,2,4]tri-azolo[3,4-a]phthalazin-3-yl)-3-(4-hydroxyphenyl)acrylonitrile (6d): Yellow crystals. Crystallization from dioxane. Yield: 85\%. M.p.: 298-300 ${ }^{\circ} \mathrm{C}$. FT-IR (KBr, v, cm^{-1}): $3432(\mathrm{OH}), 2920$ (CH aliphatic), $2220(\mathrm{CN}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $\left.d_{6}, \delta, p p m\right): 9.80(\mathrm{~s}, 1 \mathrm{H}, 0 \mathrm{H}), 8.65,8.41$ (2d, $J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.25 (s. $1 \mathrm{H},=\mathrm{CH}$), 7.79 (d, $J=7.2,1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.00-$ 7.54 (m, 8H, Ar-H), 7.61, 7.32 (2d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 4.69 (s , $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}(\%)): 403\left(\mathrm{M}^{+}, 13.8\right), 402(48), 401$ (51.4), 91 (100), 90 (81). Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 74.43$; H, 4.25; N, 17.36. Found: C, 74.22; H, 4.09; N, 17.25\%.

2.5. General procedure for the synthesis of triazolophthalazinechromene derivatives (7-10)

A mixture of (6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3yl)acetonitrile (5) ($0.29 \mathrm{~g}, 10 \mathrm{mmol}$) and phenolic aldehydes (salicylaldehyde, 2-hydroxy-1-naphthaldehyde and 2,7-dihydroxy-1-naphthaldehyde) (10 mmol) in absolute ethanol (30 mL) and 2 drops of piperidine was refluxed for 2 hours. The obtained solid was filtered off and washed with ethanol (Scheme 3).

3-(6-Benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-2H-chromen-2-imine (7): Yellow crystals. Crystallization from ethanol. Yield: 95\%. M.p.: 266-268 ${ }^{\circ} \mathrm{C}$. FT-IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 3228 (NH), 3056 (CH aromatic), 1642 (C=N), 2924 (CH aliphatic). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- $d_{6}, \delta, \mathrm{ppm}$): $10.20(\mathrm{~s}, 1 \mathrm{H}$, NH , exchangeable by $\mathrm{D}_{2} \mathrm{O}$), $9.20(\mathrm{~s}, 1 \mathrm{H}, 4 \mathrm{H}$, chromene), 8.48 (s , $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.63-7.23 (m, 12H, Ar-H), 4.71 (s, 2H, CH2 Ph). Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 74.43$; $\mathrm{H}, 4.25$; N, 17.36. Found: C, 74.16; H, 4.07; N, 17.23\%.

3-(6-Benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-chromen-2one (8): Yellow crystals. Crystallization from DMF. Yield: 90\%. M.p.: > $340^{\circ} \mathrm{C}$. FT-IR (KBr, $v, \mathrm{~cm}^{-1}$): 3046 (CH aromatic), 2925 (CH aliphatic), 1732 (CO). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}, δ, ppm): 9.20 (s, 1H, 4H, chromene), 8.48 (s, 1H, Ar-H), 8.63-7.23 (m, 12H, Ar-H), 4.71 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$). MS ($\mathrm{m} / \mathrm{z}(\%)$): 404 (M^{+}, 100), 403 (99.9), 204 (11.3), 91 (60.4). Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 74.25; H, 3.99; N, 13.85. Found: C, 74.02; H, 3.84; N, 13.76\%.

2-(6-Benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-3H-benzo [f]chromen-3-imine (9a): Yellow crystals. Crystallization from ethanol. Yield: 92\%. M.p.: 276-278 ${ }^{\circ} \mathrm{C}$. FT-IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 3248 (NH), 2928 (CH aliphatic), 1638 (C=N). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- $\left.d_{6}, \delta, \mathrm{ppm}\right): 10.03\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}\right.$; exchangeable by $\left.\mathrm{D}_{2} \mathrm{O}\right), 9.46$ (s, 1H, benzochromene-4-H), 8.6 (d, J = 8 Hz, 1H, Ar-H), 8.38 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.16(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.93(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$) 8.07-7.15 (m, 11H, Ar-H), 4.73 (s, 2H, CH ${ }_{2} \mathrm{Ph}$). Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 76.81$.; $\mathrm{H}, 4.22$; $\mathrm{N}, 15.44$. Found: C, 76.55; H, 4.13; N, 15.30\%.

2-(6-Benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-3-imino-3H-benzo[ff]chromen-9-ol (9b): White crystals. Crystallization from DMF. Yield: 85%. M.p.: > $340^{\circ} \mathrm{C}$. FT-IR (KBr, $v, \mathrm{~cm}^{-1}$): 3280 (NH), $3476(\mathrm{OH}), 1638(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}, δ, ppm): 10.09 (brs, $1 \mathrm{H}, \mathrm{NH}$, exchangeable by $\mathrm{D}_{2} \mathrm{O}$), 9.42 (brs, 1 H , 0 H , exchangeable by $\mathrm{D}_{2} \mathrm{O}$), 9.28 (s, 1 H , benzochromene -4 H), 8.61, 8.34 ($2 \mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.29-7.10 (m, 12H, Ar-H), 4.75 (s, 2H, $\mathrm{CH}_{2} \mathrm{Ph}$). Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 74.19 ; H, 4.08; N, 14.92. Found: C, 74.03; H, 3.95; N, 14.85\%.

2-(6-Benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-benzo[f] chromen-3-one (10a): Yellow crystals. Crystallization from dioxane. Yield: 90%. M.p.: $298-300{ }^{\circ} \mathrm{C}$. FT-IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 3043, (CH aromatic), 1726 (CO). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}, $\delta, \mathrm{ppm}): 9.48(\mathrm{~s}, 1 \mathrm{H}$, benzochromene-4-H), $8.62(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 8.37 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.18 (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ H), 7.90 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$ 8.08-7.16 (m, 11H, Ar-H), 4.74 (s, 2H, CH2 Ph). MS (m/z (\%)): $454\left(\mathrm{M}^{+}, 100\right), 426$ (25.9), 410 (3.9), 382 (3.3), 35 (3.3), 268 (3.5), 232 (3.6), 205 (2.2), 189 (5), 164 (5.1), 91 (27.2). Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 76.64; H, 3.99; N, 12.33. Found: C, 76.50 ; H, 3.87; N, 12.18 \%.

2-(6-Benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-9-hydroxy benzo[f]chromen-3-one (10b): White crystals. Crystallization from DMF. Yield: 85%. M.p.: > $340^{\circ} \mathrm{C}$. FT-IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 3452 (OH), 2928 (CH aliphatic), 1720 (CO). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- $d_{6}, \delta, p p m$): 9.50 (brs, $1 \mathrm{H}, \mathrm{OH}$, exchangeable by $\mathrm{D}_{2} \mathrm{O}$), $9.30(\mathrm{~s}, 1 \mathrm{H}$, benzochromene $-4 \mathrm{H}), 8.60,8.35(2 \mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H), 8.29-7.12 (m, 12H, Ar-H), 4.76 (s, 2H, CH2Ph). MS (m/z (\%)): $470\left(\mathrm{M}^{+}, 3.09\right), 445$ (35.26), 400 (13.61), 385 (19.59), 368 (15.05), 341 (27.01), 311 (11.55), 296 (34.43), 284 (29.07), 224 (8.87), 193 (49.9), 149 (39.59), 104 (100), 76 (30.93). Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 74.03; H, 3.86; $\mathrm{N}, 11.91$. Found: C, 73.90; H, 3.73; N, 11.76\%.

2.6. General procedure for the synthesis of phthalazinehydrazo acetonitrile derivatives (11 and 12)

To a stirred solution of (6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)acetonitrile (5) ($0.29 \mathrm{~g}, 10 \mathrm{mmol}$) in ethanol (50 mL) containing, sodium acetate (3 g) p-tolyldiazonium salt or triazolediazonium salt (prepared by adding sodium nitrite (10 mmol) to p-toluidine ($0.12 \mathrm{~g}, 10 \mathrm{mmol}$) or 1,2,4-triazol-3amine ($0.13 \mathrm{~g}, 10 \mathrm{mmol}$) in conc. $\mathrm{HCl}(6 \mathrm{~mL})$ at $0 \sim 5{ }^{\circ} \mathrm{C}$ under stirring was added dropwise The reaction mixture was then left at room temperature for 2 hours. and the solid product formed was collected by filtration (Scheme 4).

6-Benzyl-N'-(p-tolyl)-[1,2,4]triazolo[3,4-a]phthalazine-3carbohydrazonoyl cyanide (11): Yellow crystals. Crystallization from ethanol. Yield: 80%. M.p.: $172-174^{\circ} \mathrm{C}$. FT-IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 3082 (NH), 2220 (CN), 1590 (C=N).

Scheme 3

Scheme 4
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $d_{6}, \delta, \mathrm{ppm}$): $14.01,13.60$ ($2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}$, exchangeable by $\mathrm{D}_{2} \mathrm{O}$) $, 8.63,8.26(2 \mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.51$, 8.33 (2d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.04-7.18$ (m, 9H, Ar-H), 4.72 (s, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. MS ($\mathrm{m} / \mathrm{z}(\%)$): $417\left(\mathrm{M}^{+}, 13.1\right), 416$ (13.3), 388 (5.3), 203 (2.1), 128 (2.3), 103 (2.1), 91 (100), 90 (96.0), 77 (8.3), 76 (7.6), 65 (29.1). Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{7}$: C, 71.93; H, 4.59; N, 23.49. Found: C, 71.35; H, 4.38; N, 23.33\%.
(6-Benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-[(4H-[1,2,4] triazolo-3-yl)hydrazono]acetonitrile (12): Orange crystals. Crystallization from ethanol. Yield: 80%. M.p.: $180-182^{\circ} \mathrm{C}$. FTIR (KBr, $v, \mathrm{~cm}^{-1}$): 3076 (NH), 2224 (CN), 1658 (C=N). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $d_{6}, \delta, \mathrm{ppm}$): 14.00, 13.60 (2s, 2H, NH, exchangeable by $\mathrm{D}_{2} \mathrm{O}$), $12.60(\mathrm{~s}, 1 \mathrm{H}$, triazolo- H), $8.64,8.25$ ($2 \mathrm{~d}, \mathrm{~J}$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.52,8.35(2 \mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.04-$ 7.18 (m, 5H, Ar-H), 4.72 (s, 2H, CH2Ph). MS (m/z (\%)): 394 (61.9), 393 (51.2), 286 (7.7), 231 (6.6), 129 (7.7), 128 (4.8), 103 (7.1), 91 (100). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{10}$: C, 60.91; H, 3.58; $\mathrm{N}, 35.51$. Found: C, $60.78 ; \mathrm{H}, 3.45 ; \mathrm{N}, 35.42 \%$.

2.7. Synthesis of 2-(6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-3-ethoxyacrylonitrile (13)

A mixture of (6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3yl)acetonitrile (5) (10 mmol) and triethyl orthoformate in acetic anhydride (15 mL) was refluxed for 5 hours. The solvent
was evaporated in vacuum. The solid product was collected by filtration and washed with ethanol. Yellow crystals. Crystallization from benzene (Scheme 5). Yield: 95\%. M.p.: 170$171{ }^{\circ} \mathrm{C}$. FT-IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 3070 (CH-aromatic), 2936 (CHaliphatic), 2256 (CN). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $d_{6}, \delta, \mathrm{ppm}$): $8.25(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 8.53-7.19(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.28 (q, 2H, CH2 CH_{3}), 1.30 ($\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$). Anal. calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 70.97$; H, 4.82; N, 19.71. Found: C, 70.82 ; H, 4.76; N, 19.58\%.

2.8. General procedure for the synthesis of triazolophthalzine derivatives (14 and 15)

A mixture of 2-(6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-3-ethoxyacrylonitrile (13) $(10 \mathrm{mmol})$ and $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(15 \mathrm{~m}$ mol) or $\mathrm{NH}_{2} \mathrm{CSNH}_{2}(10 \mathrm{mmol})$ in ethanol (30 mL) fused sodium acetate (25 mmol) was added. The resulting mixture was refluxed for 3 hrs and then allowed at cool to room temperature and diluted with water (20 mL). The obtained solid was filtered off and washed with ethanol (Scheme 5).

3-Amino-2-(6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-3-(hydroxyimino)prop-1-enyl acetate (14): White crystals. Crystallization from ethanol. Yield: 80 \%. M.p.: 220-222 ${ }^{\circ} \mathrm{C}$. FTIR (KBr, v, cm ${ }^{-1}$): $3382(\mathrm{OH}), 3284,3192\left(\mathrm{NH}_{2}\right), 1644(\mathrm{CO})$, 1612 ($\mathrm{C}=\mathrm{N}$).

Scheme 5
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $\mathrm{d}_{6}, \delta, \mathrm{ppm}$): 10.15 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 8.80 (s , $1 \mathrm{H},=\mathrm{CH}), 8.48,8.22(2 \mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.81(\mathrm{~d}, J=7.2$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.14-7.23(\mathrm{~m}, 4 \mathrm{H}$, Ar-H), 7.62, $7.28(2 \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H), $6.50\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.37(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{COCH}_{3}\right)$. MS ($\left.\mathrm{m} / \mathrm{z}(\%)\right): 402\left(\mathrm{M}^{+}, 100\right), 370(80.9), 345$ (57.4), 344 (53.2), 328 (40.4), 274 (85.1), 236 (59.6), 192 (21.3), 118 (21.8), 55 (36.2). Anal. calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{3}$: C, 62.68; H, 4.51; N, 20.88. Found: C, 62.56; H, 4.39; N, 20.74\%.

4-Amino-5-(6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-1H-pyrimidine-2-thione (15): Yellow crystals. Crystallization from dioxane. Yield: 85\%. M.p.: 275- $277{ }^{\circ} \mathrm{C}$. FT-IR (KBr, v, cm^{-1}): $3244\left(\mathrm{NH}_{2}\right), 3056(\mathrm{NH}), 1640(\mathrm{C}=\mathrm{S}) .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d ${ }_{6}, \delta, \mathrm{ppm}$): 9.32 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 8.67 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), 8.50, 8.24 $(2 \mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.81(\mathrm{~d}, J=7.2,1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.99-7.19$ (m, 4H, Ar-H), 7.62, 7.28 ($2 \mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.40 (br, 2H, NH_{2}), 4.72 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$). MS ($\mathrm{m} / \mathrm{z}(\%)$): $385\left(\mathrm{M}^{+}, 19.4\right), 327$ (100), 326 (14.7), 163 (15.3), 91 (17.9). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{~S}: \mathrm{C}, 62.32$; $\mathrm{H}, 3.92$; $\mathrm{N}, 25.44$. Found: C, 62.11; H, 3.76; N, 25.35\%.

2.9. Synthesis of 6-(6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-8H-[1,2,4]triazolo[4,3-a]pyrimidin-5-ylideneamine

 (16)A mixture of 2-(6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-3-ethoxyacrylonitrile (2) (10 mmol) and 3-amino-1,2,4triazolo (10 mmol) in DMF (30 mL) was refluxed for 3 hrs . The solvent was evaporated in vacuum. The solid product was collected by filtration and washed with ethanol. Brown crystals. Crystallization from dioxane (Scheme 5). Yield: 85\%. M.p.: 280$282{ }^{\circ} \mathrm{C}$. FT-IR (KBr, $v, \mathrm{~cm}^{-1}$): 3184 (NH), 1632, 1602 (C=N). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $d_{6}, \delta, \mathrm{ppm}$): 11.34 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$-triazol), 10.02 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 8.88 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}-$ pyrimidine), 8.48, 8.22 (2d, $J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.81 (d, $J=7.2,1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.99-7.19$ (m, 4 H , Ar-H), 7.63, 7.29 (2d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.70$ (s, 1H, NH), 4.72 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$). MS ($\mathrm{m} / \mathrm{z}(\%)$): $393\left(\mathrm{M}^{+}, 51.4\right)$, 90 (100). Anal.
calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N} 9$: C, 64.11; H, 3.84; N, 32.04. Found: C, 64.03; H, 3.76; N, 31.87\%.

2.10. General procedure for the synthesis of hydrazonate and acrylonitrile derivatives (17 and 18)

A mixture of 2-(6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-3-ethoxyacrylonitrile (13) (10 mmol) and hydrazine hydrate (20 mmol) or phenylhydrazine (10 mmol) in ethanol $(30 \mathrm{~mL})$. Solvent was removed by rotary evaporation and the obtained solid was filtered off and washed with dil. ethanol (Scheme 6).

Ethyl 3-amino-2-(6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-3-hydrazonopropane hydrazonate (17): While crystals. Crystallization from benzene. Yield: 75\%. M.p.: 270-272 ${ }^{\circ} \mathrm{C}$. FTIR (KBr, v, cm ${ }^{-1}$): $3198(\mathrm{NH}), 1598(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- $\left.d_{6}, \delta, \mathrm{ppm}\right): 8.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 8.50,8.24(2 \mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H), 7.81 (d, $J=7.2,1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.27-7.25 (m, $8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and $2 \mathrm{NH}_{2}$), $7.62,7.28$ ($2 \mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.48 (br, $2 \mathrm{H}, \mathrm{NH}_{2}$), $4.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.34\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 15.1(\mathrm{t}, J=7.1$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. MS ($\left.\mathrm{m} / \mathrm{z}(\%)\right): 417\left(\mathrm{M}^{+}, 32.6\right), 371\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right.$, 17.4), $339\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{N}_{2} \mathrm{H}_{4}, 63.6\right), 298\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{N}_{2} \mathrm{H}_{4}\right.$, $\mathrm{N}_{2} \mathrm{CH}, 22.5$), 272 (15.3), 234 (7.6), 128 (4.2), 91 ($\mathrm{PhCH}_{2}{ }^{+}, 100$). Anal. calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{9} \mathrm{O}: \mathrm{C}, 60.42$; $\mathrm{H}, 5.55$; $\mathrm{N}, 30.20$. Found: C, 60.20; H, 5.35; N, 30.05\%.

2-(6-Benzyl-[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-3-ethoxy-3-(2-phenylhydrazinyl)acrylonitrile (18): While crystals. Crystallization from dioxane. Yield: 70%. M.p.: $278-280{ }^{\circ} \mathrm{C}$. FTIR (KBr, v, cmr): 3212 (NH), 2198 (CN), 1526 (C=C), 1643 $(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $d_{6}, \delta, \mathrm{ppm}$): 8.56, $8.32(2 \mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.76 (d, $J=7.2,1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.30-7.41(\mathrm{~m}, 10 \mathrm{H}$, Ar-H and NH), 7.57, 7.21 ($2 \mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.78 (br, 1H, NH), $4.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.31\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40(\mathrm{t}, J=$ $\left.7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. MS ($\left.\mathrm{m} / \mathrm{z}(\%)\right): 461\left(\mathrm{M}^{+}, 100\right), 371\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{6}\right.$, 96.9), $298\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{6},-\mathrm{CH}_{3} \mathrm{OC}=\mathrm{N}^{2} \mathrm{NH}_{2}, 40.9\right), 206$ (13.4), 120 (18.1). Anal. calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}$: C, 70.27 ; $\mathrm{H}, 5.02$; $\mathrm{N}, 21.24$. Found: C, 70.04; H, 4.89; N, 21.13\%.

Scheme 7

2.11. Synthesis of 2-(6-benzyl[1,2,4]triazolo[3,4-a] phthalazin-3-ylmethyl)thiazol-4-one (19)

A mixture of (6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3yl)acetonitrile (13) (10 mmol) and thioglycolic acid (10 mmol) in pyridine (10 mL) was refluxed for 3 hours. The solvent was removed on rotary evaporation the solid obtained was filtered off, washed with ethanol. Gray crystals. Crystallization from dioxane (Scheme 7). Yield: 85\%. M.p.: 260-262 ${ }^{\circ} \mathrm{C}$. FT-IR (KBr, $v, \mathrm{~cm}^{-1}$): 2924 (CH-aliphatic), 1726 (CO). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- $d_{6}, \delta, \mathrm{ppm}$): 11.43 (s, $1 \mathrm{H}, 0 \mathrm{H}$, exchangeable by $\mathrm{D}_{2} \mathrm{O}$), 8.44, 7.92 (2d, 2H, Ar-H), 8.15 (d, 1H, Ar-H), 7.84-7.18 (m, 6H, Ar-H), 6.45 (s, 1H, CH-thiazolidinone), $4.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.08(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), $3.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}(\%)): 373\left(\mathrm{M}^{+}, 13.1\right), 374(\mathrm{M}+1$, 4.1), 375 (M+2, 2.6), 372 (1.9), 340 (2.4), 300 (2.1), 299 (3.4), 271 (0.6), 128 (2.1), 102 (4.5), 91 (100), 66 (7.5), 53 (2.8). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{OS}$: C, 64.33; H, 4.05; $\mathrm{N}, 18.75$. Found: C, 64.20; H, 3.96; N, 18.62\%.

2.12. Synthesis of 2-((6-benzyl-[1,2,4]triazolo[3,4-a] phthalazin-3-yl)methyl)-5-(4-methoxybenzylidene)thiazol-4-one (20)

A mixture of 2-(6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-ylmeth-yl)thiazolidin-4-one (19) (10 mmol) and p-anisaldehyde (10 mmol) in ethanol (20 mL) and few drops of piperidine was refluxed for 3 hours. The mixture then cooled and the separated solid was filtered off washed with ethanol. Yellow crystals. Crystallization from dioxane (Scheme 7). Yield: 90%. M.p.: $280-282{ }^{\circ} \mathrm{C}$. FT-IR ($\mathrm{KBr}, ~ v, \mathrm{~cm}^{-1}$): 3058 (CHaromatic), 2936 (CH-aliphatic), 1682 (CO), 1626 (C=N). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $d_{6}, \delta, \mathrm{ppm}$): 9.01 (s, 1H, =CH), 8.48, 8.22 (2d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.81 (d, $J=7.2,1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.99-7.94,7.86-$ 7.83, 7.27-7.19 (m, 8H, Ar-H), 7.62, 7.28 ($2 \mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-$ $\mathrm{H}), 4.72$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.74 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) . \mathrm{MS}$ (m / z (\%)): 491 (${ }^{+}, 95.1$), 459 (2.0), 300 (23.2), 299 (95.1), 193 (32.0), 165 (20.1), 164 (20), 149 (20.7), 91 (100). Anal. calcd. for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$: C, 68.41; H, 4.31; N, 14.25. Found: C, 68.30; H, 4.22; N, 14.18\%.

$-\mathrm{NH}_{3} \downarrow \mathrm{H}_{2} \mathrm{O}$

21

22

Scheme 8
2.13. Synthesis of 2-((6-benzyl-[1,2,4]triazolo[3,4-a] phthalazin-3-yl)methyl)-7-(4-methoxyphenyl)-5-oxo-6,7-dihydro-5H-pyrano[2,3-d]thiazole-6-carbonitrile (21)

A mixture of 2-(6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-ylmeth-yl)thiazolidin-4-one (19) (10 mmol) and p anisaldehyde (10 mmol) and malononitrile (10 mmol) in absolute ethanol (30 mL) and few drops of piperidine was refluxed for 3 hours. The mixture then cooled and the separated solid was filtered off washed with ethanol (Scheme 8). Yellow crystals. Crystallization from dioxane. Yield: 80\%. M.p.: 302-304 ${ }^{\circ} \mathrm{C}$. FT-IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 2924 (CH-aliphatic), 2190 (CN), 1690 (CO). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $d_{6}, \delta, \mathrm{ppm}$): 8.42 (d, 1H, Ar-H), 8.25 (d, 1H, Ar-H), 7.97-7.66 (m, 11H, Ar-H), 5.38 (s, 2H, CH2Ph), 4.72, 4.63 (2d, 2H, H-3 \& H-4-pyran), 3.78 (s, $2 \mathrm{H},-\mathrm{CH}_{2}$), 3.58 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$). Anal. calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}$, 66.65; H, 3.97; N, 15.04. Found: C, 66.48; H, 3.81; N, 14.88\%.
2.14. Synthesis of 5-amino-8-(6-benzyl-[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-2-(4-methylbenzylidene)-3-oxo-7-(p-tolyl)-3,7-dihydro-2H-thiazolo[3,2-a]pyridine-6carbonitrile (22)

A mixture of 2-(6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl-methyl)thiazolidin-4-one (19) (10 mmol) and p tolualdehyde (20 mmol) and malononitrile (10 mmol) in absolute ethanol / dioxane (30 mL) and few drops of piperidine was refluxed for 4 hours. The mixture then cooled and the separated solid was filtered off washed with ethanol (Scheme 8). Yellow crystals. Crystallization from DMF. Yield: 70\%. M.p.: $>320{ }^{\circ} \mathrm{C}$. FT-IR (KBr, $v, \mathrm{~cm}^{-1}$): 3428, $3338\left(\mathrm{NH}_{2}\right), 3026(\mathrm{CH}-$ aromatic), 2918 (CH-aliphatic), 2188 (CN), 1702 (CO). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d $, ~ \delta, ~ p p m$): $9.01(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 8.48,8.22(2 \mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.81(\mathrm{~d}, J=7.2,2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.99-7.19(\mathrm{~m}$, $13 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.60\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$, exchangeable by $\mathrm{D}_{2} \mathrm{O}$), $4.50\left(\mathrm{~s}, 1 \mathrm{H}\right.$, pyridine), $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.70(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}). MS ($\mathrm{m} / \mathrm{z}(\%)$): $643(\mathrm{M}+, 0.9), 615$ (1.1), 579 (4.1), 476 (10.0), 408 (11.5), 299 (13.6), 148 (11.9), 91 (100). Anal. calcd. for $\mathrm{C}_{39} \mathrm{H}_{29} \mathrm{~N}_{7} \mathrm{OS}: \mathrm{C}, 72.76 ; \mathrm{H}, 4.54$; N, 15.23. Found: C, 72.56 ; H, 4.32; N, 15.05\%.

Table 1. Antimicrobial activity of the new compounds.

Compound	Minimum inhibitory concentration (MIC) in $\mu \mathrm{g} / \mathrm{mL}$							
	Gram-negative bacteria		Gram-positive bacteria				Fungi	
	P. aeruginosa (MTCC 741)	$\begin{aligned} & \text { E. coli } \\ & \text { (NCTC-10410) } \end{aligned}$	B. cereus (ATGG 14579)	B. subtilis (MTCC 441)	B. sphaericus (MTCC 11)	Staphylococcus (MTCC 96)	A.O. Wilhelm (AUCC-230)	P.C. Thom (AUCC-530)
2	500	500	500	200	500	200	-	
3	500	250	500	500	250	500	-	-
4	25	25	50	25	50	25	125	100
5	200	500	250	500	250	250	-	500
6a	250	200	200	500	250	200	-	500
6b	500	250	500	500	500	250	-	-
6 c	500	500	200	250	500	250	-	-
6d	200	200	250	200	250	200	500	250
7	250	200	500	500	250	500	-	-
8	25	50	50	25	25	50	-	-
9a	500	500	200	250	500	500	-	500
9b	500	500	250	250	200	500	-	-
10a	50	25	25	100	100	25	-	250
10b	25	100	50	50	25	50	100	100
11	250	250	250	200	500	500	-	-
12	50	50	100	100	25	25	-	-
13	250	200	200	500	250	500	-	-
14	500	250	500	500	200	500	-	-
15	500	500	500	250	500	500	-	-
16	25	25	50	25	50	50	125	100
17	500	500	250	200	500	250	-	-
18	250	250	500	500	500	200	-	-
19	25	25	50	25	50	50	125	100
20	50	50	25	50	50	25	100	100
21	25	25	25	25	100	100	-	500
22	100	25	50	100	50	50	100	100
Ampicillin	6.25	6.25	6.25	6.25	6.25	6.25	-	-
Mycostatin	-	-	-	-	-	-	31.25	31.25

2.15. Antimicrobial assay

The antimicrobial activity of the newly synthesized compounds 2-22 were evaluated against two species of Gramnegative bacteria Pseudomonas aeruginosa (MTCC 741) and Escherichia coli (NCTC-10410); four Gram-positive bacteria, Bacillus cereus (ATGG 14579), Bacillus subtilis (MTCC 441), Bacillus sphaericus (MTCC 11) and Staphylococcus (MTCC 96); and two fungus, Aspergillus ochraceus Wilhelm (AUCC-230) and Penicillium chrysogenum Thom (AUCC-530) strains by disk diffusion method. Ampicillin and Mycostatin were used as standard drugs for the bacteria and fungi, respectively [27,28]. Preliminary screening of phthalazine derivatives and standard drugs was performed at fixed concentrations of $500 \mu \mathrm{~g} / \mathrm{mL}$. Inhibition was recorded by measuring the diameter of the inhibition zone at the end of 24 h for bacteria and 72 h for fungi. Each experiment was repeated twice. Based on the results of zone of inhibition, the minimum inhibitory concentration (MIC) of compounds 2-22 against all bacterial and fungal strains was determined by liquid dilution method. Stock solutions of tested compounds with 500, 250, 200, 100, $50,25,12.5$, and $6.25 \mu \mathrm{~g} / \mathrm{mL}$ concentrations were prepared with DMSO solvent. The solutions of standard drugs, Ampicillin and Mycostatin are used in the same concentrations. Inoculums of the bacterial and fungal culture were also prepared. To a series of tubes containing 1 mL each of phthalazine compound solution with different concentrations and 0.2 mL of the inoculums was added. Further 3.8 mL of sterile water was added to each of the test tubes. These test tubes were incubated for 24 h at $37{ }^{\circ} \mathrm{C}$ and observed for the presence of turbidity. This method was repeated by changing phthalazine compounds with standard drugs Ampicillin and Mycostatin for comparison. The minimum inhibitory concentration at which no growth was observed was taken as the MIC value (Table 1).

3. Results and discussion

3.1. Synthesis

Treatment of 4-benzyl-1-chlorophthalazine (1) [25] with thiosemicarbazide furnished 4-benzylphthalazin-1-ylthiol (2).

While interaction of compound 1 with thiocarbohydrazide, 4-benzylphthalazin-1-ylamine (3) was the only isolable product. The formation of these products 2 and 3 pointed out that the less negative atom (S in case of thiosemicarbazide and terminal N in case of thiocarohydrazide) attacks the electrophilic carbon attached to Cl and $=\mathrm{N}$ groups (Scheme 1).

Interaction of (4-benzyl-1-oxo-1H-phthalazin-2-yl)acetic acid hydrazide [26] with compound 1 afforded the corresponding 4 -benzyl-2-(6 -benzyl $[1,2,4]$-triazolo-[3,4-a]phthal-azin-3-yl)methyl)phthalazin-1($2 H$)-one (4) (Scheme 1).

The structure of compounds $\mathbf{2 - 4}$ were confirmed by IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS. The IR spectra of compound 2 showed v at $2908 \mathrm{~cm}^{-1}(\mathrm{SH})$, for compound 3 showed v at $3274,3204 \mathrm{~cm}^{-}$ ${ }^{1}\left(\mathrm{NH}_{2}\right), 1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$, respectively. ${ }^{1} \mathrm{H}$ NMR spectra of compound 2 showed δ at 8.61 (brs, $1 \mathrm{H}, \mathrm{NH}$), 14.32 (s, 1H, SH), for compound 3 showed δ at 4.48 (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), for compound 4 indicates that its structure is a mixture of three tautomeric forms (A), (B) and (C) in different contributions showed δ at $11.14,11.35(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.13,9.93(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, respectively.
${ }^{13} \mathrm{C}$ NMR spectra of compound 4 showed δ at 167.77 (CO), $52.31\left(\mathrm{NCH}_{2} \mathrm{C}\right), 37.66,37.56\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$. The mass spectra of compounds 2-4 showed the corresponding molecular ion peaks at $m / z=252\left(\mathrm{M}^{+}, 83.8\right), m / z=235\left(\mathrm{M}^{+}, 4.6\right)$ and $m / z=508\left(\mathrm{M}^{+}\right.$, 95.6), respectively.

Reaction of compound 1 with cyanoacetohydrazide to give the corresponding (6-benzyl $[1,2,4]$ triazolo $[3,4-a]$ phthalazin-3yl)acetonitrile (5). Treatment of compound 5 with aromatic aldehydes in boiling ethanol in the presence of piperidine as a catalyst afforded the corresponding triazolophthalazin-3ylacrylonitrile derivatives, 6a-d (Scheme 2). The structure of compounds 5 and 6 were confirmed by IR, 1 H NMR and MS.

Condensation of compound 5 with phenolic aldehydes (salicylaldehyde, 2-hydroxy-1-naphthaldehyde and 2,7-dihydroxy-1-naphthaldehyde) under Knoevenagel reaction conditions afforded 3-(6-benzyl[1,2,4]triazolo[3,4-a]phthal-azin-3-yl)-2H-chromen-2-imine (7), 2-(6-benzyl $[1,2,4]$ triazolo [3,4-a]phthalazin-3-yl)-3H-benzo[f]chromen-3-imine (9a) and 2-(6-benzyl $[1,2,4]$ triazolo-[3,4-a]phthalazin-3-yl)-3-imino-3H-benzo[f]chromen-9-ol (9b), respectively (Scheme 3). Refluxing compound $\mathbf{7}$ and $\mathbf{9 a}, \mathbf{b}$ in glacial acetic acid/sodium acetate gave

3-(6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-chromen-2one (8), 2-(6-benzyl[1,2,4]triazolo-[3,4-a]phthalazin-3-yl)-3-imino-3H-benzo[f]chromen-9-ol (9b) and 2-(6-benzyl[1,2,4] triazolo[3,4-a]phthala-zin-3-yl)-9-hydroxybenzo[f]chromen-3one (10b), respectively (Scheme 3).

The structure of compounds $\mathbf{7 - 1 0}$ were confirmed by IR, 1 H NMR and MS. The IR spectra of compound 7 showed v at 3228 $\mathrm{cm}^{-1}(\mathrm{NH})$, for compound 8 showed v at $1732 \mathrm{~cm}^{-1}$ (CO), for compound $9 \mathbf{b}$ showed v at $3280 \mathrm{~cm}^{-1}$ (NH), $3476 \mathrm{~cm}^{-1}(\mathrm{OH})$, for compound 10a showed v at $1726 \mathrm{~cm}^{-1}$ (CO), compound 10b showed v at $3452 \mathrm{~cm}^{-1}(\mathrm{OH}), 1720 \mathrm{~cm}^{-1}(\mathrm{CO}) .{ }^{1} \mathrm{H}$ NMR spectra of compound 7 showed δ at $10.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, for compound 9 a showed δ at 10.03 (s, $1 \mathrm{H}, \mathrm{NH}$), for compound $9 \mathbf{b}$ showed δ at 10.09 (brs, $1 \mathrm{H}, \mathrm{NH}$), 9.42 (brs, $1 \mathrm{H}, \mathrm{OH}$), respectively. The mass spectra of compounds $\mathbf{8}$ and 10a,b and showed the corresponding molecular ion peaks at $m / z=404\left(\mathrm{M}^{+}, 100\right), m / z$ $=454\left(\mathrm{M}^{+}, 100\right), m / z=470\left(\mathrm{M}^{+}, 3.09\right)$, respectively.

Since, compound 5 contains very reactive methylene group, so, this derivative underwent coupling with equimolar amount of p-tolyldiazonium chloride in ethanol and sodium acetate at $\left(0-5^{\circ} \mathrm{C}\right)$, to afford a colored product which was identified as $(6-$ benzyl- N^{\prime}-(p-tolyl)-[1,2,4]triazolo[3,4-a]phthalazine-3-carbohydrazonoyl cyanide (11). In the same manner, triazolo-phthalazin-3-ylacetonitrile (5) couples with a buffered solution of $1 H$-[1,2,4]triazolo-3-yldiazonium chloride to afford the corresponding (6-benzyl $[1,2,4]$ triazolo $[3,4-a]$ phthalazin-3-yl)-[(4H-[1,2,4]triazolo-3-yl)hydrazono]acetonitrile (12) (Scheme 4).

The structure of compounds $\mathbf{1 1}$ and 12 were confirmed by IR, ${ }^{1} \mathrm{H}$ NMR and MS. The IR spectra of compound 11 showed v at $3082 \mathrm{~cm}^{-1}(\mathrm{NH}), 2220 \mathrm{~cm}^{-1}(\mathrm{CN})$, for compound 12 showed v at $3076 \mathrm{~cm}^{-1}$ (NH, br), $2224 \mathrm{~cm}^{-1}$ (CN), respectively. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of compound 12 showed δ at $14.00,13.60(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$, $12.60(\mathrm{~s}, 1 \mathrm{H}$, triazolo-H). The mass spectra of compounds 11 and 12 and showed the corresponding molecular ion peaks at $m / z=417\left(\mathrm{M}^{+}, 13.1\right), m / z=394\left(\mathrm{M}^{+}, 61.9\right)$, respectively.

Reaction of compound 5 with triethyl-orthoformate in boiling acetic anhydride to give 2-(6-benzyl $[1,2,4]$ triazolo[3,4-a]phthalazin-3-yl)-3-ethoxyacrylonitrile (13) and treatment of compound 13 with hydroxylamine hydrochloride in boiling ethanol-fused sodium acetate gave 3-amino-2-(6-benzyl[1,2,4] triazolo[3,4-a]phthalazin-3-yl)-3-(hydroxyimino)prop-1-enyl acetate (14). The formation of compound 14 can be attributed to the nucleophilic addition of $\mathrm{NH}_{2} \mathrm{OH}$ to the CN group and nucleophilic exchange of the ethoxy group by the acetoxy nucleophile. Compound 13 undergoes cycloaddition with thiourea to furnished the corresponding 4 -amino-5-(6-benz-yl [1,2,4]triazolo[3,4-a]phthalazin-3-yl)-1H-pyrimidine-2-thione (15) (Scheme 5). Similarly, compound 5 reacted with 3-amino-1,2,4-triazole to yield the corresponding 6-(6-benzyl[1,2,4] triazolo[3,4-a]phthalazin-3-yl)-8H-[1,2,4]triazolo[4,3-a]pyrimi-din-5-ylideneamine (16) (Scheme 5).

The structure of compounds 13-16 were confirmed by IR, ${ }^{1} \mathrm{H}$ NMR and MS. The IR spectrum of compound 13 showed absorptions at $2256 \mathrm{~cm}^{-1}(\mathrm{CN})$, while for compound 14 the characteristic bands were at $3382 \mathrm{~cm}^{-1}(\mathrm{OH}), 3284,3192 \mathrm{~cm}^{-1}$ $\left(\mathrm{NH}_{2}\right)$, compound 16 at $1602,1632 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}), 3184 \mathrm{~cm}^{-1}$ (NH), and compound 15 at $1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{S}), 3244 \mathrm{~cm}^{-1}\left(\mathrm{NH}_{2}\right)$, $3056 \mathrm{~cm}^{-1}$ (NH), respectively. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 13 showed characteristic signals at $\delta 1.310\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.28$ ($\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $\mathrm{CH}_{2} \mathrm{Ph}$ (4.72, singlet signal), (7.19-8.53) (sets of multiplets, $9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.25 ($\mathrm{s}, 1 \mathrm{H},=\mathrm{CH}$), The mass spectra of compounds 14-16 showed the corresponding molecular ion peaks $m / z=402\left(\mathrm{M}^{+}, 100\right), m / z=385$ (19.4) and $m / z=393$ $\left(\mathrm{M}^{+}, 51.4\right)$, respectively.

Treatment of 3-ethoxyacrylonitrile derivative (13) with hydrazine hydrate in ethanol at room temperature was unsuccessful, while when under reflux, the reaction was successful and the reaction product was identified as ethyl 3-amino-2-(6-benzyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-3hydrazonopropane hydrazonate (17).

The formation of such compound indicated that the reaction proceeds through nucleophilic addition of two hydrazine molecules to the vinyl and the nitrile groups leading to the formation of non-isolable intermediate (A), which in turn, undergoes spontaneous dehydrogenation rather than elimination of ethanol molecule to give compound 17 as the only isolable product (Scheme 6).

Also, treatment of compound 13 with ethanolic phenylhydrazine under the conditions of reflux gave the isolable product which was identified as 2-(6-benzyl-[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-3-ethoxy-3-(2-phenyl hydrazinyl)acrylonitrile (18). The formation of this product could be explained through nucleophilic addition of one phenylhydrazine molecule to vinyl group followed by oxidation of the intermediate (B) to the final product (Scheme 6).

The structure of compounds 17 and 18 were confirmed by IR and MS. The IR spectrum of compound 17 showed absorptions at $3198 \mathrm{~cm}^{-1}(\mathrm{NH}), 1598 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$, while for compound 18 showed absorptions at 3212 (NH), $2198 \mathrm{~cm}^{-1}$ (CN). The mass spectra of compounds 17 and 18 showed the corresponding molecular ion peaks $m / z(\%): 417\left(\mathrm{M}^{+}, 32.6\right)$ and $461\left(\mathrm{M}^{+}, 100\right)$, respectively.

Treatment of compound 5 with thioglycolic acid, the given reaction in Scheme 7 would occur, where 2-(6-benzyl[1,2,4] triazolo[3,4-a]phthalazin-3-ylmeth-yl)thiazol-4-one (19) is formed. Condensation of 19 with anisaldehyde in boiling ethanol/piperidine gave the corresponding 2 -((6-benzyl-[1,2,4]triazolo[3,4-a]phthalazin-3-yl)methyl)-5-(4-methoxybenzylidene)thiazol-4-one (20) (Scheme 7).

The structure of compounds 19 and 20 were confirmed by IR, ${ }^{1} \mathrm{H}$ NMR and MS. The IR spectrum of compound 19 showed absorptions at $1726 \mathrm{~cm}^{-1}$ (CO), while for compound 20 showed absorptions at $1682 \mathrm{~cm}^{-1}$ (CO). ${ }^{1} \mathrm{H}$ NMR spectra of compound 19 showed δ at $11.43\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}\right.$, exchangeable by $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.45$ (s, $1 \mathrm{H}, \mathrm{CH}$-thiazolidinone), for compound 20 showed δ at 9.01 (s, $1 \mathrm{H},=\mathrm{CH}), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$. The mass spectra of compounds 19 and 20 showed the corresponding molecular ion peaks m / z $=373\left(\mathrm{M}^{+}, 13.1\right)$ and $491\left(\mathrm{M}^{+}, 95.1\right)$, respectively.

Treatment of compound 19 with a mixture of malononitrile and p-anisalodehyde in equimolar ratio in boiling ethanolpiperidine was successful and the corresponding 2-(6benzyl $[1,2,4]$ triazolo[3,4-a]phthalazin-3-ylmethyl)-5-oxo-6,7-dihydro-7-(4-methoxyphenyl)-5 H -pyrano[2,3-d]thiazole-6carbonitrile (21). The formation of compound 21 can be rationalized by addition of active methylene group of 4thiazolinone 19 at the activated ethylenic double bond of benzylidene malononitrile forming an adduct (A) which undergoes intramolecular cyclization and spontaneous hydrolysis of the imino function into the carbonyl group under the experimental reaction conditions employed (Scheme 8). Compound 19 reacted with malononitrile and p-tolaldehyde in boiling ethanol-piperidine in molar ratio 1:1:2 to give 5-amino-8-(6-benzyl-[1,2,4]triazolo[3,4-a]phthalazin-3-yl)-2-(4-methyl benzylidene)-3-oxo-7-(p-tolyl)-3,7-dihydro- 2 H -thiazolo[3,2-a] pyridine-6-carbonitrile (22). The formation of compound 22 is rationalized by the condensation of two molecules of aromatic aldehyde with 4 -thiazolinone and malononitrile, respectively followed by the nucleophilic addition of methylene bridge of the $1^{\text {st }}$ derivative to the activated ethylenic double bond of the second one and the formed adduct (B) undergoes intramolecular cyclization into the final product 22 (Scheme 8).

The structure of compounds 21 and 22 were confirmed by IR, ${ }^{1} \mathrm{H}$ NMR and MS. The IR spectrum of compound 21 showed absorptions at 2190 (CN), $1690 \mathrm{~cm}^{-1}$ (CO), while for compound 22 showed absorptions at 2188 (CN) and $1702 \mathrm{~cm}^{-1}$ (CO), respectively. The ${ }^{1} \mathrm{H}$ NMR of compound 21 showed $\delta_{\mathrm{H}} 8.42(\mathrm{~d}$, 1H, Ar-H), 8.25 (d, 1H, Ar-H), 7.97-7.66 (m, 11H, Ar-H), 5.38 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.72, 4.63 ($2 \mathrm{~d}, 3 \mathrm{H}, 4 \mathrm{H}$-pyran), 3.78 ($\mathrm{s}, 2 \mathrm{H},-\mathrm{CH}_{2}$), $3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$. The mass spectra of compound 22 showed the corresponding molecular ion peak $m / z=643\left(\mathrm{M}^{+}, 0.9\right)$.

3.2. Antimicrobial activity

The antimicrobial activity of the newly synthesized compounds 2-22 were evaluated against two species of Gramnegative bacteria Pseudomonas aeruginosa (MTCC 741); Escherichia coli (NCTC-10410); and four Gram-positive bacteria, Bacillus cereus (ATGG 14579); Bacillus subtilis (MTCC 441); Bacillus sphaericus (MTCC 11); Staphylococcus (MTCC 96); and two fungus, Aspergillus ochraceus Wilhelm (AUCC-230) and Penicillium chrysogenum Thom (AUCC-530) strains by disk diffusion method. Ampicillin and Mycostatin were used as standard drugs for the bacteria and fungi, respectively.

The comparison of the MICs (in $\mu \mathrm{g} / \mathrm{mL}$) of potent compounds and standard drugs against tested strains are presented in the (Table 1). Investigation of the antibacterial screening data (Table 1) showed that some of the compounds were active against some pathogenic bacteria. Compounds $\mathbf{4}, \mathbf{8}$, 10b, 16, 19 and 21 exhibited good activity against Pseudomonas aeruginosa, while compounds 4, 10a, 16, 19, 21 and 22 exhibited good activity against Escherichia coli and compounds 10a, 20 and 21 exhibited good activity against Bacillus cereus. In addition, compounds 4, 8, 16, 19 and 21 exhibited good activity against Bacillus subtilis and compounds 8, 10b and 12 exhibited good activity against Bacillus sphaericus, while compounds 4, 10a, 12 and 20 exhibited good activity against Staphylococcus.

The antifungal results (Table 1) revealed that the synthesized compounds showed variable degrees of inhibition against the tested fungi. Compounds $4,10 b, 16,19,20$ and 22 possessed moderate antifungal activity against Aspergillus ochraceus Wilhelm and Penicillium chrysogenum Thom.

4. Conclusion

Our interest in synthesis of heterocyclic compounds is to focus on their antimicrobial activity as a part of our program which aimed at the development of new and more potent antimicrobial agents. Thus, in this paper, we revealed the synthesis of some triazolophthalazine derivatives and antimicrobial evaluation of all the novel compounds. The structures of the novel compounds were elucidated on the basis of IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS data. A series of novel triazolophthalazine derivatives were prepared. The antimicrobial activity of these compounds was evaluated against various Gram-positive, Gram-negative bacteria and fungi. Triazolophthalazine and triazolophthalazinethiazole derivatives are strong activities against any of the test microorganisms.

References

[1]. Juan, L.; Yan-Fang, Z.; Yuan, Xiao-Ye, Y.; Jing-Xiong, X.; Ping, G. Molecules 2006, 11, 574-582.
[2]. Jin, S. K.; Hee-Kyung, R.; Hyen, J. P.; Sang, K. L.; Chong-Ock, L.; HeaYoung, P. C. Bioorg. Med. Chem. 2008, 16, 4545-4550.
[3]. Raposo, M. M.; Sampaio, A. M. B. A.; Kirsch, G. J. Hetero. Chem. 2005, 42, 1245-1451.
[4]. Haack, T.; Fattori, R.; Naboletano, M.; Pellacini, F.; Fronza, G.; Raffaini, G.; Janazzoli, F. Bioorg. Med. Chem. 2005, 13, 4425-4433.
[5]. Napoletano, M.; Norcini, G.; Pellacini, F.; Marchini, F.; Morazzoni, G.; Fattori, R.; Ferienga, P.; Pradella, L. Bioorg. Med. Chem. Lett. 2002, 12, 5-8.
[6]. Napoletano, M.; Norcini, G.; Pellacini, F.; Marchini, F.; Morazzoni, G.; Fattori, R.; Ferienga, P.; Pradella, L. Bioorg. Med. Chem. Lett. 2001, 11, 33-37.
[7]. Line, B.; Andre, T.; Patricia, M. Tertrahedron Lett. 1996, 37, 41454148.
[8]. Reddy, R. S.; Saravanan, K.; Kumar, P. Tertrahedron 1998, 54, 65536564.
[9]. Gomha, S. M.; Riyadh, S. M. Molecules 2011, 16, 8244-8256.
[10]. El-Sakka, S. S.; Soliman, A. H.; Imam, A. M. Afinidad 2009, 66, 167-172.
[11]. Tsoungas, P. G.; Searcey, M. Tetrahedron Lett. 2001, 42, 6589-6592.
[12]. Sivakumar, R.; Gnanasam, S. K.; Ramachandran, S.; Leonard, J. T. Eur. J. Med. Chem. 2002, 37, 793-801.
[13]. Coelho, A.; Sotelo, E.; Fraiz, N. M.; Yanez, M.; Laguna, R.; Canob, E.; Ravina, E. Bioorg. Med. Chem. Lett. 2004, 14, 321-324.
[14]. Demirayak, S.; Karaburun, A. C.; Beis, R. Eur. J. Med. Chem. 2004, 39, 1089-1095.
[15]. Dogruer, D. S.; Sahin, M. F.; Unlu, S.; Ito, S. Arch. Pharm. 2000, 333, 7986.
[16]. Norbert, H.; Tamara, K.; Johann, K.; Angelika, P. Molecules 2007, 12, 1900-1909.
[17]. Imamura, Y.; Noda, A.; Imamura, T.; Ono, Y.; Okawara, T.; Noda, H. Life Sci. 2003, 74, 29-36.
[18]. Dogruer, D. S.; Sahin, M. F.; Kupeli, E.; Yesilada, E. Turk. J. Chem. 2003, 27, 727-738.
[19]. Dogruer, D. S.; Sahin, M. F.; Kupeli, E.; Yesilada, E. Arch. Pharm. 2004, 337, 303-310.
[20]. Bold, G.; Altmann, K. -H.; Frei, J.; Lang, M.; Manley, P. W.; Traxler, P.; Wietfeld, B.; Brueggen, J.; Buchdunger, E.; Cozens, R.; Ferrari, S.; Furet, P.; Hofmann, F.; MartinyBaron, G.; Mestan, J.; Roesel, J.; Sills, M.; Stover, D.; Acemoglu, F.; Boss, E.; Emmenegger, R.; Laesser, L.; Masso, E.; Roth, R.; Schlachter, C.; Vetterli, W.; Wyss, D.; Wood, J. M. J. Med. Chem. 2000, 43, 2310-2323.
[21]. Stuart, L. F.; Daniel, F. M.; Peter, K. Nature Reviews Drug Discovery, 2005, 4, 187-188.
[22]. Hennequin, L. F.; Stokes, E. S.; Thomas, A. P.; Johnstone, C; Ple, P. A.; Ogilvie, D. J.; Dukes, M.; Wedge, S. R.; Kendrew, J.; Curwen, J. O. J. Med. Chem. 2002, 45, 1300-1312.
[23]. Piatnitski, E. L.; Duncton, M. A.; Kiselyov, A. S.; Katoch, R. R.; Sherman, D.; Milligan, D. L.; Balagtas, C.; Wong, W. C.; Kawakami, J.; Doody, J. F. Bioorg. Med. Chem. Lett. 2005, 15, 4696-4698.
[24]. Matthew, A. J. D.; Evgueni, L. P.; Reeti, K. R; Leon, M. S.; Alexander, S. K.; Daniel, L. M.; Chris, B; Wai, C. W.; Joel, K.; Jacqueline, F. D. Bioorg. Med. Chem. Lett. 2006, 16, 1579-1581.
[25]. Bromber, A. Ber. 1896, 29, 1434-1435.
[26]. Ashraf, H. F. A; Hany, M. M.; Ahmed, M. E; Mohammed, A. E.; Ahmed, H. B. Pharmaceuticals 2011, 4, 1158-1170
[27]. European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin. Microbiol. Infect. 2000, 6, 509-515.
[28]. National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 5th ed.; NCCLS: Wayne, PA, USA, 2000; Approved Standard M7-A5.

