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Abstract—Venous thromboembolism (VTE) is the third most
common cardiovascular condition. Some high risk patients di-
agnosed with VTE need immediate treatment and monitoring
in intensive care units (ICU) as the mortality rate is high.
Most of the published predictive models for ICU mortality give
information on in-hospital mortality using data recorded in the
first day of ICU admission. The purpose of the current study is to
predict in-hospital and after-discharge mortality in patients with
VTE admitted to ICU using a machine learning (ML) framework.

We studied 2,468 patients from the Medical Information Mart
for Intensive Care (MIMIC-III) database, admitted to ICU with
a diagnosis of VTE. We formed ML classification tasks for
early and late mortality prediction. In total, 1,471 features were
extracted for each patient, grouped in seven categories each
representing a different type of medical assessment. We used an
automated ML platform, JADBIO, as well as a class balancing
combined with a Random Forest classifier, in order to evaluate the
importance of class imbalance. Both methods showed significant
ability in prediction of early mortality (AUC=0.92). Nevertheless,
the task of predicting late mortality was less efficient (AUC=0.82).

To the best of our knowledge, this is the first study in which
ML is used to predict short-term and long-term mortality for
ICU patients with VTE based on a multitude of clinical features
collected over time.

Index Terms—MIMIC-III, ICU mortality prediction, throm-
bosis, machine learning, imbalanced classification, AutoML

I. INTRODUCTION

Venous thromboembolism (VTE) that presents with clots
in the veins, most frequently as deep vein thrombosis (DVT)
or pulmonary embolism (PE) is a potentially lethal disease
with an annual prevalence rate of approximately 1 per 1000
adults [1]. Its prevalence is even higher in hospitalized,
critically-ill and cancer patients [2]. In critically ill patients,
it is associated with significant morbidity, prolonged intensive
care units (ICU) and hospital stay and increased in-hospital
and post-discharge morbidity and mortality [3].

VTE is a complex multifactorial disease. Besides hereditary,
common strong acquired risk factors are surgery, congestive
heart or respiratory failure, cancer, and trauma. Hospitaliza-
tion, increasing age, and obesity are also considered but as
weak risk factors [4].

Several prognostic models that incorporate clinical and
laboratory findings have been derived to predict early mortality
in patients with thrombosis, such as the Pulmonary Embolism
Severity Index (PESI) and the simplified PESI (sPESI) for pul-
monary embolism [5]. Moreover, there are several other scores,

such as Sequential Organ Failure Assessment (SOFA) [6],
Oxford Acute Severity of Illness Score (OASIS) [7], Acute
Physiology And Chronic Health Evaluation (APACHE) [8],
Simplified Acute Physiology Score (SAPS) [9], that estimate
the severity of disease in ICU and correlate positively mostly
with early mortality but with varying accuracy depending
on the population studied. These scores are based on data
obtained during the first day of admission so they lack
considerable information stemming during their hospital stay
and post-discharge. Moreover, they are not widely customised
in different patient groups, such as patients with thrombosis.
So far, accurate identification of patients who will stay at
risk even months later is lacking. It is crucial to predict
these high risk patients since prompt recognition or adequate
treatment could probably improve survival [10]. With the
recent advancements in electronic health records, big data
storage, and machine learning (ML) algorithms it is possible
to build forecasting systems to guide clinicians making more
informed predictions [11].

MIMIC-III database is a freely accessible database that
provides detailed granular clinical data and gives the oppor-
tunity for data sharing, code sharing and ML benchmarking
[12]. Several studies have been published regarding mortality
prediction using ML but they are mostly based on the extrac-
tion of a simple feature set and patients admitted in the ICU
regardless of the primary diagnosis [13]. Since diagnosis could
significantly affect survival it would be interesting to study
disease-related outcomes and try to identify specific clinical
features with prognostic significance. Even more importantly,
it is necessary to predict post-discharge mortality which is a
difficult task, since patients admitted to ICU usually suffer
from a high comorbidity burden. Few studies have focused on
the prediction of late mortality using ML algorithms [10].

Here we present a thorough ML analysis pipeline with the
purpose of predicting early as well as late mortality after
ICU admission for VTE. The novelty of our approach is
that we used a very wide selection of features from the
MIMIC-III database. This includes demographic information,
prescriptions, procedures, comorbidity and severity scores as
well as information coming from written notes. This imposes
dealing with a variety of pre-processing techniques, in order
to account for the different types of features. Having in
our disposal a feature rich dataset, allows us to examine
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how current comorbidity and severity scores are associated
between each other, and if they have high predictive ability
for mortality when compared with common clinical features.
In order to tackle the “curse of dimensionality” issue in a
dataset of this shape we apply an “AutoML” technique [14]
that is tailored for low-sample, high dimensional, imbalanced
and sparse (many missing values) data. Finally, we examined
the class balancing effect in light of oversampling combined
with a Random Forest classifier in both prediction tasks, since
JADBIO addresses imbalanced classes through stratified cross
validation and diversified class weights during Support Vector
Machine (SVM) learning [14].

II. MATERIALS AND METHODS

A. Data Source

Data were obtained from Medical Information Mart for In-
tensive Care database (MIMIC-III, version 1.4) that comprises
health-related data from 38,597 adult patients and 49,785
admissions in ICU of the Beth Israel Deaconess Medical
Center, between 2001 and 2012. [12]. Diagnosis is given
as primary and secondary diagnosis ICD-9 codes as well as
diagnosis-related groups (DRG).

B. Ethics Statement

MIMIC-III database was created in accordance with Health
Insurance Portability and Accountability Act (HIPAA) stan-
dards and all investigators with data access (VD, CT) were
approved by PhysioNet. Patient data were de-identified and
date-shifted. All pre-processing and data analysis was per-
formed under MIMIC-III regulations.

C. Dataset Description

Selection of patients was based on 35 different ICD-9
codes related to thrombosis. Validation of this grouping for
thrombosis diagnosis from an independent panel of physi-
cians showed very good performance [15]. Overall 2,468
patients were selected for our study (6.4% of total patients in
MIMIC-III). Patients younger than 15 years (n=3), pregnancy
and puerperium complications (n=40) and patients with “do
not resuscitate code” (DNR) (n=169) were excluded. Three
main groups of thrombotic diseases were recognised: pul-
monary embolism (n=960), deep vein thrombosis and throm-
bophlebitis (n=1,543) and unusual site thrombosis (n=307).
Many patients belonged in more than one diagnostic category,
as shown in Fig. 1. All VTE patients were split into three
groups. The first, referred as G1 are 348 patients that died
during the first ICU admission in which they were diagnosed
with thrombosis. Patients in this group died on average 17 days
after their admission with a median of 11 days. The second,
referred as G2 are 817 patients that died after their discharge
from ICU or in a later admission. On average this group died
after 549 days with a median of 225 days. The third, referred
as G3 are 1,303 patients that remained alive for months after
their admission in ICU. From these groups we form two ML
tasks. The first is to build a model that distinguishes G1 vs.
G3 patients (called “early mortality” or M1) and the second
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Fig. 1. Venn diagram showing the number of patients belonging to all subsets
of the three diagnostic categories.

is a model that distinguishes G2 vs. G3 patients (called “late
mortality” or M2).

The clinical characteristics of the study population are
described in Table I. From the characteristics presented in this
Table, 9 were added as features.

D. Feature Selection

For each of these patients we extracted a multitude of
features based on factors that could be associated with throm-
bosis. Since our purpose was to investigate potential novel
discriminatory features, we chose to be very liberal on fea-
ture extraction from the database. Data extracted included
demographics (age, ethnicity), length of stay in ICU (in
days), number of admissions, body weight, vital signs, basic
laboratory indices, (hematocrit, hemoglobin, white blood cells,
platelets, renal and liver function tests, hemostasis screening
tests, sepsis indices), severity scores, transfusion requirements,
procedures, medications and mortality.

These features were grouped in seven categories each repre-
senting a different type of medical assessment or interventions
as shown in Table II. In cases where features had time-
series data the first measurement and average were extracted.
Concepts are meta-features containing the values of various
scores and measurements. These values are not stored in the
database but are available as SQL queries that estimate them
from other features. Concepts include a set of severity illness
and organ failure scores such as SOFA, SAPS, Glasgow Coma
Scale (GCS), sepsis scores (Martin, Angus). and comorbidity
scores that are described as different Elixhauser indices [16].

NoteEvents contains unstructured notes written by clinicians
in free text format. These notes have been proved to contain
valuable information that when combined with semantic and
sentiment analysis can be even used for predicting VTE [17].
Here, our objective was to convert this textual information in
numerical that could be added in our feature set. Towards this
direction, first, we extracted all clinically relevant entities from
the text using the SABER sequence annotator1 which is a Deep
Neural Network framework, tailored for entity extraction from

1https://github.com/BaderLab/saber/
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TABLE I
DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF 2,468 ICU PATIENTS WITH THROMBOSIS IN MIMIC-III DATABASE. (+): THIS CHARACTERISTIC

WAS ADDED AS A FEATURE.

Characteristic Value Characteristic Value

Overall patients with thrombosis 2,468 Length of ICU stay (LOS), days (+)
• Pulmonary embolism (+) 960 (38.9%) • Average (SD) 7.06 (10.06)
• Deep vein thrombosis (+) 1,543 (62.5%) • Max length stay 153.9 days
• Unusual site thrombosis (+) 307 (12.4%)

Sex (+) Number of admissions (+)
• Female 1,024 (41.5%) • Average (SD) 1.15 (0.46)
• Male 1,444 (58.5%) • Median 1

Ethnicity (+) Cancer diagnosis (+) 605 (24.5%)
• White 1,801 (73%) Mortality (%)
• Black 246 (10%) • G1 or Early (at the first admission) 348 (14.1%)
• Other 421 (17%) • G2 or Late (1 year mortality) 817 (33.1%)

• G3 or “Alive” 1303 (52.8%)

Age, years (+) Time to death (in days)
• Average (SD) 62.64 (16.7) • Average (SD) 390 (647)

[min=17.4 max=98.7] • Median 83

biomedical documents. SABER uses a bi-directional Long
Short-Term Memory (LSTM) architecture [18] and provides
access to pre-trained models for various types of entities.
One of these is the disease ontology (DO) [19] which is a
structured vocabulary of entities related to various pathologies
and symptoms. For each NoteEvent entry we extracted all
DO entities. On average for each patient we extracted 161
entities with a median of 133. Next, we fitted these entities
into a Latent Dirichlet Allocation (LDA) topic model with the
Gensim framework [20] by using 50 topics.

A topic simply contains a probability distribution of entities,
i.e., entity “pain”, may belong by 20% in topic 1 and by
80% in topic 2. Ideally, each topic is a thematic cluster that
should contain entities with close semantic proximities. As a
result, this produced a 50 dimensional space that contained
the topic distribution for each patient. An example of the
visualization of this model with the LDAvis tool [21] can
be found in the following URL: https://doi.org/10.6084/m9.
figshare.12854852.v1. Thus, this process transformed the tex-
tual content for each patient in an easy-to-use numerical format
that contained the basic thematic topics of these entries.

In total our dataset contained 1,471 features: 9 clinical
(Table I) and 1,462 features from the groups presented here
(Table II). It is obvious that each group describes a different
view of the clinical picture of the patient. Since our objective
is to locate subsets of discriminatory features, we applied a
stratified analysis for each group. Thus, for each ML task, we
created subsets that contained only the features of this group.
Yet, all these subsets contained basic demographic information
that are known to have strong correlation with mortality in
thrombosis such as sex, length of stay and diagnosis group. We
also created datasets that contained the entirety of the features.
In total we created 16 datasets which correspond to the two
ML tasks combined with the 8 groupings (seven groups plus
one containing all groups).

E. AutoML

For each of these 16 datasets we applied a classification
ML pipeline. For this purpose, we used the JADBIO AutoML
platform that uses an Artificial Intelligence (AI) Decision
Support System called Algorithm and Hyper-Parameter Space
selection (AHPS) in order to extract predictive models and
signatures. JADBIO works as follows: initially it constructs
a set of ML configurations consisting of algorithms and
hyper-parameters. The algorithms are Linear, Ridge and Lasso
Regression (LR), Decision Trees (DT), Random Forests (RF)
and Support Vector Machines (SVMs) with Gaussian and
polynomial kernels. This selection is based on the fact that
these algorithms are most often the top classifier in exten-
sive evaluation studies [22]. Subsequently, it evaluates these
configurations through a bootstrap corrected cross-validation
algorithm [23]. After selecting the “winning configuration”
it reports the classification statistics like truth table, AUC,
sensitivity, specificity, precision, selected features along with
their classification ability and their sample predicted/real
values. JADBIO applies all good practices of ML in order
to eliminate any overfitting of the model and any bias in
efficiency estimation. Details regarding the ML pipeline and
statistical analysis can be found on [14]. Extensive testing
showed that JADBIO’s estimations lie towards the lower bound
of the efficiency spectrum, or else these metrics are in fact
conservative compared to the real classification ability of the
generated model [14].

F. Class Balancing Based on Oversampling

JADBIO addresses imbalanced classes through strati-
fied cross-validation and diversified class weights dur-
ing SVM learning. For that reason, it is crucial to ex-
amine the class balancing effect in light of oversam-
pling combined with a state-of-the-art ML classifier (here
we adopt the Random Forest (RF) classifier) both for
M1 and M2 tasks. More specific, the imbalance ra-
tio for M1 is 1:3.744, and 1:1.594 for M2. We adopt

https://doi.org/10.6084/m9.figshare.12854852.v1
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TABLE II
DESCRIPTION OF CLINICAL AND LABORATORY FEATURES SELECTED FROM MIMIC-III DATABASE. THE FIRST COLUMN DESCRIBES THE

CORRESPONDING TABLE FROM THE MIMIC-III DATABASE. ABBREVIATIONS: RBC=RED BLOOD CELL, PLT=PLATELET.

Group Description #features Average Median Most common features
ChartEvents Vital signs, labs, clinical

information
235 433 77 Common labs, blood gases, blood pressure

LabEvents Laboratory indices 45 1237 1157 Hematocrit, hemoglobin, white blood cells, platelets,
red blood cells, renal and liver function tests,
hemostasis screening tests, sepsis indices

Procedures Several procedures including
transfusion and mechanical
ventilation

526 24.3 6 Venous catheterization, enteral nutrition,
endotracheal intubation, mechanical ventilation for
more than 96 hours

InputeEvents Transfusion and parenteral
nutrition

12(MV)
10(CV)

RBC transfusion, PLT transfusions , plasma
transfusions

Prescriptions Medications 91 132 14 Heparin, insulin, warfarin, aspirin, enoxaparin,
norepinephrine, phytonadione and atorvastatin

NoteEvents Unstructured medical notes 50 48 entries,
2408

characters

1382
characters

N/A

Concepts Scores, first day labs, first day
vitals, doses and durations of
medications

493 Comorbidity indices, severity illness scores, organ
failure scores, sepsis scores, glasgow coma scale,
first day laboratories, first day vital signs,
transfusions

the Synthetic Minority Oversampling Technique (SMOTE)
method [24], where we use the default SMOTE implemen-
tation sm=SMOTE(random_state=random_seed) in-
cluded in the Imbalanced-Learn [25] Python package2. Prior
to class balancing, we follow the next steps. First, we drop
the features (columns) from both datasets that have more than
50% percent of missing values. Second, the boolean values are
replaced as TRUE: 1, FALSE: 0, and the gender (male/female)
as well as the ethnicity (white/black/other) feature is one-
hot encoded. Third, median imputation is adopted to fill the
missing values. A shuffled stratified 75%/25% train/test split
is applied on M1 or M2 to divide it into a training and a
test partition. Then, the training partition is divided into five
stratified cross-validation folds (using shuffling). Since our
focus is given on examining the SMOTE oversampling effect
on the final performance evaluation, we apply the SMOTE on
all the “training” folds during each cross-validation iteration.
The motivation towards applying oversampling during cross-
validation is that similar patterns/instances may appear in both
training and test partitions when the oversampling is performed
prior to cross-validation which can lead to overoptimistic error
estimates [26]. However, if the oversampling is performed
during cross-validation, only the training patterns/instances
are considered both for generating new patterns/instances and
training the model, alleviating overoptimism. As a result, four
distinct cases arise: 5-fold stratified cross-validation on M1 or
M2 training partition with or without SMOTE oversampling.
In both cases, we perform grid-search hyper-parameter tuning
of a RF classifier which is robust and efficient when dealing
with numerical, categorical and boolean data.

The best hyper-parameters combination is computed accord-
ing to an F1-score rule, i.e., the model selection is based on
the highest F1-score on the “validation” fold for a specific
hyper-parameters combination. Then, we train the best (F1-
based selected) RF model on the entire initial (before the

2https://imbalanced-learn.readthedocs.io/en/stable/index.html

cross-validation iterations) training partition. Towards the final
performance evaluation, we compute the average ROC curves,
where the results are averaged over ten Monte Carlo repetitions
with different realizations of the train/test split, the 5-fold
stratified cross-validation, and randomizations of the SMOTE
method.

III. RESULTS

A. Correlation of Sepsis, Comorbidities and Organ Failure
Scores

First, we analyzed the complex interactions between the
various sepsis (n=20), comorbidities (n=17) and organ failure
(n=12) scores. This comparison tries to examine the level
on which various scores are complementary and to which
extent correlate with each other [27]. For each of these score
groups we computed a Pearson pairwise correlation matrix and
we visualized these correlations using heatmaps. For sepsis
and severity scores we added an extra feature which was
the “time before death” containing the negative of the time
(in days) in which the patient died after their first admission
with a thrombosis diagnosis. Regarding sepsis (see Fig.2), it
is interesting that there is a quite good correlation between
the two sepsis scores (Angus and Martin). As far as it con-
cerns comorbidity index (data not shown) we used the Quan
Elixhauer score, since both variants of Elixhauer measures
AHRQ and Quan have comparable efficiency in predicting all-
cause mortality [28]. Finally, we observe a strong correlation
between various severity and organ failure scores as shown in
Fig.3, although only SAPS and Acute Physiology Score (APS)
might have a weak correlation with time to death.

B. Classification of Early and Late Mortality Patients

The best ML model chosen by JADBIO to predict early
mortality (task M1) was RF training 500 trees with De-
viance splitting criterion and minimum leaf size equal to
2. As expected, the best performance corresponded to the

https://imbalanced-learn.readthedocs.io/en/stable/index.html


dataset containing all groups (AUC=0.925), followed by Con-
cepts (AUC=0.923) and ChartEvents (AUC=0.917), whereas
InputEvents had the worst performance (AUC=0.781) (see
Fig.4). Regarding late mortality (task M2), the best ML model
was again RF training 500 trees with Deviance splitting
criterion and minimum leaf size equal to 3. Nevertheless, the
task of predicting M2 was less efficient even with the holistic
approach (AUC=0.82).

As it is shown in Fig.5, Concepts in this case had in-
ferior performance (AUC=0.783) which is expected since
known severity and organ failure scores are excellent only
for predicting M1. This difference can also be attributed to
the fact that an unknown number of patients in the “alive”
(G3) group might in fact have the same mortality risk as
in the patients in G2 group due to the limited time period
that the database tracks mortality status. Another interesting
finding is that NoteEvents (free text features) had almost the
same AUC (0.762) as ChartEvents (0.768) and Procedures
(0.763). This signifies the need to treat textual information
as having the same importance for the classification task as
with “traditional” clinical features at least in ML tasks with a
convoluted class distribution.

C. Mortality Prediction Based on SMOTE and Random
Forests

Fig. 6 depicts the average ROC curves in the case of M1

(solid lines), where it is obvious that SMOTE oversampling
(combined with the RF classifier) provides equal mean ROC
results (0.91 in SMOTE and no-SMOTE case) something that
was being expected due to the low imbalance ratio 1:3.744.
Since the imbalance ratio in the case of M2 is even lower (i.e.,
1:1.595) we expect that SMOTE oversampling will achieve
almost the same (or slightly worse) performance in compar-
ison with the non-oversampling case. This is experimentally
confirmed as it can be seen in Fig. 6 (dashed lines) where the
mean ROC scores are 0.81 and 0.82 in the case of SMOTE
and no-SMOTE, respectively. In general oversampling tech-
niques such as SMOTE perform better in high imbalance ratio
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Fig. 3. Feature correlation results for severity scores.

datasets [26], [29]. Therefore, we can conclude that there is
no drastic change in the early and late mortality predictive
accuracy regardless of a class balance oversampling use within
a ML pipeline.

D. Feature Discriminative Analysis

Cancer and age at thrombosis were significant predictors
in most of the analysis subgroups for early as well as
late mortality. Anticoagulation with warfarin in “All” and
“Prescriptions” was another significant predictor for both
M1 and M2. Selected features to predict M1 were features
related to respiratory distress, renal failure, cardiovascular
compromise, severity scores, certain medications, transfusions
and laboratory indices. In more detail, respiratory distress
was represented by blood gases (arterial pH, 1st day oxygen
saturation), respiratory parameters of Martin sepsis score and
respiratory rate (RR) in “All”, “Concepts” and “Chartevents”
as well as mechanical ventilation and insertion of endotracheal
tube in Procedures. Renal failure was indicated by blood urea
nitrogen (BUN) in “All” and “ChartEvents”, urine output in
“Concepts”, and creatinine in “LabEvents”. Cardiovascular
compromise related-features were systolic (SBP) and 1st day
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diastolic blood pressure (DBP) in “Concepts”, extracorporeal
circulation, cardiopulmonary resuscitation and infusion of
vasopressors in “Procedures”, dopamine and norepinephrine
administration in “Prescriptions”. From all severity scores,
SAPS II appeared to significantly affect early mortality in
”All”, and ”Concepts”. GCS and mental status appeared as
significant predictors in “ChartEvents”. Finally well known
significant laboratory indices (such as red cell distribution
width-RDW, platelets, white blood cells) were recognised
in “LabEvents” and ”All” datasets, as shown in Fig. 7.
Selected predictive features for late mortality were similarly
associated with cardiovascular and renal failure, medications
and laboratory indices. Renal failure was indicated by cre-
atinine avg, urine output, 1st day anion gap in “All” and
“Concepts” and hemodialysis in “Procedures”. Cardiovascular
compromise was represented by phenylephrine rate, blood
pressure measurements and CPK in “All”and “Chartevents”
and extracorporeal circulation in “Procedures”. It is interesting
that hydropneumothorax, a condition related to lungs, was a
feature extracted from “NoteEvents”.

IV. DISCUSSION

Prediction of early and late mortality in ICU patients
has been a central challenge in the area of medical infor-
matics. Current approaches use either a limited pre-selected
number of features [13], [30], [31] or explore the feature
space with a small range of ML algorithms (i.e., Logistic
Regression [32], SVM [33], Artificial Neural Networks [34],
Decision Trees [35]). Even when more generic approaches
are used it is questionable whether proper ML guidelines for
overfitting prevention and accurate efficiency metrics reporting
are followed. Here, we focus on predicting early and late
mortality for patients admitted in ICU with VTE diagnosis.
The main goal of this work is to locate features and build
models in order to improve ICU survival rates.

Features included in our study derived from raw clinical
measurements, widely accepted severity, comorbidity and or-
gan failure scores (presented here as Concepts) [6]–[11], as
well as information coming from free-text notes. This creates
a feature space that except from the “curse of dimensional-
ity”, suffers from all known problems of real-world clinical
data; imbalanced classes, many missing values [36] and co-
dependencies between different features.

To tackle these issues we employed two strategies. The first
is an AutoML approach based on JADBIO, that has been
widely tested in biomedical data and follows all good practices
for analysis and efficiency reporting. Besides, JADBIO can
produce “interpretable” models that can be intuitively explored
and explained by physicians as confirmed by our study. All
extracted features were clinically meaningful since older age,
cancer, respiratory, cardiovascular, renal disease, vasopressor
support and mechanical ventilation are well established clin-
ical predictors of ICU mortality [30]. Similarly with [30] we
did not find sex to be a predictor of ICU mortality. More-
over, individual feature analysis confirmed that warfarin [37],
RDW [38] and red blood cell transfusions [39] are significant
predictors of early and probably of long-term mortality. Our
second approach is a class balancing combined with a RF
classifier approach, indicating that the results we obtain from
JADBIO are consistent in terms of class imbalance.

Our results show that Concepts contain valuable information
for predicting early mortality, reaching the same efficiency
as the complete feature space, with a high AUC (0.923).
Nevertheless when predicting late mortality, information from
all other groups can significantly increase the AUC as in
our case, from 0.783 to 0.82. As a comparison one of the
best existing studies in 442,692 patients for predicting 90 day
mortality had AUC of 0.86 by leveraging 5,695 features [32].
Our model outperforms [31] in prediction of early mortality
(AUC 0.92 vs 0.77) Also in a recent review [40], of 43
mortality prediction models for critically ill patients the lowest
discrimination AUC was 0.72 and the highest 0.91. From these
the only one that used a multi-feature approach [32] had an
AUC of 0.86 for 6 month mortality and 0.88 for 12 month
mortality. Regarding ICU scores, [10] reports AUC of 0.826,
0.836, and 0.788 for SAPS II, APACHE II, and SOFA scales,
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respectively, for predicting ICU mortality, and 0.708, 0.709,
and 0.661 for SAPS II, APACHE II, and SOFA, respectively,
for post-ICU prognosis. Our correlation study confirmed the
hypothesis that different sepsis and comorbidity scores convey
different types of information [27].

Some limitations of our study should be taken into account.
Our study was monocentric and retrospective. Since the data
were collected in the past, it is possible that many medical
practices have changed over time (e.g. warfarin). Selection
of our population was based solely on ICD-9 codes and
DRG codes. This could include some false negative and false
positive cases since confirmation by imaging studies was not
feasible. More importantly, no external validation of our results
has been performed. Finally, we believe that a more focused
approach of semantic extraction could be more effective [17].

Our future work includes external validation of our model in
eICU Collaborative Research Database, which is a larger and
more recent database [41]. Regarding extraction of specific

ontology based entities, another alternative would be to use
direct language embeddings [42]. Finally we plan to investi-
gate the use of LSTM for importing time-series data in our
model [43].

In conclusion, early mortality in critically-ill patients with
VTE can be easily predicted by automated ML. There is a
need for more precise and reliable tools in order to estimate
late mortality in VTE patients successfully discharged from
the ICU.
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