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Abstract 
 
Femoroacetabular impingement is a clinical disorder of the hip caused by premature 

contact between the femur and the acetabulum. A lead cause of this condition is cam 

morphology, additional bone growth on the anterior aspect of the femoral head. Cam 

morphology has been associated with physical activity due to its high prevalence rates 

in athletes compared to non-athletes. A link between non-metric traits of the femur, 

particularly; Poirier’s facets, plaque and cribra, and cam morphology has been 

suggested due to their shared location and suggested aetiology. Osteitis pubis, an 

overuse syndrome of the pubic symphysis, is believed to be a compensatory injury of 

femoroacetabular impingement.  

 

The overall aim of this study was to determine the contributions of femoroacetabular 

impingement to the disciplines of bioarchaeology and forensic anthropology, with 

regards to femoral non-metric traits analysis, activity reconstruction and awareness of 

conditions that may affect the formation of biological profiles. To achieve this, this 

study aimed to establish if there is a link between cam morphology and non-metric 

traits of the anterior aspect of the femur. This would provide further understanding of 

the respective/joint aetiologies through the use of multidisciplinary literature. It also 

aimed to determine if the development of cam morphology is linked to occupational 

physical activity. Additionally, this study looked to determine if any osseous changes 

are present in individuals with femoroacetabular impingement in association with cam 

morphology, to allow the identification of symptomatic individuals when the presence 

of clinical information is not available. Finally, it also aimed to determine if there is a 

link between cam morphology and osteitis pubis at the pubic symphysis. This would 

contribute to both bioarchaeology and forensic anthropology, by highlighting a 

condition which may impact an area commonly used for the age estimation.  

 

Two skeletal collections, the Wharram Percy collection and the Luís Lopes Identified 

Skeletal Collection, and a clinical comparison sample were utilised. These collections 

were selected due to presence of contextual information regarding lifestyle and 

occupation in different forms. The clinical comparison sample consisted of 3D volume 
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rendered CT models of individuals being investigated for femoroacetabular 

impingement and a control sample. Non-metric traits of the femur and commonly used 

clinical measures to determine the presence of cam morphology were recorded on all 

samples. Recording criteria for osteitis pubis was developed and applied to the pubic 

symphysis of the two skeletal collections. Comparisons of these measurements were 

made within and between the samples. 

 

The results of this study have shown there is a link between Poirier’s facets and plaque 

with cam morphology. Through the use of contextual information, it is recommended 

this association is a functional adaptation. There was no association between cam 

morphology, alpha angle size and occupational physical activity groups in adults. It is 

suggested cam morphology is therefore a better indicator of activity levels, or other 

extrinsic factors, requiring additional stability at the hip during skeletal maturation. No 

clear osseous indicators of the presence of FAI due to cam morphology were 

identified. Therefore, it is not possible to identify symptomatic individuals through 

skeletal changes alone. There was also limited evidence of a link between osteitis 

pubis traits and alpha angle size. Although eburnation could be an indicator for the 

later stages of this condition, however, there is the requirement for further study to 

confirm this.  

 
 
Keywords: Femoroacetabular impingement, cam morphology, physical activity, non-

metric traits, osteitis pubis  
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Chapter 1. Introduction 
 
Bioarchaeology is the study of human remains from archaeological context (Knüsel, 

2010) and it recognises the entwined connection between biology and culture. The 

context, in the form of living conditions, climate and diet (inferred or documented), is 

as much a vital component in understanding more about the populations understudy 

as the human remains themselves (Larsen, 2015a). While forensic anthropology is the 

“application of anthropological method and theory to matters of legal concern, 

particularly those that relate to the recovery and analysis of the skeleton” (Christensen 

et al., 2014), anthropology is an extremely broad field involving the study of humankind 

(its name is derived from the Greek anthropos, meaning man and logia, meaning 

study). Forensic anthropology falls within the biological/physical anthropology 

discipline, typically involving the formation of a biological profiles from skeletal 

remains. Forensic anthropologists are also involved in the search and recovery of 

human remains, trauma analysis, taphonomy interpretation and age estimation in the 

living (Christensen et al., 2014). This study aims to analyse femoroacetabular 

impingement within the context of both bioarchaeology and forensic anthropology, to 

determine the contributions, awareness and understanding of this condition can have 

towards these two disciplines.  

 

Femoroacetabular impingement (FAI) is a motion-related clinical disorder of the hip 

caused by premature contact between the femur and the acetabulum, leading to hip 

pain and activity limitation (Griffin et al., 2016). For establishing a diagnosis; 

symptoms, imaging findings and clinical signs must be present (Griffin et al., 2016). 

The most common symptoms include groin or hip pain, restricted hip flexion and 

internal rotation (Clohisy et al., 2009) which are typically motion or position related 

(Griffin et al., 2016). The two causes of FAI are cam and pincer morphology; however, 

this research will primarily be focused on the former. Cam morphology of the proximal 

femur is abnormal additional bone growth causing the femoral head to lose its typical 

spherical shape, whilst pincer morphology is anterior over coverage of the acetabulum. 

The most commonly used radiographic measures to determine cam morphology 

include alpha angles (Nötzli et al., 2002) and, to a lesser extent, femoral head-neck 
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offset (Eijer et al., 2001), while for pincer, cross-over sign (Jamali et al., 2007) and 

centre-edge angle are used (Tannast et al., 2007). The two causes of FAI typically 

present in differing patient demographics, with young active males more frequently 

presenting with cam morphology, while pincer morphology is more commonly seen in 

middle-age women (Ganz et al., 2003). Cam morphology has been associated with 

physical activity due to higher alpha angle sizes and prevalence rates in athletes 

compared to non-athletes as reported by various authors (e.g. Frank et al., 2015; 

Lahner et al., 2014b; Ayeni et al., 2014; Siebenrock et al., 2011; Agricola et al., 2012). 

Groin pain is one of the most common symptoms of FAI with restricted hip flexion and 

internal rotation (Clohisy et al., 2009; Philippon et al., 2007; Larson et al., 2013; Weir 

et al., 2011).  

 

Osteitis pubis is an overuse syndrome at the pubic symphysis causing pain and 

tenderness at this area. It is believed to be one of the most chronic and incapacitating 

conditions to affect athletes (Rodriguez et al., 2001). Several authors have proposed 

osteitis pubis is a compensatory injury of FAI due to the limited range of motion at the 

hip (e.g. Voos et al., 2010; Verrall et al., 2007; Verrall et al., 2005; Hammoud et al., 

2014; Larson et al., 2013). It has been suggested that the alteration in motion due to 

the impingement at the hip leads to changes in muscle forces across the pelvis, 

particularly excessive strain across the joints and a compensatory increase motion at 

other areas of the pelvis (Voos et al., 2010). Further to this, Matsuda et al. (2015) 

recommended initial surgery for FAI with subsequent osteitis pubis only if symptoms 

persist in patients co-afflicted with both conditions.  

 

Non-metric traits are variations of the normal skeletal anatomy (Saunders and Rainey, 

2007). They have traditionally been used to determine biological affinity within and 

between skeletal populations (Stirland, 1996) however, with a primary focus on cranial 

traits, there were fewer studies dedicated to infracranial traits (Donlon, 2000). Due to 

their location, non-metric traits of the femur have been commonly associated with 

physical and habitual activities (Odgers, 1931; Angel, 1964; Kostick, 1963; Charles, 

1893) however their true cause is still unclear. Villotte and Knüsel (2009) suggested a 

possible association between non-metric traits of the anterior aspect of the femur, 

particularly, Poirier’s facets, plaque and cribra (or Allen’s fossa) and cam morphology, 

due to the shared location and suggested aetiology. This study therefore aims to 
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determine if there is a link between non-metric traits of the anterior aspect of the femur 

and cam morphology, as although these suggestions have previously been made in 

the literature (e.g. Villotte and Knüsel, 2009; Radi et al., 2013; and Mellado and Radi, 

2015), few bioarchaeological studies have combined commonly used measurements 

for determining the presence of cam morphology with methods of scoring non-metric 

traits. There is currently a wealth of studies regarding FAI and non-metric traits of the 

femur separately within the clinical and anatomical/bioarchaeological literature 

respectively. By determining if there is an association between any of these non-metric 

traits and cam morphology this will allow a multidisciplinary approach to be taken to 

understanding more about their respective and/or joint aetiologies. This would enable 

these traits, commonly recorded but rarely used in bioarchaeological interpretations of 

past populations, to be reassessed and potentially contribute to the further 

understanding of the lifestyle of these archaeological populations. In addition to this, 

by using skeletal collections with a large amount of contextual information available, a 

bioarchaeological approach can be taken to determine more about the cause of cam 

morphology and these non-metric traits. The ability to identify FAI on bone has forensic 

applications as an additional identifying feature when an ante-mortem record of this 

condition is present. Increasing awareness of methods to record this condition bone 

is vital but also determining a link between these non-metric traits and FAI, which are 

easily recorded through visual observation, would reduce time and resource 

requirements needed to carry out measurements currently used to record the 

presence of this condition.  

 

The study of osseous changes caused by habitual patterns of activity is an important, 

although controversial, aspect of bioarchaeological analysis and, to a lesser extent, 

forensic investigation. It is contentious for various reasons including; lack of clear 

definitions of activity in many studies, assumptions of a simple cause and effect 

relationship between activity and the observed skeletal markers, as well as, failure to 

recognise potential multifactorial aetiologies (Jurmain and Cardoso, 2011). The most 

commonly used methods include entheseal changes, osteoarthritis (or degenerative 

joint disease) and long-bone diaphyseal cross-sectional geometry (CSG) (Nikita et al., 

2019). Additional stress lesions and activity-related dental wear have also been used 

(Meyer et al., 2011). The fundamental idea that forms the basis of these methods is 

termed “bone functional adaptation”, the idea that the bone alters per the stresses 
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applied to it to reduce the risk of damage from repeated habitual activity (Meyer et al., 

2011). There is however a tendency to assume simple cause-and-effect relationship 

between occupation and skeletal changes when many changes are multifactorial in 

aetiology (Jurmain and Cardoso, 2011). Lawrence et al. (2018) used cam morphology 

as an indicator of habitual activity and therefore socioeconomic status for an 

archaeological population. Although cam morphology is associated with athletic 

activity, currently no previous study has tested to determine if this is the same for 

occupational physical activity. In addition to this, authors have suggested cam 

morphology is present in equal amounts in both physical activity and non-physically 

activity individuals. Athletes are more likely to become symptomatic due to the more 

extreme and frequent movements at the joint and are therefore more commonly 

diagnosed with FAI (Johnson et al., 2012). Using analysis of an identified skeletal 

collection, with occupational information, and a rural population, with a large amount 

of skeletal and historical evidence of activity, this study aims to determine if 

occupational activity is associated with increased alpha angle size and cam 

morphology. This would have bioarchaeological applications as it will confirm or deter 

the use of cam morphology as a marker of occupational activity in the study of past 

populations. Measurements of cam morphology are easy to perform, non-destructive 

and do not require a large amount of equipment, therefore it’s use as an additional 

marker of activity would be extremely advantageous. 

 

The diagnosis of FAI requires a triad of symptoms, clinical signs and radiological 

findings to be present (Griffin et al., 2016). It is not however possible to determine two 

out of three of these findings in skeletal remains without a medical history, which is 

rarely available. Therefore, the ability to determine if there are any osseous changes 

which are more common in symptomatic individuals would be useful 

bioarchaeologically for palaeopathological investigation. Due to the activity limiting 

nature of advanced FAI, the ability to identify symptomatic individuals would be useful 

in palaeopathological analysis in populations or groups where subsistence strategies 

rely on the ability to be physically active. This also has applications to forensic 

anthropology in victim identification, again with regards to an additional identifying 

feature, although this cannot be relied on alone, it may assist in cases with an ante-

mortem record of this condition. This study therefore aims to determine if there are 
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any osseous changes that are observable in symptomatic individuals that are not 

present in the asymptomatic. 

 

Age estimation is a fundamental aspect of both bioarchaeology and forensic 

anthropology. In archaeological populations, it is an essential aspect in determining 

palaeodemography, while in forensic anthropology it is a major part of the 

reconstruction of a biological profile (Mays, 2015). The pubic symphysis is one of the 

most commonly used areas for age estimation from the skeleton (Todd, 1921; Brooks, 

1955; McKern and Stewart, 1957; Katz and Suchey, 1986; Brooks and Suchey, 1990). 

This is due to the successive changes which occur and the fact these changes 

continue in adult life, which is commonly difficult to identify in the rest of the skeleton 

(McKern and Stewart, 1957). An aspect to all methods of ageing from osteological 

material is that bone is an active tissue which is subject to renewal, repair and 

remodelling in response to different stresses (Cox, 2000). Bone adapts, within certain 

limits, to changes and demands placed on it, responding to trauma, weight bearing 

and disease (Cox, 2000). Mays (2015) provided a review of factors other than age that 

can affect frequently used adult bony age markers including; sex hormones, 

pathology, biomechanical forces and genetic factors. They suggest approximately 

60% of variation in skeletal age indicators is due to factors other than age (Mays, 

2015). One such factor included in their review was osteitis pubis. Osteitis pubis has 

not been widely studied in the bioarchaeological literature, limited to possible case 

reports by Judd (2010), Gregg and Bass (1996) and Pfeiffer (2011). There are 

therefore currently no set recording criteria for this condition to allow its recognition on 

bone. To fully understand the appearance of FAI on bone but also to raise awareness 

of this condition which impacts such a widely used area, it was felt analysis of osteitis 

pubis was essential. It is important to understand any condition which can potentially 

affect areas used for age estimation and therefore the accuracy of these methods for 

both bioarchaeological and forensic analysis. Inaccurate age estimations could be 

particularly detrimental to a forensic investigation by excluding the correct individual 

or including the wrong identified. While in bioarchaeological study this could impact 

interpretations of demographic data. This study therefore aims to form recording 

criteria for observing this condition on bone via the clinical literature’s description of 

osteitis pubis on medical imaging. This will then be used to determine if there is an 
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association between the appearance of osteitis pubis criteria at the pubic symphysis 

and alpha angle size at the femur.  

 

In summary, the study of FAI and cam morphology could provide contributions to 

disciplines of bioarchaeological and forensic anthropology in many ways including; 

further understanding of non-metric traits of the anterior aspect of the femur, habitual 

activity determination, factors influencing accurate age-at-death estimates and victim 

identification. This study intends to achieve its aims through the use of two skeletal 

collections and a retrospective comparative clinical sample. The skeletal collections 

are; the Luís Lopes (or Lisbon) identified skeletal collection and the Wharram Percy 

collection. The Luís Lopes collection is an identified skeletal collection and therefore 

known information regarding, age, occupation and sex is available for each individual. 

While the Wharram Percy collection is a well-documented and studied archaeological 

collection. The two collections represent two very different contexts, with the Luís 

Lopes collection representing a late 19th-early 20th century urban populations, while 

the Wharram Percy collection is a (predominantly) medieval rural population. These 

collections were selected due to this very different social context, with diverse levels 

of activity. Additionally, the Luís Lopes collections also has recorded occupation 

information for many individuals, which is use in this study for determining the impact 

of occupational activity on the presence of cam morphology, as discussed previously. 

The comparative clinical sample is made up of 3D volume rendered hip CT scans from 

individuals being investigated for FAI (FAI group) and a random sample of individuals 

being investigated for reasons other than FAI (non-FAI group). The FAI group was 

included to act as a clinical comparison to provide the opportunity to observe and 

analyse osseous changes on examples known to have the condition understudy. This 

modern sample was included in this study as FAI has not widely been considered 

within skeletal collections. It was therefore felt it was important to include examples 

where the individual was being investigated for this condition clinically due to the 

presence of symptoms. This also provides an opportunity to fully understand the 

impact of this condition on bone without relying solely on descriptions in the clinical 

literature which typically focus on the area of interest of that particular study. The non-

FAI sample was included to allow comparisons of osseous traits to be made between 

those with symptoms, and therefore being investigated for FAI, and those not being 

investigated for this condition. This was to determine if there are traits which are 
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indicative of FAI and therefore can be used to indicate symptomatic individuals based 

on osseous changes alone. The expectation was those in the FAI group would have 

a higher prevalence of cam morphology and non-metric traits as well as higher alpha 

angles than the non-FAI group.   

 

1.1. Aims 
The main research aims for this study therefore include:  

1) To determine if there is a link between non-metric traits of the anterior aspect of 

the femur and cam morphology, via alpha angle measurements 

2) To explore if there is a link between the prevalence of cam morphology and 

occupation activity  

3) To determine if there are any observable osseous differences between those with 

symptomatic cam morphology and asymptomatic controls  

4) To determine if there is a link between cam morphology and osteitis pubis at the 

pubic symphysis  

1.2. Thesis outline  
This thesis is organised into nine chapters, including the current introduction chapter. 

Chapter 2 will focus on the anatomy and morphology of the hip joint to provide an 

understanding of the normal anatomy and therefore how changes to this area could 

affect a number of functions. A discussion of non-metric traits including a brief history 

of these skeletal variations. A focus will be provided on non-metric traits of the anterior 

aspect of the femur to provide an understanding of the current uncertainties 

surrounding these traits.  

 

Chapter 3 is an overview of FAI and cam morphology. A discussion on the current 

methods used to determine the presence of cam morphology will be given and how 

this can be transferred to use on skeletal remains. Additionally, the current theories on 

the suggested aetiologies and rates recorded in different populations will also be 

reviewed. It will also give an overview of the association between cam morphology 

and osteitis pubis and how this has been studied from a bioarchaeological standpoint 

with future implications.  
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Chapter 4 is focused on the materials and methods used for this study. The first section 

will address the samples collected, why they are relevant for use in this study and 

ethics. For both skeletal collections there is a brief section on contextual information 

to provide a biocultural perspective to the findings for later use in the discussion. The 

second section is focused on providing an outline on the methods used, why they have 

been selected and an outline on the statistical tests used.  

 

The results chapters have been broken down by sample starting with chapter 5 

presenting the results for the clinical CT sample, chapter 6 the Wharram Percy 

collection, Chapter 7 the Luís Lopes collection, Chapter 8 is focused on results from 

combining and comparing the data between each sample. 

 

The discussion of the results from this research can be found in chapter 9. This chapter 

is broken down into each research question to ensure each question is addressed. 

Additionally, any limitations to the study and future work can also be found in the 

chapter along with the overall conclusions for this study.  
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Chapter 2. The Hip Joint: Anatomy, Morphology & Non-
metric Traits 

 

This chapter will focus on the anatomy and morphology of the hip joint, with a focus 

on the femur. Initially an overview of the anatomy and development of the hip will be 

given to provide context to the area under study and a reference to the areas which 

are being discussed throughout this thesis. Following this, the morphology of the 

human hip has been focused on, including its evolution and anatomical variation. This 

section has been included to address the various factors which can impact this area 

of the skeleton, and the changes which can occur to the ‘normal’ form due to these 

factors. The final section will address non-metric traits, giving a brief history followed 

by a discussion on the current issues within the literature regarding the recording, 

naming, and understanding of the cause of these traits at the anterior aspect of the 

femur.  

2.1. Anatomy of the hip joint  
The hip joint is a diarthrodial ball and socket joint surrounded by a synovial capsule 

(Cheatham and Hanney, 2016). The femur articulates with the acetabulum, see Figure 

2-1, (of the os coxae) and distally with the tibia and patella. 

 

Pubic Symphysis 
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Figure 2-1 Anterior view of right femur and os coxae. Image by E. Saunders 
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The acetabulum  

The acetabulum is orientated laterally and tilted slightly anteriorly and inferiorly 

(Cheatham and Hanney, 2016). Figure 2-2 shows a section through the hip joint. The 

acetabulum, with the labrum, covers 50% of the femoral head. The lunate surface is a 

horse shoe-shaped area of hyaline cartilage covering a portion of the acetabulum and 

articulates with the femoral head. At the inferior portion of the acetabulum is the 

acetabular notch which contains the transverse acetabular ligament. The centre of the 

acetabulum is called the acetabular fossa, this area is deeper than the articular surface 

(Tönnis, 1987). The acetabular labrum is composed of fibrocartilage and attaches from 

the acetabular rim over the femoral head (Tönnis, 1987). Inferiorly, the labrum fuses 

with the transverse acetabular ligament closing the acetabular fossa (Cheatham and 

Hanney, 2016). The labrum aids in joint stability, shock absorption and load 

distribution. A negative pressure develops within the joint when traction is exerted on 

the femur which helps to keep the two articular surfaces together (Tönnis, 1987). The 

hip capsule attaches to the acetabular rim medially and extends over the labrum. 

Anteriorly the fibrous capsule extends to the base of the femoral neck and inserts on 

the intertrochanteric line (Tönnis, 1987).   

 

 

The proximal femur  

The proximal femur consists of the femoral head, neck, greater and lesser trochanters 

(see Figure 2-1). The femoral head is a round structure covered in a layer of hyaline 

Acetabulum 
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Transverse ligament of 
acetabulum Zona 

orbicularis 
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Zona orbicularis 

Acetabular labrum 
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Figure 2-2 Illustration of a section through the femur and acetabulum. Image 
by E. Saunders 
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cartilage. At the centre of the femoral head is a pit called the fovea capitis. The 

ligamentum teres connects the femoral head, via the fovea capitis, to the acetabulum 

(Scheuer and Black, 2000). A minimal blood supply is provided to the head by the 

foveal artery through the ligamentum teres into the fovea capitis (Konda, 2018). The 

femoral head contains the epiphysis and growth plate. The greater trochanter projects 

superolaterally to the gluteus medius, gluteus minimus, piriformis and obturator 

internus muscles attach. The obturator externus muscle attaches to the 

intertrochanteric fossa which is found on the posteromedial aspect of the greater 

trochanter (Scheuer and Black, 2000). The lesser trochanter is inferior to the femoral 

head and greater trochanter, and is the attachment site of the iliopsoas muscle. The 

intertrochanteric line is present between the two trochanters anteriorly and the 

iliofemoral ligament attaches here, while on the posterior aspect the intertrochanteric 

crest is the attachment of the quadratus femoris muscle (Scheuer and Black, 2000). 

The muscles of the hip are shown in Figure 2-3. 

 

 

Ligaments and blood supply 

The main ligaments of the hip joint are; iliofemoral, ischiofemoral, pubofemoral, 

ligamentum teres and the transverse acetabular ligament, see Figure 2-4 (Cheatham 

and Hanney, 2016). The ischiofemoral ligament is involved in internal rotation of the 

hip, the lateral aspect of the iliofemoral ligament controls internal rotation in extension 

Figure 2-3 muscle of the hip and thigh, illustration from Simancek (2013) 
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and external rotation in flexion and extension, while external rotation in extension is 

controlled by the pubofemoral ligament (Konda, 2018). The blood supply to the femur 

is provided by the medial and lateral circumflex femoral artery, retinacular arteries and 

the acetabular branch of the obturator artery. Many muscles work together to enable 

the complex movement at the hip joint (Cheatham and Hanney, 2016).  
 

 
Ossification and fusion of the femur 

At birth the femoral shaft is largely ossified however the proximal femur is still cartilage 

with one growth plate (Malviya et al., 2014). The extension of the femoral neck allows 

separation into two separate areas for the femoral head and greater trochanter, as 

shown in Figure 2-5 (Scheuer and Black, 2000). By one year the secondary 

ossification centre for the femoral head appears and then around 2-5 years the 

secondary ossification centre for the greater trochanter is developed (Schaefer et al., 

2009). The proximal femur has three main growth areas; the proximal femur 

epiphyseal plate, the greater trochanter growth plate and the femoral neck isthmus (a 

growth plate between the two around the lateral border of the femoral neck) (Malviya 

et al., 2014). The shape of the femoral neck depends on the balanced growth of these 

three areas (Malviya et al., 2014). The growth of the proximal femur is also influenced 

by the action of the muscles, weight bearing, joint nutrition, circulation and muscle 

 

Figure 2-4 Ligaments of the hip, Image from Hidaka et al. (2015) 
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tone. A change in any of these factors can cause changes in development (Weinstein 

and Dolan, 2018).  

 

Figure 2-5 The development of the proximal end of the femur. (a) At birth (b) 3-4 years, image from Scheuer 
and Black (2000) 

In early adolescence, epiphyseal fusion of the proximal femur occurs. The timings of 

epiphyseal fusion has been found to be sex and population specific (Sullivan et al., 

2017; Cardoso, 2008) and can be impacted by socioeconomic conditions and nutrition 

(Cardoso, 2008; Schmeling et al., 2006). During skeletal maturation, the femur fuses 

at several locations at approximately different times of development, as shown in 

Figure 2-6, however this can vary between individuals (Scheuer and Black, 2000). Dry 

bone specimens and radiographic analysis have been used to determine the age of 

epiphyseal fusion and this has therefore been used in age estimation methods. 

Scheuer and Black (2000) reported the femoral head to fuse at 14-19 years in males 

and 12-16 years in females, the greater trochanter to fuse at 16-18 years in males and 

14-16 in females, while the lesser trochanter fuses at 16-17 years in both males and 

females. Various studies have aimed to determine the age of epiphyseal fusion finding 

different rates in in various populations and therefore the requirement to use methods 

relevant to the individual/population under study (McKern and Stewart, 1957; 

Schaefer, 2008; Coqueugniot and Weaver, 2007; Cardoso, 2008; Sullivan et al., 

2017). Many of these methods are not however without their problems including; the 

use of samples with older lower age limits (e.g. 17 years for McKern and 

Stewart,1957), the use of males only (McKern and Stewart, 1957; Schaefer, 2008;) 

glued or damaged epiphysis (Coqueugniot and Weaver, 2007), low numbers per age 

range categories (Cardoso, 2008). 
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Currently there is no literature with regards to the effect of physical activity on 

epiphyseal fusion time. This is likely due to the wealth of factors which may have an 

impact on the recorded rates. Through a review of the literature Mirtz et al. (2011) 

suggested high levels of physical activity during skeletal immaturity can lead to 

widening of the epiphyseal growth plate due to extension of hypertrophic chondrocytes 

into the metaphysis due to disruption of the blood flow, as reported by Laor et al. (2006) 

for the knee. It is however unclear how this would affect fusion timings. 

2.2. Hip morphology  
The human hip has been found to be pliable area of the skeleton which varies from 

birth to maturity. The hip has adapted and developed dramatically over time to become 

the form seen today. Variation in hip morphology continues to occur (to a much lesser 

extent) and various factors have been found to impact the ‘normal’ morphology of this 

area (although some are debated in the literature). This section outlines how the 

human hip has evolved over time and some of the main factors believed to influence 

these adaptations. Factors that continue to cause variation in human hip morphology 

will also be addressed. This section has been included to fully understand the various 

factors which can impact this area of the human skeleton and show how adaptable it 

Figure 2-6 Appearance and fusion of femoral 
ossification centres, image from Scheuer and Black 
(2000) 
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is. This is to understand what is currently known about variation to hip morphology 

prior looking into hip variation in relation to cam morphology.  

 

Evolution of the human hip 

Human hip morphology has evolved to allow energetically efficient bipedal habitual 

mobility and encephalization (Gruss and Schmitt, 2015), this is illustrated in Figure 2-7 

which presents how the pelvic morphology has evolved from chimpanzee to man. The 

shape of the pelvis has evolved considerably from the long, narrow and flat pelvis seen 

in apes to one which is shorter, wider and more curved (Hogervorst et al., 2009). The 

dramatically shorter ilium in humans, when compared to chimpanzees, provides a 

lower centre of mass, closer to the hip joints, and therefore reducing the effort for the 

muscles to hold this posture (Lovejoy, 1988). The ischium is long and the ischial 

tuberosity faces downwards in apes, while in humans the ischium is shortened and 

the ischial tuberosity is angled upwards, allowing the origin of the hamstrings to be 

further away from the insertion (Gruss and Schmitt, 2015).  

 

 
Figure 2-7 Image from Hogervorst et al. (2011) demonstrating the evolution of the pelvic morphology from 
chimpanzee to man 

While the upper half of the pelvis is largely adapted for bipedal gait, the changes in 

the lower half of the pelvis are to enable the birth of a foetal cranium which was 

increasing in size. In apes the true pelvis is larger in anterior-posterior (A-P) than 

Medial-Lateral (M-L) dimensions (Hogervorst et al., 2009), while humans have a 

narrower birth canal in the A-P dimensions and wider M-L dimensions, due to the wider 

sacrum (Gruss and Schmitt, 2015). With increase in brain size the pelvic opening had 

to become wider, the flare of the ilium was reduced and the head of the femur became 

larger to withstand the increased pressure of the abductors (Lovejoy, 1988). The M-L 

widening of the pelvic midplane and outlet in humans causes the hips to be further 

apart, which in turn increases the work required by the abductors. To retain an energy 
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efficient bipedal gait the femoral neck was lengthened. There is however a limit to this 

and therefore other adaptations occurred, such as enlargement in the A-P direction 

via lengthening of the pubic rami and deepening of the acetabulum (Hogervorst et al., 

2009). “Lucy” (AL288-1), the Australopithecus afarensis female fossil, is the most used 

case for early bipedal mobility (Lovejoy, 1988). The pelvis of Lucy shows the hallmarks 

of bipedal gait but with some dissimilarities from the human pelvis due to the increase 

in brain size of the last 3 million years (Lovejoy, 1988). Lucy’s pelvis is thought to be 

better adapted for bipedal gait than the human pelvis with more flared ilia and longer 

femoral necks (Lovejoy, 1988). In ‘Lucy’ there is A-P narrowing of the pelvic inlet and 

midplane due to widening of the sacrum, therefore causing widening in the M-L 

direction (Hogervorst et al., 2009). This was acceptable for Lucy as the cranium of her 

infant was smaller than in modern humans (Lovejoy, 1988). The changes in the human 

pelvis and the influence on hip morphology is a combination of the requirements for 

child birth and bipedal gait. Hogervorst et al. (2011) suggests the variation in proximal 

femur morphology, in relation to cam morphology, is due to several of these 

evolutionary adaptations. They suggest differences in hip morphology between males 

and females are due to adaptations to different requirements. The same requirements 

for childbirth in females are not required in males. Hogervorst et al. (2011) suggests, 

loading history is more of an influencing factor in males due to the requirement for a 

sturdier hip. Additionally, Rudolf (1922) and  Kappelman (1988) have suggested 

adaptations of the proximal femur morphology dependent on habitual environment in 

certain species. 
 
Factors impacting ‘normal’ hip morphology 

Human hip morphology varies throughout development and growth but also due to 

additional factors, such as; disease or habitual activity. There are several measures 

commonly used to describe hip morphology including; angle of torsion and neck-shaft 

angle. Many of these parameters change from birth to skeletal maturation and through 

degeneration.  

 

The angle of torsion (or femoral version) is formed between the femoral head and 

neck, which can either be anteverted or retroverted, as seen in Figure 2-8. Anteversion 

occurs when the femoral head-neck junction is more anteriorly orientated in relation to 

the transcondylar axis, while retroversion is a more posterior orientation (Cheatham 
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and Hanney, 2016). The femoral neck is ante-verted at approximately 35° at birth, 

which reduces in the first 10 years of life towards approximately 15° (Malviya et al., 

2014). The degree of femoral version can impact the range of motion of the femur and 

is a risk factor for labral tears (Cheatham and Hanney, 2016).  
 

Figure 2-8 Femoral angle of torsion from Neumann (2010) 

Various factors have been reported to impact the angle of femoral version including; 

genetic predisposition (Upadhyay et al., 1990), sex (Wescott et al., 2014; Jiang et al., 

2015), habitual activity/sitting or sleep postures (Moats et al., 2015; Cibulka, 2004) 

and obesity (Galbraith et al., 1987). In their study of femoral version in children aged 

3-5 years, Upadhyay et al. (1990) found no significant difference in femoral 

anteversion between girls and boys or social class. They did however find a 

significantly negative correlation between femoral anteversion and age, as age 

increased femoral anteversion angle decreased. They also showed a potential genetic 

influence, as there was a high correlation of anteversion between siblings. This result 

could also be interpreted in a biomechanical sense. The environmental conditions for 

siblings are typically very similar and therefore they are likely to be subject to the 

same/very similar levels of activity. Biomechanical forces are believed to be the 

primary cause of changes in the angle of anteversion during skeletal maturation. 

Muscle growth and development, as well as tension from the joint capsule are believed 

to influence femoral torsion (Wescott et al., 2014). Any muscle imbalance during 

development, including over-activity of the iliopsoas and medial rotators, causes 

increased loading on the anterior aspect of the growth place leading to greater torsion 

(Wescott et al., 2014). With regards to habitual activity, when comparing the results of 
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their study of femoral morphology of the Libben population1 to that of the Hamann-

Todd collection2, Moats et al. (2015) found the ancient humans to have more 

anteverted hips in comparison to the modern humans. They attribute this to possible 

habitual squatting however this could also be attributed to differing levels of physical 

activity between the two populations.  
 

During normal childhood development, the neck-shaft axis or the angle of inclination 

(see Figure 2-9) changes from an angle of up to 145° to the normal adult range of 

120°-130°. The ‘normal’ change in femoral neck-shaft angle is believed to be in 

response to weight-bearing and the development of the hip abductors for walking 

(Scheuer and Black, 2000). Prior to walking the proximal epiphyseal surface is flat. 

The change in positioning of the thigh and hip when the child starts walking subjects 

the medial epiphyseal surface to greater stresses, which leads to growth (Child and 

Cowgill, 2017). The neck-shaft angle increases during this time compared to prior to 

walking. The decline in neck-shaft angle towards, that which is recorded in adults, is 

due to a shift in shear stresses across the epiphysis to a lateral position due to the 

activity of the abductors and change in gait pattern with maturation (Child and Cowgill, 

2017).  

 

 

                                                
1 The Libben site is situated in Ottawa County, Ohio on the banks of the Portage River with 
radiocarbon dating placed the site between A.D. 800 and 1100.  1327 individuals were excavated 
from the site (Lovejoy et al., 1977). 

2 The Hamann-Todd Human Osteological Collection is an early 20th century US skeletal collection, 
house at Cleveland Museum of Natural History, Cleveland, OH, USA (Mensforth and Latimer, 1989). 

Figure 2-9 Femoral angle of inclination from Neumann (2010) 
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Coxa vara is a deformity of the proximal femur where there is a decrease in the neck-

shaft axis angle away from the normal threshold. There are many causes of coxa vara 

however the most common is slipped capital femoral epiphysis (Shapiro, 2019). While 

coxa valga is a pathological increase in the neck-shaft angle away from the ‘normal’ 

range (Cheatham and Hanney, 2016). Population-based variability in neck-shaft angle 

has been reported in the literature however it is debated whether this is truly regional 

differences or if this reflects climate adaptations (Gilligan et al., 2013; Weaver, 2003) 

or differences in habitual activity (Anderson and Trinkaus, 1998; Weaver, 2003; Child 

and Cowgill, 2017). Gilligan et al. (2013) analysed if habitual activity and regional 

differences in body size due to climatic adaption is likely to have an impact on neck-

shaft angle. They found higher neck-shaft angles in warmer regions and lower angles 

in colder regions. While there was only a slight trend towards an increase in neck-shaft 

angle from foragers to agricultural and urban populations, therefore indicative of only 

a minor influence of habitual activity. While Anderson and Trinkaus (1998) suggested 

habitual activity played more of a role in neck shaft angle, finding an increase in mean 

neck-shaft angle with increasingly sedentary lifestyle and mechanisation. Determining 

the level of physical activity from general subsistence levels does however have its 

limitations, particularly when it has been suggested the changes in neck-shaft angle 

occur during skeletal maturation and habitual activity typically represents occupations 

in adults. Child and Cowgill (2017) measured both neck-shaft and relative body mass 

in geographically diverse sample of immature holocene remains to determine if the 

neck-shaft angle is due to “ecogeographic body proportions”. In their study they 

suggest the decline in neck-shaft angle seen during development is similar in those 

with similar gait and behaviours, and the differences in body proportions between 

populations does not impact this. The differences in regional body proportions were 

seen to be strongly influenced by ecogeographic principles. They therefore suggest 

other factors are likely to impact the differences seen in neck-shaft angle (Child and 

Cowgill, 2017).  
 

Another factor considered to impact neck-shaft angle is sexual dimorphism. There are 

discrepancies in the literature with regards to sexual dimorphism and neck-shaft angle 

with some authors reporting differences between males and females (Igbigbi, 2003; 

Pujol et al., 2016; Gómez Alonso et al., 2000; Boese et al., 2016; Nissen et al., 2005) 

while others do not (Gilligan et al., 2013; Anderson and Trinkaus, 1998). When a 
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difference is found, adult females are typically reported to have a lower angle than 

males. The widening of the pelvis in females is believed to be a contributing factor to 

the decrease in the neck-shaft angle, however as Pujol et al. (2016) observed larger 

variability in boys compared to girls they hypothesised the differences between the 

sexes could also be due to levels of physical activity (Pujol et al., 2016). Hormonal 

differences could also be an impacting factor. Pujol et al. (2016) found limited 

differences in male and female neck-shaft angles until the onset of puberty. From the 

age of 10 years there was a significant difference between the sexes reaching average 

difference of 10° at 14 years. Nissen et al. (2005) cited a significant difference in neck-

shaft angle between pre- and post-menopausal women but not with age. The angle 

was lower in the post-menopausal women at 128° vs 130° for pre-menopausal women. 

The lack of a correlation between age and neck-shaft angle in men or women in this 

study suggests there is another impacting factor causing this difference, potentially 

hormonal differences. 

A study by Toogood et al. (2009) was the first of its kind to provide values for defining 

the adult proximal femur and the relationship between the femoral head and neck in a 

normal (‘healthy’) population. In this study, existing quantitative measurements of the 

proximal femur was combined with novel measurements of femoral head rotation 

using digital photography of femora from the Hamann-Todd skeletal collection. For the 

whole sample the femoral head was translated anterior and inferiorly, rotated via 

abduction and anteversion, and had greater concavity inferiorly and posteriorly 

(Toogood et al., 2009). They also showed sexual dimorphism in several 

measurements; male femora were more inferiorly translated, had more abduction and 

anteversion than female femora. This study/ explored correlations between numerous 

morphological factors to be investigated, which had previously not been done before. 

Measures of concavity correlated with measures of translation; the more anteriorly the 

femoral head was positioned, the more it was concaved anteriorly and less concaved 

posteriorly. In addition to this, the more superiorly positioned the femoral head, the 

more concaved superiorly and less concaved inferiorly it was (Toogood et al., 2009). 

Although valuable insights into proximal femur morphology have been determined 

from this research, the nature of the samples caused some limitations. Little is known 

on the health, nutrition and lifestyle of the individuals within the sample therefore it is 

not possible to determine the influential factors leading to these differences. The 
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measurements were also taken on bone specimens and therefore cannot be directly 

compared to the same measurements on medical imaging. More research is however 

using the method by Toogood and colleagues on medical imaging such as volume 

rendered CTs e.g. Zhang et al. (2015).   

 

Summary 

Through this review of the current literature it is clear a combination of multiple factors 

cause great variation to proximal femoral morphology, with habitual activity and 

loading being a consistent factor throughout. Further analysis of variation at this area 

could be of great value to the disciplines of bioarchaeology and forensic anthropology 

particularly with regards to activity reconstruction and identification. For many years’ 

activity reconstruction has been attempted by bioarchaeologists using skeletal 

evidence. The most commonly used methods include; entheseal changes ( e.g. 

Havelková et al., 2011; al-Oumaoui et al., 2004; Palmer et al., 2014; Takigawa, 2014; 

Schrader, 2015), osteoarthritis (or degenerative joint disease) (e.g. Larsen et al., 1995; 

Sofaer Derevenski, 2000; Larsen and Thomas, 1982; Eshed et al., 2010; Molnar et 

al., 2011) and cross sectional geometry (e.g. Shaw and Stock, 2009; Ruff et al., 1993; 

Holt, 2003; Shackelford, 2007;  Ruff, Larsen and Hayes, 1984; Marchi et al., 2006). 

While, as described previously, femoral neck shaft angle and torsion (or version) have 

been used by many researchers to indicate a change in the level of activity over time, 

few studies have incorporated other measures such as alpha angles or offset ratio, as 

described in the study by Toogood et al. (2009). Knowing this area of the skeleton has 

been suggested to show great variability due to activity it is unclear why there are few 

studies analysing these additional measures when activity reconstruction is of such 

great interest in the field of bioarchaeology. Additionally, Toogood and colleagues 

have shown a level of interaction between the various measures of proximal femoral 

morphology therefore to gain complete understanding of these changes at this area, 

potentially due to habitual activity, analysis of these less studied measures is essential 

to this discipline.  

2.3. Non-metric traits 
Non-metric traits, also known as discontinuous morphological traits, epigenetic 

variants, or discrete traits, are minor variants from ‘normal’ human anatomy (Saunders 

and Rainey, 2007). They can be present in all human tissue and since they were first 
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discovered hundreds of these traits have been recorded on the skeleton (Saunders 

and Rainey, 2007). Typically, they are classified as either hyperostotic, caused by 

excess bone formation, or hypostotic, caused by incomplete ossification or impeded 

development (Saunders and Rainey, 2007). Hundreds of non-metric traits have been 

identified however there is currently no standardised classification system for cranial 

and post cranial traits. Several authors have developed their own classification 

systems such as; Finnegan (1978) and Saunders (1989) however, this lack of 

standardisation limits the amount of comparison that can be made between studies.  

 

Non-metric traits have a long and controversial history with regards to understanding 

their cause and classification. Originally described by the Dutch anatomist Kerkring in 

1670, they gained a lot of interest in the 19th and 20th century sparked by the 

recognition that many of these traits could potentially have a genetic basis and 

therefore could be used to inform the interaction between genotype and the 

environment (Tyrrell, 2000). This formed the theory that these traits could provide 

information on biological relationships in past populations when similar frequencies of 

traits were observed (Saunders and Rainey, 2007). It was not until the 1950s when 

Grüneburg published their mouse studies that there was a better understanding of 

these traits and their genetic basis (Tyrrell, 2000). In their studies, including various 

elements e.g. third molar eruption, inherited variations of the vertebrae and pelvis, 

Grüneburg developed the idea of the quasi-continuous nature of these traits. This idea 

suggested the genetic interpretation previously used to describe their development 

was not as simple as first assumed. That there is an underlying continuous genetic 

basis to many traits but threshold factors (typically environmental or developmental) 

causes them to be expressed in a discontinuous manner (either present or absent) 

(Grüneberg, 1952). Later studies found that these conclusions may not have been 

accurate due to problems with the genetic lines of the mice used e.g. Howe and 

Parsons (1967). During this time populations studies used non-metric trait analysis to 

determine biological distance in human populations (Saunders and Rainey, 2007).  
 

The Berry and Berry (1967) paper created a renewed interested in non-metric traits in 

archaeological study and there was an increase in biological distance and inter-group 

variation studies using these traits (Tyrrell, 2000). For their study, Berry and Berry 

(1967) analysed 585 adult crania from a variety of geographical locations and in some 
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cases across different time periods. They boldly proposed that the differences in the 

expression of these traits in different populations suggests genetic differences and 

that as non-metric traits were not impacted by age, sex and side they were more useful 

than metric traits in determining genetic relationships (Berry and Berry, 1967).  
 

A large portion of this work on the use of non-metric traits to determine biological 

distance has primarily focused on cranial rather than infracranial non-metrics. Donlon 

(2000) suggests this is potentially due to the decline in studies focused on biological 

distance at the time of increased interest in infracranial non-metrics. Studies by 

Finnegan (1978) and Saunders (1978) both suggested infracranial traits were as 

useful as cranial traits in this regard (Donlon, 2000).  
 

Studies of biological distance using non-metric traits continue today (Weiss, 2018; 

Rathmann et al., 2017; Brasili et al., 1999; Nikita et al., 2012). With the advent of many 

new technologies, recent studies have looked further into this possible association 

between non-metrics and genetics, and are likely to continue to do so (e.g. Herrera et 

al., 2014; Hubbard et al., 2015 ). The true cause of non-metric traits is, however, still 

not clearly understood. The lack of understanding surrounding the impact of age, sex, 

asymmetry, activity, body size and genetics makes their usefulness in forming 

interpretations regarding past populations difficult. In addition to this few studies have 

previously reported inter- and intra-observer error rates leading to concerns regarding 

repeatability and comparability between studies (Tyrrell, 2000). There is also no 

standard recording system consistently used for their scoring making inter-study 

comparisons difficult.  

2.3.1. Non-metric traits of the anterior aspect of the femur  
 
Terminology 

Non-metric traits of the anterior aspect of the femur have been observed and recorded 

for many years, originally pictured and described in anatomical atlases and texts in the 

19th century (Radi et al., 2013). Since then there have been many reports of osseous 

traits at the anterior aspect of the femoral head-neck junction by researchers. These 

traits were difficult to distinguish from each other due to overlapping terminology and 

descriptions for the same observations under different names. This confusion was 

highlighted by Odgers (1931) when they analysed the presence of the eminentia 
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articularis colli femoris and the empreinte, see Figure 2-10 below. The eminentia 

articularis colli femoris was named by Fick in 1904 but first described by Sudeck in 

1899. Odgers (1931) described it as:  

“A prominent compact bar stretching from the superior tubercle of the intertrochanteric 

line to the head of the bone”  

While the empreinte, also known as the cervical fossa by Allen in 1882, and the 

Empreinte Illiaque by Poirier in 1911 (highlighting the number of terms being used to 

describe the same trait), was described by Odgers (1931) as:  

“…a depressed irregular roughened area, in which the bone is eroded to a greater or 

lesser extent”  

 

 

Odgers found researchers at the time had been confusing the different terms when 

describing the same observable traits. The example presented is of Fick describing an 

elevated area of bone, but saying it is what Poirier referred to as Emprinte illiaque 

rather than eminentia articularis colli femoris. This confusion is also highlighted in an 

article by Angel (1964) where they refer to plaque as “an overgrowth or bony scar from 

the ring of bone surrounding the fossa” but suggesting this is the same as Poirier’s 

empreinte iliaque or Fick’s eminentia articularis, two very different traits. In addition to 

this Pearson and Bell (1919) include areas of bone erosion, likely to be Allen’s fossa, 

in the categories of various types of Poirier’s facets. Parsons (1914) combined the 

different types of traits into one category of “the pressure facet”, which they describe 

as “the presence of a roughness or depression…may be covered with articular 

cartilage.”  A large amount of confusion seemed to have surrounded Allen’s fossa as 

shown in table 2.1 below. The cervical fossa had been originally described by Allen in 

Figure 2-10. A. Eminentia articularis colli femoris, B. Empreinte iliaque- very marked 
erosion, Image from Odgers (1931) 

A B 
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their 1882 anatomical atlas followed by Bertaux in 1891 (Meyer, 1924). Soon after, 

this trait was known by various names including the empreinte by Poirier in 1911 

(Odgers, 1931), the anterior cervical imprint (Kostick, 1963) and the anterior 

acetabular imprint (Meyer, 1924). More recently cribra femoralis or femoral cribra has 

been commonly referred to as the new term for the cervical fossa of Allen (or Allen’s 

fossa) (Smith-Guzmán, 2015; Radi et al., 2013). Figure 2-11 shows what was 

considered by Radi et al. (2013) as femoral cribra while Figure 2-12 shows Kostick 

(1963)’s cervical imprint.     

 

From this confusion three main traits were repeatedly recognised, even if consensus 

regarding their names was not met. These traits included; a depressed or roughened 

area, typically known as Allen’s fossa, cervical imprint or empreinte de Poirier; an 

extension of the articular surface of the femoral head towards to the femoral neck, 

Poirier’s facets; and an extension from the femoral head towards the femoral neck but 

with a distinct edge and of a distinct form, typically known as plaque. Each of these 

terms have developed over time with changes in name and confusion continuing to 

Figure 2-11 Femoral cribra from Radi et al. (2013) article 

Figure 2-12 B shows the anterior cervical imprint from Kostick (1963) 
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exist in their descriptions. Angel (1964) attempted to provide clear distinction between 

Poirier’s facets, Allen’s fossa and plaque suggesting these traits occurred at a 

“sensitive reaction area” which is located at the anterior surface and medial end of a 

“bar of bone which runs medially from the upper anterior part of the greater trochanter 

over the head of the femur”. Finnegan (1978) followed Angel in providing clear 

descriptions of each of these traits as there was still some confusion present in Angel’s 

categories, Figure 2-13 shows the illustration of the non-metric traits from Finnegan’s 

1978 article to identify each trait. He described the traits as:  

• Poirier’s facet: “…a noticeable…bulging of the articular surface of the femoral 

head toward the anterior portion of the femoral neck. The facet is necessarily 

smooth…” 

• Plaque: “…overgrowth or bony scar can be defined extending from the area of 

Poirier’s facet on the femoral head down on to the femoral neck where it often 

surrounds or covers Allen’s fossa.” 

• Allen’s fossa: “…located near the anterior superior margin of the femoral neck 

close to the border of the head…vary from a small depression to a large eroded 

area 1cm2 where cortical bone has been lost exposing underlying 

trabeculae…” 

 

 

Although Angel (1964) and Finnegan (1978) provided two systems for describing the 

presence of these non-metric traits Radi et al. (2016) attempted to create recording 

criteria to form a standardised method for recording these traits during detailed skeletal 

analysis. They extended the descriptions created by Finnegan to allow a clear less 

ambiguous scoring system. Figure 2-11, Figure 2-14 and Figure 2-15, show the 

images used in Radi et al. (2013)’s article to assist in defining cribra, plaque and 

Figure 2-13 1. Allen’s Fossa, 2. Poirier’s facet, 3. Plaque, Image from Finnegan (1978) 
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Poirier’s facets to allow users to identify each trait when used in combination with their 

descriptions.    

A B C 

Figure 2-14 Examples of (A) plaque type A, (B) plaque type B, (C) plaque type C, from Radi et al. (2013) 

Figure 2-15 Image showing a femur 
with Poirier's facets present from Radi 
et al. (2013) 
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Table 2-1. Descriptions and terminology for Allen's fossa from the literature 

Author Allen’s fossa descriptions Other terms 
Allen (1882) 

as cited by 

Meyer (1924) 

“is marked in front near the articular surface by a faint depression, which is often cribriform in appearance and may 

receive the name cervical fossa” 
- 

Angel (1964) 

 

“Varies from a mere depression to an area of removal of cortical bone a square cm in size, surrounded by slightly 

raised border and exposing cortical trabeculae whose edges appear to be thickened or raised” 

 

Cervical fossa of 

Allen 

Kostick (1963) 

 

“Occurs on anterior and inferior aspect of medial part of the neck, adjacent to the head…Here divided into two types: 

Type A: 

• “ulcer-like excavation, exhibiting a floor and edges. Some cases have a clean punches-out appearance, with 

sharp edges and a depressed floor...The ridge divides the neck into a medial and a lateral portion, each with 

a bony surface of differing texture…” 

Type B: 

• “Discontinuity in the normal bony appearance of the neck…May show ‘moth-eaten’ or worn cancellous 

appearance, as though the cortical bone had been gradually erased…Situated on the antero-inferior aspect 

of the neck adjacent to the epiphyseal margin.” 

 

Anterior cervical 

imprint, 

fossa of Allen, 

imprint of 

Berteaux 

Finnegan 

(1978) 

 

“Vary from a small depression to a large eroded area…where cortical bone has been lost exposing underlying 

trabeculae…Border of this fossa may have a ridge or thickening around it...” 

 

Cervical fossa 

(depression of 

Allen) 

Villotte and 

Knüsel (2009) 

 

“Depressed and roughened area, in which the bone is eroded to a greater or lesser extent…” 

 

Empreinte de 

Poirier, 

Cervical fossa, 

Fossa of Allen 
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Aetiology 

The confusion surrounding the descriptions, classification and correct naming of these 

traits also enhanced the uncertainty surrounding their aetiology. The lack of 

standardised scoring systems meant it was unclear which traits were being recorded 

and their true prevalence. This confusion also made it difficult to surmise the true 

cause of each trait independently as it was ambiguous which trait was being referred 

to. Many authors have however attributed physical activity as the main aetiology due 

to their location on the proximal femur.  
 

Hyperflexion has been proposed as a leading cause of these traits during certain 

activities, such as, horse riding (Molleson and Blondiaux, 1994), habitual squatting 

(Charles, 1893) and even sleeping on one side (Meyer, 1924). The mutual factor 

suggested between all these aetiologies is contact of the femoral head-neck junction 

against the acetabulum during full flexion (Parsons, 1914). The association of this to 

specific activities is typically based on the common activity performed in the population 

being observed. For instance, in their studies Andelinović et al. (2015) and Molleson 

and Blondiaux (1994) respectively, reported habitual osseous changes associated 

with horse riding. They both noted the presence of Poirier’s facets, suggesting they 

were caused by abutment of the femur against the acetabular and Allen’s fossa was 

caused by hyperflexion of the femur. During riding, the position required for sitting in 

the saddle causes the femur to be positioned in a way that could lead to the 

development of both traits. Charles (1893) believed that the hyperflexion and 

abduction of the femur, which occurs during habitual squatting, would cause the 

acetabular to come into contact with the anterior aspect of the femoral head and 

therefore a potential cause of these traits. Trinkaus (1975) and Kostick (1963) however 

argued that the presence of Poirier’s facets and Allen’s fossa in populations without 

habitual squatting suggests this is unlikely to be the direct cause. In addition to this 

Trinkaus (1975) commented that while in the squatting position the body weight is 

primarily placed on the anterior-inferior surface of the femoral head as opposed to the 

anterior superior portion where most of these changes occur, as shown in Figure 2-

16. Instead they suggest it is likely Poirier’s facets are caused by the amount of flexion 
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and abduction during normal gait and the pressure from the iliopsoas or the rectus 

femoris tendon. 

Through observations from dissection, Odgers (1931) believed the level of flexion 

required for these traits to occur is not a natural position for people to adopt. 

Alternatively, full extension is more likely to cause these traits to develop (Odgers, 

1931; Kostick,1963; Angel, 1964). Odgers (1931) proposed the eminentia acts as a 

“pulley bar” for the pressure from the joint capsule when the femur is in full extension 

and that males are more likely to develop this trait as the female gait requires less 

extension. They also proposed the zona orbicularis, circular fibres of the articular 

capsule around the neck of the femur, are well marked anteriorly and during full 

extension pressure and friction occurs. Fibro-cartilage extension is initial protection 

against this friction however when this breaks down it causes the empreinte (or Allen’s 

fossa) (Odgers, 1931). Angel (1964) agreed with the theory that full extension of the 

hip is the likely cause of Allen’s fossa though they attribute it to running or walking 

down hill as the actions leading to the tightening of the iliofemoral ligament. Angel 

(1964) hypothesised Poirier’s facets to be caused by pressure and friction from the 

iliopsoas muscle and that both Allen’s fossa and Poirier’s facets are caused by more 

vigorous muscle functions, as they more commonly observed in males. As opposed 

to Odgers suggestion that cartilage extension was a protection method against the 

development of an Allen’s fossa, Angel theorised plaque is an osseous healing 

reaction to the presence of a fossa (Angel, 1964). It still has not been determined what 

the cause of these non-metric traits of the anterior aspect of the femur is.  

Figure 2-16 Image from Trinkaus (1975) demonstrating 
the position of the femoral head during squatting 
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There has been considerably less work devoted on this area as there was in the past. 

This may be due to the uncertainty towards these traits or the view they are just 

variants of normal anatomy. The more recent literature regarding Allen’s fossa uses 

the term ‘cribra femoralis’ and has advocated its use as a stress indicator (Wasterlain 

et al., 2018) but also related to certain diseases such as anaemia and malaria or part 

of intense growth periods (Djuric et al., 2008; Williams et al., 2004). It has typically 

been associated with those of younger age and due to its location by the femoral 

epiphysis some authors have suggested it is likely to arise during development, e.g. 

Smith-Guzmán (2015) and Kostick (1963). Djurić et al. (2008) observed cribra 

femoralis on the femora of individuals as young as 0-2 years and therefore, in this 

population, it is unlikely to be due to skeletal maturation. Both Djurić et al. (2008) and 

Wasterlain et al. (2018) reported high levels of cribra femoralis. In their study of a late 

medieval rural population in northern Serbia, Djurić et al. (2008) analysed the 

distribution of cribrous syndrome (defined as the association between cribra orbitalia, 

symmetrical femora cribra and symmetrical humeral cribra) on 107 subadults (< 14 

years). They observed femoral cribra on 83.25% of femora and 33.33% of individuals 

had all three forms of cribrous lesions present. The authors attribute this high 

prevalence of cribrous syndrome to frequent infections, particularly parasitic leading 

to blood loss, diarrhoea, or anaemia. Wasterlain et al. (2018) analysed 31 non-adults 

excavated in Valle da Gafaria (Lagos, Portugal), in which, they reported a high 

frequency of cribra femoralis (85.7% of individuals). Evidence suggested that it is likely 

these individuals were African slaves and their estimated ages ranged from <1 to >15 

with the largest number at 7-9 years. These individuals were thus likely to have lived 

difficult lives shown by the discrepancies between osteometric and dental data, as well 

as the high frequencies of enamel hypoplasia and other non-specific stress indicators. 

The authors suggest the observed cribra femoralis could be due to many factors likely 

to arise in these unfavourable conditions.  
 

Cribra femoralis has also recently been suggested to be indicative of malaria when 

seen in combination with cribra orbitalia and porotic hyperostosis due to anaemia 

being a primary health impact of malaria (Smith-Guzmán, 2015; Wasterlain et al., 

2018). Previous studies have found skeletal indicators of anaemia to be present in 

individuals testing positive for P. falciparum malaria via immunoenzymatic assay 

(Rabino Massa, 2000) and via aDNA (Nerlich et al., 2008). Walker et al. (2009) argued 
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that megaloblastic (caused by vitamin B12 deficiency and haemolytic anaemia seen in 

individuals with malaria) could cause of porotic hyperostosis and cribra orbitalia 

instead of iron-deficiency anaemia, which was the long-standing belief. This article 

was debated in the literature with Oxenham and Cavill (2011) dismissing Walker’s 

rejection of iron-deficiency anaemia’s role in porotic hyperostosis and cribra orbitalia 

(Smith-Guzmán, 2015). Haemolytic anaemia is however one of the main health 

impacts of malaria due to destruction red blood cells. It is thought the impact on the 

skeleton is through acid phosphatase, free haeme and haemozoin in the blood which 

causes an imbalance in the remodelling and induction of extramedullary erythropoiesis 

which leads to cortical thinning (Smith-Guzmán, 2015).  Few studies comment on 

cribra femoralis when studying skeletal manifestations of malaria, with cribra orbitalia 

and porotic hyperostosis being the most commonly recorded lesions (e.g. Gowland 

and Western, 2012). In their study into the skeletal lesions of malaria Smith-Guzmán 

(2015) found individuals with a cause of death of anemia or malaria had humeral and 

femoral cribra present, Figure 2-17 is from this study showing examples of femoral 

cribra. The frequency difference for these lesions was not however significantly 

different from those who died of other causes (however they lived in the same region 

so it cannot be ruled out they did not suffer from malaria or anaemia). They also found 

femoral cribra and humeral cribra were associated significantly but neither were 

associated with cribra orbitalia. This study suggests femoral cribra should be used as 

one of five skeletal lesions indicative of malaria. It is theorised that femoral cribra 

develops in younger individuals with anaemia during epiphyseal fusion. At this time 

there is an increase in erythropoiesis (red blood cell production) which causes 

expansion of the medullary cavity (Smith-Guzmán, 2015). 

 

Figure 2-17 cribra femoralis as an indicator of malaria 
from Smith-Guzmán (2015) 
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Non-metric traits and cam morphology 

Another recent development in determining the aetiology of these traits was made by 

Villotte and Knüsel (2009). In this article, they suggested an association between non-

metric traits of the anterior aspect of the femur and cam morphology. Cam morphology 

is additional bone growth at the anterior-aspect of the head-neck junction. It is a lead 

cause of femoroacetabular impingement and has a suggested aetiology related to high 

levels of physical activity (more detail on cam morphology will be provided in Chapter 

3). The similarity in location, potential cause and composition indicate a possible 

association between this disorder and these non-metric traits of the femur. Several 

articles have followed on from the initial hypothesis by Villotte and Knüsel (2009), for 

instance; Radi et al. (2013), Hogervorst et al. (2011) and Lawrence et al. (2018). There 

are few experimental studies which incorporate both measures of non-metric traits and 

those used clinically to determine the presence of cam morphology to test this 

hypothesis. One such study by Lawrence et al. (2018) concluded Poirier’s facets and 

plaque may be caused by a similar process as femoroacetabular impingement. They 

showed significantly higher alpha angles in femora with Poirier’s facets and those with 

type A and B plaque compared to those without plaque. Cribra was not included in this 

study there it is not clear if this trait is linked with FAI also. The current study therefore 

aims to determine more about these non-metric traits of the anterior aspect of the 

femur (including Poirier’s facets, plaque and cribra) in relation to cam morphology on 

further skeletal collections.  
 
Further investigation of the possible association between cam morphology and these 

non-metric traits has implications for both bioarchaeology and forensic anthropology. 

From a bioarchaeological perspective, there is a wealth of literature regarding FAI and 

cam morphology in the medical and sports literature and therefore a possible link 

would allow the utilisation of this literature to provide a better understanding of these 

traits, as well as an element of clarity with regards to their aetiology which is currently 

lacking. Additionally, due to the believed link between cam morphology and physical 

activity, this association could indicate the usefulness of these traits as a marker of 

activity. The forensic contributions are with regards to victim identification. The primary 

role of a forensic anthropologist during the identification process is to provide 

information from skeletal remains that could narrow the pool of potential identities 

through the comparison of post mortem to ante mortem data (Christensen et al., 2014). 
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The forensic anthropologist’s analysis provides information on the biological profile of 

the individual including; age, sex and stature. In addition to this, other features on the 

skeleton are also assessed including; trauma, pathology and anomalies. The ability to 

identify FAI on bone would therefore be useful in the identification process where an 

ante-mortem record of this condition is present. Furthermore, with the methods to 

record non-metric traits being predominantly via qualitative observations on bone, 

while FAI/cam morphology determination typically being via quantitative methods 

which require equipment and software, an association between the two areas would 

allow identification of this condition on bone through gross inspection. This would 

therefore decrease the amount of time and resources required to identify this condition 

on bone.  
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Chapter 3. Cam Morphology & Femoroacetabular 
Impingement 

 

This chapter will discuss the current concepts surrounding cam morphology and 

femoracetabular impingement. Particular focus will be on how it is currently defined, 

including debate with regards to measurement thresholds and the correct imaging 

methods. The current suggestion with regards to its aetiology will also be covered and 

the prevalence rates in different populations. The association between osteitis pubis 

and FAI will be addressed including current findings within the bioarchaeological 

literature.   

3.1. Defining cam morphology  
Cam morphology was first identified by Murray (1965) as a ‘tilt-deformity’ in relation to 

osteoarthritis of the hip. It was suggested that minimal undetected epiphysiolysis in 

childhood can go on to become this “tilt deformity” in adolescence/adulthood (Murray, 

1965). Later, Stulberg et al. (1975) used the term “pistol grip deformities” to describe 

a mild deformity of the proximal femur and proposed to be due to unrecognised slipped 

capital femora epiphysis. Various terms have been used to described cam morphology 

throughout the literature such as “asymptomatic and symptomatic FAI”,  “tilt” or “pistol 

grip deformity” (Nepple et al., 2015). In 2016, the Warwick Agreement was convened 

to form international consensus on the correct diagnosis and management of patients 

with FAI (Griffin et al., 2016). Within this agreement, it was decided that a universal 

standard terminology was required to avoid confusion and therefore FAI syndrome is 

to be used to describe symptoms, clinical signs and imaging findings when observed 

concurrently, while the term ‘cam morphology’ is to be used to describe those 

individuals without appropriate symptoms and clinical signs but observable 

radiographic features (Griffin et al., 2016).  
 

Various measures for the determination of the presence of cam morphology on 

medical imaging have been developed. These include both quantitative and qualitative 

measures. The most commonly used quantitative methods of determining the 

asphericity of the femoral head caused by the cam morphology include alpha angles 

and offset measurements. While qualitative methods have been used by Laborie et al. 
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(2011), describing cam morphology on AP and frog-leg view radiographs as “a marked 

loss of the wasting of the femoral head-neck junction and flattening of the normal 

concavity”, “a focal prominence of the femoral neck”, “a convex bump to the neck” or 

“flattening of the lateral aspect of the femoral head”.  
 

Alpha (a) angle measurements  

The alpha angle is the most commonly used measurement to clinically determine the 

presence of cam morphology (Frank et al., 2015). Nötzli et al. (2002) developed this 

method of measuring femoral head asphericity on magnetic resonance (MR) scans to 

form standardised criteria for the identification of abnormalities at the femoral head-

neck junction. In their study, Nötzli et al. (2002) compared the concavity of the femoral 

head-neck junction on the axial oblique MR scans of 39 patients with groin pain, limited 

internal rotation and a positive impingement test, to 35 asymptomatic controls. They 

found clear differences in mean a angles between the symptomatic and asymptomatic 

patients; 74.0° ± 5.4° and 42.0°± 2.2°, respectively. Figure 3-1 shows the method 

developed by Nötzli et al. (2002) to measure alpha angles for femora with and without 

cam morphology.  
 

 
Figure 3-1. Image from Nötzli et al. (2002) showing alpha angle measurements on a hip (a) without cam 
morphology and (b) with cam morphology.  

Since this study, alpha angles have been used throughout the literature yet there is 

much disagreement regarding the appropriate cut-off values, imaging modality and 

location on the femoral neck to correctly determine the presence of cam morphology, 

Table 3-1 gives examples from the literature showing the different diagnostic cut-off 

values and average alpha angle values. A systematic review of the literature by 

Dickenson et al. (2016b) found the alpha angle cut-off values, for determining the 

(a) (b) 
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presence of cam morphology, ranged from 50.5° to 83° within the 30 studies that met 

their inclusion criteria. In addition to this, different alpha angle thresholds have been 

suggested for symptomatic vs asymptomatic and males vs females. This wide range 

of cut-off values used by different studies and varying imaging modalities makes 

comparisons of prevalence rates of cam morphology within the literature difficult to 

achieve. 
 

Although three dimensional imaging (MRI or CT) is the gold standard for determining 

the presence of cam morphology, several studies have determined alpha angle 

threshold values using various radiograph orientations (Nepple et al., 2012). Plain 

radiographs are commonly used for the initial diagnostic examination of the joint, as 

they are cheaper and faster to produce. Several authors have therefore determined 

thresholds using plain radiographs of varying orientations; Dunn view (Allen et al., 

2009;  Beaulé et al., 2012) and AP view (Gosvig et al., 2007;  Agricola et al., 2014b).  
 
Table 3-1 Diagnostic threshold and average alpha angle values from the clinical literature 

Author  Sample information  Imaging 

modality 

Diagnostic 
threshold 

Average a angles 

Nötzli et al. 
(2002) 

39 patients with groin 
pain, limited internal 
rotation and a positive 
impingement test 
 
35 asymptomatic 
controls 

Axial oblique 
MR scans 

- Symptomatic: 74.0° 
± 5.4° (55° to 95°)  
asymptomatic: 42.0° 
± 2.2° (33° to 48°) 

Pollard et al. 
(2010a) 

83 asymptomatic 
volunteers- no clinical 
or radiographic 
evidence of hip 
disease or 
osteoarthritis 
 
44 females, 39 males  
 
 

Cross-table 
lateral 
radiographs 
taken in 15° 
internal 
rotation 

³63° Males: 48°± 8° 
Females: 47°± 8° 
Overall: 47°± 8° 
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Agricola et 
al. (2014b) 

1411 hips in 723 
individuals from the 
CHECK cohort, with 
symptoms of early 
osteoarthritis between 
45-65 years, 
 
1468 hips in 734 
individuals from the 
Chingford cohort, 
asymptomatic women 
aged 44-67 years 

AP 
radiographs 

60° for presence 
of cam 
 
Pathological 
threshold of 78°  

 

Barrientos et 
al. (2016) 

101 asymptomatic 
volunteers, (41 males, 
60 females), mean 
age 36.1 years ± 14.4 
 
38 symptomatic 
patients undergoing 
surgery for FAI, (21 
males, 17 females) 
mean age 36.12 years 
±11.82 

Oblique axial 
CT scans 

57° Asymptomatic: 47.8° 
±5.3° 
Symptomatic: 66.8° 
±12.2° 

Fraitzl et al. 
(2013) 

339 radiographs of 
asymptomatic 
individuals (170 males, 
169 females)  
 

AP and lateral 
radiographs 

Men on AP and 
Lateral 
radiographs: 70°  
 
Women on AP 
radiographs: 61° 
Lateral 
radiographs:  
66° 

Men: 
AP 49.4°± 10.5° 
Lateral 49.1° ± 10.6° 
 
Females  
AP 45.0° ± 8.0° 
Lateral 46.1° ± 9.9° 

 

The use of radiographs to measure alpha angles has been criticised as cam 

morphology typically presents anterosuperiorly and therefore it is often missed on AP 

and lateral radiographs (Ito et al., 2001). Additionally, due to the differing orientations 

of each radiographic view, it was suggested that this may affect the alpha angle size 

being recorded. Meyer et al. (2006), Monazzam et al. (2013) and Gosvig et al. (2007)   

tested this theory. Meyer et al. (2006) found in the same femur alpha angle 

measurements varied by 30° dependent on the radiographic projection used. Figure 

3-2 is from Meyer et al. (2006)’s article showing the alpha angle measurements for 

each of the radiographic projections. Using a dry-bone cadaveric analogue AP 

radiographs were taken at 60°, 40° and 20° internal rotation as well as 0° (neutral 

rotation), 20°, 40° and 50° external rotation, Monazzam et al. (2013) found rotation of 

the femur accounted for approximately 58% of variation in recorded alpha angle size. 

Alternatively, Gosvig et al. (2007) found consensus between lateral and AP 

radiographs.  
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The increased use of plain radiographs, due to the previously mentioned reasons, 

meant various studies (Barton et al., 2011; Nepple et al., 2012; Meyer et al., 2006; 

Gosvig et al., 2007; Dudda et al., 2009) have been carried out to determine if there is 

a difference in alpha angle measurements dependent on the imaging modality and 

projection used. Dudda et al. (2009), Barton et al. (2011) and Nepple et al. (2012) 

compared three-dimensional imaging (MRI/CT scans) to various radiographic 

projections taken in the same individuals to determine if there was a difference in alpha 

angle size, and ability to detect cam morphology, between these imaging modalities. 

Dudda et al. (2009) reported an underestimation of femoral head asphericity when 

using standard radiographs (AP pelvis and lateral cross-table views) compared to 

radial MRA slices. Barton et al. (2011) also showed measurements on AP radiographs 

to underestimate head asphericity. They did demonstrate a strong correlation between 

Dunn view radiographs and axial oblique MRI for alpha angle values. Overall, they 

recommend the use of MRI or CT due to the multiplanar capability of these imaging 

techniques, enabling them to determine the presence of cam morphology even with 

the variation in its location along the femoral head-neck junction (Barton et al., 2011). 

Nepple et al. (2012) compared radial oblique reformatted CT scans with radiographs 

of four projections; AP pelvis, 45° Dunn, frog lateral and cross-table lateral, in the same 

Figure 3-2 alpha angles recorded on radiographic projections (A) standard AP view, (B) 
Dunn view in 45° hip flexion, (C) standard Dunn view, (D) cross-table view in 15° internal 
rotation, (E) in neutral rotation, and (F) in 15° external rotation, From Meyer (2006) 
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patients. The results showed in 61% of hips, all plain radiographic views had a greater 

maximum alpha angle than the CTs. Using a combination of all four radiographic 

projections, they showed that there was 90% sensitivity to the detection of cam 

morphology. The Dunn view had the highest sensitivity of the radiographic projections 

at 80%, while the frog lateral view had the best specificity at 91%. Unlike the previous 

studies, Nepple and colleagues recommended that AP pelvis, 45° Dunn and frog 

lateral radiographs can be used to accurately determine the presence of cam 

morphology.  

 

Femoral head-neck offset measurements  

Another commonly used measurement to determine the presence of cam morphology 

is femoral head-neck offset. This was initially described by Eijer et al. (2001) in their 

study attempting to determine if there was a difference in anterior head-neck offset 

between those with or without hip pain. On cross-table lateral radiographs head-neck 

offset was determined by measuring the distance between a line along the anterior 

cortex of the neck (line 2) and another line along the apex of the contour of the femoral 

head (line 3), with both lines parallel to the neck axis (line 1) (see Figure 3-3). The 

anterior head-neck offset ratio (OSR in this study but AOR in other studies) was than 

calculated by dividing the distance between the two lines (AOS) by the diameter of the 

femora head. They found the symptomatic group had a significantly smaller AOS and 

OSR than the asymptomatic group, 7.2mm ± 2.7mm to 11.6mm± 2.3mm (AOS for 

symptomatic group to asymptomatic group) and 0.13 ± 0.05 to 0.21 ± 0.03 (OSR for 

symptomatic group to asymptomatic group) respectively (Eijer et al., 2001).  
 

Figure 3-3. Femoral head-neck measurement, image from Eijer et al. (2001) 
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A threshold of ≤0.17 is commonly used as the cut-off for determining the presence of 

cam morphology (Nepple et al., 2014). Various studies have however questioned this 

threshold due to values found to be lower than this in asymptomatic populations. For 

instance, in their study Fraitzl et al. (2013) found the average AOR (anterior head-neck 

offset ratio) to be 0.15 ± 0.03 and 0.17 ± 0.04 for men, and 0.16 ± 0.03 and 0.18 ± 

0.04 for females on AP and lateral radiographs respectively. Beaulé et al. (2007), 

observed threshold values of £0.15. They determined this pathological threshold by 

measuring AORs on cross-table lateral radiographs of 51 patients with symptoms 

consistent with FAI and positive impingement signs. In hips with an alpha angle ³50.5°, 

the mean AOR was 0.13 which was significantly lower than those with an alpha angle 

<50.5° at 0.18. They suggest a hip with an AOR of £0.15 had a 9.5-fold increase in 

relative risk of having cam morphology based on an alpha angle ³50.5°. This study 

has limitations of sample size with only 56 being measured and of these 45 having an 

alpha angle of ³50.5°. Similar to alpha angle measurements the use of various 

different radiographic view makes it difficult to make comparisons between different 

studies and determine the most appropriate thresholds.  
 

 

 

Toogood et al. (2009) extended the AOS measurement developed by Eijer et al. 

(2001) to calculate the anterior-posterior head-neck ratios (AOS/POS) on digital 

photographs in standardised orientations, see Figure 3-4. The posterior offset (POS) 

measurements were taken in the same way as the AOS measurements with all lines, 

both anterior and posterior, being parallel to the femoral neck axis. The AOS/POS 

ratios allow quantitative assessment of the head-neck translation. An AOS/POS ratio 

Figure 3-4 AOS/POS measurement, image from Toogood et al. (2009) 
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of 1 means the offset is equal with minimal translation. An AOS/POS of >1 means 

more anterior translation, while an AOS/POS of <1 suggests a more posteriorly 

translated femoral head on the neck axis (Toogood et al., 2009). This method allows 

for anthropometric variation between individuals which AO does not. 

 

Toogood et al. (2009), found the mean AOS/POS was 1.14 ± 0.40 and the mean alpha 

angle was 45.61° ± 10.46° for their sample of femora from the Hamann-Todd 

osteological collection. They also found that as the AOS/POS ratio increased the alpha 

angle decreased, suggesting with increased anterior translation there is increased 

anterior concavity (Toogood et al., 2009). Nemtala and collagues also used AOS/POS 

ratios to analyse the proximal aspect of the femur, however, in their study they 

compared the ratios between individuals with FAI, due to cam morphology, and those 

without. Nemtala et al. (2010) reported a mean AOS/POS ratio of 0.56 ± 0.1 for the 

symptomatic group and 0.9 ± 0.2 for the asymptomatic group. This is the first study to 

measure AOS/POS ratios by Toogood and colleagues on medical imaging. The small 

sample numbers of only 15 symptomatic patients and 15 asymptomatic volunteers and 

the low interobserver correlation coefficient are limitations of this study. Zeng et al. 

(2016) used AOS/POS ratios in their study of the association between hip morphology 

and osteoarthritis. Using 3D reconstructions of CT scans, they compared patients 

without any abnormalities or degenerative changes at the hip to individuals with mild-

to-moderate bilateral osteoarthritis of the hip. Similarly to Nemtala et al. (2010), this 

study found the AOS/POS ratio was smaller for the pathological group when compared 

to the ‘normal’ group. The results from these studies suggest the femoral head 

orientation is likely to be an impacting factor on alpha angle size and therefore should 

be considered. The higher interobserver agreement shown by Zeng et al. (2016) in 

comparison to Nemtala et al. (2010) suggests this method is more suited to use on 

osseous specimens or 3D reconstructions than cross-table lateral radiographs.  

3.2. Aetiology 
The true aetiology of cam morphology is still much debated within the literature. 

Several conditions leading to the slight deformities of the hip that can go undetected 

have been suggested as a cause, including; development hip dysplasia, slipped 

capital femoral epiphysis, Legg-Calvé-Perthes disease (Ganz et al., 2008).  
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Physical activity 

High levels of physical activity is the most commonly suggest aetiology for cam 

morphology. It has been suggested male athletes are 1.9 to 8.0 times more likely to 

develop cam morphology than non-athletic controls (Nepple et al., 2015). Several 

studies have shown individuals who participate in high-levels of physical activity 

typically have higher alpha angles and therefore higher prevalence rates of cam 

morphology than non-athletes. For instance, when comparing semi-professional 

soccer players to amateur players, Lahner et al. (2014b) showed the distribution of 

alpha angles was correlated with the level of activity, based on training hours per week. 

In a further study, they showed the mean alpha angle size was significantly higher for 

athletes (top ranking track and field athletes) compared to non-athletic controls (52.2° 

± 7.29° vs 48.1° ± 5.45°) and 34% of the athlete group had cam morphology present 

compared to only 2.7% of the control group (Lahner et al., 2014a).  

 

Before and during skeletal maturation 

The higher levels of loading, as well as the frequency and rigorousness of the 

movements at the joint in athletes compared to non-athletes, is the believed link 

between the development of cam morphology and physical activity. This has been 

found to be particularly the case during skeletal maturation. This concept was initially 

hypothesised by Murray and Duncan (1971) due to observations of hip osteoarthritis 

in younger individuals involved in mandatory athletics. Since then several studies have 

supported this concept through measures of cam morphology pre- and post-

epiphyseal closure (Siebenrock et al., 2011; Philippon et al., 2013). The epiphyseal 

growth plate is a very dynamic area prior to complete fusion. In addition to this the 

developing skeleton is also more susceptible to the effect of forces and repetitive 

loading applied during intensive athletic activity (de Silva et al., 2016). Siebenrock and 

colleagues have published several studies looking into this association for different 

sports (Siebenrock et al., 2004; 2011; 2013a,b).  Siebenrock et al. (2011) compared 

MRI scans from 37 male basketball players between the ages of 9 to 25 years, with 

38 age-matched asymptomatic non-athletic controls. Those in the athletic group had 

uninterrupted participation in the training program since the age of 8 years old. In this 

study the mean alpha angles were greater in the athlete group (60.5° ± 9°) compared 

to the non-athletic controls (47.4° ± 4°). After epiphyseal closure 98% of athletes and 
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only 9% of controls had an alpha angle >55°. When comparing alpha angle size before 

and after epiphyseal closure only the athlete group showed a change in mean alpha 

angle size. It was hypothesised this could be caused by a combination of high skeletal 

stress from vigorous exercise and differences in the direction of loading on the femur 

during this growth period leading to the development of cam morphology (Siebenrock 

et al., 2011). Following this study, Siebenrock et al. (2013b) compared the hips of 77 

elite male ice hockey players, of which 43 had closed epiphysis and 34 had open 

epiphysis. This study found an increase in the mean alpha angle at the anterosuperior 

head-neck portion in those hips with closed epiphysis in comparison to those with open 

epiphysis (58.2° vs 49.1°). This however varies depending on the location the 

measurement was taken, for instance, at the 9 o’clock and 10 o’clock positions hips 

with a closed epiphysis had a significantly lower alpha angle size than those with open 

epiphysis. Fifty six percent of hips with closed epiphysis had an alpha angle of ³55° 

while only 6% of hips with open epiphysis had an alpha angle of ³55° (Siebenrock et 

al., 2013b). This study was limited by a relatively small sample size of 77 athletes and 

the lack of a control group of non-athletes for comparison.  

 

Philippon et al. (2013) supported the results from Siebenrock and colleagues’ 

research. They reported a significantly higher alpha angle in high-level youth ice 

hockey players when compared to a control group of youth skiers. With 75% of the 

ice-hockey players showing an alpha angle ³55° compared to 42% of the control 

group. Although equal amounts of time was dedicated to each sport, ice-hockey 

players and skiers were compared due to differences in movements and use of the 

hip in the different sports. Unlike skiing, Ice-hockey involves repeated hip flexion and 

internal rotation that have previously been movements associated with the 

development of FAI. The ice hockey players were further divided into three age 

groups, 10-12 years (‘Peewee hockey players’), 13-15 years (‘Bantam hockey 

players’) and 16-19 years (‘Midget hockey players’) to determine the alpha angle size 

based on epiphyseal closure. For those in the 10-12 years category all proximal 

femoral epiphyses were open, in the 13-15 year group the epiphyses were closed and 

open, while for the 16-19 years group all epiphyses were closed. There was a 

significant correlation between age and alpha angle size. Further to this the only group 

of ice hockey players with significantly more individuals with an alpha angle ³55° 
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compared to their age-matched controls was the ‘midget’ group (the oldest group with 

only closed epiphyses).  
 

Following the discoveries of the increase in alpha angle following epiphyseal closure 

Agricola et al. (2012) observed the proximal growth plate was extended into the neck 

more than usual prior to epiphyseal fusion. Therefore, it was suggested this extension 

of the growth plate could be a precursor to the development of cam morphology. This 

association was supported in a further study by Agricola et al. (2014a) and a later 

study by Siebenrock et al. (2013a). The latter showed epiphyseal extension was 

increased in athletes compared to non-athletic controls in their study of male elite 

basketball players (age range 9-22 years). Epiphyseal extension was recorded in 

individuals with an open epiphysis, while increased alpha angle size was typically seen 

after closure of the growth plate suggesting this epiphyseal extension could be a cause 

of cam morphology development (Siebenrock et al., 2013a).  

 

Post skeletal maturation 

Previous studies have looked at the development of cam morphology at the time of 

epiphyseal closure, however few studies have attempted to determine if the alpha 

angle size remains consistent after skeletal maturation in athletes. One such study, 

using a semi-quantitative scoring system, by Agricola and colleagues, analysed 

changes in the presence of cam morphology during and post maturation. They 

compared the radiographs of pre-professional soccer players (n=63) to follow-up 

radiographs approximately 2 years later. This study was the first of its kind comparing 

the presence of cam morphology on baseline and follow up radiographs. In the hips 

that had an open epiphysis at the baseline, the number with a prominence present 

increased from 2.1% to 17.7% at follow-up. While for those hips with closed epiphysis 

at baseline, there was no difference in the prevalence of prominences present at follow 

up, based on the visual classification system. For the whole group the alpha angle size 

increased from 59.4° to 61.3° and the prevalence of cam morphology (cut off >78°) 

increased from 7.9% to 13.5%. It was however only the hips with open epiphyses at 

baseline that showed an increase in the prevalence of pathological cam morphology 

at follow-up (Agricola et al., 2014a). In this study Agricola and colleagues also 

described the development of a cam morphology based on visual assessment. From 

12 years to 14 years it went from concave to flattened, followed by the development a 
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prominence on the anterior aspect of the femoral head neck junction from 14 years 

until epiphyseal fusion (Agricola et al., 2014a). The lack of significant increases in both 

alpha angle size and visual changes in those with closed epiphyses confirms the 

findings by many previous studies, that the formation of cam morphology is potentially 

during skeletal maturation. Other prospective studies in skeletally mature individuals 

agree with this finding. Gala et al. (2016) compared the mean alpha angle size of ten 

patients with cam morphology and thirteen with no evidence of cam morphology 

between MRIs (or CTs) taken a mean of 5.3 years apart. There was no significant 

difference in alpha angle size over the 5.1-year period for the individuals with 

radiological signs of cam morphology (48.7°±7.6/62.5°±9.2 vs 51.7°±7.7/61.5°±9.1) 

and those without (36.9°±6.7/47.4°±7.0 vs 39.2°±6.9/49.0°±9.6) when the initial MRIs 

were taken. Although it is not significant there is a slight increase in alpha angle size 

for both groups from the initial image to the follow up. They suggest this slight change 

could be due to measurement error due to the small difference however it is unclear if 

even a minor increase could have clinical relevance (Gala et al., 2016). It is therefore 

unclear if cam morphology does progress post-epiphyseal fusion. The small sample 

size in the study by Gala et al. (2016) is a limitation to these findings. Further studies 

are required to confirm these findings.  

 

Arguments against physical activity  

The findings of the study by Johnson et al. (2012) however, disagrees with the theory 

physical activity has a significant impact on alpha angle size. They compared the 

radiographs of fifty athletes who had participated in youth soccer at the ages of 10 to 

14 years, for the males, and 8 to 12 years, for the females, to non-athletic controls. 

They found no significant difference between the groups for the prevalence of cam 

morphology or average alpha angle size. This study found participation in high-level 

sports (in this case soccer) during childhood does not cause an increased risk cam 

morphology and therefore does not affect the developing femur any differently to non-

athletic individuals. They therefore suggest the higher recorded prevalence rates of 

cam morphology in athletes is because they are more likely to be symptomatic due to 

more vigorous movements at the joint (Johnson et al. 2012). Furthermore, a cross-

sectional study by Carsen et al. (2014) compared the morphology of the hip in those 

with open and closed epiphyses in non-athletes. The volunteers for the study were 
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from a fracture clinic at Children’s Hospital of Eastern Ontario. The study found cam 

morphology was present in the closed epiphyseal group (cut-off value of ³50.5°) and 

the mean alpha angle was greater in the closed group (at 1:30 position 50.18° ± 4.08°) 

compared to the open group (45.28° ± 7.05°), therefore cam is present in children who 

are not athletes. An activity score was however calculated from the Habitual Activity 

Estimation Score, a self-reported record of activity throughout the day. With regards 

to physical activity males in the closed group with cam morphology had significantly 

higher levels of activity. Epiphyseal status was not determined by observations on 

imaging but rather through the age brackets under normal circumstances the growth 

place would be closed (15-18 years in males and 14-18 years in females) this therefore 

may have affected these results.  

 

Most of these studies used alpha angles to determine the presence of cam 

morphology. Agricola et al. (2012) suggested the use of alpha angles for determining 

the presence of cam morphology in individuals when the growth plate is unfused is 

inaccurate. They observed the contour of the femoral head appearing more oval 

shaped when the anterosuperior portion is unfused causing a higher alpha angle 

measurement. Moreover, they suggested the cam morphology is not fully visible until 

after fusion. 

 

Genetics 

Another suggested factor with regards to the cause of cam morphology is genetics. 

There are however few studies focused on whether there is a genetic predisposition 

to cam morphology. One such study by Pollard et al. (2010b) compared the hips of the 

siblings of patients being treated for FAI compared to a non-genetically related control 

group. They found a significantly greater prevalence of cam deformity in the siblings 

of those with FAI than the control group. Although this does suggest a possible genetic 

cause, the environmental factors cannot be completely disregarded if they were raised 

in the same manner. Pollard and colleagues incorporated the UCLA (University of 

California, Los Angeles) activity score to compare the activity levels of the sibling and 

the control groups. This method of scoring activity only assessed the activity score of 

the individual at the time of the study and the highest intensity exercise on a 10-point 

scale regardless of frequency. This limited understanding of activity during childhood, 
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when many studies have suggested cam morphology is likely to develop and 

frequency of participation in physical activity. In addition to this, in this study Pollard 

and colleagues only compared activity scores between the sibling group and the 

controls not the test subjects (those with cam morphology) and their siblings. This 

would allow the possibility of determining if the greater prevalence of cam morphology 

in the siblings compared to the controls is due to environmental factors (equivalent 

activity in siblings) or genetics.  

 

Applications   

It is clear from this review that certain physical activities play a role in the development 

of cam morphology, particularly during skeletal development. It is possible genetics 

also has an involvement in its development however there are few studies currently 

available to confirm this. The link between cam morphology and physical activity has 

led to the assumption, by Lawrence et al. (2018), that cam morphology has 

applications to bioarchaeological study as indicative of habitual activity and therefore 

can be used to infer the sexual division of labour and socioeconomic differences in 

archaeological populations. It is currently difficult to determine if cam morphology can 

be used as an indicator of activity in past populations as it has not been widely studied 

in this context. Additionally, cam morphology and FAI have not been broadly studied 

with regards to occupational activity, with the prime focus on athletic activity in modern 

populations. Jochimsen et al. (2019) and Coppack et al. (2017) have focused on FAI 

and cam morphology in military occupations however there is currently no other 

studies analysing the rates of cam morphology in other occupations of differing activity 

levels. Furthermore, this review of the literature has shown there is a link between the 

development of cam morphology during epiphyseal fusion. It is unclear however if cam 

morphology continues to develop following epiphyseal closure due to the small sample 

sizes in the few studies focused on this e.g. Gala et al. (2016). If cam morphology 

remains constant following fusion, activity levels in adults will have limited impact on 

its development. This study of occupational physical activity in adults can therefore 

add to the understanding of the development of cam morphology. This will contribute 

to bioarchaeological through determining if cam morphology can be used in the 

analysis of skeletal populations as a marker of activity. Additionally, the comparison of 

occupations of varying activity levels will also add to the understanding of the 
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development and adaptation of cam morphology in adults therefore having both 

clinical and bioarchaeological applications.   

 

Not only does increased knowledge of the impact of occupational activity on the 

development of cam morphology have applications to these disciplines but the ability 

to determine the presence of cam morphology on skeletal remains has applications to 

both bioarchaeology and forensic anthropology, as described in 2.3.1. This includes 

acting as an additional identifying feature in victim identification and, potentially, to 

determine activity levels of past populations.    

 

3.3. Prevalence  
Varying prevalence rates for cam morphology have been reported in the literature due 

to use of differing imaging modalities and uncertainty towards diagnostic cut-off 

values, as highlighted in the previous sections. In addition to this, many studies also 

focus on specific population demographics such as; athletes vs non-athletes, 

symptomatic vs asymptomatic.  

 

Rates from population-based studies 

The true prevalence rates of cam morphology in the general population are not well 

understood as not all individuals with cam morphology develop FAI and therefore it 

can go undetected. There has however been a small number of population-based 

studies to determine this prevalence rate. In their US population based longitudinal 

cohort study Raveendran and colleagues included a total of 5,192 hips from 2,596 

individuals to provide prevalence-based estimates of hip morphologies. They reported 

unilateral cam morphology (based on alpha angle threshold of >60° on AP 

radiographs) was present in 18% of males and 7% of females, while bilateral cam 

morphology was present in 9% of males and 3% of females. Additionally, the overall 

prevalence of cam morphology, based on alpha angles and the presence of a 

triangular index sign as defined by Gosvig et al. (2007), was approximately 25% for 

men and 10% for women (Raveendran et al., 2018). The study was however limited 

by the of use radiographs alone, while CT and MRI are more sensitive at detecting 

these morphological changes. All women were over the age of 50 years and therefore 

it is likely the prevalence rates for women is underestimated (Raveendran et al., 2018). 
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To determine the prevalence of cam morphology in asymptomatic males Reichenbach 

et al. (2010) analysed the MRI scans of individuals undergoing conscription for the 

Swiss army. In Switzerland, approximately 97.5% of males are required to attend a 

recruitment session and therefore this sample was a good representation of the young 

male population. A total of 179/244 of those that had MRIs showed evidence of cam 

morphology (based on a semi-quantitative scoring system). They reported an overall 

prevalence of 24% of cam morphology in asymptomatic males. These studies are 

different from many previous studies attempting to determine the prevalence of 

different hip morphologies as the samples understudy were not from clinical settings.  

 

Rates from studies of asymptomatic individuals from clinical settings 

Several studies have however attempted to determine this prevalence in 

asymptomatic individuals from clinical settings. In their study of asymptomatic 

volunteers Hack et al. (2010) found 14% (28/200) had cam morphology on at least 

one hip (defined by alpha angle >50.5°) and when broken down by sex, males were 

more likely than females to have cam morphology present, 24.7% (22/89) v 5.4% 

(6/11). Jung and colleagues used a random sample of 380 patients with abdominal or 

pelvic CTs for their study to determine the prevalence of cam morphology in 

asymptomatic individuals and found a slightly lower prevalence rate. Cam morphology 

was defined using alpha angle cut-off values defined by Gosvig et al. (2007), with ³83° 

indicating pathological, 60° to 82° for borderline and £68° was considered normal for 

men, while for women pathological was ³57°, borderline was 51° to 56° and normal 

was £50°. They reported 13.95% (30/215) and 14.88% (32/215) of male hips, while 

5.56% (30/540) and 6.11% (33/540) of female hips were deemed to have pathological 

and borderline cam morphology respectively (Jung et al., 2011). De Bruin et al. (2013) 

analysed 310 retrospective radiographs from patients being investigated for reasons 

other than FAI (with 262 patients, 522 hips being included following exclusion criteria). 

They found only 7.7% (40/522) of hips presented with radiological signs of cam 

morphology, 15.6% (31/199) of male hips, 2.8% (9/323) of female hips. The 

retrospective nature of this study however meant only AP radiographs were used and 

alpha angles were not measured. Due to these limitations the prevalence of cam 

morphology is likely to be underreported in this study (De Bruin et al., 2013).  
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Rates from studies of athletes & non-athletes 

Although present in the general population, the prevalence of cam morphology has 

typically been found to be higher in athletes, Table 3-2 shows the rates of cam 

morphology for a sample of studies of non-athletes while Table 3-3 shows the rates 

for studies including athletes. In their systematic review of the literature Frank et al. 

(2015) found a ratio of 3:1 when comparing the presence of cam morphology in 

asymptomatic athletes to asymptomatic non-athletic controls (54.8% vs 23.1% 

respectively). Table 3-3 shows the recorded prevalence of cam morphology in various 

athletic populations. Several systematic reviews have looked at these prevalence 

rates within the literature. In their review of the literature Dickenson et al. (2016b) found 

the prevalence rate of cam morphology in different groups of athletes (both 

symptomatic and asymptomatic) ranged from 48% to 75% of individuals and 2% to 

92% of hips. Nepple et al. (2015) only included studies involving; symptomatic or 

asymptomatic athletes, with >50% male participants and a control group. They found 

rates (by hip) of reported cam morphology in male athletes was 17% to 93% compared 

to 9% to 56% of male controls. Unlike the reviews by Dickenson et al. (2016b) and 

Nepple et al. (2015),  Frank et al. (2015) only selected articles including asymptomatic 

individuals in their review of the literature. Reporting prevalence rates of 54.8% of 

athletes and 23.1% of non-athletic controls having asymptomatic cam morphology. 

Varying prevalence rates have been shown between different sports, believed to be 

due to the varying movements and forces required to perform the different activities. 

In a comparison between the prevalence of cam morphology on the kicking legs of 

asymptomatic male semi-professional and amateur soccer players Lahner et al. 

(2014b) found a prevalence rate of 62.5% for the semi-professional players (based on 

a threshold of >55°) compared to 27.3% for the amateur players. The overall 

prevalence of cam morphology was 59% (13/22) for the semi-professional group and 

40% (9/22) in the amateur group. Larson et al. (2013) reported 75% (94/125) of 

American football players had radiographic cam morphology present (alpha angle 

>55°). Increasing alpha angle size was associated with increased symptom 

prevalence however the presence of cam morphology was not an independent 

predictor of symptoms (Larson et al., 2013). The study by Siebenrock et al. (2013b) 

analysed alpha angle size in elite ice hockey players between the ages of 9-36 years. 

In the individuals with closed epiphysis 56% of hips (24/43) had an alpha angle ≥55°. 
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The prevalence of cam morphology in athletes practicing martial arts, in particular 

capoeira was studied by Mariconda et al. (2014). They reported a prevalence rate of 

45.8% of hips (22/48) (based on an alpha angle >60°) however a rate of 91.7% (44/48) 

of hips based on one radiographic sign of cam morphology (alpha angle >50° or head-

neck offset <8mm).  
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Table 3-2. Prevalence rates of radiographic evidence for cam morphology in adult non-athletes 

Author Sample information  Cam a angle cut-off   
Prevalence of cam, per 
individuals (%) 

 
Prevalence of cam, per hips 
(%) 

Johnson et al. (2012) Non-athletic controls ≥55° Overall: 44%  
 
Males: 56%  
Females: 32%  

Not described  

Jung et al. (2011) Asymptomatic individuals  Men:  
Pathological ³ 83° 
Borderline 69° to 82° 
Normal ≤ 68° 
Women:  
Pathological ³ 57° 
Borderline 51° to 56° 
Normal ≤ 50° 
 

NA Men:  
Pathological: 13.95% 
Borderline: 14.88% 
Normal: 71.16% 
Women:  
Pathological: 5.56% 
Borderline: 33% 
Normal: 88.33% 

Lahner et al. (2014a) 
 

Non-athlete controls >55° Not described 2.7% 

Reichenbach et al. 
(2010) 

Males attending conscription 
centre 

Semi-quantitative scoring 
system 

73%  
 

Not described  

Khanna et al. (2014) Volunteers >50.5° 
≥60° 
 

21%  Not described  
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Table 3-3 cam morphology prevalence rates in athletes from the literature 

Author Sport and level  Cam a angle cut-
off   

Prevalence of cam, per 
individuals (%) 

Prevalence of cam, per hips 
(%) 

Silvis et al. (2011) 
Professional and collegiate hockey 
players >50° 39% Not described  

Kapron et al. (2011) Collegiate football players >50° Not described 
Frog-leg lateral: 54%  
AP view: 55%  

Gerhardt et al. (2012) Elite soccer players >50° 
Males: 68% 
Females: 50%  Not described  

Johnson et al. (2012) High-level youth soccer players ³55° 

48%  
Males: 60%  
Females: 36%  Not described  

Larson et al. (2013) 
Collegiate national football league 
players >55° 75.2% 65.3% 

Lahner et al. (2014a) Elite track and field athletes >55° Not described 34% 

Lahner et al. (2014b) 
Semi-professional soccer players & 
amateur soccer players  >55° Not described 

Semi-professionals: 47.7% 
Amateurs: 29.5% 

Mariconda et al. (2014) 
Capoeira (Brazilian martial arts) 
players  >50° Not described  

91.7% with >50° 
45.8% with >60° 

Tak et al. (2015) Elite football players  

>60° 
Pathological cam: 
>78° 

64% with >60° 
29% with >78° 

49% with >60° 
18% with >78° 

Farrell et al. (2016) 
 Elite rugby players >50.5° 55% Not described 

Tak et al. (2016) Professional soccer players >60° 63% 50% 

Larson et al. (2017) 
Professional hockey players 
 >50° Not described  85%  

Fraser et al. (2017) Dance athletes & non-dance athletes >55° Not described 
Dance athletes: 18.3%  
Non-dance athletes: 42.3% 
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3.4. Association with Osteitis Pubis   
Osteitis pubis is considered one of the most chronic and incapacitating conditions to 

affect athletes (Rodriguez et al., 2001). It is an overuse syndrome at the pubic 

symphysis causing pain and tenderness at this area. In athletes it is believed to be 

caused by microtrauma from repeated muscle strain at the pubic bones by the 

abdominal and adductor muscles however the actual aetiology is still unclear 

(Angoules, 2015). Additional causes however include pregnancy and parturition, 

rheumatic disorders, osteoarthritis and infections (Angoules, 2015). Through a review 

of the literature (please see appendices 1 for examples of studies used and imaging 

findings) the commonly reported radiographic indicators for osteitis pubis include; 

sclerosis, widening and vertical displacement, subchondral cysts, osteophytes, 

erosions and irregularity. Figure 3-5 demonstrates the difference between a pubic 

symphysis without (a) and with (b) osteitis pubis. 

 

 

Anatomy of the pubic symphysis 

The pubic symphysis is a non-synovial fibrocartilaginous joint. It is formed by the two 

pubic bones and a fibrocartilaginous disk. The surfaces of the pubic bones which 

articulate with the disk are lined with a very thin layer of hyaline cartilage (Budak and 

Oliver, 2013). The symphysis connects the two weight bearing os coxae with the 

ligaments assisting in the maintenance of the mechanical integrity and prevent motion 

during everyday activities (Gamble et al., 1986). There are four main ligaments which 

reinforce the pubic symphysis; superior pubic (or suprapubic) ligament, inferior pubic 

a) b) 

Figure 3-5 a) X-ray of normal pelvis, b) x-ray of pelvis with osteitis pubis. Source: Farber (2011) 
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ligament (or arcuate), anterior pubic ligament and the posterior pubic ligament 

(Gamble et al., 1986; Becker et al., 2010). Figure 3-6 illustrates the anatomy at this 

area. The joint is further stabilised by the many musculotendious structures which 

attach to the pubic symphyseal capsule (Budak and Oliver, 2013). These muscles 

include, the pyramidalis, rectus abdominis, gracilis, adductors, obturators and levator 

ani posterior (Gamble et al., 1986).  

 

Aetiology of osteitis pubis 

The pubis symphysis is capable of withstanding impact forces to the pelvis which occur 

in everyday activities such as walking or running. During normal gait, weight is 

transferred from one side of the pelvis to the other, with the forces centred on the pubic 

symphysis. When these movements are magnified and additional, more stressful, 

movements are applied it puts more biomechanical strain to the symphysis and 

supporting structures (Cunningham et al., 2007). Many authors agree that repetitive 

movements common in athletic activity such as kicking, rapid acceleration and sudden 

directional change cause stress to the pelvis which lead to bony stress reactions and 

osteitis pubis (Beatty, 2012; Budak and Oliver, 2013; Choi et al., 2011; Omar et al., 

2008). Muscle imbalance has also been linked to osteitis pubis. The abdominal and 

adductor muscle groups act antagonistically. The abdominal muscles attach to the 

thoracic cage and the symphysis, acting to stabilize the symphysis. The adductor 

muscles act to move the lower extremity towards the symphysis, see Figure 3-7 

(Mandelbaum and Mora, 2005). If there is imbalance between the actions of these two 

muscle groups the equilibrium of forces will be disrupted leading to microtrauma and 

tissue degeneration (Rodriguez et al., 2001). In addition to this, the chronic overuse of 

Fibrocartilaginous disc 

Hyaline cartilage 
Superior pubic ligament 

Pubic tubercle 

Pubis 

Inferior 
pubic 

ligament 

Figure 3-6 Illustration demonstrating the anatomy of the pubic symphysis. Image by E.Saunders 
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these muscles by many athletes is believed to lead to microtrauma (Angoules, 2015). 

In their study of medical personnel of Australian Football League clubs Pizzari et al. 

(2008) found that all personnel felt that osteitis pubis is an overuse injury due to 

imbalance between the loads placed on the pelvis and the integrity of the pelvic 

structures. These imbalances were thought to be due to internal factors (variables 

identified to be features of the player that reduce the ability of the pelvis to cope with 

these forces) such as; immature skeleton, hypermobility, hypomobility, intrapelvic 

asymmetry and technique deficits. External factors were also believed to play an 

important role (variables which are perceived to place greater load onto the pelvic) 

such as; training intensity and volume, kicking, trauma, change of direct, ground 

hardness and number of games played (Pizzari et al., 2008). 

 

Association between FAI and osteitis pubis  

Association between FAI and osteitis pubis in athletes has been suggested by many 

authors (Phillips et al., 2016; Hammoud et al. 2014; Matsuda et al., 2015). It is 

proposed that restricted range of motion at the hip, due to an impingement, particularly 

internal rotation causes additional stress to the pelvic ring during turning and twisting 

motions (Angoules, 2015). Williams (1978) and Verrall et al. (2005) found that loss of 

Figure 3-7 Image demonstrating the pull of the abdominal and 
adductor muscles at the pubic bones during kicking (Mandelbaum 
and Mora 2005) 
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hip mobility, particularly internal rotation, was present in all the patients with osteitis 

pubis in their series. It was not however clear if this reduction in range of motion 

precedes the development or is a consequence of osteitis pubis (Verrall et al., 2005). 

A later study by Verrall et al. (2007) found that lower hip joint range of motion precedes 

chronic groin injury. They postulated if an athlete has reduced range of motion of the 

hip this adds greater stress to the pubic symphysis leading to osteitis pubis (Verrall et 

al., 2007). Research has established that the presence of FAI causes loss of internal 

rotation of the hip, incorporating clinical tests of hip rotation in the clinical diagnostic 

tests (Griffin et al., 2016; Clohisy et al., 2009). This occurs due to the contact of the 

femoral neck with the acetabular rim earlier than in individuals without the 

impingement therefore limiting the range of internal rotation. This link between the two 

conditions is therefore unsurprising. Birmingham et al. (2012) investigated the effect 

of cam morphology on the motion of the pubic symphysis. Their cadaveric study using 

simulated cam morphology found motion of the pubic symphysis at the point of bony 

contact between the femoral head-neck junction and the acetabular rim. There was 

significantly more rotation of the pubic symphysis in those with cam morphology in 

comparison those without the simulated impingement (Birmingham et al., 2012). Their 

study suggests that in normal state, during internal rotation, there is motion at the pubic 

symphysis when the femoral neck contacts the acetabular rim. In those with cam 

morphology this contact occurs earlier than is required for activity and therefore more 

likely to become pathologic with repetitive strain (Birmingham et al., 2012). As with 

many studies of this nature there are several limitations, for instance the artificial cam 

morphology used in this study is not an exact anatomic representation and the small 

sample size of only twelve hips. Furthermore, this study also does not consider the 

normal effect of muscular stabilisation and action during motion.  

 

Authors have reported athletic patients co-afflicted with osteitis pubis and 

femoroacetabular impingement (Larson et al., 2013; Matsuda et al., 2015). Matsuda 

et al. (2015) investigated the outcomes of treating FAI and osteitis pubis concurrently 

due to high prevalence of athletic patients with both osteitis pubis and FAI presenting 

at their practices. They recommend, although positive outcomes from treating both 

conditions, initial surgery for FAI followed by treatment for osteitis pubis, if symptoms 

persist. This is due to the belief that treatment of the FAI will reduce the stress transfer 

to the pubic symphyseal region therefore reducing symptoms of pubic pain (Matsuda 
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et al., 2015). A study by Phillips et al. (2016) also supports the idea that there is a 

possible correlation between cam morphology and osteitis pubis in the general 

population not just in athletes. Their retrospective study allowed them to rate and 

compare radiographic changes at the pubic symphysis between a population of 

individuals diagnosed with FAI and age-matched controls without FAI. They reported 

a statistically significant increase in the prevalence of osteitis pubis in patients with 

cam morphology in comparison to the age-matched control subjects. Additionally, they 

found in those controls which displayed signs of osteitis pubis, the average severity 

was lower than in patients with FAI. Although present in most patients with FAI, osteitis 

pubis was classified as being minimal or mild. The author believes this to be likely due 

to the fact these patients are not believed to be elite athletes and are younger therefore 

the osteitis pubis is not likely to have increased in severity (Phillips et al., 2016). Due 

to the retrospective nature of this study the authors were unaware of clinical 

information and medical history including pain and occupation, limiting the study to 

only imaging results. As with many clinical studies the small sample size is also a 

limiting factor. 

 
Osteitis pubis from a bioarchaeological and forensic perspective 

It is important to understand any condition likely to impact the pubic symphysis due to 

the common use of this area in the formation of a biological profile, particularly for age 

estimation. At the time of this study however osteitis pubis has not been widely studied 

within the disciplines of bioarchaeology and forensic anthropology. Judd (2010) 

suggests that this under-representation may be due to three factors:  

1. The pubic bones are often damaged or missing in many archaeological remains 

2. The changes commonly seen in the early stages of osteitis pubis may have been 

confused for signs of ageing 

3. The aetiology of this condition has remained unclear to many physicians.  

In addition to these factors osteitis pubis may have previously been mistaken for signs 

of parturition in females and there also may have simply been an unawareness of this 

condition and how it affects the bone. Judd (2010), Pfeiffer (2011) and Gregg and Bass 

(1996) are the few articles which present case studies of suspected osteitis pubis they 

attribute to athletic activity. Table 3-4 includes the diagnostic features determined as 

possible osteitis pubis by each author, while Figures 3-8 and 3-9 are examples of 

these suspected cases from Pfeiffer (2011) and Judd (2010). These studies are the 



 60 

few which address this condition through analysis of skeletal remains. There are 

currently no studies which have attempted to form set recording criteria to determine 

the presence of this condition on bone. This limits the understanding rates in past 

populations and also restricts recognition of this condition when forming age 

estimations from this area of the skeleton. 

 

Mays (2015) also highlighted the necessity for more awareness of how osteitis pubis 

affects pubic symphysis and the age estimation process. The formation of an age-at-

death estimates from adult skeletal remains is described by Cunha et al. (2009) as 

“the Achilles’ tendon of anthropology” predominately due to the differences between 

physiological age and chronological age. In archaeological populations, age 

estimation is important for palaeodemography as well as interpreting other data 

obtained from the skeleton such as disease rates (Mays, 2015). Where incorrect, 

estimations can cause misinterpretation of population demographics as well as other 

results such as rates of disease per age group. While in forensic anthropology, the 

aim of age estimation is to help reach a positive identification through comparison to 

missing persons data. Although these estimates are given in age brackets, lack of 

accuracy can result in ruling out the correct individual (Cunha et al., 2009). Many of 

the osseous changes used to diagnose this condition radiologically mirror some of the 

traits which represent the later stages of many age estimation methods (Mays, 2015). 

This suggests it is possible individuals with this condition would more likely to be given 

an over estimate for their physiological age in comparison to their chronological age. 

For both disciplines it is therefore important to be aware of a condition which is likely 

to impact the accuracy of these results. Therefore, due to the possible association 

between osteitis pubis and cam morphology, to fully understand the contributions to 

bioarchaeology and forensic anthropology that can be made by FAI, it is also important 

to raise awareness of osteitis pubis and also analyse the pubic symphysis for changes 

associated with this condition.  
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Table 3-4 Possible cases of osteitis pubis recorded on archaeological populations 

Author 
(date) 

Burial 
No. 

Specimen Diagnostic features observed on pubic bones  

Gregg 
and 
Bass 
(1996) 

B29A 

 

B7B 

B3E 
 

B6A 

 

 

 

B12D 

 

 
B71E 

 

 

 

B94 

 

(1) Pitting, bony spurs, changes to adductor longus and gracillis m. 

insertions 

(2) Pitting on anterior pubic face, changes to rectus abdominus insertion  

(3) Pitting, cystic changes at rectus abdominus m. insertion. Hypertrophy 
of superior and anterior portion of pubic bones.  

(4) Pitting, roughened pubic bones, defaced. Insertion of left rectus 

abdominus m. most affected 

(5) Pitting, roughened pubic bones, deformed, particularly the superior 

surfaces of rectus abdominis m. insertion  

(6) Pitting, scarred pubic bones, multiple cystic spaces. Anterior erosion 

to pubic bones. Rectus abdominis, gracillis, and adductor longus m. 

insertions involved.  
(7) Roughness, cystic degeneration, irregularity of pubic faces in area of 

rectus abdominis insertion 

(8) Pubic symphysis rough, eroded, cystic changes in subchondral layer, 

in area of rectus abdominis and gracillis m. insertions.  

(9) Old fracture of the pelvis. Bone spur extending distally 

(10) Deep pits, scarring, deformity with areas of cystic degeneration 

bilaterally. Insertions of the rectus abdominis and gracillis are involved  

Judd 
(2010) 

32 Pubic symphyseal faces completely flat and smooth with a sheen and 
macroporosity 

Figure 3-9 Right pubic 
symphysis with possible osteitis 
pubis. Source: Judd (2010) 

Figure 3-8 Left and right pubic symphyses with possible osteitis 
pubis. Source: Pfeiffer (2011) 
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Pfeiffer 
(2011) 

NMB 

1639 

 Pelvis skewed from midline.  

Auricular surface of right ilium is porous with slight eburnation.  

Osteophytes present on auricular surface.  

Left iliac auricular surface has porosity and is eburnated in the caudal 

region.  
Pubic faces both remodelled, osteophytes present. Right ventral 

surface showed smooth oval surface for attachment of gracillis, spicule 

of bone at attachment site for pectineus.  

Ventral half of right pubic has eburnation.  

The left pubis showed strong ridges at side of insertion of the gracilis 

tendon.  
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Chapter 4. Materials & Methods  
 
This chapter will focus on the samples selected for this research and the methods 

used. The first section will focus on the samples and what makes them appropriate for 

study, starting with the CT samples, then the Wharram Percy collection and followed 

by the Luís Lopes collection. For both the skeletal collections contextual information 

will also be included. The inclusion of contextual information is vital when forming 

interpretations regarding the cause of osseous changes. Following this, the methods, 

will describe each of the methods used for data collection. A description of the 

statistical tests selected for use will be provided and finally, inter- and intraobserver 

error rates will also be provided for several of the methods used.  

4.1. Ethics    
This study was approved by institutional ethics (CURES) prior to data collection 

through submission of a full research proposal. Additional approval was obtained via 

GAFREC through Coventry and Warwick University Hospital trust research and 

development department prior to collection of the CT scans. All CT scans were 

anonymised prior to collection, with only age in years (date of birth excluded) and sex 

included. The research proposal for GAFREC approval was submitted and data 

collection was carried out through members of senior clinical staff from the hospital 

trust. All data was stored on an encrypted hard drive at all times. With regards to the 

skeletal collections, access was granted by the curators of the Luís Lopes collection 

and the Historic England Committee for the Wharram Percy collection following 

submission of a complete research proposal. The human remains were accessed and 

handled following instructions set by the curators for both collections. Care and respect 

was maintained at all times and BABAO code of ethics was adhered to.  

4.2. Materials  

4.2.1. FAI- and non-FAI groups, University Hospitals Coventry and 
Warwickshire (UHCW) 
 
A sample of retrospective pelvic axially orientated CT scans were collected for 

eighteen individuals who had been undergoing investigation for FAI (termed the FAI-

group) at the time the image was taken, and a random sample of twelve individuals, 

having CT scans taken for reasons unrelated to FAI, including trauma (termed the non-
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FAI group). The scans for both groups were provided by consultant radiologists from 

the hospital trust and were grouped according to those being investigated for FAI and 

the random sample of controls. The scanner used was a GE 128 slice CT scanner. 

Information on when the scans were taken was not available as the scans were 

anonymised prior to collection, with only age in years and sex available. The 

retrospective nature of this sample meant there was no information on occupation or 

recreational activity was available as this is information is not typically recorded in 

patient demographics when imaging is taken, unless requested. This limited its use 

with regards to understanding more about the aetiology of this condition. In addition to 

this, no clinical information was available due to the requirement for anonymised data, 

consequently it was not clear which hip was under investigation for the FAI group or 

what type of FAI was being investigated (cam or pincer morphology).  

 

The FAI group was included to provide a clinical comparison, due to the limited 

awareness of how FAI presents on skeletal specimens. While the non-FAI represents 

a sample of ‘normal’ hips to determine which changes are due to this condition. 3D 

volume rendered models were created from the axially orientated CT scans to allow 

the observable changes and measurements to be directly comparable to the skeletal 

collections and observations made on bone. This will be described further in section 

4.3.2. 

4.2.1.1. Sample analysed 

Adults only were included (age >18 years) in this study. The average age for the FAI 

group was 41.6 years with a range of 36.0 years. While for the non-FAI group, the 

average age was 41.3 years with a range of 59.0 years. Males and females were 

included in both groups, with twelve males (24 femur) and six females (12 femur) in 

the FAI group, and seven males (14 femur) and five females (10 femur) in the non-FAI 

group. The demographic data for the number of individuals per age range category is 

shown in Table 4-1.  
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Table 4-1 Number of individuals per age range category by sex for FAI and non-FAI groups 

Group Sex 

Age range categories 

Total 18-29 years 30-49 years 50+ years 

FAI 

Males  1 8 3 12 

Females 0 4 2 6 

Total 1 12 5 18 

Non-FAI 

Males  3 3 1 7 

Females 1 1 3 5 

Total  4 4 4 12 

 

4.2.2. Wharram Percy Skeletal Collection   

The Wharram Percy skeletal collection is housed at Historic England, Fort 

Cumberland, Portsmouth. This collection represents one of the most widely studied 

and best known medieval villages in Britain (Sofaer Derevenski, 2000). The Wharram 

Percy skeletal collection encompasses around 900 years from mid-10th century to mid-

19th century excavated from the church and churchyard (Mays, 2007a).  
 

Over 900 skeletons were discovered in the church and churchyard with 687 of these 

being analysed and recorded (Mays et al., 2007). Figure 4-1 shows the plan of the 

churchyard with the seven excavated areas. The number of burials per phase include: 

CN, 39; EE, 98; G, 117; NA, 217; SA, 32; V, 52; WCO, 132. The assignment of phase 

was done through a variety of methods including; burials with radiocarbon dates, those 

datable by coffin fittings, stratigraphic relationships and burials from area of the 

churchyard with radiocarbon dating which had a restricted period of use. Each phase 

was assigned to the following time periods:  

• Phase 1 – 950-1066 AD – Large Anglo-Saxon 

• Phase 2 – 1066-1348 AD – Earlier medieval  

• Phase 3 – 1348-1540 AD – Later medieval  

• Phase 4 – 1540-1850 AD – Post medieval 
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The letter prefixes are not associated with antiquity, with the exception of the church 

naïve (CN) which is predominantly post medieval; EE, G and NA are predominantly 

late Anglo-Saxon to early medieval; SA and V are mainly from the late to post Medieval 

periods with some Late Anglo-Saxon to Early Medieval, while WCO was a mixture 

from all time periods (Mays et al., 2007).  

4.2.2.1. Contextual Information 
 
Wharram Percy is located in the Yorkshire Wolds. The medieval village was situated 

on the chalk plateau on the western side of the Wharram Percy valley. The church is 

positioned on an artificial terrace approximately 4.7m above the valley floor (Harding 

and Wrathmell, 2007).  
 
The lives of peasants in medieval rural populations was strenuous for children, women 

and men. Children worked as soon as they were able and would begin chores such 

as collecting wood or food resources by the age of 5 years (Mays, 2007). Distinctions 

in tasks between males and females was shown in children as well as adults. This was 

highlighted by a coroner’s report which described how in toddlers, boys died from 

Figure 4-1 Excavation plan of the church and 
churchyard at Wharram Percy, from Mays et al. (2007) 
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accidents outside the home, such as while working in the fields, while girls were more 

commonly injured from accidents with pots or cooking items, during this period 

(Bennett, 1987). By adolescence they would have carrying out similar tasks to those 

of adults and therefore be subjected to high levels of mechanical stress through 

strenuous physical labour (Mays, 2007). Typically involved in low-skill tasks such as 

labourers, ditchers, hedgers and helpers (Bennet, 1987).  

 

Males and females from rural medieval populations, such as the Wharram Percy 

collection, were believed to have been engaged in strenuous physical labour. The daily 

lives in a medieval rural population varied seasonally including ploughing in March and 

killing hogs in December (Judd and Roberts, 1999). In winter many peasants would 

have been involved in hunting and many households would have carried out additional 

tasks for additional income such as butchering, baking, timber production (Judd and 

Roberts, 1999). The sexual division of labour in these populations was therefore 

flexible in response to the varying demands of agriculture during the year (Bennett, 

1987). Females would have domestic duties, however it is likely they also undertook 

a large amount of tasks similar to males (Agarwal, 2012). Men usually carried out the 

heavy labour tasks such as; ploughing, carting goods and felling trees (Bennet, 1987) 

and they were prohibited from performing female domestic tasks, however roles 

outside this arena where more fluid between the sexes (Sofaer Derevenski, 2000) 

Females maintained the household including gardening, dairying and raising poultry 

but they would also have assisted with tasks in the fields (Bennett, 1987). Women 

would assist with harvest during the peak seasons while during winter the men would 

carry out more tasks near to the home (Judd and Roberts, 1999).  

 

Studies have analysed osseous changes of the Wharram Percy collection to infer the 

level of physical activity for this population and its sexual division. In their study, Sofaer 

Derevenski (2000) analysed a sample from Wharram Percy to compare activity-related 

osseous changes of the spine between males and females. They found only facet 

remodelling was statistically different between males and females, with a greater 

percentage in males suggesting greater load-bearing. The distribution pattern across 

the spine was similar between both sexes, suggesting a similar form and level of 

stress. The results of this study suggest similar daily activities between the sexes in 

this population based on osseous changes to the spine. Mays (2007a) considered 
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activity patterns in the upper limb via humeral diaphysis cross-sectional morphology 

in the Wharram Percy Collection. No significant difference was found between males 

and females which implied little difference in the activities requiring heavy mechanical 

loading of the upper limb between the sexes (Mays, 2007a). The high level of 

osteoarthritis in the population is another indicator of the level of physical activity 

(Mays, 2007a). The distribution of osteoarthritis differed between the sexes, with the 

joints of the upper limb being more affected in males, and the joints of the legs and 

back in females. This suggests, although the distribution of heavy work was split 

evenly, males tended to be involved in more strenuous activity using the upper limb 

while females carried out more physically demanding work which placed mechanical 

stress on the lower limb and back (Mays, 2007a). A study by Judd and Roberts (1999) 

analysed fracture patterns in a rural medieval skeletal sample as a method of 

determining daily living and working environments. They compared their results to 

those from additional British medieval samples, including one rural and three urban, 

to determine if the activities carried out in farming differed from those in the urban 

setting. The high prevalence of fractures in women in this rural setting indicated a 

physically demanding lifestyle for women as well as men. Judd and Roberts suggested 

that the low rates of age-related fragility fractures in women could also suggest that 

the physically activity rural lifestyle may have protected against this. They also noted 

the presence of greenstick fractures suggesting it is likely children were involved in 

some of the physically demanding tasks associated with medieval farming life. When 

they compared the fracture frequency of the rural population to the urban they found 

urban females had a lower frequency than any other group. This is likely due to the 

differences in general activities between the groups and rural females were involved 

in more dangerous daily tasks than the urban females. This high level of physical 

activity for males, females and children is reason for this sample selection. In order to 

determine if cam morphology is associated with occupational physical activity the 

Wharram Percy collection represents a population that had very physically demanding 

occupations.   

 

The rural economy at Wharram Percy varied over the large time span represented. 

Documentary evidence showed by the late 13th century the region was predominantly 

arable farming focused on wheat and barley (Oswald, 2004).  Sheep and cattle also 

played a role however by the 16th century there was an increase in sheep farming due 
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to the growth in the wool industry (Oswald, 2004). By 1773 records indicate there was 

however a land use from pasture back to arable. In addition to records the earthwork 

is indicative of cultivation and ploughing with the remains of medieval ridge and furrow 

cultivation surviving beyond the modern ploughing as well as possible indications of 

episodes of cultivation associated to the earliest forms of the village, pre-Norman 

Conquest (Oswald, 2004). Although there is a change in land use and the technology 

used, the work carried out here is consistently agricultural in nature and therefore 

potentially physically strenuous.  

 

Juvenile death rates give an indication of the sanitation and medical care of a 

population. In the Wharram Percy collection 45% of the total burials were aged less 

than 16 years which agrees with data from modern societies lacking medical care 

(Mays, 2007). In addition to this 15% of burials were infants (aged under one year).  

Stature provides information on any physiological stress which occurred during 

development due to nutrition or disease (Mays, 2007a). Low childhood stature 

suggests disease and poor nutrition was present in the population. When compared 

to data from 19th century urban factory working children the Wharram Percy children 

were not taller suggesting nutrition was the same as it was for the urban poor (Mays, 

2007a). The average stature for adults in the Wharram Percy collection was 168.8cm 

for males and 157.8cm for females. This is similar to St Helen-on-the-Walls, a 

churchyard which served a poor parish in York, and is similar to other late medieval 

sites (Mays, 2007a).  

4.2.2.2. Sample analysed from the collection  
From the Wharram Percy collection a total of 181 individuals were selected for analysis 

based on the exclusion criteria below. A final number of 111 individuals were analysed 

due to post-mortem damage on both femora of 70 individuals. From the final 111 

individuals, due to post-mortem damage or only one femur being present, it was only 

possible to measure alpha angles and/or non-metric traits on 99 left and 99 right 

femora. In some cases, of these 198 femora, post-mortem damage to the distal aspect 

of the femur or the greater trochanter meant it was not possible to measure alpha 

angles however it was still possible to record non-metric traits. In other cases, it may 

not have been possible to record the non-metric traits but alpha angles could still be 



 70 

measured. The number of femora included for each section of analysis will be included 

throughout the result section.  

Exclusion criteria included: 

• Any individual with an estimated age-at-death of <18 years/ unfused femoral 

epiphysis 

• No femora, acetabula or pubic symphysis present 

• High levels of post-mortem damage to the femur which would affect recording  

• Those with restricted access by the museum or difficulty with access 

• DISH or ankylosing spondylitis (characterised by sacroiliac joint fusion and 

fusion of the ligaments, candle-wax appearance on the right side of at least four 

vertebrae (Resnick and Niwayama, 1976; Ortner, 2003; Saleem and Hawass, 

2014) as it has been reported in the literature to present at the hip joint in a 

similar way as FAI (Tannast et al., 2007; Anderson et al., 2010).  
   
The age and sex estimations originally carried out by the curators, as outlined in 

(Mays, 2007a), was provided during the data collection process and used in this study. 

An additional sex estimation was performed during the analysis, using Buikstra et al. 

(1994) however due to the level of agreement, the findings reported by the curators 

was used with regards to age and sex. Both males and females were selected for 

analysis to determine if there is any sexual dimorphism in any of the recorded changes. 

The distribution within the sample based on age and sex is presented in Table 4-2 

below.   
 
Table 4-2 Distribution of the Wharram Percy sample by age range categories and sex 

 
The number of individuals from each excavation area included in this study are 

presented in Table 4-3 below. Individuals were not excluded based on phase from this 

study due to the requirement for increased sample size. This sample therefore 

represents a time span from the 10th-19th century which needs to be considered when 

Sex 
Age range categories 

Total  18-29 30-49 50+ Indeterminate 
Males 12 21 21 14 68 
Females 12 19 8 1 40 
Female? 1 2 0 0 3 
Total  25 42 29 15 111 
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analysing the impact of physical activity. It cannot be assumed the level and type of 

physical activity did not vary over such a broad time period with changes in technology 

and land use, as discussed in section 4.2.2.1. In their initial analysis of the skeletal 

collection from Wharram Percy, Mays (2007a) did not find “evidence for any great 

secular change in post-cranial skeletal morphology” therefore although it is likely there 

would have been a change in activity, the osseous markers analysed by Mays do not 

reflect this significantly. This population were still an agricultural and continuously 

involved in physically demanding manual labour in comparison to a modern urban 

population but this caveat needs to be recognised when interpreting results.  

 
Table 4-3 Number of individuals per excavation area from the Wharram Percy collection 

Excavation 
areas N of Males N of Females N of Female? Total N  
G 13 11 0 24 
NA 14 6 2 22 
CN 12 5 0 17 
WCO 15 10 1 26 
SA 5 3 0 8 
V 3 1 0 4 
EE 6 4 0 10 

 

4.2.3. Luís Lopes Identified Skeletal Collection (LLC)   
The Luís Lopes or Lisbon Collection (LLC) is housed at the Bocage Museum (National 

Museum of Natural History), Lisbon, Portugal. A brief history of the collection was 

published by Cardoso (2006). The collection was initiated by Luís Lopes from 1981-

1991, then Hugo Cardoso from 2000. At the time of Cardoso (2006) the collection 

consisted of 1,692 skeletons, however the collection continues to be curated. Six 

hundred and ninety nine skeletons have basic documented information readily 

available from coffin plates, grave numbers, cemetery registers and death registration 

records, which includes: age at death, place of birth, occupation, date and cause of 

death (Cardoso, 2006). The collection consists predominantly of those of Portuguese 

nationality, with 45% of which coming from the district of Lisbon. In addition to this 

there are individuals from former Portuguese overseas colonies and individuals from 

Brazil, Spain, France and Italy (Cardoso, 2006).  The years of death are between 1880 

and 1975, with the age at death ranging from 0 to 98 years, however largely consisting 

of those over the age of 50 years (Cardoso, 2006). In terms of socio-economic status, 
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Map of Portugal  

it was determined this collection represents a low to middle socioeconomic strata 

based information on known male occupation (Cardoso, 2006).  

 

Identified skeletal collections are valuable for bioarchaeological study due to the 

quantity and quality of the data available regarding each individual. Unlike the use of 

archaeological collections, were age estimates are purely biological ages, based on 

observable osseous changes in sometimes wide and inconsistent brackets, identified 

collections provide accurate age information. Identified collections have been used to 

test and develop methods of age and sex estimates, as well as determine associations 

between osseous changes and disease or activity (Alves Cardoso and Henderson, 

2013; Matos and Santos, 2006;Cardoso and Henderson, 2010; Campanacho et al., 

2012). The LLC was therefore included in this study for several reasons. The 

availability of occupational information made it possible to address the research aim 

of determining if there is a link between cam morphology and occupational activity. 

While the exact age data for each individual made it possible to control for this factor 

when analysing the presence of osteitis pubis and cam morphology. This collection 

also represents a late 19th- early 20th century urban population which contrasts to the 

medieval rural population of the Wharram Percy collection. This therefore allowed 

comparisons between collections to determine if there was a difference in non-metric 

traits and cam morphology between the rural and urban settings.  

4.2.3.1. Contextual Information  

Lisbon is the capital city of Portugal, located in the south centre of the country. The 

city covers over 84km2 and extends along the Tagus River for 18.8km. It is a hilly city 

with the altitude ranging from 6 to 226m (Oliveira and Pinho, 2010). 

The collection consists of individuals who lived during the 1800s and 1900s. During 

this time Portugal went through many political changes which had an impact on the 

sociocultural environment of the country. The 19th Century saw a period of political 

instability and civil unrest. During this period the fight for power by political forces lead 

to various coups, dictatorship and periods of civil war in the country (Baiôa and 

Fernandes, 2003).  
 

Portugal was a declining world political power by the end of the 19th century. The 

agricultural system was fragmented, and industrialisation was late (Cardoso, 2007). It 
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was not until the 1970s, following the dictatorship being overthrown that there were 

improvements to social welfare of the country (Cardoso and Garcia, 2009). The late 

19th and early 20th century saw migration towards the urban centres from agricultural 

settlements causing huge population growth in Lisbon (Cardoso and Garcia, 2009). 

The economy in Lisbon was mixed. A combination of manufacturing and service 

sector, as well as, to a lesser extent agriculture and fishing. In the late 18th century 

around half the male work force was around trade, transport, public service and liberal 

professions while one third was made up of craftsmen and apprentices (Reis, 2009). 

From the 1840s industrialisation took place and around 1900 employment in industrial 

related trades, such as construction, made up 40% of the work force and the service 

sector was approximately 35% (Reis, 2009). This society has been reported to have 

had low social mobility with many fathers and sons had the same/similar occupations 

(Reis, 2009).  
 

Like many other large cities at the time the descriptions of the living conditions during 

this time were particularly negative, being described by novelists as “sombre and fetid” 

(Reis, 2009). The increase in population density, due to industrialisation, caused 

overcrowded unsanitary living conditions for the working classes. To illustrate this, 

Moreira (1950) as cited in Cardoso and Garcia (2009), found 43% of working-class 

housing had no piped water, 69% had no electricity and 81% had no toilet. In the early 

20th century health care was fee-paying and restricted. The Portuguese National 

Health Service was then introduced between 1974 and 1981 (Veiga et al., 2000). The 

introduction of these services can be seen to have had direct effects on the health 

indicators of the population such as mortality rates. Between 1950/55 and 1990/95 

there was an increase in life expectancy of 13.9 years for men and 16.2 years for 

women (Veiga et al., 2000).     

4.2.3.2. Sample analysed from the collection   
A total of 172 male skeletons were selected for this study, however a total of 108 males 

were recorded due to the presence of post-mortem damage, DISH or access issues.  

From the final 108 individuals, due to post-mortem damage or only one femur being 

present, it was only possible to measure alpha angles and/or non-metric traits on 106 

left and 106 right femora. In some cases, of these 212 femora, post-mortem damage 

to the distal aspect of the femur or the greater trochanter meant it was not possible to 
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measure alpha angles however it was still possible to record non-metric traits. In other 

cases, it may not have been possible to record the non-metric traits but alpha angles 

could still be measured. The number of femora included for each section of analysis 

will be included throughout the result section. Exclusion criteria were the same as for 

the Wharram Percy collection with the addition of:  

• Conditions recorded as cause of death known to have a potential impact on the 

pubic bones e.g. urinary tract infection (LLC only). 

• Females  

• No occupation information available 

Only males were included in this sample due to the ambiguous nature of the recorded 

occupational information for females. Eighty five percent of the females in the 

collection had an occupation recorded as ‘housewife’ (Cardoso, 2006). It is too difficult 

to determine the nature of the work these women would have undertaken and how 

physically demanding this would have been therefore they were excluded from this 

sample.  
 

The average age for the selected sample is 53.8 years and with a range of 69.0 years. 

Figure 4-2 shows the sample distribution for age-at death for the study sample.  

 

 
Figure 4-2 Histogram of LLC sample age (years) data 



 75 

4.2.3.3. LLC occupational activity categories  
 
The total list of occupations from the LLC was grouped into occupation categories 

using the International Standard Classification of Occupations 2008 (ISCO-08) 

publication and database (International Labour Office (ILO), 2012). The ISCO-08 was 

developed as a system for the classification of occupational information to allow global 

comparison. It classifies all jobs in the world into 436 groups, which are further grouped 

into 130 minor groups, 43 subgroups and 10 major groups. These groups are based 

on skill level and specialisation required for each job, with information being obtained 

via statistical censuses and surveys. For each of the 436 groups of occupations a list 

of job-specific tasks is also provided. The 10 major groups include:  

 

0. Armed Forces Occupations 

1. Managers 

2. Professionals  

3. Technicians and Associate Professionals  

4. Clerical Support Workers  

5. Services and Sales Workers 

6. Skilled Agricultural, Forestry and Fishery Workers  

7. Craft and Related Trades Workers  

8. Plant and Machine Operators and Assemblers  

9. Elementary Occupations  

This system has been employed here as it proves a global list of occupations and 

therefore not specific/bias to one country. Furthermore, it provides a detailed 

description of the job-specific tasks for each occupation listed, which is useful for 

further categorisation in to occupational activity groups.  

 

Each of the occupations from the LLC were identified in the ISCO-08 database and 

grouped into one of the major groups. Some occupations documented for the LLC had 

a level of ambiguity, for example, ‘hospital employee’; which could be any combination 

of occupations and therefore would fall into several ISCO-08 categories from 1 to 9. 

An additional group, ‘10. Undetermined’, has therefore been created for those 

occupations too ambiguous to categories in this manner. To further sort these 

categories to allow statistical analysis, Major Groups ‘1. Managers’ and ‘2. 
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Professionals’ were combined to form ‘Group 1. Managers/Professionals’. Group 6 

was also removed due to no individuals having occupations applicable to this category. 

Group ‘8. Plant and Machine Operators and Assemblers’ was also removed and the 

two individuals placed under this category were added to Group ‘4 Services and Sales 

Workers’ as it was felt the occupation of “Driver” was relevant for this category. This 

formed the categories as shown in Table 4-4 for occupations within the sample. 
 
Table 4-4 Number of individuals per updated ISCO-08 categories 

Occupation Groups   N % 
 0. Armed Forces Occupations 8 7.4 

1. Managers/Professionals 10 9.3 

2. Technicians and Associate 
Professionals 

7 6.5 

3. Clerical Support Workers 12 11.1 
4. Services and Sales Workers 20 18.5 
5. Craft and Related Trades Workers 35 32.4 
6. Elementary Occupations 4 3.7 
7. Undetermined 12 11.1 
Total 
 

108 100.0 

 
The occupations for the LLC were grouped to explore the association between non-

metric traits and/or alpha angles with physical activity. Various anthropological studies 

have utilised identified skeletal collections to determine the affect physical activity has 

on various parameters on the skeleton e.g. Campanacho et al.,  2012; Cardoso and 

Henderson, 2010; Niinimäki and Baiges Sotos, 2013; Zampetti et al., 2016.  These 

collections allow an opportunity to further understand the occupations of past 

populations, as well as, activity related skeletal changes (Perréard Lopreno et al., 

2012). Throughout the many studies utilising identified skeletal collections there are 

various methods used to categorise occupational groups. The article by Perréard 

Lopreno et al. (2012) provides an overview of the various methods used to categorise 

activity from documented occupational information using identified skeletal collections. 

The sheer number of methods used highlights just one of several limitations in doing 

so. In addition, the differences in methods used to categorise occupations makes 

comparisons between studies difficult. The use of documented occupation information 
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is not without its pitfalls as outlined below (highlighted by Alves Cardoso and 

Henderson (2013): 

• A record of occupation does not provide full information on all activities an 

individual was involved in, for instance, it would not be possible to determine 

recreational activities.  

• The occupations recorded only presents occupation at one time point, not 

allowing for changes at different points in life.  

• If incomplete or unclear documentation is provided, this could affect 

interpretation.  

• There are difficulties in determining the physical aspects and tasks the 

occupations require.  

• Other stimuli from the individual’s environment can also play a large role in this 

e.g. age, socio-cultural environment, recreational activities or duration spent in 

the listed occupation and previous occupations.  

• Difference in perspectives on the interpretation of occupations due to social, 

cultural and economic setting in which they are interpreted. 

 

While some of these factors are unavoidable, such as; the lack of awareness regarding 

recreational activity, the methods used in this study attempted to overcome several of 

these factors. Although there is a possibility of a change in occupation during an 

individual’s life the low social mobility at this time in Portugal meant it was possible to 

assume the last occupation was an accurate representation of the level of 

occupational physical activity during the individuals life (Campanacho et al., 2012). An 

international classification system was used to remove the difference in perspective 

with regards to interpretations of occupations between different cultures. Other factors 

such as, age and sex, are controlled for during the analysis to prevent any possible 

effect they may have and in the discussion chapter various other stimuli will be 

addressed.  

 

Three different methods of activity classification have been incorporated in this study 

to remove the possibility that the method used will impact the results. Alves Cardoso 

and Henderson (2013) found the frequency of recorded entheseal changes was 

dependent on the method used to categorise occupational activity. They found this to 
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impact significance and therefore the interpretation of the results. It was felt the 

inclusion of several methods was important to determine if there was a difference in 

results and interpretation dependent on the classification methods used. Methods I & 

II, used modern international occupation classification systems and a comprehensive 

database of energy expenditures for certain activities to classify physical activity 

(described in more detail below). Methods I & II were included as they provided a 

quantitative method for categorising occupations and therefore reduce user 

subjectivity when categorising each occupation. While method III used a reference 

database of compiled occupational categories from previous identified skeletal 

collection studies. This method was included to provide comparable data to other 

studies analysing identified skeletal collections. Additionally, the energy expenditure 

values used in the previous methods have not been widely used in bioarchaeological 

study and therefore it was felt it was important to include a previously tested method.  

 

Methods I & II: ISCO-08 and compendium of physical activity  

Deyaert et al. (2017) devised a method to determine the level of physical activity for 

various occupations, by combining a database of the energy cost of specific activities 

(the Compendium of Physical Activities) and the international classification system 

(ISCO-08). This method was formulated to overcome the limitations of using self-

reported methods, such as issues with recall and social bias, and wearable devices 

such as small sample sizes and lack of context (Deyaert et al., 2017). This method 

applied Ainsworth and colleagues’ ‘Compendium of Physical Activities’, as a resource 

to classify the energy cost of particular activities (Ainsworth et al., 2011). The 

Compendium provides a list of daily physical activities and an associated measure of 

physical activity energy expenditure in the form of Metabolic Equivalent of Task (MET) 

values. The MET values are defined as “the ratio of the work metabolic rate to a 

standard resting metabolic rate of 1 kcal/kg/h” and therefore indicate how physically 

demanding an activity is compared to a situation at rest (Ainsworth et al., 2011). The 

activities found in the Compendium and the associated MET levels were obtained from 

various sources including surveys, logs, dairies and charts, tables and published 

studies respectively (Tudor-Locke et al., 2009). The compendium has been used in 

bioarchaeological study by Winburn and Stock, (2019) and Winburn (2019). In their 

study, Deyaert et al. (2017) attached MET values from the Compendium to each job-

specific task listed for each of the 436 occupations from the ISCO-08 manual. A MET 
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value for each occupation was calculated by averaging the job-specific MET values 

for each occupation. This method allowed MET values to be applied for every 

occupation in the ISCO-08 manual. 
 

The method created by Deyaert et al. (2017) has been implemented in this study to 

allow the groupings of occupations based on level of physical activity. Each of the LLC 

occupations were located in the ISCO-08 manual and database which allowed a list 

of tasks for each occupation, based on information from ISCO-08, to be collated. 

Those tasks which were unlikely to have been performed in 19th-20th century were 

excluded e.g. computer work. Using the database compiled by Deyaert et al. (2017) 

of MET values for each individual task and the average for each occupation, the 

adjusted average was applied to each occupation from the LLC.  
 

Several of the occupations were difficult to assign to a specific occupation in the ISCO-

08, including: 

• City Council Employee 

• Hospital Employee 

• Student 

• Civil Servant 

• Corporation employee 

• Industrial 

These occupations were therefore excluded to avoid bias, as they could not be linked 

to various occupations in the ISCO-08 list. In addition to this, ‘armed forces 

occupations’ did not have a list of tasks in the ISCO-08 manual. Deyaert et al. (2017) 

assigned an average MET score of 2.5 for those occupations without clear tasks, 

however, as there is an array of job roles within this occupation category it is difficult 

to determine the true MET score. The armed forces occupations were therefore 

excluded from this section of analysis.  
 

Once the average MET score had been calculated for each occupation, in addition to 

using this data in a continuous manner, the list was divided into groups based on 

physical activity levels. The determination of groupings for occupational activity was 

done in two ways: 
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Method I: Percentiles within the sample  
The first method used to categorise physical activity was achieved by dividing the 

sample MET values into percentiles: 

• Low physical activity (33rd Percentile): ≤ 2.22222 

• Moderate physical activity: > 2.222 < 3.0000 

• High physical activity (67th Percentile): ≥ 3.000 

This method was included to analyse the impact of different levels of physical activity 

within the sample. Low physical activity represents the lowest 3rd of occupation MET 

values while the high physical activity category is the highest 3rd of MET values within 

this sample.  

Method II: Ainsworth et al. 2011 intervals for determining physical 
activity 
In their article Ainsworth et al. (2011) list the commonly used activity thresholds for 

determining the level of physical activity based on MET values, from various studies 

(Pate, 1995; Pate et al., 2008; Tudor-Locke et al., 2009; Patel et al., 2010). These 

intervals have been used here to divide the population into groups based on physical 

activity and include: 

• Sedentary behaviour (1.0-1.5 METs) 

• Light-intensity (1.6-2.9 METs) 

• Moderate-intensity (3-5.9 METs)  

• Vigorous intensity (³6 METs) 

These categorise were included as they are commonly used, predefined threshold 

values determined through various previous studies. These thresholds have been 

tested and determined to represent each of the levels of physical activity they have 

been allocated too. Additionally, the inclusion of widely used thresholds allows the 

production of comparable data. 

 

Method III: Bioarchaeological classification 

Perréard Lopreno et al. (2012) addressed various methods of classifying occupations 

from identified skeletal collections by physical activity and thus a reference database 

was formed to allow a level of comparison between future studies. In their study they 

included eight case studies, from seven identified skeletal collections in Europe. They 
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showed typically two forms of classifying criteria, biomechanical and socio-cultural 

criteria, were used to categorise occupations. They found a high level of agreement 

between studies using biomechanical criteria, while the socio-cultural categorisation 

methods were not as comparable. The categories of manual and non-manual activities 

showed low discrepancy between authors and, in the database, there were more 

occupations categorised using this method than for other biomechanical criteria. For 

these reasons, occupations were grouped in this way. To achieve this, occupations 

were located within the database and grouped, as listed, as either:  

• Manual 

• Non-manual  

• Undetermined (if the occupation was not listed in the database)  

 

This method was used to allow the creation of comparable data to other studies on 

occupational activity using identified skeletal collections. It was also included to 

determine if there was a difference between methods generated for identified skeletal 

collections and methods from modern living population information (MET values). 

Furthermore, this method does not rely on MET values which have not been commonly 

used for bioarchaeological study, and so it is undetermined if they are applicable to 

past populations. 

4.3. Methods   
This section describes the methodology used to analyse both the skeletal collections 

and the 3D volume rendered CT models. It also outlines the statistical analysis used 

and the inter- and intra-observer error rates.  

4.3.1. Photography  
For both skeletal collections, to determine the presence of cam morphology 

measurements were recorded on digital photographs to replicate clinical 

measurements, without the use of medical imaging. The only method developed for 

these measurements is by Toogood et al. (2009). This method was selected as it does 

not require the bones to be held in a way that could potentially cause damage, it is 

currently the only method that replicates the medical imaging orientation commonly 

used to record alpha angles, it is simple to reproduce and the results are comparable 

to previous studies incorporating the same method (Moats et al. 2015; Fikkers et al., 
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2015; Lawrence et al. 2018; Unnanuntana et al., 2010). 
  

The images were taken with the camera set up perpendicular to the desk (axial view). 

A fixed arm was used to ensure the camera was held in this position throughout the 

recording (as shown in Figure 4-3), allowing each image to be in the same orientation. 

Adapted miniature spirit levels were attached to the camera to ensure it was levelled 

at all times. ‘Inclination view’ photographs were taken from this orientation. For the 

inclination view, the femur was rested on the desk, ensuring both medial and lateral 

condyles and the greater trochanter were in contact with the desk surface. The femur 

was abducted, so the femoral neck was parallel to the edge of the table. The inclination 

view is thought to mirror the MRI slice used by Nötzli et al. (2002) to measure alpha 

angles (Moats et al., 2015). Additional photographs were taken of the pubic 

symphyses and the anterior aspect of the femoral head-neck junction.  

4.3.2. CT 3D volume rendering  
All CT scans were input into Horos, in the form of DICOMs, to create the 3D volume 

rendered models. Horos is a free and open source code software (FOSS) program 

that is distributed free of charge under the LGPL license at Horosproject.org and 

sponsored by Nimble Co LLC d/b/a Purview in Annapolis, MD USA.  

 

To produce the 3D volume rendered models of each femur, regions of interest (ROI) 

were set via HU (Hounsfield units) threshold values. The Hounsfield scale represents 

Figure 4-3 Photography set up at Bocage Museum, 
Lisbon 
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the density of the tissue being scanned. Water has the density of 0 HU while air has a 

value of -1000 HU. This unit of measure, therefore, allows the differentiation of 

different tissues due to the difference in density (Broder, 2011). This was achieved 

using the ‘Grow Region (2D/3D segmentation)’ option. Once in this option, by selecting 

the area of interest, the ROI is defined by HU thresholds. This option allows ROI to be 

applied to each slice based on this initial selection. Through manual inspection all 

other selected bones were erased to leave only the femora as the ROI. To exclude the 

areas outside the selected ROI, the pixel values were set to -3024 (the default number 

for black), to exclude them from the final rendering. The 3D volume rendering setting 

was then selected to produce the model.  

 

To orientate each femur to be in a comparable manner to the inclination photography 

view, the axial view orientation setting was selected, which orientated the bone on its 

posterior surface (pointing down) with the inferior aspect orientated towards the 

screen. The model was then rotated to view the superior surface, ensuring both 

trochanters were inline. The model was then rotated either medially or laterally 

(abduction or adduction of the femur), dependent on side, to achieve maximum 

exposure of the femoral neck. No smoothing was used to avoid loss of any osseous 

changes.  

4.3.3. Quantitative measurements  
Alpha angle measurements are the most commonly used method to determine the 

presence of cam morphology clinically. For this reason, this quantitative measurement 

has been included in this study. Offset ratio measurements were also included as 

several studies (e.g. Toogood et al., 2009; Fikkers et al., 2015; Zeng et al., 2016)  have 

shown a relationship between this measurement and alpha angle size. For each of 

these studies, using the offset ratio method as outlined by Toogood et al. (2009), with 

increasing alpha angles comes smaller anterior/posterior offset ratios and therefore a 

more posteriorly offset femoral head. It was felt that it was important to include this 

measurement in the study of cam morphology as it clearly has an impact. Additionally, 

due to the differing locations along the head and neck region of the non-metric traits 

included in this study the orientation of the femoral head in relation to the neck is likely 

to have an impact on the alpha angle size due to these traits. For instance, if the trait 

is located on the junction between the head and neck, with a more posteriorly 
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orientated head this would cause a higher alpha angle than if the head was more 

anterior translated with the same trait. Offset ratios were therefore measured to be 

controlled for when analysing the presence of cam morphology both individually and 

in relation to non-metric traits.  

4.3.3.1. Alpha angle measurements  
All measurements were made using Fiji (a form of ImageJ software) (Schindelin et al., 

2012). To measure the alpha angles, as shown in Figure 4-4, the centres of the femoral 

head and neck were identified. To achieve this, a best fit circle was drawn around the 

femoral head and the centre of the circle was found automatically. To identify the 

centre of the femoral neck the rectangle tool was used. The four points of the rectangle 

were placed, two points on either side, at the narrowest points of the neck. The centre 

of the rectangle is found automatically. A line was then drawn through the centre of 

the femoral neck to the centre of the femoral head. Then a line from the centre of the 

femoral head to the point where the surface of the neck intersects with the circle 

around the femoral head anteriorly.  For this study, alpha angle cut-off values of ≥50˚, 

≥55˚ and ≥60˚ were used to indicate the presence of cam morphology. These 

thresholds were used as they were the most commonly utilised in the literature.  

4.3.3.2. Offset ratio measurements  
The method to measure offset ratios was also as per Toogood et al. (2009) and using 

Fiji. On the inclination view images, the centre axis of the femoral neck (irrespective 

of the femoral head) was found by placing three parallel lines, each directed from the 

Figure 4-4 No. 1615 Alpha angle measurement. Luís Lopes 
Anthropological Collection, MUHNAC (Photograph by E. 
Saunders © ULisboa-MUHNAC) 
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anterior side of the neck to the posterior side, at the narrowest points. Fiji automatically 

placed markers at the centre of each of these lines. A line was placed along each of 

these central points, which produced the central axis of the neck. Two lines, parallel 

to the central axis line are drawn, with one against the concavity of the femoral neck 

and one by the convexity of the femoral head. The anterior (AOS) and posterior (POS) 

offset are the differences between these two lines, on the anterior and posterior side 

of the femoral head-neck region. Offset ratio is the calculated as AOS/POS. In this 

study the height measurement of the rectangular tool was used to determine AOS and 

POS to ensure these lines were parallel. Figure 4-5 is an example of how the offset 

ratio measurements are taken.  
 

4.3.4. Non-metric trait recording  
Non-metric traits of the anterior-aspect of the femur were recorded using the method 

by Radi et al. (2013). These traits included; Poirier’s facets, plaque and cribra. This 

method was selected as it allows a more consistent approach to the identification and 

recording of non-metric traits on the anterior aspect of the femur in comparison to other 

methods. Table 4-5 below is the recording criteria produced by Radi et al. (2013) for 

each non-metric trait. Figures 4-6 to 4-11 are images taken during this study 

demonstrating examples of each of these traits.  

Figure 4-5 No. 1444 Offset ratio measurement. Luís Lopes Anthropological 
Collection, MUHNAC. (Photograph by E. Saunders © ULisboa-MUHNAC) 
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Figure 4-6 No. 373 Poirier's Facet. Luís Lopes 
Anthropological Collection, MUHNAC. (Photograph 
by E. Saunders © ULisboa-MUHNAC) 
 

Figure 4-7 No. 233 Plaque, Type A. Luís Lopes 
Anthropological Collection, MUHNAC. (Photograph 
by E. Saunders © ULisboa-MUHNAC) 

 

Figure 4-8 No. 236 Plaque, Type B. Luís Lopes 
Anthropological Collection, MUHNAC. (Photograph 
by E. Saunders © ULisboa-MUHNAC) 

Figure 4-9 No. 1226 Plaque, Type C. Luís Lopes 
Anthropological Collection, MUHNAC. (Photograph 
by E. Saunders © ULisboa-MUHNAC) 

Figure 4-10 No. 391 Cribra, Type 1. Luís Lopes 
Anthropological Collection, MUHNAC. (Photograph 
by E. Saunders © ULisboa-MUHNAC) 

Figure 4-11 No. NA094 Cribra, Type 2. Wharram Percy 
Skeletal collection, Historic England. (Photograph by 
E. Saunders) 
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Table 4-5 Non-metric traits classification method by Radi et al. (2013) 
Feature 
 

Definition Recording method 

 
Poirier’s 
facet 

 
Lateral expansion of the anterior portion of the femoral head articular surface 
towards the anterior aspect of the femoral neck.  
Expansion surface is virtually smooth, on the same plane and in continuity 
with the articular surface of the head.  
 

0. Absent  
1. Present  

NR. Not recordable 
  

 
Plaque  

 
Imprint located on the anterior margin of the femoral neck close to the head. 
The plaque may be present in three shapes (form) and mat be delimitated, 
even partly, by a distinct border (edge).  

 
0. Absent  
1. Present  
NR. Not recordable 
 

Form: 

A. The plaque is on the same plane as the femoral head, but is 
perceptible as a distinct formation, due to its entirely rough 
surface, with respect to the head surface, which is smooth  

B. The plaque is on an intermediate plane between the femoral 
head surface and the neck surface  

C. The plaque surface is entirely or in part lower than the 
femoral neck plane 

 
NR. Not recordable  
 

Edge:  

0. Absent 
1. Bony rim protruding no more than 1mm 
2. Pronounced bony rim protruding more than 1mm  
NR. Not recordable  

Cribra 
 
Cortical discontinuity in a circumscribed area on the anterior portion of the 
femoral neck, next to the head. Any porosity on the articular surface of the 
femoral head as well as on the physeal scar is not to be taken in account  

 
0. Absent  
1. Clustered pores (diameter ~2mm or more) on cortical surface  
2. Cortical erosion with exposition of trabeculae. Area of erosion 

could be depressed 
 
NR. Not recordable  
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4.3.5. Osteitis pubis recording  

Osteitis pubis recording criteria was developed through a review of the clinical 

literature. Articles which included descriptions of osseous changes at the pubic 

symphysis for symptomatic individuals with osteitis pubis were included, while those 

which presented; single case reviews only, bacterial osteitis pubis and cases due to 

parturition, were excluded. The most common diagnostic observations for osteitis 

pubis at the pubic symphysis from the literature included; sclerosis, widening, vertical 

displacement, subchondral cysts, osteophytes, erosions and irregularity (See 

appendices 1 for examples of the articles included). A major limitation of using clinical 

radiographic observations to determine criteria visible on osseous specimens has 

previously been highlighted (Mays, 2012). When forming these recording criteria those 

changes which could not be observable on skeletal remains were excluded including; 

widening and vertical displacement. Porosity and eburnation on bone has been 

reported to correspond to subchondral cysts and sclerosis seen on radiographs in the 

living (Mays, 2012). The porosity usually corresponds to subchondral cysts and 

eburnated bone is sclerotic (Mays, 2012; Rogers and Waldron, 1995; Rogers et al., 

1990). The observed features from previous literature, suggesting the presence of 

osteitis pubis on skeletal remains, were also considered when forming these criteria.  

The resulting criteria much resembles that used for the recording of osteoarthritis at 

other areas of the body. The pubic symphysis is capable of a small amount of 

movement (Becker et al., 2010) and some of the main reported imaging criteria 

included widening and vertical displacement of the symphysis which are indicative of 

movement (Miller et al., 2003). In addition to this, Calce et al. (2017) included osteitis 

pubis in their analysis of osteoarthritis. The recording criteria shown in Table 4-6 was 

applied to each pubic symphysis from both skeletal collections. Each feature was 

recorded as absent (A), present (P) or unobservable (U). Figure 4-12 to 4-16 show 

example of pubic symphysis recorded for having each of the recording criteria, 4-12 

demonstrates eburnation focused predominantly at the rim, 4-13 shows porosity to the 

symphysial face, 4-14 demonstrates erosions, 4-14 shows irregularity and 4-15 

demonstrates osteophytes.  
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Table 4-6 Osteitis pubis recording criteria 

Feature  Description 

Eburnation  Smooth, polished appearance of exposed subchondral bone caused by 
bone-on-bone contact at articular surfaces (Buikstra et al., 1994) 
 

Porosity Small openings that pass directly or indirectly through a structure (Buikstra 
et al., 1994) 
 

Erosions Areas of bone loss, often at the joint margins or, in some cases, on the 
joint surface. True erosion has the following characteristics:  
Cortical destructions, undercut edges, exposed trabeculae, sharp or 
scalloped ridges, scooped floor (Waldron, 2012) 
 

Irregularity Articular surface irregularity  

Osteophytes Small abnormal bony outgrowth or protuberance (Buikstra et al., 1994) 
 

 
  

  

Figure 4-12 No. 465 
Eburnation. Luís Lopes 

Anthropological Collection, 
MUHNAC. (Photograph by E. 

Saunders © ULisboa-
MUHNAC) 

 

Figure 4-13 No. NA066 
Porosity, Wharram Percy 

Collection, Historic England. 
(Photograph by E.Saunders) 

Figure 4-14 No. EE099 
Erosions. Wharram Percy 

Collection, Historic England 
(Photograph by E. Saunders) 

Figure 4-15 No. WCO109 Irregularity, 
Wharram Percy Collection, Historic 
England. (Photograph by E. Saunders) 

Figure 4-16 No. EE099 Osteophytes, 
Wharram Percy Collection, Historic 
England (Photograph by E. Saunders) 
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4.3.6. Statistical analysis  

The current section describes the statistical methods performed throughout this study. 

All statistical analysis was performed using SPSS 25.0 for Mac. Unless stated 

otherwise, the results will be present in the formation of mean ± standard deviation. A 

significant difference was determined by a p-value of <0.05, unless a Bonferroni 

correction is applied (this will be stated in the text).  

 

Unless carrying out paired analysis, the left and right femur were analysed separately. 

This was to ensure the assumption on independence was met as it cannot be assumed 

variation on one side is independent of the other.   

 

Where possible descriptive statistics were reported for each continuous variable, these 

include; frequencies and percentages, as well as mean, minimum, maximum, range 

and standard deviation. All continuous variables were tested for normal distribution 

using the Shapiro-Wilk statistical test to determine if parametric tests could be used. 

Normality was assumed when p > 0.05 for Shapiro-Wilks test. If p < 0.05 the normality 

Q-Q plots were inspected. When the sample size was >30, normality was assumed in 

accordance with the central limit theorem (Weiss, 2017). If data was not normally 

distributed a comparison test, with transformed data, was run to determine if the 

violation of the assumption of normality impacted the results (Osborne, 2011). If there 

was no difference in significance then the untransformed data was used. If it was not 

possible to transform the data a non-parametric comparison test was included. Any 

outliers present in the data were assessed to determine if they were extreme. If an 

extreme outlier was present (considered as data points ±3 standard deviations from 

the mean) a comparison test was run excluding the outlier, to determine if its presence 

had an impact on the results (Osborne and Overbay, 2011). If the conclusions of the 

comparison test differed from the original test, the results of each test have been 

presented.  
 

Pairwise comparison was performed using paired sample t-tests for continuous 

variables, while a McNemar’s test was used for categorical variables. Only individuals 

with both observable femora were included in these tests.  
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Independent-sample t-tests were run to determine if there was a significant difference 

between the means of two independent groups on a continuous dependent variable. 

The assumption of homogeneity of variances was assessed using a Levene’s test for 

equality of variances. When violated (p <0.05), a Welch’s t-test was used. If the 

assumption of normality was violated and the data could not be transformed to meet 

this assumption a non-parametric Mann-Whitney U test was used (Field, 2013). When 

there were more than two independent groups, a one-way ANOVA was included. If a 

significant difference was determined a Tukey post hoc analysis was performed. If 

homogeneity of variances were not met a Welch ANOVA was run with a Games-

Howell post hoc test if a significant difference was identified. If the data was not 

normally distributed and it was not possible to transform the data a Kruskal-Wallis H 

test was used (Field, 2013). Two-way ANOVAs were run to determine if there was 

interaction effect between two independent categorical variables on a continuous 

variable. If there was a significant interaction a simple main effects was run (to 

determine the effect of one variable at individual levels of the other variable) while if 

there was not a significant interaction a main effects analysis was run (To determine 

the variance accounted for by each independent variable) (Field, 2013). One-way 

ANCOVAs were performed in order to determine if there was a significant difference 

between adjusted means between nominal variables (Field, 2013).  

 

To determine if there were differences in the proportions of categorical variables were 

significantly different the chi-squared tests of homogeneity or fisher’s exact tests (if 

expected count <5) was run (Field, 2013).  
 

Correlations between variables were determined through the use of Spearman’s and 

Pearson’s tests. The Spearman’s test was run when the assumption of normality was 

not met.  

 

In order to establish if it is possible to predict the probability a femur would be 

categorised as having Poirier’s facets and also to predict the probability a femur would 

have cam morphology present based on the presence of non-metric traits, binary 

logistic regression was run. An outlier was present if any case had a standardized 

residual with a value greater than ±3 standard deviations. In each case this was 

inspected however if there was no reason to exclude the case they remained in the 
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analysis. Another assumption of this test is linearity of the continuous variable with 

respect to the logit of the dependent variable. This was assessed by the Box-Tidwell 

procedure (p > 0.05).   

4.3.7. Intra and Interobserver error measurements  

Alpha angle measurements  

A random sample of 20 femora was generated using a random number generator for 

the Wharram Percy collection and 20 for the Luís Lopes collection. Alpha angle 

measurements were repeated by the lead researcher several weeks following the 

original measurements being taken. The same random sample of 40 femora (20 from 

each collection) was also measured by a separate scorer (P.Z.) following instructions 

provided by the lead researcher. The separate scorer had no previous experience 

taking these measurements. Both the lead researcher and the separate scorer were 

unaware of the previous measurements. Intra- and inter- observer error rates were 

determined using intraclass correlation coefficients, with values of >0.65 denoting 

good correlation and values of >0.75 denoting excellent correlation. Table 4-7 includes 

the intra- and inter- observer error rates for both the Wharram Percy and Luís Lopes 

collections.  
 
Table 4-7 Alpha angle, intra- and inter- observer error rates for both skeletal collections 

Collection  Intraobserver Interobserver 

Wharram Percy 0.934 0.946 

Luís Lopes 0.983 0.720 

 

Non-metric traits analysis  

For non-metric trait error rate analysis, only data from the Wharram Percy collection 

was used as it was not possible to perform this analysis on the Luís Lopes collection 

data due to time and resource limitations. However, as the same method has been 

used on both collections the results from the Wharram Percy collection can be 

regarded as a good representative of the repeatability of this method.  

 

A random sample of 25 skeletal remains from the Wharram Percy collection were 

selected using a random number generator. It was not possible to record one 

individual due to pathological changes therefore leaving a total of 24 recorded. Both 
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left and right side were recorded for each individual. Any femora recorded as 

unobservable was also excluded leaving a total of 43 femora. For intraobserver error 

rates the lead researcher recorded the presence of non-metric traits with the same 

scoring system several months following the original analysis. For the Interobserver 

error rates a separate scorer (NMG), using the method outlined and scoring sheet for 

the original analysis, also scored each femur for non-metric traits. Both the lead 

researcher and separate scorer were unaware of the original results at the time of 

analysis. The separate scorer did not have any prior experience with this method. A 

Cohen’s kappa analysis was run to determine if there was agreement between the 

original data and the separate scorers results to determine interobserver error rates. 

While the intraobserver error rates were determined also using a Cohen’s kappa 

analysis to compare the original data to the second scoring session by the lead author.  

The strength of agreement based on the value of Cohen’s kappa coefficient include; 

<0.20 as poor agreement, 0.21-0.40 as fair agreement, 0.41-0.60 as moderate 

agreement, 0.61-0.80 as good agreement and 0.81-1.00 as very good agreement 

(Altman, 1991). The results of the intra- and inter- observer error rates for the non-

metric trait analysis is shown in Table 4-8 below  
 
Table 4-8 Non-metric trait intra- and inter- observer error rate measurements, Wharram Percy collection 

Non-metric trait Intraobserver Interobserver 

Poirier’s facets 0.728 0.488 

Plaque (absent or present) 0.668 0.619 

Plaque (by type) 0.475 0.547 

Cribra (absent or present) 0.847 0.932 

Cribra (by type) 0.639 0.624 

 

Pubic Symphysis recording  

The same randomly selected individuals were used for pubic symphysis analysis as 

the non-metric trait analysis, however due to post-mortem damage the final number of 

observable pubic symphysis included in error rate statistics was 20 (a mix of left and 

right side). Of the randomly selected symphysis none were scored for eburnation at 

the time of original measurements, by the lead researcher months later or by the 

separate scorer therefore it has not been included here. A Cohen’s kappa analysis 

showed a range from poor to good with regards to intra- and inter- observer error rates 
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(see Table 4-9). This low level of agreement is likely to be due to several reasons 

including; post-mortem damage being interpreted as traits and unclear describes 

leading to differing interpretations and lack of training prior to recording. These low 

repeatability rates should be considered when interpreting the results.  
 
Table 4-9 Osteitis pubis recording criteria intra- and inter- observer error rates, Wharram Percy collection 

Criteria Intraobserver Interobserver 

Porosity 0.364 0.364 

Irregularity 0.634 0.468 

Osteophytes 0.643 0.146 

Erosion 0.318 0.400 
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Chapter 5. Results I: Wharram Percy collection (WPC) 
 
In this chapter the results of the statistical analysis of the Wharram Percy collection 

are presented. Descriptive statistics will be provided for each sample under statistical 

analysis. Not all femora could be used for all tests and therefore the number used will 

be presented each time.  

 

Sections 5.1. and 5.2. provide an overview of the alpha angle and non-metric trait data 

for this sample and to determine if any additional factors are acting on these 

measurements, such as:  

• Side  

• Sex 

• Age range category  

• Offset ratio  

 
Section 5.3. focuses on determining if there is a significant difference in alpha angle 

size dependent on the presence/absence of the non-metric traits; Poirier’s facets, 

plaque and cribra. This will also be controlled by various factors including:  

• Offset ratio 

• Age range category  

• Sex 

 

The results in section 5.4. show the difference in proportions of femora with and 

without cam morphology (using three commonly used alpha angle thresholds from the 

literature ³50°, ³55°, ³60°) by the presence of non-metric traits. Analysis has been 

performed for pooled sex, males only and females only.  

 

Section 5.5. presents the results regarding side asymmetry of cam morphology. While 

section 5.6. shows if there is a difference in the proportion of cam morphology by sex.  
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5.1. Alpha angle information  

Distribution of alpha angle size by side 

The mean alpha angle size for the whole sample (n = 174) was 51.29°. The mean 

alpha angle for the left femora (n = 90) was 52.84˚ and 49.69˚ for the right (n= 84). 

Table 5-1 shows the descriptive statistics for alpha angle size when pooled by sex for; 

both sides together, left side only and right side only, while Figure 5-1 shows the 

distribution of alpha angles by side when pooled for sex for the Wharram Percy 

sample. 

 

Table 5-1 Alpha angle descriptive statistics for pooled sex, WPC 

Side  N Range (°) Min. (°) Max. (°) Mean (°) Std. Dev. (°) 

Both Femora 174 54.01 28.63 82.63 51.29 11.62 

Left Femora 90 50.70 31.93 82.63 52.84 12.17 

Right Femora 84 50.72 28.63 79.35 49.69 11.10 
 

Bilateral asymmetry of mean alpha angle size was determined using a paired sample 

t-test. Only individuals (n = 66) with alpha angles recorded on both femora were 

included. The left femora (53.04° ± 12.20°) had a higher mean alpha angle size than 

right femora (50.05° ± 10.50°) (Table 5-2), this difference was statistically significant, 

t(65) = 2.98, p= 0.004, d= 0.3 (Table 5-3).  

Figure 5-1 Distribution of alpha angles by side, pooled sex for the WPC 
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Table 5-2 Paired sample descriptive statistics for left and right femora alpha angles, pooled sex, WPC 

 
Table 5-3 Paired sample t-test data table for alpha angle size by side, pooled for sex, WPC 

 

Paired differences 

  
95% confidence 

interval 

Alpha angles Mean Std. dev 

Std. 
error 
mean Lower Upper t df 

Sig. (2-
tailed) 

Left side – right 
side  2.986 8.132 1.001 0.987 4.985 2.983 65 0.004 

 

Alpha angle size by sex  

The descriptive statistics for alpha angle size by sex and side are shown in Table 5-4 

below. Due to the small number of femora for those recorded as female? they were 

excluded from statistical analysis of alpha angle size between sexes. 
 
Table 5-4 Alpha angle descriptive statistics by sex for left femora only, right femora only and all femora, 
WPC 

 

An independent sample t-test showed (Table 5-5) for the left side, the mean alpha 

angle size was higher in the males, 54.64° ± 11.81°, than the females, 48.61° ± 12.09°. 

This difference was significant, t (86) = 2.24, p = 0.028. For the right side, the mean 

alpha angle size was also significantly different between males (52.48° ± 10.90°) and 

Side N Mean (°) Std. Dev (°) Std. Error Mean 
Left femora 66 53.04 12.20 1.50 
Right femora 66 50.05 10.50 1.29 

Sex Side N Range (°) Min. (°) Max. (°) Mean (°) Std. Dev. 

Males  

Right 53 47.67 31.68 79.35 52.48 10.90 
Left 59 50.70 31.94 82.63 54.64 11.81 
All  112 50.96 31.68 82.63 53.62 11.39 

Females  

Right 29 44.88 28.63 73.51 45.80 10.38 
Left 29 50.15 31.93 82.09 48.61 12.09 
All 58 53.46 28.63 82.09 47.21 11.26 

Female? 

Right 2 1.59 44.35 45.93 45.14 1.12 
Left 2 5.75 42.59 48.35 45.47 4.07 
All 4 5.75 42.59 48.35 45.30 2.44 
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females (45.80° ± 10.38°), t(80) = 2.70, p = 0.008. Figure 5-2 shows the difference in 

the distribution of alpha angle data between males and females for the left and right 

side separately. 
 

 
Table 5-5 Independent sample t-test data table for alpha angle by sex for left and right side separately, 
WPC 

 

t-test for Equality of Means 
 95% confidence interval 

t df 
Sig. (2-
tailed) 

Mean 
difference 

Std. Error 
difference Lower Upper 

Left side  2.235 86 0.028 6.031 2.699 0.666 11.396 
Right 
side  2.698 80 0.008 6.682 2.476 1.754 11.611 

 

Due to the significant difference found between males and females, paired sample t-

tests were run for males and females separately, to establish if the difference in alpha 

angle size between the left and right femur observed for the whole sample was 

observed in males and/or females. Table 5-6 presents the descriptive statistics for this 

test and Table 5-7 the paired sample t-test data for males and females. Nineteen 

females had alpha angles recorded on both left and right femora. An extreme outlier 

was present therefore a comparison test was run excluding this case. This however 

did not impact conclusions; therefore, the original test was used. The mean alpha 

angle size was 2.63° ± 1.55° [mean ± std. error] higher for the left side compared to 

the right. This was not statistically significant, t(19) = 1.698, p = 0.107.  

Figure 5-2 Boxplot of alpha angle data by sex for right and left side, WPC 
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Forty-six males had alpha angles recorded for both left and right femora. The mean 

alpha angle size for the left femora (55.06° ± 12.31°) was 3.11° ± 1.30° [mean ± std. 

error] higher than for the right (51.95° ± 10.35°) femora, this difference was statistically 

significant, t(45) = 2.401, p= 0.021.  

Table 5-6 Paired sample descriptive statistics for left and right alpha angles, for females and males, WPC 

 

 

 

 

 
 

 
Table 5-7 Paired sample t-test data table for alpha angle size by side, for males and females separately, 
WPC 

Alpha angles 

Paired differences 

  

95% confidence 

interval 

Left side – right 
side Mean 

Std. 
dev 

Std. error 
mean Lower Upper t df 

Sig. (2-
tailed) 

Females only  2.628 6.747 1.548 -0.623 5.880 1.698 18 0.107 

Males only  3.111 8.787 1.296 0.502 5.720 2.401 45 0.021 

 

Alpha angle size by age range category 

The information regarding age was provided by collection curator in estimated ranges. 

These ranges were not consistent, therefore, the median age was taken from these 

ranges and placed into one of three age groups, 18-29 years, 30-49 years and 50+ 

years. Several individuals had ADULT listed, therefore they were excluded from 

analysis incorporating age. This produced the distribution shown in Table 5-8 below. 

The distribution of individuals per age category by sex is shown in Figure 5-3. 

Table 5-8 Number of individuals and femora per age category, WPC 

Age Ranges 
Number of 
males 

Number of 
females 

Number of 
female? 

Number of 
individuals 

Number of 
femora  

Percentage 
of femora 

18-29 years 12 12 1 25 50 22.5% 

30-49 years 21 19 2 42 84 36.9% 

50+ years 21 8 0 29 58 27% 

Indeterminate  14 1 0 15 30 13.5% 

Total  69 40 3 111 222 100.0% 

Sex Side 
N Mean (°) Std. Dev 

Std. Error 
Mean 

Female Left 19 48.39 11.15 2.56 
Right 19 45.76 9.99 2.29 

Male Left 46 55.06 12.31 1.82 
Right 46 51.95 10.35 1.53 
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The descriptive statistics for alpha angle size per age range category is shown in Table 

5-9. When a one-way ANOVA was run to determine if alpha angle size was 

significantly different between each age range category (pooled for sex) for left side, 

an extreme outlier was present for the 18-29 years age group data. With the outlier 

present the mean alpha angle size increased from 18-29 years group (47.02° ± 9.49°) 

to 30-49 years group (52.01° ± 11.42°) to 50+ years group (55.00° ± 11.72°). This was 

not found to be significant, F(2, 73) = 3.075, p = 0.052, η2=0.078. Due to the extreme 

outlier, the test was rerun excluding this data point to determine if its presence had an 

impact on conclusions. With the outlier excluded for the comparison test, there was 

still an increase in mean alpha angle size from 18-29 years (45.69° ± 7.35°) to 30-49 

years to 50+ years. The assumption of homogeneity of variances was however 

violated (p = 0.018) with this outlier excluded, therefore a Welch’s ANOVA was run. 

This found a significant difference between age groups, Welch’s F(2, 46.916) = 6.099, 

p= 0.004. The Games-Howell post hoc test found the significant difference to be 

between 18-29 years and 50+ years groups (p = 0.007). This extreme outlier is an 

individual whose age estimate from the curator was 21-25. This is at the upper end of 

the 18-29 years age bracket. In addition to this, it is common biological age estimates 

are not 100% accurate and therefore this case could be an extreme outlier as it would 

be better represented in an older age category.  

Figure 5-3 Clustered bar chart of number of individuals per age range by 
sex, WPC 



 101 

For the right side, there was also an increase in alpha angle size with increase in age 

from 18-29 years (46.93° ± 10.97°) to 30-49 years (48.49° ± 8.52°) to 50+ years 

(53.40° ± 10.99°). This difference was not statistically significant, F(2, 71) = 2.541, 

p=0.086, η2= 0.067. 

Table 5-9 Alpha angle descriptive statistics per age category and femoral side, WPC 

 
 

Due to the significant difference in alpha angle size between males and females, two-

way ANOVAs were run to determine if there was an interaction effect between sex 

and age range category on mean alpha angle size. Individuals categorised as female? 

and indeterminate for age were excluded from this analysis. 

 

For the right side the interaction effect between sex and age range category on alpha 

angle was not significant, F(2,66)= 1.668, p=0.196, partial η2= 0.048. There was also 

no significant effect of age range category or sex on alpha angle size. The data for 

males in the 30-49 years group was not normally distributed, however, it was not 

possible to transform the data to reach normality without violating normality for other 

variables. 

For the left side the interaction effect between sex and age range category on alpha 

angle was not significant, F(2,68)= 1.161, p=0.319, partial η2= 0.033. Main effect 

analysis showed there was no significant impact of age range category, 

F(2,68)=2.102, p= 0.130 or sex, F(1,68)= 1.285, p=0.261, on alpha angle size. There 

was, however, an extreme outlier present for the males in the 18-29 years age range 

category, therefore a comparison test was run excluding this outlier. This did not 

however affect the conclusions for this test.   

Age range Side N Range (°) Min. (°) Max. (°) Mean (°) Std. Dev. 

18-29 
years 

Right 19 44.88 28.63 73.51 46.93 10.97 
Left 22 42.93 31.93 74.87 47.02 9.49 
All  41 46.24 28.63 74.87 46.97 10.08 

30-49 
years 

Right 32 27.11 35.66 62.77 48.49 8.52 
Left 30 48.57 32.70 81.27 52.01 11.42 
All 62 48.57 32.70 81.27 50.19 10.10 

50+ 
years 

Right 23 46.70 32.65 79.35 53.40 10.99 
Left 24 50.15 31.94 82.09 55.00 11.72 
All 47 50.15 31.94 82.09 54.22 11.28 
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Correlation between alpha angle size and offset ratio   

A Spearman’s correlation showed a statistically significant moderate negative 

correlation was found between offset ratio and alpha angle size on the right side, r(74) 

= -0.523, p = <0.0005. Figure 5-4 shows the relationship between alpha angles and 

offset ratios for the right side.  

 

 

 

For the left side, a statistically significant weak negative correlation was found between 

offset ratio and alpha angle size, r(82) = -0.386, p = <0.0005. Figure 5-5 shows the 

relationship between alpha angles and offset ratios for the left side. 

 
 

These results indicate, as the head becomes less concaved anteriorly (increased 

alpha angle size) it becomes more posteriorly orientated.  

Figure 5-4 Scatterplot of alpha angle against offset ratio, right side only, 
pooled for sex, WPC 

Figure 5-5 Scatterplot of alpha angle against offset ratio, left side only, 
pooled for sex, WPC 
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5.2. Prevalence of non-metric traits  

Poirier’s facets 

 
  
Of the 222 femora analysed, Poirier’s facets were present on 18 (9% of observable 

femora), absent on 178 (91% of observable femora) and unobservable due to post-

mortem damage on 26 femora (Figure 5-6 presents the percentage of femora with and 

without Poirier’s facets, excluded those classified as unobservable). Table 5-10 

presents the number and percentage of Poirier’s facets present and absent per femur 

by side and pooled for sex.  
 
Table 5-10 Prevalence of Poirier's facets on the observable femora by side, pooled sex, WPC 

Femora 
side  

Total 
no. 
femur  

No of femur 
unobservable 
for Poirier’s 
facets 

No of femur 
with Poirier’s 
facets 
present 

% of 
observable 
femur with 
Poirier’s 
facets 
present 

No of femur 
with Poirier’s 
facets absent 

% of 
observable 
femur with 
Poirier’s 
facets absent 

Left 111 13 10 10.20 88 89.80 

Right 111 13 8 8.16 90 91.84 

Total 222 26 18 9.14 178 90.86 
 

A total of 86 individuals had both femora present and analysed for the presence of 

Poirier’s facets (Table 5-11). Of these, 75 (87.2%) individuals were absent for Poirier’s 

facets on both sides, 7 (8.1%) individuals had bilateral Poirier’s facets present, 3 

(3.5%) individuals had Poirier’s facets present on left but absent on right, 1 (1.2%) 

individual had Poirier’s facets present on right but absent on left.  

Figure 5-6 Pie charts of distribution of Poirier's facets in observable femora for left and 
right sides, pooled for sex, WPC 
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Table 5-11 cross tabulation of the occurrence of Poirier's facets by left and right side, WPC 

Poirier’s facets  

Right Side 

Present Absent Total 

Left Side 

Present 7 3 10 

Absent 1 75 76 

Total 8 78 86 

 

With regards to sex, 13% of observable male femora and 2.9% of observable female 

femora had Poirier’s facet present. Of the Poirier’s facets present in the sample, 88.9% 

were recorded on male and 11.1% on female femora. Table 5-12 shows the number 

of femora between males, females and female?. 
Table 5-12 Count of femora categorised for the presence or absence of Poirier's facets by sex and side, 
WPC 

Sex Side Absent Present Unobservable Total 

Male 
Left 55 8 5 68 
Right 52 8 8 68 
Total  107 16 13 136 

Female 
Left 31 2 7 40 
Right 36 0 4 40 
Total 67 2 11 80 

Female? 
Left 2 0 1 3 
Right 2 0 1 3 
Total 4 0 2 6 

Total  178 18 26 222 
 

There was not a considerable difference between each age range category and the 

presence of Poirier’s facets. For the 18-29 years category, only 1 femur (2.2%) had 

Poirier’s facet recorded as present, 7 femora (10.1%) were recorded as having 

Poirier’s facets present in the 30-49 years category and 7 femora (12.7%) were 

recorded in the 50+ years categories. Table 5-13 shows the distribution of femora 

categorised for the presence or absence of Poirier’s facets, pooled for side and sex.  
Table 5-13 Count of femora categorised for presence or absence of Poirier's facets by age range 
category, WPC 

Age group Absent Present Unobservable Total 

18-29 years 45 1 4 50 
30-49 years 62 7 13 82 
50+ years 48 7 5 60 
Indeterminate 23 3 4 30 
Total 178 18 26 222 
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Plaque 

 

 

Of 222 femora analysed, plaque was present on 81 (41.3% of observable femora), 

absent on 115 (58.7% of observable femora) and unobservable on 26 femora. Table 

5-14 shows the prevalence of plaque by side and by total, pooled for sex, while Figure 

5-7 shows the rates of each plaque type by side. 
 
Table 5-14 Prevalence of plaque, by type, on observable femora by side, pooled sex, WPC 

A total of 86 Individuals had both femora present and observable for the presence of 

plaque. Table 5-15 shows the cross tabulation for the occurrence of plaque on the left 

side and right side, with 50.0% (43/86) of individuals were recorded as not having 

plaque present on either side. Type A plaque occurred unilaterally in 7/86 individuals 

and bilaterally in 3/86 individuals. While type B and C occurred more commonly 

bilaterally, 10/86 and 6/86 respectively.   

Total Observable femora 
 Type A Type B Type C Absent 

 Side  

Total 
no. 
femur  

N of 
unobserv 
femur N 

% of 
total  

% for 
side N 

% of 
total  

% for 
side N 

% of 
total 

% for 
side N 

% of 
total  

% for 
side 

Left 111 13 15 7.7 15.3 20 10.2 20.4 10 5.1 10.2 53 27.0 54.1 

Right 111 13 8 4.1 8.2 15 7.7 15.3 13 6.6 13.3 62 31.6 63.3 

Total 222 26 23 11.7 11.7 35 17.9 17.9 23 11.7 11.7 115 58.7 58.7 
N = number of femora  

 

Figure 5-7 Pie charts of distribution of plaque, by type, recorded on observable femora for left and right 
side, pooled for sex 
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Table 5-15 cross tabulation of the occurrence of plaque by left and right side, WPC 

 
Type 

Right side 
A B C Absent Total 

Left 

side 

A 3 1 0 6 10 
B 2 10 2 4 18 
C 1 0 6 2 9 

Absent 1 2 3 43 49 

Total 7 13 11 55 86 
 

When considering the distribution of plaque by sex, 48% of observable male femora 

and 29% of female femora had plaque present. Table 5-16 shows the distribution of 

plaque by sex and side. For males, type A was recorded on 17% of femora, type B on 

20% and type C on 11% of femora. For females, type A was present on 3% of femora, 

type B on 15% and type C on 12% of observable femora.  
 
Table 5-16 Distribution of plaque (by type) by sex and side, WPC 

Sex Side Absent Type A  Type B Type C Unobservable Total 

Male 
Left 27 14 15 7 5 68 
Right 37 7 10 6 8 68 
Total  64 21 25 13 13 136 

Female 
Left 25 1 5 2 7 40 
Right 24 1 5 6 4 40 
Total 49 2 10 8 11 80 

Female? 
Left 1 0 0 1 1 3 
Right 1 0 0 1 1 3 
Total 2 0 0 2 2 6 

Total  115 23 35 23 26 222 
 

With regards to the distribution of plaque by age range category, there was an increase 

in the number of femora with plaque present from 18-29 years, to 30-49 years, to 50+ 

years (see Table 5-17). When considering rates of each plaque type per age range 

category, the 18-29 years had the highest rates of type C, 30-29 years had the highest 

rates of type B and 50+ had the highest rates of type A (see Tables 5-18 and 5-19).  
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Table 5-17 Count of femora categorised for plaque type by age group, pooled sex, WPC 

Age group  Absent Type A  Type B Type C Unobservable Total 

18-29 years 32 4 1 9 4 50 

30-49 years 48 6 8 9 13 84 

50+ years 23 8 19 3 5 58 

Indeterminate 12 5 7 2 4 30 

Total  115 23 35 23 26 222 
  
Table 5-18 Percentage of femora within each age group category by plaque type, pooled sex, WPC 

Age group 

% of observable 
femora absent 
for Plaque within 
age group 

% of observable 
femora present 
for Type A within 
age group 

% of observable 
femora present 
for Type B within 
age group 

% of observable 
femora present 
for Type C within 
age group 

18-29 years 69.6% 8.7% 2.2% 19.6% 

30-49 years 67.6% 8.5% 11.3% 12.7% 

50+ years 43.4% 15.1% 35.8% 5.7% 

 
Table 5-19 Percentage of femora for each plaque type by age range category, pooled sex, WPC 

Age group 

% of observable 
femora absent 
for Plaque 
between age 
group 

% of observable 
femora present 
for Type A 
between age 
group 

% of observable 
femora present 
for Type B 
between age 
group 

% of observable 
femora present 
for Type C 
between age 
group 

18-29 years 31.1% 22.2% 3.6% 42.9% 

30-49 years 46.6% 33.3% 28.6% 42.9% 

50+ years 22.3% 44.4% 67.9% 14.3% 

 

 
 

 

 

 

 

 



 108 

Cribra 

 

 

Of 222 femora analysed, cribra was present on 39, absent on 157 and unobservable 

26 femora. Of 39 femora with cribra, 24 (62%) had type 1, 15 (38%) had type 2. For 

the left side cribra was present on 23 femora, of which type 1 was present on 14 and 

type 2 was present on 9 femora. For the right side cribra was present on 16 femora of 

which 10 were type 1 and 6 were type 2. Figure 5-8 shows the rates of cribra per side 

and Table 5-20 shows the prevalence of cribra (by type) by side and total.  
 
Table 5-20 Prevalence of cribra on observable femora by side, pooled sex, WPC 

Total  Observable 
 Type I Type II Absent 

 Side  

Total 
no. 
femur  

N of 
unobserv 
femur N 

% of 
total  

% for 
side N 

% of 
total  

% for 
side N 

% of 
total  

% for 
side 

Left 111 13 14 7.1 14.3 9 4.6 9.2 75 38.3 76.5 

Right 111 13 10 5.1 10.2 6 3.1 6.1 82 41.8 83.7 

Total 222 26 24 12.2 12.2 15 7.7 7.7 157 80.1 80.1 
 

A total of 86 individuals had both femora present and analysed for the presence of 

cribra (Table 5-21). Of these, 74.4% (64) of individuals were absent for cribra on both 

femora. While 9.3% (8) individuals had bilateral type I cribra and 3.5% (3) individuals 

had bilateral type II cribra. Cribra was present bilaterally more commonly than 

unilaterally in this sample.  

Figure 5-8 Pie chart of cribra (by type) by side, pooled sex, WPC 
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Table 5-21 cross tabulation of the occurrence of cribra by left and right side, WPC 

 

Type 
Right side 

I II Absent Total 

Left 

side 

I 8 1 4 7 

II 0 3 4 13 

Absent 1 2 63 66 

Total 9 6 71 86 

 

When analysing the distribution of cribra by sex, 19.5% (24/123) and 21.7% (15/69) of 

observable males and female femora, respectively, had either type I or type II recorded 

as present (See Table 5-22).  
 
Table 5-22 Count of femora categorised for the presence or absence of cribra by sex and side, WPC 

Sex Side Absent Type I Type II Unobservable Total 

Male 
Left 49 10 4 5 68 
Right 50 7 3 8 68 
Total  99 17 7 13 136 

Female 
Left 24 4 5 7 40 
Right 30 3 3 4 40 
Total 54 7 8 11 80 

Female? 
Left 2 0 0 1 3 
Right 2 0 0 1 3 
Total 4 0 0 2 6 

Total  157 24 15 26 222 
 

The prevalence of femora with cribra present decreased as age group increased from; 

18-29 years 37.0% of observable femora had cribra present, 30-49 years for 15.5% 

and for the 50+ years group 11.3% of observable femora had cribra present (Table 5-

23). The prevalence rates of cribra per age range categories is shown in Tables 5-24 

and 5-25. 
Table 5-23 Count of femora categorised for cribra type by age group, WPC 

Age group  Absent Type I Type II Unobservable Total 

18-29 years 29 11 6 4 50 

30-49 years 58 6 5 13 82 

50+ years 49 4 2 5 60 

Indeterminate 21 3 2 4 30 

Total  157 24 15 26 222 
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Table 5-24 Percentage of femora within each age range category by cribra (by type), pooled sex and side, 
WPC 

Age group 

% of observable 
femora absent 
for cribra within 
age group 

% of observable 
femora present 
for Type I within 
age group 

% of observable 
femora present 
for Type II within 
age group 

18-29 years 63.0% 23.9% 13.0% 

30-49 years 84.5% 8.5% 7.0% 

50+ years 88.7% 7.5% 3.8% 

 
Table 5-25 Percentage of femora with/without cribra (by type) by age range category, pooled sex and 
side, WPC 

Age group 

% of observable 
femora absent 
for cribra 
between age 
group 

% of observable 
femora present 
for Type I 
between age 
group 

% of observable 
femora present 
for Type II 
between age 
group 

18-29 years 21.3% 52.4% 46.2% 

30-49 years 44.1% 28.6% 38.5% 

50+ years 34.6% 19.0% 15.4% 

 

5.3. Alpha angle size and non-metric traits  

This section is focused on determining if there was a difference in mean alpha angle 

size between femora with and those without non-metric traits present. In addition to 

this, analysis to establish if femoral head translation (through offset ratio) had an 

impact on this has been included. Due to the difference in the proportion of femora 

with non-metric traits present between the age range categories, analysis was carried 

out to determine if there was an interaction effect between age range category and the 

presence of non-metric traits on alpha angle size. Owing to the significant difference 

in alpha angle size between males and females, analysis was also performed for 

pooled sex and then for males and females separately. This also allowed the male 

data to be directly comparable to the LLC data, as only males were analysed for this 

sample.  
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Poirier’s facets 

Pooled sex 

For the right side there was a significant difference in mean alpha angle size between 

those with Poirier’s facets present (60.44° ± 3.30°) and absent (49.03° ± 11.07°), t(81) 

= -2.702, p = <0.0005.  The left side also showed a significant difference in mean alpha 

angle size between those with Poirier’s facets present (66.90° ± 12.10°) and absent 

(50.77° ± 11.10°), t(86) = -4.093, p = <0.0005. Figure 5-9 shows the distribution of 

alpha angles for femora with and without Poirier’s facets for left and right separately. 

Table 5-26 shows the descriptive statistics for alpha angle size by Poirier’s facets and 

side.  

 
 
Table 5-26 Descriptive statistics for alpha angle size when split by femoral side and presence/absence of 
Poirier's facets, pooled sex, WPC 

Side 
Poirier’s 
facets N Mean (°) Min. (°) Max. (°) Range (°) Std. Dev. (°) 

Left Femora 
Absent 79 50.77 31.93 82.63 50.70 11.10 
Present 9 66.90 39.48 81.27 41.79 12.10 

Right Femora 
Absent 76 49.03 28.63 79.35 50.72 11.07 
Present 7 60.44 56.11 65.02 8.91 3.30 

 

When adjusted for femoral head translation (offset ratio), for the right side there was 

still a statistically significant difference in alpha angle size between femora with and 

without Poirier’s facets, F(1, 71)=4.041, p= 0.048, partial η2=0.054 (Figure 5-10). The 

Figure 5-9 Stacked histogram of the distribution of alpha angles with and without 
Poirier's facets, for right and left side, pooled sex, WPC 
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standardized residuals for alpha angle data were not normally distributed for the 

Poirier’s facets absent group (p=0.045), therefore a comparison test with transformed 

data was run. The comparison test did not find a significant difference in mean alpha 

angle size after adjusting for offset ratio, F(1, 71)=3.957, p=0.051, partial η2=0.053. 

For the left side, there was still a statistically significant difference in alpha angle size 

between femora with and without Poirier’s facets when adjusted for offset ratio, F(1, 

77)=13.877, p <0.0005, partial η2=0.153 (Figure 5-10). The standardized residuals for 

alpha angles data were not normally distributed for Poirier’s facets present group (p = 

0.044), therefore a comparison test was run with transformed data. This did not affect 

the conclusions made with the original data test.  

 

 

To determine if age had an impact on the mean alpha angle size between femora with 

or without Poirier’s facets two-way ANOVAS were run. For the right side, there was no 

statistically significant interaction between age range category and Poirier’s facets on 

alpha angle size, F(1,68)=0.000, p=0.996. Main effect analysis showed a statistically 

significant impact of Poirier’s facets on alpha angle size F(1,68)=5.825, p=0.019  but 

not age range category F(2,68)=1.320, p=0.274. The left side also showed no 

statistically significant interaction between age range category and Poirier’s facets on 

alpha angle size, p=0.299. Main effect analysis showed a statistically significant 

impact of Poirier’s facets on alpha angle size F(1,68)=18.277, p= <0.0005  but not age 

range category F(2,68)=1.350, p=0.266.  

Figure 5-10 Grouped scatterplot of alpha angles by offset ratio for femora with/without 
Poirier's facets, pooled sex, WPC 
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Males only  

When splitting the sample by sex, for males, a similar result to the pooled sex sample 

was shown with the mean alpha angle size being significantly higher for those with 

Poirier’s facets on the left side (69.98 ± 7.10°) than those without (52.49 ± 10.95°), 

t(55) = -4.019, p = <.0005). The right side also showed a statistically higher mean 

alpha angle size for femora with Poirier’s facets compared to those without, 60.44˚± 

3.30 and 51.29˚± 11.28 respectively, t(32.897) = -4.370, p = <0.0005. 

 

After adjusting for offset ratio, there was no significant difference in alpha angle size 

between femora with and without Poirier’s facets on the right side, F(1, 44)= 3.002, p= 

0.090, partial η2=0.064. While for the left side there was a statistically significant 

difference in alpha angle size between femora with and without Poirier’s facets, F(1, 

47)= 17.595, p <0.0005, partial η2=0.272.  
 

Females only  

For females, there was a difference in alpha angle size for those with Poirier’s facets, 

57.17° compared to those without, 46.85° as can be found in the male femora. There 

were however only 2 female femora with Poirier’s facets present; therefore, it was not 

possible to determine if this difference was significant.    
 

Plaque 

Pooled sex 

The descriptive statistics for alpha angle size by plaque type are shown in Table 5-27 

below and the distribution of alpha angles by plaque type is shown in Figure 5-11. For 

pooled sex, on the right side, the alpha angle size decreased from plaque type A 

(64.50° ± 10.42°) to type B (53.81° ± 11.17°) to type C (44.09° ± 8.09°), while those 

with plaque absent had a mean alpha angle size of 48.07° ± 9.90°. The alpha angle 

size was statistically significantly different for different plaque type groups, F (3, 79) = 

7.299, p = <0.0005, η2 = 0.217. Tukey post hoc analysis showed that the increase in 

alpha angle size was statistically significant from type A to absent (16.43° ± 4.02°) 

[mean ± std. error] (p = 0.001), type A to type C (20.42° ± 5.04°) (p = 0.001).  
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For the left side, the alpha angle size decreased from plaque type A (58.68° ± 12.63°) 

to type B (56.58° ± 10.67°) to type C (46.49° ± 7.76°), while those without plaque 

present had a mean alpha angle size of 50.33° ± 12.31°. The alpha angle size was 

statistically significantly different for different plaque type groups, F (3, 84) = 3.151, p 

= 0.029, η2 = 0.101, however the post hoc test did not distinguish a difference between 

groups.  

Figure 5-11 Stacked histogram of the distribution of alpha angles with and without Plaque (by type), for 
right and left side, pooled sex, WPC 

Table 5-27 Descriptive statistics for alpha angle size when split by femoral side and presence/absence of 
plaque, WPC 

Plaque Side N Mean (°) 
Std. 
Dev. 

Std. 
error Min. (°) Max. (°) 

Absent 
Left  50 50.33 12.31 1.74 31.93 81.27 
Right 53 48.07 9.90 1.36 28.63 68.24 
All 103 49.17 11.14 1.10 28.63 81.27 

Type A 
Left 13 58.68 12.63 3.50 35.57 82.63 
Right 7 64.50 10.42 3.94 54.44 79.35 
All 20 6.72 11.97 2.68 35.57 82.63 

Type B 
Left 17 56.58 10.67 2.59 42.42 82.09 
Right 14 53.81 11.17 2.99 38.14 73.51 
All 31 55.37 10.81 1.94 38.14 82.09 

Type C  
Left 8 46.49 7.76 2.74 36.88 63.01 
Right 9 44.01 8.09 2.70 31.68 60.05 
All 17 45.22 7.78 1.89 31.68 63.01 
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When adjusted for femoral head translation (Figure 5-12), for the right side, there was 

no significant difference in alpha angle size between femora with (by type) and without 

plaque, F(3, 69)= 2.129, p= 0.104, partial η2=0.085. For the left side there was also no 

significant difference F(3, 75)= 1.181, p= 0.323, partial η2=0.045.  
 

 
Figure 5-12 Grouped scatterplot of alpha angles by offset ratio for femora with/without plaque (by type), 
pooled sex, WPC 

 

For the right side, there was a statistically significant interaction between age range 

category and plaque on alpha angle size, p = 0.048. There was a statistically 

significant difference in mean alpha angle size between age range categories for 

femora with type B plaque only, F(2,61)= 3.324, p= 0.043, partial η2=0.098 .The mean 

alpha angle for femora with type B plaque present was significantly higher for those in 

the 18-29 years age category when compared to those in the 50+ years age category, 

p = 0.049. When adjusted for Bonferroni correction this was statistically significant 

however there was only 1 femur with type B plaque present in the 18-29 years group 

and therefore is likely to affect the results of this statistical test.  

 

The left side showed no statistically significant interaction between age range category 

and plaque on alpha angle size, p = 0.78. For this side there was no femora present 

in the 18-29 years category with type B plaque.  
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Males only  

For the right side, the alpha angle size decreased from plaque type A (65.08° ± 11.30°) 

to type B (51.41° ± 8.91°) to type C (45.11° ± 11.03°), while those with plaque absent 

had a mean alpha angle size of 51.63° ± 10.09°. The alpha angle size was statistically 

significantly different for different plaque type groups, F (3, 48) = 4.094, p = 0.011, η2 

= 0.204. Tukey HSD post hoc analysis showed that the increase in alpha angle size 

were statistically significant from type A and absent (13.45° ± 4.50°) [mean ± std. error] 

(p = 0.022), type A and type C (19.98° ± 6.13°) (p = 0.011).  

 

For the left side the alpha angle size decreased from plaque type A (60.61° ± 11.02°), 

to type B (55.81° ± 9.00°) to type C (45.92° ± 9.10°), while those with plaque absent 

had a mean alpha angle size of 53.13° ± 13.27°. The alpha angle size was not 

statistically significantly different for different plaque types, F (3, 53) = 2.413, p = 0.077, 

η2 = 0.120.  
 

A one-way ANCOVA was run to determine if there was still a statistically significant 

difference in alpha angle size between those with and without Plaque and by type 

while controlling for offset ratio for the males only. For the right side after adjusting for 

offset ratio there was no significant difference in alpha angle size between femora with 

and without plaque, F(3, 42)= 1.550, p= 0.216, partial η2=0.100. For the left side there 

was also no significant difference F(3, 45)= 1.525, p= 0.221, partial η2=0.092. 

 
 
Cribra 

Pooled sex 

The descriptive statistics for alpha angle size by cribra type are shown in Table 5-28 

below. To determine if alpha angle size was significantly different between femora with 

cribra type I, II or absent, one-way ANOVA tests were conducted, Figure 5-13 shows 

the distribution of alpha angles by cribra type. For the right side, the alpha angle size 

was lower for type I (42.16° ± 8.95°) than for type II (53.19° ± 11.74°). Femora absent 

for cribra had a higher alpha angle than those with type I but lower than those with 

type II (50.82° ± 11.03°). The alpha angle size was not significantly different, F (2, 80) 

= 2.716, p = 0.072, η2 = 0.064.  
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For the left side, the alpha angle size was lower for type I (48.33° ± 13.73°) than for 

type II (50.13° ± 12.62°). Those without cribra had a higher mean alpha angle size 

than those with either type present (53.46° ± 11.82°). The alpha angle size was not 

statistically significantly different between cribra types, F (2, 85) = 1.085, p = 0.343, η2 

= 0.025.  

 

 
Table 5-28 Descriptive statistics for alpha angle size when split by femoral side and presence/absence of 
cribra, pooled sex, WPC 

Plaque Side N Mean (°) 
Std. 
Dev. 

Std. 
error Min. (°) Max. (°) 

Absent 
Left  67 53.46 11.82 1.44 31.94 82.09 
Right 70 50.82 11.03 1.32 32.65 79.35 
All 137 52.11 11.45 0.98 31.94 82.09 

Type I 
Left 12 48.33 13.73 3.96 31.93 82.63 
Right 9 42.16 8.95 2.98 28.63 55.78 
All 21 45.68 12.07 2.63 28.63 82.63 

Type II 
Left 9 50.13 12.62 4.21 36.88 70.42 
Right 4 53.19 11.74 5.87 37.75 62.37 
All 13 51.07 11.95 3.31 36.88 70.42 

Type I & 
Type II 
total 

Left 21 49.10 12.97 2.83 31.93 82.63 
Right 13 45.55 10.77 2.99 28.63 62.37 
All 34 47.74 12.13 2.08 28.63 82.63 

 

The independent sample t-tests (Table 5-29) showed for the left side there was no 

significant difference in mean alpha angle size between those with cribra present 

Figure 5-13 Stacked histogram of the distribution of alpha angles with and without Cribra 
(by type), for right and left side, pooled sex, WPC 
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(49.10° ± 12.97°) and absent (53.46° ± 11.82°), t(86) = -1.442, p = 0.153 and for the 

right side only there was also no significant difference, t(81) = -1.587, p = 0.116.  
 
Table 5-29 Independent t-test results for alpha angle size by cribra (absent or present), WPC 

 

t-test for Equality of Means 
 95% confidence interval 

t df 
Sig. (2-
tailed) 

Mean 
difference 

Std. Error 
difference Lower Upper 

Left side  -1.442 86 0.153 -4.362 3.025 -10.376 1.652 
Right 
side  -1.587 81 0.116 -5.266 3.318 -11.868 1.336 

 

5.4.  Cam morphology & non-metric traits   

The alpha angle cut off to determine the presence of cam morphology has been much 

debated in the literature, therefore 3 different cut off points have been assessed, ³50°, 

³55°, ³60°. To determine if there was a difference in proportions of femora with and 

without non-metric traits and having cam morphology chi-squared tests of 

homogeneity or a fisher’s exact tests (if expected count is <5) were performed pooled 

for sex, for males only and for females only. This was assessed for Poirier’s facets 

and plaque, but not for cribra, as unlike the other traits there was no significant 

difference found for in alpha angle size between femora with and without cribra. For 

plaque, if a significant difference in proportions was identified post hoc analysis was 

performed by running multiple 2x2 fisher’s exact tests with a Bonferroni correction (p 

< 0.008333). 
 

Poirier’s facets 

³50° Threshold 

When pooled for sex (Table 5-30), for the right side all femora with Poirier’s facets 

present had an alpha angle ³50°. There was a statistically significant difference in 

proportions of femora with an alpha angle ³50° and those with an angle <50° 

dependent on the presence or absence of Poirier’s facets, p = 0.004. The left side also 

showed the same pattern. For femora with Poirier’s facets present, more had an alpha 

angle ≥50° than <50°. While those absent for Poirier’s facet had a higher proportion 
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with an alpha angle <50°. Again, a fisher’s exact showed this difference in proportions 

was statistically significant, p = 0.010.  
 
Table 5-30 Proportions of femora with/without cam morphology (50° threshold) by Poirier's facets, pooled 
sex, WPC 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<50°)  56.6% (43) 0.0% (0) 51.8% (43) 

Present (≥50˚) 43.4% (33) 100.0% (7) 48.2%(40) 

Total  100.0% (76) 100.0% (7) 100.0% (83) 

Left 

Absent (<50°)  59.5% (47) 11.1% (1)  54.5% (48) 

Present (≥50˚) 40.5% (32) 88.9% (8) 45.5% (40) 

Total  100.0% (79) 100.0% (9) 100.0% (88) 

 
For males only (Table 5-31), on the right side there was a significant difference in the 

proportions of femora with an alpha angle ³50° and those with an angle of <50° 

between femora with and without Poirier’s facets, p = 0.035. The left side also showed 

a significant difference in proportions p = 0.015.  

 
Table 5-31 Proportions of femora with/without cam morphology (50° threshold) by Poirier's facets, males 
only, WPC 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<50°)  44.4% (20) 0.0% (0) 38.5% (20) 

Present (≥50˚) 55.6% (25) 100.0% (7) 61.5% (32) 

Total  100.0% (45) 100.0% (7) 100.0% (52) 

Left 

Absent (<50°)  50.0% (25) 0.0% (0) 43.9% (25) 

Present (≥50˚) 50.0% (25) 100.0% (7) 56.1% (32) 

Total  100.0% (50) 100.0% (7) 100.0% (57) 

 

For females (Table 5-32), there was no Poirier’s facets present on the right side 

therefore it was not possible to carry out statistical analysis. While for the left side there 

was only two femora with Poirier’s facet present. 
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Table 5-32 Proportions of femora with/without cam morphology (50° threshold) by Poirier's facets, 
females only, WPC 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<50°)  72.4% (21) 0.0% (0) 72.5% (21) 

Present (≥50˚) 27.6% (8) 0.0% (0) 27.6% (8) 

Total  100.0% (29) 0.0% (0) 100.0% (29) 

Left 

Absent (<50°)  74.1% (20) 50.0% (1) 72.4% (21) 

Present (≥50˚) 25.9% (7) 50.0%(1) 27.6% (8) 

Total  100.0% (27) 100.0% (2) 100.0% (29) 

 

≥55˚ Threshold   

At the 55° threshold, when pooled for sex (Table 5-33), all right femora with Poirier’s 

facets present had an alpha angle size ³55°. While only 30.3% of femora without 

Poirier’s facets present had an alpha angle size ³55°. There was a statistically 

significant difference in proportions of femora with an alpha angle ³55° and those with 

an angle <55° between those with and without Poirier’s facets, p = <0.0005. For the 

left side, there was again a significant difference in proportions, p = 0.002.  
 

Table 5-33 Proportions of femora with/without cam morphology (55° threshold) by Poirier's facets, pooled 
sex, WPC 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<55°)  69.7% (53) 0.0% (0) 63.9% (53) 

Present (≥55˚) 30.3% (23) 100.0% (7) 36.1% (30) 

Total  100.0% (76) 100.0% (7) 100.0% (83) 

Left 

Absent (<55°)  67.1% (53) 11.1% (1) 61.4% (54) 

Present (≥55˚) 32.9% (26) 88.9% (8) 38.6% (34) 

Total  100.0% (79) 100.0% (9) 100.0% (88) 

 

For males, on both sides 100% of femora with Poirier’s facets present had cam 

morphology present (see Table 5-34). While for those without Poirier’s facets there 

was a higher proportion without than with cam morphology present. On the both sides, 

this difference in proportions was significant, right side p = 0.004, left side p = 0.004.  
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Table 5-34 Proportions of femora with/without cam morphology (55° threshold) by Poirier's facets, males 
only, WPC 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<55°)  60.0% (27) 0.0% (0) 51.9% (27) 

Present (≥55˚) 40.0% (18) 100.0% (7) 48.1% (25) 

Total  100.0% (45) 100.0% (7) 100.0% (52) 

Left 

Absent (<55°)  58.0% (29) 0.0% (0) 50.9% (29) 

Present (≥55˚) 42.0% (21) 100.0% (7) 49.1% (28) 

Total  100.0% (50) 100.0% (7) 100.0% (57) 

 

If was not possible to run statistical analysis on females only as there was no femur 

with Poirier’s facets present with an alpha angle ³55° for either side.  
 

≥60° Threshold   

When pooled for sex (Table 5-35), on both sides, when Poirier’s facets were present 

there was a higher proportion of femora with cam morphology present than absent. 

While, when the femora were absent for Poirier’s facets there was a higher proportion 

without cam morphology present than with. This difference was significant for both the 

right, p = 0.008 and left sides, p = <0.0005.  
 
Table 5-35 Proportions of femora with/without cam morphology (60° threshold) by Poirier's facets, pooled 
sex, WPC 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<60°)  80.3% (61) 28.6% (2) 75.9% (63) 

Present (≥60˚) 19.7% (15) 71.4% (5) 24.1% (20) 

Total  100.0% (76) 100.0% (7) 100.0% (83) 

Left 

Absent (<60°)  75.9% (60) 11.1% (1) 69.3% (61) 

Present (≥60˚) 24.1% (19) 88.9% (8) 30.7% (27) 

Total  100.0% (79) 100.0% (9) 100.0% (88) 

 

This same trend was seen when analysing for males only, with a significant difference 

in proportions on both the right, p = 0.031 and left sides, p = 0.001, see Table 5-36 

below.  
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Table 5-36 Proportions of femora with/without cam morphology (60° threshold) by Poirier's facets, males 
only, WPC 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<60°)  73.3% (33) 28.6% (2) 67.3% (35) 

Present (≥60˚) 26.7% (12) 71.4% (5) 32.7% (17) 

Total  100.0% (45) 100.0% (7) 100.0% (52) 

Left 

Absent (<60°)  70.0% (35) 0.0% (0) 61.4% (35) 

Present (≥60˚) 30.0% (15) 100.0% (7) 38.6% (22) 

Total  100.0% (50) 100.0% (7) 100.0% (57) 

 

Plaque 

³50° Threshold 

For the right side, only the absent and type C plaque groups had more femora with 

alpha angle <50° than ³50°, see Table 5-37. The difference in proportions of femora 

with an alpha angle ³50° and those with an angle <50˚ between femora with plaque, 

by type and without plaque, was statistically significant, p = 0.005. Post hoc showed 

this significant difference was between absent and type A, type A and type C (see 

Table 5-38 below). For the left side, only those absent for plaque and with type C 

plaque present had a greater proportion of alpha angles <50° than ³50°. The 

difference in proportions can be seen in table 5-37 below. This difference was 

statistically significant, p = 0.041. Post hoc analysis showed this difference in 

proportions was between; absent and type A, type A and type C plaque groups, as 

shown in Table 5-38.  

Table 5-37 Proportions of femora with/without cam morphology (50° threshold) by plaque group, pooled 
sex, WPC 

Side 
Cam 

morphology  

Plaque % (n) 

Total Absent  Type A Type B Type C 

Right 

Absent (<50°)  58.5%(31) 0.0%(0) 35.7%(5) 77.8%(7) 51.8%(43) 

Present (≥50˚) 41.5%(22) 100.0%(7) 64.3%(9) 22.2%(2) 48.2%(40) 

Total  100.0%(53) 100.0%(7) 100.0%(14) 100.0%(9) 100.0%(83) 

Left 

Absent (<50°)  60.0%(30) 30.8%(4) 41.2%(7) 87.5%(7) 54.5%(48) 

Present (≥50˚) 40.0%(20) 69.2%(9) 58.8%(10) 12.5%(1) 45.5%(40) 

Total  100.0%(50) 100.0%(13) 100.0%(17) 100.0%(8) 100.0%(88) 
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Table 5-38 Multiple fisher's exact analysis for cam morphology (50° threshold) between plaque groups, 
pooled sex, WPC 

 
 
 
 
 
 
 
 
 

For males, on the right side there was no significant difference in the proportions of 

femora with an alpha angle ³50° and those with an angle <50˚ dependent on the 

presence or absence of plaque, p = 0.166. The left side also showed no significant 

difference in proportions, p = 0.120. See Table 5-39 for the proportions for both the 

left and right femora. 
Table 5-39 Proportions of femora with/without cam morphology (50° threshold) by plaque group, males 
only, WPC 

 

For females, the small numbers meant statistical analysis was not possible, see Table 

5-40. 
Table 5-40 Proportions of femora with/without cam morphology (50° threshold) by plaque group, females 
only, WPC 

Side 
Cam 

morphology  

Plaque % (n) 

Total Absent  Type A Type B Type C 

Right 

Absent (<50°)  85.0%(17) 0.0% (0) 20.0% (1) 100.0%(3) 72.4%(21) 

Present (≥50°) 15.0% (3) 100.0%(1) 80.0%(4) 0.0%(0) 27.6%(8) 

Total  100.0%(20) 100.0% (1) 100.0%(5) 100.0%(3) 100.0%(29) 

Left 

Absent (<50°)  70.8%(17) 100.0%(1) 66.7%(2) 100.0%(1) 72.4%(21) 

Present (≥50°) 29.2%(7) 0.0%(0) 33.3%(1) 0.0%(0) 27.6%(8) 

Total  100.0%(24) 100.0%(1) 100.0%(3) 100.0%(1) 100.0%(29) 

 

Pooled sex Exact Sig. (2-sided) 
2 x 2 Fisher’s Exact  Right side  Left side 
Absent v Type A  0.001* <0.0005* 
Absent v Type B 0.054 0.034 
Absent v Type C 0.082 0.119 
Type A v Type B 0.042 0.558 
Type A v Type C <0.0005* 0.006* 
Type B v Type C 0.008 0.014 

Side 
Cam 

morphology  

Plaque % (n) 

Total Absent  Type A Type B Type C 

Right 

Absent (<50°)  40.6%(13) 0.0%(0) 44.4%(4) 60.0%(3) 38.5%(20) 

Present (≥50°) 59.4%(19) 100.0%(6) 55.6%(5) 40.0%(2) 61.5%(32) 

Total  100.0%(32) 100.0%(6) 100.0%(9) 100.0%(5) 100.0%(52) 

Left 

Absent (<50°)  48.0%(12) 25.0%(3) 35.7%(5) 83.3%(5) 43.9%(25) 

Present (≥50°) 52.0%(13) 75.0%(9) 64.3%(9) 16.7%(1) 56.1%(32) 

Total  100.0%(25) 100.0%(12) 100.0%(14) 100.0%(6) 100.0%(57) 
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³55° Threshold  

The difference in the proportions of cam morphology within each plaque group can be 

seen in Table 5-41. For the right side there was a significant difference in proportions, 

p = 0.008, which post hoc analysis showed to be between absent and type A, type A 

and type C (Table 5-42). For the left side, there was no significant difference in 

proportions by plaque type, p = 0.059.   

Table 5-41 Proportions of femora with/without cam morphology (55° threshold) by plaque group, pooled 
sex, WPC 

Side 
Cam 

morphology  

Plaque % (n) 

Total Absent  Type A Type B Type C 

Right 

Absent (<55°)  69.8%(37) 14.3%(1) 50.0%(7) 88.9%(8) 63.9%(53) 

Present (≥55°) 30.2%(16) 85.7%(6) 50.0%(7) 11.1%(1) 36.1%(30) 

Total  100.0%(53) 100.0%(7) 100.0%(14) 100.0%(9) 100.0%(83) 

Left 

Absent (<55°)  68.0%(34) 38.5%(5) 47.1%(8) 87.5%(7) 61.4%(54) 

Present (≥55°) 32.0%(16) 61.5%(8) 52.9%(9) 12.5%(1) 38.6%(34) 

Total  100.0%50 100.0%(13) 100.0%(17) 100.0%(8) 100.0%(88) 

 
Table 5-42 Multiple fisher's exact analysis for cam morphology (55° threshold) between plaque groups, 
pooled sex, WPC 

 
 

 
 
 

 

 

For males, on the right side there was no significant difference in the proportions of 

femora with an alpha angle ³55° and those with an angle <55° dependent on the 

presence, absence or type of plaque, p = 0.215. The left side also showed no 

significant difference in proportions p = 0.212. See Table 5-43 for the proportions of 

femora with and without cam morphology by plaque group for the left and right side.  

 

 

 

 

 

Pooled sex Exact Sig. (2-sided) 
2 x 2 Fisher’s Exact  Right side  Left side 
Absent v Type A  0.008 N/A 
Absent v Type B 0.210 N/A 
Absent v Type C 0.423 N/A 
Type A v Type B 0.174 N/A 
Type A v Type C 0.009 N/A 
Type B v Type C 0.086 N/A 
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Table 5-43 Proportions of femora with/without cam morphology (55° threshold) by plaque group, males 
only, WPC 

Side 
Cam 

morphology  

Plaque % (n) 

Total Absent  Type A Type B Type C 

Right 

Absent (<55°)  53.1%(17) 16.7%(1) 55.6%(5) 80.0%(4) 51.9%(27) 

Present (≥55°) 46.9%(15) 83.3%(5) 44.4%(4) 20.0%(1) 48.1%(25) 

Total  100.0%(32) 100.0%(6) 100.0%(9) 100.0%(5) 100.0%(52) 

Left 

Absent (<55°)  56.0%(14) 33.3%(4) 42.9%(6) 83.3%(5) 50.9%(29) 

Present (≥55°) 44.0%(11) 66.7%(8) 57.1%(8) 16.7%(1) 49.1%(28) 

Total  100.0%(25) 100.0%(12) 100.0%(14) 100.0%(6) 100.0%(57) 

 

The data for females is presented in Table 5-44 below. Statistical analysis was not 

performed due to the small numbers per plaque category.  

 
Table 5-44 Proportions of femora with/without cam morphology (55°threshold) by plaque group, females 
only, WPC 

Side 
Cam 

morphology  

Plaque % (n) 

Total Absent  Type A Type B Type C 

Right 

Absent (<55°)  95.0%(19) 0.0%(0) 40.0%(2) 100.0%(3) 82.8%(24) 

Present (≥55˚) 5.0%(1) 100.0%(1) 60.0%(3) 0.0%(0) 17.2%(5) 

Total  100.0%(20) 100.0%(1) 100.0%(5) 100.0%(3) 100.0%(29) 

Left 

Absent (<55°)  79.2%(19) 100.0%(1) 66.7%(2) 100.0%(1) 79.3%(23) 

Present (≥55˚) 20.8%(5) 0.0%(0) 33.3%(1) 0.0%(0) 20.7%(6) 

Total  100.0%(24) 100.0%(1) 100.0%(3) 100.0%(1) 100.0%(29) 

 

³60° Threshold  

For the right side, all categories have more femora with an alpha angle <60° than ≥60°, 

see Table 5-45. The difference in proportions was statistically significant, p = 0.022. 

Post hoc analysis did not show this significance to be between any of the plaque 

categories (see Table 5-46). For the left side, more femora had alpha angle of <60˚ 

than ≥60˚ for all categories apart from type A plaque, see Table 5-45. The difference 

in proportions was not statistically significant, p = 0.172. 
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Table 5-45 Proportions of femora with/without cam morphology (60° threshold) by plaque group, pooled 
sex, WPC 

Side 
Cam 

morphology  

Plaque % (n) 

Total Absent  Type A Type B Type C 

Right 

Absent (<60°)  81.1%(43) 28.6%(2) 71.4%(10) 88.9%(8) 75.9%(63) 

Present (≥60°) 18.9%(10) 71.4%(5) 28.6%(4) 11.1%(1) 24.1%(20) 

Total  100.0%(53) 100.0%(7) 100.0%(14) 100.0%(9) 100.0%(83) 

Left 

Absent (<60°)  74.0%(37) 46.2%(6) 64.7%(11) 87.5%(7) 69.3%(61) 

Present (≥60°) 26.0%(13) 53.8%(7) 35.3%(6) 12.5%(1) 30.7%(27) 

Total  100.0%(50) 100.0%(13) 100.0%(17) 100.0%(8) 100.0%(88) 

 
Table 5-46 Multiple fisher's exact analysis for cam morphology (60° threshold) between plaque groups, 
pooled sex, WPC 

 
 
 
 
 
 
 
 
 

For males, on both the right (p = 0.301) and left side (p = 0.378) there was no 

significant difference in the proportions of femora with and without cam morphology 

between any of the plaque groups (see Table 5-47).  
 

Table 5-47 Proportions of femora with/without cam morphology (60° threshold) by plaque group, males 
only, WPC 

Side 
Cam 

morphology  

Plaque % (n) 

Total Absent  Type A Type B Type C 

Right 

Absent (<60°)  68.8%(22) 33.3%(2) 77.8%(7) 80.0%(4) 67.3%(35) 

Present (≥60°) 31.3%(10) 66.7%(4) 22.2%(2) 20.0%(1) 32.7%(17) 

Total  100.0%(32) 100.0%(6) 100.0%(9) 100.0%(5) 100.0%(52) 

Left 

Absent (<60°)  64.0%(16) 41.7%(5) 64.3%(9) 83.3%(5) 61.4%(35) 

Present (≥60°) 36.0%(9) 58.3%(7) 35.7%(5) 16.7%(1) 38.6%(22) 

Total  100.0%(25) 100.0%(12) 100.0%(14) 100.0%(6) 100.0%(57) 

 

For females, the distribution of femora with and without cam morphology by plaque 

type is shown in Table 5-48 below. The small numbers per category meant statistical 

analysis was not performed.  

Pooled sex Exact Sig. (2-sided) 
2 x 2 Fisher’s Exact  Right side  Left side 
Absent v Type A  0.008 N/A 
Absent v Type B 0.468 N/A 
Absent v Type C 1.000 N/A 
Type A v Type B 0.159 N/A 
Type A v Type C 0.035 N/A 
Type B v Type C 0.611 N/A 
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Table 5-48 Distribution of femora with/without cam morphology (60° threshold) by plaque group, females 
only 

Side 
Cam 

morphology  

Plaque % (n) 

Total Absent  Type A Type B Type C 

Right 

Absent (<60°)  100.0%(20) 0.0%(0) 60.0%(3) 100.0%(3) 89.7%(26) 

Present (≥60°) 0.0%(0) 100.0%(1) 40.0%(2) 0.0%(0) 10.3%(3) 

Total  100.0%(20) 100.0%(1) 100.0%(5) 100.0%(3) 100.0%(29) 

Left 

Absent (<60°)  83.3%(20) 100.0%(1) 66.7%(2) 100.0%(1) 82.8%(24) 

Present (≥60°) 16.7%(4) 0.0%(0) 33.3%(1) 0.0%(0) 17.2%(5) 

Total  100.0%(24) 100.0%(1) 100.0%(3) 100.0%(1) 100.0%(29) 

 

5.5. Cam morphology & side asymmetry  

There was no significant difference in the proportions of femora with cam morphology 

present (based on 50°, 55° and 60° thresholds) between the left and right sides (Table 

5-49). The initial tests were pooled for sex and then split into males and females. There 

was no significant different in proportions of cam morphology for any threshold.  

 
Table 5-49 McNemar's statistical test results for the differences in proportions of femora by cam 
morphology by sex, WPC 

Sex  n 

P-value 

³50° ³55° ³60° 

Pooled sex 66 0.791 0.267 0.065 

Males only  46 0.754 0.549 0.109 

Females only  19 1.000 0.500 1.000 

 

5.6. Cam morphology & sex 

To determine if there was a significant difference in the proportion of femora with cam 

morphology present between males and females, chi-squared tests of homogeneity 

were run for each alpha angle threshold. 
 
³50° Threshold  

At the 50° threshold, both sides showed a significant difference in proportions between 

the sexes (right side, p= 0.03, left side, p= 0.012). Males had more femora (for the 

right 62.3% and 55.0% for the left) with an alpha angle ≥50° than <50°, while females 

had more femora (72.4% on the right and left) with an alpha angle <50° than ≥50°, see 
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Table 5-50. 
Table 5-50 Distribution of femora with/without cam morphology (50° threshold) by sex, WPC 

Side 
Cam morphology  

Sex % (n) 

Total Males Females 

Right 

Absent (<50°)  37.5%(20) 72.4%(21) 50.0%(41) 

Present (≥50˚) 62.3%(33) 27.6%(8) 50.0%(41) 

Total  100.0%(53) 100.0%(29) 100.0%982) 

Left 

Absent (<50°)  44.1%(26) 72.4%(21) 53.4%(47) 

Present (≥50˚) 55.9%(33) 27.6%(8) 46.6%(41) 

Total  100.0%(59) 100.0%(29) 100.0%(88) 

 
³55° Threshold 

At the 55° threshold there was again a statistically significant difference in proportions 

of femora with and without cam morphology between males and females, see Table 

5-51. For the right side, 47.2% of males and only 17.2% of females had an alpha angle 

≥55°, p = 0.007. For the left side, again more male femora than female femora had 

cam morphology present at 49.2% and 20.7% respectively, p = 0.010. 
 
Table 5-51 Distribution of femora with/without cam morphology (55° threshold) by sex, WPC 

Side 
Cam morphology  

Sex % (n) 

Total Males Females 

Right 

Absent (<55°)  52.8%(28) 82.8%(24) 63.4%(52) 

Present (≥55°) 47.2%(25) 17.2%(5) 36.6%(30) 

Total  100.0%(53) 100.0%(29) 100.0%(82) 

Left 

Absent (<55°)  50.8%(30) 79.3%(23) 60.2%(53) 

Present (≥55°) 49.2%(29) 20.7%(6) 39.8%(35) 

Total  100.0%(59) 100.0%(29) 100.0%(88) 

 
³60° Threshold 

For the 60° threshold, both the right and left side showed a statistically significant 

difference in the proportions of femora with a cam morphology between males and 

females, see Table 5-52. For the right side, 32.1% of males while only 10.3% of 

females had an alpha angle ≥60°, p = 0.028. For the left side, again more male femora 

had an alpha angle ≥60° than females, 39.0% and 17.2% respectively. This difference 

was statistically significant, p = 0.040.  
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Table 5-52 Distribution of femora with/without cam morphology (60° threshold) by sex, WPC 

Side 
Cam morphology  

Sex % (n) 

Total Males Females 

Right 

Absent (<60°)  67.9%(36) 89.7%(26) 75.6%(62) 

Present (≥60°) 32.1%(17) 10.3%(3) 24.4%(20) 

Total  100.0%(53) 100.0%(29) 100.0%(82) 

Left 

Absent (<60°)  61.0%(36) 82.8%(24) 68.2%(60) 

Present (≥60°) 39.0%(23) 17.2%(5) 31.8%(28) 

Total  100.0%(59) 100.0%(29) 100.0%(88) 
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Chapter 6. Results II: Luís Lopes Collection (LLC) 
 
 
In this chapter the results of the statistical analysis of the LLC sample will be 

presented. Descriptive statistics will be provided for each sample under statistical 

analysis. Not all femur could be used for all tests and therefore the number used will 

be presented each time.  

 

Sections 6.1. and 6.2. provide an overview of the alpha angle data and non-metric 

traits for this sample and to determine if any additional factors are acting on these 

measurements, such as:  

• Side  

• Age (continuous scale)  

• Age range category 

• Offset ratio 

 

Section 6.3. focuses on determining if there is a significant difference in alpha angle 

size dependent on the presence/absence of the non-metric traits; Poirier’s facets, 

plaque and cribra. This will also be controlled by various factors including:  

• Offset ratio 

• Age range category  

• Age (continuous scale) 

 
The results in section 6.4. show the difference in proportions of femora with and 

without cam morphology (using three commonly used alpha angle thresholds from the 

literature ³50°, ³55°, ³60°) by the presence of non-metric traits.  

 

Section 6.5. presents the results determining if there is side asymmetry of cam 

morphology.  

 

Section 6.6. is focused determining if occupational activity has an impact on the 

presence of non-metric traits and alpha angle size.  
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6.1. Alpha angle information  

Alpha angle size by side 

The average alpha angle for the whole sample of observable femora (n=207) was 

54.18°. The mean alpha angle for the left femora (n=105) was 54.70° and 53.64° for 

the right (n=102). Table 6-1 shows the descriptive statistics for alpha angle size when 

pooled for side, left side only and right side only and Figure 6-1 shows the distribution 

of alpha angles for each side.  

 

Table 6-1 Alpha angle descriptive statistics for all femora, left femora only and right femora only, LLC 

Side  N Range (°) Min. (°) Max. (°) Mean (°) Std. Dev. 

All femora  207 46.49 33.63 80.12 54.18 10.99 

Left Femora 105 43.34 33.63 76.97 54.70 10.69 

Right Femora 102 45.97 34.15 80.12 53.64 11.32 
 
Bilateral asymmetry of mean alpha angle size was determined using a paired sample 

t-test. Only individuals (n=99) with alpha angles recorded on both femora were 

included. The left femora (54.55° ± 10.88°) had a higher mean alpha angle than the 

right femora (53.70° ± 11.27°) (Table 6-2), this difference was not however statistically 

significantly, t(98) = 0.889, p = 0.376, d = 0.09, Table 6-3. 

 

 

Figure 6-1 Histogram of distribution of alpha angles by side, LLC 
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Table 6-2 Paired samples descriptive statistics for left and right femora alpha angles, LLC 

 
Table 6-3 Paired sample t-test data table for mean alpha angle size by side, LLC 

 

Paired differences 

  
95% confidence 

interval 

Alpha angles Mean Std. dev 

Std. 
error 
mean Lower Upper t df 

Sig. (2-
tailed) 

Left side– right 
side  0.851 9.518 0.957 -1.048 2.749 0.889 98 0.376 

 

Alpha angle size by age 

Unlike the Wharram Percy collection, the LLC had exact age data present, and 

therefore, it was possible to determine if there was a relationship between alpha angle 

size and age of the individual. When pooled for side there was a small, but not 

statistically significant correlation, between age and alpha angle size r(207) = 0.120, 

p = 0.085, Figure 6-2 shows a scatterplot of alpha angle against age. For the left side 

only, there was also a small but not statistically significant correlation between age 

and alpha angle size r(105) = 0.171, p = 0.081. While for the right side there was also 

a small but not statistically significant correlation between age and alpha angle size 

r(102) = 0.066, p = 0.510. 
 

 

Side N Mean (°) Std. Dev Std. Error Mean 
Left 99 54.55 10.88 1.09 
Right 99 53.70 11.27 1.13 

 

Figure 6-2 Scatterplot of angle angles by age, pooled for side, LLC 
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The age data was then split into categories, as with the Wharram Percy collection, to 

allow direct comparison. Figure 6-3 shows the number of individuals per age range 

category and the descriptive statistics for alpha angle size per age range category is 

shown in Table 6-4. 

 
 
Table 6-4 Number of individuals and femora per age category, LLC 

Age Ranges Number of males Number of femora  
Percentage of 
femora 

18-29 years 13 26 12.0% 

30-49 years 32 64 29.6% 

50+ years 63 126 58.3% 

Total  108 216 100.0% 
 
One-way ANOVA for the right side showed there was an increase in alpha angle size 

with increase in age range category, from 18-29 years (47.73° ± 11.68°) to 30-49 years 

(53.78° ± 10.60°) to 50+ years (54.78° ± 11.44°). This difference was however not 

statistically significant, F(2, 99) = 1.973, p = 0.145, η2 = 0.038. For the left side, the 

mean alpha angle size also increased from 18-29 years (48.84° ± 9.37°) to 30-49 years 

(53.42° ± 10.80°) to 50+ years (56.43° ± 10.54°). This difference was also not 

statistically significant, F(2, 102) = 2.951, p = 0.057, η2 = 0.055. Table 6-5 shows the 

descriptive statistics for alpha angle size for each age range category.  

 

Figure 6-3 Bar chart of number of individuals per 
age range, LLC 
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Table 6-5 Alpha angle descriptive statistics per age category by femoral side, LLC 

 

Alpha angles and offset ratios 

In order to understand if femoral head concavity was associated with femoral head 

orientation in relation to the neck (anteriorly or posteriorly) a Spearman’s correlation 

was run for both sides, Figure 6-4 and Figure 6-5 show scatterplots for alpha angle by 

offset ratio for both the right and left side respectively. On the right side there was a 

statistically significant weak correlation between alpha angle size and offset ratio, 

rs(98) = -0.299, p = 0.003.  

 

 

For the left side there was also a statistically significant weak correlation between 

alpha angle size and offset ratio, rs(100) = -0.335, p = 0.001. 

Age range Side N Range (°) Min. (°) Max. (°) Mean (°) Std. Dev. 

18-29 
years 

Right 12 39.37 34.15 73.52 47.73 11.68 
Left 12 28.62 33.63 62.25 48.84 9.37 
All  24 39.89 33.63 73.52 48.28 10.37 

30-49 
years 

Right 32 44.92 35.10 80.03 53.78 10.60 
Left 30 38.38 38.59 76.97 53.42 10.80 
All 62 44.92 35.10 80.03 53.60 10.61 

50+ years 

Right 58 41.63 38.49 80.12 54.78 11.44 
Left 63 37.32 39.59 76.91 56.43 10.54 
All 121 41.63 38.49 80.12 55.64 10.97 

 

Figure 6-4 Scatterplot of alpha angle against offset ratio, right side only, LLC 
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6.2. Prevalence of non-metric traits  

Poirier’s facets  

 

Of the 216 femora analysed, Poirier’s facets were present on 33 (15.71% of 

observable femora), absent on 177 (84.29% of observable femora) and unobservable 

due to post-mortem damage on 6 femora. For the left side, Poirier’s facets were 

present on 17 femora (16.19% of observable left femora) and absent on 88 femora 

(83.81% of observable left femora). While for the right side, Poirier’s facets were 

present on 16 femora (15.24% of observable right femora) and absent on 89 femora 

(84.76% of observable right femora), see Figure 6-6 and Table 6-6. 

 

Figure 6-6 Pie charts of distribution of Poirier's facets in observable femora for left 
and right sides, LLC 

 

Figure 6-5 Scatterplot of alpha angle against offset ratio, left side only, LLC 
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Table 6-6 Prevalence of Poirier's facets on the observable femora by side, LLC 

 Observable femora 

Femora 
side  

Total 
no. 
femur  

No of femur 
unobservable 
for Poirier’s 
facets 

No of 
femur 
with 
Poirier’s 
facets 
present 

% of 
total 
femur 
with 
Poirier’s 
facets 

% for 
side 
with 
Poirier’s 
facets 

No of 
femur 
with 
Poirier’s 
facets 
absent 

% of 
total 
femur 
with 
Poirier’s 
facets 
absent 

% of 
side 
with 
Poirier’s 
facets 
absent 

Left 108 3 17 8.1% 16.5% 88 41.9% 83.8% 

Right 108 3 16 7.6% 15.2% 89 42.4% 86.4% 

Total 216 6 33 15.7% 15.7% 177 84.3% 84.3% 
 

A total of 102 individuals (204 femora) had both femora present and analysed for the 

presence of Poirier’s facets (Table 6-7). Of these, 82 (80.4%) individuals were absent 

for Poirier’s facets on both femora, 13 (12.7%) individuals had bilateral Poirier’s facets 

present, 4 (3.9%) individuals had Poirier’s facets present on left but absent on right, 3 

(2.9%) individuals had Poirier’s facets present on right but absent on left.  
 
Table 6-7 cross tabulation of the occurrence of Poirier's facets by left and right side, LLC 

Poirier’s facets  

Right Side 

Present Absent Total 

Left Side 

Present 13 4 17 

Absent 3 82 85 

Total 16 86 102 

 

There was an increase in the number of Poirier’s facets recorded with an increase in 

age category (see Table 6-8). For the 18-29 years category, only 2 femur had Poirier’s 

facet recorded as present, 8 femora were recorded as having Poirier’s facets present 

in the 30-49 years category and 23 were present for 50+ years categories. When 

considering percentages within each age range category Poirier’s facets were present 

on 8.0% of observable femora in the 18-29 years group, 12.9% of the 30-49 years 

group and 18.7% within the 50+years age group (see Table 6-9).   
Table 6-8 Count of femora categorised for presence or absence of Poirier's facets by age group, LLC 

Age group Absent Present Unobservable Total 

18-29 years 23 2 1 26 
30-49 years 54 8 2 64 
50+ years 100 23 3 126 
Total 177 33 6 216 
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Table 6-9 Percentage of Poirier's facets for observable femora within and between age groups, LLC 

Age group 

% of observable 
femora absent 
for Poirier’s 
facets within age 
group 

% of observable 
femora present 
for Poirier’s 
facets within age 
group 

% of observable 
femora absent 
for Poirier’s 
facets between 
age groups 

% of observable 
femora present 
for Poirier’s 
facets between 
age groups 

18-29 years 92.0% 8.0% 13.0% 6.1% 

30-49 years 87.1% 12.9% 30.5% 24.2% 

50+ years 81.3% 18.7% 56.5% 69.7% 

Due to the continuous nature of the age data for this sample an independent sample 

t-test was run to determine if there was a significant difference in mean age between 

individuals with Poirier’s facets absent or present, the descriptive statistics are in Table 

6-10. For the right side there was no significant difference t(103)=-0.642, p= 0.522. 

There was also no significant different for the left side, t(103)=-1.065, p = 0.289, (see 

Table 6-11). 

 Table 6-10 Descriptive statistics for age by Poirier's facets, LLC 

 

 

 

 

 
 

Table 6-11 Independent t-test results for age (years) by the presence/absence of Poirier's facets, LLC 

 
 

 

 

 

 

Side  Poirier’s 
facets  N Mean (years) Std. Dev 

Std. Error 
Mean 

Right Absent 89 53.19 17.83 1.89 
Present 16 56.31 18.37 4.59 

Left Absent 88 52.88 18.38 1.96 
Present 17 58.00 16.93 4.11 

 

t-test for Equality of Means 
 95% confidence interval 

t df 
Sig. (2-
tailed) 

Mean 
difference 

Std. Error 
difference Lower Upper 

Left 
side  -1.065 103 0.289 -5.125 4.812 -14.669 4.419 
Right 
side  -0.642 103 0.522 -3.121 4.863 -12.766 6.523 
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Plaque 

 
Figure 6-7 Pie charts of distribution of plaque by type recorded on observable femora for left and right 
side, LLC 

Two hundred and sixteen femora were recorded for the presence of plaque as 6 were 

unobservable due to post mortem damage. Of the observable femora, plaque was 

present on 94 (45%) and absent on 116 (55%) femora. Twelve femora had type A 

(5.71%), 55 (26.19%) had type B and 27 (12.86%) had Type C. The prevalence rates 

of each form of plaque is shown in Table 6-12 and Figure 6-7. 

 
Table 6-12 Prevalence of plaque by type on observable femora by side, LLC 

Total Observable femora 
 Type A Type B Type C Absent 

 Side  

Total 
no. 
femur  

N of 
unobserv 
femur N 

% of 
total  

% for 
side N 

% of 
total  

% for 
side N 

% of 
total 

% for 
side N 

% of 
total  

% for 
side 

Left 108 3 6 2.86 5.71 29 13.81 27.62 13 6.19 12.38 57 27.14 54.29 

Right 108 3 6 2.86 5.71 26 12.38 24.76 14 6.67 13.33 59 28.10 56.19 

Total 216 6 12 5.71 5.71 55 26.19 26.19 27 12.86 12.86 116 55.24 55.24 
N = number of femora  

One hundred and two individuals had both femora present and observable for the 

presence of plaque. Table 6-13 shows the cross tabulation for the occurrence of 

plaque on the left side and right side. 46.08% (47/102) of individuals were recorded 

as no having plaque on either femora. Type A plaque occurred bilaterally in 3/102 

individuals. Type B and C more commonly occurred bilaterally, 19/102 and 7/102 

respectively.   
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Table 6-13 cross tabulation of the occurrence of plaque by left and right side, LLC 

 

Type 
Right side 

A B C Absent Total 

Left 

side 

A 3 2 0 1 6 

B 2 19 2 5 28 

C 0 1 7 4 12 

Absent 1 4 4 47 56 

Total 6 26 13 56 102 
 

There was an increase in the prevalence of observable femora with plaque present 

from 18-29 years (12.0%) to 30-49 years (51.6%) to 50+ years (48.0%). For the 18-29 

years, 30-49 years and 50+ years groups type B was the most prevalent form of 

plaque, 8.0%, 33.9% and 26.0% respectively (see Table 6-14, Table 6-15 and Table 

6-16 for age range category data).  

 
Table 6-14 Count of femora categorised for plaque type by age group, LLC 

Age group  Absent Type A  Type B Type C Unobservable Total 

18-29 years 22 1 2 0 1 26 

30-49 years 30 5 21 6 2 64 

50+ years 64 6 32 21 3 126 

Total  116 12 55 27 6 216 
 
Table 6-15 Percentage of femora within each age group category by plaque type, LLC 

Age group 

% of observable 
femora absent 
for Plaque within 
age group 

% of observable 
femora present 
for Type A within 
age group 

% of observable 
femora present 
for Type B within 
age group 

% of observable 
femora present 
for Type C within 
age group 

18-29 years 88.0% 4.0% 8.0% 0.0% 

30-49 years 48.4% 8.1% 33.9% 9.7% 

50+ years 52.0% 4.9% 26.0% 17.1% 
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Table 6-16 Percentage of femora within each plaque type group by age range category, LLC 

Age group 

% of observable 
femora absent 
for Plaque 
between age 
group 

% of observable 
femora present 
for Type A 
between age 
group 

% of observable 
femora present 
for Type B 
between age 
group 

% of observable 
femora present 
for Type C 
between age 
group 

18-29 years 19.0% 8.3% 3.6% 0.0% 

30-49 years 25.9% 41.7% 38.2% 22.2% 

50+ years 55.2% 50.0% 58.2% 77.8% 

 

With regards to age and plaque, for the right side the age data for absent and type C 

plaque was not normally distributed (absent p = 0.005, type C p = 0.003) and it was 

not possible to transform the data for a comparison test. A Kruskall-Wallis H was 

therefore used which showed the median age was not significantly different between 

the plaque types, H(3) = 1.117, p = 0.773. For the left side, the age data was not 

normally distributed for the absent plaque group (p = 0.006) however as n >30 a one-

way ANOVA was still run. There was no significant difference between the mean age 

and plaque type, Welch’s F(3, 19.771)= 2.243, p=0.115. The descriptive statistics for 

age by plaque types is shown in Table 6-17. 

Table 6-17 descriptive statistics for age by plaque type, LLC 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Side  Plaque N Mean (years) Std. Dev Std. Error 
Right Absent 59 52.39 20.49 2.67 

Type A 6 56.50 15.39 6.28 
Type B 26 53.54 14.12 2.77 
Type C 14 58.07 13.10 3.50 

Left Absent 57 53.02 18.38 2.69 
Type A 6 43.17 16.93 6.74 
Type B 29 53.45 14.48 2.69 
Type C 13 62.15 13.93 3.86 
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Cribra 

 
 

 

Two hundred and four femora were recorded for the presence of cribra as 6 cases 

were unobservable due to post mortem damage. Of the observable femora, cribra was 

present on 25 and absent on 185. Of 25 femora with cribra 23 (92%) had type 1, 2 

(8%) had type 2 present. Table 6-18 and Figure 6-8 show the prevalence rates of 

cribra.  
 
Table 6-18 Prevalence of cribra on observable femora by side, LLC 

Total  Observable 
 Type I Type II Absent 

 Side  

Total 
no. 
femur  

N of 
unobserv 
femur N 

% of 
total  

% for 
side N 

% of 
total  

% for 
side N 

% of 
total  

% for 
side 

Left 108 3 11 5.24 10.48 1 0.48 0.95 93 44.29 88.57 

Right 108 3 12 5.71 11.43 1 0.48 0.95 92 43.81 87.62 

Total 216 6 23 10.95 10.95 2 0.95 0.95 185 88.10 88.10 
N = number of femora 

 

A total of 102 individuals (204 femora) had both femora present and analysed for the 

presence of cribra (Table 6-19). Of these 85 (83.33%) individuals were absent for 

cribra on both femora. Seven (6.86%) individuals had bilateral type I cribra and 1 

(0.98%) individuals had bilateral type II cribra. Cribra is also more likely to present 

bilaterally than unilaterally in this sample.  

Figure 6-8 Pie charts of distribution of cribra by type recorded on observable femora for left 
and right side, LLC 
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Table 6-19 Cross tabulation of the occurrence of cribra by left and right side, LLC 

 

Type 
Right side 

I II Absent Total 

Left 

side 

I 7 0 4 11 

II 0 1 0 1 

Absent 5 0 85 90 

Total 12 1 89 102 
 

The prevalence of femora with cribra present was highest for the 18-29 years group 

n=10 (4.76% of observable femora) followed by the 30-49 years category n= 8 (3.81% 

of observable femora) then the 50+ years group n= 7 (3.33% of observable femora), 

see Table 6-20, 6-21 and 6-22 for further data on cribra by age range category.   
Table 6-20 Count of femora categorised for cribra type by age group, LLC 

Age group  Absent Type I Type II Unobservable Total 

18-29 years 15 8 2 1 26 

30-49 years 54 8 0 2 64 

50+ years 116 7 0 3 126 

Total  185 23 2 6 216 
 
Table 6-21 Percentage of femora within each age range category by cribra (by type), pooled side, LLC 

Age group 

% of observable 
femora absent 
for cribra within 
age group 

% of observable 
femora present 
for Type I within 
age group 

% of observable 
femora present 
for Type II within 
age group 

18-29 years 60.0% 32.0% 8.0% 

30-49 years 87.1% 12.9% 0.0% 

50+ years 94.3% 5.7% 0.0% 

 
Table 6-22 Percentage of femora with/without cribra (by type) by age range category, pooled side, LLC 

Age group 

% of observable 
femora absent 
for cribra 
between age 
group 

% of observable 
femora present 
for Type I 
between age 
group 

% of observable 
femora present 
for Type II 
between age 
group 

18-29 years 8.1% 34.8% 100.0% 

30-49 years 29.2% 34.8% 0.0% 

50+ years 62.7% 30.4% 0.0% 
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Cribra occurred more commonly in younger individuals, this was shown by 

independent sample t-tests (see Table 6-24). The descriptive statistics for age by 

cribra (absent or present) are shown in Table 6-23.  On the right side, there was 

statistically significant difference in age between those with (42.69 ± 16.07 years) and 

without (55.22 ± 17.63 years) cribra present, t(103)=2.422, p=0.017. For the left side 

mean age was significantly lower for those with cribra (37.92 ± 16.35 years) when 

compared to those without (55.74 ± 17.46 years) cribra present, t(103)=3.351, 

p=0.001.  

 
Table 6-23 Descriptive statistics for age by cribra, LLC 

 

 

 

 

 
 

Table 6-24 Independent t-test results for age (years) by the presence/absence of cribra, LLC 

 

t-test for Equality of Means 
 95% confidence interval 

t df 
Sig. (2-
tailed) 

Mean 
difference 

Std. Error 
difference Lower Upper 

Left 
side  3.351 103 0.001 17.825 5.320 7.275 28.376 
Right 
side  2.422 103 0.017 12.525 5.171 2.324 22.727 

 

6.3. Alpha angles and non-metric traits  

Statistical analysis was run to determine if there was a difference in mean alpha angle 

size between femora with and without non-metric traits present. In addition to this, 

analysis was run to establish if femoral head translation (through offset ratio) had an 

impact on this. As there was a difference in the proportion of femora with non-metric 

traits present between the age range categories, analysis was carried out to determine 

if there was an interaction effect between age and the presence of non-metric traits on 

alpha angle size.  
 
 
 

Side  Cribra  
N Mean (years) Std. Dev 

Std. Error 
Mean 

Right Absent 92 55.22 17.63 1.84 
Present 13 42.69 16.07 4.46 

Left Absent 93 55.74 17.46 1.81 
Present 12 37.92 16.35 4.72 
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Poirier’s facets 

The right side showed a significant difference in mean alpha angle size between 

femora with Poirier’s facets present (68.57° ± 6.99°) compared to those without (50.92° 

± 9.82°), t(24.810) = 8.435, p = <0.0005. The left side also showed a significant 

difference between those with Poirier’s facets present (63.22° ± 8.90°) and those 

without (53.03° ± 10.31°), t(102) = 3.802, p = <0.0005 when an independent sample 

t-test was used. The distribution of alpha angles for femora with and without Poirier’s 

facets is shown in Figure 6-9. It clearly shows the pattern between the two groups. 

The descriptive statistics for alpha angle size between those with and without Poirier’s 

facets are shown in Table 6-25. 

 

 
 
Table 6-25 Descriptive statistics for alpha angle size when split by femoral side and presence/absence of 
Poirier's facets, LLC 

Side  
Poirier’s 
facets N Mean (°) Min. (°) Max. (°) Range (°) Std. Dev. 

Left Femora 
Absent 87 53.03 33.63 76.91 43.28 10.31 
Present 17 63.22 48.50 76.97 28.48 8.90 

Right Femora 
Absent 86 50.92 34.15 73.71 39.56 9.82 
Present 15 68.57 56.24 80.12 23.88 6.99 

 

When one-way ANCOVAs were run to determine if there was still a statistically 

significant difference in alpha angle size between those with and without Poirier’s 

facets while adjusting for offset ratio, there was still a significant difference on both 

sides. Figure 6-10 shows the pattern between alpha angle and offset ratio for those 

with and without Poirier’s facets in the form of a scatterplot. For the right side, the 

 

Figure 6-9 Histogram of distribution of alpha angles by the present of Poirier's facets, LLC 
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alpha angle data was transformed, as the original data did not have homogeneity of 

regression slopes. After adjusting for offset ratio, there was a statistically significant 

difference in alpha angle size between femora with and without Poirier’s facets, F(1, 

95 )= 36.976, p <0.0005, partial η2=0.280.  

For the left side there was also a statistically significant difference in alpha angle size 

between femora with and without Poirier’s facets when adjusted for offset ratio, F(1, 

96)= 10.168, p=0.002 , partial η2= 0.096. The data for the standardized residuals for 

alpha angles was not normally distributed for the absent Poirier’s facet group 

according to a Shapiro-Wilks test, p =0.002 however it was not possible to transform 

the data to normality however the sample size was >30.  

 

 

It was shown that age did not have a significant impact on alpha angle size when using 

exact age data, however, to compare directly to the Wharram Percy collection, and to 

determine if age range category had an impact on the mean alpha angle size between 

femora with or without Poirier’s facets, two-way ANOVAS were run. For the right side, 

there was no statistically significant interaction between age range category and 

Poirier’s facets on alpha angle size, F(2,95)= 0.662, p= 0.518, partial η2=0.014. Main 

effect analysis showed there was a significant impact of Poirier’s facets, 

F(1,95)=28.343, p= <0.0005 but not age range category, F(2,95)= 0.011, p=0.989 on 

alpha angle size. The residual data for alpha angles was however not normally 

distributed for those absent for Poirier’s facets and in 50+ years category (p= 0.003). 

A comparison test using transformed was not however possible as the data would not 

Figure 6-10 Grouped scatterplot of alpha angle size by offset ratio for femora with/without Poirier's 
facets, LLC 
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transform to a normal distribution. The sample size was >30. There was also only one 

femur present in the group for Poirier’s facets present and18-29 years which is likely 

to impact results.  

For the left side there was also no statistically significant interaction between age 

range category and Poirier’s facets on alpha angle size, F(2,98)= 0.154, p= 0.858, 

partial η2=0.003. Main effect analysis showed there was a significant impact of 

Poirier’s facets, F(1,98)=7.634, p=0.007 but not age range category, F(2,98)= 0.421, 

p=0.658 on alpha angle size. The residual data for alpha angles was not normally 

distributed for those absent for Poirier’s facets and in the age groups 30-49 years (p = 

0.007) and 50+ years (p = 0.037). It was not possible to correct for this violation of 

normality through data transformation. There was also only one femur present in the 

group from Poirier’s facet present and 18-29 years, which should be considered when 

considering these results.  
 

Plaque 

The descriptive statistics for alpha angle size by plaque type are shown in Table 6-26 

below and Figure 6-12 shows the distribution of alpha angles by plaque type. For the 

right side, there were 3 extreme outliers present in type C data group, as shown in 

Figure 6-11. A comparison test was run excluding these outliers. When a one-way 

ANOVA was run with the outliers included alpha angle size decreased from type A 

(57.86° ± 11.66°) to type B (55.42° ± 9.87°) to type C (46.20°± 9.08°). While those 

absent for plaque had a mean alpha angle size of 53.92° ± 11.93°. There was no 

statistically significant difference found between alpha angle size and plaque type 

F(3,97) = 2.473, p = 0.066, η2=0.071.  

 Figure 6-11 Boxplot of alpha angle size by plaque type, LLC 
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When the comparison test was run excluding the three extreme outliers the mean 

alpha angle size for type C plaque group was now 41.64° ± 3.15°. There was a 

statistically significant difference found between mean alpha angle size and plaque 

type, Welch’s F(3, 20.169)= 22.508, p = <0.0005, η2=0.128. The Games-Howell post 

hoc test found the statistical difference was between absent and type c (p = <0.0005) 

and type B and type C (p = <0.0005). There was however no reason to exclude these 

cases.  
 

 

 

For the left side, there was also a decrease in mean alpha angle size from type A 

(70.39° ± 5.37°) to type B (53.65° ± 9.54°) to type C (48.14° ± 8.54°). The femora 

without plaque present had a mean alpha angle size of 55.08° ± 10.66°. A statistically 

significant difference was found in mean alpha angle size between plaque types, 

F(3,100) = 7.058, p = <0.0005, η2=0.175. A Tukey-Kramer post hoc test showed 

significant difference was between type A and absent (p = 0.003), type A and type B 

(p = 0.002) and type A and type C (p = <0.0005). 
 

 

 

 

 

 

 

Figure 6-12 Histogram of distribution of alpha angles by the presence of plaque (by type), LLC 
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Table 6-26 Descriptive statistics for alpha angle size when split by side and presence/absence of plaque, 
LLC 

Plaque Side N Mean (°) Std. Dev. Std. error Min. (°) Max. (°) 

Absent 
Left  56 55.08 10.67 1.42 33.63 76.97 
Right 56 53.92 11.93 1.59 34.15 80.12 
All 112 54.50 11.28 1.07 33.63 80.12 

Type A 
Left 6 70.39 5.37 2.19 62.25 76.91 
Right 6 57.86 11.66 4.76 41.01 67.74 
All 12 64.13 10.85 3.13 41.01 76.91 

Type B 
Left 29 53.65 9.54 1.77 40.35 74.55 
Right 26 55.42 9.87 1.93 38.49 73.71 
All 55 54.49 9.64 1.30 38.49 74.55 

Type C  
Left 13 48.14 8.54 2.37 38.59 64.48 
Right 13 46.20 9.08 2.52 36.51 62.07 
All 26 47.17 8.69 1.71 36.51 64.48 

 

When controlling for offset ratio, via a one-way ANCOVA, for the right side there was 

no statistically significant difference in alpha angle size between femora with (by type) 

and without plaque, F(3, 93)= 1.365, p=0.258, partial η2=0.042. For the left side after 

adjusting for offset ratio there was a statistically significant difference in alpha angle 

size between femora with (by type) and without plaque, F(3, 94)= 6.100, p=0.001, 

partial η2=0.163. Figure 6-13 shows the right shows now clear pattern between offset 

ratio and alpha angle between plaque groups while on the left side a slight pattern is 

visible.  

 

 Figure 6-13 Grouped scatterplot of alpha angles by offset ratio for femora 
with/without plaque (by type), LLC 
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Due to the presence of exact age data it was possible to run one-way ANCOVAs, for 

the left and right side, to control for age when comparing the mean alpha angle size 

for femora with (by type) and without plaque. For the right side, when adjusted for age, 

there was not a significant difference in alpha angle size between femora with (by type) 

and without plaque F(3, 96)= 2.517, p=0.063, partial η2=0.073. The standardized 

residual data for alpha angles for those with plaque type C present was not normally 

distributed (p = 0.005) and there were three extreme outliers for this plaque type. It 

was not possible to correct the violation of normality with the data transformation (p = 

0.048) however it did transform the outliers to no longer be considered extreme. This 

comparison test did show a significant difference in alpha angle size between femora 

with (by type) and without plaque, F(3,96)=2.885, p = 0.040, partial η2 = 0.083.  

 

For the left side, the assumption of homogeneity of variances was violated however 

the data was normally distributed. The original data showed, when adjusted for age, 

there was a significant difference in alpha angle size between femora with (by type) 

and without plaque F(3, 99)= 9.374, p <0.0005, partial η2=0.221. Due to the violation 

of the assumption of homogeneity of variances a comparison test was run with the 

alpha angle data transformed. Although the transformed data corrected for the 

homogeneity of variances it caused the standardized residual data for alpha angles 

and plaque type absent group to no longer be normally distributed (p = 0.001).  
 

To compare directly to the Wharram Percy collection, and to determine if age range 

category had an impact on the mean alpha angle size between femora with (by type) 

or without plaque, two-way ANOVAS were run for each side separately. For the right 

side, there was no statistically significant interaction between age range category and 

plaque on alpha angle size, F(4,91)= 0.289, p= 0.884, partial η2=0.013. Main effect 

analysis showed there was no significant impact of plaque, F(3,91)=2.638, p=0.054 or 

age range category, F(2,91)= 0.412, p=0.019 on alpha angle size. There were 

however two extreme outliers present in the 50+ years group with plaque type C 

present and this data was also not normally distributed. A comparison test was run 

excluding these outliers which also showed no statistically significant interaction effect 

between plaque and age range category on alpha angle size F(4,89)= 0.358, p= 0.838, 

partial η2=0.016. However main effect analysis showed there was a significant impact 
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of plaque, F(3,89)=3.622, p=0.016, partial η2=0.109 but not age range category 

F(2,89)=, p=0.363, partial η2=0.023 on alpha angle size.  
 

For the left side, the original data did not meet the assumption of homogeneity of 

variances. A comparison test was therefore run to determine if this violation of 

assumption made a significant impact on the conclusions. For the original data there 

was no significant association between plaque type and age range category on alpha 

angle size F(5, 93)=0.135, p=0.984, partial η2=0.007. Main effect analysis showed 

there was significant impact of plaque, F(3,93)=7.786, p <0.0005, partial η2=0.201 but 

not age range category, F(2,93)=3.046, p=0.052, partial η2=0.061 on alpha angle size. 

The comparison test, with transformed alpha angle data, also showed no significant 

association between plaque type and age range category on alpha angle size, F(5, 

93)=0.562, p=0.729, partial η2=0.029. Main effect analysis did however show there 

was a significant impact of both plaque, F(3,93)=9.154, p <0.0005, partial η2=0.228 

and age range category, F(2,93)=4.950, p=0.009, partial η2=0.096 on alpha angle size. 

This transformation however meant the alpha angle residual data was not normally 

distributed for those in the 30-49 years and absent for plaque (p = 0.002).  
 

Cribra 

The descriptive statistics for alpha angle size by cribra type are shown in Table 6-27 

below and Figure 6-14 shows the distribution of alpha angles for each cribra type. Due 

to the presence of only two femora with type II plaque present, type I and II have been 

combined and independent sample t-tests have been run to determine if there was a 

significant difference in mean alpha angle size between femora with cribra and those 

without (see Table 6-28). For the right side, the mean alpha angle size was higher for 

femora absent for cribra (53.74° ± 11.17°) than for those with cribra (52.25° ± 12.79°). 

This difference was not statistically significant, t(99) = 0.439, p = 0.661.  

For the left side, although the mean alpha angle size was again higher for the femora 

without cribra present (54.80° ± 10.89°) compared to those with cribra present (53.82° 

± 9.86°) this was not statistically significant, t(102) = 0.284, p = 0.777.  
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Table 6-27 Descriptive statistics of alpha angle size by the presence/absence or cribra, LLC 

Plaque Side N Mean (°) 
Std. 
Dev. 

Std. 
error Min. (°) Max. (°) 

Absent 
Left  93 54.80 10.89 1.13 33.63 76.97 
Right 88 53.74 11.17 1.19 34.16 80.12 
All 181 54.28 11.01 0.82 33.63 80.12 

Type I & 
Type II 
total 

Left 11 53.82 9.86 2.97 37.56 65.94 
Right 13 52.25 12.79 3.55 34.15 73.52 
All 24 52.97 11.32 2.31 34.15 73.52 

 
Table 6-28 Independent sample t-test results for alpha angle size by presence/absence of cribra, for both 
left and right side, LLC 

 

t-test for Equality of Means 
 95% confidence interval 

t df 
Sig. (2-
tailed) 

Mean 
difference 

Std. Error 
difference Lower Upper 

Left 
side  0.284 102 0.777 0.976 3.441 -5.850 7.802 
Right 
side  0.439 99 0.661 1.486 3.382 -5.224 8.196 

 

 

Figure 6-14 Histogram of distribution of alpha angles by the presence of cribra (by type), 
LLC 
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6.4. Cam morphology & non-metric traits    

The presence of cam morphology is commonly determined using the alpha angle 

thresholds of ≥50°, ≥55° or ≥60°. This section shows the results of chi-squared and 

fisher’s exact tests (if expected count is <5) to determine if there was a difference in 

proportions of femora with and without non-metric traits and having cam morphology.  

Analysis was not performed for cribra as no significant difference was found in alpha 

angle size between femora with and without cribra.  
 

Poirier’s facets 

< / ≥ 50° 

For the right side, all femora with Poirier’s facets present had an alpha angle ³50°. 

There was a statistically significant difference in the proportions of femora with an 

alpha angle ³50° than those with an angle of <50°, dependent on the presence or 

absence of Poirier’s facts, (p= <0.0005). The left side showed a similar pattern, with a 

greater proportion of femora with Poirier’s facets present having an alpha angle ³50° 

than <50°. Again, there was a statistically significant difference in proportions of 

femora, p = 0.001. Table 6-29 shows the proportion of femora with cam morphology 

absent or present for femora absent and present for Poirier’s facets.  

 
Table 6-29 Proportions of femora with/without cam morphology (50° threshold) by Poirier's facets, LLC 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<50°)  50.0% (43) 0.0% (0) 42.6% (43) 

Present (≥50˚) 50.0% (43) 100.0% (15) 57.4% (58) 

Total  100.0% (86) 100.0% (15) 100.0% (101) 

Left 

Absent (<50°)  48.3% (42) 5.9% (1) 41.3% (43) 

Present (≥50˚) 51.7% (45) 94.1%(16) 58.7% (61) 

Total  100.0% (87) 100.0% (17) 100.0% (104) 

 

< / ≥ 55° 

For the right, all the femora with Poirier’s facets present had an alpha angle ≥55°. 

There was again, a statistically significant difference in the proportions of femora with 

an alpha angle ³55° than those with an angle of <55°, dependent on the presence or 
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absence of Poirier’s facts, p= <0.0005. The left side also showed a statistically 

significant difference in proportions of femora with an alpha angle <55° and ³55° 

dependent on the presence or absence of Poirier’s facts, p = 0.01. Table 6-30 shows 

the proportions of femora with and without cam morphology.  
 
Table 6-30 Proportions of femora with/without cam morphology (55° threshold) by Poirier's facets, LLC 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<55°)  65.1% (56) 0.0% (0) 55.4% (56) 

Present (≥55°) 34.9% (30) 100.0% (15) 44.6% (45) 

Total  100.0% (86) 100.0% (15) 100.0% (101) 

Left 

Absent (<55°)  57.5% (50) 23.5% (4) 51.9% (54) 

Present (≥55°) 42.5% (37) 76.5% (13) 48.1% (50) 

Total  100.0% (87) 100.0% (17) 100.0% (104) 

 

< / ≥ 60° 

For both sides a greater proportion of femora with Poirier’s facets present had an alpha 

angle ≥60° (Table 6-31). While those without Poirier’s facets present had a greater 

proportion without an alpha angle <60°. This was significant on the right p <0.0005 

and left sides p = 0.003.  
 
Table 6-31 Proportions of femora with/without cam morphology (60° threshold) by Poirier's facets, LLC 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<60°)  79.1% (68) 13.3% (2) 69.3% (70) 

Present (≥60°) 20.9% (18) 86.7% (13) 30.7% (31) 

Total  100.0% (86) 100.0% (15) 100.0% (101) 

Left 

Absent (<60°)  72.4% (63) 35.5%(6) 66.3% (69) 

Present (≥60°) 27.6% (24) 64.7% (11) 33.7% (35) 

Total  100.0% (87) 100.0% (17) 100.0% (104) 

 

Plaque 

To determine if there was a significant difference between plaque type and cam 

morphology, fisher’s exact tests were run. When a significant difference was 

determined post hoc analysis, using pairwise comparisons via multiple Fisher’s exact 
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tests (2 x 2) with a Bonferroni correction (p = 0.008333) were used to determine 

between which groups is this significant difference in proportions. For the left side only 

104 femora and for the right side only 101 femora were graded as either being absent 

for plaque or having type A, B or C plaque present. 

 

< / ≥ 50° 

With an alpha angle threshold value of 50° for the right side there were no significant 

differences in the proportions of femora with or with cam morphology present at each 

plaque category, p = 0.059. For the left side, there was however a significant 

difference, p = 0.020. Post hoc analysis showed only the comparison between type A 

& type C to be statistically significant, p = 0.001 (see Table 6-33). The comparison 

showed 100% of femora with type A present had an alpha angle ≥ 50°, while there 

were more femora with type C plaque present without cam morphology (69.2%) (see 

Table 6-32).  
 
Table 6-32 Proportions of femora with/without cam morphology (50° threshold) by plaque type, LLC 

Side 
Cam 

morphology  

Plaque % (n) 

Total Absent  Type A Type B Type C 

Right 

Absent (<50°)  39.3%(22) 33.3%(2) 34.6%(9) 76.9%(10) 42.6%(43) 

Present (≥50˚) 60.7%(34) 66.7%(4) 65.4%(17) 23.1%(3) 57.4%(58) 

Total  100.0%(56) 100.0%(6) 100.0%(26) 100.0%(13) 100.0%(101) 

Left 

Absent (<50°)  35.7%(20) 0.0%(0) 48.3%(14) 69.2%(9) 41.3%(43) 

Present (≥50˚) 64.3%(36) 100.0%(6) 51.7%(15) 30.8%(4) 58.7%(61) 

Total  100.0%(56) 100.0%(6) 100.0%(29) 100.0%(13) 100.0%(104) 

 

Table 6-33 Multiple fisher's exact analysis for cam morphology (50° threshold) between plaque groups, 
LLC 

 
 
 
 
 

 

 

 

 
 

Pooled sex Exact Sig. (2-sided) 

2 x 2 Fisher’s Exact  Right side  Left side 

Absent v Type A  NA 0.031 

Absent v Type B NA 1.000 

Absent v Type C NA 0.161 

Type A v Type B NA 0.079 

Type A v Type C NA 0.001* 
Type B v Type C NA 0.022 
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< / ≥ 55° 

For the right side, there was no significant difference in the proportions of femora with 

and without cam morphology present between the plaque types, p = 0.133. For the left 

side there was a significant difference, p = 0.011. Post hoc analysis showed only the 

comparisons between type A and type C (p = <0.0005), and absent and type A (p = 

0.004) to be significant different (see Table 6-35). Type A plaque was only present on 

femora with an alpha angle ≥55° group, while there were more femora with type C 

plaque (76.9%) present on femora without cam morphology. While there is a relatively 

equal split of femora with and without cam morphology for femora without plaque 

present (see Table 6-34).    
 

Table 6-34 Proportions of femora with/without cam morphology (55° threshold) by plaque type, LLC 

Side 
Cam 

morphology  

Plaque % (n) 

Total Absent  Type A Type B Type C 

Right 

Absent (<55°)  58.9%(33) 33.3%(2) 42.3%(11) 76.9%(10) 55.4%(56) 

Present (≥55°) 41.1%(23) 66.7%(4) 57.7%(15) 23.1%(3) 44.6%(45) 

Total  100.0%(56) 100.0%(6) 100.0%(26) 100.0%(13) 100.0%(101) 

Left 

Absent (<55°)  48.2%(27) 0.0%(0) 58.6%(17) 76.9%(10) 51.9%(54) 

Present (≥55°) 51.8%(29) 100.0%(6) 41.4%(12) 23.1%(3) 48.1%(50) 

Total  100.0%(56) 100.0%(6) 100.0%(29) 100.0%(13) 100.0%(104) 
 

Table 6-35 Multiple fisher's exact analysis for cam morphology (55° threshold) between plaque groups, 
LLC 

 

 

 

 

 

 

 

 

< / ≥ 60° 

For the right side, there were no significant differences in the proportions, with and 

without cam morphology present between femora with type A, B or C or without plaque 

present, p = 0.630. For the left side, there was however a significant difference, p = 

0.003. Post hoc analysis showed this difference was between type A & type B (p = 

Pooled sex Exact Sig. (2-sided) 

2 x 2 Fisher’s Exact  Right side  Left side 

Absent v Type A  NA 0.004* 

Absent v Type B NA 0.841 

Absent v Type C NA 0.379 

Type A v Type B NA 0.028 

Type A v Type C NA <0.0005* 
Type B v Type C NA 0.059 
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0.002), type A and type C (p = <0.0005) and type A and absent (p = <0.0005) (see 

Table 6-37). All femora with type A plaque present had an alpha angle size ≥60° as 

shown in Table 6-36. While the other forms of plaque had a greater proportion of 

femora with an alpha angle size <60° 
 

Table 6-36 Proportions of femora with/without cam morphology (60° threshold) by plaque type, LLC 

Side 
Cam 

morphology  

Plaque % (n) 

Total Absent  Type A Type B Type C 

Right 

Absent (<60°)  71.4%(40) 50.0%(3) 65.4%(17) 76.9%(10) 69.3%(70) 

Present (≥60˚) 28.6%(16) 50.0%(3) 34.6%(9) 23.1%(3) 30.7%(31) 

Total  100.0%(56) 100.0%(6) 100.0%(26) 100.0%(13) 100.0%(101) 

Left 

Absent (<60°)  66.1%(37) 0.0%(0) 72.4%(21) 84.6%(11) 66.3%(69) 

Present (≥60˚) 33.9%(19) 100.0%(6) 27.6%(8) 15.4%(2) 33.7%(35) 

Total  100.0%(56) 100.0%(6) 100.0%(29) 100.0%(13) 100.0%(104) 
 

Table 6-37 Multiple fisher's exact analysis for cam morphology (60° threshold) between plaque groups, 
LLC 

 
 

 

 

 

 

 

6.5. Cam morphology & side asymmetry 

A McNemar’s tests showed there was no significant difference in the proportions of 

cam morphology between sides at any threshold (Table 6-38) for this sample.  
 
Table 6-38 McNemar's results for the differences in proportions of femora with cam morphology by side, 
LLC  

n 

P-value 

³50° ³55° ³60° 

99 1.000 0.571 0.832 

 

Pooled sex Exact Sig. (2-sided) 
2 x 2 Fisher’s Exact  Right side  Left side 
Absent v Type A  NA <0.0005* 
Absent v Type B NA 1.000 
Absent v Type C NA 0.065 
Type A v Type B NA 0.002* 
Type A v Type C NA <0.0005* 
Type B v Type C NA 0.375 
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6.6. Occupation data  

The occupation data present for the LLC meant it was possible to determine if there 

was a difference in alpha angle size between different occupations but also between 

occupational activity categories (as described in section 4.2.3.3). In this section, the 

distribution of age between each group will be analysed to determine if there is a 

significant difference between groups, which could impact the results for alpha angle 

analysis. The overall prevalence of non-metric traits between each occupational 

activity method will be presented. This will be followed by the analysis of alpha angle 

size data between occupational activity categories, by side and the presence of non-

metric traits.  

6.6.1. Distribution of age by occupational group  

The distribution of age by ISCO-08 classification is shown in Table 6-39 below.  

 
Table 6-39 Descriptive statistics of age by ISCO-08 occupation categories, LLC 

Method Categories N 
Min 
(years) 

Max 
(years) 

Mean 
(years) Std. Dev 

ISCO-08 
Update 

Armed Forces Occupations 8 47 89 69.50 15.64 

Managers/ Professionals 10 35 76 59.40 14.32 
Technicians & Associate 

Professionals 7 29 82 59.29 18.67 

Clerical support workers 12 25 67 47.00 14.32 

Services and sales workers 20 20 82 48.15 15.87 

Craft and related trades workers 35 20 83 52.03 19.42 

Elementary occupations 4 34 56 45.75 9.47 

Undetermined 12 20 85 62.08 18.947 
 

The age distribution for method I is shown in table 6-40 below and Figure 6-15. For 

activity classification method I there was a greater number of individuals classified as 

having high activity followed by low activity then moderate activity. For all categories 

the minimum age was 20 years and the maximum age was >80 years. A one-way 

ANOVA showed no significant difference between groups, F(2,85) = 0.006, p = 0.994, 

η2=<0.0005 
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Table 6-40 Descriptive statistics for age by activity category for method I, LLC 

Method Categories N 
Min 

(years) 
Max 

(years) 
Mean 

(years) Std. Dev 

Method I 
Low Activity 29 20 82 50.97 17.01 
Moderate Activity 21 20 83 51.52 18.24 
High Activity 38 20 82 51.18 17.09 

 

The age distribution for method II is shown in Table 6-41 below and Figure 6-16. For 

activity classification method II there was a greater number of individuals classified in 

the moderate intensity group followed light intensity then sedentary behaviour. A one-

way ANOVA showed no significant difference in age between groups, F(2,85) = 0.162, 

p = 0.851, η2=0.004. 

 
 

Figure 6-15 Histograms of age for Method I activity classification categories, LLC 

Figure 6-16 Histograms of age for Method II activity classification categories 
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Table 6-41 Descriptive statistics for age by activity category for method II, LLC 

Method Categories N 
Min 

(years) 
Max 

(years) 
Mean 

(years) Std. Dev 

Method II 
Sedentary behaviour 15 25 82 53.33 18.28 
Light intensity 35 20 83 50.29 17.26 
Moderate intensity 38 20 82 51.18 17.09 

 
Finally, for activity classification method III the age distribution is shown in Table 6-42 

below and Figure 6-17. There was a greater number of individuals classified in the 

non-manual group than the manual group. An independent sample t-test showed no 

significant difference in age between groups, t(94) = -0.345, p = 0.731 

 
Table 6-42 Descriptive statistics for age by activity category for method III, LLC 

Method Categories N 
Min 

(years) 
Max 

(years) 
Mean 

(years) Std. Dev 

Method III 
Non-manual 56 20 85 52.16 18.08 
Manual 40 20 83 53.43 17.18 
Undetermined 12 30 89 62.33 19.68 

 

6.6.2. Non-metric traits by occupational group  
 
Poirier’s facets  

For method I (see Figure 6-18 & Table 6-43), there was an increase in percentage of 

Poirier’s facets observed on femora for the left side from low activity to moderate 

activity to high activity groups. For the right side, there was a decrease from low activity 

to moderate activity (of one femur) and then an increase to high activity. When not 

divided by side, there is an overall increase from 8.6% at low activity to 14.3% for 

moderate activity and 22.4% at high activity in the prevalence of Poirier’s facets.  

Figure 6-17 Histograms of age for Method III activity classification categories 
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Table 6-43 Number of femora with & without Poirier's facets by occupational activity categories method I, 
LLC 

Method Categories Side N* 
Poirier’s facets 

Absent Present 

Method I 

Low Activity 
Left 29 27 2 
Right 29 26 3 
Total  58 53 5  

Moderate 
Activity 

Left 21 17 4 
Right 21 19 2 
Total  42 36 6  

High Activity 
Left 38 30 8 
Right 37 28 9 
Total  76 58 17  

*N = total number of observable femora  
 

For method II (see Figure 6-19 and Table 6-44), there was an increase in percentage 

of Poirier’s facets observed on femora for both sides from sedentary behaviour to light 

intensity to moderate intensity groups. When not divided by side there is an overall 

increase in the prevalence of Poirier’s facets from 0.0% for sedentary behaviour, to 

15.7% for light intensity, and 22.7% for moderate activity. 

Figure 6-18 Pie charts of Poirier's facets by activity categories, method I, LLC 
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Table 6-44 Number of femora with & without Poirier's facets by occupational activity categories method 
II, LLC 

Method Categories Side N* 
Poirier’s facets 

Absent Present 

Method II 

Sedentary 
behaviour 

Left 15 15 0 
Right 15 15 0 
Total  30 30 0 

Light intensity 
Left 35 29 6 
Right 35 30 5 
Total  70 59 11 

Moderate 
Intensity 

Left 38 30 8 
Right 37 28 9 
Total  75 58 17 

*N = total number of observable femora  
 

For method III (see Figure 6-20 and Table 6-45), there was an increase in percentage 

of Poirier’s facets observed on femora for the left and right sides from non-manual to 

manual. When not separated by side there is an overall increase from 11.9% for the 

non-manual group to 16.9% for the manual group.  
 

Figure 6-19 Pie charts of Poirier's facets by activity categories, method II, LLC 
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Table 6-45 Number of femora with & without Poirier's facets by occupational activity method III, LLC 

Method Categories Side N* 
Poirier’s facets 

Absent Present 

Method III 

Non-manual 
Left 54 48 6 
Right 55 48 7 
Total  109 96 13 

Manual 
Left 39 32 7 
Right 38 32 6 
Total  77 64 13 

*N = total number of observable femora  
 
Plaque 

Figure 6-21 shows the percentage (of observable femora) for each plaque type per 

activity category for activity classification method I, while Table 6-46 shows the number 

of femora with each plaque type for each category. When considering both sides 

together for the low activity group type A was observed on 10.3%, type B on 22.4% 

and type C on 8.6% of observable femora. For the moderate activity group, type A was 

recorded on 2.4%, type B on 38.1% and type C on 11.9% of observable femora. While 

for the high activity group type A was recorded on 6.7%, type B on 24.0% and type C 

on 12.0% of observable femora. 
 

Figure 6-20 Pie charts of Poirier's facets by activity categories, method III, LLC 
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Table 6-46 Number of femora with & without plaque by occupational activity method I, LLC 

Method Categories Side N* 
Plaque 

Absent Type A Type B Type C 

Method I 

Low Activity 
Left 29 18 2 7 2 
Right 29 16 4 5 3 
Total  58 34 6 13 5 

Moderate 
Activity 

Left 21 9 1 8 3 
Right 21 11 0 8 2 
Total  42 20 1 16 5 

High Activity 
Left 38 21 3 9 5 
Right 37 22 2 9 4 
Total  75 43 5 18 9 

*N = total number of observable femora  
 
 

  

Figure 6-22 shows the percentage (of observable femora) and Table 6-47 shows the 

number, of each plaque type per activity category for activity classification method II. 

When considering both sides together for the sedentary behaviour group type A was 

observed on 13.3%, type B on 16.7% and type C on 13.3% of observable femora. For 

the light intensity group type A was recorded on 4.3%, type B on 34.3% and type C on 

8.6% of observable femora. While for the moderate intensity group, type A was 

recorded on 6.7%, type B on 24.0% and type C on 12.0% of observable femora. 

Figure 6-21 Pie charts of plaque by activity categories, method I, LLC 
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Table 6-47 Number of femora with & without plaque by occupational activity method II, LLC 

 

Figure 6-23 shows the percentage (of observable femora) and Table 6-48 shows the 

number, of each plaque type per activity category for activity classification method III. 

When considering both sides together for the non-manual group type A was observed 

on 7.3%, type B on 27.5% and type C on 12.8% of observable femora. For the manual 

group type A was recorded on 5.2%, type B on 22.1% and type C on 15.6% of 

observable femora.  

Method Categories Side N* 
Plaque 

Absent Type A Type B Type C 

Method II 

Sedentary 
behaviour 

Left 15 9 1 3 2 
Right 15 8 3 2 2 
Total  30 17 4 5 4 

Light intensity 
Left 35 18 2 12 3 
Right 35 19 1 12 3 
Total  70 37 3 24 6 

Moderate 
intensity 

Left 38 21 3 9 5 
Right 37 22 2 9 4 
Total  75 43 5 18 9 

*N = total number of observable femora    

Figure 6-22 Pie charts of plaque by activity categories, method II, LLC 
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Table 6-48 Number of femora with & without plaque by occupational activity method III, LLC 

 

Cribra  

Figure 6-24 shows the percentage (of observable femora) for each cribra type per 

activity category for activity classification method I, while Table 6-49 shows the number 

of femora per category. When considering both sides together, for the low activity 

group type I was observed on 10.3% and type II on 3.4% of observable femora. For 

the moderate activity group type I was recorded on 31.0% and type II on 0% of 

observable femora. While for the high activity group type I was recorded on 5.3% and 

type II on 0% of femora. 

 

Method Categories Side N* 
Plaque 

Absent Type A Type B Type C 

Method III 

Non-manual 
Left 54 26 4 15 9 
Right 55 31 4 15 5 
Total  109 57 8 30 14 

Manual 
Left 39 23 2 10 4 
Right 38 21 2 7 8 
Total  77 44 4 17 12 

*N = total number of observable femora    

Figure 6-23 Pie charts of plaque by activity categories, method III, LLC 
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Figure 6-24 Pie charts of cribra by activity categories, method I, LLC 

Table 6-49 Number of femora with & without cribra by occupational activity method I, LLC 

Method Categories Side N* 
Plaque 

Absent Type I Type II 

Method I 

Low Activity 
Left 29 26 2 1 
Right 29 24 4 1 
Total  58 50 6 2 

Moderate 
Activity 

Left 21 15 6 0 
Right 21 14 7 0 
Total  42 29 13 0 

High Activity 
Left 38 35 3 0 
Right 37 36 1 0 
Total  75 71 4 0 

*N = total number of observable femora  
 
 

 

For method II, when considering both sides together, for the sedentary behaviour 

group type I was observed on 10.0% and type II on 0.0% of observable femora. For 

the light intensity group type I was recorded on 22.9% and type II on 2.9% of 

observable femora. While for the moderate intensity group type I was recorded on 
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5.3% and type II on 0.0%. Figure 6-25 shows the percentage of femora per cribra type 

for each activity group by side, while Table 6-50 shows the number of femora.  

 
Table 6-50 Number of femora with & without cribra by occupational activity method II, LLC 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 6-26 shows the percentage (of observable femora) for each cribra type per 

activity category for activity classification method III and Table 6-51 shows the number 

of femora. When considering both sides together for the non-manual group, type I was 

Method Categories Side N* 
Cribra 

Absent Type I Type II 

Method II 

Sedentary 
behaviour 

Left 15 14 1 3 
Right 15 13 2 0 
Total  30 27 3 0 

Light intensity 
Left 35 27 7 1 
Right 35 25 9 1 
Total  70 52 16 2 

Moderate 
intensity 

Left 38 35 3 0 
Right 37 36 1 0 
Total  75 71 4 0 

*N = total number of observable femora   

Figure 6-25 Pie charts of cribra by activity categories, method II, LLC 
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observed on 11.0% and type II on 1.8% of observable femora. For the manual group, 

type I was recorded on 13.0% and type II on 0.0% of observable femora.  
 

 
 
Table 6-51 Number of femora with & without cribra (by type) by occupational activity method III, LLC 

 
 
 
 
 
 
 
 
 

 

6.6.3. Alpha angles by occupational group  

Spearman’s rank test for the right side showed there was not a significant correlation 

between alpha angles and MET value, rs= 0.129, p= 0.247. For the left side, there was 

also no significant correlation, rs= 0.065, p= 0.547. 

 

Further to this, statistical analysis was run to determine if there was a significant 

difference in mean alpha angle size between occupation and occupational physical 

activity categories. The descriptive statistics for alpha angle size for the ISCO-08 

Method Categories Side N* 
Plaque 

Absent Type I Type II 

Method III 

Non-manual 
Left 54 47 6 1 
Right 55 48 6 1 
Total  109 95 12 2 

Manual 
Left 39 34 5 0 
Right 38 33 5 0 
Total  77 67 10 0 

*N = total number of observable femora   

Figure 6-26 Pie charts of cribra by activity categories, method III, LLC 
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occupation classification categories are shown in Table 6-52 below. One-way 

ANOVAs, for both sides did not find a significant difference in alpha angle size between 

each category.  

For the right side, there was no significant difference in mean alpha angle size between 

the occupational categories, F(7,94)= 1.010, p= 0.429. The alpha angle data was not 

normally distributed for the ‘clerical support workers’ and ‘undetermined’ categories. It 

was not possible to transform the clerical support workers alpha angle data to reach 

normality therefore a comparison non-parametric test was run. The Kruskal-Wallis test 

showed no significant difference in median alpha angle size between the categories, 

χ2(7)= 6.515, p = 0.481. The highest mean alpha angles were recorded for elementary 

occupations, as shown in Figure 6-27, followed by services and sales workers, then 

technicians and associate professionals. The lowest mean alpha angles were 

recorded for clerical support workers.  
 

 

For the left side there was no significant difference in mean alpha angle size between 

the occupation categories, F(7,97)= 0.971, p= 0.456. The alpha angle data for the 

‘crafts and related trades workers’ was not normally distributed however n>30. The 

highest mean alpha angles were recorded for elementary occupations followed by 

Figure 6-27 Means plot of alpha angles by occupation categories, right side, LLC 
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armed forces occupations then managers/professionals, as shown in Figure 6-28. The 

lowest mean alpha angles are recorded for the undetermined category. 

 
 
The descriptive statistics for alpha angle size by occupational activity categories for 

method I are shown in Table 6-53 below. A one-way ANOVA test for the right side 

showed there was no statistically significant difference between alpha angle size and 

occupational activity group, F(2,80) = 0.756, p = 0.473, η2=0.019. The alpha angle size 

increased from low activity (52.59° ± 11.73°) to moderate activity (53.07° ± 9.74°) to 

high activity (55.89° ± 12.08°). The alpha angle data for the low activity group was 

however not normally distributed (p = 0.011) and the data could not be transformed to 

reach normality therefore a comparison Kruskal-Wallis test was run which also found 

no significant difference between group medians, χ2(2)= 1.422, p = 0.491.   

 

For the left side, alpha angle size decreased from low activity (54.49° ± 11.16°) to 

moderate activity (53.28° ± 9.14°) then increased to high activity (55.57° ± 11.97°). 

There was no statistically significant difference between alpha angle size and 

occupational activity group, F(2,84) = 0.293, p = 0.746, η2=0.007.  

 
 
 
 

Figure 6-28 Means plot of alpha angles by occupation categories, left side, LLC 
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Table 6-52 Descriptive statistics showing alpha angle size by ISCO-08 occupation categories, LLC  

side Categories N Mean (°) Min (°) Max (°) Range (°) 
Std. 
Dev 

Left 
femora 

Armed Forces 
Occupations 7 60.65 50.96 73.86 22.90 7.95 

Managers/ 
Professionals 10 57.50 40.35 76.91 36.56 11.22 

Technicians and 
Associate Professionals 7 55.18 39.59 69.65 30.06 12.13 

Clerical support workers 11 52.59 33.63 69.72 36.09 10.84 
Services and sales 

workers 20 53.91 38.59 76.97 38.38 11.61 
Craft and related trades 

workers 35 53.96 37.56 74.55 36.99 10.33 

Elementary occupations 4 62.39 42.59 75.83 33.24 14.56 

Undetermined 11 51.21 39.09 63.07 23.98 8.50 

Right 
femora 

Armed Forces 
Occupations 8 54.55 38.49 69.36 30.87 10.91 

Managers/ 
Professionals 10 52.76 35.10 67.33 32.23 10.44 

Technicians and 
Associate Professionals 7 54.96 39.98 65.65 25.67 9.83 

Clerical support workers 12 52.24 34.15 68.52 34.37 13.89 
Services and sales 

workers 18 56.62 36.95 80.03 43.08 11.90 
Craft and related trades 

workers 32 52.31 34.48 75.71 41.23 10.58 

Elementary occupations 4 64.31 52.51 80.12 27.61 12.44 

Undetermined 11 49.55 38.63 69.90 31.27 10.84 
 

Table 6-53 Descriptive statistics showing alpha angle size by method I occupational activity categories, 
LLC 

 

 

Method I 

 Categories N Mean (°) Min. (°) Max. (°) Range (°) Std. Dev. 

Left 
Femora 

Low activity 28 54.49 33.63 76.91 43.28 11.16 
Moderate activity 21 53.28 37.56 69.65 32.09 9.14 
High activity 38 55.57 38.59 76.97 38.38 11.97 

Right 
Femora 

Low activity 29 52.59 34.15 68.52 34.37 11.73 
Moderate activity 19 53.07 34.48 73.52 39.03 9.74 
High activity 35 55.89 36.51 80.12 43.61 12.08 

Total  
Low activity 57 53.52 33.63 76.92 43.28 11.39 
Moderate activity 40 53.18 34.48 73.52 39.03 9.31 
High activity 73 55.72 36.51 80.12 43.61 11.94 
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The descriptive statistics for alpha angle size by occupational activity categories for 

method II are shown in Table 6-54 below. A one-way ANOVA for the right side, showed 

no statistically significant difference between alpha angle size and occupational 

activity group, F(2,80) = 0.777, p = 0.463, η2=0.019. The mean alpha angle size 

increased from sedentary behaviour group (52.16° ± 13.14°) to light intensity group 

(53.06° ± 9.90°) to moderate intensity group (55.89° ± 12.08°). The alpha angle data 

for the low activity group was not normally distributed (p = 0.039) and this data could 

not be transformed. A Kruskal-Wallis test was therefore run which also found no 

significant difference between groups χ2(2)= 1.468, p = 0.480.   

 

For the left side, alpha angle size increased from sedentary behaviour group (53.22° 

± 11.03°) to light intensity group (54.27° ± 10.08°) to moderate intensity group (55.57° 

± 11.97°). There was no statistically significant difference between alpha angle size 

and occupational activity group, F(2,84) = 0.266, p = 0.767, η2=0.006.  

 
Table 6-54 Descriptive statistics showing alpha angle size by method II occupational activity categories, 
LLC 

Method II 

 Categories N Mean (°) Min. (°) Max. (°) 
Range 
(°) 

Std. 
Dev. 

Left 
Femora 

Sedentary behaviour 14 53.22 33.63 69.72 36.09 11.03 
Light intensity 35 54.27 37.56 76.91 39.35 10.08 
Moderate intensity 38 55.57 38.59 76.97 38.38 11.97 

Right 
Femora 

Sedentary behaviour 15 52.16 34.15 68.52 34.37 13.14 
Light intensity 33 53.06 34.48 73.52 39.03 9.90 
Moderate intensity 35 55.89 36.51 80.12 43.61 12.08 

Total  
Sedentary behaviour 29 52.67 33.63 69.72 36.09 11.96 
Light intensity 68 53.68 34.48 76.91 42.43 9.94 
Moderate intensity 73 55.72 36.51 80.12 43.61 11.94 

 
The descriptive statistics for alpha angle size by occupational activity categories for 

method III are shown in Table 6-55 below. Due to only two categories being present 

in this activity method independent sample t-tests were conducted. For the right side, 

alpha angle size was extremely similar for the non-manual (53.85° ± 11.49°) and 

manual group (53.39° ± 11.32°). There was no statistically significant difference found 

between alpha angle size and occupational activity group, t(88) = 0.185, p = 0.853.  
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For the left side, alpha angle size was also extremely similar for the non-manual 

(53.91° ± 10.72°) and manual group (53.67° ± 10.76°). There was no statistically 

significant difference found between alpha angle size and occupational activity group, 

t(91) = 0.109, p = 0.913.  
 
Table 6-55 Descriptive statistics showing alpha angle size by method III occupational activity categories, 
LLC 

Method III 

 Categories N Mean (°) Min. (°) Max. (°) 
Range 
(°) 

Std. 
Dev. 

Left Femora: 
α angles 

Non-manual 54 53.92 33.63 76.97 43.34 10.72 
Manual 39 53.67 37.56 75.83 38.27 10.76 

Right Femora: 
α angles 

Non-manual 53 53.85 34.15 80.03 45.88 11.49 
Manual 37 53.39 34.48 80.12 45.64 11.32 

Total  Non-manual 107 53.88 33.63 80.03 46.40 11.06 
Manual 76 53.54 34.48 80.12 45.64 10.96 

 
 
Alpha angles by occupational group side asymmetry 

In order to determine if there was a significant difference in alpha angle size between 

the left and right femora for each of the occupations from ISCO-08 occupation 

classification system paired sample t-tests were run (see Table 6-56). Only individuals 

with both femora were included.  

 

For the ISCO-08 occupation classification system, there was only a significant 

difference in mean alpha angle size between left and right sides for the armed forces 

occupations. The mean alpha angle size was significantly higher for the left side 

(60.65°± 7.95°) than the right (53.48°± 11.32°) side, t(6)= 2.58, p= 0.042.  

 

For the managers/professionals the mean alpha angle size was higher for the left side 

(57.50° ± 11.22°) than the right side (52.76° ± 10.44°) however this difference was not 

significant, t(9)= 1.186, p= 0.266. The difference data between the left and right side 

was not normally distributed (p=0.005) therefore a non-parametric comparison 

Wilcoxon signed rank test was run which also found no significant difference in median 

alpha angle size between sides, z = 0.296, p= 0.767. Technicians and associated 

professionals showed a higher alpha angle for the left side (55.18° ± 12.13) compared 

to the right side (54.96° ± 9.83) however this was not significantly different, t(6)= 0.060, 
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p= 0.954. For clerical support workers, mean alpha angle size was higher for the right 

side (53.89° ± 13.29) when compared to the left (52.59° ± 10.84) however this 

difference was not found to be significant, t(10)= -0.522, p= 0.613. There was also no 

significant difference between mean alpha angle size between left (53.43°± 11.68) and 

right side (56.62°± 11.90) for the service and sales workers category, t(17)=-1.309, p= 

0.208. Mean alpha angle size was not significantly different between left (53.75°± 

10.74) and right (52.31°± 10.58) side for craft and related trades workers, t(31)= 0.996, 

p= 0.327. Elementary occupations also showed no significant difference between 

alpha angle size for the left (62.39°± 14.56) and right sides (64.31°± 12.44), t(3)= -

0.401, p= 0.715.  
 
Table 6-56 Paired sample t-test results for ISCO-08 occupation categories alpha angle by side, LLC 

Alpha 
angles 

 

Paired differences 

  
95% confidence 

interval 

categories Mean 
Std. 
dev 

Std. 
error 
mean Lower Upper t df 

Sig. (2-
tailed) 

 
Left side– 

right side 

 

Armed forces 
occupations 7.17 7.36 2.78 0.37 13.97 2.58 6 0.042 
Managers/ 
Professionals 4.75 12.65 4.11 -4.31 13.80 1.19 9 0.266 
Technicians 
and Associate 
Professionals 0.22 9.48 3.58 -8.56 8.99 0.06 6 0.954 
Clerical 
support 
workers -1.30 8.27 2.49 -6.86 4.25 -0.52 10 0.613 
Services and 
sales workers -3.18 10.32 2.43 -8.32 1.95 -1.31 17 0.21 
Craft and 
related trades 
workers 1.45 8.21 1.45 -1.51 4.41 1.00 31 0.33 
Elementary 
occupations -1.91 9.55 4.77 -17.10 13.28 -0.40 3 0.72 

Undetermined 1.81 9.93 3.14 -5.29 8.91 0.58 9 0.58 
 
 
Alpha angles and non-metric traits by occupational physical activity group  

To establish if occupational physical activity had an impact on the difference in alpha 

angle size between femora with and without non-metric traits, one-way ANCOVAs 

were run on the left and right side separately, controlling for MET values. In addition 

to this, two-way ANOVAs were run to determine if there was a statistically significant 
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interaction effect between the different methods for categorising occupational activity 

and the presence of non-metric traits on alpha angle size.  

 

Poirier’s facets 

For the right side, after adjusting for MET values, there was still a significant difference 

in mean alpha angle size between femora with Poirier’s facets present compared to 

those absent for Poirier’s facets, F(1,80) = 37.820, p = <0.0005. The left side also still 

showed a statistically significant difference in mean alpha angle size when adjusting 

for MET values, F(1,83)= 0.347, p= 0.558. The standardised residual data for the 

absent group was not normally distributed (p = 0.004) therefore a comparison test was 

run with the alpha angle data transformed however it was not possible to correct for 

the violation of normality.  

 

For the right side there was not a statistically significant interaction between Poirier’s 

facets and occupational activity category (method I), F(2,77)= 0.137, p= 0.872. Main 

effect analysis showed mean alpha angle was not significantly different between the 

occupational activity categories, F(2,77)= 0.174, p= 0.841. While there was a 

significant difference in alpha angle size between femora with and those without 

Poirier’s facets present, F(1,77)= 29.444, p= <0.0005. The alpha angle data for the 

group with Poirier’s facets absent and in the low activity category was not normally 

distributed (p= 0.049). A comparison test was run with the alpha angle size 

transformed, which corrected for this violation from normality however this caused a 

violation to the assumption of homogeneity of variances. This comparison test also 

showed no significant interaction, F(2,77)= 0.091, p= 0.913. For the left side, again 

there was no significant interaction effect between the presence of Poirier’s facets and 

occupational activity group (method I) on alpha angle size, F(2,81)= 0.209, p= 0.812. 

Main effect analysis showed alpha angle size was not significantly different between 

occupational activity groups, F(2,81)= 0.563, p= 0.572, however there was between 

femora with and without Poirier’s facets, F(1,81) = 8.975, p= 0.004. The alpha angle 

data for femora absent for Poirier’s facets and categorised as high activity was not 

normally distributed (p = 0.123) however a transformation of the alpha angle data could 

not correct for this violation of normality.  
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For occupational physical activity method II on the right side there was not a 

statistically significant interaction between Poirier’s facets and occupational physical 

activity category (method II) on alpha angle size, F(1,78)=0.015, p= 0.903. There was 

however a significant difference in alpha angle size between femora with and without 

Poirier’s facets, F(1, 78)= 36.451, p= <0.0005. While mean alpha angle size was not 

significantly different between occupational activity categories, F(2, 78)= 0.163, 

p=0.850. The assumption of the homogeneity of variances was not met (p= 0.002) and 

therefore a comparison test was run to determine if this violation would affect 

conclusions. It was not however possible to transform the data to meet this 

assumption. For the left side, again there was not a significant interaction between the 

presence of Poirier’s facets and occupational activity categories on alpha angle size, 

F(1,82)= 0.122, p= 0.728. The residual data for moderate intensity, Poirier’s facets 

absent was not however normally distributed (p= 0.006) and it was not possible to 

transform the data to reach normality but n=30.   

 

There was also no statistically significant interaction between method III for 

categorising occupational activity and Poirier’s facets on alpha angle size for the right, 

F(1,85)=0.327, p=0.569, or the left side, F(1,88)=1.702, p= 0.195. Main effect analysis 

for both sides also showed a significant difference in mean alpha angle size between 

femora with and those with Poirier’s facet present, for the right side, F(1,85)= 34.844, 

p= <0.0005, and for the left side, F(1,88)= 11.600, p= 0.001. There was however no 

significant difference in mean alpha angle size between occupational activity groups 

for the right side, F(1,85)=0.020, p= 0.889, and the left side, F(1,88)=1.490, p= 0.225. 

The residual alpha angle data for femora absent for Poirier’s facets and categories as 

manual for occupational activity was not normally distributed (p= 0.016). It was no 

possible to transform the alpha angle data to meet normality however n=32.  

 

Plaque  

For the right side after adjusting for MET values there was still a significant difference 

in mean alpha angle size between femora with different plaque types present and 

those with plaque absent, F(3,78)= 3.815, p= 0.013. Post hoc pairwise analysis was 

performed with a Bonferroni adjustment and showed a significant difference between 

type B and type C plaque (p= 0.011). The standardized residual data for alpha angle 

size was not normally distributed for type c plaque (p= 0.019) and there was an outlier 
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present. A comparison test excluding this outlier met the assumption of normality and 

the test conclusions were no different to the original data test. The post hoc test 

however showed significant differences in alpha angle size between femora absent 

for plaque and those with type C plaque present (p= 0.012), those with type A present 

and type C present (p=0.018), and femora with type B present and those with type C 

present (p= 0.002).   

 

For the left side, there was also a significant difference in mean alpha angle size 

between femora with different plaque types and those absent for plaque when 

adjusted for MET values, F(3,82)= 6.985, p= <0.0005. Post hoc pairwise analysis with 

a Bonferroni’s correction applied showed a significant difference between type A and 

absent (p= 0.003), type A and type B (p= 0.004), type A and type C (p= <0.0005). The 

standardized residual data for alpha angle size was not normally distributed for type 

C plaque (p= 0.020) and there was two outliers present. When these outliers were 

excluded the assumption of normality was met however the assumption of the 

homogeneity of variances was violated (p= 0.003). The comparison test showed the 

same conclusions as the original test. 

 

For the right side there was not a statistically significant interaction between plaque 

type and occupational activity category (method I), F(5,72)= 1.990, p= 0.090. Main 

effect analysis showed there was no significant difference in alpha angle size between 

activity categories (method I), F(2,72)= 0.372, p= 0.691. There was also no significant 

difference in alpha angle size between plaque types (and those absent for plaque), 

F(3,72)= 2.457, p= 0.070. The residual alpha angle data was not normally distributed 

for low activity, plaque type A (p= 0.003). It was not possible to transform the alpha 

angle data to meet the assumption of normality. For the left side there was also not a 

statistically significant interaction between plaque type and occupational activity 

category (method I) on alpha angle size, F(6,75)= 0.391, p= 0.883. Main effect 

analysis showed there was no significant difference in alpha angle size between 

activity categories (method I), F(2,75)= 0.193, p= 0.825. There was however a 

significant difference in alpha angle size between plaque types, F(3, 75)= 5.045, p= 

0.003. Pairwise comparison was therefore run with a Bonferroni’s adjustment. This 

showed femora with type A plaque had significantly higher mean alpha angle than 

femora absent for plaque (p= 0.023), type B (p= 0.030) and type C (p= 0.001).  
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When using method II to categorise occupational physical activity the right side 

showed a statistically significant interaction between these categories and plaque type 

on mean alpha angle size, F(6,71)= 2.589, p= 0.025. Therefore, simple main effect 

analysis was run with a Bonferroni’s adjustment which showed a statistically significant 

difference in mean alpha angle size for those with occupational activity classification 

of sedentary behaviour with either plaque absent, type A type B or type C present, p= 

0.006.  There was also a statistically significant difference in mean alpha angle with 

occupational activity classification of moderate intensity, p= 0.004. Pairwise 

comparison showed, for those with occupations classified as sedentary behaviour, 

mean alpha angle size was significantly higher for femora with type A present than 

those with plaque absent, p= 0.022. While for those with occupations classified as 

moderate intensity mean alpha angle size was significantly higher for femora without 

plaque present than those with type C (p= 0.007), type B and type C (p= 0.005). Simple 

main effect analysis only showed a statistically significant difference in mean alpha 

angle size for femora with plaque absent with either sedentary behaviour, light 

intensity or moderate intensity occupational activity classification. Pairwise 

comparison showed for femora with plaque absent, there was statistically significant 

higher mean alpha angle for moderate intensity compared to sedentary behaviour 

activity classification, p= 0.025. It must be noted however the small numbers per 

category when considering these results.  

 

For the left side there was not a statistically significant interaction between 

occupational activity category and plaque on alpha angle size, F(6,75)= 0.288, 

p=0.941. There was however a significant difference in mean alpha angle size 

between plaque types, F(3,75)= 5.596, p= 0.002, but not for occupational activity 

categories, F(2,75)= 0.052, p= 0.950. Main effect analysis with Bonferroni’s 

adjustment applied showed a significantly higher mean alpha angle for type A 

compared to femora absent for plaque (p= 0.011), type B (p= 0.028) and type C (p= 

0.001).  

 

For both sides, with method III of categorising physical activity there was not a 

statistically significant interaction with plaque on alpha angle size, for the right side 

F(3,81)= 1.031, p= 0.384 and for the left side F(3,84)= 1.078, p= 0.363. For the right 

side there was not a statistically significant difference in mean alpha angle size 
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between plaque types, F(3, 81)= 2.300, p= 0.083 or between physical activity groups, 

F(1,81)= 0.129, p= 0.720. The residuals for alpha angles was not however normally 

distributed for femora with type A plaque present and categorised as non-manual (p= 

0.003). This data could not be transformed to meet the assumption of normality. For 

the left side there was a statistically significant difference in mean alpha angle size 

between plaque types, F(3, 84)= 5.709, p= 0.001. Pairwise comparison with a 

Bonferroni’s adjustment applied showed the mean alpha angle size was significantly 

higher for femora with type A plaque present compared to femora absent for plaque 

(p= 0.003), type B (p= 0.003), and type C (p= 0.001). There was no significant 

difference in mean alpha angle size between occupational activity groups, F(1, 84)= 

0.121, p= 0.729.  
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Chapter 7. Results III: FAI and Non-FAI groups   
 
 

This chapter focuses on the results from the 3D volume rendered CT models. The 

sample includes a total of thirty individuals (sixty femora). Eighteen of these individuals 

were undergoing investigation for FAI (FAI-group) and twelve of these individuals had 

CT scans taken for reasons other than FAI e.g. trauma (non-FAI group). Males and 

females were present for both samples. Cribra is not included in the analysis in this 

section as, due to image quality, it was not possible to observe this trait accurately on 

the 3D volume rendered images.  

 

Sections 7.1. and 7.2. provide an overview of the alpha angle data and non-metric 

traits for this sample and to establish if any additional factors are acting on these 

measurements, such as:  

• Side  

• Age (continuous scale)  
 
Section 7.3. focuses on determining if there is a significant difference in alpha angle 

size dependent on the presence/absence of the non-metric traits; Poirier’s facets and 

plaque.  

 
The results in section 7.4. show the difference in proportions of femora with and 

without cam morphology (using three commonly used alpha angle thresholds from the 

literature ³50°, ³55°, ³60°) by the presence of non-metric traits.  
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7.1. Alpha angle information  

Distribution of alpha angle size by side 

The average alpha angle for the FAI sample (n = 36) was 53.57°. The mean alpha 

angle for the left femora (n =18) was 54.56° and 52.58° for the right (n = 18). Table 7-

5 shows the descriptive statistics for alpha angle size for both sides together, left side 

only and right side only. Figure 7-1 shows the distribution of alpha angles for each side 

separately.  

 

 

Bilateral asymmetry of mean alpha angle size for the FAI group was determined using 

a paired sample t-test (see Table 7-1 and Table 7-2). The left femora had a higher 

mean alpha angle than the right femora. The left femora had a mean alpha angle size 

1.97°± 11.19° higher than the right femora; this difference was not however statistically 

significant, t(17) = 0.749, p = 0.464. 

Table 7-1 Paired samples descriptive statistics for left and right femora alpha angles, FAI group (pooled 
sex) 

 

 

 

 

Side N Mean (°) Std. Dev Std. Error Mean 
Left 18 54.56 9.93 2.34 
Right 18 52.58 7.55 1.78 

Figure 7-1 Histogram of distribution of alpha angles by side for the FAI group (pooled 
sex) 
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Table 7-2 Paired sample t-test data table alpha angle size by side, FAI group (pooled for sex) 

 

Paired differences 

  
95% confidence 

interval 

Alpha angles Mean Std. dev 

Std. 
error 
mean Lower Upper t df 

Sig. (2-
tailed) 

Left side– right 
side  1.974 11.187 2.637 -3.590 7.537 0.749 17 0.464 

 

The average alpha angle size for the non-FAI group (n = 24) was 51.06°. The mean 

alpha angle size for the left femora (n = 12) was 52.46° and 49.66° for the right (n = 

12). The distribution of alpha angles for the non-FAI group, by side, are shown in 

Figure 7-2. 

Bilateral asymmetry of mean alpha angle size was determined using a paired sample 

t-test (see Table 7-3 for descriptive statistics and Table 7-4 for statistical test results). 

The left femora (52.46° ± 8.56°) had a higher mean alpha angle than the right femora 

(49.66° ± 7.42°). The left femora had a mean alpha angle size 2.80°± 6.28 higher than 

the right femora; this difference was not however statistically significant, t(11) = 1.545, 

p = 0.151. 

 

Table 7-3 Paired samples descriptive statistics for left and right femora alpha angles, non-FAI group, 
pooled sex 

 

Side N Mean (°) Std. Dev Std. Error Mean 
Left 12 52.46 8.56 2.47 
Right 12 49.66 7.42 2.14 

Figure 7-2 Histogram of distribution of alpha angles by side for the non-FAI group (pooled 
sex) 

Distribution of alpha angles by size, Non-FAI group 
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Table 7-4 Paired sample t-test data table alpha angle size by side, non-FAI (pooled for sex) 

 

Paired differences 

  
95% confidence 

interval 

Alpha angles Mean Std. dev 

Std. 
error 
mean Lower Upper t df 

Sig. (2-
tailed) 

Left side– right 
side  2.801 6.281 1.813 -1.189 6.792 1.545 11 0.151 

 

There was no significant difference in mean alpha angle size between the FAI and 

non-FAI groups, as assessed by an independent sample t-test (Table 7-6), for the right 

side t(28)=1.047, p=0.304. For the left side there was also no significant difference in 

mean alpha angle size between the two groups, t(28)=0.598, p= 0.555. The descriptive 

statistics for alpha angle size for both the FAI and non-FAI groups are shown in Table 

7-5.  

Table 7-5 Descriptive statistics for alpha angle size by FAI and non-FAI group and side 

Group Side N 
Range 
(°) Min. (°) Max. (°) Mean (°) 

Std. 
Dev. 

FAI group 

Total 36 39.17 35.55 74.72 53.57 8.75 
Left  18 39.17 35.55 74.72 54.56 9.93 
Right 18 27.18 39.46 66.64 52.58 7.55 

Non-FAI 
group 

Total 24 32.92 40.92 73.84 51.06 7.96 
Left 12 31.28 42.57 73.84 52.46 8.56 
Right 12 22.87 40.92 63.79 49.66 7.42 

 
Table 7-6 Independent sample t-test data table for alpha angle between the FAI and non-FAI group for left 
and right side separately (pooled sex) 

 

t-test for Equality of Means 
 95% confidence interval 

t df 
Sig. (2-
tailed) 

Mean 
difference 

Std. Error 
difference Lower Upper 

Left side  0.598 28 0.555 2.097 3.508 -5.089 9.284 
Right 
side  1.047 28 0.304 2.925 2.794 -2.799 8.648 
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Distribution of alpha angle by sex  

The descriptive statistics for alpha angle size by sex and side are shown in the Table 

7-7. To determine if there was a statistically significant difference in mean alpha angle 

size between males and females for both the FAI and non-FAI group independent 

sample t-tests were run (see Table 7-8 the for results of the statistical analysis for the 

FAI group and Table 7-9 for the non-FAI group). For the FAI group, on the right side, 

alpha angle size for males was statistically significantly higher than for females, p= 

0.009. While for the left side there was no significant difference, however the mean 

alpha angle size was higher for females compared to males, p= 0.442.  

 

For the non-FAI, on the right side, the alpha angle data for males was not normally 

distributed and it was not possible to transform the data to reach normality (p = 0.026) 

therefore a Mann-Whitney U non-parametric test was run. This showed no significant 

difference in alpha angle size between males and females although it was higher for 

males than females, p= 0.530. For the left side alpha angle data was normally 

distributed for both males and females. There was again no significant difference 

between males and females, p= 0.284.   
 
Table 7-7 Descriptive statistics for alpha angle size by sex for FAI and non-FAI group 

 

 

 

Sex 
Side 

N 
Range 
(°) 

Min. 
(°) 

Max. 
(°) 

Mean 
(°) 

Std. 
Dev. 

FAI  

Males  

Right 12 22.24 44.40 66.64 55.67 6.30 
Left 12 39.17 35.55 74.72 53.24 10.57 
All  24 39.17 35.55 74.72 54.45 8.60 

Females  

Right 6 17.30 39.46 56.77 46.42 6.17 
Left 6 23.08 47.85 70.93 57.19 8.76 
All 12 31.47 39.46 70.93 51.81 9.16 

Non-FAI 

Males 

Right  7 19.35 44.43 63.79 51.65 8.37 
Left 7 31.28 42.57 73.84 54.79 10.30 
All 14 31.28 42.57 73.84 53.22 9.16 

Females 

Right 5 11.48 40.92 52.40 46.87 5.45 
Left 5 11.24 44.95 56.20 49.19 4.41 
All 10 15.28 40.92 56.20 48.03 4.83 



 185 

Table 7-8 Independent sample t-test showing alpha angle size for each side, FAI group  

 

t-test for Equality of Means 
 95% confidence interval 

t df 
Sig. (2-
tailed) 

Mean 
difference 

Std. Error 
difference Lower Upper 

Left side  -0.788 16 0.442 -3.957 5.021 -14.600 6.686 
Right 
side  2.957 16 0.009 9.249 3.128 2.618 15.879 

 

Table 7-9 Independent sample t-test showing alpha angle size for each side, non-FAI group  

 

t-test for Equality of Means 
 95% confidence interval 

t df 
Sig. (2-
tailed) 

Mean 
difference 

Std. Error 
difference Lower Upper 

Left side  1.133 10 0.284 5.606 4.947 -5.417 16.629 
 

Distribution of alpha angle size by age 

The FAI and non-FAI groups were combined in for analysis of alpha angle size by age 

to increase the sample size under analysis. A Pearson’s correlation for the left side 

showed a weak negative correlation between alpha angle size and age, however this 

was not significant, r(30) = 0.158, p = 0.404. The right side also showed a weak but 

positive correlation that was also not significant r(30) = -0.191, p = 0.313. The 

scatterplots in Figure 7-3, for the right and left side separately, shows there is not clear 

pattern between the two variables.  

  

Figure 7-3 Scatterplot of alpha angle size by age, FAI and non-FAI group combined and sex 
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Table 7-10 Number of femora per age range category by sex, FAI and non-FAI group combined 

Age Ranges 
Number of 
males 

Number of 
females 

Number of 
individuals 

Number of 
femora  

Percentage 
of femora 

18-29 years 4 1 5 10 16.7% 

30-49 years 11 5 16 32 53.3% 

50+ years 4 5 9 18 30.0% 

Total  19 11 30 60 100.0% 
 

The number of individuals per age range category is shown in Table 7-10 and the 

descriptive statistics for alpha angle size per age range category is shown in table 7-

11 below. For the left side mean alpha angle size increased from 18-29 years group 

(45.23° ± 6.969) to the 50+ years group (54.39° ± 7.31°) to the 30-49 years group 

(55.99° ± 9.82°). The mean alpha angle size was not however statistically significantly 

different between the age groups, F(2,27)=2.919, p= 0.071, η2= 0.178 as shown by a 

one-way ANOVA. For the right side, there was an increase in mean alpha angle size 

from 50+ years (49.22° ± 6.29°) to 18-29 years group (50.12° ± 5.83°) to 30-49 years 

group (53.05° ± 8.52°). This difference was not however found to be significant, 

F(2,27)=0.826, p=0.448, η2=0.058. 

Table 7-11 Descriptive statistics for alpha angle size by age range category, FAI and non-FAI group 
combined and sex 

 

Age range Side N 
Range 
(°) Min. (°) Max. (°) Mean (°) 

Std. 
Dev. 

18-29 
years 

Right 5 14.32 44.43 58.75 50.12 5.83 
Left 5 18.55 35.55 54.10 45.23 6.96 
All  10 23.30 35.55 58.75 47.68 6.58 

30-49 
years 

Right 16 25.72 40.92 66.64 53.05 8.52 
Left 16 30.33 44.40 74.72 55.99 9.82 
All 32 33.80 40.92 74.72 54.52 9.16 

50+ years 

Right 9 18.18 39.46 57.65 49.22 6.29 
Left 9 23.91 47.02 70.93 54.39 7.31 
All 18 31.47 39.46 70.93 51.81 7.13 
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7.2. Prevalence of non-metric traits  

Poirier’s facets  

 

 

For the FAI group, of the 36 femora analysed, Poirier’s facets were present on 13 

(36.1%), absent on 23 (63.9%). For the left side, Poirier’s facets were present on 6 

femora (33.3%) and absent on 12 femora (66.7%) (see Figure 7-4). While for the right 

Poirier’s facets were present on 7 femora (38.9%) and absent on 11 femora (61.1%) 

(see Figure 7-4).  
 

Figure 7-5 Pie charts of Poirier's facets for the non-FAI group, pooled sex 

 

For the non-FAI sample of the 24 femora analysed Poirier’s facets were present on 4 

(16.7%) and absent on 20 (83.3%). For both the right and left sides Poirier’s facets 

were present on 2 femora (16.7%) and absent on 10 (83.3%) (see Figure 7-5).  

Figure 7-4 Pie charts of Poirier's facets for FAI group, pooled sex,  

Distribution of Poirier’s facets by side for the Non-FAI group 
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A total of 18 individuals in the FAI group (36 femora) had both femora present and 

analysed for the presence of Poirier’s facets (Table 7-12). Of these, 10 (55.6%) 

individuals were absent for Poirier’s facets on both femora, 5 (27.8%) individuals had 

bilateral Poirier’s facets present, 3 (16.7%) individuals had unilateral Poirier’s facets 

present. 
 
Table 7-12 cross tabulation of the occurrence of Poirier's facets by left and right side, FAI group 

Poirier’s facets  

Right Side 

Present Absent Total 

Left Side 

Present 5 1 6 

Absent 2 10 12 

Total 7 11 18 

 

A total of 12 individuals in the non-FAI group (24 femora) had both femora present and 

analysed for the presence of Poirier’s facets (Table 7-13). Of these, 10 (83.3%) 

individuals were absent for Poirier’s facets bilaterally, 2 (16.7%) individuals had 

bilateral Poirier’s facets present, 0 individuals had unilateral Poirier’s facets present. 
 

Table 7-13 cross tabulation of the occurrence of Poirier's facets by left and right side, non-FAI  

Poirier’s facets  

Right Side 

Present Absent Total 

Left Side 

Present 2 0 2 

Absent 0 10 10 

Total 2 10 12 

 

When the two groups were combined, 34.2% of male femora and 18.2% of female 

femora had Poirier’s facet present. Of the Poirier’s facets present in the sample 76.5% 

were recorded on male and 23.5% on female femora. Table 7-14 shows the number 

of femora with and without Poirier’s facet present for males and females.  
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Table 7-14 Count of femora categorised for the presence or absence of Poirier's facets by sex and side, 
FAI and non-FAI groups combined. 

Sex Side Absent Present Total 

Male 
Left 13 6 19 
Right 12 7 19 
Total  25 13 38 

Female 
Left 9 2 11 
Right 9 2 11 
Total 18 4 22 

Total  43 17 60 
 

Again, the FAI and non-FAI were combined to increase numbers under analysis. With 

regards to age range categories, there was an increase in the percentage of Poirier’s 

facets recorded with an increase in age range category. Poirier’s facets were present 

on 0.0% of observable femora in the 18-29 years group, 34.4% of the 30-49 years 

group and 33.3% within the 50+ years age group (see Tables 7-15 and 7-16).   

 
Table 7-15 Count of femora categorised for presence or absence of Poirier's facets by age range category 
for FAI and non-FAI combined.  

Age group Absent Present Total 

18-29 years 10 0 10 
30-49 years 21 11 32 
50+ years 12 6 18 
Total 43 17 60 

 
Table 7-16 Percentage of Poirier's facets for observable femora within and between age groups, with FAI 
and non-FAI combined 

Age group 

% of femora 
absent for Poirier’s 
facets within age 
group 

% of femora 
present for 
Poirier’s facets 
within age group 

% of femora 
absent for Poirier’s 
facets within the 
sample 

% of femora 
present for 
Poirier’s facets 
within the sample  

18-29 years 100.0% 0.0% 23.3% 0.0% 

30-49 years 65.6% 34.4% 48.8% 64.7% 

50+ years 66.7% 33.3% 27.9% 35.3% 

 

Due to the presence of exact age data it was possible to run an independent sample 

t-test to determine if there was a significant difference in mean age between individuals 

with Poirier’s facets absent or present (Figure 7-6 shows the spread of data for femora 

with Poirier’s facets absent and present by side). For the right side there was no 
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significant difference t(28)= -1.223, p= 0.136. There was also no significant different 

for the left side, t(28)= -0.676, p = 0.505. 

 

 

 

When comparing the prevalence rates of Poirier’s facets between the FAI and non-

FAI groups a fisher’s exact test showed no significant difference in the proportion of 

Poirier’s facets present or absent between the two groups (p= 0.219) on the right side 

or the left side (p= 0.419)  

 

 
Plaque  

 

Figure 7-6 Pie charts of age by absence/presence of Poirier's facets, pooled sex and 
sample, FAI and non-FAI combined 

Figure 7-7 Pie charts of the distribution of plaque for FAI group 
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For the FAI group, plaque was present on 18 (50.0%) and absent on 18 (50.0%) of 

femora. Seven femora had type A (19.4%), 8 (22.2%) had type B and 3 (8.3%) had 

type C. For the left side, type A was present on 3 femora, type B was present on 4 

femora, type C was present on 0 femora, while plaque was absent on 11 left femora. 

For the right side, type A plaque was present on 4 femora, type B was present on 4 

femora; type C was present on 3 femora, while femora 7 right femora were absent for 

plaque (see Figure 7-7). 
 
 

 

For the non-FAI group, plaque was present on 15 (62.5%) and absent on 9 (37.5%) 

femora. Type A plaque was present on 4 (16.7%) femora, 10 (41.7%) had type B and 

1 (4.2%) had type C present. For the left side, type A was present on 2 femora, type 

B was present on 6 femora, type C was present on 0 femora. While 4 left femora were 

absent for plaque. For the right side, type A plaque was present on 2 femora, type B 

was present on 4 femora and type C was present on 1 femur. While 5 right femora did 

not have plaque present (see Figure 7-8).  

For the FAI group, Table 7-17 shows the cross tabulation for the occurrence of plaque 

on the left side and right side. 33.3% (6/18) of individuals were recorded as being 

bilaterally absent for plaque. Type A plaque occurred bilaterally in 1/18 individuals, 

while neither type B and C occurred bilaterally.  
 

Figure 7-8 Pie charts of distribution of plaque for non-FAI sample 

Distribution of Plaque by side for the non-FAI group 
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Table 7-17 cross tabulation of the occurrence of plaque by left and right side, FAI group 

 
Type 

Right side 
A B C Absent Total 

Left 

side 

A 1 2 0 0 3 
B 1 0 2 1 4 
C 0 0 0 0 0 

Absent 2 2 1 6 11 
Total 4 4 3 7 18 

 

For the non-FAI group, Table 7-18 shows the cross tabulation for the occurrence of 

plaque on the left side and right side. 25% (3/12) of individuals did not have plaque 

present on either femur, while 0% of individuals had bilateral type A plaque, 16.7% of 

individuals had type B on both femora and type C did not occur bilaterally.  
 
Table 7-18 cross tabulation of the occurrence of plaque by left and right side, non-FAI group  

 

Type 
Right side 

A B C Absent Total 

Left 

side 

A 0 2 0 0 2 

B 1 2 1 2 6 

C 0 0 0 0 0 

Absent 1 0 0 3 4 

Total 2 4 1 5 12 
 

When considering the distribution of plaque by sex for both samples combined, 52.6% 

of male and 59.1% of female femora had plaque present. Table 7-19 shows the 

distribution of plaque by sex and side.  

 
Table 7-19 Count of femora categorised by plaque type by side and sex, FAI and non-FAI combined 

Sex Side Absent Type A  Type B Type C Total 

Male 
Left 10 4 5 - 19 
Right 8 4 6 1 19 
Total  18 8 11 1 38 

Female 
Left 5 1 5 - 11 
Right 4 2 2 3 11 
Total 9 3 7 3 22 

Total  27 11 18 4 60 
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With regards to age range category and plaque, the 18-29 years age category had the 

highest prevalence rates of plaque followed by 50+ years and then 30-49 years. Table 

7-20 presents the number of femora for each plaque category by age range category 

while 7-21 presents the percentage of femora with each plaque type for each age 

group and 7-22 presents the percentage of femora within each plaque type present by 

age group. 
 
Table 7-20 Count of femora categorised for plaque type by age group, FAI and non-FAI combined 

Age group  Absent Type A  Type B Type C Total 

18-29 years 3 2 4 1 10 

30-49 years 16 5 9 2 32 

50+ years 8 4 5 1 18 

Total  27 11 18 4 60 
  
Table 7-21 Percentage of femora within each age group category by plaque type, FAI and non-FAI 
combined 

Age group 

% of observable 
femora absent 
for Plaque within 
age group 

% of observable 
femora present 
for Type A within 
age group 

% of observable 
femora present 
for Type B within 
age group 

% of observable 
femora present 
for Type C within 
age group 

18-29 years 30.0% 20.0% 40.0% 10.0% 

30-49 years 50.0% 15.6% 28.1% 6.3% 

50+ years 44.4% 22.2% 27.8% 5.6% 
 

Table 7-22 Percentage of femora within each plaque type group by age range category, FAI ang non-FAI 
groups combined 

Age group 

% of observable 
femora absent 
for Plaque 
between age 
group 

% of observable 
femora present 
for Type A 
between age 
group 

% of observable 
femora present 
for Type B 
between age 
group 

% of observable 
femora present 
for Type C 
between age 
group 

18-29 years 11.1% 18.2% 22.2% 25.0% 

30-49 years 59.3% 45.5% 50.0% 50.0% 

50+ years 29.6% 36.4% 27.8% 25.0% 

 

With FAI and non-FAI was combined, to increase sample size under analysis, a one-

way ANOVA was run determine if there was a significant difference in the mean age 

between plaque types. For the right side, there was an extreme outlier present for the 
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type B plaque group which caused a deviation from normality (p = 0.026). A 

comparison test was run excluding this case however as it did not affect the 

conclusions it was maintained. For the original data mean age was highest for those 

without plaque (44.08 years) followed by type A (41.33 years), type B (39.38 years) 

and type C (38.25 years). There was no significant difference in mean age between 

the plaque types, F(3,26) = 0.276, p = 0.842.  

For the left side, mean age was highest for femora with type A (44.80 years) present 

followed by type B (42.70 years) and then those without plaque present (39.60 years). 

There was no significant difference between the mean age and plaque type, F(2,27)= 

0.331, p=0.721. 

When comparing the prevalence rates of plaque between the FAI and non-FAI groups 

a fisher’s exact test showed no significant difference in the proportion between the two 

groups (p= 0.913) on the right side or the left side (p= 0.221). 

7.3. Alpha angles and non-metric traits  

In order to determine if there was a significant difference in mean alpha angle size 

between femora with Poirier’s facets, plaque (and between type) and cribra present 

and those absent for these traits, independent sample t-tests and one-way ANOVAs 

run for each side separately, with both the FAI group and non-FAI group combined to 

increase sample size under analysis. This section is to determine if there is a link 

between any of these non-metric traits and alpha angle size.  

 

Poirier’s facets 

There was a significant difference in mean alpha angle size between femora with and 

without Poirier’s facets for both the right and left side, Table 7-23 shows the descriptive 

statistics. For the right side there was a significant difference in mean alpha angle size 

between femora with Poirier’s facets present (55.59° ± 9.24°) and those absent (49.65° 

± 6.01°), t(28)=-2.102 , p = 0.045 . The left side also showed a significant difference 

between those with Poirier’s facets present (62.70° ± 10.72°) and those without 

(50.58° ± 6.25°), t(28)=-3.856, p = 0.001. Figure 7-9 shows the distribution of alpha 

angles between those with and without Poirier’s facets. 



 195 

 

 

 
Table 7-23  Descriptive statistics for alpha angle size when split by femoral side and presence/absence of 
Poirier’s facets, pooled for sex, FAI and non-FAI groups combined.  

 
Poirier’s 
facets N Mean (°) Min. (°) Max. (°) 

Range 
(°) Std. Dev. 

Left Femora 
Absent 22 50.45 35.55 62.82 27.27 6.28 
Present 8 62.70 47.02 74.72 27.70 10.72 

Right Femora 
Absent 21 49.62 40.92 60.64 19.72 6.04 
Present 9 55.59 39.46 66.64 27.18 9.24 

 

Plaque 

The descriptive statistics for alpha angle size by plaque type are shown in Table 7-24 

below and the distribution of alpha angles by plaque type is shown in Figure 7-10. For 

the right side, alpha angle size decreased from type A (53.87° ± 5.34°) to absent for 

plaque (52.75° ± 9.62°) to type B (49.31° ± 4.89°) to type C (48.07° ± 7.32°). There 

was no statistically significant difference found between alpha angle size and plaque 

type F(3, 26)= 0.802, p = 0.504, η2=0.085.  

Figure 7-9 Histogram of alpha angle by the presence of Poirier's facets, pooled sex, 
FAI and non-FAI combined 
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For the left side, there was also a decrease in mean alpha angle size from type A 

(55.79°± 5.25°) to absent for plaque (54.96° ± 12.08°) to type B (51.10° ± 4.95°). There 

was no statistically significant difference in mean alpha angle size between plaque 

types Welch’s F(2, 27) = 0.640, p = 0.535, η2=0.045.  

 
 
 
Table 7-24 Descriptive statistics for alpha angle size when split by femoral side and presence (by 
type)/absence of plaque, pooled for sex, FAI and non-FAI combined 

Plaque Side N Mean (°) 
Std. 
Dev. 

Std. 
error Min. (°) Max. (°) 

Absent 
Left  15 54.96 12.08 3.12 35.55 74.72 
Right 12 52.75 9.62 2.78 39.46 66.64 
All 27 53.98 10.91 2.10 35.55 74.72 

Type A 
Left 5 55.79 5.25 2.35 49.75 62.82 
Right 6 53.87 5.34 2.18 45.00 60.64 
All 11 54.74 5.13 1.55 45.00 62.82 

Type B 
Left 10 51.10 4.95 1.56 42.57 59.15 
Right 8 49.31 4.89 1.73 44.43 56.77 
All 18 50.31 4.86 1.15 42.57 59.15 

Type C  
Left - - - - - - 
Right 4 48.07 7.32 3.66 42.49 58.75 

 

Figure 7-10 Histogram of distribution of alpha angles by the presence of plaque 
(by type), pooled sex, FAI and non-FAI groups combined 
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7.4. Cam morphology and non-metric traits  

To determine if there was a difference in proportions of femora with and without non-

metric traits and having cam morphology (as determined by the threshold levels of 

³50°, ³55° and ³60°) chi-squared tests of homogeneity and fisher’s exact tests (if the 

sample size was <5) were performed. Analysis was performed with the FAI and non-

FAI groups combined to increase sample sizes and give an overall understanding of 

the difference in proportions for all the modern clinical sample. Following this the FAI 

and non-FAI groups have been reviewed separately to determine if the presence or 

absence of FAI impacts the proportions of femora having cam morphology based on 

non-metric traits.  

 

Poirier’s facets 

³50° Threshold 

The first non-metric trait to be assessed was Poirier’s facets. When the FAI and non-

FAI groups were combined, on the right side, there was no statistically significant 

difference in proportions of femora with an alpha angle ³50° than those with an angle 

<50°, dependent on the presence or absence of Poirier’s facets, p= 0.118.  For the left 

side there was again no significant difference in the difference in proportions of femora 

with an alpha angle ³50° than those with an angle <50°, between femora with Poirier’s 

facets present or absent, p = 0.215. Table 7-25 shows the distribution of femora with 

and without Poirier’s facets for femora with and without Poirier’s facets.  
 
Table 7-25 Distribution of femora with/without cam morphology (50° threshold) by Poirier's facets, pooled 
sex, FAI and non-FAI combined 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<50°)  57.1%(12) 22.2%(2) 46.7%(14) 

Present (≥50°) 42.9%(9) 77.8%(7) 53.3%(16) 

Total  100.0%(21) 100.0%(9) 100.0%(30) 

Left 

Absent (<50°)  59.1%(13) 25.0%(2) 50.0%(15) 

Present (≥50°) 40.9%(9) 75.0%(6) 50.0%(15) 

Total  100.0%(22) 100.0%(8) 100.0%(30) 
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For the FAI group, for the right side there was no significant difference in the 

proportions of femora with an alpha angle ³50° than those with an angle <50° 

dependent on the presence or absence of Poirier’s facets, p = 1.000. 71.4% of femora 

with Poirier’s facets present and 63.6% with Poirier’s facets absent had cam 

morphology (see Table 7-26). For the left side, there was again no significant 

difference in proportions of femora with or without cam morphology between those 

with and without Poirier’s facets, p=0.638. 66.7% of femora with Poirier’s facets 

present and 50.0% with Poirier’s facets absent had cam morphology present (see 

Table 7-26). 
 
Table 7-26 Distribution of femora with/without cam morphology (50° threshold) by Poirier's facets, FAI 
group, pooled sex 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<50°)  36.4%(4) 28.6%(2) 33.3%(6) 

Present (≥50°) 63.6%(7) 71.4%(5) 66.7%(12) 

Total  100.0%(11) 100.0%(7) 100.0%(18) 

Left 

Absent (<50°)  50.0%(6) 33.3%(2) 44.4%(8) 

Present (≥50°) 50.0%(6) 66.7%(4) 55.6%(10) 

Total  100.0%(12) 100.0%(6) 100.0%(18) 

  

 For the non-FAI group, on the right side there was no significant difference in 

proportions of femora with and without cam morphology based on the alpha angle 

threshold of ³50° and the presence or absence of Poirier’s facets, p= 0.091. 100.0% 

of femora with Poirier’s facets present and 20.0% with Poirier’s facets absent had an 

alpha angle ³50° (see Table 7-27). For the left side there was again no significant 

difference, p= 0.152. 100.0% of femora with Poirier’s facets present and 30.0% without 

Poirier’s facets had an alpha angle ³50°. There were, however, only two femora with 

Poirier’s facets present on each side (see Table 7-27).  
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Table 7-27 Distribution of femora with/without cam morphology (50° threshold) by Poirier's facets, Non-
FAI group, pooled sex 

 
³55° Threshold 

At the 55° threshold level, when combining both the FAI and non-FAI groups, for the 

right side, there was no significant difference in proportions of femora with and without 

cam morphology between femora with and without Poirier’s facets, p= 0.115. For the 

left side there was a significant difference in proportions of femora with and without 

cam morphology between those with and without Poirier’s facets, p= 0.028. See Table 

7-28 for the distribution of femora with and without cam morphology for those with and 

without Poirier’s facets.  
 
Table 7-28 Distribution of femora with/without cam morphology (55° threshold) by Poirier's facets, pooled 
sex, FAI and non-FAI groups combined 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<55°)  76.2% (16) 44.4% (4) 66.7% (20) 

Present (≥55˚) 23.8% (5) 55.6% (5) 33.3% (10) 

Total  100.0% (21) 100.0% (9) 100.0% (30) 

Left 

Absent (<55°)  77.3% (17) 25.0% (2) 63.3% (19) 

Present (≥55˚) 22.7% (5) 75.0% (6) 36.7% (11) 

Total  100.0% (22) 100.0% (8) 100.0% (30) 

 
For FAI-group, on the right side there was no significant difference in proportions of 

femora with or without cam morphology between those with Poirier’s facets present 

and absent, p= 1.000. For the left side there was also no significant difference, p= 

0.321. See Table 7-29 for the distribution of femora between the different groups.  
 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<50°)  80.0%(8) 0.0%(0) 66.7%(8) 

Present (≥50°) 20.0%(2) 100.0%(2) 33.3%(4) 

Total  100.0%(10) 100.0%(2) 100.0%(12) 

Left 

Absent (<50°)  70.0%(7) 0.0% (0) 58.3%(7) 

Present (≥50°) 30.0% (3) 100.0% (2) 41.7% (5) 

Total  100.0% (10) 100.0% (2) 100.0% (12) 
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Table 7-29 Distribution of femora with/without cam morphology (55° threshold) by Poirier's facets, FAI-
group, pooled sex 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<55°)  54.5% (6) 57.1% (4) 55.6% (10) 

Present (≥55˚) 45.5% (5)  42.9% (3) 44.4% (8) 

Total  100.0% (11) 100.0% (7) 100.0% (18) 

Left 

Absent (<55°)  66.7% (8) 33.3% (2) 55.6% (10) 

Present (≥55˚) 33.3% (4) 66.7% (4) 44.4% (8) 

Total  100.0% (12) 100.0% (6) 100.0% (18) 

For the non-FAI group, the right side showed a significant difference in the proportions 

of femora with or without cam morphology between those with and without Poirier’s 

facets present or absent, p= 0.015. 100% of femora with Poirier’s facets present had 

cam morphology present, while 0% those without Poirier’s facets had cam morphology 

present (Table 7-30). For the left side, there was also a significant difference, p= 0.045. 

100% of femora with Poirier’s facets present had cam morphology present while 10% 

of those without Poirier’s facets had cam morphology present (Table 7-30).   

 
Table 7-30 Distribution of femora with/without cam morphology (55° threshold) by Poirier's facets, pooled 
sex, non-FAI group 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<55°)  100.0% (10) 0.0% (0) 83.3% (10) 

Present (≥55˚) 0.0% (0) 100.0% (2) 16.7% (2) 

Total  100.0% (10) 100.0% (2) 100.0% (12) 

Left 

Absent (<55°)  90.0% (9) 0.0% (0) 75.0% (9) 

Present (≥55˚) 10.0% (1) 100.0% (2) 25.0% (3) 

Total  100.0% (10) 100.0% (2) 100.0% (12) 

 

³60° Threshold 

At the 60° threshold, level when combining both FAI groups, on the right side there 

was a significant difference in proportions of femora with and without cam morphology 

between those with and without Poirier’s facets present, p= 0.019. 44.4% of femora 

with Poirier’s facets present had alpha angles ≥60° while only 4.8% of femora with 

Poirier’s facets absent had alpha angle ≥60° (Table 7-31). For the left side there was 

also a statistically significant difference, p= 0.002. 62.5% of femora with Poirier’s facets 
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had alpha angles ≥60° while only 4.5% of femora with Poirier’s facets absent had alpha 

angle ≥60° (Table 7-31). 
 
Table 7-31 Distribution of femora with/without cam morphology (60° threshold) by Poirier's facets, pooled 
sex, FAI and non-FAI groups combined 

Side 
Cam morphology  

Poirier’s facets % (n) 
Total Absent  Present  

Right 
Absent (<60°)  95.2% (20) 55.6% (5) 83.3% (25) 
Present (≥60°) 4.8% (1) 44.4% (4) 16.7% (5) 
Total  100.0% (21) 100.0% (9) 100.0% (30) 

Left 
Absent (<60°)  95.5% (21) 37.5% (3) 80.0% (24) 
Present (≥60°) 4.5% (1) 62.5% (5) 20.0% (6) 
Total  100.0% (22) 100.0% (8) 100.0% (30) 

For the FAI-group, for the right side there was not a statistically significant difference 

in the proportion of femora with and without cam morphology based on the 60° 

threshold, p= 0.528. For the left side, there was also no significant difference in 

proportions, p = 0.083. See Table 7-32 for the distribution of femora with and without 

cam morphology for those with and without Poirier’s facets.  

Table 7-32 Distribution of femora with/without cam morphology (60° threshold) by Poirier's facets, FAI-
group, pooled sex 

Side 
Cam morphology  

Poirier’s facets % (n) 
Total Absent  Present  

Right 
Absent (<60°)  90.9% (10) 71.4% (5) 83.3% (15) 
Present (≥60°) 9.1% (1) 28.6% (2) 16.7% (3) 
Total  100.0% (11) 100.0% (7) 100.0% (18) 

Left 
Absent (<60°)  91.7% (11) 50.0% (3) 77.8% (14) 
Present (≥60°) 8.3% (1) 50.0% (3) 22.2% (4) 
Total  100.0% (12) 100.0% (6) 100.0% (18) 

 

For the non-FAI group, there was a significant difference in the proportions of femora 

with cam morphology by the presence or absence of Poirier’s facets on both sides, 

p=0.015 for both sides. Left and right side showed 100% of femora with Poirier’s facets 

present and 0% of those without Poirier’s facets had an alpha angle ≥60° (see Table 

7-33).  
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Table 7-33 Distribution of femora with/without cam morphology (60° threshold) by Poirier's facets, pooled 
sex, Non-FAI group 

Side 
Cam morphology  

Poirier’s facets % (n) 

Total Absent  Present  

Right 

Absent (<60°)  100.0% (10) 0.0% (0) 83.3% (10) 

Present (≥60°) 0.0% (0) 100.0% (2) 16.7% (2) 

Total  100.0% (10) 100.0% (2) 100.0% (12) 

Left 

Absent (<60°)  100.0% (10) 100.0% (2) 83.3% (10) 

Present (≥60°) 0.0% (0) 100.0% (0) 16.7% (2) 

Total  100.0% (10) 100.0% (2) 100.0%(12) 

 
Plaque 

³50° Threshold 

When the FAI and non-FAI groups were combined, on the right side, at the 50° 

threshold, there was no significant difference in the proportions of femora with and 

without cam morphology by the type of plaque present, p=0.269. For the left side there 

was also no significant difference in proportions, p= 0.481. See Table 7-34 for the 

distribution of femora with and without cam morphology for the different types of 

plaque.  

 
Table 7-34 Distribution of femora with/without cam morphology (50° threshold) by plaque, pooled sex, 
FAI and non-FAI groups combined. 

Side Cam 
morphology  

Plaque % (n) 
Total Absent  Type A Type B Type C 

Right 
Absent (<50°)  41.7% (5) 16.7% (1) 62.5% (5) 75.0% (3) 46.7% (14) 
Present (≥50˚) 58.3% (7) 83.3% (5) 37.5% (3) 25.0% (1) 53.3% (16) 
Total  100.0%(12) 100.0%(6) 100.0%(8) 100.0%(4) 100.0%(30) 

Left 
Absent (<50°)  53.3% (8) 20.0%(1) 60.0%(6) - 50.0% (15) 
Present (≥50˚) 46.7% (7) 80.0%(4) 40.0%(4) - 50.0%(15) 
Total  100.0%(15) 100.0%(5) 100.0%(10) - 100.0% (30) 

 

For the FAI-group, both the right (p= 0.747) and left (p= 0.330) there was no significant 

difference in proportions. Table 7-35 shows the distribution of femora with and without 

cam morphology for each plaque group.  
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Table 7-35 Distribution of femora with/without cam morphology (50° threshold) by plaque, FAI-group, 
pooled sex 

Side Cam 
morphology  

Plaque % (n) 
Total Absent  Type A Type B Type C 

Right 
Absent (<50°)  28.6%(2) 25.0%(1) 25.0%(1) 66.7%(2) 33.3%(6) 
Present (≥50˚) 71.4%(5) 75.0%(3) 75.0%(3) 33.3%(1) 66.7%(12) 
Total  100.0%(7) 100.0%(4) 100.0%(4) 100.0%(3) 100.0%(18) 

Left 
Absent (<50°)  54.5%(6) 0.0%(0) 50.0%(2) - 44.4%(8) 
Present (≥50˚) 45.5%(5) 100.0%(3) 50.0%(2) - 55.6%(10) 
Total  100.0%(11) 100.0%(3) 100.0%(4) - 100.0%(18) 

 
For the non-FAI group, for both the right (p=0.107) and the left (p=1.000) there was no 

significant difference in the proportions of femora with and without cam morphology 

between the different plaque types, see Table 7-36.  
 
Table 7-36 Distribution of femora with/without cam morphology (50° threshold) by plaque, pooled sex, 
Non-FAI group 

Side Cam 
morphology  

Plaque % (n) 
Total Absent  Type A Type B Type C 

Right 
Absent (<50°)  60.0%(3) 0.0%(0) 100.0%(4) 100.0%(1) 66.7%(8) 
Present (≥50˚) 40.0%(2) 100.0%(2) 0.0%(0) 0.0%(0) 33.3%(4) 
Total  100.0%(5) 100.0%(2) 100.0%(4) 100.0%(1) 100.0%(12) 

Left 
Absent (<50°)  50.0%(2) 50.0%(1) 66.7%(4) - 58.3%(7) 
Present (≥50˚) 50.0%(2) 50.0%(1) 33.3%(2) - 41.7%(5) 
Total  100.0%(4) 100.0%(2) 100.0%(6) - 100.0%(12) 

 
³55° Threshold 

When FAI and non-FAI groups were combined, for the right side, there was no 

significant difference between the proportions of femora with cam morphology and 

those without by those with plaque and those without, p= 0.458. For the left side there 

is also no significant difference in proportions, p= 0.885. The difference in proportions 

of femora with and without cam morphology for each plaque type is shown in Table 7-

37. 
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Table 7-37 Distribution of femora with/without cam morphology (55° threshold) by plaque, pooled sex, 
FAI and non-FAI groups 

Side Cam 
morphology  

Plaque % (n) 
Total Absent  Type A Type B Type C 

Right 
Absent (<55°)  58.3%(7) 50.0%(3) 87.5%(7) 75.0%(3) 66.7%(20) 
Present (≥55°) 41.7%(5) 50.0%(3) 12.5%(1) 25.0%(1) 33.3%(10) 
Total  100.0%(12) 100.0%(6) 100.0%(8) 100.0%(4) 100.0%(30) 

Left 
Absent (<55°)  60.0%(9) 60.0%(3) 70.0%(7) - 63.3%(19) 
Present (≥55°) 40.0%(6) 40.0%(2) 30.0%(3) - 36.7%(11) 
Total  100.0%(15) 100.0%(5) 100.0%(10) - 100.0%(30) 

 

For the FAI group, for both right (p= 0.631) and left (p= 0.810) sides there was no 

significant differences in proportions (see Table 7-38).  

Table 7-38 Distribution of femora with/without cam morphology (55° threshold) by plaque, FAI group, 
pooled sex 

Side Cam 
morphology  

Plaque % (n) 
Total Absent  Type A Type B Type C 

Right 
Absent (<55°)  57.1%(4) 25.0%(1) 75.0%(3) 66.7%(2) 55.6%(10) 
Present (≥55°) 42.9%(3) 75.0%(3) 25.0%(1) 33.35(1) 44.4%(8) 
Total  100.0%(7) 100.0%(4) 100.0%(4) 100.0%(3) 100.0%(18) 

Left 
Absent (<55°)  63.6%(7) 33.3%(1) 50.0%(2) - 55.6%(10) 
Present (≥55°) 36.4%(4) 66.7%(2) 50.0%(2) - 44.4%(8) 
Total  100.0%(11) 100.0%(3) 100.0%(4) - 100.0%(18) 

 
For the non-FAI group, for both the right (p= 0.697) and the left side (p= 0.509) there 

was no significant difference in the proportion of femora with and without cam 

morphology present between plaque types (see Table 7-39).  
 
Table 7-39 Distribution of femora with/without cam morphology (55° threshold) by plaque, non-FAI 
sample, pooled sex 

Side Cam 
morphology  

Plaque % (n) 
Total Absent  Type A Type B Type C 

Right 
Absent (<55°)  60.0%(3) 100.0%(2) 100.0%(4) 100.0%(1) 83.3%(10) 
Present (≥55°) 40.0%(2) 0.0%(0) 0.0%(0) 0.0%(0) 16.7%(2) 
Total  100.0%(5) 100.0%(2) 100.0%(4) 100.0%(1) 100.0%(12) 

Left 
Absent (<55°)  50.0%(2) 100.0%(2) 83.3%(5) - 75.0%(9) 
Present (≥55°) 50.0%(2) 0.0%(0) 16.7%(1) - 25.0%(3) 
Total  100.0%(4) 100.0%(2) 100.0%(6) - 100.0%(12) 
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³60° Threshold 

When the FAI and non-FAI groups were combined both the right (p= 0.210) and left 

side (p= 0.110) showed no significant difference in the proportions of femora with cam 

morphology dependent on the plaque type present (or absent), see Table 7-40. 

 
Table 7-40 Distribution of femora with/without cam morphology (60° threshold) by plaque, pooled sex, 
FAI and non-FAI combined 

Side Cam 
morphology  

Plaque % (n) 
Total Absent  Type A Type B Type C 

Right 
Absent (<60°)  66.7%(8) 83.3%(5) 100.0%(8) 100.0%(4) 83.3%(25) 
Present (≥60°) 33.3%(4) 16.7%(1) 0.0%(0) 0.0%(0) 16.7%(5) 
Total  100.0%(12) 100.0%(6) 100.0%(8) 100.0%(4) 100.0%(30) 

Left 
Absent (<60°)  66.7%(10) 80.0%(4) 100.0%(10) - 80.0%(24) 
Present (≥60°) 33.3%(5) 20.0%(1) 0.0%(0) - 20.0%(6) 
Total  100.0%(15) 100.0%(5) 100.0%(10) - 100.0%(30) 

 
For the FAI group, both right (p= 0.863) and left (p= 0.569) sides showed no significant 

difference in proportions of femora with and without cam morphology by plaque type, 

see table 7-41 for the distribution of femora for each group.  

Table 7-41 Distribution of femora with/without cam morphology (60° threshold) by plaque, pooled sex, 
FAI group 

Side Cam 
morphology  

Plaque % (n) 
Total Absent  Type A Type B Type C 

Right 
Absent (<60°)  71.4%(5) 75.0%(3) 100.0%(4) 100.0%(3) 83.3%(15) 
Present (≥60°) 28.6%(2) 25.0%(1) 0.0%(0) 0.0%(0) 16.7%(3) 
Total  100.0%(7) 100.0%(4) 100.0%(4) 100.0%(3) 100.0%(18) 

Left 
Absent (<60°)  72.7%(8) 66.7%(2) 100.0%(4) - 77.8%(14) 
Present (≥60°) 27.3%(3) 33.3%(1) 0.0%(0) - 22.2%(4) 
Total  100.0%(11) 100.0%(3) 100.0%(4) - 100.0%(18) 

 
For the non-FAI group, both right (p= 0.697) and the left side (p= 0.106) showed there 

was no significant difference in the proportions of femora with and without cam 

morphology between different plaque types, see Table 7-42.  
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Table 7-42 Distribution of femora with/without cam morphology (60° threshold) by plaque, pooled sex, 
Non-FAI groups 

Side 
Cam 

morphology  

Plaque % (n) 

Total Absent  Type A Type B Type C 

Right 

Absent (<60°)  60.0%(3) 100.0%(2) 100.0%(4) 100.0%(1) 83.3%(10) 

Present (≥60°) 40.0%(2) 0.0%(0) 0.0%(0) 0.0%(0) 16.7%(2) 

Total  100.0%(5) 100.0%(2) 100.0%(4) 100.0%(1) 100.0%(12) 

Left 

Absent (<60°)  50.0%(2) 100.0%(2) 100.0%(6) - 83.3%(10) 

Present (≥60°) 50.0%(2) 0.0%(0) 0.0%(0) - 16.7%(2) 

Total  100.0%(4) 100.0%(2) 100.0%(6) - 100.0%(12) 
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Chapter 8. Results IIII: Skeletal collection data compared & 

combined 

In this chapter the results of the statistical analysis of the males from the Wharram 

Percy and the Luís Lopes collection will be compared to determine any significant 

differences between the two collections.  

 

In section 8.1.1 alpha angle size will be compared to determine if there is a significant 

difference between the two samples. The distribution of age will also be compared to 

determine if there is a difference in age distribution and if this had a significant impact 

on the difference in alpha angle size between the two samples.  

 

8.1.2. focuses on the distribution of non-metric traits to determine if there is a 

significant difference between the two collections.  

 

8.2. will compare the occupation data including the LLC occupations and the WPC. 

This is to determine if there is a significant difference between alpha angle size 

between the occupations, the occupational activity categories and the WPC data.  

 

8.3. will combine the data for the WPC and LLC to allow further statistical tests to be 

carried out which require larger sample sizes than were available for the collections 

separately, such as binary regression. It allows further understanding of the 

association between cam morphology and non-metric traits without being limited to a 

particular sample.  

 

8.4. Is focused on the osteitis pubis data. Comparing alpha angle size between those 

with and without each trait and also dependent on the number of osteitis pubis traits 

present. Analysis will also be performed controlled for age to identify if any differences 

are due to age.  

 

8.5. is focused on additional findings which were identified during the recording 

process, this includes herniation pits.   



 208 

8.1. Skeletal collection data compared   

8.1.1.  Alpha angle data   

The mean alpha angle size for the Wharram Percy collection males (n = 112) was 

53.62° ± 11.39°, while for the Luís Lopes collection it was 54.18° ± 10.99° (see Table 

8-1 for the descriptive statistics). For the left side there was no significant difference in 

mean alpha angle between the two collections, t(162) = -0.033, p = 0.974 and for the 

right side the mean alpha angle size was also not statistically significantly different, 

t(153) = -0.610, p = 0.543, based on independent t-tests (see Table 8-2).  
 
Table 8-1 Descriptive statistics for alpha angle size by collection, WPC & LLC compared 

 

Table 8-2 Independent sample t-test data table for alpha angle by skeletal collection for left and right side 

 

t-test for Equality of Means 
 95% confidence interval 

t df 
Sig. (2-
tailed) 

Mean 
difference 

Std. Error 
difference Lower Upper 

Left side  -0.033 162 0.974 -0.059 1.807 -3.627 3.508 
Right 
side  -0.610 153 0.543 -1.155 1.893 -4.894 2.584 

 

Distribution of age  

There was a significant difference in the proportions of individuals per age range 

category between the two collections as determined by a chi-squared test of 

homogeneity, p = 0.050.  For the Wharram Percy collection, 22.2% of individuals were 

in the 18-29 years category, 38.9% were in the 30-49 years category and 38.9% were 

in the 50+ years category. While for the Luís Lopes collection 12.0% were in the 18-

29 years category, 29.6% were in 30-49 years category and 58.3% were in the 50+ 

years category.  

Collection Side N Range (°) Min. (°) Max. (°) Mean (°) 
Std. 
Dev. 

Wharram 
Percy 

Right 53 47.67 31.68 79.35 52.48 10.90 
Left 59 50.70 31.94 82.63 54.64 11.81 
All  112 50.96 31.68 82.63 53.62 11.39 

Luís 
Lopes 
collection 

Right 102 45.97 34.15 80.12 53.64 11.32 
Left 105 43.34 33.63 76.97 54.70 10.69 
All 207 46.49 33.63 80.12 54.18 10.99 
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Alpha angle size controlled for age  

Due to the differences in age distribution between the two collections a two-way 

ANOVA was run in order to determine if the distribution of age impacted the alpha 

angle size when comparing the two collections.   
 

For the right side, the alpha angle data for Wharram Percy 30-49 years group (p = 

0.027) and Luís Lopes collection, 50+ years group (p = 0.004) was not normally 

distributed, as assessed by a Shapiro-Wilks test, therefore a comparison test was run 

using transformed data. The comparison test using transformed data showed no 

difference in conclusions to the original data test. It was not however possible to 

correct for the violation of normality for the 50+ years group but the sample size was 

>30, the original data was therefore used for this test. For the original data there was 

no statistically significant interaction between age range category and skeletal 

collection on alpha angle, F(2, 140)= 0.276, p = 0.759. partial η2= 0.004. There was 

also no significant difference in alpha angle size between age range categories F(2, 

140)= 1.783, p = 0.172, partial η2= 0.025 or skeletal collection F(2,140)= 0.881, p = 

0.881, partial η2= <0.0005. Figure 8-1 shows the estimated marginal means of alpha 

angles by age range categories for both collections. 
 

 

 

 

Figure 8-1 Estimated marginal means plot for alpha angles by age range 
categories for each collection, right side 
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For the left side there was an extreme outlier present for the Wharram Percy, 18-29 

years group and the data was not normally distributed for the Luís Lopes collection 

30-49 years group (p = 0.015) and 50+ years (p= 0.049) groups, therefore comparison 

tests were run to determine if the violations of these test assumptions would impact 

the conclusions. The comparison test with transformed data showed the same 

conclusions as the original data therefore the original data was used. For the original 

data there was no significant interaction between age range category and skeletal 

collection on alpha angle size, F(2,145)= 0.372, p= 0.690,  partial η2= 0.005. There 

was also no significant difference in alpha angle size between collections, F(2, 145)= 

0.010, p = 0.921 partial η2= <0.0005. There was however a significant difference in 

alpha angle size between age range categories, F(2,145)= 5.423, p = 0.005, partial 

η2= 0.070. The alpha angle size increased from 18-29 years (47.76° ± 2.16) [mean ± 

Std. Error], to 30-49 years (54.48° ± 1.57) to 50+ years (56.15° ± 1.38). The mean 

alpha angle for the 30-49 years group was 6.72°± 2.67° higher than the 18-29 years 

group. Additionally, the 50+ years group was 8.39°± 2.56° higher than the 18-29 years 

group. Only the difference between 50+ years and 18-29 years (p= 0.004) was 

statistically significant when adjusted for Bonferroni’s correction (p = 0.016667), see 

Figure 8-2 for the estimated marginal means plot of alpha angles by age range 

category for both collections.  
 

 
 

Figure 8-2 Estimated marginal means plot for alpha angles by age range 
categories for each collection, left side 
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8.1.2. Non-metric traits  

To determine if there was a significant difference in the proportions of non-metric traits 

between the two collections chi-squared test of homogeneity and fisher’s exact test 

were run. There was only a significant difference for plaque type A between the two 

collections.  

 

Poirier’s facets 

The distribution of Poirier’s facets was extremely similar for both collections by side as 

shown in Figure 8-3 below.  

A chi-squared test of homogeneity was run to determine if there was a difference in 

proportions of femora with Poirier’s facets present/absent between the two collections. 

For the right and left sides, there was no significant differences in the proportions of 

femora with Poirier’s facets absent/present between the two collections, p= 0.739 and 

p= 0.538 respectively. 
 

Plaque  

The distribution of plaque was again similar between the two collections, as shown in 

Figure 8-4. For both sides the Wharram Percy collection had a larger prevalence of 

femora with type A plaque present than the Luís Lopes collection. The Luís Lopes 

Figure 8-3 Distribution of Poirier's facets by collection 
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collection however had a larger prevalence of femora with type B present than the 

Wharram Percy collection.  

 

 
For the right side a fisher’s exact test was run to determine if there was a difference in 

proportions of femora with plaque (by type) absent/present between the two 

collections. There was no statistically significant difference in proportions, p= 0.343.  

 

Using a chi-squared test of homogeneity for the left side there was a statistically 

significant difference in proportions, χ2(3) = 10.313, p= 0.016. Pairwise comparison 

post hoc test using multiple z-tests of two proportions with a Bonferroni correction (p 

< 0.0125) showed only the proportions of femora with type A plaque was different 

between collections, p = 0.001. 

 

Cribra 

The distribution of femora with cribra present (by type) was lower for the Luís Lopes 

collection in comparison to the Wharram Percy collection, see Figure 8-5. There were 

very few femora with type II cribra present for both collections however this was 

particularly lower for the Luís Lopes collection.  

Figure 8-4 Distribution of plaque by collection 
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For the right side using a fisher’s exact test there was no significant difference in the 

proportions of femora with cribra (by type) absent/present between the collections, p= 

0.302. While for the left side there was also no significant difference in proportions 

between collections, p= 0.063.  

8.2. Alpha angles and occupations 

There was no significant difference in mean alpha angle size between the Wharram 

Percy collection, the individual ISCO-08 occupations and each occupation activity 

category for all three methods used. The results of each one-way ANOVA are shown 

below.  

 

There was no significant difference in mean alpha angle size, on the right side, 

between the ISCO-08 categories and the Wharram Percy sample, F(8,146)=0.954, p= 

0.475. The mean alpha angle size was highest for the elementary occupation group 

and lowest for the undetermined category. The alpha angle data for the clerical support 

worker and undetermined categories were not normally distributed and it was not 

possible to transform the data to reach normality therefore a non-parametric 

comparison test was run. The Kruskal-Wallis test showed no significant difference 

between each category, χ2(8)= 6.692, p = 0.570. For the left side, there was no 

significant difference in mean alpha angle size between categories, F(8,155)=0.786, 

Figure 8-5 Distribution of cribra by collection 
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p= 0.615. The data for the Craft and Related Trades Workers was not normally 

distributed however n>30. The comparison test did not however affect conclusions 

therefore the untransformed data was used. Figure 8-6 shows the spread of data for 

each of the occupation categories including the Wharram Percy collection.  
 

For method I, on the right side the Wharram Percy mean alpha angle size is the lowest 

out of all categories (see Figure 8-7). There was however no significant difference in 

mean alpha angle size between each category, F(3,132)= 0.744, p=0.528. The alpha 

angle data was not normally distributed for the low activity group, therefore a non-

parametric comparison test was run, as it was not possible to transform the data to 

reach normality. A Kruskal-Wallis test also showed no significant difference, χ2(3)= 

1.554, p= 0.670. For the left side, there was no significant difference in mean alpha 

angle size between each category, F(3,142)=0.186, p= 0.906,  however on this side 

the Wharram Percy data was second highest, between low activity and high activity 

categories. The alpha angle data was not normally distributed for the high activity 

category however n>30. It was not possible to transform this data to reach normality 

therefore a Kruskal-Wallis non-parametric test was run. This also showed no 

Figure 8-6 Boxplot of alpha angle size by ISCO-08 occupation categories and the 
Wharram Percy males 
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significant difference in the median alpha angle size between each category, χ2(3)= 

0.420, p = 0.936. 
 

 

For method II, on the right side there was no significant difference in mean alpha angle 

size between each category, F(3,132)= 0.759, p= 0.519. The alpha angle data was 

not normally distributed for the sedentary behaviour group therefore a non-parametric 

comparison test was therefore run as it was not possible to reach normality through 

transforming the data. The Kruskal-Wallis test showed no significant difference in 

median alpha angle size between each category, χ2(3)= 1.590, p = 0.662. For the left 

side, the mean alpha angle data for the Wharram Percy sample was the second 

highest after moderate intensity (see Figure 8-8). There was no significant difference 

in mean alpha angle between each category, F(3,142)=0.168, p= 0.918. The alpha 

angle data was not normally distributed for the moderate intensity group however 

n>30. It was not possible to transform this data therefore a non-parametric comparison 

test was run. The Kruskal-Wallis test showed no significant difference in median alpha 

angle size between each category, χ2(3)= 0.389, p = 0.943. 
 
 

Figure 8-7 Mean alpha angle size between method I: activity classification method 
including Wharram Percy males 
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For method III, on the right side the Wharram Percy mean alpha angle data was less 

than the Luís Lopes collection data when categorised as manual and non-manual (see 

Figure 8-9). This difference was however not significant, F(2,140)= 0.202, p= 0.818. 

For the left side, the mean alpha angle size was highest for the Wharram Percy data. 

There was no significant difference in alpha angle size between all categorise, 

F(2,149)= 0.105, p= 0.900. The alpha angle data for the manual category was not 

normally distributed however n>30. A comparison test with the alpha angle data 

transformed to reach normality showed no difference in conclusions.  

 

Figure 8-8 Mean alpha angle size between method II: activity classification 
method including Wharram Percy males 

Figure 8-9 Mean alpha angle size between method III: activity classification 
method including Wharram Percy males 
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8.3. Skeletal collection data combined  

8.3.1. Regression analysis  

Binary logistic regression was performed to determine if it was possible to predict the 

presence of cam morphology (at each threshold level) using the absence/presence of 

Poirier’s facets and plaque (by type). Additionally, due to the significant difference in 

alpha angle size between femora with and without Poirier’s facets, for both samples, 

binary regression was also used to determine if alpha angle and offset data could 

predict the presence or absence of this trait.  
 
Cam morphology thresholds  

≥50˚ threshold 

For the left side there was one standardised residual with a value of -4.629, therefore 

a comparison test was run with and without this outlier. When the outlier was included 

the logistic regression model was statistically significant χ2(4) = 33.111, p = <0.0005. 

The overall percentage accuracy in classification was 65.2%. The model sensitivity 

was 64.5%, specificity was 66.2%, positive predictive value was 72.3% and negative 

predictive value was 57.7%. Of the 6 variables in the equation only three were 

statistically significant, Poirier’s facets (0.003) and plaque A (0.022) (see Table 8-3).  

 

The area under the ROC (Receiver Operating Characteristics) curve (Figure 8-10) was 

0.723 (95% CI 0.646 to 0.800), which is acceptable discrimination.  

Figure 8-10 ROC Curve for prediction 
of femur with alpha angle ≥50˚, left 
side only  
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When the outlier was excluded the overall accuracy in classification increased 

marginally to 65.6%, the model sensitivity remained at 64.5% however the specificity 

increased to 67.2%. The positive predictive value increased to 73.2% while the 

negative predictive value remained the same. Poirier’s facets were no longer 

statistically significant, Poirier’s facets (p=0.998) but type A plaque remained 

significantly (p= 0.023). There was no reason however to exclude this point.  
 
Table 8-3 Table of logistic regression predicted likelihood of alpha angle ≥50˚ based on Poirier's facets 
and plaque, left side only 

 B SE Wald df p 
Odds 
ratio 

95% CI for Odds ratio  

lower Upper 
Poirier’s 
facet  3.168 1.054 9.029 1 0.003 23.755 3.009 187.540 

Plaque   9.941 3 0.019    

Plaque A 1.577 0.690 5.226 1 0.022 4.842 1.252 18.719 

Plaque B 0.337 0.403 0.699 1 0.403 1.400 0.636 3.083 

Plaque C -0.927 0.583 2.530 1 0.112 0.396 0.126 1.240 

Constant -0.103 0.261 0.157 1 0.692 0.902   
 

For the right side the logistic regression model was statistically significant χ2(4) = 

36.769, p = <0.0005. The overall percentage accuracy in classification was 65.4%. 

The model sensitivity was 57.8%, specificity was 76.2%, positive predictive value was 

77.6% and negative predictive value was 55.2%. Of the 6 variables in the equation 

only one was statistically significant, plaque A (p= 0.040), see Table 8-4.  

 

The area under the ROC curve (Figure 8-11) was 0.729 (95% CI 0.651 to 0.807), 

which is acceptable discrimination. 
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Table 8-4 Table of logistic regression predicted likelihood of alpha angle ≥50˚ based on Poirier's facets 
and plaque, right side only 

 B SE Wald df p Odds ratio 

95% CI for Odds ratio  

lower Upper 
Poirier’s 
facet  21.222 8551.656 0.000 1 0.998 1.646E+9 0.000  

Plaque   9.047 3 0.029    

Plaque A 1.668 0.812 4.224 1 0.040 5.303 1.080 26.029 

Plaque B 0.490 0.431 1.290 1 0.256 1/632 0.701 3.798 

Plaque C -0.897 0.579 2.394 1 0.122 0.408 0.131 1.270 

Constant -0.059 0.243 0.059 1 0.808 0.943   
 

≥55˚ threshold 

For the left side the logistic regression model was statistically significant χ2(4) = 

27.120, p = <0.0005. The overall percentage accuracy in classification was 66.5%. 

The model sensitivity was 41.0%, specificity was 90.4%, positive predictive value was 

80% and negative predictive value was 62.0%. Of the 6 variables in the equation only 

three were statistically significant, Poirier’s facets (p=0.001) and plaque overall 

(p=0.015) but only plaque A within the category (p=0.009), see Table 8-5.  

Figure 8-11 ROC Curve for prediction of femur 
with alpha angle ≥50˚, right side only 
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The area under the ROC curve was 0.708 (95% CI 0.628 to 0.788), which is 

acceptable discrimination, see Figure 8-12. 

 
Table 8-5 Table of logistic regression predicted likelihood of alpha angle ≥55˚ based on Poirier's facets 
and plaque, left side only 

 B SE Wald df p 
Odds 
ratio 

95% CI for Odds 
ratio  

lower Upper 
Poirier’s 
facet  2.054 .610 11.335 1 .001 7.802 2.359 25.798 

Plaque   10.485 3 .015    

Plaque A 1.651 .631 6.846 1 .009 5.213 1.513 17.956 

Plaque B .386 .407 .899 1 .343 1.471 .662 3.266 

Plaque C -.796 .624 1.630 1 .202 .451 .133 1.531 

Constant -.526 .269 3.827 1 .050 .591   
 

For the right side the logistic regression model was also statistically significant χ2(4) = 

54.117, p = <0.0005. The overall percentage accuracy in classification was 73.2%. 

The model sensitivity was 68.6%, specificity was 77.1%, positive predictive value was 

71.6% and negative predictive value was 74.4%. Of the 6 variables in the equation, 

plaque type A (p=0.003) and B (p=0.015) and constant (p = <0.0005), see Table 8-6.  

 

The area under the ROC curve was 0.777 (95% CI 0.701 to 0.853), which is 

acceptable discrimination, see Figure 8-13.  

Figure 8-12 ROC Curve for prediction of femur with 
alpha angle ≥55˚, left side only 
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Table 8-6 Table of logistic regression predicted likelihood of alpha angle ≥55˚ based on Poirier's facets 
and plaque, right side only 

 B SE Wald df p Odds ratio 

95% CI for Odds 
ratio  

lower Upper 
Poirier’s 
facet  22.146 8496.463 .000 1 .998 4146434791.673 .000 . 

Plaque   13.666 3 .003    

Plaque A 2.120 .721 8.645 1 .003 8.333 2.028 34.248 

Plaque B 1.082 .444 5.949 1 .015 2.951 1.237 7.042 

Plaque C -.231 .630 .135 1 .714 .794 .231 2.729 

Constant -1.022 .275 13.815 1 .000 .360   
 
≥60˚ threshold 

For the left side, the logistic regression model was statistically significant χ2(4) = 

34.573, p = <0.0005. The overall percentage accuracy in classification was 75.8%. 

The model sensitivity was 50.9%, specificity was 89.4%, positive predictive value was 

72.5% and negative predictive value was 76.9%. Of the 6 variables in the equation 

only, Poirier’s facets (p=<0.0005) and plaque overall (p=0.003) but only plaque A 

within category (p=<0.0005) and constant (p=<0.005) were statistically significant, see 

Table 8-7.  

Figure 8-13 ROC Curve for prediction of femur with 
alpha angle ≥55˚, right side only 
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The area under the ROC curve was 0.740 (95% CI 0.656 to 0.824), which is 

acceptable discrimination, see Figure 8-14. 

 
Table 8-7 Table of logistic regression predicted likelihood of alpha angle ≥60˚ based on Poirier's facets 
and plaque, left side only 

 B SE Wald df p Odds ratio 

95% CI for Odds 
ratio  

lower Upper 
Poirier’s 
facet  2.373 .573 17.164 1 .000 10.726 3.491 32.956 

Plaque   14.025 3 .003    

Plaque A 2.185 .622 12.338 1 .000 8.893 2.627 30.103 

Plaque B .537 .463 1.346 1 .246 1.711 .690 4.243 

Plaque C -.300 .707 .180 1 .671 .741 .185 2.962 

Constant -1.374 .323 18.085 1 .000 .253   
 

For the right side, the logistic regression model was also statistically significant, χ2(4) 

= 39.085, p = <0.0005. The overall percentage accuracy in classification was 79.1%. 

The model sensitivity was 52.1%, specificity was 91.4%, positive predictive value was 

73.5% and negative predictive value was 80.7%. Of the 6 variables in the equation, 

Poirier’s facets (p = <0.0005), and plaque overall (p = 0.017) but only plaque A within 

category (p = 0.002) and constant (p = <0.005), see Table 8-8.  

Figure 8-14 ROC Curve for prediction of femur with alpha 
angle ≥60˚, left side only 
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The area under the ROC curve was 0.765 (95% CI 0.677 to 0.853), which is 

acceptable discrimination, see Figure 8-15. 
 

 
Table 8-8 Table of logistic regression predicted likelihood of alpha angle ≥60˚ based on Poirier's facets 
and plaque, right side only 

 B SE Wald df p Odds ratio 

95% CI for Odds 
ratio  

lower Upper 
Poirier’s 
facet  3.226 .643 25.199 1 .000 25.169 7.144 88.682 

Plaque   10.178 3 .017    

Plaque A 2.116 .678 9.742 1 .002 8.301 2.198 31.355 

Plaque B .827 .509 2.646 1 .104 2.287 .844 6.199 

Plaque C .527 .662 .634 1 .426 1.694 .463 6.202 

Constant -1.780 .342 27.099 1 .000 .169   
 

 

 

 

 

 

 

Figure 8-15 ROC Curve for prediction of femur with alpha angle 
≥60˚, right side only 
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Non-metric traits   

Poirier’s facets  

A binary linear regression was carried to determine the effect of the alpha angle size, 

age range category and offset ratio on the likelihood of Poirier’s facet being present.  

For the left side, the logistic regression model was statistically significant χ2(6) = 

29.891, p = <0.0005. The overall percentage accuracy in classification was 88.4%. 

The model sensitivity was 23.5%, specificity was 97.5%, positive predictive value was 

57.1% and the negative predictive value was 90.1%. Of the variables in the equation 

alpha angle (p = 0.001) and constant (p = <0.0005) were statistically significant, see 

Table 8-9. 
 
Table 8-9 Table of logistic regression predicted likelihood of Poirier's facets based on alpha angle, offset 
ratio and age range category, left side only 

 

B SE Wald df Sig. Exp(B) 

95% CI for Odds 
ratio 
Lower Upper 

Age range 
categories   0.375 2 0.829    
Age range 
category (1) -0.007 1.224 0.000 1 0.996 0.994 0.090 10.949 
Age range 
category (2)  0.375 1.142 0.108 1 0.743 1.455 0.155 13.646 
Alpha angle 0.120 0.035 11.650 1 0.001 1.128 1.052 1.208 
Offset ratio  -0.267 0.850 0.099 1 0.753 0.766 0.145 4.049 
Constant -8.991 2.529 12.645 1 0.000 0.000   

 

The area under the ROC curve was 0.822 (95% CI 0.734 to 0.910), which is excellent level of 

discrimination, see Figure 8-16. 

Figure 8-16 ROC Curve for Poirier's facets, males and left side only 
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For the right side, the logistic regression model was statistically significant χ2(6) = 

44.121, p = <0.0005. The overall percentage accuracy in classification was 86.9%. 

The model sensitivity was 31.6%, specificity was 95.8%, positive predictive value was 

54.5% and the negative predictive value was 89.7%. Of the variables in the equation 

only alpha angle (p = <0.0005) and constant (p = <0.0005) were statistically significant, 

see Table 8-10.  
 
Table 8-10 Table of logistic regression predicted likelihood of Poirier's facets based on alpha angle, 
offset ratio and age range category, right side only 

 

B SE Wald df Sig. Exp(B) 

95% CI for Odds 
ratio 
Lower Upper 

Age range 
categories   0.336 2 0.845    
Age range 
category (1) 0.378 1.311 0.083 1 0.773 1.460 0.112 19.066 
Age range 
category (2)  0.633 1.252 0.256 1 0.613 1.884 0.162 21.928 
Alpha angle 0.186 0.043 18.893 1 0.000 1.205 1.108 1.311 
Offset ratio  -0.955 0.933 1.048 1 0.306 0.385 0.062 2.395 
Constant -12.499 3.016 17.170 1 0.000 0.000   

 

The area under the ROC curve was 0.915 (95% CI 0.866 to 0.963), which is excellent 

level of discrimination, see Figure 8-17. 

 

 
 

Figure 8-17 ROC Curve, Poirier's facets for males and right side only 
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8.4. Osteitis pubis analysis  

The osteitis pubis recording criteria included; erosions, porosity, irregularity, 

osteophytes and eburnation. When the Wharram Percy and Luís Lopes collections 

(including all individuals from both collections) were combined, to determine if there 

was a link between each osteitis pubis trait and alpha angle size, Mann-Whitney U 

tests were run. Due to the known impact age has on the pubic symphysial face it was 

important to control for age when analysing these traits. In order to establish if there 

was a significant interaction between age range category and the number of osteitis 

pubis traits present, when determining if there is a significant difference in alpha angle 

size, two-way ANOVAs were run. This was carried out for both symphysial and femoral 

side.   

 

Due to the presence of exact age data for the Luís Lopes collection one-way 

ANCOVAs were run to determine if, after adjusting for age, there was a significant 

difference in mean alpha angle size between individuals with and without each of the 

osteitis pubis traits. Additionally, one-way ANCOVAs were run to determine if after 

adjusting for age there was a significant difference in alpha angle size between 

individuals with 0, 1, 2, 3 or 4 osteitis pubis criteria present.  

 

Wharram Percy and Luís Lopes collection  

When the osteitis pubis data was combined, due to the violation of normality for several 

traits which were unable to be transformed to reach normality, Mann-Whitney U tests 

were used to determine if there was a significant difference in alpha angle size 

dependent on the presence or absence of each of the osteitis pubis traits. The only 

traits which showed a significant difference in median alpha angle size were erosions 

and irregularity (as shown in Table 8-11 below), with those with the traits present 

having a higher alpha angle size than those without the trait. Only one right pubic 

symphysis and three left pubic symphysis had eburnation present. Therefore, 

eburnation was excluded from analyses. 
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Table 8-11 Mann-Whitney U p-values for alpha angle size by osteitis pubis traits 

Pubic symphysis 
side Osteitis pubis trait 

Sig. 
Right femur alpha 
angles 

Left femur alpha 
angles  

Left 

Erosions 0.005* 0.002* 
Porosity 0.192 0.579 
Irregularity 0.398 0.042* 
Osteophytes 0.533 0.315 

Right 

Erosions 0.323 0.028* 
Porosity 0.699 0.809 
Irregularity 0.216 0.439 
Osteophytes 0.817 0.796 

 

Two-way ANOVAs were run to determine if there was a significant interaction between 

age range category and the number of osteitis pubis criteria recorded on the pubic 

symphysis, on mean alpha angle size. No pubic symphysis had all five traits present. 

There was not a significant interaction effect between age range category and the 

number of osteitis pubis criteria on the left pubic symphysis on alpha angle size for the 

left femur, see Table 8-12. However, the data for one osteitis pubis criteria present in 

the 30-49 years group was not normally distributed (p=0.007). It was not possible to 

transform this to reach normality.   
 
Table 8-12 Two-way ANOVA data table for number of osteitis pubis criteria on the left side and left alpha 
angle size 

Left alpha angle 
Source df Sig. Partial Eta Squared 
Age range categories 2 0.144 0.043 
Left side, number of osteitis pubis criteria  4 0.430 0.042 
Age range category * osteitis pubis criteria 6 0.057 0.126 

 

There was also no significant interaction effect between age range category and the 

number of osteitis pubis criteria present on the right pubic symphysis on alpha angle 

size on the left femur (p = 0.932), see Table 8-13. Again, the data for one OP criteria 

present in the 30-49 years group was also not normally distributed and could not be 

transformed to reach normality.  
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Table 8-13 Two-way ANOVA data table for number of osteitis pubis criteria on the right side and left alpha 
angle size 

Left alpha angle 
Source df Sig. Partial Eta Squared 
Age range categories 2 0.007 0.105 
Right side, number of osteitis pubis criteria  4 0.772 0.020 
Age range category * osteitis pubis criteria 7 0.932 0.026 

 

There was also no significant interaction effect between age range category and the 

number of osteitis pubis criteria (on the left or right pubic symphysis) on alpha angle 

size for the right femur, see Table 8-14. There was also no significant difference in 

alpha angle size between the number of osteitis pubic criteria recorded, see Table 8-

15. On the right, osteitis pubis criteria for several of the variables, was not normally 

distributed and could not be transformed to reach normality.  
 
Table 8-14 Two-way ANOVA data table for number of osteitis pubis criteria on the left side and right alpha 
angle size 

Right alpha angle 
Source df Sig. Partial Eta Squared 
Age range categories 2 0.125 0.047 
Left side, number of osteitis pubis criteria  4 0.680 0.031 
Age range category * osteitis pubis criteria 6 0.44 0.064 

 
Table 8-15 Two-way ANOVA data table for number of osteitis pubis criteria on the right side and right 
alpha angle size 

Right alpha angle 
Source df Sig. Partial Eta Squared 
Age range categories 2 0.095 0.053 
Right Osteitis pubis criteria  4 0.863 0.015 
Age range category * osteitis 
pubis criteria 

7 0.942 0.026 

 

All pubic symphyses with eburnation present were from the Luís Lopes collection. No 

pubic symphysis from the Wharram Percy collection had eburnation recorded. All 

those with eburnation present also had an alpha angle >55° on one of their femora. 

Table 8-16 below provide additional information regarding these cases.  
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Table 8-16 Cases with eburnation present on pubic symphysis 

 Eburnation Other features Alpha angle  

(1) Left & right Right pubis symphysis: 

Porosity, erosions 

Left pubic symphysis: 

Porosity, erosions 

Right: 67.0° 

Left: 69.7° 

(2) Left Right pubic symphysis:  

Osteophytes, erosions 

Left pubic symphysis:  

erosions 

 

Right: 44.9° 

Left: 59.2° 

(3) Left Right pubic symphysis:  

Erosions 

Left pubic symphysis:  

osteophytes 

Right: 62.1° 

Left: NR 

 

Luis Lopes collection only  

One-way ANCOVAs were run to determine if, after adjusting for age, there was a 

significant difference in mean alpha angle size between individuals with and without 

each trait, see Table 8-17. After adjusting for age, there was no significant difference 

in mean alpha angle size on the right femur dependent on the absence or presence of 

any of the osteitis pubis traits on right pubic symphysis or left pubic symphysis. It was 

however not possible to test for erosions on the either pubic symphysis or irregularity 

on the left pubic symphysis as the assumption of homogeneity of regressions was not 

met.  

 

After adjusting for age, there was also no significant difference in mean alpha angle 

size on the left femora dependent on the absence or presence of any of the osteitis 

pubis traits on the right or left pubic symphyses. It was however not possible to test 

for erosions and porosity on the left pubic symphysis as the assumption of 

homogeneity of regression was not met. In addition to this, the homogeneity of 

variances was not met for the osteophytes on the left pubic symphysis data (p= 0.025) 

or the right pubic symphysis (p= 0.019) and when comparison tests were run it was 

not possible to transform the data to meet this assumption. The standardised residuals 
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were not normally distributed for the right pubic symphysis with irregularity present (p= 

0.015) however it was not possible to transform this data to reach normality.  

Table 8-17 Level of significance of alpha angle size between osteitis pubis traits after adjusting for age, 
LLC 

Pubic symphysis 
side Osteitis pubis trait 

Sig. 
Right femur alpha 
angles 

Left femur alpha 
angles  

Left 

Erosions - - 
Porosity 0.385 - 
Irregularity - 0.995 
Osteophytes 0.531 0.354 

Right 

Erosions - 0.335 
Porosity 0.539 0.282 
Irregularity 0.634 0.303 
Osteophytes 0.628 0.282 

 

One-way ANCOVAs were run to determine if, after adjusting for age, there was a 

significant difference in mean alpha angle size for each femora between individuals 

with 1, 2, 3, or 4 osteitis pubis criteria present on the left or right pubic symphysis, see 

Table 8-18. For the right femur, after adjusting for age there was no significant 

difference in mean alpha angle size between individuals with 1, 2, 3 or 4 osteitis pubis 

criteria present on the right pubic symphysis. The standardised residuals alpha angles 

were not normally distributed for femora with no osteitis pubis traits present (p=0.047), 

it was not however possible to transform data to reach normality. There was also no 

significant difference in alpha angle size on the right pubic symphysis between 

individuals with 1, 2, 3 or 4 osteitis pubis traits on the left pubic symphysis. Again, the 

standardised residuals for alpha angles were not normally distributed for femora with 

no traits present (p=0.021), it was however not possible to transform the data to reach 

normality.  

 

For the left femur, after adjusting for age there was no significant difference in mean 

alpha angle size between individuals with 1, 2, 3 or 4 osteitis pubis criteria present on 

the right pubic symphysis. The standardised residuals alpha angles were not normally 

distributed for femora with 3 osteitis pubis traits present (p=0.023), it was not however 

possible to transform data to reach normality. For the left pubic symphysis, there was 

again no significant difference in mean alpha angle size dependent on the number of 

traits present. The standardised residuals alpha angles were not normally distributed 
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for femora with 1 osteitis pubis traits present (p=0.015), it was not however possible 

to transform data to reach normality 

 
Table 8-18 One-way ANCOVA p-values of the difference in alpha angle size dependent on the number of 
osteitis pubis traits present, controlled for age 

Pubic symphysis 
side  

Sig. 
Right femur alpha 
angles 

Left femur alpha 
angles  

Right  0.954 0.788 

Left 0.148 0.618 
 

8.5. Possible herniation pits  

During analysis of both skeletal collections and 3D CT models pitted areas were noted 

which did not meet the descriptions provided by Radi et al. (2013)’s recording criteria 

for cribra, Figure 8-18 shows cribra from Radi et al. (2013)’s article while Figure 8-19 

shows an example of these pitted areas from the Luís Lopes collection. It is possible 

these pits could be related to herniation pits. Herniation pits are typically diagnosed 

through the use of pelvic radiographs, appearing as cyst-like lesion at the 

anterosuperior aspect of the femoral neck by the epiphysis, visible as radiolucency 

with a sclerotic margin. They typically measuring between 3-15 mm (Tannast et al., 

2007). In some of the femora observed these pits punctured through the cortical bone, 

while others appeared as indentations, typically found on the surface of the Poirier’s 

facet or plaque. 

 

For the Luís Lopes collection, only four individuals showed such pits, including four 

left femora and two right femora. While for the Wharram Percy collection thirteen 

individuals had possible herniation pits present, twelve on the left femora and seven 

on the right femora. When side is pooled for both collections, mean alpha angle size 

was marginally higher for femora with herniation pits than without as shown in table 8-

20 below.  
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There was no significant difference in mean alpha angle size between femora with and 

without herniation pits for the Wharram Percy collection, as shown in Table 8-19 

below.  

 
Table 8-19 Independent sample t-test result for alpha angle size by herniation pits for Wharram Percy 
collection 

 

t-test for Equality of Means 
 95% confidence interval 

t df 
Sig. (2-
tailed) 

Mean 
difference 

Std. Error 
difference Lower Upper 

Left side  0.197 86 0.845 0.776 3.945 -7.066 8.619 
Right 
side  -0.671 81 0.504 -3.163 4.716 -12.546 6.220 

 

 

 

Figure 8-18 Image from Radi et al. (2013) recording criteria of cribra 

Figure 8-19 Herniation pits, No 310 
Luís Lopes Anthropological Collection, 
MUHNAC. (Photograph by E. Saunders © 
ULisboa-MUHNAC) 
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Table 8-20 Descriptive statistics for alpha angle size by the presence/absence of herniation pits 

 

For the Luís Lopes collection there was only two femora with herniation pits present 

on the right side therefore it was not possible to run statistical analysis. For the left 

side there was no significant difference in alpha angle size between femora with and 

without herniation pits present (Table 8-21). 

 
Table 8-21 Independent sample t-test result for alpha angle size by herniation pits for Wharram Percy 
collection 

 

t-test for Equality of Means 
 95% confidence interval 

t df 
Sig. (2-
tailed) 

Mean 
difference 

Std. Error 
difference Lower Upper 

Left side  -0.306 102 0.760 -1.685 5.503 -12.601 9.230 
 

Possible herniation pits were seen on 3 femora from the FAI group and 4 femora from 

the non-FAI group. For both the FAI group and the non-FAI group the mean alpha 

angle size was higher for femora with herniation pits present than absent. It was not 

possible to run statistical analysis to determine if there was a significant difference in 

alpha angle size between femora with and without herniation pits present for the FAI 

group and the non-FAI on the left side due to the small number of femora with the pits 

present. For the non-FAI group was Welch’s t-test was used as homogeneity of 

variances was not met for the right side. There was no significant difference in mean 

Collection 
Herniation 
pit Side N Range (°) 

Min. 
(°) 

Max. 
(°) 

Mean 
(°) 

Std. 
Dev. 

Wharram 
Percy 

Absent  

Right 77 50.72 28.63 79.35 49.76 10.87 

Left 77 50.15 31.93 82.09 52.52 12.19 

All  154 53.46 28.63 82.09 51.14 11.59 

Present 

Right 6 41.44 37.75 79.19 52.93 14.44 

Left 11 47.07 35.57 82.63 51.74 12.64 

All  17 47.07 35.57 82.63 52.16 12.86 

Luís 
Lopes   

Collection 

Absent 

Right 99 45.97 34.15 80.12 53.59 11.41 

Left 100 43.34 33.63 76.97 54.63 10.76 

All 199 46.49 33.63 80.12 54.11 11.07 

Present 

Right 2 12.14 45.19 57.33 51.26 8.59 

Left 4 26.10 43.55 69.65 56.32 11.80 

All 6 26.10 43.55 69.65 54.63 10.26 
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alpha angle size between femora with and without herniation pits present as shown in 

Table 8-22 below. 

 
Table 8-22 Independent sample t-test result for alpha angle size by herniation pits for non-FAI 

 

t-test for Equality of Means 
 95% confidence interval 

t df 
Sig. (2-
tailed) 

Mean 
difference 

Std. Error 
difference Lower Upper 

Right 
side  -1.614 3.370 0.195 -8.575 5.312 -24.477 7.327 

 

When the FAI and non-FAI groups were combined there was a significant difference 

in mean alpha angle size between femora with and with herniation pits present on the 

right side (see Table 8-23). It was not however possible to test for the left side due to 

the small number of femora with herniation pits present on this side. Table 8-24 shows 

the descriptive statistics for alpha angles between femora with and without herniation 

pits for the FAI and non-FAI groups.  

  
Table 8-23 Independent sample t-test result for alpha angle size by herniation pits for non-FAI and FAI 
groups combined 

 

t-test for Equality of Means 
 95% confidence interval 

t df 
Sig. (2-
tailed) 

Mean 
difference 

Std. Error 
difference Lower Upper 

Right 
side  -2.230 28 0.028 -7.411 3.195 -13.956 -0.866 

 
Table 8-24 Descriptive statistics for alpha angle size between femora with and without herniation pits for 
the FAI and non-FAI groups 

Group 
Herniation 
pit Side N Range (°) Min. (°) 

Max. 
(°) 

Mean 
(°) 

Std. 
Dev. 

FAI  

Absent  
Right 16 21.90 39.46 61.36 51.50 7.03 

Left 17 39.17 35.55 74.72 54.07 10.01 

All  33 39.17 35.55 74.72 52.82 8.66 

Present 
Right 2 10.73 55.91 10.73 61.28 7.59 

Left 1 - - - - - 

All  3 10.73 55.91 66.64 61.79 5.44 

Non-FAI Absent Right 8 11.40 40.92 52.32 46.80 3.59 

Left 12 31.28 42.57 73.84 52.46 8.56 
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All 20 32.92 40.92 73.84 50.20 7.43 

Present 
Right 4 21.73 42.05 63.79 55.37 10.32 

Left 0 - - - - - 

All 4 21.73 42.05 63.79 55.37 10.32 
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Chapter 9. Discussion & Conclusion 
 
The overall purpose of this research was to analyse femoroacetabular impingement 

and cam morphology within the context of bioarchaeology and forensic anthropology. 

FAI is currently not widely studied within these contexts however, with physical activity 

repeatedly being suggested to play a key aetiological role in cam morphology, the 

proposed links with non-metric traits of the femur and association with osteitis pubis, 

a condition which impacts the pubic symphysis (an area widely used for age 

estimation), further understanding within these disciplines would be of great value. 

Additionally, the identification and recording of this condition on skeletal remains would 

enables its use as an additional identifying feature in forensic investigation if ante-

mortem data of FAI is present.  

The four main research aims were therefore:  

• To determine if there is a link between non-metric traits of the anterior aspect 

of the femur and cam morphology 

• To explore if there is a link between cam morphology and occupational activity 

• To determine if there are any osseous differences between those with FAI and 

asymptomatic controls  

• To determine if there is a link between cam morphology and osteitis pubis 

In this chapter the results of this study will be discussed under each of the main 

research questions. In the conclusion, an overview of the findings will be provided as 

well as study limitations and future work.  

9.1. Is there is a link between non-metric traits of the anterior aspect 

of the femur & cam morphology? 

Links between non-metric traits of the anterior aspect of the femur (particularly 

Poirier’s facets, plaque type A and type B) with alpha angle size and cam morphology 

have been found in this study. Previous authors have hypothesised this link (Villotte 

and Knüsel, 2009; Radi et al., 2013) due to the similarities in location of these features, 

but only the current study and that by Lawrence et al. (2018) have analysed this 

further. This link between cam morphology and these non-metric traits can allow 

further understanding of each research area through collaborative discussion from the 

two disciplines. Here the possible links between these non-metric traits of the anterior 
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aspect of the femur and cam morphology will be explored to identify possible 

associated factors.  

 

Both non-metric traits of the anterior aspect of the femur and cam morphology have 

been associated with physical activity. Poirier’s facets were described by Stirland 

(1996) as “a function of increased male muscle function.” Further studies have also 

linked Poirier’s facets to muscle function and therefore physical activity, for instance; 

Trinkaus (1975) suggested Poirier’s facets are due to habitual flexion and abduction 

due to the pressure from the M. iliopsoas or pressure from the M. rectus femoris 

tendons. While Angel (1964) hypothesised that they are caused by pressure and 

friction from the iliopsoas muscle which is due to vigorous muscle functions. The 

significant difference in mean alpha angle size between those with and without 

Poirier’s facets, and the use of alpha angles to predict the presence of Poirier’s facets, 

agrees with these previous studies that Poirier’s facets may be associated with 

physical activity. This is due to athletes typically having higher mean alpha angle sizes 

in comparison to non-athletic controls (Ayeni et al., 2014; Lahner et al., 2014a; 

Siebenrock et al., 2011) and, therefore, they could be a good indicator of physical 

activity (Table 9-1). 

 

Stirland (1996) believed plaque and Allen’s fossa to be more “age-related 

phenomena”. This agrees with the findings in the current study for cribra due to its lack 

of association with alpha angle size but with age, for both the Wharram Percy or Luís 

Lopes collection collections. Conversely, other studies have suggested a link between 

cribra (or Allen’s fossa) and physical activity (Angel, 1964; Odgers, 1931). Odgers 

(1931) suggested Poirier’s facets develop as protection against friction from the medial 

part of the zona orbicularis during extension and when this protection breaks down 

there is the development of a depression or eroded area (Allen’s fossa). The higher 

rates of cribra in younger individuals and the lack of association between age and 

Poirier’s facets suggests that it is unlikely cribra is due to the breakdown of Poirier’s 

facets. 

  

The focus of much of the previous literature regarding non-metric traits has been on 

cribra and Poirier’s facets, while plaque is not commonly discussed. This may be due 

to plaque being included with Poirier’s facets and not as a separate trait in some of 
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the early research due to their similarity in location. Re-analysis of skeletal collections 

included in previous studies using methods which combined these traits may allow 

reinterpretation of the suggested aetiologies. Angel (1964) theorised plaque forms 

over cribra since the prevalence is higher in modern Americans compared to the 

ancient Greeks, with the Americans living to more advanced ages. Stirland (1996) also 

found plaque to be more common on older adults than younger adults. Although 

Finnegan (1978) and Lawrence (2018) reported no association between plaque and 

age. In the current study, there was a significant interaction between plaque type and 

age-range category on alpha angle size for the Wharram Percy collection on the right 

side only but not for the Luís Lopes collection. For the Wharram Percy sample, when 

pooled for sex, the mean alpha angle size for those with type B plaque present was 

significantly higher for those in the 18-29 years group compared to the 50+ years 

group. Although this is likely to be due to only one femora with type B plaque present 

in the 18-29 years group and therefore it is difficult to determine if this a true reflection. 

This is not the case for the Luís Lopes collection with no significant interaction between 

plaque type and age range category on alpha angle size. The Luís Lopes collection 

and clinical CT samples (FAI-group and non-FAI group) showed no significant 

difference in age (using continuous exact age data) between plaque groups. It is 

therefore unlikely plaque is a progression of cribra with age but caused by other 

factors. With plaque type A and B having a significant impact on predicting the 

presence of cam morphology at certain thresholds (type A at all thresholds and type 

B at 55° threshold) this suggests, like Poirier’s facets, these forms of plaque could be 

associated with physical activity. In addition to this, for all samples type A had the 

highest alpha angle size and type C had the lowest, which was significant for the 

Wharram Percy and Luís Lopes collection on the left side between certain plaque 

groups. There was also a significant difference in the proportions of femora with cam 

morphology present between different plaque types for the Wharram Percy on both 

sides but for the Luís Lopes collection this was only seen on the left side. If alpha angle 

size and cam morphology are associated with physical activity the results of this study 

suggest femora with type A and type B plaque present are more likely to have cam 

morphology and therefore be more physically activity than those with femora without 

plaque and type C.  
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Table 9-1 Comparison of mean alpha angle size between the current study and previous literature 

Study Sample Sex 
Alpha angle: Mean ± S.D. 

Total 

Current study 

Luís Lopes collection Males only 54.2° ± 10.99° 

Wharram Percy 
Males & Females 51.3° ± 11.62° 

Males only 53.6° ± 11.39° 

FAI Patients 
Males & females 53.7° ± 8.69° 

Males only 54.5° ± 8.60° 

Controls 
Males & females 51.1° ± 7.96° 

Males only 53.2° ± 9.16° 

Lahner et al. 
(2014a) 

Elite track & field athletes Males & females 52.2° ± 7.29° 
Controls Males & females 48.1° ± 5.45° 

Gerhardt et al. 
(2012) 

Elite soccer players 
 

Males 65.6° 
females 52.9° 

Larson et al. 
(2017) Professional ice hockey players NR 

52.2° ± 11.2° (AP) 
61.0° ± 10.1° (Dunn lat.) 

Ayeni et al. 
(2014) 

Elite ice hockey players 
NR 

54.2° ± 12.0° 
Non-athlete controls 43.2° ± 9.7° 

Lahner et al. 
(2014b) 

Semi-professional soccer 
players 

NR 
57.3° ± 8.2° 

Amateur soccer players 51.7° ± 4.8° 

Fraser et al. 
(2017) 

Dance athletes Females 49.5° ± 6.0° 
Non-dance athletes Females 53.9° ± 7.3° 

Mariconda et al. 
(2014) 

Capoeira (Brazilian material 
arts) players Males & females 

50.7° ± 7.7° (AP) 
57.4° ± 7.1° (Frog-leg lat.) 

Jung et al. 
(2011) 

Random sample of 
asymptomatic individuals 

Males 59.12° 
Females 45.47° 

Scheidt et al. 
(2014) 

Random sample of 
asymptomatic individuals 

Males & females 45° ± 8.6° 
Males 47.52° 

Females 43.85° 

Pollard et al. 
(2010a) Asymptomatic individuals 

Males 48° ± 8° 
Females 47° ± 8° 

 

The overall alpha angle size for all samples in the current study are higher than have 

been reported in previous studies for non-athletic asymptomatic individuals (Pollard et 

al., 2010a) and nearer to the values recorded for athletes (see Table 9-1). Lawrence 

et al. (2018) suggested differences seen in both the mean alpha angle size and rates 

of Poirier’s facets and plaque, between males and females, were due to physical 

activity differences resulting from the sexual division of labour and habitual activities. 

Angel (1964) also found Poirier’s facets to be more common in males than females 

which they attributed to more vigorous muscle function in males. While Finnegan 

(1978) did not find a significant difference between males and females for Poirier’s 

facets, plaque or Allen’s fossa. For the Wharram Percy collection it was not possible 
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to determine if there was an interaction effect between Poirier’s facets and sex on 

alpha angle size due to only two female femora with Poirier’s facets present however 

the mean alpha angle size was significantly higher for males compared to females. 

Although it was not possible to run the statistical analysis this difference in alpha angle 

size between males and females could be linked to the lower rates of Poirier’s facets 

in females compared to males (2.9% vs 13%). The differing rates of non-metric traits 

and alpha angle size between sexes could be due to differing levels of physical activity 

or differing activities but also it could be due to morphological differences, this will be 

discussed in more detail in Section 9.2.  

 

It has also been proposed that alpha angle size between athletes and non-athletes 

are similar, with athletes being more likely to become symptomatic due to more 

vigorous movements at the joint (Johnson et al., 2012). In their study of an early human 

hunter-gatherer population, Moats and colleagues found cam morphology was not 

present (using a >50° alpha angle threshold). If alpha angle size is an indicator of 

physical activity, this result is unexpected as it is believed the Libben population were 

very active in comparison to modern populations, for example, carrying out activities 

such as heavy lifting and walking to find food (Moats et al., 2015). It is possible that 

this reflects the differences in activity between this population and modern athletes, 

with the hunter gatherers performing less intensive but prolonged periods of strenuous 

activity such as; hiking with heavy loads rather than short bursts of intense activity. 

Conversely, it may indicate, as suggested by Johnson et al. (2012), alpha angle size 

is not related to physical activity. Moats et al. (2015) suggested cam morphology was 

a ‘product of modern living’ however a possible case was identified in skeletal remains 

of a male from the Neolithic Age (Zurmühle et al., 2017) and in the contemporaneous 

cemeteries at the Early Christian site of Kulubnarti, Nubia by Lawrence et al. (2018). 

It is therefore possible that the lack of cam morphology in the Libben population is due 

to differences in activity patterns or other factors, such as terrain, diet or further femoral 

head-neck morphology which will be discussed further.  
 

There was not a significant difference in the proportions of Poirier’s facets or alpha 

angle size between the males of the Wharram Percy and the males of the Luís Lopes 

collection. A mutual factor between these two samples, and therefore a possible 

contributing cause in the association between alpha angle size and Poirier’s facets, is 
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terrain. Lisbon is known as the city of seven hills (Rodrigues et al., 2011). It has 

irregular topography with many hills and valleys of varying sizes. The altitude ranges 

from 6m to 226m (Oliveira and Pinho, 2010). Acosta et al. (2017) classified the terrain 

of Lisbon as rugged based on the altimetry profile. While Wharram Percy is located in 

the Yorkshire Wolds, situated on the western side of the valley, approximately 150m 

above sea level (Mays, 1995; Harding and Wrathmell, 2007). Moats et al. (2015) and 

Lawrence et al. (2018) are currently the only other studies to have measured alpha 

angles on archaeological populations. In their study of the Libben population, Moats 

and colleagues found cam morphology was not present (using a >50° alpha angle 

threshold). While Lawrence et al. (2018) analysed the presence of cam morphology in 

contemporaneous cemeteries at Kulubnarti, Nubia, reporting it to be present in 29.9% 

of individuals (using a >50° threshold). In comparison to both the terrain in Lisbon and 

Wharram Percy, the Libben site was much flatter. The Libben site is in north-western 

Ohio on what was formally the Great Black Swamp. During the 8th-11th centuries AD, 

the site was occupied by the individuals studied by Moat et al. (2015), it was within a 

“dense elm-ash, swamp forest, covering freshwater marshes and streams…” (Meindl 

et al., 2008). While the Sudanese Nubian site of Kulubnarti, located in the area known 

as the Batn el Hajar (“belly of rock”), between the second and third cataracts of the 

River Nile (Lawrence et al., 2018), is a harsh and rugged environment. There were 

areas of alluvial soil by the river’s edge however this was at the bottom of steep-sided 

slopes with rocky outcrops (Kilgore et al., 1997).  

 

The differences in topography between the sites maybe a prominent factor for the 

differences in alpha angle size and cam morphology. Walking on a flat surface 

compared to up and down hills requires different biomechanics of the lower limb and 

postural adjustments. Various studies have demonstrated changes in muscle action, 

gait and posture in relation to walking uphill, downhill and on level surfaces (Prentice 

et al., 2004; Franz and Kram, 2011; Franz et al., 2012; McIntosh et al., 2006; Vrieling 

et al., 2008; Montgomery and Grabowski, 2018; Kawamura et al., 1991; Kang et al., 

2002). When compared to walking on a level surface, additional muscle action is 

required to adjust the centre of mass during hill walking (Franz and Kram, 2011). 

During uphill walking the hip, knee and ankle extensor muscles have been found to 

have increased activation while for downhill walking it is only knee extensor muscles 
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(Lay et al., 2007; Franz and Kram, 2011). Pickle et al. (2016) showed during slope 

walking muscle functional roles varies from when walking on level ground due to the 

altered biomechanical demand. In addition to this, postural adaptation to walking on 

inclined surfaces occurs to reduce displacement of the centre of gravity (Leroux et al., 

2002). During uphill walking Leroux and colleagues showed the trunk and pelvic 

alignment to be tilted more forward and a backward tilt was shown during downhill 

walking. Increasing treadmill grade caused increasingly flexed posture of the hip, knee 

and ankle, with forward tilt of the pelvis and trunk with an increase in stride length as 

the slope is steeper. It could therefore be hypothesised a more forward tilt of the pelvis 

in relation to the hip may therefore increase the risk of abutment of the anterior aspect 

of the femoral head against the acetabulum and therefore causing a greater risk of 

FAI. While in downhill walking, with greater extension of the hip there is potentially risk 

of developing Poirier’s facets, if they are formed in the way formulated by Odgers et 

al. (1931). This would also cause the development of cribra as described Angel (1964) 

and Odgers et al. (1931). Angel (1964) previously suggested the high prevalence rates 

of Allen’s fossa in an ancient Greek sample in comparison to a modern American 

sample were partly due to differences in terrain. The ancient Greeks lived in a 

mountainous terrain and therefore they hypothesised the higher prevalence of Allen’s 

fossa is due to hip extension during downhill walking or running. Between males of the 

two skeletal collections there was no significant difference in the proportions of cribra 

and therefore it could be associated with terrain being a parallel factor between the 

two samples. Cribra was not recorded by Lawrence et al. (2018) and the study by 

Moats et al. (2015) purely focused on alpha angle size. It was therefore not possible 

to compare this in the same manner as alpha angles, Poirier’s facets and plaque. In 

the current study a link between cribra and alpha angle size was not found for the 

Wharram Percy sample (when pooled for sex or males only) or the Luís Lopes 

collection, with no significant difference in mean alpha angle size between those with 

or without cribra. If terrain is associated with the increase in alpha angle size another 

mechanism would also need to be involved in the development of cribra.  

 

It is still not clear whether flexion or extension is the lead cause of these traits 

(Trinkaus, 1975). A study by Acosta et al. (2017) looked at the effect of terrain on 

entheseal changes of the lower limb. They found individuals from flat terrain had higher 

entheseal change expression than those from rugged terrain. They believe that those 
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from a more rugged terrain are less likely to have higher expression of entheseal 

changes as they have higher physiological limits that can respond to the 

biomechanical loads in comparison to those from flat terrains due to high levels of 

loading during skeletal development. One area that the males from the rugged terrain 

showed higher entheseal changes than those from the flat terrain was at the iliopsoas 

enthesis (Acosta et al., 2017). Angel (1964) proposed the cause of Poirier’s facets was 

associated with the passage of the tendon for the m. iliopsoas during flexion and 

abduction of the thigh and therefore this could be a possible association in the 

development of Poirier’s facets.  

 

Locomotion patterns due to habitual environment have also been shown to lead to 

variation in hip morphology. Kappleman (1988) illustrated how the morphology of the 

bovid femur varies dependent on their habitat. Bovids living in open environments 

were found to have more rectangular shaped femoral heads. This habitat has little 

obstacles and the bovids are highly adapted for running. This femoral head shape 

limits abduction and axial rotation and contributes to hind limb propulsion by 

preventing unnecessary axial rotation of the limb. While the bovids that lived in the 

closed environments, such as woodland areas with bushes, shrubs and tree trunks, 

creating an uneven terrain, had spherical shaped femoral heads. This closed 

environment limits speed and therefore a hip that is adapted for manoeuvrability. The 

bovids that lived in broken cover environments showed a more intermediate femoral 

head morphology (Kappleman, 1988). This habitual adaptation in femoral head shape 

due to terrain could also be applied to the variation in alpha angle size dependent on 

terrain. As explained previously, adaptations in posture and muscle function are 

required in slope walking in comparison to level-ground walking to maintain stability 

via lowering or raising the bodies’ centre-of-mass (Pickle et al., 2016). If a consistent 

environment, particularly during development, required sloped walking then it is 

possible there could also be skeletal adaptations. The presence of cam morphology 

in populations required to mobilise on hillier landscapes (Wharram Percy, Luís Lopes 

and Kulubnarti) in comparison to predominantly on flatter landscapes (Libben) 

suggests this could be a contributing factor to its development. Although situated on a 

hilly landscape Wharram Percy is located on a plateau (Harding and Wrathmell, 2007). 

It is therefore suggested a combination of terrain and other factors such as physical 

activity could be involved in the morphological changes in this population. Further work 
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comparing alpha angle size and the non-metric traits of populations of varying terrain 

is required to understand this possible cause. This would have contributions to 

bioarchaeological interpretation of non-metric traits of the femur and allow alpha 

angles to be used as a marker of the habitual environment occupied by past 

populations. 

 
Table 9-2 Mean alpha angle size comparison from previous studies analysing skeletal collections 

Author Collection  
 
Alpha angle (mean ± S.D.) 

Current study  Wharram Percy collection,  
Pooled sex: 53.62° ± 11.39° 
Males: 53.62° ± 11.39° 
Females: 47.21° ± 11.26° 

Current study 

 
Luís Lopes collection, Portugal 
19th-20th Century 
 

Males only: 54.18° ± 10.69° 

Toogood et al. (2009) 

 
Hamann-Todd collection, 
Cleveland 
20th century  
 

Pooled sex: 45.61° ± 10.46° 
Males: 47.50° ± 10.71° 
Females: 43.71° ± 9.88° 

Moats et al. (2015) 
 
Libben collection, Ohio  
 

Pooled sex: 35.33° ± 3.87° 

Lawrence et al. (2018) 

 
Two cemeteries from Kulubarti 
site, Nubia (550-800 CE), 
Mainland & Island 
 

Pooled sites and sex: 41.31° ± 
8.53° 
 

 

Cribra has been associated with development due to its location by the femoral 

epiphysis and association with younger ages (Smith-Guzman, 2015; Kostick, 1963; 

Wasterlain et al., 2018; Finnegan, 1978; Stirland, 1996). For both the Luís Lopes and 

the Wharram Percy samples the frequency of femora with cribra present decreased 

as age range category increased. The continuous age data for the Luís Lopes 

collection showed the mean age was significantly higher for femora without cribra 

compared to those with cribra. Wasterlain et al. (2018) suggested the presence of 

cribra femoralis could be an indicator of unfavourable conditions during development, 

including malnutrition, deficiency diseases, non-specific infections and physically 

demanding work. Both individuals from the Wharram Percy and Luís Lopes 

populations would have potentially experienced several of these unfavourable 

conditions. Both populations may have been subjected to times of malnutrition which 
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are likely to have led to deficiency diseases. The Wharram Percy population were 

likely to suffer from crop failures and there is documentary evidence suggesting food 

shortages for medieval peasants (Mays, 1995; Gies and Gies, 1990). The soils at 

Wharram Percy are thin and therefore prone to nutrient exhaustion and it is exposed 

to harsh climates due to its northerly location and greater elevation, factors increasing 

the risk of crop failure (Mays, 2007). Harris lines form during periods of arrested bone 

growth due to childhood illness, and nutritional deficiencies (Mays, 1995). In their study 

of the Wharram Percy collection, Mays (1995) recorded 37% of juveniles and 23% of 

adults had Harris lines present. Juveniles with Harris lines present were not short for 

their ages therefore indicating there were sufficient resources available following the 

stress period to allow for catch-up growth. This was also confirmed by similar heights 

in adults with and without Harris lines. However, the thinner cortical measurements for 

the juveniles with Harris lines present compared to those without suggests there was 

insufficient resources to catch up on cortical thickness before the child died (Mays, 

1995). In must be noted the use of Harris lines as a stress indicator is debated in the 

literature (Alfonso et al., 2005; Papageorgopoulou et al., 2011; Boucherie et al., 2017). 

In adults, Mays (1996;1998) observed age-dependant bone loss in Wharram Percy 

females suggesting a possible cause as poor nutrition in childhood rather than lack of 

physical activity, as women within these populations were involved in physically 

demanding work. Examples of cribra orbitalia and rickets were also recorded in the 

Wharram Percy collection by Mays (2007a), both being associated with nutrient 

deficiency. With regards to the Luís Lopes collection there were significant 

socioeconomic changes in Portugal during the 20th century resulting in changes in 

nutritional status and living conditions. Rapid urbanisation and political instability 

meant it was not until the 1960s-70s that there was economic and social improvements 

(Cardoso, 2007). While in Lisbon with rapid population increase, there was an overall 

decrease per capita of meat consumption by 10% from 1852 to 1925 and 16% 

between 1906-1925 (Stolz et al., 2013). While cereal and potato production 

maintained with the population growth (Stolz et al., 2013). Poor living conditions would 

have led to the spread of infections, illustrated by the cause of death of 15% of 

individuals from the Luís Lopes collection being tuberculosis (Cardoso, 2006; Matos 

and Santos, 2006). The price of meat relative to grain declined over the 18th century 

but then increased into the late 19th century and therefore favouring a diet of less 

nutritional content required for growth (Stolz et al., 2013). Stature is used to determine 
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the living standards of a population as many environmental factors such as nutritional 

quality and health have a huge impact on growth (Steckel, 2008; Roberts and 

Manchester, 2010). A study by Cardoso and Gomes (2008)  compared data on stature 

from various time periods from Mesolithic to Modern day in Portugal. The study found 

a decrease in stature from middle ages to the late 19th century which they attribute to 

the change in living conditions in the city centres during this period. They saw a slight 

increase in stature from the early 20th century, but this then increased dramatically 

from the late 20th century (Cardoso and Gomes, 2008). This is consistent with the 

historical and social changes of the time, with at the start of the 20th century Portugal 

being considered a declining world power and being under a dictatorship until 1974, 

after which there was improvements in social and economic welfare (Cardoso and 

Gomes, 2008). Reis (2009) compared the stature information for males between 1840 

and 1910 from the centre of Lisbon and those from the countryside. Annually, from 

1857, a selection from a list of all Portuguese males of ages 20 and 21, unless 

exemption was granted on compassionate grounds, were enlisted to the military. It is 

likely this study only included the poor as exclusion from military service was often 

granted to the wealth by the local authorities (Reis, 2009). Another problem with this 

data set is the inability to determine when migration from rural areas to the city 

occurred, as stature is influenced by the circumstances of childhood. This study found 

the overall heights of Portuguese military recruits were lower than for other countries 

during the same period. The urban sample had a slightly higher height than the rural 

population. This suggests living standards were slightly better in the city compared to 

the countryside. This difference was however less than half a centimetre and therefore 

could be due to selection bias or incomplete data (Reis, 2009). These biological 

indicators of living standards therefore suggest it is possible the cribra recorded on the 

femur of the Wharram Percy and Luís Lopes collection samples are due to 

unfavourable conditions, particular nutrient deficiencies, during development as 

suggested by Wasterlain et al. (2018).  

 

Linked with deficiency diseases, malaria has also been associated with cribra 

femoralis as discussed in Section 2.3.  (Smith-Guzmán, 2015). Malaria was present in 

Portugal until late 1950s with its elimination in 1973 (Gomes et al., 2016). In addition 

to this, inferred evidence suggests there was an indigenous malaria in the UK, termed 
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“the ague” (Chin and Welsby, 2004; Reiter, 2000). It has been suggested that malaria 

was introduced to Britain during the Roman occupation however it did not become 

endemic until post-medieval period (Gowland and Western, 2012). Smith-Guzmán 

(2015) suggested femoral cribra should be used in addition to cribra orbitalia and 

humeral cribra when assessing the skeleton for indicators of malaria. More detail on 

the cause of cribrous lesions due to malaria can be found in Section 2.3. From the 

catalogue of burials in ‘Wharrram, A study of Settlement on the Yorkshire Wolds XI, 

The Churchyard’, it was possible to determine if any individual from the Wharram 

Percy collection had cribra orbitalia and cribra femoralis present (Mays et al., 2007). 

Only one individual had both traits present. It is therefore suggested malaria is unlikely 

to be the cause of the observed cribra femoralis observed in this study. In addition to 

this, the conditions at Wharram Percy, harsh climate and location, make it in unsuitable 

environment for mosquitoes, with low land marshy areas suggested as being more 

suitable (Gowland and Western, 2012;  Dobson, 1994). The same information is not 

available for the Luís Lopes collection sample and therefore further study would be 

required. In comparison to other factors this is less likely to be the cause of cribra 

femoralis observed in this study and would require considerable further study.    

 

Femoral head orientation is another important factor to be considered with regards to 

the association between cam morphology and non-metric traits of the femur with 

previous studies shown association between alpha angle size and offset ratios 

(Toogood et al., 2009; Fikkers et al., 2015; Zeng et al., 2016). Significantly negative 

correlations between offset ratio and alpha angle size for both the Wharram Percy and 

Luís Lopes collection were found, although moderate to weak. This consistent finding 

across both samples suggests that as the femoral head becomes more posteriorly 

translated in relation to the neck it becomes less concave anteriorly. This finding 

agrees with results from studies by Toogood (2009), Nemtala et al. (2010) and Zeng 

et al. (2016). Nemtala et al. (2010) found offset ratio to be lower for a group of 

symptomatic individuals, with an alpha angle >55°, when compared to asymptomatic 

individuals. While the study by Zeng et al. (2016) showed individuals with osteoarthritis 

had lower offset ratios and higher alpha angles than those without. From an 

evolutionary basis, humans showed larger alpha angles and smaller AO/PO in 

comparison to non-human apes (Fikkers et al., 2015). It was hypothesised that the 
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reduced anterosuperior concavity is an adaptation to resist higher loads of bipedal gait 

and running, in comparison to in non-human apes. The decreased concavity may 

increase tensile strength in this region (Fikkers et al., 2015). There was also more 

variability in alpha angles in humans than non-human apes. The high level of variability 

in human hips when compared to non-human ape hips suggests this is due to the 

loading history of this area. Fikkers et al. (2015) suggest the lack of variability in non-

human apes shows how important concavity is for climbing apes. Therefore, the lack 

of concavity in human hips may represent lack of evolutionary advantage. There are 

two main types of hip morphology; a sturdy hip (coxa recta) or a more mobile hip (coxa 

rotunda), dependent on the concavity of the femoral head and position of the head in 

relation to the neck (Hogervorst et al., 2009). At the head-neck junction in a coxa recta 

hip is a straight section, while the coxa rotunda has continued roundness. With regards 

to head orientation in relation to the neck, a coxa recta hip has a low offset ratio while 

a coxa rotunda hip has a high offset ratio, with the hip morphology determining the 

range of motion in the acetabulum (Hogervorst et al., 2009). Mammals that require a 

large range of motion have coxa rotunda hips, such as; apes and aquatic mammals. 

While mammals which do not require such a large range of motion have coxa recta 

hips e.g. horses (Hogervorst et al., 2009). The coxa recta morphology is better 

adapted for increased tensile strength while coxa rotunda is better adapted for 

increased range of impingement free motion (Hogervorst et al., 2009). The higher 

prevalence of cam morphology in athletes compared to non-athletes seems to 

contradict this theory as it can be assumed the former would require the greatest range 

of impingement free motion. This may however be due to the kind of sport being 

favoured and the requirement for a “stronger” hip which is less exposed to damage. 

Functional differences of the hip in the development of cam morphology is highlighted 

by Fraser et al. (2017) by comparing females dance and non-dance athletes. Dancing 

is extremely demanding on the hip joints due to the required range of motion and 

requires intense training from a young age (Fraser et al., 2017). The alpha angle size 

for female dance athletes with FAI was significantly lower than for non-dance athletes 

with FAI (49.5°± 6.0° vs 53.9° ± 7.3°) (Fraser et al., 2017), which highlights the possible 

adaptation to a more mobile joint in the dancers. In addition to this, Philippon et al. 

(2013) reported higher alpha angles and rates of cam morphology in ice hockey 

players than skiers which they attribute partly to biomechanical cause due to 
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differences in motion at the hip between the two sports. Dickenson et al. (2016a) 

highlights function adaptation of the hip in the same person. They found in elite golfers 

the alpha angle size to be significantly lower in the lead hip compared to the trail hip. 

During the golf swing the lead hip, which is the left hip in right handed players, rapidly 

goes from external rotation to maximal internal rotation. While the trail hip rotates from 

internal rotation to external rotation. The authors suggest as the rapid internal rotation 

is required in the lead hip the reduced alpha angle is advantageous as it allows 

increased rotation. Therefore, it is possible these loading patterns on the hip prior and 

during skeletal maturation caused cam morphology to develop and therefore adapting 

the hip to suit its function (Dickenson et al., 2016). It is possible the adaptation to a 

femur with less concavity in certain physically activity individuals are to stabilise the 

joint in response to increased loading, particularly during skeletal maturation which 

many studies have suggested is the time during which the joint is susceptible to the 

development of cam morphology (Siebenrock et al., 2011; Siebenrock et al., 2013a; 

Philippon et al., 2013; Agricola et al, 2014a).  

 

Femoral head orientation in relation to the neck did not have a significant impact on 

the association between alpha angle size and Poirier’s facets, as there was still a 

significant difference between femora with and without Poirier’s facets when controlled 

for offset ratio for the Wharram Percy collection and Luís Lopes collection. These 

results suggest the link between Poirier’s facets and cam morphology is not impacted 

by femora head translation. For plaque, when considering the Wharram Percy 

collection sample, there was not a statistically significant difference in mean alpha 

angle size between plaque types for both sides when controlled for offset ratio, when 

prior to controlling for offset ratio there was a significant difference. For the Luís Lopes 

collection on the right side there was no significant difference in mean alpha angle size 

between plaque types when controlled for offset ratio but on the left side there was still 

a significant difference. No study has previously looked at the association between 

offset ratio and alpha angles on the presence of non-metric traits, therefore these 

results cannot be compared to determine if they are population dependent. These 

results suggest only alpha angles impact the presence of Poirier’s facets while a 

combination of femoral head translation (offset ratio) and alpha angles are associated 

with the presence of plaque. This is likely to be due to Poirier’s facets being found in 

relation to the femoral head only, while plaque can be associated with the femoral 
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head and neck. For plaque types which are mainly focused on the femoral neck (type 

B & C) to impact concavity, the femoral head would need to be more posteriorly 

orientated in relation to the neck. Binary regression to determine the accuracy of 

predicting the presence or absence of cam morphology (based on each threshold 

value) via data the presence/absence of Poirier’s facets and plaque (by type) showed, 

for the left femora the overall percentage accuracy of predictions was 65.2% at 50° 

threshold, 66.5% at the 55° threshold and 75.8% at the 60° threshold. The only 

variables that had a significant impact on predictions were Poirier’s facets and type A 

plaque at each threshold level. For the right side the overall percentage accuracy of 

predictions were; 65.4%, 73.2% and 79.1% at the 50°, 55° and 60° thresholds. Type 

A plaque had a significant impact on the predictions at all threshold with the addition 

of type B at the 55° threshold and Poirier’s facets at the 60° threshold. These results 

further confirm the possible link between Poirier’s facets, type A and type B plaque 

with cam morphology. This regression analysis was limited to males only therefore it 

is not possible to determine if the same pattern can be observed in females.  

 

These findings contribute to disciplines of bioarchaeology and forensic anthropology 

in various ways. The link between non-metric traits of the femur (Poirier’s facets, 

plaque type A and type B) with alpha angle size/cam morphology, in both skeletal 

collections under analysis, further confirms the findings from previous studies e.g. 

Lawrence et al. (2018). This, therefore, shows these findings are not sample 

dependent and also begins to build and expand a knowledge base with regards to cam 

morphology in skeletal collections from varying contextual settings. With the 

uncertainty surrounding the aetiology and history of both FAI and non-metric traits, 

increasing the number of studies on various past populations allows the discovery of 

mutual and conflicting factors. This has the potential to increase knowledge on 

potential causative factors. Additionally, the link between FAI and non-metric traits 

allows a wealth of clinical literature focused on FAI to be applied to the 

bioarchaeological study of these non-metric traits, which is particularly applicable to 

physical activity.  

 

The link between these non-metric traits with a condition commonly found in athletes 

adds to the recurrent hypothesis that a leading cause of these traits is increased and 
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strenuous physical activity. This suggests these traits could be used as a marker of 

habitual activity in past populations (however this will be discussed further in Section 

9.2).The exploration of mutual factors between skeletal collections, due to lack of a 

significant difference in Poirier’s facets and alpha angle size between samples, in 

combination with the literature on previous collections, adds knowledge of additional 

factors which could lead to the development of these non-metric traits and cam 

morphology, particularly terrain. It also suggests cam morphology may not entirely be 

due to physical activity but a functional adaptation to factors leading to instability at the 

joint. This therefore emphasises the requirement to consider various factors and 

proceeding with caution when forming interpretations about the sample understudy 

due to the presence of both non-metric traits and cam morphology. This is also 

important for the study of bioarchaeology as it highlights the use of cam morphology 

as a marker of function adaptation due to instability and therefore allows the 

acquisition of knowledge regarding the lifestyle of the populations under study.  

 

The significant correlation between femoral head orientation and alpha angle size for 

both collections adds to the discipline of bioarchaeology as this has not be extensively 

studied. No study has previously looked at this association with regards to the 

presence of non-metric traits therefore this study adds new data to the discipline. This 

highlights the need to consider various morphological factors prior to forming 

interpretations with regards to cause and effect.  

 

Increased awareness of methods of recording cam morphology on bone has 

contributions to the field of forensics during victim identification, when ante-mortem 

data of FAI is present. Although the presence of cam morphology cannot be solely 

relied on for an accurate identification, the ability to record its presence on bone 

provides an additional identifying feature. Additionally, the link found between cam 

morphology and Poirier’s facets, type A and type B plaque could allow these traits to 

be used to suggest the presence of cam morphology when the equipment and 

technology is not present to record alpha angles. The results of this study suggest 

caution must be taken if attempting to use non-metric traits to infer the presence of 

cam morphology as there were cases when the alpha angle size was below the 

diagnostic threshold but some of these traits were present.  
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9.2. Is there a link between cam morphology & occupation activity?  

Cam morphology has typically been associated with athletes. Physically active 

individuals have been reported to have higher alpha angles and prevalence of cam 

morphology than non-athletes (Lahner et al., 2014a; Frank et al., 2015; Mascarenhas 

et al., 2016), as discussed in Section 3.2. In addition to this, those with physically 

active occupations such as military personnel have also been considered (Coppack et 

al., 2017; Jochimsen et al., 2019). If athletic activity is an influential factor it is 

hypothesised that occupational activity could also impact the development of cam 

morphology, which has not previously been investigated. If physically demanding 

occupations and lifestyles have an impact on the presence of cam morphology it is 

hypothesised that those from rural populations are more likely to have cam 

morphology than urban populations. In addition to this further commonly used methods 

used bioarchaeologically to determine differing activity levels will also be discussed 

such as; sexual division of labour and side asymmetry.  

 

Occupational physical activity differences 

For the Luís Lopes collection sample, there was no significant difference in alpha angle 

size between ISCO-08 occupation categories. Although this difference was not 

significant the elementary occupations group had the highest mean alpha angle size 

for both sides. This occupational category included gravediggers and factory workers 

which were likely to have been engaged in physically demanding tasks as part of their 

occupations. For both sides, if the undetermined category is excluded, clerical support 

workers had the lowest mean alpha angle size. This category includes occupations 

such as; office employees and clerks who are less likely to have been engaged in 

physically demanding tasks as part of their day to day work. When considering the left 

and right side separately, for the left side, after elementary occupations, the next 

highest mean alpha angle was for the armed forces occupations. Due to the physically 

demanding aspect of military training they are an at-risk population for the 

development of FAI (Coppack et al., 2017). Military personnel over 40 years of age 

are more likely to develop osteoarthritis due to FAI than the general population 

according to the study by Jochimsen et al. (2019). They suggest this is due to the 

forces placed on the hip during military training being above those normally subjected 

to this area. Differences in prevalence rates of osteoarthritis have also been recorded 
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between the services and ranks (Scher et al., 2009). With FAI being considered a 

leading cause of osteoarthritis of the hip in active populations there is a possibility 

these high rates of osteoarthritis in military could be, in part, associated to high rates 

of FAI/cam morphology. The high alpha angle size found in the armed forces 

occupations from the current study agrees with the literature by Ochoa et al. (2010) 

which reported at least one finding of FAI in 87% of a young military population. 

Jochimsen and colleagues however did not find a statistically significant difference in 

mean alpha angle size between military veterans and civilian patients with end-stage 

hip osteoarthritis, (64.3°±13.2° vs 61.1°± 11.5°, respectively) or the prevalence of cam 

deformity, based on an alpha angle threshold of ³60° (Jochimsen et al., 2019). This 

study was limited due to lack of information on activity level, military branch and 

number of years in service, which Scher et al. (2009) has previously reported to impact 

the level of osteoarthritis. In addition to this, the civilian patients all suffered from FAI 

and therefore are likely to have high rates of either cam or pincer morphology. For the 

right side the next highest mean alpha angle size was for services and sales workers. 

This category included occupations such as; shop assistants, guards and doormen. 

These occupations were likely to have spent a lot of time stood up. The task activity 

from the compendium of physical activity included predominantly ‘standing tasks, light 

effort’ and therefore a large amount of weight bearing on this joint.  

 

When occupational data was categorised by physical activity levels using MET values 

overall there was no significant correlation found between alpha angles and MET 

values for the left or right side. For method I, alpha angle size increased from low 

activity group to moderate activity group to high activity group for the right side, while 

for the left side the mean alpha angle size decreased from low activity to moderate 

activity but it was still highest for high activity. This difference was, however, not found 

to be statistically significant on either side. For method II, for both left and right side 

mean alpha angle size increased from the sedentary behaviour group to light intensity 

to moderate intensity group. This difference again was not statistically significant. 

These results could indicate a limited association between occupational activity and 

cam morphology but it also could be due to the method used to categorise 

occupational physical activity. Winburn (2019) and Winburn and Stock (2019) are 

currently the only other studies to use MET values to categorise physical activity within 
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the bioarchaeological literature. In their study, Winburn (2019) did not find a correlation 

between activity, as assessed by MET values, and acetabular degeneration, while 

Winburn and Stock (2019) showed MET values were significant predicators of 

osteoarthritis in the hand only (Winburn and Stock, 2019). It is therefore not clear how 

well this method reflects activity rates of past populations. The compendium was 

designed to be used with standardised recordings of daily activities from self-reported 

questionnaires. This study did not have this information available and although 

occupational activities from the ISCO-08 were used, this does not give an accurate 

representation of the exact tasks carried out per occupation. These results are also 

limited as MET values provide an estimated metabolic rate for certain activities. This 

does not equate to a value of the biomechanical strain on the joint for each occupation 

e.g. greater loading on the lower body or upper body. Method III did not use MET 

values, but instead, occupations were categorised as manual or non-manual via a 

database compiled from categorised occupations from previous studies using 

identified skeletal collections (Perréard Lopreno et al., 2012). For both left and right 

side, this method also did not show a significant difference between occupations 

categorised as manual and non-manual. This highlights the use of MET values is not 

the only cause for the lack of significant difference in alpha angle size between the 

occupations groups however it still does not address the biomechanical limitations. 

Overall there were patterns in alpha angle size between occupations of varying 

physical activity however this was not found to be significantly different for any of the 

methods used. This indicated alpha angle size does not seem to be affected by 

occupational physical activity in adults when categorised using the methods from this 

study. This could be due to occupation data only representing the habitual physical 

activity as adults. Various studies have previously suggested cam morphology 

develops during skeletal immaturity (as discussed in section 3.2) and therefore 

occupational information from adults may not be an influencing factor in the 

development of FAI.  

 

If cam morphology is associated with a more physically demanding lifestyle then 

femora from the Wharram Percy sample, an agricultural population, should have 

significantly higher mean alpha angles than the Luís Lopes collection, a late 19th to 

early 20th century urban population. It is likely the agricultural lifestyle for the 

individuals from the Wharram Percy population was highly strenuous suggested by 
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historical record and studies of skeletal changes (Bennett, 1987; Judd and Roberts, 

1999; Sofaer Derevenski, 2000; Mays et al., 1999). In this study, there was however 

no significant difference in mean alpha angle size between these two populations on 

either side when comparing males only (no females were included in this study from 

the Lisbon sample). Considering some occupations within an urban setting may also 

be physically demanding, when comparisons between activity categories within the 

Luís Lopes collection and with the Wharram Percy sample were made this again 

showed no significant differences in mean alpha angle size. Further to this, the mean 

alpha angle size for the Wharram Percy sample was not the highest, as would have 

been expected if physical activity had an impact of the presence of cam morphology. 

In their analysis of the Luís Lopes and Sassari identified collection, Calce et al. (2018) 

reported increased femoral robusticity significantly correlated with lower pelvic 

osteoarthritis score. They suggested it is possible these adults may have been active 

as children which produced the more robust bones measured in adulthood. The 

historical record shows in the late 19th and early 20th century there was a high level of 

movement from agricultural settlements into the cities in Portugal. Calce et al. (2018) 

therefore suggests if these individuals were engaged in physically demanding 

activities, which are associated with lifestyle in farming settlements, during childhood 

this could be the cause of the femoral robusticity reported in their study. If cam 

morphology is a developmental phenomenon, as described by Siebenrock et al. 

(2011) and Agricola et al. (2014a), these findings by Calce et al. (2018) may explain 

why there is not a significant difference in alpha angle size by occupational physical 

activity in adulthood and the lack of significant difference with the Wharram Percy 

collection sample mean alpha angle. In addition to this, although migration to Lisbon 

was increasing, no more than 6.9% migrated before the age of 10 years old and 

therefore spent the period of skeletal maturation in agricultural settings (Rodrigues, 

1994 as cited by Reis, 2009). Children were also commonly involved in manual labour 

before the age of 12 years of age, with some industries’ work force being made up of 

25% children in Lisbon. It was not until after the 1950s and 60s that child labour laws 

became stricter and prevented this kind of work (Cardoso and Garcia, 2009).  

 

These factors suggest both the Luís Lopes and Wharram Percy sample may have 

been subject to high levels of physical activity during childhood and therefore obscure 

the results of occupational physical activity in adulthood. Furthermore, from the 
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findings in the previous section of this discussion, additional extrinsic factors requiring 

adaption to provide additional stability to the joint may have also played an important 

role. It must also be noted that the Wharram Percy sample was not limited to one 

chronological phase and therefore represents approximately 900 years. It cannot be 

assumed that the level of habitual activity was consistent across this time period with 

the advent of new technologies and practices. This could also be a contributing factor 

to the lack of significant difference between the two collection.  

 

The apparent lack of association between cam morphology, and occupational physical 

activity shown in this study contributes to the field of bioarchaeology by advising that 

this condition should not be used as a marker of activity in adults. Instead the findings 

and discussion indicate it would be more useful as an indicator of activity prior to and 

during maturation. Although cam morphology occurs more frequently in athletes than 

non-athletes (as shown in Section 3.2. and 3.3.) caution must be taken when 

interpreting its presence in relation to activity of past populations. The results of this 

study suggests, as previously suggested by Agricola et al. (2014a) and Gala et al. 

(2016), that cam morphology and alpha angle size remains consistent in adults. 

Therefore, the use of this condition as a marker of activity during development would 

be extremely useful in the study of past populations to determine more about the 

lifestyles of juveniles, as it remains present in adults. Additionally, this is one of few 

studies, within the fields of bioarchaeology and forensic anthropology which uses MET 

values to categorise physical activity. Further awareness and use of this method would 

be of values to the disciplines of forensic anthropology and bioarchaeology in the study 

of markers of activity, to reduce subjectivity imposed by the researcher through the 

use of predefined values for each activity and allow the creation of comparable data 

between studies.   

 

Difference in alpha angles between males and females - sexual division of 

labour or sexual dimorphism? 

Lawrence et al. (2018) suggested the differences in alpha angle size between males 

and females in their study of the Early Christian site of Kulubnarti, Nubia, is due to the 

sexual division of labour, with men being involved in more physically demanding 

activities than females. For the Wharram Percy collection the mean alpha angle sizes, 
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for both left and right sides, were statistically significantly higher for males compared 

to females. There was also a higher prevalence of males with cam morphology at each 

alpha angle threshold than females. This difference between males and females is in 

agreement with the literature, with cam morphology being reported more commonly in 

men than women, at a 14:1 ratio (De Bruin et al., 2013). When comparing male and 

female athletes several studies have shown there is typically a higher mean alpha 

angle size for males when compared to females. For instance, in their study of male 

and female professional soccer players Gerhardt et al. (2012) found the overall mean 

alpha angle size for males was 65.6° while it was 52.9° for the females. The females, 

however, had on average, less years of playing professional soccer than the males, 

which maybe a contributing factor. Johnson et al. (2012) also reported a difference in 

the mean alpha angle size between male and female who competed in semi-

professional or high-level recreational soccer during skeletal immaturity. In males, the 

mean alpha angle size for the right side was 57.5° and 55.1° for the left side. While for 

females the mean alpha angle size was 50.0° for the right side and 49.2° for the left 

side. The lower mean alpha angle size reported in female athletes when compared to 

male athletes suggests this difference observed in the Wharram Percy collection is not 

likely to be indicative of differences in physically demanding activities between the 

sexes but more likely another of the aetiological factors. The alpha angle size for the 

FAI and non-FAI group did not consistently show a higher alpha angle size for males 

compared to females. This difference in alpha angle size between males and females 

could be due to the low sample size with only five females and seven males in the 

non-FAI group and twelves males but only six females in the FAI group. Additionally, 

occupation and recreational activity information was not available for this sample 

therefore it cannot be determined if there was a significant difference in physical 

activity between these individuals.  

 

It is currently unclear as to why a difference in alpha angle size between males and 

females exists with various hypotheses being advocated such as; differing levels of 

physical activity during the times of epiphyseal closure between the sexes (Levy et al., 

2015), anatomical differences (Hogervorst et al., 2009; Hogervorst et al., 2011), 

inappropriate cut-off values (Nepple et al., 2014) and also fewer studies including 

female athletes (Levy et al., 2015). It is nevertheless challenging to determine the true 
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difference between males and females due to the range of alpha angle thresholds 

used to determine the presence of cam morphology, differing imaging modalities and 

imaging view selected between studies. Table 9-3 shows the rates of cam morphology 

and differences in alpha angles between males and females from various studies.  

 

It is difficult to establish if the differing levels of physical activity during the time of 

epiphyseal fusion is the true cause as, although several studies have identified an 

association between cam morphology and athletic activity at the time of skeletal 

maturation, many of these studies focus solely on males (Siebenrock et al., 2011; 

Siebenrock et al., 2013; Philippon et al., 2013; Agricola et al., 2012). In medieval rural 

populations males, females and children were involved in physically demanding work 

(Mays, 2007a). Children began work as young as five years of age and, although both 

sexes were engaged in strenuous physical labour, there was still an element of sexual 

distinction in certain tasks (Bennett, 1987). This difference in tasks between girls and 

boys in this population during skeletal maturation may be the cause of these 

differences in alpha angle size between the sexes. Fraser et al. (2017) exclusively 

focused on the effect of athletic activity during maturation in females only. In this study, 

they compared young female dance athletes to young female athletes involved in 

sports such as soccer, running or ice hockey, both groups having a diagnosis of FAI. 

Using a cut off value of >55°, 18.3% of the hips of dance athletes and 42.5% of the 

hips of non-dance had cam morphology (Fraser et al., 2017). The high rates of cam 

morphology in young female non-dance athletes are similar to the young male athletes 

reported in previous studies. This therefore suggests sexual division in tasks 

performed during skeletal maturation could be the cause of these differences in alpha 

angle size. On the other hand, in their study of cam morphology development in pre- 

and post-epiphyseal closure in non-athletes Carsen et al. (2014) showed cam 

morphology (based on an alpha angle ³ 50° threshold) to only be present in boys and 

not girls with closed epiphysis. In addition to this the boys had a significantly higher 

mean alpha angle than girls (43.4° ± 6.0 vs 37.8° ± 4.0). This difference in alpha angle 

size in non-athletic individuals suggests this may also be due to morphological 

differences between males and females. This could also be due to the difference in 

rates of non-metric traits present between males and females, as discussed in 9.1.  
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With regards to human hip morphology, although debated, typically females are more 

likely to have coxa profunda; a deep acetabulum, a round femoral head with normal 

or high head-neck offset (coxa rotunda femoral head). Males are more likely to have 

coxa recta; aspherical femoral head with asymmetrical head-neck offset on a thick and 

short femoral neck (Hogervorst et al., 2009). Hogervost et al. (2011) theorised from an 

evolutionary standpoint this variation is largely due to the obstetric requirements in 

females. The true pelvis is widened, which places the acetabulae further apart. To 

compensate for this the acetabulum tends to be deeper to preserve balance of the 

mechanical stresses from body weight on this area and reducing the abductor force to 

maintain a level pelvis during normal gait. The common hip morphology to adapt to 

this is coxa profunda (Hogervorst et al., 2009). For males, the hip is not adapted for 

childbirth and therefore loading plays a larger role in the morphology to allow for a 

more stable joint for bipedal gait therefore coxa recta morphology is more common 

(Hogervorst et al., 2009).  

 

Studies by Levy et al. (2015) and Nepple et al. (2014) have shown alpha angle size in 

females with FAI are typically lower than in males with FAI. In their study of females 

with symptomatic non-arthritic intra-articular hip pain Levy et al. (2015) reported only 

29.7% of symptomatic females had an alpha angle >50.5° (Levy et al., 2015). In a 

sample of males and female patients with FAI, Nepple et al. (2014) showed mean 

alpha angle size was significantly higher for males than females, with a mean 

maximum alpha angle size of 57.6° in females and 70.8° in males. In addition to this, 

34% of females compared to 72% of males had a maximum alpha angle >60° (Nepple 

et al., 2014). When Hooper et al. (2016) compared hip morphology of adolescent 

males to adolescent females undergoing hip arthroscopy for FAI the mean alpha angle 

for males was 53.1° and 42.5° for females, with 38.9% of males and only 1% of 

females considered to have cam morphology (using an alpha angle cut-off of 55°). 

These studies suggest symptoms are present in females at a lower alpha angle size 

than in males. This is also highlighted by the use sex dependent pathological 

thresholds have been developed with lower alpha angle thresholds for females 

(Gosvig et al., 2007). The deeper acetabulae in females would cause impingement at 

smaller alpha angles than in males, with their shallower acetabulae, and this maybe 
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the contributing factors to the lower alpha angle size in females in the current study 

and previous studies rather than the sexual division of labour.  

 

The alpha angle size of the females in the Wharram Percy collection are more in line 

with those of modern athletes. This could be indicative of the physically demanding 

lifestyle of the Wharram Percy females from a young age which agrees with the 

findings by Mays, (2007a) which suggested the high levels of osteoarthritis on the 

femur in females from this collection was due to physically demanding work placing 

mechanical stress on the lower limb. It is likely that the difference in alpha angle size 

and prevalence of cam morphology between males and females is less to do with the 

sexual division of labour in adults but more likely to be due to morphological 

differences and possibly sexual distinction of tasks during childhood.  These findings 

add to the current knowledge of this condition in skeletal collections, particularly in 

bioarchaeological study, which has previously interpreted these differences between 

sexes as solely due to difference in the level of physicality in habitual activities, e.g. 

Lawrence et al. (2018). The use of alpha angles to determine level of physical activity 

during childhood would be extremely useful for the study of past populations. It also 

highlights the importance of incorporating sex dependent alpha angle thresholds in 

future studies due to the morphological differences between males and females at this 

area. This will give a better representation of the prevalence rates of cam morphology 

in females compared to males.  
 
Table 9-3 alpha angle size and the prevalence of cam morphology in studies including males and females 

Author  Sample  Imaging 
modality and 
view alpha 
angles 
measured on  

Cam 
morphology 
alpha angle 
threshold  

Mean alpha angle & 
prevalence of cam 

Hooper et 
al. (2016) 

177 adolescents  
• Having hip arthroscopy 
• Hip pain & signs and 

symptoms of 
chondrolabral hip 
damage 

• Age: 13-18 years  
• 129 females  
• 48 males  

Frog-leg lateral 
or 45° Dunn 
lateral hip 
radiographs 
 
Axial oblique 
plane on hip 
MRI scans 

55° on MRI  Unadjusted alpha angles 
 
Plain radiographs:  
Males 56.3° 
Females 45.1°  
 
Axial oblique MRI:  
Males 53.1° 
Females 42.5°  
 
Cam morphology: 
Males 38.9%  
Females 1% 
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Allen et al. 
(2009) 

113 patients with symptomatic 
cam morphology 

• 82 males  
• 31 females  
• mean age 37.9 years 
• age range 16-55 years 

Cross-table 
lateral 
radiographs or 
Dunn view  

55.5° Males 69.1°±10.4 
Females 62.1°±9.6 
 

Levy et al. 
(2015) 

391 female patients with non-
arthritic symptomatic intra-
articular hip pain  

• mean age 36.1 ± 12.3 
years 
 

AP-pelvis and 
lateral 
radiographs 
Frog-leg lateral 
Cross-table 
lateral  
90° Dunn lateral 
(largest alpha 
angle used) 

Pathological 
>57° 
Borderline 
51-56° 
Normal 
≤42° 

Overall mean on frog-leg 
lateral: 48.2° ± 11.9 
AP: 41.3° ± 12.2 
Cross table lateral: 43.7° 
± 10.3 
90° Dunn lateral: 44.2°± 
8.6 
 
Pathological 14.6%  
Borderline 15.1% 
Normal 35.6% 
 

Nepple et 
al. (2014) 

55 male and 55 female patients 

• with FAI & undergoing 
surgical treatment  
 

Frog-leg lateral, 
Dunn lateral & 
AP  

Multiple 
thresholds 
 

Mean alpha angle on  
AP: 
males 64.9° 
Females 49.0° 
Dunn:  
Males 65.3°  
Females 53.1° 
Frog-leg: 
Males 56.9° 
Females 45.7° 
 
<50° 
males 6%  
females 30%  
 

Gosvig et 
al. (2007) 

2803 individuals from 
Copenhagen Osteoarthritis 
Study 

• 1055 males  
• 1749 females  

164 patients for total hip 
replacement 

• 82 males 
• 82 females  

 

AP and lateral 
radiographs  

Normal:  
Males ≤69° 
Females 
≤50° 
 
Borderline  
Males 69° 
to 82° 
Females 
51° to 56° 
 
Pathological  
Males ≥83° 
Females 
≥57° 

Copenhagen 
Osteoarthritis Study 
individuals (AP): 
Males right side 
51.7°±13.5 
Males left side  
53.1°±13.9 
Females right side  
44.4°±5.5 
Females left side  
45.5°±5.1 
 
Total hip replacement 
patient:  
Males (AP): 71°  
Males (lateral): 61° 
Females (AP): 59° 
Females (lateral):59° 
 
Males  
Normal 40%  
Borderline 16%  
Pathological 44%  
 
Females  
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Normal 59% 
Borderline 6% 
Pathological 35% 

Pollard et 
al. 
(2010a) 

83 from asymptomatic 
individuals 
44 females  
39 males  
 

cross-table 
lateral 
radiographs 

- Males: 48° ± 8 
Females: 47° ± 8 

 

Directional asymmetry of cam morphology  

Functional interpretations have been made by observing differing levels of side 

asymmetry of various skeletal changes. Right sided dominance of the upper limb is 

observed more commonly than left in most human populations (Larsen, 2015b). For 

the lower limb, side dominance is not as clearly expressed as in the upper limb due to 

weight bearing typically being evenly distributed during normal gait (Auerbach and 

Ruff, 2006). Unlike the upper limb, the dominant lower limb typically show less 

robusticity than the non-dominant limb (termed crossed symmetry) as the non-

dominant side provides postural stabilisation (Auerbach and Ruff, 2006). There is 

typically a higher frequency of right-footedness as with handedness (Peters and 

Durding, 1979; Gentry and Gabbard, 1995) but studies have suggested the left leg is 

used for weight-bearing regardless of handedness (Macho, 1991). For each of the 

samples the left femora consistently had a higher alpha angle than the right, this was 

however only statistically significant in the Wharram Percy collection. It has also been 

suggested that directional asymmetry is higher in individuals subjected to higher levels 

of stress (Kujanová et al., 2008) therefore this may be indicative of the more physically 

demanding lifestyles of this agricultural population in comparison to a modern British 

population and a urban late 19th-early 20th century Portuguese population. When 

analysing side asymmetry within the occupation categories there was only a significant 

difference in mean alpha angle size between left and right sides for the armed forces 

occupations, with the mean alpha angle size being significantly higher for the left side 

than the right side. In addition to this, for both the Wharram Percy (when pooled for 

sex and separated into males and females only) and Luís Lopes collection samples, 

there was no significant difference in the proportions of femora with cam morphology 

between the left and right side based on any of the thresholds used in this study (≥50°, 

≥55° or ≥60°).  
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There are few studies which report directional asymmetry for cam morphology and 

alpha angle size. One of the few studies, on side differences and limb dominance with 

FAI, by Mascarenhas et al. (2018) found no significant difference in alpha angle size 

between sides, and limb dominance did not have an impact. This was however a study 

of asymptomatic individuals with no information of activity levels. Tak et al. (2015) also 

did not find cam morphology to be more prevalent on the dominant leg in comparison 

to the non-dominant leg in their study of professional elite football players. While in 

their study Dickenson et al. (2016a) suggest increased alpha angles at one hip over 

the other is potentially an adaptation to suit the common function. When analysing hip 

morphology elite golfers, they found alpha angles to be significantly lower in the lead 

hip compared to the trail hip. Cam morphology, as determined by alpha angle >55°, 

was present in 16% of players, with the trail hip only being affected in seven and 

bilateral cam morphology occurring in two players (Dickenson et al., 2016a). In the 

Wharram Percy collection and the armed forces occupations of the Luís Lopes 

collection, the side asymmetry, with higher alpha angles on the left side, typically the 

stabilising hip, may be due to high-levels of loading activities. When comparing alpha 

angle size for the kicking leg of professional to amateur soccer players Lahner et al. 

(2014b) found a significantly higher alpha angle size for the kicking leg of professional 

soccer players (57.3° ± 8.2°) than in amateur soccer players (51.7° ± 4.8°). This would 

contradict this finding as it suggests the hip with greater movement (the kicking leg) 

has the higher alpha angle size as opposed to the stabilising side. There are also 

mixed findings when comparing alpha angle size for the left and right side in both 

athletes and non-athletes as shown in Table 9-4 below.  

It is therefore possible that the significantly higher alpha angle size on the left femora 

for the Wharram Percy collection males and the Luís Lopes collection, armed force 

occupations, could be indicative of functional adaptation during skeletal maturation. 

For the samples in this study the left femora consistently displayed higher mean alpha 

angles. It could be theorised this is due to this side typically being the stabilising leg 

and subject to a great amount of weight bearing. The lack of a significant difference in 

the prevalence of cam morphology at any threshold for either collection however 

suggests side asymmetry is not an influencing factor when considering alpha angles. 

It is not clear however if the concept of crossed symmetry applies to alpha angle size. 

 



 264 

Table 9-4 Alpha angle size on left and right side, for the current study and the literature of athletes and 
non-athletes 

Study  Sample  

 
Mean alpha angle 
Left Right 

Current  

Wharram Percy (pooled sex) 53.0° ± 12.2° 50.1° ± 10.5° 

Wharram Percy (males) 55.1° ± 12.3° 52.0° ± 10.4° 

Wharram Percy (females) 48.4° ± 11.2° 45.8° ± 10.0° 

Luís Lopes (males) 54.6° ± 10.9° 53.7° ± 11.3° 

FAI group (pooled sex) 54.6° ± 9.9° 52.6° ± 7.6° 

Non-FAI group (pooled sex) 52.5° ± 8.6° 49.79 ± 7.4° 

Farrell et al. (2016) Elite rugby union players 52.3° ± 11.7° 49.5°± 12.2° 

Gosvig et al. (2007) 

Non-athlete male 53.1° ± 13.9° 51.7° ± 13.5° 

Non-athlete female 45.5° ± 5.1° 44.4° ± 5.5° 

Lahner et al. (2014a) 

Elite track and field athletes 50.1° ± 5.57° (54.4° ± 8.25° 

Non-athletic controls 47.6° ± 3.5° 48.6° ± 6.94° 

Lahner et al. (2014b) 

Semi-professional soccer players 55.4° ± 6.52° 57.0° ± 8.32° 

Amateur soccer players 52.2° ± 4.8° 51.8° ± 4.8° 
 

9.3. Are there any osseous differences between those investigated 
for FAI and those without FAI? 

 
The 3D volume rendered CT models of individuals being investigated for FAI (FAI 

group) and a random sample of controls (non-FAI group) permitted the investigation 

of observable osseous differences between those with clinical symptoms of FAI and 

those without. A diagnosis of FAI requires symptoms, positive clinical signs and 

imaging findings (Griffin et al., 2016). It is therefore currently not possible to determine 

the presence of FAI on skeletal remains without a clinical history. Although cam 

morphology is a leading cause of FAI and can be observed on bone, several studies 

have reported prevalence rates in asymptomatic populations and therefore it cannot 

be used as an indicator for symptoms (Reichenbach et al., 2010; Hack et al., 2010; 

Jung et al., 2011; De Bruin et al., 2013). The identification of any further osseous 

changes in those with symptoms compared to those without would allow the 

identification of this condition on bone, when it is not possible to access clinical 

information e.g. in the analysis of archaeological populations.  

 

Increased alpha angle size has been reported to be an indicator of those with 

symptomatic cam morphology (Khanna et al., 2014; Allen et al., 2009; Barrientos et 
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al., 2016; Larson et al., 2013). The overall mean alpha angle size in the current study 

was higher for the FAI group compared to the non-FAI group, 53.57° vs 51.06°, 

however, for both sides this was not significant. This suggests alpha angle size is not 

indicative of symptoms. In their study Sutter et al. (2012) found considerable overlap 

in alpha angle size between patients with FAI and asymptomatic volunteers, 

suggesting alpha angles are not accurate enough to discriminate between 

symptomatic and asymptomatic individuals. While Hack et al. (2010) found 14% of 

asymptomatic volunteers had cam morphology (based on a threshold value of >50.5°) 

on at least one hip. In the current study, it was unknown which hip was under 

investigation for FAI and therefore symptomatic. If the symptomatic hip was compared 

to non-FAI group this may have shown a significant difference. In addition to this, due 

to the retrospective nature of these images it was unknown if the non-FAI group ever 

have or currently suffer from FAI symptoms. Further study is therefore required with 

information on symptoms side, a control group without a history of FAI symptoms and 

larger sample sizes, to determine if larger alpha angle sizes is a good indicator of FAI 

due to cam morphology.  

 
With regards to non-metric traits at the anterior aspect of the femur between the FAI 

and non-FAI group, there was no significant differences in the proportions of femora 

with or without Poirier’s facets present. There was however a higher prevalence of 

femora with Poirier’s facets present for the FAI group (right: 38.9%, left: 33.3%) 

compared to the non-FAI group (right: 16.7%, left: 16.7%) for both sides. The higher 

rates of recorded Poirier’s facets in individuals being investigated for FAI, could 

indicate the presence of Poirier’s facts being associated with the development of 

symptomatic cam morphology/FAI, this difference was however not significant. There 

was also no significant difference in the proportions of femora with or without plaque 

(and by types) between the FAI and non-FAI groups, suggesting plaque is also not a 

useful indication of symptomatic hips. There are currently no previous studies using 

clinical images to determine if there is a difference in the prevalence of non-metric 

traits between individuals being investigated for FAI and controls. It is therefore not 

possible to compare the findings in the current study to other population groups. These 

findings however suggest neither Poirier’s facets or plaque can be used to distinguish 

cam morphology in symptomatic individuals from asymptomatic individuals. Due to the 

reasons mentioned previously this cannot be definitively stated without further study.  
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During the analysis of both the CT models and the skeletal collections circular eroded 

areas were noted. For the skeletal collections these areas were not classified as cribra 

according to Radi et al. (2013)’s recording criteria as their location and appearance 

did not fit with the descriptions and image references provided in their article. Instead, 

these areas appeared to represent herniation pits as described by Pitt and colleagues 

in 1982 as; “round to oval radiolucency surrounded by a thin zone of 

sclerosis…identified in the proximal superior quadrant of the adult femoral necks” (Pitt 

et al., 1982). Using MR images of the dancers in split position Kolo et al. (2013) noted 

the herniation pits were located at the contact zone between the anterosuperior 

femoral head-neck junction and the acetabulum, and therefore are potentially due to 

repeated abutment of the femoral head against the acetabular rim. Herniation pits 

have also been suggested to be markers of FAI caused by cam morphology (Panzer 

et al., 2010). Villotte and Knüsel (2009) suggested herniation pits could be associated 

with Allen’s fossa however it is difficult to determine if this is the case as the original 

description of herniation pits were made on radiographs while the cervical fossa of 

Allen was originally described through observations on dry bone specimens. 

 

In this study, osseous pits believed to be herniation pits were identified on three femora 

from the FAI group and four femora from the non-FAI group. While for the skeletal 

samples, for the Luís Lopes collection they were noted on six femora and for the 

Wharram Percy collection they were seen on nineteen femora. Many authors have 

reported an association between herniation pits and higher alpha angle size (Panzer 

et al., 2008; Kavanagh et al., 2011; Guo et al., 2013; Laborie et al. 2011). Panzer et 

al. (2008) found alpha angles were significantly higher in those with herniation pits 

compared to those without, 55.2°± 11.9 and 49.8° ± 9.3 respectively. Kavanagh et al. 

(2011) also found an association between hips with cam morphology and herniation 

pits using surface 3D reconstructions from MRI arthographic images. They found 7 of 

42 patients had herniation pits but like Panzer et al. (2008) there was an association 

with cam morphology. Using CT imaging Guo et al. (2013) also found alpha angle size 

to be larger in those with herniation pits than those without. A limitation to this study 

can be seen in their exclusion criteria where any individual with a bony bump at the 

femoral head neck junction was excluded. They were therefore excluding individuals 

likely to have FAI from this study. Unfortunately, these studies did not provide 
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information on clinical presentation for the cases included therefore it was not possible 

to determine if the herniation pits and increased alpha angle size were associated with 

symptoms.  

 

For the Wharram Percy collection there was no significant difference in mean alpha 

angle size between femora with and without herniation pits on either side. For the Luís 

Lopes collection there was only two femora on the right side therefore statistical 

analysis was not possible, however, for the left side there was no significant difference 

in alpha angle size between femora with and without herniation pits. While for the 

clinical CT samples, when considering the FAI group only it was not possible to run 

statistics on either side due to the small number of femora with herniation pits present. 

For the non-FAI group, on the right side, there was no significant difference while for 

the left side no femora had herniation pits present. When considering the clinical CT 

samples together, on the right side there was a significant difference, with femora with 

herniation pits present having a significantly higher alpha angle size than those without 

herniation pits. Unlike the current literature, the data from both skeletal collections 

suggest the herniation pits are not associated with alpha angle size and therefore cam 

morphology. This agrees with results from the study by Ji et al. (2014) that showed no 

association between alpha angle size and herniation pits however they were 

significantly associated with pincer morphology in symptomatic patients. There was 

also a significantly higher prevalence of herniation pits in symptomatic individuals in 

comparison to asymptomatic individuals. The non-FAI group in the current study 

showed a higher prevalence of herniation pits (20%) compared to the FAI group (9.1%) 

therefore, it is suggested this feature cannot be used to indicate symptoms.  

 

The ability to identify osseous changes present for symptomatic individuals but not 

asymptomatic individuals has applications for bioarchaeology and forensic 

anthropology. From a bioarchaeological standpoint enabling the identification of FAI 

when a clinical history is not present is important as this information is often not present 

for archaeological populations. Additionally, due to the activity limiting nature of FAI 

identification symptomatic individuals from asymptomatic would be extreme beneficial. 

Pain and functional limitations are the most common symptom of FAI, with many 

individuals reporting problems carrying out activities of daily living (Philippon et al., 

2007). In populations where substance strategies are dependent on the ability to 
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engage in physically demanding activities, knowledge of how to identify a condition on 

bone which could limit these actions would be of great interest in interpreting lifestyles 

of past populations. Additionally, the ability to separate those who are symptomatic 

from those who are asymptomatic in past populations would allow further 

interpretations about the natural history of this condition to be made.  

 

From a forensic perspective, as discussed previously, the capability to identify any 

condition on bone which match ante-mortem data would be of great value in victim 

identification. Unfortunately, the results of this study suggest there are no osseous 

changes that are indicative of symptomatic individuals with FAI due to cam 

morphology. The higher prevalence of Poirier’s facets in the FAI group compared to 

the non-FAI group suggests this non-metric trait could be indicative of a form of cam 

morphology which is more likely to become symptomatic however this difference was 

no significant. The lack of significant osseous changes which are indicative of FAI in 

this study could be due to the low number of individuals with these traits present, 

therefore limited statistical analysis could be included. Further study with larger sample 

sizes are therefore required to confirm the current findings. Additionally, due to the 

retrospective nature of the images for both the FAI and non-FAI groups, interpretation 

of these findings was limited. Future studies with knowledge of the side with symptoms 

present for the FAI group, as well as the occupational and recreational activities, for 

both groups would address some of these limitations.   

 

9.4. Is there a link between cam morphology & osteitis pubis? 
 

Various studies have suggested an association between cam morphology and osteitis 

pubis (Phillips et al., 2016; Hammoud et al., 2014; Matsuda et al., 2015). Age at death 

interpretation is an essential part of both bioarchaeological and forensic skeletal 

analysis. Osteitis pubis, or pubic symphysis stress injury, causes both soft tissue 

lesions and bony alterations which resemble the later phases of degenerative changes 

described in age estimation methods focused at the pubic symphysis (Mays, 2015). 

This may therefore cause degenerative changes at the pubic symphysis at an early 

age in “at risk” individuals, such as athletes. Using the recording criteria developed in 

this study (porosity, erosions, irregularity and osteophytes) there was no significant 
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difference in alpha angle size between individuals with and without each of these traits 

present with the exception of erosions (on both symphysial sides and femoral sides) 

and irregularity (on the left pubic symphyses and alpha angle size on the left femora). 

Eburnation was excluded from analysis due to the small number of pubic symphysis 

with this trait present. For the Luís Lopes collection, after adjusting for age there was 

no significant difference in mean alpha angle size for individuals with and without each 

trait. When controlled for age neither erosions or irregularities showed a significant 

difference in alpha angle size. This was however limited due to the test assumptions 

not being met for these traits on certain sides. The results of this study therefore 

suggest alpha angle size does not have an impact on the presence of traits associated 

with osteitis pubis.   

 

Judd (2010) described a possible case of osteitis pubis on the pubic symphysis of an 

individual from Hierakonpolis (Egypt) dated to 2080-1700 BC. The pubic symphysis 

showed excessive flattening and polishing of the face. These changes are attributed 

to osteitis pubis due to physical activity (Judd, 2010). The fragmentary nature of the 

remains however made interpretation difficult. For the Luís Lopes collection there were 

two cases where the pubic symphysis was extremely flat with no distinct features. 

These two cases may be examples similar to that observed by Judd (2010). In addition 

to this, when analysing the three cases reported to have eburnation present, all had 

at least one hip with an alpha angle size >55°. Eburnation was a common feature 

recorded in the archaeological case reports of possible osteitis pubis by Pfeiffer, 

(2011) and Judd (2010). Eburnation is one of the commonly used features to 

determine the presence of osteoarthritis on skeletal remains and typically reflects the 

later stages of this condition (Waldron, 2019). In addition to this, Calce et al. (2017) 

referred to osteitis pubis when scoring osteoarthritis on the skeleton. The pubic 

symphysis is capable of a small amount of movement (Becker et al., 2010) therefore 

osteitis pubis may be a reaction to, or a form of osteoarthritis at this joint. This theory 

is supported by Phillips et al. (2016) who suggests the decreased range of motion from 

FAI causes repetitive loading of the pubic symphysis leading to hypermobility of the 

pubic symphysis resulting in osteitis pubis. The osseous changes to the pubic 

symphysis caused by osteitis pubis may therefore only be distinguishable from age 

related changes at the later stage of this condition.  
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Further work needs to be carried out on osteitis pubis. Several studies have suggested 

possible recordings of this condition on skeletal remains (Gregg and Bass, 1996; Judd, 

2010; Pfeiffer, 2011) however this is the first study to attempt to form set recording 

criteria. Additional work with the use of medical images of individuals with osteitis pubis 

would be invaluable and allow refinement of the recording criteria. The inter and intra-

observer error rates for the osteitis pubis criteria ranged from poor to good, likely due 

to lack of familiarity and training, and lack of images provided with the recording 

criteria. The inclusion of entheseal attachment site changes may also improve the 

criteria. Several studies have reported changes at these sites associated with osteitis 

pubis (Andrews and Carek, 1998; Beatty, 2012; Cunningham et al., 2007; Desmond 

et al., 1994). Furthermore, several radiographic signs used to diagnose osteitis pubis 

in the living cannot be observed on bone e.g. pubic symphyseal widening and 

instability as well as bone marrow oedema. Therefore, it may not be possible to record 

the early stages of osteitis pubis on bone. 

 

 Although the poor error rate results make it difficult to draw any clear conclusions with 

regards to the presence of osteitis pubis and cam morphology, this study still 

contributes knowledge to the disciplines of bioarchaeology and forensic anthropology 

through raising awareness of this under-studied condition. Currently, as discussed in 

chapter 3.4, osteitis pubis is only addressed in the biological anthropology literature 

as case studies. No research has attempted to form recording criteria to assist in the 

identification of this condition on bone. Mays (2015) addresses osteitis pubis as a 

potential impacting factor on the accuracy of age estimations using methods focused 

at the pubic symphysis however this condition has not been studied further. Several 

of the osseous changes used clinically to diagnose osteitis pubis radiologically are 

similar to end stage traits in various age estimation methods, therefore this condition 

could lead to an over estimation of the biological age of the individual when compared 

to the chronological age. The suggested association between cam morphology and 

osteitis pubis advocates a possible link with physical activity. If physical activity is likely 

to impact the accuracy of age estimations made at this area due to this condition, care 

must be taken when forming interpretations. Age estimation from the pubic symphysis 

is such a widely used method for both bioarchaeological study of past populations as 

well as forensic investigation, therefore further awareness of any condition which is 

likely to impact that accuracy of these assessments is important.  
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The current study has shown there are limitations to forming recording criteria which 

are easily reproducible for this condition due to the complex nature of the pubic 

symphysis and the various factors which impact the gross structure of this area. 

Additionally, the use of medical imaging to form criteria to be applied to skeletal 

specimens also presents challenges of its own.  

9.5. Conclusion  
 
This study has shown alpha angle size and cam morphology are associated with 

Poirier’s facets, plaque type A and, to a lesser extent, plaque type B but not cribra. 

Through the use of contextual information, it is recommended this association is a 

functional adaptation. Additional osseous growth at the anterior aspect of the femur, 

in the form of these non-metric traits and cam morphology are likely to be adaptations 

to provide stability at the hip during skeletal maturation due to increased habitual 

activity or other extrinsic factors, such as terrain or increased loading at this joint. This 

study has shown occupational physical activity in adults does not have a significant 

impact on alpha angle size, therefore, caution should be exercised when using cam 

morphology to interpreting the levels of occupational activity within past populations. 

Cam morphology could, however be used as an indicator of high levels of physical 

activity prior/during skeletal maturation. It is therefore, suggested the difference in 

alpha angle size and cam morphology between males and females is due to 

combination of morphological differences in the pelvis between the sexes and, to a 

lesser extent, physical activity differences during childhood. Age did not appear to 

show a significant association with alpha angle size it is therefore suggested it remains 

consistent development. 

 

No clear osseous indicators were found that can be used to determine if FAI, with cam 

morphology, is present/the hip is likely to become symptomatic. Therefore, without a 

clinical history, the results of this study suggest it is not possible to determine if an 

individual is symptomatic from osseous traits alone however the sample size of the 

FAI and non-FAI groups were small and further work with larger samples is required 

to clarify these results. Furthermore, no clear association between alpha angle size 

and osteitis pubis was shown. It is however suggested it may not be possible to identify 

traits of osteitis pubis on skeletal remains during the early stages of this condition. 



 272 

Eburnation is a possible indicator of the later stages of this condition, as in 

osteoarthritis, however further study would be required to confirm this due to small 

sample numbers with this trait present.  

 

These findings contribute to the disciplines of bioarchaeology by adding additional 

knowledge to the cause of non-metric traits of the femur, often recorded but rarely 

interpreted on skeletal remains. The association between non-metric traits and cam 

morphology allows a multidisciplinary approach to the understanding of these traits 

using a combination of clinical research and anthropological study. Additionally, cam 

morphology has not been fully addressed within bioarchaeology and potentially 

overlooked. This study therefore raises further awareness of this condition with the 

hope there will be continued research on further skeletal collections to allow 

comparisons between populations of different socioeconomic status, terrain, activity 

levels etc. to further understand contributing factors to its aetiology. The increased 

awareness of cam morphology and the ability to record it on bone, highlighted by this 

study, contributes to the discipline of forensic anthropology as an identifying feature, 

particularly if an ante-mortem record of FAI is present. These findings also contribute 

to these fields through contributions to the study of non-metric traits and physical 

activity-related pathologies from a different perspective. With one of the suggested 

factors associated with the development of cam morphology being physical activity 

during development, the ability to record this on skeletal remains would allow its use 

as a potential marker of activity (or other factors leading to stability at the joint) to learn 

more regarding levels of physical activity during childhood in past populations. The 

results of this study also encourage caution to be taken prior to using cam morphology 

as a marker of activity in adulthood. Finally, although the low error rates for the osteitis 

pubis data made it difficult to draw clear conclusions, contributions are still made 

through raising awareness of this condition, and its potential impact to age estimations 

methods focused on the pubic symphysis, within these disciplines.  

9.6. Study limitations and future work 
 
In this section the limitations which occurred during this study will be addressed. 

Where possible actions were taken to reduce these limitations however in some cases 

this was not possible. Any future work which could follow on from this research and 

these limitations has be recommended. 
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With regards to the alpha angle measurements, it was noted the placement of the 

circle around the femoral head to ensure “best fit” could introduce a level of 

subjectivity. Although the levels of inter- and intra- observer error were found to be 

very good there is a risk of error being introduced when this is performed manually. 

Additionally, a level of observer bias maybe introduced when recording alpha angles 

manually in relation to the presence of non-metric traits. Although, during the recording 

of alpha angles, the non-metric trait results were not made available and the 

orientation of the femur during these measurements did not allow clear visualisation 

of the anterior aspect of the femoral neck, there is the risk that manual recording could 

add a level of observer bias. The use and development of automated methods of 

measuring alpha angles and offset ratio would therefore reduce this limitation. Future 

studies could incorporate an automated method to perform these measurements to 

reduce this user bias.  

 

The definition of physical activity levels in this study was also a limitation. Occupational 

activity was defined using MET values which have rarely been used within biological 

anthropology and therefore its accuracy as a measure of activity within this field has 

not been tested. In addition to this, it is not clear how transferrable this method is to 

past populations as the MET values were assigned using modern populations. In the 

current study, to alleviate the limitation of using a method developed from modern data 

to infer activity of past populations and to make the study comparable to other 

osteoarchaeological studies, method III was included. This method was used to 

categorise individuals as manual or non-manual using the database created by 

Perréard Lopreno and colleagues from previous studies of identified collections and 

with historical background information. MET values are also a measure of energy 

expenditure not biomechanical stress and therefore it is difficult to determine if this is 

suitable measure of loading placed on the joint for particular occupations. Future work 

analysing alpha angle size differences between occupations could categorise 

occupations based on primary limb loading e.g. occupations primarily focused on 

loading of the lower limb in comparison to the upper to determine if this has a 

significant impact on alpha angle size. Further to this, robusticity indices or cross-

sectional geometry could be included in futures studies as the measures of physical 
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activity to determine if there is a correlation between these measures and alpha angle 

size.  

 

The use of occupational information from identified skeletal collections to categorise 

physical activity has limitations which are much debated in the anthropological 

literature and discussed in section 4.2.3.3. Perréard Lopreno et al. (2012) highlights 

many of these limitations including; representativeness of the sample, completeness 

and source of the occupation documentation (Perréard Lopreno et al., 2012). In 

addition to these limitations it is also difficult to determine activities that could impact 

physical activity levels, such as, recreational activity and long-term occupational 

profile. Other methods to determine physical activity, such as cross-sectional 

geometry, could also be tested in association with alpha angle size in future studies. 

  

The observer error rates for this study was another limitation particularly regarding the 

osteitis pubis traits. To limit this in future, clear photographs of each trait being 

recorded should be provided, as well as additional training prior to recording. An 

additional cause of these error rates could also be due to the use of dichotomous traits 

to categories osteitis pubis and Poirier’s facets. These changes typically occur on a 

continuous scale and therefore the use of dichotomous traits may have limited this 

recording and added to the level of observer subjectivity. Future studies could 

therefore incorporate a larger scale for recording these traits with clearer descriptions.  

 

The small sample size of the FAI-group and non-FAI group also limited the number of 

statistical tests which could be performed between these samples. The retrospective 

nature of this sample also meant limited context information was available for these 

individuals. Future studies could be performed with patients diagnosed with FAI and 

contextual information regarding occupation and recreational activities. This will 

provide more of an understanding to the cause of this condition and non-metric traits 

of the femur.  

 

Although FAI is not a life-limiting condition some of the key conceptual challenges 

identified in the osteological paradox can be applied as limitations to this study. Wood 

et al. (1992) recommend the use of “simple societies” and focus on short-term use 

cemeteries to minimize the impact of heterogeneous frailty and demographic non-
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stationarity. This can also be applied to activity levels. The Wharram Percy collection 

sample used in this study represents a wide time so it cannot be assumed that the 

level and type of daily physical activity was consistent throughout the large time period 

(the assignment of phase was made through various methods including: radiocarbon 

dating, datable coffin fittings, stratigraphic relationships, burials from areas of church 

with radiocarbon dating and location of grave cuts). This is a limiting factor of this study 

and therefore future work could analyse the difference in alpha angle size between the 

different phases represented by this sample.  

 

There was a non-significant increase in alpha angle size from 18-29 to 30-49 to 50+ 

years age range categories for both the Wharram Percy and Luis Lopes collections. 

The exact age data for the Luis Lopes collection also showed a small but not significant 

correlation between age and alpha angle size. This increase may be less to do with 

increase in risk of cam morphology but better explained by the osteological paradox. 

If cam morphology develops due to high levels of physical activity during skeletal 

development those individuals in the 18-29 years group represent those in the 

population who died at this younger age. Although the cause of death is not known, if 

an individual died at a younger age they are less likely to be involved in strenuous 

physical activity and therefore less likely to develop cam morphology. While the 50+ 

years group represents individuals who have a good enough level of health to reach 

these older ages. This is an inherent selection bias present in all bioarchaeological 

research due to the use of a sample of only the individuals who died at that age and 

not all individuals present in that population at the age during that time period. Further 

study on alpha angle size and age is therefore required.  
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Chapter 10. Appendices 
Appendix 1 – Observations of osteitis pubis from the clinical imaging used to developed recording criteria 
 

Author Radiographic diagnostic observations for osteitis pubis  

 

Phillips et al. (2016) 

MRI and radiographs:  
• Osseous irregularity or fracture  
• Sclerosis  
• Bone marrow oedema  
• Fatty change  
• Osteophytes  
• Effusion  
• Capsular hypertrophy  

Crockett et al. (2015) Radiographs 
• Subchondral irregularity  
• Sclerosis  
• Osseous erosion  
• Widening of the pubic symphysis  

Chronic MRI findings  
• Subchondral cysts 
• Erosions 
• Articular surface irregularities  
• Joint widening  
• Stress fractures can occur if condition not recognised and managed 

Angoules (2015) Radiographs 
• Subchondral sclerosis  
• Symphyseal lytic changes  
• Widening or narrowing of the joint space  
• Subluxation or widening of the symphysis  

MRI 
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• Bilateral or asymmetric subchondral plate bone marrow oedema from anterior to 
posterior  

Chronic phase MRI:  
• oedema may not be present  
• Periosteal reaction  
• Bone resorption  
• Irregular contour of articular surface  
• Osteophytes 
• Subchondral cyst  

Hopp et al. (2013) Radiographs:  
• Degenerative signs  
• Marginal irregularity  
• Erosions  
• Subchondral sclerosis of the pubic rami  
• Vertical instability  

MRI:  
• Pubic bone marrow oedema on one or both sides  

Larson et al. (2013)  Radiographs:  
• Sclerosis  
• Lytic changes  
• Cystic changes  

MRI:  
• Parasymphyseal oedema  

Friedman and Miller (2013) Radiographs:  
• Sclerosis  
• Irregularity  
• Erosions of the pubic  
• Widening of the symphysis  

MRI:  
• Fluid in symphysis  
• Marrow oedema in the pubis extending across anterior posterior dimension 
• Secondary cleft sign  

Budak and Oliver (2013) Radiographs: 
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• Normal  
• Subtle irregularity of the articular surface of the pubic symphysis  
• Gross erosion  
• Symphyseal widening  
• Subchondral cyst formation  
• Sclerosis  
• Osteophytic bridging  

MRI:  
• Subcondral marrow oedema within pubic bones  
• Irregularity of the symphyseal margin  
• Symphyseal fluid  
• Peripubic soft-tissue oedema  
• Symphyseal disk degeneration  

 

Hackney (2012) Radiograph:  
• Widening  
• Irregularity  
• Sclerosis of the margin  
• Accentuation of the origin of gracilis  
• Laxity of the joint  

 Beatty (2012) Radiographs: 
• Sclerosis of the symphysis 
• With or without accompanying erosions and widening of the joint  
• Pubic symphysis instability and/or widening 

 

Hiti et al. (2011) 
Radiographs  

• Widening of the symphysis  
• Sclerosis  
• Rarefaction at the symphysis  
• Cystic changes  
• Marginal erosions in the subchondral bone  
• Pubic instability and widening  

CT:  
• Marginal stamp erosions of the parasymphyseal pubic  
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• Insertional bony spur  
• Periarticular microcalcifications  

MRI:  
• Bone marrow oedema  
• Linear high T2 signal intensity in the parasymphyseal pubic  
• Fluid within the symphysis  
• Subchondral sclerosis  
• Subchondral resorption with bone irregularity  
• Osteophytosis  
• Pubic beaking  
• Secondary cleft sign  

Kai et al. (2010) Acute findings MRI:  
• Symmetric perisymphyseal hyperintensity on fluid-sensitive sequences – reflects 

diffuse subchondral bone marrow oedema  
Chronic findings MRI:  

• Bone irregularity  
• Subchondral sclerosis  
• Subchondral resorption  
• Osteophytosis  

Koulouris (2008) Radiograph: 

• Irregularity of the subchondral bone  
• Erosions 
• Fragmentation  
• Areas of osteopenia  
• Sclerosis  
• Widening  
• Symphysis undergoing accelerated degenerative changes  

MRI 

• Pubic bone marrow oedema shown as subchondral marrow hyperintensity on fluid-
sensitive sequences  

• Subchondral cysts  
• Erosions  
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Cunningham et al. (2007)  MRI:  

• Paraarticular bone oedema, uni- or bilateral, identified remove from adductor 
attachment  

• Supportive feature of osteitis pubis included:  
• Paraarticular fatty marrow change  
• Articular surface irregularity  
• Stepoff  
• Inflammation in paraarticular soft tissue  
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Appendix 2 – Non-metric trait metadata  
 
Table 10-1 Data for non-metric traits for the Wharram Percy Collection 

Skel Sex 
Poirier’s 
facets (L) 

Poirier’s 
facets (R) 

Plaque 
(L) 

Plaque 
(R) 

Cribra 
(L) 

Cribra 
(R) 

CN06 m 0 0 3 3 0 0 

CN07 f 0 0 0 0 0 0 

CN11 m 0 0 1 0 0 0 

CN14 m 0 0 1 0 0 0 

CN16 f 0 NR 1 NR 0 NR 

CN17 m NR 0 NR 0 NR 0 

CN18 m 0 0 2 1 0 0 

CN20 m 1 1 0 0 0 0 

CN24 m 0 0 0 0 0 2 

CN27 m 0 0 2 2 0 2 

CN28 m 0 0 3 0 2 0 

CN30 f 0 0 0 0 1 1 

CN32 m 0 0 0 3 1 1 

CN38 m 1 0 1 0 0 0 

CN40 f NR 0 NR 0 NR 0 

CN41 f 0 0 0 0 0 0 

CN45 m NR 0 NR 0 NR 1 

EE003 m 0 0 2 1 0 1 

EE013 m 0 NR 2 NR 2 NR 

EE018 f 0 0 0 0 0 0 

EE019 m 0 0 0 0 0 0 

EE020 m 0 NR 1 NR 0 NR 

EE043 f 0 0 0 0 0 0 

EE070 f 0 0 0 3 2 2 

EE080 m 0 0 2 0 1 1 

EE085 m 0 0 0 0 0 0 

EE099 f 0 0 0 0 0 0 

G253 f 0 0 0 0 2 2 

G254 f 0 0 0 0 0 0 

G265 m 0 NR 0 NR 0 NR 

G275 f 1 0 0 0 0 0 

G278 m 0 NR 1 NR 0 NR 

G297 m 0 0 2 2 0 0 

G377 f 0 0 0 0 0 0 

G385 f 0 0 0 0 2 0 

G398 m 0 0 0 0 1 0 

G406 m 0 0 0 0 0 0 

G427 f NR 0 NR 3 NR 0 

G436 m 1 1 0 0 0 0 

G462 m 0 0 1 0 1 2 

G478 f NR 0 NR 0 NR 0 

G516 m NR 0 NR 1 NR 0 



 282 

G561 m 0 0 0 0 0 0 

G582 f NR 0 NR 0 NR 0 

G604 m 0 NR 0 NR 2 NR 

G607 m 0 0 1 0 0 0 

G643 f 0 0 0 0 0 0 

G652 f 0 NR 3 NR 0 NR 

G694 m 0 0 1 2 0 0 

G746 m 0 0 0 0 0 0 

G747 f 0 0 0 0 0 0 

NA047 f NR NR NR NR NR NR 

NA066 f 0 0 0 0 2 2 

NA075 m 0 0 1 1 1 0 

NA094 f 0 0 0 1 2 0 

NA102 m 0 0 0 0 0 0 

NA104 m 0 0 3 3 1 1 

NA121 m 0 0 2 2 0 0 

NA128 m 0 0 0 0 0 0 

NA140 m NR 0 NR 2 NR 0 

NA145 f? 0 0 3 3 0 0 

NA157 f 0 0 2 2 0 0 

NA166 m 0 0 0 0 0 0 

NA167 f 0 0 0 0 0 0 

NA170 f? 0 NR 0 NR 0 NR 

NA173 f 0 0 3 3 1 1 

NA176 m 0 0 0 0 0 0 

NA181 m 1 1 0 0 0 0 

NA183 m 0 0 2 0 0 0 

NA195 m 0 0 0 0 0 0 

NA199 m 0 0 0 0 0 0 

NA218 m 0 0 3 3 0 0 

NA224 m 0 NR 2 NR 0 NR 

SA002 m 0 NR 1 NR 1 NR 

SA012 m NR 0 NR 2 NR 0 

SA015 m 0 0 2 2 0 0 

SA017 f 0 NR 0 NR 0 NR 

SA017A m 0 0 0 2 0 0 

SA034 m 0 0 1 1 0 0 

SA036 f 1 0 0 2 0 0 

SA053 f 0 0 2 2 0 0 

V38 m 0 0 2 0 0 0 

V40 m 0 0 2 3 2 0 

V42 m 1 1 1 1 0 0 

V61 f NR 0 NR 0 NR 0 

WCO015 m 1 1 0 0 0 0 

WCO017 f 0 0 0 0 0 0 

WCO036 f 0 0 2 3 0 0 

WCO037 m 1 1 0 0 0 0 
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WCO040 m 0 0 0 0 0 0 

WCO056 f 0 0 0 0 0 0 

WCO059 m 0 1 2 0 0 0 

WCO062 m 0 0 0 0 1 1 

WCO071 f 0 0 0 0 0 0 

WCO078 m 0 0 3 3 0 0 

WCO089 f NR 0 NR 3 NR 0 

WCO091 m 0 0 1 0 1 0 

WCO093 f 0 0 0 3 0 0 

WCO098 f? NR 0 NR 0 NR 0 

WCO109 f 0 0 0 0 0 0 

WCO117 m 0 0 2 2 1 1 

WCO122 f 0 0 0 0 1 1 

WCO124 f 0 0 2 2 1 0 

WCO125 m 0 0 3 0 0 0 

WCO142 m 1 1 0 0 0 0 

WCO146 m 0 0 2 2 0 0 

WCO164A m 0 NR 1 NR 0 NR 

WCO174 m 0 0 3 1 0 0 

WCO184 f 0 0 2 2 0 0 

WCO200 m 0 0 0 0 0 0 

WCO203 m 0 0 0 0 0 0 

Sex: m = males, f = female, Poirier’s facets: 1 = present, 0 = absent, Plaque: 0 = absent 1 = type A, 

2 = type B, 3 = type c, Cribra: 0 = absent, 1 = type 1, 2 = type 2. NR = not recorded (bone absent or 

PM damage) 

 

Table 10-2 Data for non-metric traits for the Luís Lopes collection 

Skel 
Poirier’s 
facets (L) 

Poirier’s 
facets (R) Plaque (L) Plaque (R) Cribra (L) Cribra (R) 

23 0 0 3 3 0 0 
27 1 1 0 0 0 0 
31 0 0 0 0 0 0 
44 0 0 0 0 0 0 

102 NR 0 NR 0 NR 0 
127 NR 0 NR 3 NR 0 
152 0 0 2 2 0 0 
166 0 0 0 0 0 0 
176 0 0 2 2 0 0 
178 0 0 0 1 0 0 
198 0 0 0 0 0 0 
201 0 1 2 2 0 0 
215 0 0 2 0 1 1 
222 NR 0 NR 0 NR 0 
233 0 0 1 1 0 0 
236 0 1 2 0 0 0 
239 0 0 0 0 0 0 
242 0 0 3 3 0 0 
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244 0 0 2 1 0 0 
245 0 0 2 2 0 0 
270 0 0 3 3 0 0 
272 1 1 0 0 0 0 
273 0 0 0 0 0 0 
299 0 0 0 0 0 0 
301 1 1 1 0 1 1 
302 0 0 1 2 0 0 
305 0 0 0 0 0 0 
310 0 0 2 2 0 1 
313 1 1 0 0 0 0 
318 0 0 0 0 2 2 
324 0 0 0 0 0 0 
329 0 0 0 0 0 0 
332 0 0 3 3 0 0 
339 0 0 3 0 0 0 
341 0 0 0 0 0 0 
344 0 0 2 2 1 0 
345 0 0 3 0 0 0 
346 1 1 0 2 0 0 
373 1 1 0 0 0 0 
383 0 NR 3 NR 0 NR 
386 0 0 0 0 0 0 
391 0 0 0 0 1 0 
396 1 1 0 0 0 0 
405 0 0 1 1 0 0 
414 0 0 2 0 1 0 
419 0 1 2 0 0 1 
424 0 0 1 1 0 0 
427 0 0 2 1 0 0 
428 0 0 2 2 0 0 
430 0 0 0 3 0 0 
437 0 0 0 3 0 0 
440 1 1 0 0 0 0 
445 0 0 0 0 0 0 
446 0 0 0 0 0 0 
448 0 0 3 3 0 0 
465 1 0 0 3 0 0 
470 0 0 2 2 0 0 
479 0 0 2 2 0 0 
482 0 0 0 0 0 0 
484 0 0 3 0 0 1 
488 0 0 0 0 0 0 
501 0 0 0 0 0 0 
577 0 0 0 0 1 1 
581 0 0 2 2 0 0 
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582 0 0 0 0 0 0 
597 0 0 0 0 0 0 
610 0 0 0 0 0 0 
611 0 0 2 2 0 0 
621 0 0 0 0 0 0 
666 0 0 0 0 0 0 
678 1 1 0 0 0 0 
682 0 0 2 0 0 1 
703 0 0 2 2 0 0 
755 1 1 0 0 0 0 
765 0 0 0 0 0 0 
768 0 0 2 2 0 0 
974 1 0 0 2 1 0 
978 0 0 3 2 0 0 

1043 0 0 0 0 0 0 
1053 0 0 3 3 0 0 
1081 1 1 0 0 0 0 
1092 0 0 2 2 0 1 
1095 0 0 2 2 0 0 
1101 0 0 0 0 1 1 
1139 0 0 0 2 1 1 
1141 1 1 0 0 0 0 
1168 1 0 0 0 0 0 
1226 0 0 3 3 0 0 
1249 0 0 2 3 0 0 
1265 0 0 0 0 0 0 
1279 0 0 2 2 0 0 
1291 0 0 0 0 0 0 
1297 0 NR 2 NR 0 NR 
1299 0 0 0 0 0 0 
1329 0 0 0 0 0 0 
1335 0 0 0 0 0 0 
1397 0 0 2 3 0 0 
1414 1 0 0 2 1 1 
1416 0 0 3 0 0 0 
1444 0 0 2 2 1 1 
1547 0 0 2 2 0 0 
1613 0 0 0 0 0 0 
1614 0 NR 0 NR 0 NR 
1615 0 0 1 2 0 0 
1617 1 1 0 0 0 0 
1626 0 0 0 0 0 0 
1636 0 0 2 2 0 0 
1637 0 0 0 3 0 0 
Poirier’s facets: 1 = present, 0 = absent, Plaque: 0 = absent 1 = type A, 2 = type B, 3 = type c, 

Cribra: 0 = absent, 1 = type 1, 2 = type 2. NR = not recorded (bone absent or PM damage) 
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Table 10-3 Data for non-metric traits for the FAI and non-FAI groups 

Case Sex 
Poirier’s 
facets (L) 

Poirier’s 
facets (R) Plaque (L) Plaque (R) 

C10 f 1 0 0 2 
C11 f 0 0 2 3 
C12 m 0 1 2 0 
C13 m 1 1 0 0 
C14 m 1 1 0 0 
C15 m 0 0 1 1 
C16 m 0 0 0 1 
C17 f 0 0 1 2 
C18 m 1 1 0 0 
C19 m 1 1 0 0 
C20 m 0 0 0 2 
C21 f 0 1 0 0 
C23 m 0 0 2 1 
C25 m 0 0 1 2 
C3 f 0 0 2 3 
C4 m 0 0 0 1 
C5 m 0 0 0 3 
C7 f 1 1 0 0 

PA0 f 0 0 2 1 
PA1 m 0 0 2 2 

PA10 m 0 0 1 2 
PA11 f 0 0 0 0 
PA13 f 0 0 2 3 
PA2 m 1 1 0 0 
PA4 m 1 1 0 0 
PA5 f 0 0 2 0 
PA6 f 0 0 0 1 
PA7 m 0 0 2 0 
PA8 m 0 0 2 2 
PA9 m 0 0 1 2 

Case: C = FAI group, P= Non-FAI group, Sex: m = males, f = female, Poirier’s facets: 

1 = present, 0 = absent, Plaque: 0 = absent 1 = type A, 2 = type B, 3 = type c,  
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