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Abstract

This paper addresses the development of a digital twin, based on an inversion

procedure, integrating process monitoring with simulation of composites

manufacturing to provide a real time probabilistic estimation of process out-

comes. A computationally efficient surrogate model was developed based on

Kriging. The surrogate model reduces the computational time allowing inver-

sion in real time. The tool was implemented in the filling stage of an resin

transfer molding processing of a carbon fiber reinforced part resulting in the

probabilistic prediction of unknown parameters. Flow monitoring data were

acquired using dielectric sensors. The inverse scheme based on Markov Chain

Monte Carlo uses input parameters, such as permeability and viscosity, as

unknown stochastic variables. The scheme enhances the model by reducing

model parameter uncertainty yielding an accurate on line estimation of pro-

cess outcomes and critical events such as racetracking. The inverse scheme

provides a prediction of filling duration with an error of about 5% using infor-

mation obtained within the first 30% of the process.
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1 | INTRODUCTION

The lack of full automation and digital manufacturing

combined with the inherent process uncertainty1 involved

in composites manufacture increase process complexity

and risk introducing variations of process outcomes and

potential defects formation. Conservative processes are

selected to prevent risks associated with input parameters

uncertainty resulting in increased manufacturing costs.

The continuous demand for cost reduction and accom-

plishment of the desired final part quality with zero

defects has motivated the development of predictive simu-

lation tools, process monitoring, and automation of

composites manufacture. The main objectives of designing

a composite manufacturing process are the minimization

of process duration and manufacturing cost and the deliv-

ery of the desirable product quality. Part quality is charac-

terized by fulfillment of design tolerances, surface state

and absence of process-induced defects.

Resin transfer molding (RTM) is a typical example of

composites manufacturing processes, in which resin

impregnates a dry preform under flow-driving pressure

gradient in a sealed rigid mould followed by curing at ele-

vated temperature. Processing decisions such as inlet and

outlet locations and injection pressure are crucial for the

quality of the final part. The impregnation stage of
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composites manufacture presents considerable variations

in boundary conditions and material properties.1 The var-

iability can lead to significant variations in filling dura-

tion and initiate process defects such as dry spots and

voids resulting in rejected parts. The permeability of tex-

tiles is a crucial material property that affects the filling

step in liquid composite molding (LCM). Evaluating the

permeability of fabrics and its variability is critical as this

parameter controls the occurrence of potential problems

during impregnation such as dry spots, non-uniform fill-

ing, and resin rich zones.2 Variations in fiber architecture

due to handling and storage, nesting effects during lay-up

and preform misplacement in the mould affect signifi-

cantly the permeability values.3,4 Permeability can show

significant variations at the macro and micro scale.5,6 In

the mesoscale the minimum dimensional domain shap-

ing a repeatable representative cell of the fabric level, per-

meability variations can be represented by a log-normal

distribution in the cases of random mat and automated

dry fiber placement (ADFP) preforms, where the coeffi-

cient of variation of permeability across repeat tests can

reach up to 20%.7,8 Statistical characterization of a glass

fiber woven fabric principal permeabilities indicates a

Gaussian distribution with a coefficient of variation of

about 20%.9 Repeat rheology experiments have shown

considerable variations in the initial state of resin viscos-

ity of epoxies due to difference in shelf life at ambient

temperature.10 Stochastic simulation of LCM has shown

that variability of resin viscosity, preform permeability

and length of the distribution medium can introduce up

to 20% variance in filling duration.10,11 Variations in

through thickness permeability result in high scatter in

dry spot content.12 The apparent permeability values cau-

sed by race tracking effects can be represented by a

Weibull13 or normal distribution.14 The use of the

Wiebull distribution offers greater flexibility with respect

to the shape and symmetry properties of the probability

density function. The measured variations of race track-

ing permeability highlight the stochastic nature of edge

effects and their influence on filling introducing signifi-

cant variability in resin flow front patterns.14 Race track-

ing depends on resin viscosity and its variability can

result in undesirable filling patters and thus potential

void formation or dry spots. However, only permeability

variations have been quantified experimentally, whilst

for viscosity which plays a dominant role in flow pro-

cesses only assumptions have been made related to its

variability.11,15 This is important for the comprehensive

investigation of input parameters variability influence on

filling stage outcomes.

Important process parameters and material properties

such as permeability and viscosity cannot be evaluated in

situ during the filling stage of an RTM process due to the

constraints of the process. Activity in this area in the lit-

erature has focused only on off-line property identifica-

tion such as preform permeability, viscosity and thermal

properties. Flow process monitoring techniques such as

lineal sensors have been developed to access filling stage

process information such as flow front position assisting

in address of undesirable filling behavior such as

racetracking effects, formation of dry spots and incom-

plete filling.16,17 The on-line integration of process simu-

lation models with process sensing systems requires

successful implementation of an inverse solution scheme.

Estimation algorithms based on gradient methods of

minimization have been implemented combining numer-

ical models with process monitoring data for the online

characterization of permeability18–20 and the estimation

of flow front position21,22 and of resin thermal proper-

ties.23 However, gradient methods of minimization can-

not deal fully with the potentially ill posedness of inverse

problems of this type. Inverse algorithms such as the

Markov Chain Monte Carlo (MCMC) method can

address ill-posed problems through the regularization of

the solution implied using a prior estimate. MCMC

operates as a sampler computing the uncertainty associ-

ated with the estimation by incorporating process moni-

toring measurements and modeling into the inverse

scheme.

In the present study, an inverse scheme is developed

incorporating flow monitoring with filling simulation for

the probabilistic estimation of stochastic parameters and

in turn of filling duration and flow front position. Lineal

dielectric sensors are placed in strategic positions in the

mould cavity providing data during the flow stage. Surro-

gate filling models based on Kriging are utilized to repre-

sent the response of sensors allowing the real time

implementation of the inverse scheme. The inverse

scheme is implemented and validated for the case of RTM

filling of a composite flat panel with a recessed edge.

2 | METHODOLOGY

2.1 | Processing

RTM was utilized for the fabrication of a carbon-fiber

reinforced composite flat part with a recessed edge. The

RTM mould comprises a rectangular cavity with dimen-

sions 900 mm × 330 mm × 3.3 mm with a rectangular

recess with dimensions 400 mm × 165 mm × 3.3 mm as

illustrated in Figure 1. The sides of the cavity are sealed

with silicone rubber, whilst a glass plate is placed as the

top mould plate enabling visual monitoring of the flow

front to be carried out. The preform comprised nine fabric

plies in a ([0F/90F]2/0F/[90F/0F]2) layup of a 5H satin
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weave woven carbon fabric (Hexcel HexForce G0926)24

with areal density of 375 g/m2, resulting in a volume frac-

tion of 57%. The matrix was Hexcel HexFlow RTM6 epoxy

resin.24 The filling process was carried out using one circu-

lar port with a rectangular flow channel resulting in linear

injection initially, whilst vacuum of about 10 mbar was

applied in the outlet circular port. The filling was per-

formed in isothermal conditions at a temperature of

120�C, whilst the absolute injection pressure was 2 bar.

After the completion of filling, the curing was carried out

at a temperature of 160�C for 2 hours. Lineal dielectric

sensors were embedded in strategic positions in the mould

cavity for the monitoring of flow front evolution during

the impregnation stage. The sensor type, illustrated in

Figure 2, comprises two uniformly twisted copper wires

insulated with polyurethane enamel and is capable of

monitoring the flow front position in LCM of carbon

reinforced composites.25 The measurement area of the sen-

sor is divided into two parts: the wetted area impregnated

by resin, which fills the gaps between the wires, and the

dry area in which the gaps are filled with air. As the flow

process progresses the wetted area percentage increases,

whilst the dry area decreases. The very large contrast in

dielectric properties between liquid resin and air results in

significant sensitivity of the sensor response to its covered

length. The sensor can be placed either on the tool surface

in contact with the carbon fabric or between two layers of

reinforcement. Three sensors were utilized in this study

placed on the lower surface of the mould cavity as illus-

trated in Figure 1. Two sensors were placed across the

straight and recessed edges of the mould respectively to

monitor potential racetracking effects, whilst one sensor

was placed in the main flow path along the filling evolu-

tion in the main rectangle of the geometry. Thin coaxial

cables passed through the outlet port were utilized to con-

nect the sensors with a Solartron 1260 Impedance Ana-

lyzer. A Keithley 7001 switch system was used as a

multiplexer between the sensors and the analyzer to allow

the data acquisition for the three sensors in the same

experiment. Impedance data were acquired in a sweep

comprising three frequencies: 10, 31.6 and 100 KHz. The

analyzer communicates with a computer via an IEEE

interface and an in-house LabVIEW code was utilized to

acquire impedance data. A digital camera was used for the

visual monitoring of flow front position to compare the

actual flow front with inverse scheme results.

2.2 | Flow modeling

The filling stage of composite manufacture can be

modeled using Darcy's law expressing the viscous flow of

a liquid through porous media as follows:

FIGURE 1 Schematic representation of the filling setup and of flow sensors positions

FIGURE 2 Lineal flow sensor
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vfl = −
ϰrP

η
: ð1Þ

where vfl is the Darcy velocity, ϰ the permeability tensor,

η resin viscosity and P the pressure. The resin velocity is

driven by the applied pressure gradient and is affected by

material properties such as resin viscosity and preform

permeability. Liquid resin is considered as incompress-

ible, and thus in order to preserve the balance of resin

mass the divergence of the flow velocity is expressed as

follows:

rvfl =0 ð2Þ

A flow simulation model was implemented in the

Control Volume/Finite Element (CV/FE) analysis solver

PAM-RTM to represent the filling of the part. PAM-RTM

solves Darcy's equation using non-conforming elements,

whilst the flow progression is computed with the volume

of fluid (VOF) method. Considering the small thickness

compared to in plane dimensions, through thickness flow

was assumed to be negligible and the problem was solved

using membrane elements. The model comprises 5700

three noded linear membrane elements. The boundary

conditions were a prescribed injection pressure of 2 bar

applied in the inlet flow channel and vacuum applied on

the outlet port. A constant temperature of 120�C was

applied to all nodes representing isothermal filling.

The model was divided into seven zones with differ-

ent permeabilities values; one representing the main flow

in the preform and the other six the flow across the part

edges. An equivalent permeability KRi value was assigned

on each of the six edges, as shown in Figure 1, allowing

the model to estimate potential racetracking effects.26 In

the case of the main flow zone, the principal permeability

values K1 and K2 were aligned to the length and width

direction respectively. Nominal values of principal per-

meabilities for the fabric of this study are reported in

Table 1.27

User defined subroutines in C++ were used to repre-

sent resin viscosity evolution with temperature and time.

The viscosity model utilises a reference viscosity (ηref) at

a temperature (Tref) as a state variable.28 The reference

viscosity follows its own kinetics which can be expressed

as follows:

d

dt
ln ηrefð Þð Þ=Ae−

E
RT ln

ηref

γ

� �m

ð3Þ

The rate of change of the reference viscosity follows

an Arrhenius dependence on temperature T, where A is

the preexponential factor, E the activation energy and R

the universal gas constant. The rate of change of the loga-

rithm of reference viscosity follows an autocatalytic

behavior with m denoting the order and γ a coefficient.

The viscosity is estimated using the reference viscosity

calculated by the integration of Equation (3), as follows:

η= ηrefAe
−D 1

T−
1

Tref

� �

ð4Þ

where D is the temperature dependence coefficient.

Table 1 reports viscosity model parameter values of

Equations (3) and (4).10 Uncertainty quantification exper-

iments have shown that the initial reference viscosity

(η0 = ηref) presents variability due to storage conditions.10

Therefore, it was considered a stochastic variable.

2.3 | Surrogate model

Flow process simulation using numerical solution

requires moderate computational time. However,

inverse schemes such as the MCMC operate in an itera-

tive manner requiring a large number of flow model

realisations making the utilisation of the simulation

computational cumbersome. Surrogate models based on

Kriging were constructed to overcome computational

time issues by substituting the CV/FE solution. Kriging

enables the unbiased prediction of untried parameter

values to be made with minimum variance and more

accurately in comparison with low order polynomial

expansion models.29 Figure 3 summarizes the methodol-

ogy for the construction of the surrogate models.

Kriging requires an initial set of input sample points at

which the responses are known. Latin Hypercube

TABLE 1 Nominal principal permeability values27 and

viscosity model parameters10

Parameter Values Units

Principal permeability in x direction:

K1

1.7 × 10−11 m2

Principal permeability in y direction:

K2

1.3 × 10−11 m2

Initial reference viscosity: η0 0.17 Pas

Preexponential factor: A 370 386 s−1

Activation energy: E 70 309 J/mol

Autocatalytic order: m 1.34 -

Temperature dependence coefficient:

D

6800 K−1

Coefficient: γ 0.39 Pas

Reference temperature: TRef 353 K
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Sampling30 was used for generating the initial input

points and the flow model was utilized to compute the

response at these points.

Four surrogate models were constructed for the

implementation of the inversion procedure. Three of

them represent the covered length S1, S2, and S3 of the

three sensors as function of the stochastic variables and

time t. The fourth surrogate model represents the filling

duration (tfill) as a function of the unknown stochastic

parameters. The unknown stochastic parameters are the

principal permeabilities K1 and K2, the equivalent edge

permeabilities KR1-KR6 representing racetracking and the

initial reference viscosity η0. Preform permeability vari-

ability was represented as a scalar variable rather than a

random field with autocorrelation structure.11 This sim-

plified approach does not consider the variations of pre-

form permeability in local scale and spatial correlation;

however, it results in a significant reduction of flow

models dimensions enabling the construction of efficient

surrogate models. The statistical properties of the initial

reference viscosity10 and principal permeabilities9 are

reported in Table 2. Racetracking can be characterized by

racetracking strength, which is the ratio of equivalent

racetracking permeability over principal permeability.31

The RTM mould is sealed with silicone rubber along the

edges, which may cause compaction to the preform edges

after closing the mould. This effect was represented by a

lower limit of 0.5 in racetracking strength. Conversely,

inaccuracies in fabric cutting or fabric misplacement may

result in a small gap between the reinforcement and the

seal, which results in increasing the local permeability in

the longitudinal direction of the gap. This potential effect

was represented by adopting a maximum value of

racetracking strength of 10. The equivalent permeability

range and the statistical properties, which are reported

Table 2, were calculated considering these upper and

lower limits of racetracking strength.

The resulting high dimensional input space of the

surrogate models requires a very large initial set of sam-

pling points to ensure model accuracy compared to the

PAM-RTM model. A sensitivity analysis was carried out

in order to reduce model dimensionality investigating

model response by altering each parameter by two posi-

tive and two negative SDs about their mean values. The

initial reference viscosity affects the response of all sen-

sors given the global role of viscosity in the evolution of

filling. In contrast, principal and race tracking permeabil-

ities can have a local role and only affect significantly

some of the sensors responses. Therefore, only the princi-

pal and equivalent racetracking permeabilities were con-

sidered in the sensitivity analysis. The values of these

parameters used in the analysis are reported in Table 3.

FIGURE 3 Surrogate model

construction methodology
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The PAM-RTM model was utilized for the evaluation of

the filling for the 256 input parameters combinations.

The average absolute relative difference of covered sensor

length was computed for each of the input parameters as

the average difference over all corresponding cases with

the upper and lower value of the specific parameter.

Table 3 summarizes the results of the sensitivity analysis.

An absolute relative difference of 10% in sensor response

was considered as the threshold beyond which the sensor

is considered sensitive to the corresponding parameter.

Sensors S1 and S2 are sensitive only to K1, KR1 and KR4,

whereas S3 to K1, K2, KR2, KR4, and KR5. The equivalent

permeability KR3 does not affect significantly the response

of any sensor since the flow front at that area is dominated

by the principal permeability K1 and resin viscosity. In the

case of KR6 the flow at this last edge of the part is governed

by K2 and resin viscosity due to the presence of the recessed

edge. Table 4 presents the parameters of each of the surro-

gate models and their corresponding ranges.

Kriging expresses the covered length of sensors and fill-

ing duration as a vector Y = (S1, S2, S3, tfill) � ℝ
4, which is a

function of input vectors x1 = (K1, KR1, KR4, η0, t) �

ℝ
5, x2 = (K1, KR1, KR4, η0, t) � ℝ

5, x3 = (K1, K2, KR1, KR2,

KR4, KR5, η0, t) � ℝ
8 and x4 = (K1, K2, KR1, KR2, KR4,

KR5, η0) � ℝ
7 as follows:

Y xið Þ= f i xið ÞTβi + ri xið ÞTγi, i= 1,…,4: ð5Þ

where Y(xi) = Yi. Equation (5) is a combination of a sec-

ond order regression and a correlation model using a

Gaussian function fi(xi)
Tβi and ri(xi)

Tγi respectively fol-

lowing the formulation described in.32 The regression

model expresses the output variable as a linear combina-

tion of p basis functions fi(xi) : ℝ
p ! ℝ, whilst β �ℝ

p is

the vector of regression parameters computed using gen-

eralized least squares.32 Term ri(xi) in correlation model

corresponds to a vector of cross-correlations between

input point xi and each of N sampling points (sxi �ℝ
ni ).

Vector γ* �ℝN is computed as follows:

γ
� =R−1

s1y− f s1x
� �T

β

.

.

.

sNy − f sNx
� �T

β

0

B

B

B

@

1

C

C

C

A

: ð6Þ

where R�ℝ
N×N denotes the correlation matrix of all

sampling points and s1yi ,…,s
N
yi

the responses at sampling

points s1xi ,…,s
N
xi
. The MATLAB toolbox was utilized for

the calculation of surrogate models coefficients.33 The

predictor in Equation (5) was implemented in Visual

Studio C++.

2.4 | Inverse algorithm

An inverse scheme was developed for the real time

uncertainty estimation of the unknown stochastic param-

eters and the filling duration. Figure 4 summarizes the

TABLE 2 Statistical properties of principal permeabilities,9

viscosity10 and equivalent racetracking permeability

Parameter Average SD

Principal permeability:

K1(m
2)

1.7 × 10−11 3.4 × 10−12

Principal permeability: K2

(m2)

1.3 × 10−11 2.6 × 10−12

Racetracking

permeability: KRi (m
2)

4 × 10−11 1.5 × 10−11

Initial reference viscosity:

η0 (Pas)

0.17 0.8

TABLE 3 Sensitivity analysis parameter values and results

Average relative difference

Parameter Lower value Upper value Sensor 1 Sensor 2 Sensor 3

Principal permeability: K1 (m
2) 1 × 10−11 2.4 × 10−11 38% 41% 40%

Principal permeability: K2 (m
2) 9 × 10−12 1.9 × 10−11 3% 2% 22%

Racetracking permeability: KR1 (m
2) 1 × 10−11 7 × 10−11 44% 28% 14%

Racetracking permeability: KR2 (m
2) 1 × 10−11 7 × 10−11 2% 2% 65%

Racetracking permeability: KR3 (m
2) 1 × 10−11 7 × 10−11 3% 3% 3%

Racetracking permeability: KR4 (m
2) 1 × 10−11 7 × 10−11 8% 9% 30%

Racetracking permeability: KR5 (m
2) 1 × 10−11 7 × 10−11 1% 1% 20%

Racetracking permeability: KR6 (m
2) 1 × 10−11 7 × 10−11 0.04% 0.05% 4%

Note. Bold values denote cases for which the sensitivity is considered significancy.
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inversion procedure framework. The analysis is initiated

when the filling stage of the RTM process takes place.

The sensors monitor the covered length S1, S2 and

S3 at each time increment tk. The inverse scheme inte-

grates the monitoring data in real time with the surro-

gate flow models using the Markov Chain Monte Carlo

(MCMC) method for the probabilistic prediction of the

unknown stochastic parameters and the filling dura-

tion. MCMC operates as a sampler drawing a series of

parameter realizations with a probability of accep-

tance proportional to the conditional incremental like-

lihood of process monitoring data. The accepted

realizations constitute the solution of the inverse prob-

lem in the form of a probabilistic estimate of process

outcomes. MCMC is based on Bayes' theorem and is

utilized in many inverse problems due to its

simplicity.34–36 According to Bayes' theorem, measure-

ments Y exp tkð Þ�ℝNk × 3 , with Nk the number of experi-

mental data, which correspond to covered lengths of the

three lineal sensors at times t1…tk, are connected to the

corresponding surrogate model responses S= (S1,S2,S3)

�ℝ
Nk × 3 as follows:

P SjY exp

� �

/P Y expjS
� �

P Sð Þ: ð7Þ

where P(Sj Yexp) denotes the posterior probability, P

(Yexpj S) the likelihood distribution and P(S) the prior

distribution. Equation (7) expresses the probability of

model response Si = 1,2,3(V, tk) for a given set of unknown

stochastic parameters V conditional to flow monitoring

data Yexp(tk). MCMC utilises Bayes' theorem to accept or

reject the proposed set of input samples, which in this

case are the unknown stochastic parameters. The random

walk Metropolis Hastings algorithm was utilized to gen-

erate samples Vj = [K1 K2 KR1 KR2 KR4 KR5 η0] � ℝ
7,

where subscript j denotes the current MCMC iteration,

from a symmetric normal proposal distribution q(Vjj Vj

− 1) resulting in a simplified draw of new samples. Due to

the symmetry the new sample Vj is calculated using an

incremental step drawn from the multivariate Gaussian

variable ε= εK1
εK2

εKR1
εKR2

εKR4
εKR5

εη0

� �

�ℝ
7 with mean

value 0 and SD σε = σεK1σεK2 σεKR1 σεKR2 σεKR4 σεKR5 σεη0

� �

�ℝ
7

, applied to sample Vj− 1 from the previous step. An

acceptance criterion is applied to each of the samples gener-

ated and by accepting or rejecting it the posterior probability

TABLE 4 Surrogate models parameters and their ranges

Parameter Range S1 S2 S3 tfill

Principal permeability: K1 (m
2) 5 × 10−12 - 2 × 10−11 Yes Yes Yes Yes

Principal permeability: K2 (m
2) 5 × 10−12 - 2 × 10−11 No No Yes Yes

Racetracking permeability: KR1 (m
2) 5 × 10−12 - 1 × 10−10 Yes Yes Yes Yes

Racetracking permeability: KR2 (m
2) 5 × 10−12 - 1 × 10−10 No No Yes Yes

Racetracking permeability: KR4 (m
2) 5 × 10−12 - 1 × 10−10 Yes Yes Yes Yes

Racetracking permeability: KR5 (m
2) 5 × 10−12 - 1 × 10−10 No No Yes Yes

Initial reference viscosity: η0 (Pas) 0.11-0.22 Yes Yes Yes Yes

Note. Yes: Significant and No: Not significant.

FIGURE 4 Inversion procedure framework
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converges to the target distribution P(Si(V, t)jYexp(t)). The

algorithm operates as shown in Table 5 and the procedure is

repeated M times, where M is the number of the MCMC

iterations.

The likelihood distribution is expressed as:

P Y exp tð ÞjYm V j, t
� �� �

=
Y

Nk

k= 1

N Y exp tkð Þ;Si V j, tk
� �

,σ
� �

:

ð8Þ

where Nk denotes the total number of experimental data

acquired by the time tk. The likelihood incorporates all

the distributions, which are computed with experimental

data Yexp(tk) using a normal distribution with the model

values Si(Vj, tk) as a mean and a SD σ.

The prior distribution is computed in a similar way

for the three sensor surrogate models:

P V j

� �

=
Y

7

l= 1

N V l
j;μ

l
prior,σ

l
prior

� �

: ð9Þ

The statistical properties of prior distributions of the

unknown parameters are:

μprior = μ
K1

prior μ
K2

prior μ
KR1

prior μ
KR2

prior μ
KR4

prior μ
KR5

prior μ
η0

prior

� �

�ℝ
7

σprior = σ
K1

prior σ
K2

priorσ
KR1

prior σ
KR2

priorσ
KR4

prior σ
KR5

priorσ
η0

prior

� �

�ℝ
7

:

ð10Þ

with values based on uncertainty quantification of previ-

ous studies, which are summarized in Table 2.

SDs σ and σε need to be adjusted before the initiation of

the inversion procedure. SD σ is utilized in the likelihood dis-

tribution to express the accuracy of the experimental data and

it is assigned a relative small value of 10 mm based on the

evaluation of sensor error presented in.25 The SD vector

defines the size of the sampling step of the chain.37 A short

sequence of MCMC iterations was carried out at the begin-

ning of the inverse algorithm to tune the vector of SD σε of

the algorithm targeting an acceptance probability between

30% and 50%.37 The values of SDs are reported in Table 6. In

the real time implementation of inversion procedure, the

monitoring matrix Yexp is updated every minute with a

new batch of monitoring data. In this case every new

batch includes three data points corresponding to the

three sensor responses. The number M of MCMC itera-

tions carried out in the real time implementation of the

inversion procedure can be calculated based on the time

of the execution of one MCMC iteration. The execution

time of one iteration for a given computer increases

with the increase of the size of Yexp. The number of

MCMC iterations executed at the beginning of the pro-

cess is about 2500 points/min on a high specification

personal computer (4 cores @3.2 GHz), whilst this num-

ber decreases gradually to about 170 point/min in the

last stage of the process. The total number of MCMC

iterations was approximately 20 000.

3 | RESULTS AND DISCUSSION

3.1 | Surrogate model validation

Surrogate models representing flow front position of each

sensor and filling duration were evaluated against the

TABLE 5 Metropolis hastings algorithm

Algorithm 1 Metropolis Hastings algorithm

Initialize V0 = (K10 K20 KR10 KR20 KR40 KR50 η00)

for j = 1 to M

Draw a sample u~U(0, 1) from a uniform distribution.

Draw sample ε~Ν(0, σε) �! Vj = Vj − 1 + ε

Calculate acceptance probability

α= min 1,
P Yexp tð ÞjSi V j , tð Þð ÞP V jð Þ

P Yexp tð ÞjSi V j−1 , tð Þð ÞP V j−1ð Þ

� 	

if u ≤ α then

accept Vj

else

Vj = Vj − 1

end if

end for

Note. Bold variables denote vectors following the notation of the

manuscript.

TABLE 6 Inverse scheme parameters values

Parameter Symbol Value

Likelihood distribution SD σ 10 mm

Noise level εK1
SD σεK1 3 × 10−13 m2

Noise level εK2
SD σεK2 3 × 10−13 m2

Noise level εKR1
SD σεKR1 3 × 10−13 m2

Noise level εKR2
SD σεKR2 3 × 10−13 m2

Noise level εKR4
SD σεKR4 3 × 10−13 m2

Noise level εKR5
SD σεKR5 3 × 10−13 m2

Noise level εη0 SD σεη0 0.001 Pas

Number of MCMC iterations M 20 000 iterations

Process duration D 32 min

Number of monitoring data N 96

Number of data batches k 32

Abbreviation: MCMC, Markov Chain Monte Carlo.
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FIGURE 5 Surrogate model validation against the CV/FE simulation: A, sensor 1, B, sensor 2, C sensor 3, and D, filling duration.

CV/FE, control volume/finite element

TABLE 7 Input parameters values used for the construction of validation curves (Figure 5)

Parameter Sensor 1 (S1) Sensor 2 (S2) Sensor 3 (S3) Filling duration (tfill)

Principal permeability: K1 (m
2) 1.7 × 10−11 1 × 10−11 -2 × 10−11 1.7 × 10−11 1.7 × 10−11

Principal permeability: K2 (m
2) – – 1.3 × 10−11 1.3 × 10−11

Racetracking permeability: KR1 (m
2) 1.3 × 10−11 1.3 × 10−11 1.3 × 10−11 1.3 × 10−11

Racetracking permeability: KR2 (m
2) – – 1.3 × 10−11 1.3 × 10−11

Racetracking permeability: KR4 (m
2) 1.3 × 10−11 1.3 × 10−11 1.3 × 10−11 1.3 × 10−11

Racetracking permeability: KR5 (m
2) – – 1.3 × 10−11 1.3 × 10−11

Initial reference viscosity: η0 (Pas) 0.1-0.2 0.15 0.1-0.2 0.11–0.2

Note. Bold values denote ranges of variables.

TIFKITSIS AND SKORDOS 5395



PAM-RTM flow model. Validation for the surrogate

models was carried out based on comparisons between

the surrogate model and simulation with varying input

parameters values. Three different cases were tested for

the surrogate models, which express sensor response. The

surrogate model of S1 was compared with the simulation

for three different initial reference viscosity values with

the longitudinal principal permeabilities K1 and K2 equal

to 1.7 × 10−11 and 1.3 × 10−11 m2 respectively and

racetracking permeabilities KR1 KR2 and KR4 of

1.3 × 10−11 m2. The results are illustrated in Figure 5A.

The estimated flow front position of S1 is in good

FIGURE 6 Flow front position during RTM process. RTM, resin transfer molding
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agreement with the corresponding PAM-RTM model

results and reproduces trends of dependence on viscosity

correctly. Figure 5B depicts the evolution of flow front

position of the second sensor (S2) for three different lon-

gitudinal principal permeability values with the trans-

verse principal permeability equal to 1.3 × 10−11 m2,

racetracking permeabilities KR1, and KR4 1.3 × 10−11 m2

and initial reference viscosity 0.15 Pas as computed by

the surrogate and PAM-RTM models. The discrepancies

between the two models are negligible with the average

absolute error of about 15 mm. The response of the surro-

gate model of Sensor 3 corresponds to a total covered

length greater than the other two models as this sensor

covers the recessed edge of the part. Figure 5C illustrates

S3 for three different initial reference viscosity values

with the principal permeabilities K1 and K2 equal to

1.7 × 10−11 and 1.3 × 10−11 m2 respectively and

racetracking permeabilities KR1, KR2, KR4 and KR5 of

1.3 × 10−11 m2 as estimated by the two models. The aver-

age absolute error of surrogate model is about 12 mm

highlighting the accuracy of the surrogate model.

Figure 5D illustrates the comparison between the filling

duration surrogate model and the PAM-RTM solution for

different initial viscosity values with the principal perme-

abilities K1 and K2 equal to 1.7 × 10−11 and

1.3 × 10−11 m2 respectively and racetracking permeabil-

ities KR1, KR2, KR4, and KR5 1.3 × 10−11 m2. The estimated

average absolute error is about 50 seconds or less than 2%

of the filling duration estimated using the simulation.

The input parameters and the ranges of the validation

cases are reported in Table 7.

3.2 | Filling results

The flow front evolution of the filling stage of the RTM

process is presented in Figure 6. The duration of the fill-

ing was 32 minutes. Racetracking occurs at the recessed

edge at the beginning of the process. In the straight edge,

the flow is slightly slower than the main flow due to local

compaction by the silicone rubber. The presence of the

rectangular insert results in asymmetric flow in which

the resin fills the straight edge of the part first and then

the area close to the recessed edge. Figure 7 illustrates

the flow monitoring results of the three lineal flow sen-

sors. The flow front evolution of the first sensor (S1) pre-

sents some disturbances potentially due to measurement

noise effects or the presence of local reinforcement varia-

tions leading to non-uniform flow across the straight

edge of the part. The latter can be attributed to the prepa-

ration of the preform and its placement in the mould

resulting in variations of the gap size between preform

and mould across the edge and in turn in variations of

local edge permeability. The flow front curve of sensor

3 (S3) indicates the different flow front velocities of each

of the sub-sections of the recessed edge of the mould. At

the beginning of the flow process the slope of the S3
curve is steeper than those of S1 and S2 implying a

racetracking effect on the recessed edge of the mould,

which is also observed by visual monitoring.

3.3 | Real time uncertainty estimation

The flow monitoring data were integrated into the

inverse scheme for the real time uncertainty estimation

of the stochastic parameters. The inversion procedure

uncertainty estimation results for the unknown sto-

chastic parameters and the filling duration are pres-

ented in Figure 8. The use of the surrogate models

allows the execution of MCMC iterations as the filling

process evolves. Consequently, the results are presented

as a function of filling time, which corresponds to the

monitoring data and inverse estimation up to the spe-

cific point in the filling process. The estimated princi-

pal permeabilities K1 and K2 reach a plateau of

1.31 × 10−11 m2 and 1.17 × 10−11 m2 respectively after

about 25 minutes from the beginning of the flow stage

as depicted in Figure 8A. Both parameters present sig-

nificant variations in the initial stages of the inversion

due to the limited monitoring data available at that

time. As the inversion proceeds, the uncertainty is nar-

rowed down. The estimated equivalent racetracking

permeabilities KR1, KR2, KR4, and KR5 present similar

behavior in Figure 8B. The equivalent permeability of

the straight edge (KR1) converges after 5 minutes as

FIGURE 7 Flow monitoring results
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the monitoring data of sensor 1 are sufficient to pro-

vide information regarding the flow front evolution in

the corresponding region. The other four equivalent

permeabilities (KR2, KR4, KR5) are in the range of

4 × 10−11 to 6 × 10−11 m2 and are mostly stabilized

after about 10 minutes, highlighting the occurrence of

racetracking effects in the recessed edge. The initial

reference viscosity reaches a plateau of 0.17 Pas after

about 25 minutes (Figure 8C). Table 8 summarizes the

statistical properties of the estimated stochastic param-

eters. Parameters such as the longitudinal permeability,

FIGURE 8 Unknown stochastic parameters estimation: A, principal permeabilities, B, equivalent racetracking permeabilities, C, initial

reference viscosity, and D, filling duration estimation

TABLE 8 Statistical properties of estimated parameters

Parameter Average Standard deviation

K1 (m
2) 1.312 × 10–11 4.52 × 10-14

K2 (m
2) 1.168 × 10–11 1.26 × 10-13

KR1 (m2) 5.044 × 10–12 3.81 × 10-14

KR2 (m
2) 4.056 × 10-11 1.07 × 10-12

KR4 (m2) 4.318 × 10-11 5.22 × 10-13

KR5 (m
2) 6.422 × 10-11 5.63 × 10-13

η0 (Pas) 0.1691 5 × 10-4
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the equivalent permeability of racetracking channel

1 and the initial viscosity present lower variability than

the other parameters due to the greater sensitivity of

the monitoring data set to these variables. It is possible

to predict the duration of the filling process as well as

other features of the filling process using the unknown

parameter values estimated in real time by the inverse

scheme. Figure 8D illustrates the estimation of filling

duration as the filling stage evolves. Initially the uncer-

tainty of filling duration estimation is significant since

the available monitoring data are insufficient for an

accurate prediction with low uncertainty. However, as

the monitoring data are enriched, the probabilistic esti-

mation of filling duration is narrowed down as illus-

trated in Figure 9. Initially the coefficient of variation

of the estimated filling duration is about 25%, whilst

after about 20 minutes the uncertainty is reduced by

80% to a coefficient of variation of 5%. The predicted

filling duration converges to an average of 31 minutes

with a SD of 1.5 minutes, whilst the actual filling takes

32 minutes. The filling duration can be estimated accu-

rately after the completion of 10 minutes of the filling

stage as can be observed in Figure 8D. In this stage,

the principal permeabilities and the viscosity have not

yet reached convergence, although the inverse scheme

provides accurate estimation of the total filling time

due to the inverse correlation of the permeability and

viscosity. The convergence of the filling duration pre-

diction occurs when the mould is 75% filled. This

occurs after the flow front passes the recessed edge and

thus the K2 permeability dominates the filling pattern

rather than K1. Therefore, the flow becomes slower

and data related to K2 permeability are being fed into

the inversion scheme accelerating the convergence of

the filling duration.

Figure 10 illustrates the robustness of the inversion

procedure in terms of reducing the uncertainty of flow

front estimation. The 95% confidence intervals of the

response three sensors, illustrated in Figures 10A,C,E,

were calculated considering the initial uncertainty of the

input parameters (Table 2). The confidence intervals of

the prior estimate are wide due to the initial uncertainty

of the problem, whilst the coefficient of variation of the

predicted filling duration is equal to 30%. Figures 10B,D,

F illustrate the 95% confidence intervals of the three sen-

sors calculated considering the inverse solution. The con-

fidence intervals of the estimated covered lengths have

been significantly narrowed down, whilst there is a good

agreement between posterior prediction and the actual

covered length. The real time implementation of the

inverse scheme is able to estimate the flow front evolu-

tion and filling duration with high accuracy. The discrep-

ancies observed between model predictions and sensors

data are attributed to the fact that the scheme does not

consider local flow phenomena such as nesting or preform

imperfections, in contrast to sensors, which are sensitive

to local effects. The incorporation of local permeability

into surrogate models as input variables would increase

the dimensionality making the problem difficult to address

with conventional computational resources. The inversion

procedure gives a probabilistic estimation of the main flow

parameters (ie, principal permeabilities, viscosity) and

boundary conditions (ie, racetracking effects) allowing the

probabilistic on line prediction of the filling duration and

flow front evolution.

The flow fronts corresponding to the first and third

quartiles of the prior estimate and using the outcome

of the inverse scheme are illustrated in Figure 11 and

compared to the actual flow front measured visually.

The uncertainty obtained by the prior estimate is high

as is mainly driven by the initial variability of material

properties and process parameters. With the initiation

of the filling process the upcoming monitoring data

enhance the capabilities of the inverse scheme and

thus the probabilistic estimations of the flow front pre-

sent low variations and are very close to the visual

observations. There are small differences between the

inverse scheme estimations and the actual flow front at

the beginning of process mainly due to noise effects in

the experimental data and the presence of local flow

phenomena. As the flow evolves, the estimated flow

front follows closely the actual resin front position

FIGURE 9 Cumulative density function evolution of

estimated filling duration
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identifying potential disturbances such as racetracking

effects at the part edges.

For the geometry examined here the use of three lin-

eal sensors in the mould is sufficient for the inverse

scheme to predict accurately the resin flow front evolu-

tion and to identify potential flow disturbances and

defects such as racetracking. The location of lineal sen-

sors in the mould is crucial for the successful estimation

FIGURE 10 Estimation uncertainty of covered length of A, sensor 1 before the filling, B, sensor 1 after 1500 seconds, C, sensor

2 before the filling, D, sensor 2 after 1500 seconds, E, sensor 3 before the filling, and F, sensor 3 after 1500 seconds
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of unknown parameters. In the general case, the number

of sensors used needs to be selected considering the

trade-off between minimizing monitoring complexities

and monitoring system intrusiveness and maximizing the

sensitivity of the data obtained to all stochastic parame-

ters of interest. In this case the utilization of three sensors

placed across part edges and the main flow allows the

model to capture the main process parameters such as K1,

K2, and η0 and provide sufficient information on

racetracking phenomena.

4 | CONCLUSIONS

The inversion procedure developed in this study links

real time flow monitoring data and flow modeling with

the MCMC method for the probabilistic estimation of

stochastic input parameters and process outcomes. The

inverse scheme reduces the initial uncertainty of the

problem estimating the principal permeability values,

initial viscosity, racetracking effects, filling duration,

and flow front evolution with significantly lower

variability than prior estimates within a fraction of the

process. For the experimental demonstration of the

scheme presented here the inverse scheme is able to

provide a low uncertainty real time prediction of filling

time approximately 10 minutes after the initiation of

the process, which corresponds to 30% of the whole

duration.

The methodology developed here contributes toward

the development of a probabilistic hybrid twin for com-

posites manufacture. The integration of models and

monitoring within an inverse solution allows the on-line

estimation of the evolution of the process and its uncer-

tainty. This can be utilized to carry out control and

corrective actions during manufacturing potentially

increasing process efficiency, improving part quality

and reducing process failures and defects as well as

reducing the resources required for inspection and qual-

ity assurance after the end of the process. The lineal

character of the sensor, used in this study, lends itself to

applications where continuous flow monitoring is

appropriate, whereas simultaneous use of multiple sen-

sors can provide the means for industrial control of flow

processes in complex parts and geometries. The sensor

flexibility can be used in monitoring of large scale car-

bon composite parts with complex geometries that is,

double curvature without requiring tool modifications.

A set of lineal flow sensors can be used to provide a 2-D

filling map in real time with high accuracy. An optimi-

zation scheme can be applied identifying the optimal

trade-off between the number of embedded sensors and

the sensitivity of the monitoring system.
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