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Abstract 

Optimising the mechanical properties of optical coatings to improve their durability will be 

critical if they are to be used successfully in harsh environments where they may be subject to 

degradation by mechanical contact. In this study zirconia, zirconia-alumina duplex and alumina 

experimental coatings were deposited on soda lime and borosilicate glass and their resistance 

to repetitive impact under different experimental conditions evaluated in nano- and micro-scale 

impact tests. The influence of changing probe geometry (sharp and blunt contacts) and applied 

load on the deformation was studied. Spheroconical indenters were found to be more suitable 

to study the load sensitivity of the impact response than sharp cube corner indenters. Increased 

resistance to plastic deformation in the coating-substrate system (H3/E2) proved detrimental to 
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the damage tolerance to the repetitive nano- and micro-impact tests. To compare the 

deformation behaviour in nano-impact and nano-scratch, tests were performed using the same 

spheroconical probe, revealing cracking and blistering of the glass substrate in both types of 

test. The change in probe depth after the first impact was found to be a very useful metric to 

effectively compare the evolution of surface damage on continued impact in nano- and micro-

impact tests at different applied load and/or probe geometry. 

Keywords: surface analysis; PVD coatings; fracture behaviour; impact wear; optical; wear 

testing. 

 

1. Introduction 

Intrinsically brittle materials are susceptible to damage in mechanical contact, particularly 

under impact or erosive wear conditions. To simulate impact conditions their resistance to 

damage is often studied by indentation but there are additional deformation mechanisms 

operative in cyclic loading conditions that are not observed in static (single cycle) indentation 

tests [1]. Instrumented laboratory tests such as nano-impact have the potential to aid the 

development of coating systems with improved damage tolerance. Originally used with sharp 

cube corner indenters to study hard semi-brittle coatings [2], nano-impact has found 

applications in testing a wide range of coatings and hard and soft bulk materials [3-5]. In the 

test the indenter is accelerated to repetitively impact the surface at high strain rate and the 

progression of impact-induced damage is followed cycle-by-cycle by monitoring the indenter 

penetration depth. To bridge the gap between nano- and macro-scale, the micro-impact test has 

been developed, typically employing spheroconical diamond probes with larger impact loads 

in the micro- range (~0.5-5 N) [6]. The micro-impact test has been used for studying hard 

coating systems, cemented carbides and bulk metallic glasses [6-9]. Tarrés and co-workers 
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have noted that there is an improved intrinsic suitability for examining gradual damage 

processes when switching from sharp to blunter spherical indenters [10]. 

Optical coating systems represent a particular challenge since their design must not 

compromise their functional properties and coating deposition must be performed at 

temperatures low enough not to degrade the glass substrate. Optimising their mechanical 

properties to improve their durability will be critical if they are to be used successfully in harsh 

environments where they may be subject to mechanical contact [11-16]. Improving resistance 

to damage by retaining some level of elasticity along with hardness should improve 

performance on duplex coatings, for example, for mirror systems. The mechanical properties 

of duplex coatings could be engineered in a way not possible with the single layer coating. 

Small scale testing provides a convenient route to optimisation. For example, ramped load 

scratch tests have been used to assess fracture strength [15] and repetitive nano-scratch (low 

cycle nano-wear) tests have been used to simulate abrasion [11-12]. Nano-wear tests on 

amorphous silica and silicon oxynitride thin films deposited by reactive RF magnetron 

sputtering on soda lime float glass have shown that their scratch resistance can be tailored by 

optimising the deposition conditions [11-12]. 

In this work a set of experimental thin coatings were deposited on soda lime and borosilicate 

glass and their resistance to repetitive impact studied under different experimental conditions. 

Apart from the optical properties, the mechanical properties of these coatings play a significant 

role in the performance of the component, particularly abrasion and impact resistance. 

Knowledge of the subsurface damage is extremely helpful in ascertaining the mechanical 

properties of these optical coatings, which is key for applications such as antireflection and 

coatings for pulsed and continuous laser systems. In a nano-impact test, the severity of the test 

and positions of peak impact-induced stresses relative to the coating-substrate interface can be 

controlled by varying the applied load, accelerating distance and the probe geometry. The 
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coatings studied represent an ideal brittle system (brittle coating-brittle substrate) to investigate 

the influence of changing probe geometry (sharp and blunt contacts) and applied load on the 

deformation process. Both monolayer and duplex coatings were tested. An advantage of the 

instrumented small-scale test is that automatic multiple test arrays can be scheduled on each 

sample and the stochastics of the impact behaviour can be conveniently studied. To 

conveniently compare the coating behaviour in tests at different applied load and/or with 

different probe geometries, the change in depth after the initial impact (i.e. setting depth at 

initial impact to zero) was investigated to determine whether it could provide a more useful 

indicator of the damage evolution than the impact depth. 

 

2. Experimental 

2.1 Coating deposition 

Zirconia, zirconia-alumina duplex and alumina experimental coatings were produced. Their 

composition, film thickness, deposition temperature, substrate and refractive index are 

summarised in Table 1. Hereafter, for simplicity the samples are referred to by their sample ID 

given in Table 1. The coatings were deposited with an Edwards 700 vacuum chamber with a 

4-hearth electron beam source. Zirconia was pre-melted by electron beam prior to deposition. 

Since zirconia loses oxygen on evaporation in vacuum the coatings were deposited at 25 and 

220 C with background oxygen present to maintain stoichiometry. For the duplex coatings, 

aluminium oxide and zirconia were in separate hearths in the electron beam multi-hearth 

source, enabling sequential deposition at 220 C without breaking vacuum. The alumina 

coatings were deposited by ion-assisted deposition at 25 C with two different oxygen gas flow 

rates (10 and 15 sccm) to achieve different ion flux densities. Z270 and Z790 were deposited 

on microscope slide glass and Z130, AZ145 and AZ170 on float glass. 
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Sample ID Coating composition Substrate Deposition 

temperature/C 

Refractive 

index 

Z130 130 nm zirconia soda lime glass 220 1.90 

Z270 268 nm zirconia soda lime glass 25 1.87 

Z790 788 nm zirconia soda lime glass 25 1.97 

AZ145 125 nm zirconia top 

layer + 20 nm alumina 

sub-layer 

soda lime glass 220 1.93 

AZ170 131 nm zirconia top 

layer + 40 nm alumina 

sub-layer 

soda lime glass 220 1.85 

A120 118 nm alumina borosilicate 

glass 

25 1.60 

A130 128 nm alumina borosilicate 

glass 

25 1.60 

Table 1. Sample composition and deposition conditions 

 

2.2 Nanoindentation and nano-scratch 

Nanoindentation, nano-impact, nano-scratch and micro-impact tests were performed with a 

NanoTest system (Micro Materials Ltd.). To assess the coating system mechanical properties 

as a function of depth a rapid depth profiling technique was employed. This comprised 40 load-

partial unload cycles to progressively greater depths, with each unloading segment being 

analysed by standard contact mechanics to determine how the hardness and elastic modulus 
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vary with penetration into the thin film systems. To improve the accuracy of hardness data on 

the thinnest films it was necessary to use a very sharp Berkovich indenter and accurately 

calibrate this over the 0-100 nm depth range. For statistical purposes, at least 10 repeat rapid 

depth profiling tests were performed on each coating system. Hardness measurements at 10% 

film thickness and Elastic modulus measurements extrapolated to zero depth (ISO14577 

methodology) are reported in Table 2.  

Nano-scratch tests were performed on the Z270 and Z790 samples with a 90° spheroconical 

diamond indenter with nominal end radius R of 5 µm. Spherical indentation into fused silica 

and sapphire determined its actual radius was R = 4.8 µm. Scratch tests were performed to peak 

loads of 30 and 60 mN at 1 mN/s and 5 µm/s to obtain the critical loads for coating failure and 

to 300 mN at 5 mN/s and 10 µm/s to investigate substrate fracture at higher load. 

2.3 Nano- and micro-impact testing 

Nano-impact tests were performed on the Z270 and Z790 films with a sharp cube corner 

diamond indenter at 2-6 mN coil force, accelerating from 10 µm above the surface to produce 

one impact every 4 s. The 300 s (75 impact) tests were repeated 10 times at each load, with 

each subsequent impact 50 µm away from the previous test. Each impact cycle comprises 

several bounces until the probe comes to rest. The “on-load” probe rest depth for every impact 

is recorded. The initial (h1) and final (hf) depths provide a convenient assessment of the damage 

tolerance of the system. 300 s impact tests were performed with the same spherical indenter as 

used in the scratch tests (R = 4.8 µm) accelerating from 15 µm above the surface. 10 repeat 

tests were performed at 0.5, 1, 2, 5, 10, 15, 20, 25 mN on Z270 and at 1, 2, 5, 10, 15 and 20 

mN on Z790. A single test was also performed at 25 mN on Z790. 

For the impact tests on the other coatings and an uncoated borosilicate glass only spherical 

indenters were used. 600 s impact tests (150 impacts) were performed with the R = 4.8 µm 
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diamond indenter accelerating from 15 µm above the surface. Each test was repeated 10 times 

at 15 mN. Tests over a load range of 10-30 mN were run on AZ170 and 5-30 mN on BS glass 

with 10 repeats at each load. Micro-impact tests were performed at 4-6 N on AZ145, AZ170 

and Z130 with a 100 µm end radius spherical probe whose geometry was checked by 

indentation into fused silica. The accelerating distance was set to 25 µm and the test time was 

300 s (75 impacts). 

2.4 Other coating characterisation techniques 

SEM images of the impact craters were obtained with the back-scattered detector on a FEI 

XL30 ESEM in environmental (low H20 pressure) mode to enhance contrast between heavier 

atoms of the coating and the lighter substrate atoms, enabling quantification of the 

chipped/delaminated region. SEM images of the cross-sections were obtained with the 

secondary and back-scattered electrons detectors on a TESCAN Vega3, with the samples 

coated with a 10 nm layer of gold to enhance image resolution. Optical microscopy images of 

the impact craters were obtained using a Confocal Scanning Laser Microscopy system from 

Olympus, model Lext OLS 3100. Refractive index was calculated using data collected by a 

UV-vis-NIR spectrometer (Jasco V670) and processed by Filmstar software to simulate film 

interference. 

 

3. Results 

The nanoindentation results are summarised in Table 2. The hardness of the zirconia films was 

3.9-5.0 GPa, increasing slightly with film thickness. The hardness of the duplex films was 4.2-

4.5 GPa, within the range of the pure zirconia films. Although the alumina films A120 and 

A130 were harder than the borosilicate glass substrate, they were also significantly stiffer so 

that their H/E values were lower. In the nano-scratch tests, the critical load for total coating 
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failure was (11 ± 1) mN on Z270 and (52 ± 4) mN on Z790. The corresponding on-load scratch 

depths at onset of failure were 140 and 440 nm respectively. Substrate fracture was observed 

at higher load on both samples (at 190 mN on Z270 and 200 mN on Z790). The on-load depth 

at the start of the substrate fracture was ~1470 and ~2010 nm respectively. For Z790 it was 

possible to obtain an estimate of the coating thickness from the residual depth at failure, which 

was ~795 nm. 

 

Sample ID H (GPa)* E (GPa)* H/E H3/E2 (GPa) 

Z130 3.9 77 0.051 0.010 

Z270 4.8 98 0.049 0.012 

Z790 5.0 105 0.048 0.011 

AZ145 4.5 83 0.054 0.013 

AZ170 4.2 80 0.053 0.012 

A120 8.7 111 0.078 0.053 

A130 7.7 105 0.073 0.041 

BS glass 6.2 67 0.093 0.053 

* Data from load-partial unload tests. To obtain coating properties independent of substrate 

contribution the hardness was from values at 1/10 relative indentation depth and elastic 

modulus from extrapolation to zero depth (ISO14577-4). Standard deviation in hardness and 

elastic modulus by this approach are ~0.1 and ~2 GPa respectively. 

Table 2.  Nanoindentation results 

 

Illustrative results from 2, 4 and 6 mN nano-impact tests on the Z270 and Z790 films with the 

cube corner are shown in Fig. 1(a,b). On Z270 there were few abrupt jumps in displacement 
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and typically the impact depth gradually increased to reach a load-dependent plateau, with only 

very minor inflexions during the gradual depth increase. In contrast, for Z790 the impact depth 

typically gradually increased to reach an approximately constant value before a sudden increase 

in depth. For the tests in Fig. 1(b) this failure event occurred on the 7th impact at 6 mN, the 17th 

impact at 4 mN, and the 51st impact at 2 mN. Although these increases in depth at failure tended 

to occur after fewer impacts at higher load, the failure behaviour was stochastic. To illustrate 

this probability distributions of the number of impacts required for failure at 2 and 3 mN on 

Z790 are shown in the Supplementary Material (figure S1). Despite the stochastic behaviour 

in the number of impacts required for failure, the final impact depth was much less scattered. 

Throughout the studied load range the mean final depth data are greater on Z790 than Z270, 

by an amount close to the difference in thickness between them (Fig. 1(c)). SEM imaging (Fig. 

1(d)) showed that in all but one test with the cube corner probe chipping/delamination occurred 

(the exception being a test at 2 mN on Z790). The chipped/delaminated area was larger for 

Z790. The difference in final depth between Z270 and Z790 varied little across the load range 

at (527 ± 99) nm. 
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1(a) 

 

1 (b) 

 

 

1(c) 
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1(d) 

Figure 1. Nano-impact tests on Z270 and Z790 with a cube corner probe. Illustrative 

depth vs. impacts data on (a) Z270 and (b) Z790. (c) Load dependence of final impact 

depth. (d) BS SEM images of impacts on Z270 (left) and Z790 (right). 

 

Illustrative results on Z270 and Z290 with the 4.8 µm spherical probe are shown in figure 2 

(a,b). A marked load dependence was observed for both samples. On Z790 the final impact 

depth was lower than the coating thickness at 1 and 2 mN. On Z270, the film was initially 

resistant to impact but by the end of the test the depth was similar to the film thickness. At 

higher load typically the gradual increase in depth with continued impact was interspersed by 

occasional small decreases (e.g. as after 17 impacts at 5 mN on Z270 (fig. 2(a)), or 8 impacts 

at 10 mN on Z790, (fig. 2(b)). The extent of correlation between the delaminated area and the 

applied load and impact depth were investigated. Figure 2 (c,d) show the load dependence of 

the final depth and chipped area. For the loads (5-20 mN) where clear delamination occurred 

the difference in final depth between Z270 and Z790 was (476 ± 154) nm. BS SEM images of 

impacts with the spheroconical probe are shown in fig. 2(e-g). SE and BS SEM images of a 2 

mN impact on Z290 are shown in fig. 2(h). 
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2 (a) 

 

2 (b) 
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2 (c) 

 

2(d) 
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2 (e) 

 

2 (f) 
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2 (g) 

 

2 (h) 

Figure 2. Nano-impact tests on Z270 and Z790 with R = 4.8 µm probe. Illustrative depth 

vs. impacts data on (a) Z270 and (b) Z790. (c) load dependence of the final depth (d) load 

dependence of chipped area (e) BS SEM images of impacts on Z270 (f) BS SEM images 

of impacts on Z790 at 1-5 mN (g) BS SEM images of impacts on Z790 at 10-20 mN (h) SE 

(left) and BS (right) SEM images of a 2 mN impact on Z290. 
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Table 3 shows the depth after a single impact and at the end of the 600 s tests at 15 mN with 

the R = 4.8 µm probe. In these tests there was little difference in resistance to a single impact, 

with initial impact depth h1 ~0.55 µm for each sample. However, with continued impact 

differences emerged with the zirconia/alumina AZ145 and AZ170 being more damage tolerant 

and pure zirconia Z130 showing the best performance. Figure 3 (a) shows an optical 

microscopy image of the tests with the 4.8 µm probe on AZ170. The variation of the final 

impact depth and chipped area with applied load is shown in Table 4. Similar load dependence 

was found for BS glass. At 10-20 mN the chipped area correlated reasonably well with the 

impact depth, with R2 = 0.83-0.96, but the correlation breaks down at 25 and 30 mN (fig. 3(b)). 

 

Sample ID h1 (µm) hf (µm) 

Z130 0.61 ± 0.04 1.01  ± 0.40 

AZ145 0.59 ± 0.06 2.17 ± 0.95  

AZ170 0.57 ± 0.06 1.34 ± 0.58 

A120 0.64 ± 0.18  2.47 ± 0.61 

A130 0.52 ± 0.04 2.47 ± 0.67 

BS glass 0.58 ± 0.11 2.38 ± 0.91 

Table 3. Initial and final impact depths in 600 s nano-impact tests with R = 4.8 µm probe 

at 15 mN. 

 

Applied load (mN) Final depth (µm) Chipped area (µm2) 

10 0.9 ± 0.3 84  ± 66 

15 1.3 ± 0.6 208 ± 159  
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20 2.1 ± 0.8 344 ± 277 

25 3.4 ± 1.0  538 ± 328 

30 4.1 ± 0.8 645 ± 165 

Table 4. AZ170. Load dependence of final impact depths and chipped area in 600 s nano-

impact tests with R = 4.8 µm probe. 

 

 

 

 

3(a) 
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3 (b) 

Figure 3. Nano-impact tests on AZ170 with R = 4.8 µm probe. (a) Optical microscopy 

image of the tests. (b) Relationship between chipped area and impact depth. 

 

Micro-impact tests were carried out on the three coatings that performed best in the 600 s nano-

impact tests. Plots of depth vs. number of impacts in micro-impact tests at 4, 5 and 6 N on 

AZ170 are shown in figure 4 (a). There was greater elastic deformation on initial impact with 

the large radius probe, with initial depths of ~4.4 µm at 4 N increasing to ~6.3 µm at 6 N. To 

more clearly observe differences in impact depth evolution the data can be converted to impact 

depth increases (i.e. by setting the depth after the first impact to zero, and graphically showing 

all subsequent impact depths relative to this). Figure 4 (b) shows the increase in depth after the 

first impact for tests at 5 N. Comparative data at 6 N are shown in fig. 4(c). AZ145 was least 

resistant to repetitive impact at both loads. 6 N marks the onset of a more dramatic substrate 

failure, with significant damage occurring almost immediately on AZ145 and more marked 

depth increases after ~30 impacts for all three coated samples. 
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4. (a) 

 

4 (b) 
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4 (c) 

Figure 4. Micro-impact tests on Z130, AZ145, AZ170, with R = 100 µm probe. (a) Depth 

vs. impacts data in 4, 5 and 6 N tests on AZ170 (b) Depth increases during tests at 5 N. (c) 

Depth increases during tests at 6 N. 

 

4. Discussion 

The deposition of zirconia, zirconia-alumina and alumina at low temperature resulted in 

predominantly amorphous films with not particularly high hardness. The alumina films 

produced with ion assistance were harder and stiffer than the borosilicate glass. The mechanical 

properties of the zirconia and zirconia-alumina coatings were very similar to the soda lime 

glass substrate. Although this minimised stress discontinuities at the coating-substrate 

interface, clear interfacial failures were observed in nano-impact and nano-scratch tests.  

With the cube corner indenter, the initial impact depth on Z270 significantly exceeded the film 

thickness indicating that film fracture occurs on the first impact. Several impacts were required 

for an abrupt displacement increase (fracture) on the thicker film, but ultimately this led to 
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larger final impact depth and chipped area. The mean difference in final impact depth, (527 ± 

99) nm, is close to the difference in thickness 520 nm between Z270 and Z790 nm. 

The 4.8 µm radius spherical indenter proved more suitable for impact testing of these brittle 

coatings. The spherical geometry produced more gradual displacement increases than the 

sharper cube corner indenter (compare figs 1 (b) and 2 (b)), consistent with what has been 

reported previously in tests on hard coatings [6]. Tarres and co-workers reported that by 

switching from sharp to blunter spherical indenters increased the intrinsic test suitability for 

examining damage evolution in bulk materials as a function of number of cycles [17]. In 

contrast to the cube corner tests where film failure occurred in all but one of the 200 tests on 

Z270 and Z790 irrespective of the test load, with the R = 4.8 µm probe it was possible to 

observe marked load dependence in the behaviour. At the lowest load the coatings were able 

to protect the glass substrate, but at higher load a transition occurred where coating and 

substrate failure was observed (between 2 and 5 mN on Z790). As with the cube corner 

indenter, at 5 mN the mean difference in final impact depth with the 4.8 µm spherical indenter 

was also close to the difference in thickness between Z270 and Z790 nm. 

The BS SEM imaging revealed main load dependent deformation mechanisms which were (i) 

radial cracking without chipping/delamination (ii) concentric ring cracks leading to 

chipping/delamination (iii) chipping/delamination accompanied by spiral cracking outside the 

chipped/delaminated region (iv) chipping/delamination accompanied by substrate fracture. It 

seems probable that circumferential cracks also formed at low load though these are not clear 

in the imaging (figure 2(h)). The BS images (fig. 2(f)) clearly show that the marked change 

between 2 and 5 mN on Z790 with the spherical indenter is due to a change in the predominant 

deformation from radial cracking to delamination. The BS images also show the onset of 

substrate fracture at 20 mN is responsible for the transition in the final depth vs. load data 

between 15 and 20 mN on both these samples (fig.2(c)). The results are consistent with 
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previous reports of the evolution of crack systems in spherical indentation and cyclic fatigue 

tests where circumferential cracking is commonly observed, with a transition to radial cracking 

and chipping at higher load/test duration [1,6]. 

By performing nano-impact and nano-scratch testing on Z270 and Z790 with the same R = 4.8 

µm probe, it was possible to investigate similarities and differences between the deformation 

behaviour in both types of test independent of any probe radius effects. During the nano-impact 

tests, isolated depth decreases of around ~70 nm were observed (e.g. after 16 impacts at 5 mN 

on Z270). Since download steps of ~60-80 nm were also observed on the onset of fracture of 

the substrate in the nano-scratch tests, the same failure process may be occurring in both types 

of test. In the scratch test, the downward steps occurred at 190-200 mN whilst steps were 

observed at similar depths in the repetitive impact tests at 20-25 mN and also at lower depth in 

tests at lower forces (2-5 mN). Small depth decreases have been observed during micro-impact 

tests on coatings on cemented carbide and often mark the transition to a more rapid removal 

rate [6], but here are more likely to be associated with uplift / blistering due to cracking 

followed by material removal due to substrate fracture in both impact and scratch tests. 

In an indentation test, the critical load for non-elastic deformation scales with the H3/E2 

parameter, which is commonly taken as a measure of the resistance to plastic deformation. 

Increasing H3/E2 can therefore result in more elastic contact resulting in improved wear 

resistance at lower load [18-19], and improved resistance to fracture initiation. Nevertheless, 

to display enhanced resistance to crack propagation (i.e. damage tolerance), different properties 

may be required [20]. In this study, the data in Tables 2 and Table 3 show that the resistance 

of the coating-substrate systems with the highest H3/E2 to repetitive impact is inferior. The best 

impact resistance was shown by Z130 which has the lowest H3/E2 of all the systems studied. 

Although the reasons are not clear, it could more effectively dissipate energy through plastic 

deformation and/or micro-fracture processes to minimise strain accumulation. It has been noted 
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previously that films with high H3/E2 and an additional structural advantage such as 

multilayering have improved impact resistance [21-22]. For the brittle amorphous coatings 

studied here, there is no associated structural benefit and the duplex coatings A145, A170 do 

not display as strong impact resistance as the monolayer Z130. 

Although a smaller number of micro-impact tests were performed, these were sufficient to 

assess the general features of the deformation and determine the main similarities and 

differences from the deformation observed in nano-impact tests. In comparison to more 

commonly impact-tested harder PVD coatings on tougher substrates, the higher brittleness of 

the optical coatings requires different probe geometries to be used. When testing hard and tough 

coatings cube corner indenters for nano-impact and R = 25 m probes for micro-impact have 

proved effective and blunter probes that were necessary for the optical coatings on glass are 

typically not able to induce fracture.  The energy supplied per impact is the product of the 

impact load and accelerating distance (AD) [23]. The energy supplied at 5 N and AD = 25 µm 

was over x500 greater than in the nano-impact tests at 15 mN and AD = 15 µm. For the 

spherical probes used in this study, with radii of 5 and 100 µm, this resulted in an initial 

(predominantly elastic) impact depth ~x10 greater. Despite this difference, by converting raw 

impact data to impact depth increases during the test (i.e. setting the depth after a single impact 

to zero to remove the influence of load-dependent elastic deformation, and graphically showing 

all subsequent impact depth data relative to this), enabled the cycle-by-cycle response to 

multiple micro-impact with a blunt 100 µm probe to be directly compared that observed in 

nano-impact tests with a much sharper spherical probe. This is illustrated by tests on AZ170 

shown in figure 5. The figure shows that the increase in impact depth during the first 30 impacts 

for tests at 4-6 N with the 100 µm probe and at 15-25 mN with the 4.8 µm probe. An inflexion 

in the micro-impact data occurs due to coating failure, after 14 impacts at 4 N, 12 impacts at 5 

N and ~4 impacts at 6 N. Similar inflexions were also observed in the nano-impact data, with 



24 

 

the transitions to faster damage rates being preceded by small depth decreases on this sample. 

The AZ145 coating was more susceptible to substrate fracture in nano- and micro- tests than 

the AZ170 and Z130 coatings tested under the same conditions. Lawn and co-workers have 

reported that the deformation in an indentation contact is a function of the radius of the indenter, 

with larger radii indenters producing more brittle deformation and smaller radii indenters more 

plasticity [24]. Large-scale substrate fracture was observed in the micro-impact tests at 6 N but 

was not observed in the nano-impact tests with the sharper probe, at least within the range of 

forces studied.  

When comparing coatings and their deformation mechanisms across wide force ranges and/or 

different probe geometries, small inflexions in the probe depth that correspond to failure events 

may be obscured when data are plotted together.  The novel approach (setting h = 0 after the 

first impact) enables (i) comparison of nano- and micro-impact data with different probe 

geometries and (ii) convenient investigation of load-dependent behaviour at either length scale 

whilst keeping the same probe geometry. 

 

 



25 

 

5. 

Figure 5. Comparison between nano- and micro-impact tests on AZ170. Tests at 4-6 N 

and AD = 25 µm with 100 µm probe and at 15-25 mN and AD = 15 µm with 4.8 µm probe. 

 

5. Conclusions 

Spheroconical probes were found to be more suitable to study the load sensitivity of the impact 

response than sharp cube corner indenters. Increased resistance to plastic deformation in the 

system (higher H3/E2) proved detrimental to the resistance to the repetitive impact in nano- and 

micro-impact tests. Despite the ~x500 difference in impact energy in nano- and micro-impact 

tests, the relative ranking of coating performance in both regimes was consistent, with the 

thinner alumina-zirconia duplex coating (AZ145) more susceptible to substrate fracture in 

nano- and micro-scale tests. This could be due to the underlay (alumina) being half the 

thickness of the thicker duplex coating (AZ170) coating. When comparing coatings and their 

deformation mechanisms across wide force ranges and/or different probe geometries, small 

inflexions in the probe depth that correspond to failure events may be obscured.  A novel 

conversion of the data to depth increases (i.e. setting h1 = 0) has been used to show that the 

damage evolution can follow similar trends with number of impacts in both nano-scale and 

micro-scale impact tests. Nano-impact and nano-scratch tests performed using the same R = 

4.8 µm spheroconical probe revealed similarities in deformation behaviour ascribed to cracking 

and blistering of the glass substrate. 
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