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Abstract

The rare compact elliptical galaxies (cEs) are thought to have been formed through a

tidal stripping process of a once much larger progenitor, as they do not adhere to the

mass-size, mass-metalicity and black hole-bulge mass scaling relations like their more

massive early-type cousins. By using observations taken with the FLAMES/GI-

RAFFE integral field spectrographs of the European Southern Observatory’s (ESO)

8.2m Very Large Telescope (VLT), we searched for evidence for the presence of

overly massive SMBHs in our sample of cEs. The raw reduction was performed by

the workflow environment EsoReflex, Voronoi binned spectra from 4 target cEs were

obtained using the VorBin method. We performed a full spectrum fit of cE spectra

using the Penalized Pixel Fitting (pPXF) method, to extract resolved kinematics i.e

the Line Of Sight Velocity Distribution (LOSVD). Dynamical mass estimates of or-

der 109M� were obtained. Dynamical to stellar mass ratios for 3 cEs (NGC5846cE,

NGC3268cE1 and AHcE0) reveal the likely presence of an overly massive SMBH,

favoring the tidal stripping scenario for cE formation.

iii



Contents

Declaration ii

Abstract iii

Acknowledgements vi

1 Introduction 1

1.1 Compact Elliptical Galaxies . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Formation by Tidal Stripping . . . . . . . . . . . . . . . . . . 3

1.1.2 Formation by gas-rich starburst . . . . . . . . . . . . . . . . . 4

1.1.3 Formation by ram pressure confinement . . . . . . . . . . . . 5

1.2 Aims of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Properties of observations . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Observational Sample . . . . . . . . . . . . . . . . . . . . . . . 8

2 Data Reduction 11

2.1 Cosmic Ray Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 EsoReflex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Master Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Master Flats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Dark Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Wavelength Calibration . . . . . . . . . . . . . . . . . . . . . 16

iv



2.3 Sky and Galaxy Subtraction . . . . . . . . . . . . . . . . . . . . . . 17

2.4 VorBin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Measurements of Kinematics 26

3.1 Penalized Pixel Fitting (pPXF) . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Template Stellar Spectra . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Determination of Instrumental Resolution . . . . . . . . . . . 31

4 Results 36

4.1 Recessional Velocity and σ0 Measuremnts. . . . . . . . . . . . . . . . 37

4.2 Velocity Dispersion Profiles . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Dynamical to Stellar Mass Ratios . . . . . . . . . . . . . . . . . . . . 42

5 Discussion 46

5.1 Implications Of The Results. . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

v



Acknowledgements

I would like to thank Mark Norris for all of his hard work guiding me through this

project. Without his world class expertise and guidance this work would not have

been possible. I would also like to thank David Glass, Tom Davidson and Jordan

Thirlwall for their advice on several occasions. A huge thank you must be given to

Jenny, for the moral support and motivation throughout the project.

vi



List of Figures

1.1 The archetypal cE M32. The background structure in this image is

M31:the Andromeda galaxy. From this the compact nature of M32

can be seen. Credit:(universetoday.com) . . . . . . . . . . . . . . . . 2

1.2 The images above are Hubble legacy archive images of our sample

of cEs. These images are a combination of several images at differ-

ent wavelengths to produce colour images of the cEs. The absolute

magnitudes for the targets are between -12 and -18 mag . . . . . . . . 10

(a) Subfigure 1 image of NGC5846cE . . . . . . . . . . . . . . . . . 10

(b) Subfigure 2 image of NGC3268cE1 . . . . . . . . . . . . . . . . 10

(c) Subfigure 3 image of ESO133005 . . . . . . . . . . . . . . . . . 10

(d) Subfigure 4 image of NGC4696cE . . . . . . . . . . . . . . . . . 10

(e) Subfigure 5 image of Abell400cE . . . . . . . . . . . . . . . . . 10

(f) Subfigure 6 image of Abell496cE . . . . . . . . . . . . . . . . . 10

2.1 Raw science frame before the application of LA cosmic. The cosmic

ray hits are clearly visible as bright streaks, some span several fibres. 12

2.2 The Figure shows the science frame post cosmic ray cleaning. The

obvious streaks from 2.1 have been removed or significantly reduced. . 12

2.3 The Reflex work-flow pipeline for the GIRAFFE spectrograph. From

this the recipe actors, ports of several types, and the recipe director

can be seen. The image is the pipeline used in this work. . . . . . . . 14

vii



CHAPTER 0

2.4 A single data cube slice for NGC5846cE pre (top panel) and post sky

subtraction (bottom panel). The white dashed lines mark the regions

the polynomial fit was applied to. Note the wavelength of these data
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Chapter 1

Introduction

1.1 Compact Elliptical Galaxies

Compact elliptical galaxies (cEs) are a relatively rare class of Compact Stellar Sys-

tem (CSS) with only ∼ 200 currently known (Ferré-Mateu et al., 2018; Norris et al.,

2014). They are characterised by their intermediate luminosity, high surface bright-

ness with correspondingly high stellar densities (see Figure 1.1) and compact nature

with effective radii Re, (i.e the radii at which half the light of the galaxy is emitted)

ranging between 0.1kpc ≤ Re ≤ 1kpc, and dynamical masses of the order 109M�

(Ferré-Mateu et al., 2018). The number of known cEs and other CSS such as Ul-

tra Compact Dwarfs (UCD), Dwarf Elliptical (dE) and Dwarf spheroidal (dSph) has

markedly increased since the AIMSS (Archive of Intermediate Mass Stellar Systems)

project (Janz et al., 2016; Norris et al., 2014). This project has essentially filled the

gap between two previously distinct stellar systems, Globular Clusters (GCs) and

Elliptical galaxies (Es). The presence of cEs in this intermediate space between GCs

and early-type galaxies leads naturally to the question of their physical nature and

the processes in which they form. The archetypal, first to be discovered and perhaps

the best studied cE is M32. M32 has been found to have several stellar populations

with ∼ 40 % of stars between 2-5 Gyr and 55 % of stars older than 5 Gyr with
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a mass-weighted age and metallicity of 〈age〉 ∼ 6.8Gyr and 〈M/H〉 = -0.01 dex

respectively (Monachesi et al., 2012). Therefore M32 is relatively old and as metal-

rich as larger galaxies with the addition of the stellar populations of different age,

which implies a complex formation history. M32 is bound to M31, the Andromeda

galaxy and like M32, cEs are typically found orbiting or in proximity to larger ”host”

galaxies (Ferré-Mateu et al., 2018) and galaxy cluster environments(Infante et al.,

2003; Martinović & Micic, 2017). Several suggestions have been proposed to explain

the mechanisms that lead to cE formation, each is described in turn below.

Figure 1.1: The archetypal cE M32. The background structure in this image is

M31:the Andromeda galaxy. From this the compact nature of M32 can be seen.

Credit:(universetoday.com)
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1.1.1 Formation by Tidal Stripping

It is widely believed that the most likely scenario in which cEs form is the tidal

stripping of a once much more massive progenitor (Chilingarian & Bergond, 2010;

Norris et al., 2014), most likely lenticular or spiral galaxies (Chilingarian et al., 2008).

The gravity of the larger host galaxy removes the dark matter halo and subsequently

the outer more loosely-bound stars, leaving the tightly bound self-gravitating bulge

of the smaller galaxy behind. Supporting this is the “smoking gun” evidence of

tidal interactions between some cEs and their host galaxy, with clear tidal streams

of stars being removed from the cE by a much larger host galaxy (Huxor et al.,

2011) and the radial surface brightness profile of M32 perfectly resembling a bulge

with a small residual disk component (Graham, 2002).

In addition cEs are outliers on the scaling relations that their much more massive

cousins the early-type galaxies adhere to, such as the mass-size, Black Hole (BH)

bulge-mass (Häring & Rix, 2004; van den Bosch, 2016) and mass-metallicity, (see

Janz et al. 2016). They are outliers of the mass-size BH scaling relation because

for the mass and size of cEs, the BHs are too massive. The BH mass in the tidal

stripping scenario would remain essentially unchanged as the mass of the galaxy

decreased through the loss of stars. If cEs do not follow these well established

relationships then having an overly massive black hole indicates that cEs were once

much larger in past epochs and harbour an overly massive BH as a result.

cEs are also outliers on the mass-metallicity scaling relation, this is because

they are too metal rich, being as metal-rich as the centres of larger galaxies. The

enhanced metallicity [M/H], is because only the inner most metal-rich part of the

stripped galaxy remains in this scenario. More massive galaxies tend to be more

metal-rich because they can retain heavy elements from SuperNovae (SN) ejecta due

to their deeper gravitational field, however, cEs are relatively low mass hence should

not be so rich in metals. Furthermore, while cEs are more compact and denser than

3
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typical ellipticals and lenticulars, they actually resemble the central regions of such

galaxies in terms of these properties.

Although cEs are mostly found orbiting a host galaxy, a small number of them

have been found isolated in the field, with the nearest likely host being ∼ 900

kpc away (Huxor et al., 2013). These isolated cEs are conjectured to have been

ejected from a galaxy group or cluster via a three-body interaction, which leads the

much smaller cE to be ejected when two larger galaxies interact (Chilingarian et al.,

2009). The three-body interaction is one explanation for the isolated cEs, however

an understanding of the prevalence of isolated cEs is needed to solve this issue as

the conditions leading to ejection via three-body interactions are likely to be rare.

The existence of a large population of isolated cEs may indicate other mechanisms

may be at work in forming cEs. Other alternative formation scenarios will now be

discussed.

1.1.2 Formation by gas-rich starburst

There exists a population of Elliptical galaxies at high redshift (z = 2) resembling

the larger analogues of today’s dwarf galaxies, therefore cEs (Yıldırım et al., 2017),

leading to speculation that cEs could form in the same manner. Because cEs could

be low mass extensions in the early-type galaxy sequence(Ferré-Mateu et al., 2018;

Wirth & Gallagher, 1984), therefore they could form in the same manner as early-

types i.e through gas-rich starburst. In this scenario the early period of early-type

galaxy growth is through successive wet mergers of smaller galaxies to create larger

ones, i.e gas rich galaxies merging together. The merger through tidal interactions

causes the now surplus gas to collapse and form new stars at an accelerated rate

(Kormendy et al., 2009). In this situation it would be expected that the BHs would

be appropriate for the size of the galaxy according to the scaling relations and

therefore the black holes should not be overly massive. The metallicity would also

4
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generally be expected to follow the mass-metallicity relation and the resulting cE

would not be expected to be denser than typical early-type galaxies.

1.1.3 Formation by ram pressure confinement

A further hypothesis for cE formation is by ram pressure confinement. The work of

Du et al. 2018 produced cE like objects in their simulations using a mechanism they

call ram pressure confinement. Ram pressure confinement is where a galaxy’s gas is

forced into the bulge or central regions due to a pressure exerted as it moves through

the intra-cluster medium at great speed. This then triggers a major star forming

event which rapidly builds up the stellar density in the central regions. In addition

the ram pressure also confines SN ejecta, this leads to a rapid increase in metallicity

which explains why cEs do not follow the mass-metallicity scaling relation. It is

unclear in this scenario whether the BH could be overly massive. If the BH is fed

mass at the same time as the starburst it is possible stellar mass and BH mass could

grow in sync, however more simulations are required to investigate this.

Now we have explored the proposed formation mechanisms of cEs and the likely

mass of BHs in each situation, we will now outline the aims of this work and the

logistics of investigating such questions.

1.2 Aims of the project

The aim of this work is to extract kinematic measurements for a sample of cEs

to search for evidence of the presence of Super Massive Black Holes (SMBHs), us-

ing spectroscopic observations taken with the FLAMES/GIRAFFE spectrograph

of UT2 (Kueyen) of the Very Large Telescope (VLT). This is done by extracting

spatially resolved kinematics i.e. the line of sight velocity distribution (LOSVD),

5
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particularly the central velocity dispersion. The velocity dispersion (the mean dis-

persion/distribution about the line of sight velocity) contains information about the

gravitational potential, hence the influence on the mass in the potential. A large

dispersion implies a large mass is exerting its influence on the orbits of stars in

the pressure supported system. The central velocity dispersion will then be used

to find a dynamical mass Mdyn estimate of the cEs assuming the central regions

contain negligible amounts of dark matter and gas. Then by using literature values

for stellar mass, a dynamical mass to stellar mass ratio (Mdyn/M∗) can be plotted.

Any cEs above the 1:1 or unity line in these plots could indicate the presence of an

overly massive SMBH. Black holes and galaxy mass are thought to grow in tandem,

that is to say black holes and galaxies scale together, so if evidence of an overly

massive SMBH is found (as in previous studies) the tidal stripping scenario gains

support. If evidence of our cEs being host to a SMBH is found, then confirmation

will be subsequently sought with follow-up observations using high spatial resolution

Adaptive Optics (AO) in order to confirm the BH mass.

This thesis is organised as follows. In the remaining sections of Chapter 1 our

target cEs will be discussed. Chapter 2 describes the multiple stages of the reduction

of our observational data; the removal of cosmic rays, the basic data reduction, sky

subtraction and the Voronoi binning of the resulting spectra. Chapter 3 will focus

on the acquisition of measurements from our data via a full spectrum fit using the

penalised pixel fitting method (pPXF). In Chapter 4 we present the results of the

full spectrum fits and in Chapter 5 we will discuss the implications of the results

and the outlook continuation of this work.

1.2.1 Properties of observations

Integral Field Spectroscopy (IFS) was conceptualised in 1982 (Courtes, 1982) and

the subsequent first use of an integral field unit (IFU) was in 1987 with the TIGER

6
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IFU of Canada-France-Hawaii Telescope (CFHT). Even in the pioneering days IFS

was found to be “far superior to long-slit spectrography for high resolution purpo-

sues” (Bacon et al., 1995). Since the pioneering days IFUs have become ubiquitous,

with most of the worlds largest telescopes having IFS capabilities. The long exposure

times needed to observe faint extended objects is time consuming, using traditional

long-slit spectroscopy would therefore take many hours to obtain 2-D spatial cover-

age of an extended object. With IFS, spectra from distinct regions across the target

galaxy can obtained in one observation, which considerably reduces the required

telescope time. This is possible due to the main characteristic difference between

IFS and classical spectroscopic methods. With IFS the light collected is kept sepa-

rated by glass fibre optic bundles, or by dividing it up by means of small mirrors in

the case of the image slicer type. The light from different regions is kept separate

so 2-D spatial information is preserved.

There are several different designs and variants of IFU, these include; The micro-

lens array, image slicer and fibre bundles. The image slicer method slices a 2-D image

into strips and each strip is placed in front of a slit and then through the dispersive

element (Vivès & Prieto, 2005), UVES is one example of this type (Dekker et al.,

2000). The fibre bundle variant is where light enters glass fibre optic bundles placed

in the focal plane and exits the fibres through the slit. An example of this type

includes the SDSS IFU, MaNGA (Bundy et al., 2015). The micro-lens array or lens-

let array is where an array of micro lenses is placed in the plane of the spectrograph

fibres, the light then is passed through the array lenses and through the dispersive

element on to a CCD, such as the IFU of SINFONI (Eisenhauer et al., 2003). In

this work the instrument we used is of the micro-lens array type.

The Integral Field Spectroscopy (IFS) data used for this work was collected in

service mode for Dr M.Norris in 2014 at ESO’s VLT UT2 at the Paranal observa-

tory Chile. Note: Adaptive optics was unavailable at the time of observation. The

7
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VLT UT2 houses the the FLAMES fiber facility, which feeds two spectrographs,

UVES and GIRAFFE (Pasquini et al., 2002) The GIRAFFE spectrograph has sev-

eral observation modes, these include the multi-fibre mode Medusa which allows for

observations of up to 132 separate objects, IFU and ARGUS mode. For this work

ARGUS mode was used and as mentioned this is a micro-lens array. In this mode

only one object can be observed at any one time. It consists of a 14× 22 micro-lens

array, each lens is 0.2 × 0.2 arc seconds per pixel. The wavelength range used for

our observations was in the Near Infra-Red (NIR), the wavelength coverage between

8182 and 9377Å. This wavelength range covers the CaII absorption triplet, which is

a prominent absorption feature that can be used to perform a full spectrum fit to

extract kinematic information from our targets. The CaII triplet is the only strong

absorption feature in our wavelength range and is relatively free from contamination

from any neighbouring absorption features such as the weak FeI absorption features.

The three emission lines of the CaII triplet have rest wavelengths at 8498, 8542 and

8662Å.

1.2.2 Observational Sample

Our sample of seven cEs are a subset of a larger sample chosen to cover a range

of mass, density and environment displayed by cEs (see Table 1.1). Unfortunately

the full sample was not observed so coverage of certain parameters is limited. Of

our sample five cEs are found in galaxy clusters (Abell496, Abell400, NGC3268cE1,

ESO133005 and NGC4696cE), 2 have been previously well studied (NGC5846cE

and NGC3268cE1), our sample also includes AHcE0 which is one of the isolated

cEs from Huxor et al. 2013. One of our cEs has no previous velocity dispersion

information published (NGC4696cE) and in general the remaining sample have only

single integrated velocity dispersion measures. Unfortunately the small sample size

is heavily biased towards cEs in cluster environments, which limits our ability to
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probe the role of environment on cE formation. However by comparison of our

measurements of our well studied cEs with literature values we can assess whether

the measurements of NGC4696cE are reliable.

Object RA Dec Redshift(z) Environment Exp time(s)

NGC5846cE 15:06:34 01:33:30 0.0057 Group 2 x 2775

NGC3268cE1 10:30:04 -35:20:32 0.0093 Cluster 4 x 2775

NGC4696cE 12:48:53 -41:19:05 0.0073 Cluster 2 x 2775

AHcE0 09:47:29 14:12:44 0.0198 Isolated 3 x 2775

Abell400cE 02:57:44 06:02:01 0.0254 Cluster 3 x 2775

Abell496cE 04:33:37 -13:15:19 0.0329 Cluster 4 x 2775

ESO133005 13:30:05 -20:55:21 0.0180 Cluster 7 x 2775

Table 1.1: The basic properties of our observational sample of cEs. In the table the

positions of our targets in RA and Dec (J2000.0 equinox) along with the red-shifts,

environment and total exposure times are given.

9
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(a) Hubble space telescope image of

NGC5846cE

(b) Hubble image of NGC3268cE1

(c) ESO13cE (d) NGC4696cE

(e) Abell400cE (f) Abell496cE

Figure 1.2: The images above are Hubble legacy archive images of our sample of

cEs. These images are a combination of several images at different wavelengths

to produce colour images of the cEs. The absolute magnitudes for the targets are

between -12 and -18 mag

10
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Data Reduction

The raw science data collected for this work requires several steps of reduction

before it is suitable for analysis. These steps were; the cleaning of cosmic rays

with the Laplacian cosmic ray detection algorithm LA cosmic (van Dokkum, 2001),

the use of ESO’s reduction pipeline software EsoReflex to perform the basic data

reduction and construct a data cube (Freudling et al., 2013), a subtraction of the

sky emission lines and background galaxy light (sky subtraction). Then the VorBin

method (Cappellari & Copin, 2003) was used to bin adjacent spaxels to a constant

minimum signal to noise ratio (SNR). These reduction steps will now be described

in more detail.

2.1 Cosmic Ray Cleaning

The first step in the reduction of the raw data is cosmic ray cleaning. Cosmic rays

are high energy particles that hit the CCD during telescope observations. It is

necessary to clean cosmic ray hits from the main science frame before it is included

in the set of files to be used with EsoReflex, this is because cosmic rays complicate

subsequent reduction, especially the sky subtraction as they lead to inaccurate fits

to the background. The cosmic ray cleaning was implemented with python using

11



CHAPTER 2

Figure 2.1: Raw science frame before the application of LA

cosmic. The cosmic ray hits are clearly visible as bright streaks,

some span several fibres.

Figure 2.2: The Figure shows the science frame post cosmic

ray cleaning. The obvious streaks from 2.1 have been removed

or significantly reduced.

12
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the LA Cosmic algorithm of van Dokkum 2001. LA Cosmic is able to detect cosmic

ray hits on the CCD because they have a sharp edge compared to smooth point

spread function as displayed by data that has passed through the telescope and

instrument optics. In Figures 2.1 and 2.2 an example of a raw science frame is seen

before and after cleaning with LA cosmic, the white streaks in the science frame

before cleaning have been removed/reduced in the following image (after the use of

LA Cosmic). The Figures show a subsection of the whole frame. In these images

wavelength is on vertical axis, 4 out of the 14 Y-dimension pixels can be seen as

distinct blocks separated by the sub-slits (blank black spaces running vertically) and

the 22 X-dimension pixels are seen in each block as 22 lines running vertically. The

bright regions in the images are the sky emission lines, that are to be removed in

the reduction process. The dark regions are absorption features.

2.2 EsoReflex

The IFU spectrographs at the VLT such as FLAMES/GIRAFFE, MUSE etc require

complex multi-step data reduction processes. As a consequence the reduction of IFU

data has a deserved reputation for being time-consuming compared to traditional

astronomical observations, this is because of the large number of raw calibration

files and a correspondingly large number of steps in the reduction of the raw data.

This increases the chance of basic accounting errors, such as forgetting a frame in

the creation of the master bias. In an attempt to minimise errors and cut down

on reduction time ESO have developed their own data reduction pipeline software

package, which is available for all of the IFUs at ESO’s telescopes. This software is

called EsoReflex or simply Reflex 1.

Reflex is a data reduction work-flow built on the Kepler work-flow platform

(Freudling et al., 2013). Reflex performs the reduction using a “director” and a

1https://www.eso.org/sci/software/esoreflex/
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combination of “actors”, composite actors, and ports that link the workflow actors

to carry out the reduction pipeline recipe/recipes. The director tells the actors when

to act and the actors carry out reduction recipes. These recipes produce and apply

master bias, master flat and calibrates the wavelength (arc lamp calibration). The

end product is a data cube with a 2-D pixel space and a 3rd spectral dimension.

Reflex allows for inspection of the output files at every stage of the reduction process,

or the files are available for inspection after reduction is complete in the Reflex

output. The workflow area for our particular reduction can be seen in Figure 2.3.

2.2.1 Master Bias

The reduction of raw science data performed with Reflex accounts for the many

effects associated with electronic and readout noise on the CCD. One essential effect

to account for (and remove from our data) is the bias. There exists a bias on each

pixel on the CCD originating from the voltage applied to the CCD to ensure linearity

in behaviour, and to avoid negative pixel counts being recorded at readout (Pasquini

et al., 2002). The voltage then produces a current that manifests itself as unwanted

electron counts registered upon readout of the CCD. To remove the bias several zero

second exposures are taken. These zero second exposures contain information on

the number of counts associated with the bias. The bias frames are then input to

Reflex which makes the master bias with the master bias actor. This process then

removes the bias and its associated structure from the raw science frame (Eversberg

& Vollmann, 2015).

2.2.2 Master Flats

The next important CCD effects to account for is the variation in sensitivity of

each individual pixel in the CCD, therefore the CCD is exposed to a uniformly

illuminated source such as the telescope dome or a twilight sky. These flat field

15



CHAPTER 2

exposures reveal dead pixels on the CCD and the any optical defects such as dust

and also reveals pixels with varying sensitivity. Pixels do not all behave in a uniform

manner, for different wavelengths each pixel has varying quantum efficiency i.e the

ratio of charge carriers (electrons) to photons hitting the detector, therefore flat field

images are combined and subtracted, then removed from the science frame in Reflex

with the master flats actor.

2.2.3 Dark Frames

Similar to the other calibration data discussed here is dark frames. A dark frame

is an exposure taken with the shutter closed for the amount of time comparable to

the observation. These frames reveals thermal noise associated with the read out

electronics, such as hot pixels or fixed pattern noise. The hot pixels arise when

thermal electrons become trapped in the potential of the CCD detector and register

counts on the CCD. Thermal electrons and counts from electrons associated with

signal are indistinguishable, therefore dark frames (in Reflex) are median combined

then subtracted from the science and calibration frames to remove these thermal

effects.

2.2.4 Wavelength Calibration

An important part of the reduction of spectroscopic data is the calibration of wave-

length or the arc lamp calibration. Without a properly wavelength calibrated

spectrum it is not possible to obtain kinematic measurements. The calibration

is achieved by exposing the CCD to a light source that has passed through the

spectrograph, in our case a Thorium-Argon arc lamp (Pasquini et al., 2002). The

Th-Ar spectrum will have strong emission lines in precisely known wavelengths. The

emission lines profiles for both arc lamp and observation spectra are then compared.

The wavelength and pixel scales are then mapped, therefore the observation and arc

16
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lamp spectra can be correlated. This ensures reliable LOSVD results.

2.3 Sky and Galaxy Subtraction

The next step in the data reduction was to subtract sky emission line and continuum

profiles from each wavelength frame in our data cube. These manifest themselves as

extra counts on the detector and must be removed if any meaningful science can be

extracted from the data. As well as emission from the Earth’s atmosphere, most of

our cEs lie close to large galaxies and as a result display considerable contaminating

light from the host galaxy. The sky subtraction therefore needs to robustly remove

both the atmospheric and background galaxy light.

17
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Figure 2.4: A single data cube slice for NGC5846cE pre (top panel) and post sky

subtraction (bottom panel). The white dashed lines mark the regions the polynomial

fit was applied to. Note the wavelength of these data cube slices are at 8480Å.

18
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Again with the use of Python, the fits files data for our cEs were accessed and

for each row of pixels in our 2-D IFUs the count values were plotted. Example plots

can be seen in Figures 2.5 and 2.6. From these example plots a noticeable increase

in counts can be observed for several rows of pixels (generally in the centre), this

is where the the cE is located and where a near horizontal line can be observed is

where only the atmospheric and galaxy background is present.

Figure 2.5: Pre-sky subtraction of

NGC5846cE. The 14 different colours

in the plot represent the 14 Y-pixel

rows and the axes are Y-pixel vs

counts. A row containing two dead

pixels seen as the 2 values of zero is

clearly seen.

Figure 2.6: Post-sky subtraction of

NGC5846cE, by comparing this figure

to Figure 2.5 it is clearly seen that the

background has been shifted down to

the zero line as a result of the subtrac-

tion of the fit line.

As can be seen in the plots in Figures 2.5 and 2.6, the pixel rows that represent

the outer regions where no cE light should be present have non-zero counts (∼ 50 in

this example). This means that our signal from the cEs has contaminating counts

and hence must be removed. We removed these extra counts by fitting a polynomial

of order 1 i.e. a straight line, to regions either side of the target cEs where little

light from the target cE is present (seen in Figures 2.4 in the dashed white marker

regions either side of the cE. The pixels 0-4 and 17-21 on the X-axis in this example)

and then subtract the fit line to remove the sky, leaving only the signal from our
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cEs in the data. The process was then repeated for each row of the IFU, at every

wavelength pixel and every exposure. Figure 2.4 shows NGC5846cE pre and post

sky subtraction in pixel space, it is obvious by comparing the count values (see the

colour bar) that the background has been significantly removed.

The subtracted atmosphere and galaxy background was then saved as a fits file

for later use in calculating the SNR in the spatial binning section. With the the sky

subtraction performed on each exposure it is necessary to combine each exposure of

our cEs together to improve the SNR by a factor of
√
N , where N is the number of

exposures. The exposures were combined (summed) with Pyfits in Python. Also at

this point before we move onto the next section, the spectral axes of each data cube

were collapsed into one dimension i.e the wavelength axis summed, producing a 2-D

image of our cEs. The same process was also applied to the data cube containing the

background. The spectral axis of the signal and background was collapsed so that

the VorBin method can use the resulting images as input for the Voronoi binning

step. An example of a summed spectral axis can be seen in Figure 2.7.
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Figure 2.7: An example of the collapsed (summed) wavelength or spectral axis of

a data cube for NGC4696cE. VorBin uses the data from such files to perform the

binning of spaxels to a constrained minimum SNR in the next section. the colour

bar indicates counts.

2.4 VorBin

After the subtraction of sky emission lines and background galaxy light it is cru-

cial to bin the spaxels together to achieve sufficiently high SNR to extract reliable

kinematic information while retaining as many spatial bins to be able to extract

kinematics from different regions of our cEs. This is implemented with the Voronoi

binning method (Cappellari, 2012, 2017a; Cappellari & Copin, 2003). The papers

accompanying the Voronoi binning method state that a signal to noise ratio of ”50”

is needed to extract reliable kinematic measurements. The method uses Voronoi

tessellation to bin spaxels with low SNR together to a user defined minimum SNR.
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The VorBin method requires 5 input parameters, namely the X and Y coordinates in

our 14×22 IFU array and the signal and noise corresponding to each X-Y coordinate

and the required minimum SNR for each bin. The method will only bin pixels that

are in close proximity so that the binning forms contiguous regions.

The signal and noise was found using data from 2 files, the signal used was the

summed wavelength axis data of our now reduced data cube created when the sky

and galaxy background were removed in Section 2.3. The noise image was created

from the reduced data cube with the addition of the data from the sky and galaxy

i.e the noise image is simply
√
Signal image+Background image. The equation

used is found in Equation 2.1 below. The data input to VorBin from the 2 files

were converted to the appropriate units of S/N per angstrom, by first dividing each

pixel value (i.e. the count values) by the number of wavelength pixels (5980) then

by multiplying this number by the ratio of the wavelength scale (1Å/0.2Å= 5) to

arrive at the correct units.

S/N =
S√
S +B

(2.1)

Where S is our data cube and B is the sky and galaxy background. Other noise

sources such as the dark current and readout noise is negligible compared to the

signal and background and are therefore omitted for simplicity.

Once these five parameters are input to the method, VorBin then produces three

output parameters. These are the X and Y coordinates of each IFU spaxel and

for each X-Y coordinate, a specific bin number (BinNum). This BinNum specifies

which spaxels are to be summed to produce the combined spectrum i.e adjacent

spaxels to be combined into one binned spaxel share the same bin number. The bin

maps seen in Figures 2.8 to 2.13 are also produced by VorBin as standard output.

These bin maps visually depict which spaxels are to be combined to produce the

combined spectra. The top maps in Figures 2.8 to 2.13 of X-Y pixel space shows
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colour coded regions of the spectral bins and the bottom map shows the SNR of

each bin which is represented with a red dot, the blue line in the bottom map shows

the input minimum SNR and the black dots show the SNR of the original pixels.

Note: The brighter target cEs with correspondingly originally high signal have many

distinct bins (12 and 13), whereas the cEs with an originally low signal have fewer

bins (4 to 6) as expected. Only six of the seven original targets are seen in the

figures below because our observations of cE ESO1303005 had insufficient S/N for

VorBin to produce even a single bin of minimum SNR.
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Figure 2.8: The VorBin bin map for the

isolated AHcE0. Note how this has half

the distinct spatial bins as NGC5846cE.

Figure 2.9: The VorBin bin map for

NGC5846cE. As can be seen from the

bin maps, many spatially distinct bins

are available.

Figure 2.10: The VorBin bin map for

Abell400. The white plus symbols rep-

resent the light weighted centre of each

bin.

Figure 2.11: The VorBin bin map for

Abell496cE. The coloured regions repre-

sent the distinct bins.
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Figure 2.12: The VorBin bin map for

NGC3268cE1.

Figure 2.13: The VorBin binmap for

NGC4696cE.
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Measurements of Kinematics

If we are to gain insight into the mechanisms that govern galaxy formation, we

must first investigate the bulk motion of the stars and gas in galaxies. The motion

of the stars in a galaxy can allow us to gain knowledge of the potentials of the

gravitational wells of galaxies and therefore helps us understand how they form and

evolve in these potentials (Cappellari, 2017a). The central velocity dispersion is

especially important as it follows exceptionally tight scaling relations with BH and

bulge mass (van den Bosch, 2016). The central velocity dispersion will also be used

in deriving estimates of the dynamical masses of our sample cEs.

3.1 Penalized Pixel Fitting (pPXF)

With all the reduction of raw science and binning of spectra complete the next step

was to perform a full spectrum fit to our binned 1-D spectra to extract the LOSVD

for our remaining cEs. The tool chosen to perform this task was pPXF (Cappellari,

2017b; Cappellari & Emsellem, 2004). pPXF is a powerful tool for extracting stellar

and gas kinematics from spectroscopic data. In addition it can also be used to derive

star formation histories of galaxies (e.g see Morelli et al., 2013; Norris et al., 2015).

however, due to the limitations of the wavelength coverage and SNR constraints we
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will focus on kinematic measurements in this thesis.

Since its release in 2004 pPXF has had several upgrades with the latest allowing

for a more accurate convolution with the Gauss-Hermite series, this is a series that

accounts for the deviations of absorption or emission line profiles from a pure Gaus-

sian and is commonly described by 2 extra moments; the h3 and h4 parameters.

Note; the extra moments in the series extend beyond the 3rd and 4th term but

these 2 are sufficient for most practical purposes. The h3 parameter describes the

anti-symmetric deviation skew i.e the tail of the Gaussian to either the positive or

negative direction and the h4 parameter accounts for symmetric deviations from a

pure Gaussian; kurtosis. Kurtosis is a measure of how flat topped or peaked the

Gaussian is (van der Marel & Franx, 1993). The h3 and h4 parameter deviations

from pure Gaussian curves then relate to the group orbital motions of stars contained

within a galaxy.

pPXF continues to be used widely for the purposes mentioned above (see e.g

Cappellari et al., 2011; Comerón et al., 2015; Taylor et al., 2015). pPXF convolves a

set of template spectra with a discretised kernel. This means that if any neighbour-

ing pixel values vary wildly the current pixel is penalised for the discrepancy, which

affects the full spectrum fit. During the iterative process of convolution with the dis-

cretised kernel, different combinations of template spectra are combined (convolved)

with the LOSVD until a good fit to the input spectrum is found. The goodness of

fit then indicates how successful the iterative process has been with a reduced χ2

squared value.

The pPXF method requires several input parameters to be able to perform the

full spectrum fit, namely a 1-D spectrum from our cEs, a noise spectrum, a set of

template spectra, an initial recessional velocity or red-shift estimate, as well as the

instrumental and template spectral resolutions in the wavelength being fit. The main

input parameters and how these parameters were obtained will now be discussed in
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the following subsections.

3.1.1 Template Stellar Spectra

An integral part of the pPXF method requires the use of a set of template spectra

which are combined to fit our observed spectra. Because individual stars in distant

external galaxies can not be resolved, the spectra of our cEs consists of a summation

of spectra from all of the stars in the galaxy. The template library should then

encompass the many spectral types that could be present in the integrated spectrum

of the target. The templates used can be synthetic such as the POLLUX database

for synthetic stellar spectra (Palacios et al., 2010) or empirical such as The MILES

star catalogue (Vazdekis et al., 2010). The synthetic and empirical spectra can

consist of simple stellar populations (SSP) of stars all born at the same time and

based on models that make assumptions on the star formation rate and the initial

mass function. Then many SSPs displaying a range of age and metallicity can be

used in conjunction as a set of template spectra.

Due to the lack of available SSPs models in our wavelength range with resolution

comparable with our data an empirical template library had to be used. The MILES

template library CaT covers the CaII triplet wavelength range of our observations,

but only has a resolution of 1.5Å, compared to the 0.85Å for this work. Hence

the empirical template spectra used in this work are from the GAIA-ESO survey

(Gilmore et al., 2012).

The template stars in this survey were observed using the same instrumental

set up as our cE spectra (FLAMES/GIRAFFE) which gives us the same spectral

resolution and wavelength range. Our sample of 100 template stars comprise of

low mass stars on the main sequence and giants and red giant branch (RGB). The

template stars span a range of metallicities, to try and account for the many stellar

populations that could be present in our cEs. Because cEs are typically red and
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dead (with few, if any young stars), most of the high mass stars will no longer be

present in the cEs. This is because high mass stars have relatively short lifetimes

and most will have reached the end of their life in supernovae. The intermediate

mass stars have moved off the main sequence, leaving low mass and giant branch

stars.

The light output of old stellar populations such as our cEs are dominated by

RGB stars. Figures 3.1a to 3.1d give an example of the input spectra from low

metallicity to high metallicity MS and RGB stars. It is clear from the counts values

in these plots that the dominant source of light output comes from the RGB stars.

When comparing the low and high metallicity spectra from the plots, it is apparent,

that the high metallicity spectrum has many more absorption line profiles. This

indicates a greater abundance of heavy elements, hence higher metallicity. Figure

3.2 shows our sample of template stars plotted on a HR diagram expressed in terms

of surface gravity and effective temperature, with metallicity indicated with a colour

bar. The main sequence and RGB stars are clearly differentiated by the turn off

point. he empirical template spectra used in this work are from the GAIA-ESO

survey (Gilmore et al., 2012).
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(a) Template spectrum for an intermediate

metallicity (-0.47) MS star which represents the

low metallicity example in our template sam-

ple. The colors of the spectra correspond to

the color bar values found in 3.2

(b) High metallicity (0.42) template spectrum

for a MS star. Notice how the number of ab-

sorption lines increases for the more metal rich

spectra.

(c) An example of a low metallicity (-2.26) RGB

spectrum from our templates. The RGB stars

are much brighter than the MS stars, indicated

by count value in the plot.

(d) High metallicity (0.32) spectrum for RGB

template.

Figure 3.1: The plot show examples of the template spectra for low and high metal-

licity for main sequence and RGB stars. The colour indicates the metallicity, where

blue and yellow represents the low metallicity RGB and MS stars respectively and

red indicates metal-rich stars for the RGB and MS, the colours in these figures cor-

respond to the colour bar in Figure 3.2. The CaT is the most prominent i.e strongest

absorption feature and visible in all 4 Sub-figures.
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Figure 3.2: A depiction of the template stars to be used with pPXF (highlighted with

black circles) The templates consist of low mass main sequence stars and RGB stars.

The different colour dots for the stars represent the metallicities of the stars (indi-

cated with a colour bar) where blue is metal-poor and red is metal-rich. The temper-

atures in this plot range between approximately 6500 and 3500K. Credit:(M.Norris)

3.1.2 Determination of Instrumental Resolution

The instrumental resolution for our observations are found by examining the sky

emission line profiles from one of our spectra, therefore we can determine the in-

strumental resolution by measuring their observed width. This is because these are

intrinsically delta functions until they are broadened by the spectrograph, therefore

the instrumental resolution was determined by fitting a Gaussian function with Scipy
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and Matplotlib in Python, to 12 isolated emission line profiles across our wavelength

range (8182-9377Å). The sigma measured from fitting the Gaussian was then con-

verted to Full Width Half Maximum (FWHM) using the equation for the relation

between sigma σ and FWHM. FWHM = 2.355σ, where 2.355 is a conversion factor

constant. Figure 3.3 gives an example of the Gaussian fit to a single isolated sky

emission line.

Figure 3.3: An example of the Gaussian fit of an isolated emission line profile. The

fit to the emission line was performed with Scipy in Python.

Then a least squares linear fit was applied to the FWHM measurements as a func-

tion of wavelength. This was implemented with Python using the LevenbergMar-

quardt algorithm or LevMar least squares fit of Astropy in Python. The result of

this procedure is seen in Figure 3.4. Note: Between the wavelengths of approx-

imately 8500-8750Å and 9100-9350Å no strong isolated sky emission line profiles

were available for measurement.
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Figure 3.4: The plotted results for the determination of resolution in our wavelength

range (8182 to 9377Å). The red circles indicate the FMHM measurements and the

least squares fit is indicated with a blue line
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From the plot in Figure 3.4 it can be seen that in the wavelength range of the CaII

triplet (The three emission lines of the CaII triplet have rest wavelengths at 8498,

8542 and 8662Å respectively), that the FWHM for our observations is ∆λ ∼ 0.85Å.

With this value we can then find the resolution R using the equation below.

R =
λ

∆λ
(3.1)

Therefore entering our approximate values for the wavelength range and our

measured FWHM, this gives us.

R =
8500

0.85
∼ 10, 000 (3.2)

A result of 10000± 171, is a reasonable value compared to the expected value (11000)

for the low resolution mode of the ARGUS IFU (Santin et al., 2003). Therefore

giving us the resolution in our wavelength range.

At this point we now have all of our main pPXF input parameters, these have

been discussed in the previous subsections of this chapter. There are other input

parameters to input into pPXF, these include: A noise spectrum, a red shift (or

recessional velocity estimate) and the required kinematic moments to fit. The noise

estimate can be either a simple file or an empty vector array. The red-shift or

recessional velocity estimate was sourced from NASA/IPAC Extra-galactic Database

NED https://ned.ipac.caltech.edu/ these can be found in Table 1.1. Other

optional inputs include a cut on the wavelength range. we used the wavelength

range of 8480-8800Å, as this wavelength range removed spurious line profiles and

noise, from either side of the CaII triplet which sometimes inhibited the fit of our

spectra. There is also an option to specify the number of kinematic moments, where

4 would fit moments up to the h4 parameter of the Gauss-Hermite series (mentioned

at the beginning of this chapter) and moments set to 2 would perform the fit for

only recessional velocity and velocity dispersion. Initially we set moments equal to

34
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4, this however led to severe differences in our recessional velocities compared to

the literature values for our cEs, therefore moments were set to 2 in the following

analysis.
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Results

In the last chapter we described and discussed how we performed the full spectrum

fit for our cEs with the pPXF method. In this chapter we will present the results of

the full spectrum fit to our cE data. Out of the remaining six cEs, only four had a

sufficient SNR to extract the LOSVD. The four remaining cEs were the well stud-

ied NGC5846cE and NGC3268cE1, the isolated AHcE0 and NGC4696cE which-as

mentioned before-had no previous central velocity dispersion measurements pub-

lished. Figure 4.1 shows the full spectrum fit for NGC5846cE performed by pPXF.

The results for the recessional velocity V and central velocity dispersion σ0 can be

seen in Table 4.1. The h3 and h4 parameters were not fit as these lead to severe

underestimates in the recessional velocity V.

The results were obtained by running pPXF in Python using the options dis-

cussed at the end of chapter 3. The CaT region does not have any strong emission

lines, pPXF typically has to mask emission lines to be able to recover uncontami-

nated absorption line kinematics. this is done with the ”degree” (additive Legendre

polynomial) option in the calling sequence of pPXF. however due to the lack of

emission lines in the CaT region, the default mean value of 1 was sufficient. The

continuum feature in the spectrum being fit also needs masking. The ”mdegree”

(the multiplicative Legendre polynomial) option in the pPXF calling is responsible
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for this. Again for most spectra the default value was sufficient. To asses whether

the the results constituted a good fit, a value of the reduced χ2 function had values

as close to unity as possible and by visual inspection of the fit.

Figure 4.1: An example of a full spectrum fit performed by pPXF. The data marked

in black is the spectrum for the central region of NGC5846cE, the red data is the

fit, the green data is the residuals, i.e leftover noise.

4.1 Recessional Velocity and σ0 Measuremnts.

Figure 4.2 is a plot of the measured line of sight velocity or recessional velocity from

this work against literature values. The velocities span 21kms−1 for NGC5846cE to

77kms−1 for AHcE0. Most agree within their mutual 1σ error bars and all agree

within 3σ errors, therefore the results agree reasonably well.

Figure 4.3 shows the results for the central velocity dispersion plotted against
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Object V (kms−1) σ0 (kms−1) V (kms−1) error σ0 error (kms−1) χ2

NGC5846cE 1506 116 3.4 3.2 0.11

NGC3268cE1 2697 42 4.4 3.6 0.83

NGC4696cE 2285 89 10 7.4 0.76

AHcE0 5860 99 7.3 5.4 0.41

Table 4.1: Results for recessional velocity V, the central velocity dispersion (σ0),

the associated errors and the reduced χ2 goodness of fit measured with the pPXF

full spectrum fit for the central spaxel of remaining cEs.

Figure 4.2: Figure for our measured recessional velocity compared to literature

values for the 4 remaining cEs. The velocities are consistent within their mutual 3

σ error bars.

the literature values. These results are within 1 sigma errors with literature values

except for NGC4696cE, as we have nothing to compare it with (labeled with a red
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Figure 4.3: Here is a comparison between the results found in this work and results

found in the literature for central velocity dispersion. The red marker is NGC4696cE,

there are no literature values for this cE, but the values were plotted to show how

the measured values for central velocity dispersion σ0 compared to the other cEs

with literature values.

star). We have also significantly reduced the error bars for NGC3268cE1. The

reduced χ2 goodness of fit indicated the full spectrum fit for each cE was performed

reasonably well, with χ2 > 1 indicating an under fit while a χ2 < 1 indicating an

over fit (Bulmer, 2012). For all of the σ0 measurements having χ2 ranging from 0.11

to 0.83, therefore the error spectrum is slightly overestimated see Table 4.1.
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4.2 Velocity Dispersion Profiles

Figures 4.4 and 4.5 show our derived velocity dispersion at varying radii for two

of our cEs. The σ increases at radii approaching the centre (0) from the edges

from approximately 39kms−1 in the outer regions to 116kms−1 in the centre (for

NGC5846cE) and from 33 to 89kms−1 for NGC4696cE, this is to be expected as the

density of stars increases towards the central regions of the cE, although an increase

of this magnitude could indicate additional dynamical support from the presence of

a SMBH. As we have likely failed to resolve the SMBHs sphere of influence, then the

true sigma spike is likely to be even more prominent i.e more peaked when observed

with Adaptive Optics (AO).

σ (kms−1) σ error (kms−1) χ2 Radius (Arcseconds)

37 2.4 1.07 -1.2

96 5.1 0.13 -0.4

116 3.4 0.11 0

110 6.5 0.14 0.4

39 16 1.8 1.2

Table 4.2: Velocity dispersion for NGC5846cE at varying radii. The radii were

determined by the pixel scale in our collapsed wavelength images.
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Figure 4.4: σ profile for NGC5846cE. The σ of the cE increases at radii approaching

the centre (0).

Figure 4.5: σ profile for NGC4696cE. The gravitational influence of a SMBH is

most probably the the cause for the increase in sigma values in the central regions

(89kms−1)
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σ (kms−1) σ error (kms−1) χ2 Radius (Arcseconds)

33 11 3.2 -1.4

53 8.8 0.43 -0.6

89 7.4 0.76 0

59 8.5 0.59 0.6

Table 4.3: Velocity dispersion (with errors) for NGC4696cE at different radii of the

cE. The sharp increase in σ approaching the centre could be due to the presence of

a SMBH.

4.3 Dynamical to Stellar Mass Ratios

Now that we have results for the LOSVD (in our case V and σ0), the next step in

the process of obtaining dynamical mass to stellar mass ratio to look for evidence of

SMBHs is to use measurements for σ0 to derive a dynamical mass estimate for our

cEs. This was done using Equation 4.1, which is the virial theorem in terms of the

total mass of the system and in the form for a none-zero energy bound orbit (Collins,

1978; Forbes et al., 2014). By making the safe assumption that our cEs are virially

bound and hence their dynamics are governed by the virial theorem, we adopt the

values of 6.5 for the virial coefficient used by (Forbes et al., 2014; Mieske et al.,

2013). This coefficient is deemed reasonable for use with our class of CSS because

6.5 corresponds to a Sérsic index of 2. The Sérsic index describes how the surface

brightness or light intensity varies with radius for early-type galaxies (Graham &

Driver, 2005; Sérsic, 1963). An index of 2 corresponds to a steep decrease in intensity

with radius which would be expected for bulges and CSS’, where M32 has a Sérsic

index of 1.5 (Graham, 2002) therefore an index of 2 is deemed reasonable, however

choosing one value for all target cEs could cause errors in results. We will then

use the published values for the effective or half light radius Re taken from NED in

Equation (4.1)
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Mdyn = CG−1σ2
0Re (4.1)

Where Mdyn is the dynamical mass, C is the virial coefficient for our class of

galaxy 6.5, G is the gravitational constant, σ0 is the central velocity dispersion and

Re is the effective radius.

Using equation (4.1) we can now arrive at an estimate for the dynamical mass

of our cEs. Note: The units used in this equation have to be in SI units, therefore

the radius and the velocity dispersion have to be converted to give the results for

dynamical mass in terms of kg. Then dividing by solar mass units (1.989× 1030kg)

so the results are in terms of solar mass M� Ṫhe results can be found in Table ??

below.

Object Mdyn(109M�) Merr(109M�) M∗ (109M�) R (pc) Rerr(pc)

NGC5846cE 4.87 0.27 3.24 240 10

NGC4696cE 4.06 0.14 4.47 340 4

NGC3268cE1 0.98 0.70 0.13 299 21

AHcE0 7.39 0.83 4.68 499 10

Table 4.4: Results for Our dynamical mass estimates in solar mass units, their

uncertainties, known stellar masses in solar mass units, the effective radii and cor-

responding errors.

Uncertainties for our estimates for dynamical mass were then propagated with

the uncertainties in the cE radii used in equation 4.1. The results can be found in

Table 4.5. Note the results in this table were found using equation (4.2).

∆Mdyn = C(σ0 ± σ0err)2(Re ±Rerr)
2 (4.2)
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Figure 4.6: Our derived dynamical mass vs stellar mass for four cEs labeled in the

Figure. The diagonal red line indicates the unity or 1:1 ratio line. 3 cEs are found

display dynamical masses which are inconsistent with their stellar masses, perhaps

indicating the presence of an overly massive SMBH.

Object ∆MUpperlimit(109M�) ∆MLowerlimit(109M�)

NGC5846cE 0.83 0.57

NGC4696cE 3.04 0.74

NGC3268cE1 3.1 0.39

AHcE0 10.0 6.1

Table 4.5: The uncertainties in our dynamical mass estimates when propagated with

the values for effective radii used with equation 4.1.
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The Figure 4.6 shows a plot of final results for our dynamical to stellar mass

ratios. There are 3 cEs which are above the unity line. These cEs display apparent

dynamical masses which are inconsistent with their stellar masses, that is to say the

velocity dispersion of stars indicates a deeper gravitational potential than expected.

The stellar masses used were those found in the AIMSS project (Forbes et al., 2014;

Janz et al., 2016; Norris et al., 2014). Upon inspection of the upper and lower limits

of the uncertainties found in Table 4.5, two cEs still have a noticeable inconsistency

between stellar and dynamical mass. This most likely is an indication of the presence

of a SMBH. If the SMBHs in these cEs are of the order predicted by the literature

values for stellar mass and our results for dynamical mass estimates, then the SMBHs

are overly massive. The black holes are overly massive for the size of galaxy they

reside in and because it is well know, that galaxy mass and black hole mass scale for

both early-type and spiral galaxies(Davis et al., 2018), therefore we can reasonably

presume that tidal stripping is the causal origin of cE formation.
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Discussion

5.1 Implications Of The Results.

In the last chapter the results were presented. We will now discuss the implications.

Out of the original targets only four cE observations had a SNR sufficient to perform

the full spectrum fit. The limiting factor with our observations was simply low SNR.

For the four cEs with sufficient SNR to arrive at results for the central velocity

dispersion, only two cEs had enough spatial bins to be able to examine sigma profiles.

The four cEs (NGC5846cE, NGC4696cE, NGC3268cE1 and AHcE0) we obtained

results for central velocity dispersion did have a SNR that was much closer to the

required 50, having ∼ 40,30,20 and 30 respectively. Therefore the reduced χ2 good-

ness of fit in pPXF for the measurements for central velocity dispersion seen in

Table 4.1 represented a reasonable fit to the data, hence producing reliable mea-

surements of the LOSVD, with velocity dispersion agreeing within 1 sigma errors

and the recessional velocity agreeing within 3 sigma errors of previous literature

measurements.

The results for our dynamical mass estimates when plotted against stellar mass

values of cEs. The results show a small inconsistency between the dynamical mass

estimates of this work and the stellar mass measurements. This hints at the presence
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of an overly massive black hole for three out of the four cEs for which measurements

were obtained. This is especially true for NGC3268cE1. NGC3268cE1 shows a large

inconsistency between stellar mass and dynamical mass estimates. NGC5846cE and

AHcE0 have similar σ0 (116 and 99kms−1) and therefore have comparable mass

estimates, with both cEs showing a slight hint of possessing overly massive BHs,

however not to the extent of NGC3268cE1. NGC4696cE does not show any obvious

sign of having a overly massive BH with near 1:1 ratio (within the error bars) of

dynamical to stellar mass. It might be the case that the sphere of influence of

the central BH-if present-was not resolved and therefore not observed. It could be

argued that the velocity dispersion i.e the dispersion about the line of sight velocity

of the stars in the cEs could only be influenced in this way is by the presence of

a massive body at the centre (a SMBH). In this work we may only conclude that

NGC4696cE is made up of mostly stars, if our assumption of no gas or dark matter

content present in our cEs is true. It could be said that the sensitivity in choosing

the correct virial coefficient and the uncertainties in the measurements, could still

yield results near the identity line.

For the two cEs with enough spatial bins to observe velocity dispersion profiles,

NGC4696cE shows a sharp increase towards the central regions of the cE (unlike the

more shallow profile of NGC5846cE), however this is unlikely to be the true spike

in velocity dispersion, therefore improved observations with higher resolution and

SNR are required.

5.2 Future Work

As discussed in the last section only four cEs out of our sample had a sufficient

SNR to extract kinematic information. As it is deemed essential by Cappellari &

Emsellem 2004 to achieve a minimum constant SNR of 50 to extract reliable kine-

matics and star formation histories using pPXF. The signal to noise for observations
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in this work had values between 25 and 30. These were sufficient for single inte-

grated values, but would have to be closer to the required 50 to be able to produce

maps of h3 and h4 parameters. The case should be made to re-observe our target

cEs with the addition of a larger set of targets for a wider range of environments

with the now operational Adaptive Optics (AO) system of the VLT. This would

reduce the blurring effect of the atmosphere, therefore allowing observations with

improved SNR (closer to the required 50). These improved observations would then

allow us to better probe the sphere of influence of any BHs that may be present

(e.g see Seth et al. 2014). Observations of a larger sample, from a broader range of

environments, with the addition of improved signal to noise would greatly improve

our understanding of cE formation. By improving kinematics measurements and

obtaining star formation histories with the use of pPXF.

This work could be continued by using the results for recessional velocity for every

binned spectra to obtain rotation maps. Rotation maps can then reveal any resid-

ual rotation. Information about rotation can be used to determine formation and

structural parameters by plotting rotational velocity versus σ (Binney & Tremaine,

2008).

5.3 Conclusion

In this work IFS data for seven cEs were obtained from the 8.2m VLT UT2 using

the FLAMES/GIRAFFE spectrograph in ARGUS mode, with the aim of finding

evidence for the presence of overly massive SMBHs in the cEs. Evidence of an

overly massive SMBH can support a formation scenario in which cEs form via the

tidal stripping of a progenitor. The raw scientific data was reduced in several steps.

By using EsoReflex to perform the main reduction stage (master flats, bias and dark

frames) followed by a subtraction of the sky and galaxy background. The reduced

IFS data was then spatially binned to a constrained minimum SNR with the Voronoi
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binning method VorBin. A full spectrum fit to the spatially binned spectra were

performed using the penalized pixel fitting method pPXF to extract the LOSVD,

in this case the line of sight velocity and velocity dispersion.

The central velocity dispersion for four remaining cEs were obtained. By using

the virial theorem with literature values for effective radius and the measured central

velocity dispersion, dynamical mass estimates of the cEs were obtained. Then by

using literature values for the stellar masses, the dynamical to stellar mass ratios

revealed that three out of the four cEs showed evidence for the presence of an

overly massive SMBH which favors the tidal stripping scenario, however further

observations with improved signal to noise and resolution are needed to strengthen

this conclusion. The case should be made to follow up observation with the now

operational AO system of the VLT. The AO system could then be used to obtain

observations with a higher SNR, to resolve the BHs sphere of influence. To attempt

to observe a true spike in the σ profiles, hence the true central velocity dispersion.

This could then be used to accurately determine the true BH mass, and hence

through the BH-bulge mass relation, determine the mass of the progenitor.

49



Bibliography

Bacon, R., Adam, G., Baranne, A., et al. 1995, The Astrophysical Journal, 113, 347

Binney, J. & Tremaine, S. 2008, Galactic Dynamics: Second Edition

Bulmer, M. 2012, Principles of Statistics, Dover Books on Mathematics (Dover

Publications)

Bundy, K., Bershady, M. A., Law, D. R., et al. 2015, The Astrophysical Journal,

798, 7

Cappellari, M. 2012, pPXF: Penalized Pixel-Fitting stellar kinematics extraction,

Astrophysics Source Code Library

Cappellari, M. 2017a, Monthly Notices of The Royal Astronomical Society, 466, 798

Cappellari, M. 2017b, Monthly Notices of The Royal Astronomical Society, 466, 798

Cappellari, M. & Copin, Y. 2003, Monthly Notices of The Astronomical Society,

342, 345

Cappellari, M. & Emsellem, E. 2004, Publications of the Astronomical Society of

the Pacific, 116, 138

Cappellari, M., Emsellem, E., Krajnović, D., et al. 2011, , 413, 813
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