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Abstract 

Multiple-gravity assist (MGA) trajectories are used in interplanetary missions to change the spacecraft orbital 

energy by exploiting the gravity of celestial bodies. This allows the spacecraft to reach regions in the Solar System 

that otherwise would be extremely demanding in terms of propellant. However, if a trajectory seeks to benefit from a 

long MGA sequence, it is necessary to solve a complex mixed integer programming problem in order to find the best 

swing-by sequence among all combinations of encountered planets and dates for the various spacecraft manoeuvres.  

Tisserand graphs provide an efficient way to tackle the combinatorial part of the MGA problem, by allowing a 

simple computation of the effect of different sequences of gravity assists, based only on energy considerations. 

Typically, the exploration of Tisserand graphs is performed via a comprehensive Tree Search of possible sequences 

that reach a specific orbital energy and eccentricity (e.g. Langouski et al.). However, this approach is generally 

directed by heuristic techniques aimed at finding duration limited, low Δv transfers without formal optimization or 

time constraint. This results in not having information from Tisserand graphs associated to the trajectory shape, 

namely the planetary phasing and mission durations. 

This paper presents a more comprehensive strategy involving the solution of the phasing problem to 

automatically generate viable ballistic planetary sequences. This approach has proven to be effective in representing 

trajectory shape already from the Tisserand map exploration step. All the solutions identified by the modified 

Tisserand map exploration are validated by re-optimizing the complete MGA trajectories as sequences of 

swing-bys, DSMs and Lambert Arc transfers intersecting the real positions of the planets involved. Different 

mission scenarios towards Jupiter are used as test cases to validate and demonstrate the accuracy of the 

Tisserand-based first-guess solutions. 
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1. Introduction 

Multiple Gravity Assist (MGA) trajectories exploit 

successive close passages, also called flybys or swing-

bys, with celestial bodies to change the spacecraft 

orbital energy in its interplanetary journey around the 

Sun. This is equivalent to gain a Δv with no propellant 
expenditure, thus allowing to explore regions in the 

solar system that would be extremely demanding to 

reach otherwise. For example, Galileo [1], Cassini [2] 

and the more recent Parker Solar Probe [3] and Solar 

Orbiter [4] required multiple flybys with Venus, Earth 

and even Jupiter to reach the desired scientific orbit. 

The design of such missions presents the 

complication that the trajectory structure, namely the 

planetary sequence, is not known a priori, but is the 

objective of the optimization itself, leading to a complex 

mixed-integer non-linear programming (MINLP) 

problem [5], also known in literature as Hybrid Optimal 

Control Problem (HOCP) [6]. This is one of the most 

difficult types of optimization problems, as it requires 

the solution of a combinatorial problem mixed with 

optimal control theory. MINLP/HOCP can be seen as 

two coupled optimization problems: the combinatorial 

part aiming at choosing the optimal sequence of flybys, 

and the continuous part aiming at identifying one or 

more locally optimal trajectories for a candidate 

planetary sequence. The complexity is due to the fact 

that these two components are highly coupled, that is 

the goodness of candidate sequence depends upon the 

solution of the continuous optimization and a variation 

of even a single flyby body corresponds to a 

significantly different set of trajectories. 

To autonomously solve an MGA problem, different 

strategies exist. Chilan and Conway [7], Wall and 

Conway [8] and Englander, Conway and Williams [9], 

[10] employed integer genetic algorithm and a real-

valued heuristic algorithm for the combinatorial and 

continuous part, respectively, with both impulsive and 

low-thrust manoeuvres. Ceriotti and Vasile [11], [12] 

used a method inspired by Ant Colony Optimization 

(ACO) to solve the MGA problem with Deep Space 

Manoeuvres (DSMs). Gad and Abdelkhalik [13], [14] 

applied a real-valued genetic algorithm using ‘hidden 
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genes’ and dynamic population size to find flyby 
sequences and the associated optimal trajectory. 

Schlueter et al. [5] formulated the MGA trajectory 

design as a MINLP problem, and used a combination of 

ACO and Sequential Quadratic Programming (SQP) to 

simultaneously solve the combinatorial and continuous 

problem, provided a fixed length of the planetary 

sequence. 

Strange and Longuski [15] developed a graphical 

technique based on Tisserand criterion to look for 

ballistic flyby tours to a given destination. Tisserand 

graphs provide an efficient way to tackle the 

combinatorial part of the MGA problem, by allowing a 

simple computation of the effect of different sequences 

of gravity assists, based only on energy considerations, 

not considering planetary phasing. They have been 

applied in many complex MGA trajectory designs. For 

example, Kloster et al. [16] and Colasurdo et al. [17] 

used Tisserand graphs to assess the feasibility of moon 

tours around Jupiter while Chen et al. [18] and Sun et al. 

[19] studied the accessibility of main-belt and near-

Earth asteroids via MGA transfers derived from 

Tisserand graph exploration. However, even though 

Tisserand graphs can quickly assess the feasibility of 

different gravity assist sequences, there is no explicit 

information about mission duration or eventual DSM. In 

this way, the combinatorial solution only provides 

sequences which are energetically possible, but planets 

synchronicity might never occur. 

In this paper, we present a novel strategy inspired by 

Tisserand graphs which allows for more truthful 

representation of MGA transfers. Extra realism in the 

mission duration evaluation is achieved by considering 

planetary phasing as well as resonances when stepping 

along an infinity velocity contour, to ensure feasible 

transfer durations, while maintaining limited the run 

time. In particular, Section 2 classifies MGA trajectory 

design as a MINLP problem, Section 3 introduces 

Tisserand maps and provides details on how to employ 

them to construct planetary sequences. Section 4 shows 

the continuous MGA trajectory optimization, aiming at 

finding at least one locally optimal trajectory for a given 

sequence. Section 5 introduces the modified Tisserand 

map exploration with the solution of the phasing 

problem, while Section 6 provides details on results 

obtained with the proposed solution. 

 

2. Multiple Gravity Assist Trajectory Design  
The MGA trajectory design is a global optimization 

problem in its nature, as for a given trajectory option, 

namely a planetary sequence, there exist several locally 

optimal trajectories, in terms of planets phasing, 

presence of DSMs, etc. Designing an MGA trajectory 

corresponds to solve a MINLP problem, as it involves 

the optimization of both integer and continuous 

variables. A general formulation of a MINLP is 

provided as follows [5], where f(x,y) is the objective 

function to be minimized: 

Minimize:

 ,  

Subject to: ,   

           ,  

           ,  

           ,  

 

Table 1. (x,y) components employed in full MGA 

trajectory design 

Discrete 

variables 

Description Continuous 

variables 

Description 

y1 Departing 

planet (e.g. 

the Earth) 

t0  

(MJD2000) 

Departing 

date 

vD (km/s) Departing 

infinity 

velocity 

D (deg) Departing 

angle 

yi, 

i=2,…, 
nint-1 

Swing-by 

planets (e.g. 

Venus, 

Earth, Mars) 

TOFi (days) Time of 

flight to 

planet i 

i Fraction of 

TOFi at 

which a 

DSM occurs 

γi (deg) Inclination 

of the flyby 

plane at 

planet i 

hi (km) Flyby 

periapsis 

altitude at 

planet i 

yn,int Arrival 

planet (e.g. 

Jupiter) 

TOFn,int 

(days) 

Time of 

flight 

towards 

planet nint 

int Fraction of 

TOFn,int at 

which a 

DSM occurs 

 

Vectors  include the decision variables of the 

optimization: the components of  are the continuous 

variables, while the components of vector  are the 

discrete variables. Moreover, the decision variables 

 are constrained by lower  and upper 

bounds .  and  represents 

the equality and inequality constraints, respectively, 

which the optimization is subject to;  and  are 

the cardinality of  and , respectively;  and  are 

the cardinality of the equality and inequality constraints, 

respectively.. In an MGA mission design, the discrete 
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components of  correspond to the unknown planetary 

sequence, while x includes the continuous-varying 

variables as the launch date and four variables for each 

of the gravity-assist planets, that are the time of flight 

between two successive planetary encounters, flyby 

altitudes, hyperbola plane inclination and presence of 

DSM. The combination of discrete and continuous 

variables forms a challenging MINLP problem, as a 

variation of even a single component of  vector 

corresponds to a considerably different x vector. Table 1 

summarises all (x,y) components usually employed for 

MGA trajectory design. Due to high complexity of 

global optimization [20], MGA trajectory design was 

used to challenge the space community with the ‘nearly 
impossible’ Global Trajectory Optimization 
Completions (GTOCs), as in Izzo [21], where a 

complex MGA transfer was to be designed to reach and 

impact a potentially hazardous asteroid. 

In this paper, the design of an interplanetary mission 

from Earth to Jupiter is analysed. This is a very well-

known MGA transfer problem as it is based on NASA 

mission Galileo (see D’Amario et al. [1] or Meltzer 

[22]), as well as on ESA 2022 JUICE mission (see 

Grasset et al. [23] or Ecale et al. [24]), and it is usually 

used in literature for benchmarking, such as in 

Petropoulos et al. [25], Schlueter et al. [5] or Olds et al. 

[26]. This has proven to be a quite complex problem, as 

designing trajectories to high heliocentric orbital 

energies usually requires complex MGA transfers, on 

which the spacecraft increases its energy with low 

propellant consumption. The Galileo mission exploited 

three flybys, one at Venus and two at Earth, to reach 

Jupiter, while JUICE is intended to perform several 

swing-bys at Earth, Venus and Mars to achieve the 

desired energy. 

The model employed in the present work is based on 

the patched-conics approximation as described by 

Vallado [27], on which  the interplanetary legs, i.e. the 

trajectories between two successive planetary 

encounters, are assumed to be Keplerian, with the Sun 

as the main attracting body and the planets gravity 

influence is neglected. In this present paper, these 

planet-to-planet trajectories are defined as two ballistic 

arcs interconnected by a deep-space manoeuvre. This 

thus represent that the trajectories are solved by defining 

the direction and magnitude of the departure velocity 

from the departure planet, the time span until the second 

planet and the date of encounter with the arrival planet. 

The second ballistic arc is solved as a Lambert arc 

solutions [28]. 

A flyby is then assumed any time the spacecraft 

position with respect to the Sun matches the one of the 

planets. The planetary gravitational influence is 

assumed to affect the spacecraft motion only inside the 

planet Sphere of Influence (SOI), but the latter is 

assumed of negligible size as compared with the Solar 

System. The flyby model used here is the one described 

in Vallado [27]. In this way, a flyby corresponds to an 

instantaneous change of the spacecraft heliocentric 

velocity, (see Fig. 1) depending upon the spacecraft 

velocity with respect to the planet (i.e. ) and the 

deflection (i.e. ), which eventually is linked to the 

flyby periapsis (i.e. ) by: 

 

 

  (1) 

 

 

Where µPL is s the gravitational parameter of the 

swing-by planet. 

In order to assess the feasibility of different 

trajectory options, Tisserand graphs [15] are employed 

to generate the gravity-assist bodies. These allow for 

fast computation of the effect of a flyby with a given 

planet, only employing energetic considerations. In this 

way, it is possible to tackle the combinatorial part of the 

MGA-MINLP optimization problem, by analysing 

different planetary sequences. The next section provides 

details of Tisserand graphs as used in the present work. 

 

3. Tisserand Graphs 

Tisserand graph is a graphical technique first 

introduced in Strange and Longuski [15] which can be 

used in interplanetary mission design for quick 

computation of sequences of gravity-assist bodies. 

Tisserand graphs can be obtained by parametrizing the 

Tisserand invariant [29] with respect to the infinity 

velocity of the spacecraft relative to the gravity assist 

body [30]. 

It is thus possible to visualise how a gravity assist 

changes the orbit of the spacecraft relating the Tisserand 

invariant and the turning angle  (see Fig. 1) with the 

resulting orbit of the spacecraft as done in [31]: 

 

 

 (2) 

 

 

 

Where  and  are the distance and velocity 

magnitudes of the flyby planet with respect to the Sun, 

respectively,  and  are the semi-major axis and 

eccentricity of the spacecraft orbit, respectively,  is 

the infinity velocity magnitude of the spacecraft with 

respect to the flyby planet and  is the flight path angle, 

ranging from  to . The term  

represents the Tisserand invariant, assuming the planets 

orbits be circular and coplanar, which is an acceptable 

assumption in preliminary mission design. All the 

planets obits are inclined only by few degrees with 

respect to the ecliptic plane (Venus and Mercury have 
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the highest inclination of  and , 

respectively); moreover, only Mercury and Mars have 

the most eccentric orbits (  and , 

respectively), while the other planets have nearly 

circular paths [27]. 

Fig. 1. Vector diagram representing the effect of a flyby 

with a generic planet 

 

The vector diagram in Fig. 1 represents the effect of 

a close passage with a generic planet with velocity . 

The velocity of the spacecraft before the flyby is , 

while the velocity after the flyby is . The turning 

angle  determines the orbit of the spacecraft after the 

flyby, rotating the infinity velocity vector from  to 

. The flyby can be assumed to occur instantaneously 

when compared to the interplanetary travel times. From 

Fig. 1, if  is equal to zero, then the spacecraft velocity 

is aligned with the planet one, corresponding to the 

highest orbital energy for a given  magnitude (see 

also Fig. 2). If  is equal to , the velocity of the 

spacecraft is antiparallel to the planet’s one, resulting in 
the lowest orbital energy for the given  magnitude. 

Fig. 2. Infinity velocity contours of 5 km/s and 3 km/s at 

Venus and Earth, respectively. Tick marks separate 

flybys with 200 km altitude. The squared mark 

represents a possible transfer between the two planets 

 

Since the flyby bodies are assumed to be in circular 

and coplanar orbits,  and  as obtained from eq. 1 

are the only parameters needed to fully describe the 

orbit of the spacecraft. Equivalently, the orbital energy 

 and the periapsis  entirely define the shape and 

dimension of the orbit. An  graph [15] for 

different planets can be obtained from eq. 1 by fixing a 

level and spanning  from  to . 

Fig. 2 represents the Tisserand graph for 

Venus and Earth with =5 km/s and =3 km/s, 

respectively, namely the coplanar orbit space around the 

Sun [16]. Tick marks on the contours are separated by 

flyby at Venus and Earth with =5 km/s and =3 

km/s, respectively, with flyby altitude of 200 km. These 

can be used to quickly assess the effect of the close 

passage with the given planet, as they represent the 

change in the spacecraft orbit effected with the flyby. 

Moreover, the squared mark at the intersection of the 

two contours represents a possible transfer orbit 

between the Earth and Venus. This opportunity only 

exists from an energy point of view, since Tisserand 

graphs contain no explicit information regarding the 

planetary phase and transfer time. 

 

3.1 Tisserand map exploration 

Exploring a Tisserand map means to evaluate the effect 

of all possible sequences of planetary swing-bys in the 

parameters of the Tisserand invariant; i.e. semimajor 

axis a, eccentricity e. It is thus possible to enumerate all 

the planetary sequences which are energetically feasible 

to reach the desired target orbit. See for example Fig. 3 

where swing-by sequences towards Jupiter with a single 

departure condition at Earth are represented in the 

 graph. 

Fig. 3. Some paths towards Jupiter represented on the 

Tisserand map. Tick marks separate flybys with 200 km 

altitude. The squared mark represents the departing 

condition, i.e. a possible transfer between the first two 

planets 

 

Let us define as a node a given position in the 

Tisserand map (i.e. rp, E), corresponding to a 

heliocentric orbit. Once a starting node is defined, the 

second level (i.e. the set of potential reachable new 

nodes) is constructed by evaluating all the possible 

planetary swing-bys from the given departing condition. 
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This is done by considering the intersections between 

the current node and the orbits of all the planets in the 

Solar System. If the current node defines an orbit that 

crosses the orbit of a planet, then a swing-by with this 

given planet is possible. At each node of the second 

level, the flybys are evaluated, assuming a minimum 

allowable swing-by altitude of 200 km, and the resulting 

orbits are saved. Successive levels are built by checking 

all the possible flybys from each resulting orbit from the 

previous level. The search is stopped either when the 

arrival node or a maximum number of levels (i.e. 

iterations) is reached. 

 

3.2 Earth-Jupiter test case: an enumerative exploration 

In order to assess the feasibility of solving an MGA 

transfer towards Jupiter, one can enumerate all the 

viable sequences after a given number of iterations. The 

exploration begins by selecting departing nodes on the 

map. The starting planet is assumed to be the Earth, 

with departing infinity velocity contours 

 and angles . 

Nodes on Tisserand map, either along the same infinity 

velocity contour or at intersection between two different 

ones, can be used to connect contours on the plot into 

tours. In this way, it is possible to assess the 

effectiveness of a given path to reach a specific target 

orbit on the graph. Tisserand maps exploration is 

usually performed by discretizing the infinity velocity 

levels at the celestial bodies passages as well as fixing 

the flyby altitude to the minimum allowable for the 

flyby planet (see for example Strange [31], Strange and 

Longuski [15] or Kloster et al. [16]). Given a current 

node, the next level is constructed from all nodes that 

can be reached with a single maximum-deflection flyby. 

This process is iterated until the path to every node is 

computed. 

A more general approach for automated Tisserand 

map traversal is introduced here. To truthfully represent 

possible transfer options between two successive flybys, 

the discretization on the plot is avoided. Since any 

given point on the Tisserand map represents an orbit 

around the Sun, one can check the available planets to 

flyby. Given a departing condition , it is 

possible to evaluate the resulting spacecraft trajectory, 

and thus to enumerate all the reachable planets. In this 

way, the first layer is explored. For all the planets 

identified in the first layer, a maximum deflection flyby 

is performed, and the resulting orbits are stored. Again, 

for each of them, one checks all the reachable planets 

and iterates the procedure until Jupiter is reached. All 

the routes that have reached the arrival node are saved. 

This is repeated for different departing combinations of  

. This concludes the enumeration of all the 

viable sequences towards Jupiter. Since planets phasing 

is ignored at this stage, these transfers options only exist 

from the energetic point of view, and one assumes that 

the flyby planet would be in the proper position to allow 

the spacecraft to perform the swing-by. 

 

3.3 Earth-Jupiter MGA Combinatorial and Continuous 

Optimization 

The previous section completed an enumeration of 

all the possible sequences towards Jupiter. However, 

since Tisserand maps contain no explicit information 

about planets phasing, time of flight requires to be 

estimated using some relevant approximation and/or 

specific heuristic. A possible strategy could be to 

evaluate the transfer time fort the shortest arc 

connecting the two planets’ orbits. However, this 

usually results in an underestimation of the flight time 

of more than 30% [15] in the most optimistic cases, as 

well as it poses strict constraints upon planets positions 

along their orbits in terms of synodic period. Following 

Table 2 summarises the sequences obtained. These have 

been computed by fixing a single departing condition at 

Earth, i.e. a  = (4.9 km/s, 173 deg). In general, 

one can discretize the departing conditions taking more 

levels associated to . For example, taking 110 

departing conditions with equally spaced 

 and angles , one 

can obtain 128 sequences, with a maximum of three 

flybys. 

 

Table 2. Sequences resulting from the enumerative 

approach  

Sequences Time of Flight (years) 
*EVVEJ 1.61 

EVEEJ 6.38 

EVEMJ 2.12 

EVVVEJ 4.68 

EVVEMJ 

EVVMEJ 

EVVMVJ 

EVEEMJ 

EVEMEJ 

EVMEEJ 

EVMEMJ 

1.54 

5.34 

4.14 

6.43 

8.56 

3.42 

3.54 
*E = Earth, V = Venus, M = Mars, J = Jupiter 

The time of flight along each leg of an MGA 

transfer can be estimated by considering the spacecraft 

true anomaly ( ) when leaving the first planet of the 

leg.  Fig. 4 illustrates the possible transfers between two 

circular and coplanar orbits. In Fig. 4,  and  

represent the time from periapsis passage (positive 

counter clockwise), which are evaluated from Kepler’s 
equations (for elliptical orbits): 

 

 (3) 
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Where:   and  are the period and eccentricity of 

the transfer orbit, respectively, and  is the eccentric 

anomaly at . Considering only transfers with less 

than one full revolution (i.e. the first two intersections 

with the target orbit), eight arcs connect the two orbits. 

The first four arcs are associated to an upwards transfer 

(i.e. the spacecraft travels from the innermost to the 

outermost planet), while the other four are related to a 

downwards transfer (i.e. the spacecraft travels from the 

outermost to the innermost planet). Table 3 shows the 

time of flight computation for each of these 

permutations. 

 

Table 3. Flight times for possible arcs (only considering 

first two intersections) 

Spacecraft position Upward Downward 
*FI   
SI   
FI   
SI   

* FI = First Intersection, SI = Second Intersection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Possible transfer arcs between two circular and 

coplanar orbits 

 

If the departing and arrival planets coincide, then 

there are only two different possibilities associated to 

 and . If , the 

spacecraft is at  (or equivalently at ) and the time of 

flight for the next intersection is  (or 

equivalently ). Otherwise, if , the 

spacecraft is at  (or equivalently at ) and the 

flight time to the next intersection is  (or 

equivalently ). In both cases, the time of flight to the 

second intersection is . 

 

4. MGA Continuous Optimization  
Once all the enumerated routes have been saved, one 

can classify them as done in Fig. 5. Black squares have 

been obtained with the enumeration approach and 

classified as described in Section 3.3; the cost for the 

Tisserand solutions have been assumed to be the sum of 

the departing and arrival infinity velocities. These have 

been obtained with single departing condition, 

i.e.  and , towards 

Jupiter. Red squares are the results of full trajectory 

optimization: one wants to solve the full problem of 

finding at least one locally optimal trajectory for the 

given sequences. Once the planetary sequence is known 

employing the circular-coplanar model, a full-ephemeris 

model is used to search for local optimal trajectories. 

Fig. 5. Solutions for Earth-to-Jupiter transfer as 

obtained from Tisserand map exploration (black 

squares) and from optimization (red squares) 

 

Finding optimal trajectories for a given planetary 

sequence is a complex task on its own. Several methods 

based on Particle Swarm Optimization (PSO) [32], 

Genetic Algorithms (GA) [13], Differential Evolution 

(DE) [26], monotonic basin hopping and ACO [33] are 

reported in literature. 

In the present paper, the sequences identified are 

optimized with a Particle Swarm Optimization (PSO) 

[34], [35]. The departing conditions (i.e. departing 

infinity velocity and  angle) are assumed to be 

provided by the solutions obtained with Tisserand map 

exploration. The model used for the optimization is the 

so-called MGA-1DSM as described by Vasile and De 

Pascale in [36] where DSMs are assumed on each 

planet-to-planet trajectory of the path. The objective 

function to be minimized is the sum of all the DSMs 

involved in the transfer. Fig. 5 represents solutions as 

obtained from Tisserand graph exploration (black 

squares) compared with optimized solution (red 

squares). As it can be seen, since the required location 

of the planet is ignored in Tisserand map search, the 

optimized solutions generally requires higher time of 

flights. This is because the Tisserand exploration has 

been performed ignoring the planets positions along 

their orbits. In this way, these solutions do not provide 

information on the shape of the trajectory, but only the 

planetary sequence is known. 
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5. Solving the phasing problem  
The previous section showed that ignoring planets 

phasing when looking for optimal trajectories leads to 

infeasible paths. In other words, the optimized solutions 

only share the same planetary sequence with Tisserand 

map, meaning that no information about the shape of the 

trajectory nor a proper time of flight estimation is 

provided from Tisserand map exploration. In order to 

answer this issue, solving the phasing problem becomes 

crucial to obtain better representation of the final 

trajectory directly from Tisserand map exploration. 

 

Fig. 6. Illustration of the phasing problem 

 

Performing a flyby manoeuvre implies the matching 

between the spacecraft position and that of the planet. 

From Fig. 3, if the spacecraft leaves the inner planet at 

 to reach the outer one, at the first intersection time 

 the planet true anomaly  would be in 

general different from that of the spacecraft  (see also 

Fig. 6). The anomaly  depends upon the orbit 

resulting after the last planetary encounter, i.e. the flyby 

radius  of the previous swing-by planet or the infinity 

velocity at the departure velocity vector  (if the first 

leg is considered). Therefore,  can be 

expressed as function of the variable , such that  

if flyby, or  if launch. First four intersections are 

considered each time the spacecraft can perform a flyby 

with a given planet. From Table 3, if more than two 

intersections are considered, one simply applies 

, if the  intersection is 

considered, while , if the 

 intersection is considered. As described in 

Section 3.3,  and  are computed based upon the 

transfer option (upwards/downwards). 

In this paper, we are not considering  as in 

most practical missions transfer time is limited, and 

larger N would imply longer transfers. It is worth 

noticing that considering  for a same-planet-to-

same-planet transfer corresponds to look for resonances 

along the given infinity velocity contour. The solution 

of the phasing problem is  such that 

. The Brent’s method is 
employed to find . Intervals for the bisection method 

need to be provided to initialize the method and are 

specified case by case. 

 

5.1 Complete Ballistic Search 

This section describes the automatic exploration of 

the Tisserand graph with proper time of flight 

estimation as highlighted in previous section. The 

search starts by selecting a departing condition in terms 

of .  If the resulting orbit crosses one or more 

planets orbits, then a possible flyby option with the 

given planet exists from the energetic point of view 

(first four intersections with the target planet are 

considered). The time of flight is computed as described 

in Section 3.3This provides the first two planets of the 

sequence and the state at each of them. For all the 

possible options identified, a maximum deflection flyby 

is computed (both in-front and behind the planet), and 

the resulting orbit is saved. Again, if this crosses one or 

more planets orbits, a possible transfer exists (from the 

energetic point of view). This would be a real trajectory 

only if  (first four intersections are 

considered for both in-front and behind passages of the 

current flyby planet). Only the options for which at least 

a solution to   exists are stored. All 

the other options are discarded. This provides the next 

planet to flyby. The procedure is repeated until a 

stopping condition is reached. This automatically 

provides all the possible flyby options for the given 

combination of departing date and . The purely 

ballistic MGA combinatorial problem is thus solved (no 

DSMs are considered at this stage). The time of flight 

between two successive planets is computed as 

described in Section 3.3 once the solution of 

 is available. 

 

6. Results  

In this section, results for the Earth-Jupiter transfer 

case are shown and compared to existing literature. 

From Fig. 3, there exist several flyby options to reach 

high energy orbits around the Sun, exploiting close 

passages with Venus, Earth and Mars. Combinations of 

successive flybys between these planets are useful to 

increase spacecraft perihelion, as well as maintaining 

low propellant consumption when reaching Jupiter (i.e. 

low infinity velocities at the arrival correspond to low 

 when considering Jupiter orbit insertion). However, 

these options exist only from the energetic point of view. 

The actual trajectory is found by solving the phasing 

problem as described in Section 5.1. The aim is to show 

that the Tisserand exploration with modified time of 

flight computation already provides good approximation 

of the full trajectory. 
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Fig. 7. Solutions for Earth-to-Jupiter transfer as 

obtained from modified Tisserand map exploration 

(black squares) and from optimization (red squares) 

 

Fig. 8. Earth-Venus-Earth-Earth-GA path towards 

Jupiter (Galileo-like trajectory) as obtained from 

modified Tisserand map exploration 

 

The design parameters and their upper and lower 

bounds are reported in Table 4. Minimum and 

maximum flyby altitudes are assumed to be 200 km and 

35000 km over the planet surface, respectively. 

Fig. 7 provides representation of the sequences 

obtained with the complete ballistic search as described 

in Section 5 and Section 5.1. The solutions obtained 

share the same planetary sequence as in Table 2, but 

they have been obtained by solving the phasing problem 

at each iteration of the procedure in Section 5.1. As it 

can be seen, solutions obtained with Tisserand 

exploration already provide good representation of the 

final set of trajectories. In this way, not only the 

planetary sequence is known, but also the trajectory 

shape, namely cost and time of flight, is provided. 

Fig. 8 and Fig. 9 show two examples of transfer 

towards Jupiter exploiting flybys with Earth, Venus and 

Mars resulting from modified Tisserand map 

exploration. In particular, the classic Earth-Venus-

Earth-Earth-GA (the same path used for Galileo [1]) and 

Earth-Venus-Earth-Mars-Earth-GA (a JUICE-like 

trajectory [24]) as obtained from the circular-coplanar 

model are reported. 

Table 4. Lower and upper bounds for parameters 

involved in full trajectory optimization 

Parameter Description Lower 

Bound 

Upper 

Bound 

 (days) Time of 

flight for the 

leg  

-15% of 

Tisserand 

solution 

+15% of 

Tisserand 

solution 

 Fraction of  

 at 

which a 

DSM occurs 

0 1 

 (deg) Hyperbola 

plane 

inclination 

at the planet 

 

-180 180 

 (km) Flyby 

altitude at 

the planet 
 

*Min. 

flyby 

altitude 

at the 

planet 

*Max. flyby 

altitude at 

the planet 

 
(MJD2000) 

 

 (km/s) 

 

 

 (deg) 

Departing 

date 

 

Departing 

infinity 

velocity 

Departing 

angle 

-10% of 

Tisserand 

solution 

-5% of 

Tisserand 

solution 

-5% of 

Tisserand 

solution 

+10% of 

Tisserand 

solution 

+5% of 

Tisserand 

solution 

+5% of 

Tisserand 

solution 
*Min. = Minimum, Max. = Maximum 

Fig. 9. Earth-Venus-Earth-Mars-Earth-GA path towards 

Jupiter (JUICE-like trajectory) as obtained from 

modified Tisserand map exploration 

 

In Fig. 10 and Fig 11, the same paths have been 

optimized once the trajectory from modified Tisserand 

exploration is provided. Both transfers are consistent 

with literature findings (see Petropoulos et al. [25] and 

Ecale et al. [24]). One can appreciate that the trajectory 

resulting from Tisserand map exploration with complete 

ballistic search and modified time of flight computation 
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provides a good guess of the full trajectory (in both 

cases the total DSMs cost is less than 500 m/s), both in 

terms of time of flight and flyby altitudes. 

Fig. 10. Earth-Venus-Earth-Earth-GA path towards 

Jupiter (Galileo-like trajectory) as obtained from full 

optimization once the Tisserand solution is provided 

Fig. 11. Earth-Venus-Earth-Mars-Earth-GA path 

towards Jupiter (JUICE-like trajectory) as obtained from 

full optimization once the Tisserand solution is provided 

 

7. Conclusions  

The present paper has presented a novel approach to 

Tisserand map-based sequence generation, accounting 

for planets positions along their orbits, thus solving the 

phasing problem. This is because current Tisserand map 

sequence generator approaches seem to lack in 

providing information about trajectory shape, namely 

planetary phasing and timing. The proposed modified 

Tisserand map-based approach allows to automatically 

generate planetary sequence with enough information 

regarding trajectory shape, with focus on mission 

duration. The modified Tisserand map approach has 

been tested for the well-known Earth-to-Jupiter transfer 

case, and all the trajectories have been re-optimized 

through complete MGA transfers as sequences of flybys 

and Deep Space Manoeuvres (DSMs), validating the 

accuracy of Tisserand-based first-guess solutions. The 

presented work has shown promising results; however, 

evolution and refinement are needed. Future research 

will also focus on implementing small DSMs during the 

modified Tisserand map search. 
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