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ABSTRACT 

A turbocharger retrofitting platform utilizing 1D models for calculating turbomachinery components maps and a fully coupled 

process for integration with the turbomachinery components and the diesel engine, is presented. The platform has been developed 

with two modes of operation, allowing the retrofitting process to become fully automatic. In the first mode, available turbo-

components are examined, in order to select the one that best matches the entire engine system, aiming to retain or improve the 

diesel engine efficiency. In the second mode, an optimization procedure is employed, in order to redesign the compressor to match 

the entire system in an optimum way. Dimensionless parameters are used as optimization variables, for a given compressor mass 

flow and power. 

A retrofitting case study is presented, where three retrofitting options are analyzed (compressor retrofit, turbocharger retrofit 

and compressor redesign). In the first and second option, turbocharger retrofitting is carried out, using available turbo-components. 

It is shown that initial performance cannot be reconstituted using off-the-self solutions. In the third option, compressor designing is 

performed, using the optimization mode, in order to provide an improved retrofitting solution, aiming to at least reconstituting the 

original diesel engine performance. Finally, a CFD analysis is carried out, in order to validate the compressor optimization tool 

capability to capture the performance trends, based on geometry variation. 

NOMENCLATURE 

Abbreviations 

CFD Computational Fluid Dynamics  

IC Internal Combustion  

OTE Original Turbocharged Engine  

T/C Turbocharger  

Symbols 

A Area [m2] 

C Speed of Sound [m/s] 
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Cp Specific heat ratio [kJ/kg K] 

Dh Specific enthalpy change [kJ/kg] 

Ns Specific Speed [-]       𝑚̇ Mass flow rate [kg/s] 

MN Mach number [-] 

Ν Speed [Rpm] 

P Pressure [Pa] 

PR Pressure ratio [-] 

Pwr Power [kW] 

R Impeller radius  [m] 

Rgas Air gas constant [kJ/kg K] 

S Dimensionless distance between 

leading and trailing edge 

[-] 

Sfc Specific Fuel Consumption [g/kWh] 

T Temperature [K] 

tc Blade thickness [mm] 

U Blade speed [m/s] 

V Absolute velocity [m/s] 

Z Impeller full blade number [-] 

Greek Letters 

β Blade angle [deg] 

η efficiency  

σ Slip factor [-] 

ρ Density [kg/m3] 

Φ Flow coefficient [-] 

ω Angular velocity [rad/s] 

Subscripts 

1 Impeller inlet  

1h Impeller inlet hub  
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1t Impeller inlet tip  

1m Impeller inlet mid  

2 Impeller outlet  

3 Vaneless diffuser outlet  

a Axial  

AD Adiabatic  

comp Compressor   

d Design  

cor Corrected  

dl Diffuser loss  

DF Disk friction  

ex External-parasitic  

le Leading edge  

m mechanical  

r Radial  

RC Recirculation  

s Static conditions  

t Total conditions  

te Trailing edge  

turb Turbine  

U Circumferential  

INTRODUCTION 

Turbocharged internal combustion (IC) engines have been widely used in vehicles, heavy duty trucks, ships, non-interconnected 

small electric power systems and other small energy applications. In particular, these engines have a leading role in marine industry, 

used either as main engines or as auxiliary power generator-sets (GENSETs) [1]. 

As discussed by Button et al [2], the main contributors in the life cycle cost of the turbocharged IC engines are maintenance 

and operational costs. Both costs increase as turbocharger (T/C) degradation occurs due to the harsh working conditions, leading to 

frequent turbo-components replacements. In many cases of an aged T/C not available anymore in the market, retrofit is performed, 

by replacing specific component (compressor or turbine) or entire T/C with a new one available in the market. 
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The T/C retrofit is a complicated and time consuming process, due to the fact that each turbo-component must be chosen 

carefully, in order to match the IC Engine, while retaining or improving the whole system efficiency. The automatization of such a 

process can benefit both T/C manufacturer and marine company, by decreasing the retrofitting process time, hence leading to lower 

process cost, productivity improvement and anchored ship time reduction. For the majority of retrofitting cases, the most obvious 

approach is to use market available turbo-components, because of the high cost of new component designing and manufacturing. In 

case of no available component that suitably matches the IC engine, a possible step is the redesigning of a new geometry, able to 

match the diesel engine. A lot of T/C manufactures focus on compressor, using available turbine if it is possible, because as Watson 

and Janota mention [3], “the T/C turbine can operate efficiently over a wider mass flow range than its compressor”. Designing and 

modeling of a centrifugal compressor is performed using 1D or 3D analysis. For 1D analysis, used in the current work, a component 

performance map calculation is carried out with geometrical parameters as input data.  

This analysis calculates the off-design performance using a mean streamline single zone model [4, 5]. Rodgers [6] tried to set 

the surge and choke limits for a wide range of centrifugal compressors using experimental data. Another contribution to the 1D 

model was made by Japikse [7], who assumed that the jet-wake structure exists in the impeller passage. A different approach was 

made by Stuart et al [8,9] who developed the three zone model by showing that impeller exit recirculation influences compressor 

work input. 

In the present work, Galvas [4] single zone centrifugal compressor mean line code is used, employing Rodgers [6] correlations 

for surge and choke limits prediction. Stuart et al [8,9] is used in order to develope an empirical correlation for calculating the 

exducer to inducer area ratio based on impeller flow coefficient. 

Geometry optimization is always sought in centrifugal compressor design process. Rossetti et al [10] focused on vaned diffuser 

with incompressible flow optimization, trying to achieve the best compromise between flow deflection, static pressure recovery and 

total pressure loss. Li et al [11] on the contrary created an optimization design method for the whole centrifugal compressor, using 

1D single zone model. The second part of his work focused on impeller and vaned diffuser matching optimization. The above 

researchers propose an optimization procedure using geometrical parameters as variables. Thus, it cannot be automated due to the 

fact that it is not robust in case of random initial geometry usage. 

In the present study a novel marine turbocharger retrofitting platform has been developed. It utilizes 1D models for calculating 

the turbomachinery components maps and a 1D fully coupled process integrating the turbomachinery components and the diesel 

engine. It has two modes of operation which aim to make retrofit process fully automatic, fast and reliable, either by choosing the 

best fitted turbo-component, or by redesigning it through an optimization process. The second mode provides a robust solution 

independent of initial data, by using dimensionless parameters as variable. Thus, it allows the initialization with random values, 

hence making the optimization mode fully automatic. Furthermore, for compressor redesigning, a 3D geometry is generated, 
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utilizing a transformation from 1D to 3D geometry technique, developed in the context of the present work. Finally, the platform, 

suggests the best solution based on estimated cumulative benefit in function of time of operation, after analyzing all three retrofit 

options (compressor replacement, entire turbocharger replacement and compressor redesign). 

Validation of the model of each individual component, namely compressor 1D model, turbine 1D model and diesel single zone 

model, as well as the entire turbocharged diesel engine, has been performed. The validation has been extensively described in 

another publication of the group of the authors (Ntonas et al) [12].  The platform is applied to a retrofitting test case for a diesel 

engine operating in the field. Application of all three retrofit options is examined. 

TURBOCHARGER RETROFITTING PLATFORM 

The simulation framework utilizes 1D models for calculating the turbomachinery components maps and then a fully coupled 

process integrating the turbomachinery components. The T/C is connected to a diesel engine and an intercooler as shown in Figure 

1, allowing the calculation of the performance and operating conditions at sub-system and system level. 

 

 

Figure 1: Turbocharged diesel engine layout. 

Compressor and turbine models are based on the methodology presented by Galvas [4] and Wasserbauer [13] respectively. For 

the diesel engine, an in-house single zone thermodynamic combustion model has been used for the closed engine cycle, with the 

capability of being calibrated based on available shop trials data, hence improving prediction accuracy. 

In order to ensure the applicability of the above presented framework in capturing turbocharged diesel engine operation, a 

validation process has been carried out. Validation of the model of each individual component, namely compressor 1D model, 

turbine 1D model and diesel single zone model as well as the entire turbocharged diesel engine has been performed. The validation 

has been extensively described in another publication of the group of the authors (Ntonas et al). [12].   

By using both compressor and turbine models, a data-base is developed with 13 different turbocharger 1D geometries in order 

to be used during retrofit process. The turbochargers are from the production line of partner company. [14] For matching criteria, 

turbocharger must provide the necessary boost pressure, in order for the IC Engine to generate the demanded nominal power. Ideally, 
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the turbo-components operating nominal points should be in high efficiency area. In addition compressor operating line distance 

from surge line must be as large as possible [15]. The degree of fulfilling these criteria is indicative of matching quality. 

Turbocharger retrofit using available turbo-components (Mode 1) 

The platform first mode of the platform provides an automatic T/C retrofit choice. By examining all turbo-components 

(compressors and turbines) available in data base, it selects the one that best matches the entire engine system, aiming to retaining 

or improving the diesel engine original efficiency, certified during shop trials. 

It sorts the available turbo-components, the technical specifications of which are stored in a database, according to the matching 

quality and the calculated overall performance. Additionally, a capability of checking specific turbo-components as retrofitting parts 

is provided, leading to a high computational cost reduction, if specific original turbocharger component (e.g. turbine) is available. 

In case that the optimum turbocharger does not fully satisfy the matching criteria, the platform also integrates flow trimming 

tool [16] for compressor or turbine that adapts the turbocharger performance in order to satisfy the matching requirements . 

Vaneless diffuser Centrifugal Compressor Redesign (Mode 2) 

In the second mode, an optimization procedure is followed, redesigning the compressor in order to match the entire system in 

an optimum way, retaining the original turbine. The usage of dimensionless parameters (e.g. Ns, Φ, etc.) gives, a robust and fast 

converging procedure is provided, without specific initial geometry requirement.  

For making the optimization process fully automatic, constant variables ranges are imposed (Table 1) in order to satisfy every 

compressor performance requirement, while the initialization is performed using random values from the ranges shown.  

Table 1: Dimensionless geometrical parameters. 

Parameter Range Parameter Range 

Z (6,40) R1H/R1T (0.25,0.70) 

NS (0.45,1.25) [17] MΝ3 <0.95 

Φ2 (0.1,0.5) β2 (0,80) 

R1T/R2 (0.3,0.8)   

 

The ranges have been calculated in cooperation with partner company [14], by examination of 13 turbocharger compressor 

geometries provided. 

The usage of dimensionless parameters is achieved by coupling a typical compressor 1D mean line model [4] with a pre-

processor, capable of transforming dimensionless parameters into 1D geometry as explained in the Appendix. This transformation 

is accomplished by using compressor mass flow and power as input data. Input and output data are the following: 

 Input data: Pwrturb, 𝑚̇, Z, NS, Φ2, R1T/R2, R1H/R1T, MΝ3, β2, 

 Output data: R1h, R1t, R2, R3, b2, b3, Z, β1m, β2 
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The procedure followed is shown in Figure 2. 

 

Figure 2: Compressor model flow chart. 

The compressor model integrates restrictions that ensure physically acceptable solutions, while they reduce computational cost. 

The compressor optimization restrictions are given in Table 2. 

Table 2: Optimization restrictions. 

ηcomp,AD PR MN1t 𝒎̇𝒄𝒐𝒓 Ncomp 

(0,0.94) >1 <1.05 (𝑚̇𝑠𝑢𝑟𝑔𝑒, 𝑚̇𝑐ℎ𝑜𝑘𝑒) = Nturb 

By using an “index” parameter, compressor informs the optimizer about the solution feasibility. In case of hybrid T/C the 

restriction “Ncomp = Nturb” is not included. The blade thickness is not opted for optimization variable due to the lack of stress analysis. 

Thus, blade thickness is set, by using inducer rms blade blockage factor as a constant, equal to the 1D centrifugal compressor 

validation test case [4]. It should also be noted that, mode 2 is limited to vaneless diffuser centrifugal compressor redesigning. 

For optimization method, a Multi-Objective Particle Swarm [18] and a Downhill Simplex technique are sequentially coupled. 

In the first iteration Multi-Objective Particle Swarm optimization is carried out, due to its ability to capture an optimum solution 

fast without the usage of a feasible initial geometry. Then, having the particle swarm solution as initial geometry, a Downhill 

Simplex technique is checking locally, if an efficiency improvement can be succeed. For Multi-Objective Particle Swarm 

optimization, the inertia is 0.721, the maximum velocity 250, the number of particles 35 and the particle increment 1.655. As for 

Downhill Simplex, an initial simplex size equal to 0.1 is chosen. 

Modification of the single-zone model 

The basic disadvantage of the single-zone model in contrast to three zone model, developed by Stuart et al [8,9], is its inability 

to calculate the impact of impeller outlet blade length in recirculation and active flow region generation. However, for the current 

work, the single zone model is chosen due to the fact that three zone model requires a series of CFD simulations for calculating the 

relationship between flow coefficient, specific speed and aerodynamic blockage. Thus, in the current optimization process, the 

impeller outlet blade length tends to be as large as it can. For overcoming this issue, an impeller outlet blade length restriction is 

developed. To elaborate further, using a number of compressor measured geometries, the compressor outlet to inlet area ratio is 
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calculated as a function of design flow coefficient, assuming that specific speed does not affect the aerodynamic blockage. A 

correlation is established as shown in Figure 3. 

 

 

Figure 3: A2/A1 as a function of flow coefficient. 

The negative trend is evident in accordance to Stuart et al work [9]. Thus, the following equation is implemented into the 

optimization procedure 𝐴2/𝐴1 = −1.51 𝛷 + 1.0137 (1) 

A MARINE TURBOCHARGER RETROFITTING PLATFORM TEST CASE 

The use of the platform is demonstrated through application of a retrofitting test case is presented, where the above described 

retrofitting platform is applied. Specifically, a turbocharged 5-cylinder 4-stroke diesel generator is to be retrofitted, following of a 

T/C vaneless diffuser compressor material failure. Shop trials data are available, allowing diesel engine model calibration. Three 

retrofit options are analyzed, aiming to guide the T/C manufacturer in opting for the most suitable one, based on system matching-

performance and manufacturing economic analysis. 

 Option 1: Compressor retrofit, using available compressors.  

 Option 2: Entire turbocharger retrofit, using available compressor and turbine couples. 

 Option 3: New turbocharger compressor design (compressor optimization). 

Original Turbocharger Operation 

For original turbocharger operation analysis, having measured and using as input the original T/C geometry, in combination 

with the available shop trials data, the calculation of turbocharged diesel engine operation is performed [12]. The calculated and the 

measured specific fuel consumption against engine power are presented in Figure 4 for five different operating points (Load: 25, 

50, 75, 100 and 110%).  
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Figure 4: SFC against engine power. 

It is shown that the proposed integrated model simulates the overall engine operation in very good agreement to the engine shop 

trials data. The maximum deviation from the reported mean sfc value is 2.6%. Performance maps (predicted by mean line codes) 

and operating lines are presented in Figure 5 and Figure 6 respectively. 

Option 1: Compressor retrofit 

Retrofit is performed by choosing a compressor individually, by using platform first mode while retaining the original turbine. 

The retrofitted compressor operating line is presented in Figure 7, showing the matching quality with the entire diesel engine system. 

The comparison to Figure 4 shows that the maximum turbocharger speed drops about 12%, hence positively affecting turbocharger 

life. A 0.8% increase in SFC at nominal operational point is also noticed (Figure 9). The retrofitted compressor is chosen from the 

inventory of available compressors, which already exists and have their corresponding performance characteristics. The platform 

makes the best choice among those, but even the most suitable one is not perfectly fitted for the given diesel engine. In order to have 

the possibility of optimum fitting the platform is equipped with Mode 2 (Option 3) that will be discussed further in the paper.. 

 

 

Figure 5: Original compressor map and operating line. 
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Figure 6: Original turbine map and operating line.  

 

Figure 7: Retrofitted compressor map and operating line.  
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Figure 8: Original turbine map and operating line (option1). 

 

Figure 9: SFC change for retrofitted compressor. 

For the sake of demonstrating further platform capabilities, a flow trimming process [16] is performed in the current compressor. 

This process by cutting compressor blade tip moves the surge line away from the operating line. This platform capability is applied 

in case that compressor operates close to surge line.  

The performance maps for trimmed compressors by 5 and 10% along with T/C operating line are shown in Figure 10. Both 

trimmed compressors ensure the turbocharger stable operation and the matching quality between compressor and the entire diesel 

engine system. 
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Figure 10: Trimmed compressor performance maps and operating lines.  

The trimmed compressor by 5% is considered more appropriate because the specific fuel consumption increase is negligible 

compared to the 10%, as Figure 11 shows. Additionally, the turbocharger maximum speed is slightly higher by 5%, although having 

a maximum speed lower than design speed, hence not working in over-speed conditions. 

 

 

Figure 11: Sfc change for trimmed compressors retrofit. 

Option 2: Entire turbocharger retrofit  

In the second option, retrofit is carried out using entire T/C (compressor and turbine). The best fitted T/C is the one that consists 
of the compressor, chosen in option 1.The turbocharger speed does not exceed the design value, hence decreasing the chance of 
bearing failure due to over-speed. However, due to the turbine replacement, the maximum T/C speed increases about 11.37% (Figure 
8 and  

Figure 12). For the sfc line, a slight increase in nominal operating point about 0.27% is shown in Figure 13 which is similar to 

the option one. Thus, the weakness of the retrofit process using available turbo-components instead of redesigning the entire T/C is 

shown. 
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Figure 12: Option 2 turbine map and operating line. 

 

 

Figure 13: Sfc change for entire T/C retrofit. 

 
To sum up, the current option provides a slightly better retrofitting solution (Figure 9 and Figure 13), having lower specific fuel 

consumption in comparison to Option 1. However, it should be noted that the replacement of entire turbocharger instead of a 

compressor increases the process cost, hence making Option 2 less attractive. 

Option 3: New compressor design  

In the third option, compressor designing is performed, using the optimization mode (second mode), in order to provide an 

improved retrofitting solution, aiming to at least reconstituting the original diesel engine performance, certified during shop-trials. 

For basic input data, the mass flow and the turbine power are used, which in the current case are available by the shop trials engine 

data. In particular, default values are used for optimization process initialization, noting that this process is fully automatic. 

The restrictions, used in the current case, have been extensively presented in the previous section. Additional to these, an extra 

restriction is added, which is the hub radius. This restriction ensures that compressor can fit to specific diameter turbocharger axis. 
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The geometrical parameters differences between original and optimized compressor are shown in Table 3. Also main blade number 

decreases by one. 

Table 3: Difference in geometry between original and optimized compressor. 

R1H/RT R1T/R2 A2/A1 Φ β1Μ β2 

4% 10% 6% 12% 71% 37.8% 

 

It is obvious that optimized compressor geometry has similar size to the original one, hence validating the right operation of 

the second mode, knowing that initialization is performed based on default values.  For optimized compressor, Figure 14 and Figure 

15 highlight the performance improvement in relation to original compressor. Specifically, a relative pressure ratio and absolute 

efficiency increase in nominal operating point of 12.39% and 2% respectively are achieved. The maximum absolute efficiency 

increase is about 3.8%, with a significant movement of design point about 34.6% (Figure 15). 

 

Figure 14: Original and optimized compressor performance map.  

With turbocharged diesel engine performance analysis being carried out, optimized compressor operation is calculated. The 

T/C operating line on optimized compressor performance map is presented in Figure 16. For specific fuel consumption, a 0.27% 

decrease in nominal operating point is shown in Figure 17. Also a 0.38% reduction in nominal T/C speed occurs, hence positively 

affects T/C bearings life. 
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Figure 15: Original and optimized compressor efficiency map.  

 

 

Figure 16: Optimized compressor map and operating line.  
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Figure 17: Sfc change for optimized compressor retrofit. 

Concluding, the third option provides the best retrofitting solution in relation to first and second one, as Figure 9, Figure 13 and 

Figure 17 show. Nevertheless, it should be noted that the current option requires compressor component manufacturing, hence 

increasing the retrofitting cost (CNC wheel milling and shroud/scroll housing rebuild). The cost for high capacity marine centrifugal 

compressors may exceed the value of 10000$.  

Finally, a CFD analysis has to be carried out, as a mean of validating the compressor optimization tool capability to capture the 

performance trends based on geometry variation by comparing the pressure ratio and efficiency between CFD and corresponding 

1D method.  

Platform mode 2 CFD Validation 

For compressor optimization (mode 2) validation, steady-RANS simulation is performed for both original and optimized 

compressors. Specifically, a CFD analysis is carried out, in order to validate the pressure ratio and efficiency trends as obtained by 

the corresponding 1D model.  

The current simulations are conducted within ANSYS CFX 17.0. For computation time reduction, a single passage simulation 

is applied, knowing that during stable operation, the flow can be assumed as periodic. Centrifugal compressor domain consists of 

two domains, impeller and diffuser. Impeller mesh size is approximately 2 millions, succeeding mesh size independence, and 

diffuser size 140000. Both components achieve a maximum y+ level lower than 2.58. 

For CFD model validation, the NASA B30-D2 vaneless diffuser centrifugal compressor [19] is considered. This is a transonic 

compressor, which was studied as both vaned and vaneless diffuser with a NASA in-house CFD code. Between both of them, the 

vaneless diffuser compressor is chosen as more relative to the current work. The maximum error is about (0.5%) for the efficiency 

curve at nominal speed, the only available as reference. The comparison is shown in Figure 18. 
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 Figure 18: CFD compressor model validation [19]. 

For creating a 3D geometry for original and optimized compressor, a transformation from 1D to 3D geometry technique is 

developed in the context of the present work. Basically, it is a blade angle/thickness adaptation based on NASA B30-D2 3D 

compressor data. The correlations of this technique are presented below. 

 

𝑘1(𝑆) = 𝑓(𝑆)𝑓(0) 𝑔𝑙𝑒 𝑘2(𝑆) = 𝑓(𝑆)𝑓(1) 𝑔𝑡𝑒 (2) 

𝑔(M) = { k1(S)S k1(S) +  (1 − S) k2(S) k2(S) , S = 0, S = (0,1), S = 1  (3) 

 

The parameter S is the dimensionless distance between blade leading and trailing edge. Thus, for leading edge is equal to zero 

and for trailing edge is equal to one. The f function represents the NASA B30-D2 blade data (angle and thickness) for each blade 

position and g function the adopted blade data according to given leading and trailing edge blade data (𝑔𝑙𝑒  and𝑔𝑡𝑒).Having calculate 

blade angle and thickness across blade for span (0, 0.5, 1) for original and optimized compressor and combining them with the 

corresponding 1D geometry, a 3D geometry can easily be generated for each compressor (Figure 19). 

 

Figure 19: Compressors 3D geometry generation. 

Then, a CFD simulation is carried out at the nominal operational point, according to original turbocharged diesel engine shop 

trials for both geometries.  

The pressure ratio and efficiency trends as obtained by 1D model and CFD simulation, in the nominal operation point are shown 

in Table 4. It can be seen that the 1D model is able to capture the performance trend based on geometry variation, hence making it 

a reliable tool during 1D design.  
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Table 4: Comparison between 1D model and CFD.  

Parameter 1D model CFD 

Total Pressure Ratio +12.39% +14.91% 

Compressor Efficiency +2.1% +1.3% 

 

Specifically, the efficiency trend between original and optimized compressor shows a small difference between 1D and CFD 

model, with a value about 0.8%. For pressure ratio the difference increases to 2.52% which is expected due to the nature of single 

zone model. The map generated from the 3D geometry shows a 0.02% reduction in SFC for the nominal operating point that is 

slightly less than the value estimated using the 1D map (Figure 20).  

 

Figure 20: Sfc change comparison between 1D and 3D geometry. 

 Using indicative costs about T/C purchase [20], centrifugal compressor (one part order) impeller CNC milling and scroll 

housing casting, Figure 21 shows the payback period for each option. Fuel costs typical at the period of writing this paper have been 

employed (marine diesel fuel cost (bunker) varies and data for different fuels and locations are published daily, as for example in 

[21]. 
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Figure 21: Estimated cumulative benefit in function of time of operation. 

For our test case, under the assumptions used, the payback period for option 2 is 12574h and for option 3 is 8621h. Taking into 

consideration, the compressor performance reduction for transforming geometry from 1D to 3D, the new payback period is about 

12441h. Option 3 seems to be the best choice (even with this reduction), having the shortest payback time.  

SUMMARY-CONCLUSION 

A marine turbocharger retrofitting platform, presented in this work, utilizes 1D models for calculating the turbomachinery 

components maps and a fully coupled process integrating the turbomachinery components and the diesel engine. Having two modes 

of operation, it allows the T/C retrofitting process to become fully automatic. 

In the first mode, all available turbo-components (compressors and turbines) are examined in order to select the one that match 

the entire engine system while retaining or improving the diesel engine efficiency. Also a manual flow trimming tool is integrated 

in order to adapt the turbocharger performance to satisfy the engine operation requirements. 

In the second mode, an optimization procedure is followed, in order to redesign the compressor to match the entire system in 

an optimum way. Taking advantage from the usage of dimensionless parameters as optimization variables with defined range, it can 

provide a more robust, faster converging and fully automatic procedure, using the compressor mass flow, the external power and 

the rotational speed in nominal operation point as input data. Both input data and the speed restriction are available in shop trials 

data, hence not requiring the original compressor geometry and performance measuring.  

Then, the platform is applied in real retrofitting case study where three retrofitting options are analyzed (compressor retrofit, 

whole turbocharger retrofit and compressor redesign). In the first and second option, by utilizing the platform first mode, a 

turbocharger retrofit is performed, using the corresponding available turbo-components. The solutions, that the platform provides, 

show that the initial performance cannot be achieved using off-the-self solutions, having a specific fuel consumption increase about 

0.8% for option one and 0.27% for option two in nominal operation point. For third option (second mode usage) a compressor 

designing is performed, providing an improved retrofitting solution, aiming to at least reconstituting the original diesel engine 
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performance, certified during shop-trials. For optimized compressor a 2% efficiency increase in nominal operating point is noticed 

in relation to original one.  

Thus, the entire diesel engine system efficiency improvement is succeeded, leading to a sfc decrease about 0.27%. A CFD 

analysis is carried out, comparing the pressure ratio and efficiency between CFD and corresponding 1D method. A 0.8% increase 

in efficiency trend and a 2.52% in pressure ratio trend are noticed, showing that 1D model is a reliable tool during 1D design.  

Retrofit process relying on engineers’ personal judgment may not be optimal and thus a turbocharged marine diesel engine 

unnecessary degradation occurs. This degradation leads to an engine fuel consumption increase, hence NOx and CO2 increase. With 

the mass usage of the platform proposed here, it is guaranteed that the retrofit process, will provide the best retrofit solution, leading 

to a NOx and CO2 decrease. Both gases are responsible for climate change and global warning. Also the usage of the platform will 

increase the productivity of turbocharger manufacturers, decreasing the time, spending in tasks such as, searching for available 

turbochargers, matching analyzing and designing a new compressor. 

The optimization technique using dimensionless parameters presented in the current work, can be a reliable tool during 1D 

compressor design, in case of no available initial geometry. Also, 1D to 3D transformation technique, developed in the context of 

the present work, can provide a good 3D geometry in case of no available 3D optimization, or a proper initial geometry for 3D 

optimization.  

These elements of the approach proposed here and the fact that it does not need proprietary information, constitute novel features 

that to the authors’ knowledge cannot be found in previously published works.   
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APPENDIX: PRE-PROCESSOR PROCEDURE 

The following mathematical procedure is following in the preprocessor, to transform dimensionless parameters (Table 1) into 

1D geometry. This transformation is accomplished by using compressor mass flow (𝑚̇) and external power (𝑃𝑤𝑟𝑡𝑢𝑟𝑏) as input data. 

A zero inducer incidence angle is forced ensuring that the design point is not close to surge or choke line.  

For the given turbine output power, the required compressor power is calculated by the following equation: 𝑃𝑤𝑟𝑐𝑜𝑚𝑝 = 𝜂𝐶,𝐸𝑥𝑃𝑤𝑟𝑡𝑢𝑟𝑏  𝑛𝑚 

 For the power transmission from the turbine to compressor the turbo cartridge mechanical losses are set 95%. Parasitic 

efficiency  𝜂𝐶,𝐸𝑥 is defined as follows: 

𝜂𝐶,𝐸𝑥 = 𝐷ℎ𝑐𝑜𝑚𝑝𝐷ℎ𝑐𝑜𝑚𝑝 +  𝐷ℎ𝑐𝑜𝑚𝑝,𝑅𝐶 +  𝐷ℎ𝑐𝑜𝑚𝑝,𝐷𝐹 

It is taken equal to 1 for the first iteration. 

Impeller outlet total temperature is computed for a certain inlet total temperature and compressor power. 

𝑇𝑡2 = 𝑃𝑤𝑟𝑐𝑜𝑚𝑝𝑚̇ 𝐶𝑃   + 𝑇𝑡1 

Knowing the demanded mass flow rate, impeller power and specific speed, an initial guess of density (ρ1) is made to calculate 

the impeller rotational speed. 
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𝜔 = 2 𝜋 𝑁𝑠√𝑚̇𝜌1
(𝑃𝑤𝑟𝑐𝑜𝑚𝑝𝑚̇ )34.  , 𝑁 = 30 𝜔𝜋  

Additionally, the slip factor is estimated based on Wiesner formula [22]. The following equations allow the calculation of blade 

speed and circumferential speed in impeller outlet for a given blade backsweep angle and flow coefficient in impeller outlet. 

𝑈2𝑉𝑈2 = 𝑃𝑤𝑟𝑐𝑜𝑚𝑝𝑚̇  , 𝑉𝑈2𝑈2 = 𝜎(1 − 𝛷2 𝑡𝑎𝑛 [𝛽2]) 

Having calculated exducer blade velocity and having flow coefficient as input data, the impeller outlet radial velocity and radius 

are found. 

𝑉𝑅2 = 𝛷2 𝑈2   , 𝑅2 = 𝑈2𝜔  

Βlade speed, inducer axial velocity and the impeller inlet blade angle in mid span are then calculated: 

 𝑈1𝑚 = 𝜔 𝑅1𝑚,  𝑉𝑎1 = 𝑚̇𝜌1 ∗ 𝐴1, 𝛽1𝑚 = atan (𝑈1𝑚/𝑉𝑎1) 

Static inlet temperature and pressure are calculated in order to predict the air density in inlet. Then the process from equation 

is repeated from blade speed calculation until density converges to a value.  

𝑇𝑠1 = 𝑇𝑡1 − 𝑉𝑎122 𝐶𝑃 , 𝑃𝑠1     = 𝑃𝑡1  (𝑇𝑠1𝑇𝑡1) 𝛾𝛾−1,     𝜌1 = 𝑃𝑠1𝑅𝐺𝐴𝑆 𝑇𝑠1   
The impeller outlet density can be found considering the calculated velocity triangle and static conditions at exducer position. 

𝑇𝑠2 = 𝑇𝑡2 − 𝑉𝑅22  + 𝑉𝑈222 𝐶𝑃  , 𝑃𝑠2 = 𝑃𝑡2  (𝑇𝑠2𝑇𝑡2) 𝛾𝛾−1, 𝜌2 = 𝑃𝑠2𝑅𝐺𝐴𝑆   𝑇𝑠2   
Impeller outlet area, hence exducer blade length, can then be evaluated. 

𝐴2 = 𝑚̇𝜌2 𝑉𝑟2 , 𝑏2 = 𝐴22 𝜋 𝑅2 

For the vaneless diffuser calculations, it is considered that diffuser passage width is equal to blade length. 

At first, it is assumed that in vaneless diffuser only pressure drop exists. In the first iteration, Pdl is set as zero. Then the mean 

line code calculates the pressure drop, correcting it. 𝑃𝑡3 = 𝑃𝑡2 − 𝑃𝑑𝑙   , 𝑇𝑡3 = 𝑇𝑡2 

In order to calculate vaneless diffuser outlet absolute velocity, Τs3 and C3 have to be calculated. Ts3 = 𝑇𝑡3(1 + 𝛾−12  𝑀𝑁32), 𝐶3 = √𝛾 𝑅𝐺𝐴𝑆 𝑇𝑠3 

With C3 calculated, V3 and static pressure at position 3 can be easily computed. 
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𝑉3 = 𝑀𝑁3 ∗ 𝐶3              , 𝑃𝑠3 = 𝑃𝑡3 (𝑇𝑠3𝑇𝑡3)( 𝛾𝛾−1)
 

Since static conditions in diffuser outlet have been computed while flow angle is known from impeller velocity triangle, density 

diffuser outlet radius can then be allocated. 

𝜌3 = 𝑃𝑠3𝑅𝐺𝐴𝑆 𝑇𝑆3, 𝐴3 = 𝑚̇𝑉𝑟3𝜌3, 𝑅3 = 𝐴32 𝜋 𝑏3 = 𝐴32 𝜋 𝑏2 

Having computed an initial 1D geometry, then the mean line code predicts the compressor adiabatic ηAD and parasitic efficiency 𝜂𝐶,𝐸𝑥 for the given mass flow. The above described calculations are then repeated for an improved estimation. The one iteration 

choice is made, since it was observed that additional iterations do not offer a significant improvement. 




