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Abstract 

Energy storage devices are one of the hot spots in recent years due to the environmental 

problems caused by the large consumption of unsustainable energy such as petroleum 

or coal. Capacitors are a common device for energy storage, especially electrical energy. 

A variety of types including electrolytic capacitors, mica capacitors, paper capacitors, 

ceramic capacitors, film capacitors, and non-polarized capacitors have been proposed.  

Their specific applications depend on their intrinsic properties. Dielectric capacitors 

have reasonable energy storage density, with current research focusing on the 

enhancement of energy density and making the materials more flexible as well as 

lightweight. Improvement strategies are based on the premise that use of two or more 

different materials (e.g. polymers and ceramics/metals) at an optimal formulation can 

result in properties that combine the advantages of the precursor materials. Different 

polymers especially fluoropolymers (e.g. PVDF and PVDF based co-polymer) are the 

main components in dielectric nanocomposites for capacitors with high energy storage 

performance. In this article, we have briefly summarized the recent advances in 

functional polymers nanocomposites for energy storage applications with a primary 

focus on polymers, surface engineering, functional groups and novel synthesis/ 

manufacturing concepts applied to new materials. The article presents a unique 

integrated structure and approaches providing key knowledge for the design and 

development of novel, low-cost, multi-functional next-generation energy storage 

materials with improved efficiency. 
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1. Introduction 

The upsurge in the population and the growth of global economy increase energy 

consumption [1]. According to the data of the US Energy Information Administration 

[2] the main energy resources that the world relies on are unsustainable energy 

including petroleum, coal and natural gas and other types of non-environmentally 

friendly fossil fuels. Environmental issues such as excessive greenhouse gas emission 

are not the only problem that the large amount consumption of unsustainable energy 

can bring, as the price of fossil fuel can influence the global economy as well with the 

depletion of these resources becoming a critical issue in the future. Hence, the demand 

for sustainable and renewable forms of energy such as wind and solar power has 

significantly increased in recent years [1]. The idea of using renewable energy has been 

raised several decades ago. However, unsustainable energy is still the main type 

consumed to an extent due to the constraints related to the climate or geography [1]. 

Energy storage technologies can play a major role in overcoming some of these 

constraints to meet the demand for supply at the point of consumption, whilst allowing 

the production of energy at a different location [1].  

Different types of energy storage devices are currently in use including capacitors, 

batteries, flywheels, superconducting magnetic energy storage (SMES) systems and 

solid oxide fuel cells (SOCF). Figure 1 [2] illustrates the trade-off between specific 

energy and specific power of different types of devices. Among these devices, high 

energy density capacitors play a very important role with current applications such as 

Marx generators, pulsed laser, particle accelerators, and electromagnetic generation. 

Also, capacitors can meet high specifications including maintaining a high capacitance 

and small amount of energy losses even when the usage rate is above the average level 

[3]. Capacitors store electric charge when a voltage is applied in the circuit and release 

the charges into the circuit when necessary. They generally comprise two metallic 

usually planar electrodes and a dielectric plate between them. The metallic electrodes 

produce positive and negative charges when a voltage is applied, whilst the insulating 

dielectric material does not allow any electrical charges passing through resulting in 

storage through polarization. The insertion of the dielectric material can reduce the 

effective electric field required to generate a certain level of charge at the electrodes, 

therefore, improving the performance of the capacitor. One of the challenges is that the 

dielectric properties of the capacitor can degrade over time as the dielectric material is 

exposed to temperature changes, environmental degradation and changes at a material 

level due to the applied high voltage resulting in the reduction of efficiency and 

performance. Dielectric capacitors are used in several applications summarized in 

Figure 2. 

Use of polymers as matrix and inorganic nanofillers as reinforcement has been 

proposed in both academic and industrial research on dielectric capacitors in the last 

decade [4]. Some popular nanofillers such as carbon nanotube (CNT), carbon black 

(CB) or metal oxides such as TiO2 have been widely used due to their attractive 

mechanical and electrical properties [4]. The addition of nanofiller is extremely useful 



to improve dielectric properties; however, a large amount of nanofillers in the host can 

cause problems such as aggregation leading to degradation of properties [4]. Different 

types of polymers have been used as hosts such as elastomers, thermosets or 

thermoplastics. Elastomers are most widely used as matrix; among elastomers, silicone 

rubber, natural rubber and butadiene rubber have been used [4].  

Research on dielectric capacitors is not only focused on the material selection but also 

on modification since the interface between nanofillers and the polymer matrix is the 

key to obtain appropriate properties [4]. Traditional methods including dopant, surface 

modification and other techniques will be discussed in detail in this review. Kumar et 

al. [4] vulcanized silicone rubber at room temperature and used BaTiO3 as nanofiller 

with CNT and CB fillers to test the energy harvesting ability of the material. The results 

showed that when the fraction of BaTiO3 is 50 phr (parts per hundred rubber), the 

energy harvesting increases at all strains [4]. One of the problems of the rubbers or 

polymers is temperature resistance; dielectric materials or dielectric capacitors are often 

used for vehicles, oil and gas exploration, avionics or advanced propulsion systems, 

which are associated with a high temperature working environment [5]. A high-

temperature working environment is challenging for the polymer, e.g. the working 

environment of hybrid electric vehicles is at temperatures higher than 140ºC, but the 

melting temperature of some polymers like BOPP is between 130 to 170ºC [5]. This 

means that the use of this type of material requires an extra active cooling system or 

redesign of the electronic devices [5]. The design of high-temperature dielectric 

materials is different to the design of room temperature dielectric materials; some 

additional factors need to be considered; e.g. thermal stability, dielectric breakdown, 

conduction mechanisms and relative permittivity and dissipation factor [5]. Li et al. [5] 

listed some current polymers that can work in high-temperature conditions, involving 

polyimide (PI) synthesized from dianhydride and diamine monomer by a condensation 

reaction and followed by chemical irradiation resulting in up to 500ºC working 

temperature or fluorene polyester (FPEs) and cross-linked 

divinyltertramethyldisiloxanebis (c-BCBs) prepared through the reaction between 

fluorene bisphenol and phthalic chloride [5]. These materials allow a working 

temperature of up to 330ºC [5]. Apart from the synthesis of a new polymer, the 

development of a polymer nanocomposite is another way to overcome temperature 

issue, e.g. adding inorganic dopants or producing sandwich structured composites [5].  

2. Material related developments 

2.1 Polymer-based capacitors 

It is well-known that the performance of all the equipment needs support from materials;

therefore, research related to the material selection based on functions of different 

devices has attracted much attention. Dielectric capacitors produced by dielectric 

polymers have many advantages like low manufacturing cost and small size [3]. 

Besides, the electric field applied to the electric circuit is determined by the energy 



density of the materials used; the high breakdown strength of polymers means they can 

have higher charge storage capacity than ceramics or other materials [3]. Polymers can 

be classified into three broad types depending on their structure at chain level: (i) linear 

chain polymers which contain long and straight-chain, (ii) branched-chain polymers, 

which involve branches of the linear chains, and (iii) cross-linked polymers in which 

chains form a three-dimensional network [3,6–12]. In addition, polymers can also be 

classified into polar or non-polar based on their molecular groups [6]. Non-polar 

polymers usually have a lower dielectric constant because single dipole moments 

eliminate each other due to symmetry [6]. Non-polar polymers include low-density 

polyethylene (LDPE), polyolefins, polytetrafluoroethylene (PTFE) and others. In 

contrast to non-polar polymers, instead of cancelling each other, the dipoles of polar 

polymers are asymmetric and generally exhibit higher dielectric constant [6]. 

Conventional polymers for capacitors include polyester (PET), polycarbonate (PC) and 

biaxially oriented polypropylene (BOPP) [3]. Another usual way to classify polymers 

is into thermoplastics and thermosets [13]. Thermoplastic polymers have a linear 

structure and can be remolded when the temperature is above a certain level, the process 

is reversible; thermosetting polymers cannot be thermally re-processed and usually 

characterized by a cross-linking structure [13]. Typical examples of thermoplastics are 

polyolefins and polystyrene, while epoxy, unsaturated polyesters and phenol-

formaldehyde resins are representative examples of thermosets [13].  

Within all these materials, PVDF based ferroelectric polymers and co-polymers 

motivate a large amount of research due to their large permittivity and dielectric 

strength [7–12] and have also been widely used as conductive and flexible polymer 

electrolytes. Some characteristics of PVDF such as its extraordinary electrical 

resistance, mechanical strength, and high-volume resistivity, make it an appropriate 

material for the manufacture of dielectric devices for energy storage application [3]. 

Compared with other polymers, PVDF has higher dielectric constant and breakdown 

strength and as a result, it has better energy storage density [6]. There are many forms 

of PVDF including �, � and � phases whilst transition from � to other forms can be 

enhanced by mechanical stretching (Figure 3). Although the �-phase is non-polar, the 

other two phases have high dielectric constants due to the presence of net dipole 

moment and high polarizability [14]. 

PVDF and PVDF-based co-polymers have also been reported to act as the host of gel 

polymer electrolytes because of their intrinsic favorable properties such as high 

breakdown strength and flexibility [15]. Gel polymer electrolytes are mixtures of solid 

polymer and liquid electrolytes, which can be used for drug and stem cell delivery. Ionic 

liquids have recently been used to replace conventional electrolytes due to their low 

ignitability and high thermal and electrochemical stability [15]. The selection of host 

polymer is important for gel electrolytes; different polymers can directly influence the 

final performance [15]. Das et al. [15] have reported that PVDF-HFP copolymers show 

better compatibility with the mobile phase and higher mechanical strength compared to 

other polymers like PAN, PVA and PMMA, which makes them an ideal choice. The 

crystalline structure of PVDF helps to maintain the mechanical strength whilst the 

amorphous structure of PHFP successfully traps liquid electrolytes [15]. This means 



that the amorphous phase provides the backbone for the electrolyte and the crystalline 

phase remains relatively unaffected during the application, which implies that the 

crystalline phase maintains a significant part of its mechanical properties. If levels of 

crystallinity are significant, the crystalline phase can help the whole co-polymer to have 

a good mechanical performance and the resultant material might be softened but still 

has sufficient strength. These principles indicate that PVDF and PVDF based co-

polymers could be the suitable for the matrix of composites, although, they still have 

some problems such as high remnant polarization and early saturation which results in 

poor energy density and low efficiency [16].  

2.2. Nanocomposites based capacitors  

The combination of different types of materials such as polymers and nanomaterials 

with different dimensions/structures to produce new types of capacitors has been 

extensively investigated, e.g. combination of graphene with perovskite ceramics [17]. 

Materials with high dielectric constant such as ceramics are highly desirable for use in 

the fabrication of capacitors. The use of ceramics as fillers to produce capacitors with 

better performance has been studied in thick film solutions [9]. Ezeigwe et al. [17] have 

reported the combination of zinc oxide with graphene to produce supercapacitors with 

improved energy and power density. Along with the use in dielectric capacitors, 

graphene is a good candidate for electrode applications because of its high electrical 

conductivity, high surface area to volume ratio, fast electron mobility, good thermal 

stability and flexibility [18–21]. A graphene/ZnO capacitor can reach energy and power 

density of 11.80Wh/kg and 42.48kW/kg respectively, which is significantly higher than 

the power and energy densities of pristine graphene showing that the metal oxide can 

improve the electrochemical properties of capacitors [17]. This is explained by the 

positive role of metal oxides in expanding the surface area of graphene and improving 

the capacitance by a redox reaction [18].  

Despite their widespread use and high dielectric constant, perovskite ceramics have low 

dielectric and mechanical strength. Compared with ceramics, polymers are easy to 

process, flexible and exhibit low cost [12]. However, polymer has low permittivity and 

low energy storage density. Therefore, composite materials with the positive 

advantages of both ceramics and polymers have attracted much attention. Often, the 

properties of composites are not satisfactory due to the incompatibility between the 

ceramic filler and polymer matrix, which means that the polymer/ceramic 

nanocomposite needs further functionalization to improve the compatibility and the 

dielectric performance [22]. The selection of materials and their functionalization 

technique can significantly affect the electrical behavior and applications of the 

capacitors; therefore, most of the works on capacitors are related to the raw material 

modification, e.g. by doping, multi doping or surface functionalization [12]. 

Dielectric capacitors are normally categorized into ceramic- and polymer-based 

material [23]. Usually, PVDF or PVDF based co-polymers [6–8] are used as the matrix 

and ceramics such as ZnO [15-16] or TiO2 [17] as reinforcement filler to produce 

nanocomposites. Compared with capacitors made by only ceramic or polymer, 



composite dielectric capacitors have the advantages of easy processing, low 

manufacturing cost, flexibility, and lightweight [24]. Ceramics play a significant role 

in the enhancement of the dielectric properties of capacitors. Transition metal oxides 

with a cubic perovskite structure can also be used for actuators and transducers for the 

electronics industry and high-performance dielectrics due to their unique combination 

of optical, dielectric, electrostrictive and pyroelectric behavior [24]. Nanocrystalline 

oxides can be used to fabricate functional or intelligent materials by changing their 

electrical, magnetic, optical or chemical properties [25]. The use of nanomaterials 

brings additional benefits such as high sensitivity, quantum confinement and high 

surface to volume ratio [26]. Transition metal oxides and conducting polymers have 

been reported to provide 10~100 times better performance than electrical double-layer 

capacitors (e.g. carbon-based materials) because of their reversible and fast surface 

redox reaction [27]. Among the many possible metal oxides, including RuO2 [28], 

NiO2 [29] and MnO2 [30], zinc oxide (ZnO) is one of the most appropriate electrode 

materials for capacitors because of the low cost, abundant availability, low 

environmental impact and electrochemical activity [31]. The energy density of zinc 

oxide is around 650 A/g, also, the exciton binding energy and bandgap of this material 

are unique at 60meV and 3.37eV respectively [32–34]. Das et al.[15] have investigated 

the combination of the PVDF based co-polymer (PVDF-HFP) with ZnO and TiO2

separately. The TiO2 based polymer electrolyte shows higher specific capacitance than 

ZnO due to the higher dielectric constant of TiO2 which promotes ionic dissociation 

[15]. 

Barium titanium oxide (Figure 4) has also been used for different types of capacitors 

such as dielectric capacitors or multilayer ceramic capacitors due to its high permittivity 

and ferroelectric behavior. Barium titanium (BaTiO3) has been successfully utilized to 

produce dielectric capacitors with excellent permittivity (K around 6000) and small 

grain size which is around 1 μm [35-36]. The synthesis procedure of the nanomaterials 
affects the electrical properties of the resulting composite [34]. The dielectric constant 

of BaTiO3 can also be influenced by temperature. The dielectric constant has a peak 

value at the Curie point which is around 120ºC [18,37], which also indicates that the 

synthesis temperature could play the curial rule. The detail of how the working 

temperature affects the final properties is discussed in section 6.2. Modification through 

chemical additives has been attempted to reduce the Curie point to room temperature 

and achieve high permittivity at usual operating conditions [22]. The dielectric 

properties of capacitors produced by BaTiO3 and polymer depend on grain size as well 

as on type and amount of doping [22]. Two mechanisms can be used to lower the Curie 

temperature of perovskite-type composites (A2+B4+O3). The first mechanism is based 

on using chemical additives, or extra ions to substitute the original ions in the A2+- or 

B4+- sites and the second is using external pressure [38]. The first mechanism affects 

the unit cell size by adding ions with different radii to element A or B [38]. The second 

mechanism can control the unit cell size via biaxial or hydrostatic pressure [38]. The 

Curie temperature is determined by the microstructure of materials [39-40]. Hiroshima 

et al. [39] studied how the microstructure influences the Curie temperature in lead 

barium niobite solid solutions showing that shrunk grain sizes or lower pore density 



and dilated grain boundaries can lead to the reduction of internal stress resulting in 

higher Curie temperature. Grain size is not the only governing factor; the diffusion of 

foreign ions in the matrix can also be a key parameter for the control of the Curie 

temperature of ferroelectric materials [38].  

3. Modelling 

All the modifications aim to produce dielectric capacitors with higher energy storage 

density [24]. The energy density (Ue) of dielectric capacitors can be calculated as 

follows [24]: 

Ue=∫ ��������  (1) �� = ���������/2 (2) 

where � is the electric displacement of dielectric materials, � represents the applied 

field which is restricted by the breakdown strength [24]. Equation (1) can be reduced 

to Equation (2)，with ���� the effective permittivity and �� the breakdown strength 

[41]. The electric displacement D is determined by the applied electric field which can 

is shown in the following expression [16]: � = �����    (3)

where �� = 8.85×10-12 Fm-1 is the vacuum permittivity, ��  is the dielectric constant 

which is also known as relative dielectric permittivity. Generally, the dielectric constant 

for a linear dielectric is independent of the applied electric field, and results in the 

following expression [16]: �� =
1

2
������     (4)

The effective permittivity, ����, can be approximated by [42]: 

���� =
���� + ����(

����)�� + ��(
����)

   (3)

where ��,�� and �� , �� are the volume fraction and permittivity of the matrix and filler 

respectively and �� ,�� the electric fields in the two components [42]. 

The Maxwell Garnet equation, Lichtenecker logarithmic formula and Bruggeman Self-

Consistent Effective Medium model [6] have presented adequate approximations of the 

dielectric properties of composites up to a filler volume fraction of 20%. [43] 

Jayasundere and Smith (JS) investigated an improved Kerner model [44]:���� =
���� + ����(�)(�)�� + ��(�)(�)

     (4)

where 



� =
��������� (5) 

and � = 1 +
���(�����)������  (6) 

Alternatively, the breakdown strength and effective permittivity can be estimated even 

for a wider range of volume fractions by using the self-consistent effective medium 

theory (SC-EMT) [7]. The application of SC-EMT can simulate the interaction of 

particles with each other and with air voids [7]. This model can be used to represent the 

effect of adding fillers into a matrix with contrasting properties constant and reproduces 

localized hot spots generated by the field concentration in the filler [7]. The effective 

permittivity can be calculated as: ���� = �� + ��(�� − ��)�� + ��(�� − ��)��     (7)

Subscripts 1,2, and 3 represent the matrix, filler and voids respectively and �� is the 

electric field concentration factors in each phase � [7]. The electric field concentration 

factor and applied electric field E0 can be used to obtain the average electric field in 

each phase as �� = ���� [7]. 

A calculation of �� can be carried out as follows [7]: �� = 1 − �[(�� − ����)������ + �]�� � = 2, 3    (8)

where � is the depolarization factor. The field concentration factor of the matrix can 

be expressed by the normalization condition [7]: ����
��� �� = 1.    (9)

Using equation 8, equation 9 can be solved to obtain a self-consistent effective 

permittivity [38]. 

4. Dielectric capacitors

The main role of dielectric capacitors or dielectric materials is acting as part of the 

electrical equipment [6]. They can be used for pulsed-power applications such as in 

radars, other applications including communication and video equipment [6]. Most 

electronic equipment, mobile phones or computers can benefit from the use of dielectric 

capacitors since instant energy uptake and delivery become possible. Furthermore, 

dielectric capacitors can also be applied to defense systems and high-frequency filtering. 

In addition, they can provide better performance for the vehicle, e.g. capacitors can 

provide much higher power than the continuous power associated with fuel cells, 

generators or batteries when the vehicle is under high power working conditions [45]. 

The power and energy densities are the two most important metrics used to assess the 

quality of energy storage devices. Whittingham et al. [46] compared the power density 

of different energy storage devices (Figure 5) including batteries, fuel cells, 

pseudocapacitors, electrostatic capacitors, internal combustion engines, and double-

layer capacitors. The comparison shows that electrostatic capacitors have the highest 



power density between ~104 and ~107 W/Kg but they also have the lowest energy 

density (0.001-0.1 Wh/Kg) [46].  

The conventional fabrication process of dielectric polymer/ceramic nanocomposite 

materials including roll coating, hot pressing, drop-casting or spin-coating are now 

considered to be ineffective [47]. Yang et al. [47] reported a new way to print 

nanocomposites into three dimensional (3D) capacitors by projection-based 

stereolithography (SLA). It is an easy process, with high efficiency and low-cost 3D 

which has been used to manufacture engineering products and high fidelity patterns 

[48]. The usual procedure of the SLA method involves exposure of the photocurable 

liquid or polymer composite material regions under the light to generate cross-links 

followed layer by layer processing whilst computer-aided design (CAD) is needed to 

program the actual pattern [47]. The strategy of Yang et al. [47] was based on the use 

of polymer nanocomposite with PZT as filler; before application, the filler was mixed 

with Flex resins and ultrasonicated. An integrated tape-casting system was used by 

Yang et al. [47] to recoat thick layers on a transparent glass substrate to create uniform 

thin layers with a lower thickness which was recoated by moving the platform so that 

a reasonable gap between the cured layer and the glass substrate can be formed. Mask 

images were projected upwards onto the bottom of the substrate after the layer was 

recoated, and a two-channel sliding design was applied to ensure the newly cured layer 

is separated from the substrate. The design of two-channel sliding is based on the idea 

of controlling the shear force between the cured layer and the coated film [47]. Apart 

from Yang et al. [47], another novel 3D method to print dielectric polymers was 

investigated by Gonzalez et al. [49] using fused deposition modeling (FDM). In this 

method, a plastic filament is fed into a heated extruder and then laid down following a 

predetermined pattern dictated by the desired structure [49]. This type of 3D printing 

allows multiple printing at the same time, which means that it is possible to print the 

electrodes and the dielectric film at the same time [49].

In addition, dielectric capacitors can also be used in medical devices; one of the most 

well-known examples is defibrillators [6]. Figure 6 is a simple schematic of a 

defibrillator [50]. Along with energy storage and harvesting, polymer-based 

nanocomposites have a wide range of applications. Moreover, dielectric capacitors can 

separate DC from AC, and used to store digital and analogue data. Besides, nano-

composites are easy to synthesize, small in size, lightweight, low cost, and 

environmentally friendly [6]. In recent years, a large number of works related to the 

nanocomposites have been reported due to their wide application areas and industrial 

value.  

5. Methods used to enhance dielectric properties

The combination of polymers - especially PP/ PVDF - and ceramic fillers with high 

dielectric constant has been identified as a very useful method to formulate high energy 

storage densities nanocomposites [15-17]. Polymers act as the matrix and either 

ceramic particles, fibers or 2D sheets can be used as fillers [51]. The large energy 



density that dielectric capacitors can accommodate usually requires electric fields over 

600 KV/mm, which is relatively high, limiting their applications in low voltage 

conditions and increasing the risk of failure during operation [52]. A number of works 

in the past few decades have proved that ceramic fillers can improve the energy density 

of polymer nanocomposites as well as their dielectric breakdown strength [47]. The 

highest electric field that can be applied to a dielectric capacitor is determined by its 

breakdown strength, whilst excessive electric field can cause irreversible damage like 

and the energy storage capability of capacitors for the charge and discharge cycle 

parameter [16]. The energy density of a capacitor is quadratically related to its 

breakdown strength for a linear dielectric [16]. The increase of breakdown strength is 

important during the design of a new dielectric nanocomposite, otherwise, increased 

the dielectric constant or efficiency is meaningless [16]. 

5.1 Dopant addition and surface modification  

Theoretically, adding BaTiO3 or other ferroelectric ceramics in the polymer can 

produce dielectric capacitors with appropriate electric properties due to the high 

dielectric constant of the filler. However, activities on BaTiO3 nanocomposites have not 

yielded a final product because of the problem of incompatibility as the matrix and 

reinforcing fillers have different surface characteristics, which makes a uniform 

dispersion of reinforcement fillers difficult to achieve and influences negatively the 

electrical properties of the final material [53]. The key factors which determine the 

properties of polymer nanocomposites include the percolation threshold, the nature of 

the nanofiller/matrix interface and the aspect ratio of the nanofiller [13]. Nanofillers 

can enhance both the function and structure of nanocomposites, for example, the 

addition of nanofiller with high intrinsic modulus can significantly improve the 

mechanical properties of polymer nanocomposites due to the strong bonding between 

the matrix and the nanofillers and uniform dispersion [13]. Percolation theory is used 

to study the change of dielectric properties in the nanocomposites system; the polymer 

nanocomposites can transition from insulator to conductor at a specific loading [13]. 

The percolation threshold is determined by the aspect ratio of the nanofillers [13]. 

Percolation is discussed in detail in Section 6.  

The addition of rare-earth elements or functionalization has been reported to be a 

potential solution [24]. The dispersion of BTO nanoparticles can be improved by using 

surfactants, e.g. phosphate esters and oligomers v. Surfactants act as coupling agents 

with two different functional groups that attach to the matrix and surface of the filler 

separately creating a link [12]. Some works, such as Kim et al. [56] or Li et al. [57], 

have reported that the compatibility between BaTiO3 and PVDF can be improved by 

using phosphoric acid and ethylene diamine although these two surfactants do not 

present strong binding with the BTO surface [12]. The selection of surfactants could be 

very important and the residual free surfactants can be the reason for high leakage 

current and dielectric loss which can also be influenced by the size of BTO 

nanoparticles [58]. Commonly, stirring has been applied for the dispersion to facilitate 

the interaction between BTO and the surfactants, which in some cases can be ineffective 

resulting in the reduction of compatibility [12]. To overcome the disadvantages of 



stirring, Lin et al. [12] used the reflux method (Figure 7) in combination with dopamine, 

which is a green surface coupling agent. This technique has been widely used for 

nanoparticle surface modification since then [59]. Dopamine has been used for surface 

modification of BTO and it was found that an extended effective stirring time leads to 

an improvement in the chemical binding and dispersion of the nanoparticles within the 

polymer matrix as confirmed from SEM studies and other relevant characterization [59]. 

Overall, dopamine has been proved to be promising to enhance the nanoparticle-

polymer interface and to promote a homogenous dispersion as well as a uniform charge 

at the interface of nanoparticle and polymer. Figure 8 details the functionalization 

process [12,60]. Dopamine has been also been widely used for adhesion or surface 

coating such as MnO2 for energy storage [61] and can be easily bio-synthesized [62]. 

Dopamine uses hydrogen bonding to bind strongly with different metals or metal oxides. 

A reaction between the NH2 group of dopamine and C-F groups of PVDF can be 

expected which leads to a nanocomposite with improved compatibility. FESEM images 

(Figure 9) confirm that surface modification increases the homogeneity of particle 

dispersion [12]. Composites functionalized by dopamine have a dielectric constant of 

26.8 and low dielectric loss of 0.04. Figure 10 illustrates the dielectric properties of 

nanocomposites prepared using pristine and functionalized BTO. Lin et al. [12] have 

also synthesized hollow BaTiO3 nanoparticles by the hydrothermal method without 

using a surfactant. Figures 11-12 show FESEM and TEM images of the synthesized 

hollow nanoparticles. Neodymium oxide can improve the dielectric performance of the 

nanocomposite BaTiO3-Nd2O3/PVDF (Figure 13). Wang et al. [63] combined the 

works of Lin et al. [12] by adding Nd oxide and using dopamine to improve the bonding 

in samples synthesized by the sol-hydrothermal method. After adding dopamine, the 

nanocomposites obtained a very high dielectric constant and the discharged energy 

density was increased up to 12.5 J/cm3 [63]. 

5.2 Grafting and co-polymers 

The current strategies to improve the performance of dielectric capacitors can be 

separated into two types: (i) use of ceramics as fillers to improve the properties, with 

some other elements potentially added to achieve a better result; (ii) use of surface 

surfactants to produce dielectric capacitors with improved functions. Some researchers 

have adopted an alternative approach to enhance the dielectric properties by enhancing 

the performance of the polymer matrix. In this direction, PVDF and its copolymers 

have shown a great potential to be used as a dielectric matrix to enhance dielectric 

properties. Electron beam irradiation has been used to activate the PVDF backbone 

(Figure 14). It is important to control the radiation dose during the irradiation process. 

PVDF has C-C, C-H, and C-F bonding; the C-H bond is much weaker than the C-F 

bond so it can be assumed to be the first bond to break [11]. However, if the irradiation 

dose is too high, the C-F bond can also be broken which might cause undesirable results 

[64]. Figure 14 shows the detail of the whole process: when the C-H bond is broken, 

oxygen fills the space; however, if the dose is too strong, the C-F bond also breaks 

resulting in degradation of the performance. Graft copolymerization with HEMA 



monomer can be carried after the activation of the polymer backbone. The resulting 

graft copolymer has enhanced dielectric properties (Figure 15) which are primarily 

attributed to the highly polar characteristics of the HEMA monomer [11]. Thakur et al. 

[11] have grafted styrene monomer (PS) on PVDF by electron beam radiation. The 

hydrophobic styrene monomer was grafted onto the PVDF matrix to maintain the 

advantages of PVDF, which exhibits excellent dielectric properties and is easy to 

process while improving the stability of capacitors. Figure 16 shows the detailed 

mechanism of grafting of styrene onto PVDF. The dielectric constant of co-polymers 

increases to 90 at 100 Hz at room temperature, which is seven times higher than the 

PVDF precursor, accompanied by low dielectric loss of around 0.005 at 1 kHz. Figures 

17-18 illustrate the detailed dielectric properties analysis. Several points need to be 

highlighted which can influence the properties of final products. The first is the 

radiation dose, the grafting percentage increases with an increased radiation dose up to 

17.5% when the dose is 1.6 MRad [11]. When the radiation dose increases, an 

increasing number of radicals is generated on the backbone of the polymer and as a 

consequence the grafting percentage increases [11]. The percentage of grafting 

decreases over 1.6 MRad, which can be explained by the fact that high energy transfer 

activates intramolecular scission of the grafted branches, i.e. the active sites remaining 

on the growing grafted chains may attack the grafted branches around them and cause 

chain scission and chain termination simultaneously. The consequence of this is that 

the length of the grafted branches decreases leading to a reduction of the overall weight 

fraction of grafted polymer [11]. The reaction temperature and time are still the main 

governing factors. An increase in temperature increases decomposition and produces 

more free radicals and diffusion of monomers which increases the graft percentage [11]. 

Over the optimum temperature, the large number of chain-transfer reactions and 

increased molecular motion results in a reduction of grafting [11]. Time affects the 

result in the same way as radiation dose; issues may be caused when the reaction time 

is beyond the optimum time leading to grafting percentage reduction. The type of 

solvent also can affect the result of irradiation [11]. Thakur et al. [11] used toluene as 

reaction medium and for the same irradiation, dose grafting increased by up to 28%. 

Increasing the amount of toluene has a negative effect as the continuous growth of 

grafting chains is inhibited by the reduction in monomer concentration. The variation 

of monomer concentration has the same influence as other factors; the grafting 

percentage is optimum for a specific monomer concentration.   

In addition to the graft copolymerization technique, bioinspired surface modification in 

an aqueous medium can enhance the dielectric properties of PVDF. Figure 19 shows 

the detailed mechanism of surface engineering of PVDF polymer powder. Dopamine 

has been used to surface engineer PVDF that has been irradiated before, followed by 

application of the reflux method to strengthen the dopamine -PVDF bonding [3]. 

Dopamine can build strong interfaces with different materials through hydrogen 

bonding. Further bonding improvement can be achieved by the reaction between the 

NH2 groups in dopamine and the OH groups in pre-irradiated PVDF [3] or PVDF 

directly. Surface modification of PVDF results in significant enhancement of dielectric 

properties (Figure 20-21). The effect of temperature on dielectric properties of pristine 



and surface modified PVDF has also been investigated. At the same frequency, the 

dielectric constant increases with increasing temperature due to the enhanced fractional 

mobility of the polymers and promotion of the orientation of dipoles [3]. The dielectric 

properties of a polymer are not only governed by the charge distribution but also the 

statistical thermal motion of the polar group of the polymers. During heating up, the 

thermal expansion and the decrease of intermolecular forces result in the relaxation 

process of mobile molecular chains, leading to an increase of dielectric constant [3]. 

Metal oxides are commonly used to improve the dielectric properties of capacitors due 

to their high permittivity [65]. The increase of the average field in the polymer matrix 

leads to an improvement in the effective dielectric constant, whilst only a small amount 

of energy is stored in the high permittivity phase [56-57]. As a consequence of the 

significant permittivity difference between the matrix and the filler, the electric field is 

inhomogeneous, which limits the improvement in electric properties that can be 

achieved [65]. Therefore, research has attempted to develop new techniques to 

overcome the problems of low dielectric constant and associated low energy storage of 

polymers [65]. One of the ways put forward is by adding a different polymer in the 

PVDF based capacitor to improve dielectric properties. This method is accompanied 

by some problems, e.g. PVDF homopolymers and copolymers like P(VDF-HFP) are 

suffering from large ferroelectric hysteresis loss which makes them not suitable for use 

as film capacitors [56]. Co-polymers like P(VDF-TRFE-CFE) and P(VDF-TrFE-CTFE) 

terpolymers and some other relaxor ferroelectric polymers have been developed to 

overcome this problem [56]. However, the narrow hysteresis and low melting 

temperature (120ºC) these polymers present make them unsuitable for use in high-

temperature conditions [66].  

Addonizioa et al. [67] found that the solvent used during the preparation can affect the 

pH value and further influence the properties of the final product. Fluoropolymers are 

chemically inert but relatively susceptible to high energy radiation, such as electron and 

ion beam, plasma treatment or X-rays [68–70], which can be used to facilitate 

attachment of functional groups onto the polymer surface. However, copolymers 

produced by grafting are limited in terms of quantity, as the production method cannot 

be scaled up due to the large copper catalyst consumption [68]. Furthermore, when 

PVDF is directly exposed to high positive voltage erosion and electrochemical reaction, 

issues may occur [71-72]. Yin et al.[68] used the force assembly technique to 

microlayer a linear dielectric polymer and PVDF based polymer to produce co-

polymers to overcome these problems. Following modification, the �c relaxation from 

the � PVDF crystals is reduced to a minimum in PET/PMMA/P(VDF-HFP) multilayer 

films and the loss from impurity ions is also minimized because of the use of PMMA 

with P(VDF-HFP) which modifies the interface between P(VDF-HFP) and PET layers 

[68].  

Previous research on co-polymer produced by PVDF and TrFE indicates that the 

dielectric constant of some polymers increases after high energy electron irradiation 

treatment at room temperature if the dosage of the irradiation is appropriate [73]. 

Furthermore, after irradiation treatment, the polymer transforms from a normal 

ferroelectric into a relaxor ferroelectric. This eliminates the large polarization-field 



hysteresis under the high field, especially in normal ferroelectric co-polymers [14]. 

PVDF exhibits much higher dielectric constant after modification in comparison with 

the pristine polymer and much lower dielectric loss [3]. Also, better flexibility was 

observed [3]. The excellent mechanical and electrical properties, as well as its 

biocompatibility, make PVDF a highly appropriate material for capacitors or power 

storage devices [74].  

6. Effects of other factors: 

6.1 pH value 

Different synthesis of the raw materials has been studied since the preparation process 

can result in changes in the particle size and morphology which can directly affect the 

dielectric properties of the nanocomposites. Different preparation techniques such as 

sol-gel, hydrothermal and aqueous influence differently the properties of the final 

product as they introduce variations in different morphology, crystallinity and particle 

size [75–79]. Sol-gel synthesis has been widely applied due to its multifunctionality, 

easiness of processing and scalability. Oxides prepared by this technique are 

appropriate for coating or printing [80–82]. Figure 22 illustrates generic sol-gel 

synthesis. Gilliot. et al. [26] showed that metal oxides prepared by sol-gel methods have 

an improved morphology and orientation which may lead to improved dynamic 

properties. Although the sol-gel technique can produce specimens with appropriate 

properties, control of this technique and details of the synthesis affecting the properties 

require further investigation. Addonizioa et al. [67] followed the work of Tari et al. [83] 

to investigate how the pH affects ZnO films produce by the sol-gel synthesis. In the 

work of Tari et al.[83], the stabilizer agents were Triethanolamine (TEA) and acetic 

acid, in addition to zinc acetate dihydrate (ZAD) alcoholic solutions with ZAD 

stabilizer agent (the molar ratio was equal to 1), with Zn2+ concentrations between 0.5-

1.2 M [83]. Addonizio et al. [67] have also studied how the pH value influences the 

properties of films by controlling the minimum and maximum pH between 7.66 and 

8.76 and comparing pure ZnO and B- or Al-doped ZnO to assess variations on thickness, 

morphology and optical properties [67]. The quality improvement of films by 

controlling the pH was also investigated in other works. Sagar et al. [84] controlled the 

pH range between 6.4 and 10.6 by using a different aliquot of monoethanolamine (MEA) 

in the initial 0.6M ZAD solution to produce the multi-layer films whose thickness was 

about 200nm. Improved quality of the multi-layer film was observed with the increase 

of pH, which is a result consistent with those obtained by Addonizio et al. Houng et al. 

[85] and Ilican et al. [86] using glacial acetic and ammonia to control the pH range 

between 5.0 to 6.8 and 5.05 to 7.15 respectively. This work demonstrated that electrical 

and optical properties can be improved by increasing the pH during the synthesis 

procedure [84]. The quality of films is not the only characteristic that the pH value can 

control, the minimum thickness that the films also depends on the concentration of the 

raw material solution and the type and amount of stabilizer agent [67]. Current 



strategies for the improvement based on this concept include two approaches: (a) 

improve the preparation procedure; (b) addition of a dopant such as trivalent cations 

(B3+ or Al3+ for example) and hydrogen [67]. 

6.2 Annealing temperature 

Besides the pH, the annealing temperature is considered as another main factor 

controlling the properties of the films during the synthesis process. Omri et al. [25] 

investigated how the thermal treatment can influence the electrical properties, structure, 

and morphology of ceramic (ZnO) nanoparticles. The objective of the investigation was 

to prepare high-quality crystalline ZnO nanoparticles at low temperature ( 300, 400 and 

500ºC) [87]. The material treated at these temperatures showed variations in electrical 

properties at grain boundaries and grains, resulting in behavior corresponding to a 

material with regions of different conductivities [87]. Similar work was carried out by 

Kuo et al. [22], in which the variation of dielectric properties of epoxy/BaTiO3 

nanocomposites with different ceramic content was tested under variable temperature 

and frequency. The nanocomposite with the highest content of ceramic filler treated at 

900ºC has the highest dielectric constant; however, this value decreases with further 

increase in temperature [22]. As a consequence, the effect of temperature is very similar 

with the addition of dopant; an increase of dopant can enhance the dielectric properties 

of the nanocomposite; however, if the amount of dopant is too high the properties are 

degraded. 

6.3 Synthesis techniques  

The synthesis technique can affect significantly the microstructure of ceramics which 

influences the electrical performance. The sol-gel method has attracted much attention 

due to the relatively mild reaction conditions and the excellent particle distribution, 

high purity, homogeneity, and compositional control of powders obtained from this 

synthesis technique [87]. In contrast to the sol-gel process, the hydrothermal method 

can operate at low temperature and produce well-crystallized products [88-89]. The 

idea of investigating a new synthesis technique by combining these two methods was 

explored and a new method called sol-gel-hydrothermal has been reported [90–93] 

which can have the advantages of both techniques. More particularly, this new process 

is expected to be able to produce ceramics with high purity, narrow particle size 

distribution and high crystallinity, low process temperature and relatively controlled 

morphology. 

Wang et al. [87] have used the sol-gel hydrothermal technique to prepare BaTiO3 

nanoparticles using barium acetate and tetrabutyl titanate as the raw materials and acetic 

acid and absolute ethanol as the solvent. As a result of using KOH at a concentration of 

over 1.0 M calcined at 120ºC for 12h, the BaTiO3 is well-crystallized, with high purity 

and a uniform cubic structure [87]. Earlier work has shown that the temperature and 

reaction time could affect the microstructure of nanoparticles [75]; however, Lin et al. 

[64] have reported that the increase in the reaction time and temperature over a certain 

value can influence the crystallinity and morphology only slightly, while the 

concentration of KOH governs the variation of particle size and crystallinity [87]. The 



particle size of BaTiO3 decreases from 370 nm to 100 nm when the concentration of 

KOH increases from 1.0 M to 8.0 M [87].  

Magnetron sputtering can be used to manufacture films by depositing target materials 

on hot glass substrates with radiofrequency or direct current under pressure [94]. Partial 

oxygen pressure during the process has a significant influence. Liu et al. [95] 

investigated the morphology, microstructure, surface, optical and electronic properties 

of ZnO and Cu doped ZnO films manufactured by magnetron co-sputtering with 

varying oxygen partial pressure. Reduction of crystallinity and bandgap was observed, 

which occurred due to the oxygen vacancy [96]. This phenomenon only occurred in 

films doped with Cu; ZnO films without doping did not show any sensitivity to oxygen 

pressure, especially at high pressures [95]. The substrate temperature can also be an 

influential factor; Ali et al. [96] have investigated the optical and dielectric behavior of 

ZnO films prepared with substrate temperature ranging from 100ºC to 500ºC. X-ray 

and AFM results showed that the deposition temperature influences the polycrystalline 

structure and crystallinity as well as the grain size [96]. Increasing the substrate 

temperature during deposition causes a reduction of the optical energy gap attributed to 

the increase of the degree of crystallinity and the number of free electrons [96]. The 

thickness of the film is also an influencing factor. Pathak et al. [97] investigated the 

structural and optical properties and morphology of ZnO films prepared by sol-gel 

synthesis. The surface morphological studies indicated that an increase in the film 

thickness can lead to a grain size increase as well as an increase in film roughness and 

reduction of the bandgap [97]. The same conclusion can also be applied to films 

synthesized by glass substrates spraying [98]. 

Depending on the synthesis conditions, the nanoparticles can have different 

morphology, even if the same preparation technique is applied. Mao et al. [99] have 

successfully synthesized one-dimensional BaTiO3 and SrTiO3 nanotubes by using the 

hydrothermal technique at low temperature, aiming to overcome issues with the 

conventional method for the preparation of BTO structure nanoparticles associated with 

the high pressure, temperature and surface functionalization process. The one-

dimensional character of nanotube or nanowire systems is ideal for investigating the 

effect of size and dimensions on optical, magnetic and electronic properties [99]. 

According to previous work, the structure and reactivity of barium, strontium, and 

titanium precursors are the key factors that determine the composition, particle size, 

morphology and properties of the final nanoparticles [64]. The hydrothermal method 

has been applied for the preparation of ceramic power especially barium titanium for 

decades; the strategy of Mao et al. was based on the use of TiO2 nanotube as a precursor. 

Lin et al. [64] used the same synthesis technique to synthesize single-crystalline Nd-

doped BaTiO3 hollow nanoparticles at low temperature without the use of a surfactant 

or high-temperature sintering. Lin et al. [64] also used Nd oxides as dopant added into 

the BaTiO3 to obtain a high dielectric constant taking into account the high dielectric 

constant (K=300000) that Nd oxide has after high temperature firing under pure 

nitrogen. Besides, the ionic radius of neodymium is between those of titanium and 

barium which means that neodymium can fit in barium or titanium sites leading to an 

improved permittivity [64]. The hollow nanostructure that Lin et al. [64] synthesized 



has a poor dielectric constant due to the presence of air voids in the structure. Lin et al. 

[64] have successfully overcome the shortcomings of the nano hollow structure, as the 

dielectric constant of the final products is nearly 5 times higher than the value from 

previous works (40.7 at 103 Hz). The synthesis temperature is a very important factor 

for the successful synthesis as also found by Omri et al. [25]. The morphologies of the 

nanoparticles vary from spherical solid particle to hollow structure with increasing 

temperature, which indicates that the temperature can influence the diffusion rate of Nd 

ions into the BTO structure and directly determine the morphology of the final product 

[64]. The reaction time can also be an influencing factor; an increase of reaction time 

increases the particle size [64] while a reduction of grain size is associated with a 

reduction of the dielectric constant [22]. Therefore, the balance between temperature 

and reaction time needs to be carefully controlled. The formation of hollow 

nanostructures is governed by the Kirkendall mechanism [64]. This governs the 

diffusion of metal atoms when the temperature is high enough to activate the diffusion 

of atoms from metal A to metal B or the opposite [100]. Modelling studies have also 

been carried out to understand the dielectric properties of graphite-polymer composites 

[65]. Xia et al [65] have developed a thermodynamic framework to explain dielectric 

damage concerning the applied electric field. The developed theory was validated using 

experimental data from PVDF-Graphite composites. The breakdown strength of the 

nanocomposite decreases with the amount of graphite which is also reflected in an 

increment in the energy storage density. Figure 23 summarizes the dielectric behavior 

of graphene polymer nanocomposites. 

Among the different microstructure morphology, 1-D fillers such as nanowires and 

nanofibers are proved to enhance the dielectric properties of nanocomposites more 

efficient [101]. Huang et al. [101] conclude the advantages of using high aspect ratio 

1D fillers to produce nanocomposites with high dielectric constant are: (i) high aspect 

ratio fillers can reach contact percolation easier than lower aspect ratio fillers which 

allow the fillers to be continuously transported into the composites and enhance the 

dielectric properties or higher thermal conductivity; (ii) high aspect ratio fillers have a 

lower surface area which can help to reduce the surface energy and prevent aggregation 

especially when the filler content is high; (iii) high aspect ratio fillers can enhance the 

composites with lower loading due to their large dipole moment. Among all the 

structures, core-shell structures have a high dielectric constant core but the dielectric 

constant of the shells is at middle level, while the dielectric constant tends to decrease 

from the core to the matrix [101]. The shell of the core-shell structured particles is 

usually the buffer between the core and the matrix of the composites that can reduce 

the electric field distortion and strengthen the dielectric properties of the polymer 

composites [101]. Furthermore, a small electric field enhancement was reported inside 

the core-shell particles, which is a depolarization field formed by the electric charges 

aggregated at the interface layer of the filler and matrix that eliminates part of the 

applied electric field inside the filler [101]. Yao et al. [102] compared the dielectric 

constant and breakdown strength of PVDF-HFP copolymer filled by BaTiO3 and TiO2

encapsulated BaTiO3 nanoparticles. The material containing core-shell structured 

BaTiO3 @TiO2 exhibits an unexpectedly high dielectric constant nearly three times 



higher than the material with BaTiO3 at same filler volume fraction and a significantly 

improved breakdown strength. The preparation of core-shell structures is also carried 

out in different ways; recently, Bi et al.[103] synthesized core-shell BTO@SiO2 by the 

Stober method. The influence study of the core shell structured BaTiO3 @TiO2 

nanofillers on the energy storage ability on the nanocomposites confirm the advantage 

of this type of structure.  

An alternative way to enhance the dielectric performance of nanocomposites is the use 

of inorganic conductive materials as fillers, such as carbon which has been investigated 

as a novel interfacial modifier [104]. Use of conventional inorganic materials, such as 

TiO2 nanowires,  as core and a conductive carbon layer as the shell, synthesized by 

hydrothermal reaction and chemical vapor deposition has been attempted [104]. An 

enhanced dielectric permittivity was observed which was nearly 80 times higher than 

that of the nanocomposites using untreated TiO2 nanowires as filler, while by 

controlling the time of chemical vapor deposition process, the thickness of the interface 

can be modulated [104]. Another method to further strengthen the advantages of core-

shell structure is to use multiple shells to provide a hierarchical functional interface 

layer; the outer layer can help the interaction and dispersion of the ceramic fillers in the 

nanocomposites, the inner polarization layer can promote the relative permittivity of 

the nanocomposites, while the buffer and shielding layers can eliminate the local 

electric field and decrease the electric loss by preventing the free electrons [104]. These 

strategies are only true for 0-3 type nanocomposites (0-3 type nanocomposites mean 

the composites formed by nanoparticles distributed in three-dimensional bulk 

materials), where the maximum loading could be around 50-60%.  

Recently, topological structures including a sandwich or multi-layer structures have 

been reported to form 2-2 type composite, which means two-dimensional connected 

fillers dispersed in a two-dimensional connected polymer matrix and an extra insulating 

layer [104]. PVDF and PVDF co-polymer have been selected as the insulating layer 

because of their high dielectric strength and low dielectric loss [104]. For example, the 

use of P(VDF-HFP) as the central layer and BaTiO3/P(VDF-HFP) as upper and lower 

layers formed by spin-coating, can be used to produce a sandwich structure 

nanocomposite. The problem of this type of structure is the low relative permittivity 

and polarization due to the low relative permittivity of the central layer (polymer), 

whilst the solution is the addition of dopant, generally as a small amount of ceramic 

nanofiller such as BaTiO3 nanofibers or boron nitride nanosheets and some other 

common ceramic nanofillers [104]. 

6.4 Volume fraction 

Kim et al. [7] reported how the nanoparticle volume fraction influences the dielectric 

properties including the effective permittivity, dielectric loss and dielectric breakdown 

strength of phosphonic acid-modified BTO doped P(VDF-HFP) based co-polymer. 

The experimental permittivity increases to a maximum when the volume fraction is 

around 50-60%, then decreases rapidly with the further increase of the nanoparticle 

volume fraction. The experimental values were compared with several models. (Figure 



24) The large difference between experimental and models occur when the volume 

fraction above 60% [7]. Weibull statistics were used to compare the dielectric 

breakdown strength of the nanocomposites with BTO volume fractions between 0 and 

50%. The Weibull analysis is based on the following expression for the failure 

probability [7]: ��(�) = 1 − exp [− �� − �� )�� (10)

Where �  and �  is the shape parameter that shows the dispersion of E and the 

threshold parameter which value the E with no failure; � is the scale parameter. Kim 

et al assumed � is zero so that the failure probability can be calculated by the following 

equation [7]: 

log[− ln{1 − ��(�)}] = ����� − ����� (11)

The dielectric breakdown strength with volume fraction higher than 50% is much lower 

than that of low volume fraction which can be explained by the existence of air voids 

in the nanocomposites [7]. Besides, the breakdown strengths of the nanocomposites 

over 50% of void fraction changes significantly between each sample due to the 

variation of porosity distribution which also explained why the calculation is valid for 

low volume fraction [7]. Figure 25 illustrates the breakdown strength obtained by 

Weibull analysis at different volume fraction with 63.2% failure probabilities. The 

dielectric strength decreases rapidly when the volume fraction increases from 

10%~20%, such behavior can be explained by the percolation of the BTO nanoparticles 

in the composite. Calame [105] described the percolation in detail; percolation in the 

composites needs to be considered in two different ways: “hard” and “soft” percolation. 

Soft percolation means connected particles tend to generate an extended network which 

provides a pathway [7]. As a result, the charge conduction can cause breakdown 

strength reduction; furthermore, such behavior can lead to ineffective surface 

modification, due to passivation and reduction of ionizable surface sites because of the 

phosphonate layer [7]. Hard percolation can occur with the further increase of volume 

fraction and maximum particle density achieved [7]. When most of the particles are in 

contact with each other and the particle density cannot be changed further increase of 

particles leads to v increase of air voids as the polymer is not enough to fill the 

interstitial free volume [7]. The dielectric breakdown strength depends on the 

distribution of air voids since the nanoparticles entering the polymer are packed 

randomly; the air voids are also distributed randomly which justifies the large 

difference between experimental data and the model.[7]. Another noticeable point is 

that the failure probability of P(VDF-FHP) film is higher than that of the 

nanocomposites with 5% and 10% BTO (Figure 25 a). This implies that the addition 

of filler with high permittivity into the polymer under conditions of “soft” percolation 

can control the failure probability under moderate fields, while the nanoparticles can 

trap the charges and prevent them to scatter in the nanocomposite film to increase the 

failure probability [7]. 

The volume fraction of air voids can be computed by the cellular packing model [105]. 

Kim et al. [7] use this model to predict the maximum volume fraction that can be 

obtained without creating any air voids (Figure 26). This model cannot simulate the 



maximum density situation  [7]. The volume fraction of air voids can be estimated by 

the expression:  �(�) = �(� − ��)� (12)

where � is the volume fraction, ��  is the threshold volume fraction when there are 

no voids in the composite and), � and � are fitting parameters [7]. Figure 27 shows 

the experimental and calculated breakdown strength at different volume fractions; the 

difference is because the films were fabricated by a spin coating which is a kinetically 

controlled process which allows the reduction of the concentration of air voids and 

improvement of film quality [7]. 

Eq. 2 suggests that maximum volume fraction can be used to achieve the maximum 

energy density. Figure 28 shows the calculated and experimented energy density with 

different nanoparticle volume fraction at fixed applied electric field (164 V/μm) and 1 
MHz. The two data groups show a similar trend but the measured values are lower than 

the calculated values, partially because the energy density measurement depends on the 

breakdown strength, which means the energy density cannot be tested at high volume 

fraction [7]. 

All the nanocomposites, their modification and the influence factors mentioned in the 

context before are summarized in Table S1. 

7. Conclusion 

In addition to the modification and synthesis techniques described in this article, many 

other strategies can also be applied to improve the performance of capacitors[106]. 

Research on capacitors will be addressing problems over the long term. For example, 

the energy density of a polymer-based nanocomposite is determined by the dielectric 

constant and breakdown strength. All the modifications mentioned in this article are 

used to improve the bonding between matrix and filler so that the capacitors can have 

a better breakdown strength. Therefore, the study on polarization is still ongoing 

focusing on polarization mechanisms customization. The full understanding of the 

working mechanisms will contribute to the design of capacitors exhibiting satisfactory 

performance. However, developing a complete understanding and control is not a short-

term objective. In theory, it is easier to improve electronic polarization by delocalizing 

electrons, but during the process, material selection could be a problem. Therefore, the 

complete understanding of dielectric performance requires not only the understanding 

of how to produce high-performance capacitors but also the need to select appropriate 

materials. Some materials or ceramic fillers have great properties but contain lead 

which is harmful to the environment, while non-lead ceramics cannot reach a 

satisfactory result yet. Another example is ionic polarization; replacing the carbon in 

the polymer by other elements such as group 14 elements can tailor the ionic 

polarization. However, the synthesis of such polymer is full of challenges. Problems 

associated with the modification also need to be resolved. One of the modification 

methods described in this article is the addition of dopant in nanocomposites. Under 

most of the conditions, the dielectric constant increases with increasing doping up to a 

maximum value beyond which the performance decreases. Using the maximal value of 

doping can achieve the desired dielectric performance. However, there is also a limit of 



doping concerning higher dielectric loss due to incompatibility and agglomeration 

issues. Aggregation can cause further problems such as the concentration of the electric 

field in the matrix which leads to lower breakdown strength; even lower than that of 

the pure polymer. Many works have used a surface modification to overcome this 

situation. The application of surface modification is based on the fact that appropriate 

surfactants can improve the bonding between matrix and filler by covalent bonding, 

hydrogen bonding or dipole-dipole interactions; homogeneous nanocomposites can be 

obtained as a result of the improved interaction. While the problem is choosing the right 

surface-modifying agents, depending on the material used, the performance of 

capacitors after modification can be very different even for the same surfactant. Other 

approaches, such as grafting, are limited in production due to scalability issues.  

As a conclusion, a large number of modification techniques related to the improvement 

of dielectric properties of polymer-based nanocomposites have been summarized in this 

article. However, there are still many problems that are worth investigating and need to 

be overcome[106]. An ideal capacitor matrix material needs to have high energy and 

power density, suitable functional groups, low dielectric loss, great compatibility with 

reinforcing materials and being easy to manufacture. 
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Figure 1: Specific power against specific energy of different electrical devices. 

Reprinted with permission from Ref. [2]



Figure 2: Diverse application fields of capacitors Reprinted with permission from 

Ref. [2]



Figure 3:  The �, �, � phases of PVDF and common PVDF structure. Adapted from 

ref [14]. 

Figure 4: The structure of Barium Titanium Oxide.  



Figure 5: The energy storage ability of different electric energy storage devices. 

Reprinted with permission from Ref. [46]. 

Figure 6: Simplified schematic of defibrillators. Reprinted with permission from 

Ref. [50].



Figure 7: The scheme for dopamine surface functionalized BaTiO3. Reproduced with 

permission from Ref. [12]. 



Figure 8: The process of functionalize the BaTiO3 with dopamine by hydrothermal 

method.

Figure 9: FE-SEM images of BaTiO3/PVDF thin film composites with various weight% 

of BaTiO3: (a) 10%, (b) 30%, (c) 50% without dopamine; and (d) 10%, (e) 30%, (f) 50% 

with dopamine. Reprinted with permission from Ref. [12].



Figure 10: Dependences of (a) dielectric constant and (b) dielectric loss of 

BaTiO3/PVDF composites; (c) dielectric constant and (d) dielectric loss of dopamine–

BaTiO3/PVDF composites on frequency measured at room temperature from 102 to 

106 Hz. Reprinted with permission from Ref. [12].

Figure 11: (a) The FESEM image of hollow 10 at% Nd2O3–BaTiO3nanoparticle at 200 

°C/2 h. (b) The TEM image of 10 at% Nd2O3–BaTiO3nanoparticle at 200 °C/2 h. (c) 

The HR-TEM image of a single tetragonal hollow 10 at% Nd2O3–BaTiO3nanoparticle. 

(d) The TEM image of BaTiO3nanoparticle at 200 °C/2 h. Reprinted with permission 

from Ref. [47].



Figure 12: Fe-SEM images of a doped BaTiO3 hollow structure synthesized for 2 h at 

(a) 120 °C, (b) 160 °C and (c) 200 °C; synthesized at 200 °C for (d) 0.5 h, (e) 2 h and 

(f) 24 h Reprinted with permission from Ref. [64].

Figure 13: Dependences of (a) dielectric constant and (b) dielectric loss of 10 at% 

Nd2O3–BaTiO3/PVDF composites on frequency measured at room temperature from 

102 to 106 Hz, respectively. Reprinted with permission from Ref. [64].



Figure 14: Mechanism for graft copolymerization of HEMA onto pristine PVDF 

polymer Reprinted with permission from Ref. [10]. 



Figure 15: Dielectric Properties of PVDF-g-HEMA [8]. Reprinted with permission 

from Ref. [10]. (a) The dielectirc constant of pristine PVDF and PHEMA grafted PVDF. 

(b) The dielectric loss of pristine PVDF and PHEMA grafted PVDF.  



Figure 16 Mechanism for graft copolymerization of styrene onto pristine PVDF 

polymer [11]. Reprinted with permission from Ref. [11]. 



Figure 17 (a) Dependence of the dielectric constant on various frequencies at room 

temperature for pristine PVDF, optimum (38.97%) and lowest grafted PVDF-g-PS 

(17.51%) polymer films. (b) Effect of the percentage of grafting of PS onto the 

dielectric constant of PVDF at room temperature measured at 100 Hz. Reprinted with 

permission from Ref. [11]. 

Figure 18  (a) Dependence of dielectric losses on the frequency at room temperature. 

(b) Effect of the percentage of grafting of PS onto the PVDF at room temperature 

measured at 100 Hz. Reprinted with permission from Ref. [11]. 



Figure 19: Bioinspired surface modification of PVDF. Reprinted with permission from 

Ref. [3]. 



Figure 20: Dielctric properties of the pristine nad surface modified PVDF. (a) 

Dependence of the dielectric constant of pristine PVDF and modified PVDF, (b) The 

dielectric loss on frequency at room temperature of pristine PVDF and modified PVDF. 

Reprinted with permission from Ref. [3] 

Figure 21: Effect of temperature on the dielectric properties of the pristine and surface 

modified PVDF. (a) Dependence of the dielectric constant of POOPA@PVDF and 

PVDF (b) The dielectric losses on temperature at the frequency of 10kHz of 

POOPA@PVDF and PVDF. Reprinted with permission from Ref. [3]. 



Figure 22: Simplify process of sol-gel. 



Figure 23: Dielectric properties of graphite composite. (a)Before dielectric damage 

process, (b) the loss of dielectric permittivity. Reprinted with permission from 

Ref. [65]. 



Figure 24: Comparison of experimental effective permittivity at different volume 

fraction of BTO with calculated results from different models. Reprinted with 

permission from Ref. [7] 



Figure 25: (a) The probability of failure of nanocomposites with different volume 

fraction of BTO and (b) the breakdown strength nanocomposite with different volume 

fraction when the probability of failure is 63.2%. Reprinted with permission from Ref. 

[7] 



Figure 26: Example of how the Cellular packing model simulate the status of particles 

at different volume fraction. Reprinted with permission from Ref. [7] 

Figure 27: The breakdown strength calculated by different simulations (lines) and 

experimental values (dots). Reprinted with permission from Ref. [7] 



Figure 28: The calculated maximum energy density of nanocomposite with differnte 

volume fraction (black) and predicted maximum energy density of nanocomposite with 

different volume fraction (grey). Reprinted with permission from Ref. [7]  



Table 1: Summary of nanocomposites with enhanced dielectric properties, modifications applied, and the main influence effect factors.  

Nanocomposite Modification   Main factors 

Graphene/ZnO [17-18] 

PVDF/ZnO [15-16] 

PVDF/TiO2 [17] 

Doping [13,15,17-18] Amount of dopant/volume fraction [7] 

PVDF-HFP/ZnO/TiO2 [15] 

PS-PVDF [11] 

PVDF-TrFE [82] 

Co-polymer [11,15] 

Pre-irradiated PVDF [3] 

Irradiation [11]  

 Dose intensity 

 Reaction time 

 Reaction temperature 

 Monomer concentration  

Solvent [11, 67] 

PVDF/BaTiO3 [35-36, 56-57] 

PVDF/BaTiO3-Nd2O3 [63] 

Surface modification: 

 Phosphoic acid [56-57] 

 Ethylene diamine [56-57] 

 Dopamine [12, 61] 

 Phosphate esters [54-55] 

 Oligomers [54-55] 

Matrix-filler interface [61-62, 56-57] 

Al-ZnO [67,83] Control the pH value [67] 

pH value [67,83] 

 TEA [83] 

 ZAD [83] 

 Acetic acid [83] 

 MEA [84] 

 Glacial acetic [85-86] 

 Ammonia [85-86] 


