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Repeatability of corneal biomechanics waveform signal parameters derived from Ocular 1 

Response Analyzer in children 2 

 3 

Abstract 4 

Purpose: To investigate the repeatability of waveform signal parameters, measured with the 5 

Ocular Response Analyzer (ORA), in children. 6 

 7 

Methods: Two sets of ORA measurements, with a 10-min break between them, were 8 

performed on children, aged six to <11 years old, either wearing single-vision spectacles 9 

(SVS) or orthokeratology (ortho-k) lenses. Intraclass correlation coefficients (ICCs) were used 10 

to assess agreements between two sets of measurements (37 waveform signal parameters). 11 

Bland-Altman (BA) plots were used to further analyse waveform signal parameters which 12 

have ICC 95% confidence interval (95% CI) between 0.50 to >0.90 (regarded as moderate to 13 

excellent agreement). 14 

 15 

Results: A total of 30 subjects [15 SVS, 15 ortho-k (3.6 ± 2.4 months)] completed the study. 16 

Since no significant between-group differences were detected in demographic data (p > 17 

0.28) and all waveform signal parameters (p > 0.05), data from the two groups of subjects 18 

were pooled for the analysis of repeatability. Six parameters, h2, h21, p1area, p1area1, 19 

p2area, and p2area1, achieved ICCs (95% CI) of 0.82 - 0.85 (0.61 - 0.93). The mean (SD) of 20 

these six parameters were 372 (91), 248 (61), 4077 (854), 1762 (399), 2359 (670), and 1020 21 

(300), respectively. Bland-Altman plots and 95% limits of agreement (95% LoA) showed 22 

considerable agreement for all six parameters, the mean difference (95% LoA) were -3 (-101 23 

to 94), -2 (-67.56 to 62.70), 111 (-723 to 946), 102 (-334 to 539), 25 (-718 to 768), and -3 (-24 
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350 to 343), respectively.  25 

 26 

Conclusions: Six waveform signal parameters (h2, h21, p1area, p1area1, p2area, and 27 

p2area1), which represent or are related to the areas under the waveform at the peaks in 28 

the signal, could achieve moderate to excellent agreement in children. Results of the current 29 

study provides fundamental information for further studies on the potential clinical 30 

application of these waveform signal parameters in children. 31 

 32 
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Introduction 34 

The cornea is composed primarily of collagen fibrils. The stroma, which contributed to 35 

90% of the total thickness of a hydrated human cornea, was lamellated by layers of well 36 

organised collagen fibrils and proteoglycan matrix. These corneal structures are associated 37 

with the corneal biomechanical properties [1]. Many factors could affect the corneal 38 

structure, including normal ageing, the level of corneal hydration, and pathologies [1]. 39 

Understanding the corneal biomechanical properties may therefore help to understand the 40 

effects of disease on cornea. Many methods had been developed to fulfil the compelling 41 

need of the investigation on corneal biomechanical properties.  42 

Before the introduction of the dynamic bidirectional applanation device (Ocular 43 

Response Analyzer (ORA), Reichert Ophthalmic Instruments, Buffalo, NY) [2], corneal 44 

biomechanical properties could only be measured under a laboratory setting [3–5]. ORA 45 

measures corneal biomechanical properties in-vivo under a clinical setting by quantifying the 46 

change in corneal shape induced by the applanation of an air-puff. During the measurement, 47 

infrared light is emitted to the surface of cornea. Its signal intensity and the pressure of the 48 

air-puff are recorded during the whole period of corneal deformation (Figure 1).  49 

The two basic ORA deprived parameters, corneal hysteresis (CH) and corneal resistance 50 

factor (CRF), have been shown to be affected by or associated with several corneal 51 

conditions and pathologies [6–9]. A higher reduction in CH has been shown in glaucoma 52 

patients [9]. A significantly lower CH and CRF was reported in eyes with keratoconus [7]. CH, 53 

combined with central corneal thickness, can enhance the diagnosis of glaucoma [8]. 54 

However, the clinical utility of CH and CRF was limited because of the differences between 55 

normal and problematic eyes were small with a relatively high standard deviation [10,11]. 56 

This resulted in a low sensitivity and specificity for clinical diagnosis.  57 
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Besides CH and CRF, the analysis of the waveform signal could provide more 58 

information on the corneal biomechanical properties [12,13]. CH and CRF depend on the 59 

two pressure measurements at corneal applanation during both inward and outward 60 

movements, which different waveform signal morphologies could generate the same CH and 61 

CRF values [14]. Thirty-seven parameters can be derived from the features of the waveform 62 

signal of ORA. Each waveform signal parameter represents a specific physical meaning 63 

related to the features of the signal. They can be divided into seven groups according to 64 

their represented features. The groups are height (h1, h2, h11 and h21), width (w1, w2, w11 65 

and w21), slope (uslope1, upslope2, uslope11, uslope21, dslope1, dslope2, dslope11, 66 

dslope21, slew1, and slew2), length (mslew1, mslew2 , dive1, dive2, path1, path2, path11 67 

and path21), area (p1area, p2area, p1area1 and p2area1), aspect ratio (aspect1, aspect2, 68 

aspect11 and aspect21), the degree of irregularity (aindex and bindex), and the high 69 

frequency noise between two peaks (alphf). These waveform parameters could associate 70 

with the corneal biomechanical properties. A greater width could be related to a stiffer 71 

cornea [12], a larger area under peak 1 could relate to a softer cornea [12] and a larger area 72 

under peak 2 could represent a cornea with a better ability in energy damping [15]. Some of 73 

the waveform signal parameters have been shown to have potential in providing more 74 

information than the basic parameters in keratoconic patients [16–18]. 75 

However, before exploring the potential clinical applications of these corneal 76 

biomechanical parameters, there is a need to determine the repeatability of the 77 

measurements. The repeatability of CH and CRF measurements has been evaluated by 78 

several studies both in adults and children [19–25], however, waveform signal parameter 79 

repeatability has only been determined in adults [26]. Since children may have more 80 

difficulty with steady fixation compared to adults, which can affect ORA measurements [27], 81 
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this study aims to investigate the repeatability of the waveform signal parameters in 82 

children. 83 

  84 

Methods 85 

Chinese children, aged six to <11 years old, who wore single-vision spectacles (SVS) or 86 

orthokeratology (ortho-k) lenses, participating in myopia studies conducted at The Hong 87 

Kong Polytechnic University, were recruited. For detecting the smallest possible value of 0.70 88 

for ICC (two observations per subject) with a power of 0.90 and alpha value of 0.05, at least 89 

of 15 subjects were required [28]. All procedures in this study followed the Declaration of 90 

Helsinki and the protocol was reviewed and approved by the Departmental Research 91 

Committee of the School of Optometry of The Hong Kong Polytechnic University. Informed 92 

consent and assent from parent(s) and subjects, respectively, were obtained before 93 

measurements were performed. 94 

At the commencement of the study, all subjects had myopia 0.50 to 4.00 D and with-95 

the-rule (axes 180 ±30) astigmatism (negative cylinder) not more than 1.25 D or 0.50 D at 96 

other axes. The between-eye difference in spherical equivalent refraction was equal to or 97 

less than 1.50 D. All subjects either had been wearing ortho-k lenses for one to six months or 98 

had no prior experience of contact lens wear.  99 

Only the right eye of each subject was assessed. External ocular health was examined 100 

with slit lamp biomicroscopy before the ORA measurements to ensure that all subjects were 101 

free from ocular surface problems. Two sets of ORA measurements were performed, with a 102 

maximum of 12 consecutive measurements in each set. A 10-min break was arranged 103 

between sets during which the ORA was reset and restarted. All the measurements were 104 

saved, regardless of the waveform score. After the completion of the second set of 105 
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measurements, external ocular health was reassessed with slit lamp biomicroscopy to 106 

ensure no adverse effects caused by the ORA measurements.  107 

The first four measurements with waveform score higher or equal to 4.0 (objectively 108 

regarded as a measurement with good quality) [29] were averaged and used as the 109 

representative value of that set. If four measurements with waveform score higher or equal 110 

to 4.0 could not be achieved within the 12 consecutive measurements, the four 111 

measurements with the highest waveform score were averaged and used in the analysis. 112 

 113 

Treatment of data 114 

Statistical analyses were performed using SPSS software version 23 (IBM corporation, 115 

NY, USA). Shapiro-Wilk test was used to test the normality of each parameter because the 116 

sample size was smaller than 50 in each group. Unpaired t tests or Mann Whitney U tests for 117 

parametric or non-parametric parameters, respectively were used to compare for 118 

differences between groups. Intraclass correlation coefficients (ICC; Two-way mixed effects, 119 

mean of measurements, absolute agreement) were used to assess the level of agreement. 120 

ICCs values with less than 0.5 indicate poor reliability, between 0.5 and 0.75 indicate 121 

moderate reliability, between 0.75 and 0.9 indicate good reliability, and greater than 0.90 122 

indicate excellent reliability [30]. The mean differences and the within subject standard 123 

deviation (SDw) were calculated. Bland–Altman plots (difference plot) were used to assess 124 

the width of the agreement interval [31,32] for waveform signal parameters which showed 125 

moderate to excellent agreement [ICC with 95% confidence interval (CI) 0.50 to >0.90]. The 126 

95% limits of agreements (95% LoA) were defined as mean differences ± 1.96 x SDw. The 127 

Pearson correlation test was used to test the correlation between the differences and the 128 

average of the two sets of measurements.  129 
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Results 130 

A total of 30 subjects (15 SVS, 15 ortho-k) were recruited and completed the study. The 131 

mean (SD) duration of ortho-k lenses wear in ortho-k subjects were 3.6 (2.4) months. There 132 

were no significant differences in demographic and baseline data (ie. when they participate 133 

in the myopia control study) between ortho-k and SVS subjects (all p > 0.28) (Table 1). No 134 

significant differences (all p > 0.05) in any of the waveform signal parameters (both sets of 135 

measurements) were found between ortho-k and SVS subjects, and so data from two groups 136 

were combined for repeatability analysis (Table 2). No significant difference was found 137 

between the two sets of measurements (p > 0.71). ICC values (95% CI) of these six waveform 138 

signal parameters ranged from 0.82 - 0.85 (0.61 - 0.93) (h2, h21, p1area, p1area1, p2area, 139 

and p2area1), indicating moderate to excellent agreement. No significant correlations was 140 

found between differences between two measurements and their means (p > 0.51), The 141 

mean (SD) of h2, h21, p1area, p1area1, p2area, and p2area1 were 372 (91), 248 (61), 4077 142 

(854), 1762 (399), 2359 (670), and 1020 (300), respectively. Bland-Altman plots (Figure 2) 143 

showed the width of variations for h2, h21, p1area, p1area1, p2area, and p2area1, the mean 144 

between-measurement differences (95% LoA) were -4 (-101 to 94), -2 (-67.56 to 62.70), 111 145 

(-723 to 946), 102 (-334 to 539), 25 (-718 to 768), and -3 (-350 to 343), respectively. h2 and 146 

h21 were significantly correlated with p2area and p2area1 (p < 0.001). The Pearson 147 

correlation coefficients were 0.69 to 0.83.  148 

 149 

Discussion 150 

In terms of ICCs, the agreements of all 37 waveform signal parameters obtained in the 151 

currently study were better that those reported by Landoulsi et al.[26], who investigated the 152 

agreement of the waveform signal parameters of ORA in normal and adults after refractive 153 
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surgery. Landoulsi et al.[26] adopted the guideline by Landis and Koch [33], where ICCs 154 

greater than 0.6 were regarded as having a substantial strength of agreement, but no 95% CI 155 

were reported. Of the waveform signal parameters investigated, six (p1area, p1area1, 156 

p2area, p2area1, h1, and h11) were reported to have ICCs greater than 0.6, of which only 157 

p1area and p1area1 achieved ICC of 0.75 or above. The differences in results between 158 

Landoulsi and co-workers and the current study could be due to differences in measurement 159 

protocol. In their study, 10 measurements were acquired from each eye and the three 160 

measurements with the highest waveform score (an objective index represents the quality 161 

of the measurement) were analysed. In the current study, four measurements with 162 

waveform scores of 4.0 or above were analysed. Although the methods used in Landoulsi’s 163 

study [26] were different from the current study, the results of current study suggested that 164 

the repeatability of waveform signal parameters may not necessarily be better in adults. 165 

The values of p1area, p2area, p1area1, and p2area1 represent the area under the signal 166 

curve of the two peak signals, whereas, h2, and h21 represents the height of the signal at P2 167 

(Figure 3) [16]. h2 and h21 were highly correlated with p2area and p2area1. Since they 168 

represent the height of the second peak of the signal waveform, a higher peak should lead 169 

to a larger area under the waveform. As h2 and h21 were highly corelated with p2area and 170 

p2area1, and they may represent similar nature in corneal properties, further investigation 171 

could potentially focus on the areas under the peak signals. The areas (p1area, p1area1, 172 

p2area, and p2area1) under the waveform have been suggested to be associated with the 173 

corneal applanation area at peak 1 and peak 2 [12,15]. The area under peak 1 (p1area and 174 

p1area1) could be related to the stiffness of the cornea and a stiffer cornea could lead to a 175 

larger p1area and p1area1 [12]. The area under peak 2 might be related to the corneal 176 

viscosity property since the corneal applanation area at peak 2 is proportional to the 177 
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remaining energy stored in the cornea. Therefore, p2area and p2area1 could be potential 178 

indicators of the corneal characteristics in energy absorption, or in other words, the energy 179 

damping capacity [15].  180 

In adults, these parameters had been shown to be useful in clinical applications. 181 

p1area, p1area1, p2area and p2area1 have been shown to be highly sensitive in 182 

distinguishing keratoconic eyes from normal eyes [16,18]. The p1area, p1area1, p2area, and 183 

p2area1 in normal subjects were about 2000, 850, 1500, and 700 units, respectively, higher 184 

than keratoconic subjects [16]. Another study also showed similar differences in magnitude 185 

of p1area and p2area between normal and keratoconic subjects [18]. Apart from the 186 

detection of keratoconus, p2area could be used in predicting the progression of visual field 187 

defects in patients with glaucoma and appears to be more sensitive than CH in detecting the 188 

corneal biomechanical changes after corneal cross-linking surgery [15,34]. After a year of 189 

corneal cross-linking surgery, the mean (SD) p2area increased significantly from 1262 (623) 190 

to 1704 (732) [34]. 191 

Besides ICC, Bland-Altman plots were used to further analyse the repeatability of h2, 192 

h21, p1area, p1area1, p2area, and p2area1 in the current study, since the plots could 193 

provide the width of the agreement interval for assessing the possibility in clinical 194 

application. Although the six waveform signal parameters showed satisfactory agreement, 195 

the width of the 95% LoA between two repeated measurements were relatively large. 196 

Comparing the width of the 95% LoA of p1area (1669 units), p1area1 (873 units), p2area 197 

(1486 units), and p2area1 (693 units), and the reported mean differences in adult 198 

keratoconic subjects compared with normal subjects[16,18], the repeatability of these 199 

measurements were marginally smaller than or nearly the same as the differences detected 200 

in keratoconic subjects. The relatively wide 95% LoA could limit the usefulness in clinical 201 
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application for subtle corneal biomechanical changes. Further studies are required to 202 

determine whether these parameters could be clinically important or useful. 203 

In children, while the clinical application for the waveform signal parameters is unclear, 204 

the study of corneal biomechanical properties could be important in children. Corneal 205 

biomechanical properties could be potential biomarkers for detecting children who have an 206 

elevated risk of developing rapidly progressing myopia [35]. The exact mechanism for 207 

myopia development in children is not yet fully understood. The mechanical stress exerted 208 

to eyeball was hypothesized to be one of the possible mechanisms [36]. The mechanical 209 

stress could be caused by changes in intraocular pressure (IOP) [36]. Many daily life activities 210 

could cause rapid changes in IOP [37]. Studies had shown an elevation in IOP could be 211 

associated with axial elongation [37,38]. The 24-hour diurnal rhythms of IOP were in phase 212 

with axial elongation [39]. This may imply that if an eye with a good energy damping 213 

capacity against mechanical stress due to an increase in IOP, it may have a lower risk for axial 214 

elongation. This hypothesis is supported by results from a retrospective study where young 215 

fast myopia progressors wearing single-vision spectacles have been shown to have a lower 216 

baseline CH and CRF [35]. Since the cornea and sclera potentially share similar 217 

biomechanical properties owing to their similar constitution of the same types of collagen 218 

[40], the corneal biomechanical properties could represent the overall ocular biomechanical 219 

properties. It is unclear whether waveform signal parameters could provide more 220 

information in detecting the children who are at risk of rapid myopia progression but the 221 

waveform signal parameters identified with good agreement in the current study may 222 

provide further insight into the role of corneal biomechanics in myopia control study.  223 

The second possible application for the waveform signal parameters in children is 224 

monitoring the corneal biomechanical changes induced by wearing ortho-k lenses. It was 225 
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reported that CH and CRF were altered after ortho-k treatment [41,42]. In current study, no 226 

significant differences were detected for all waveform signal parameters between ortho-k 227 

lenses and single-vision spectacles wearing children. However, the mean (SD) duration of 228 

ortho-k lenses wear was only 3.6 (2.4) months. The relatively short lens wear history may 229 

not yet reflect changes to corneal biomechanical changes induced by ortho-k lenses wear.  230 

A further longitudinal study is required to investigate the role of waveform signal parameters 231 

in monitoring the changes of corneal biomechanical properties after ortho-k lens wear.  232 

Another commercially available equipment that can measure corneal biomechanics 233 

non-invasively under clinical setting is the Corneal Visualization Scheimpflug Technology 234 

(Corvis ST, Oculus Optikgeräte GmbH, Germany). It also deforms the cornea by applying an 235 

air-puff. Corvis ST and shared the same drawback with the ORA in that the repeatability of 236 

some parameters was not good [43–45].  237 

 238 

Conclusion 239 

This study provided fundamental information for further study on corneal 240 

biomechanics regarding the waveform signal parameters generated by ORA. Investigation in 241 

the applications of waveform signal parameters, especially p1area, p1area1, p2area, and 242 

p2area1, in children is warranted in the future. 243 
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Table 1. Demographics and baseline data of the 30 subjects (mean ± SD) or [median 365 
(range)] 366 

 SVS Ortho-k Combined *P value 

Age, year 9.3 ± 0.6 9.1 ± 0.7 9.2 ± 0.7 0.279 
Sex, M/F 4/11 3/12 7/23 0.666# 
Sphere, D -2.47 ± 0.77 -2.25 ± 0.93 -2.36 ± 0.84 0.491 
Astigmatism, D -0.50 

(0 to -0.75) 
-0.25  
(0 to -1.25) 

-0.50 
(0 to -1.25) 

0.999† 

Ortho-k: orthokeratology group; SVS: single-vision spectacles group;  367 
* probability value of unpaired t-test for between group (SVS and ortjo-k) differences 368 
# chi-square test 369 
† Mann Whitney U test 370 
 371 
 372 
 373 
 374 
 375 
 376 
Table 2. Mean (SD) and repeatability of waveform signal parameters with moderate to 377 
excellent agreement (95% confidence interval of Intraclass correlation coefficients ranged 378 
from 0.50 to >0.90) (alphabetic order) 379 

 Mean SD 
Mean  

Difference 
SDw ICC (95% CI) 

h2 372 90.83 -4 50 0.85 (0.69 - 0.93) 
h21 248 60.55 -2 33 0.85 (0.69 - 0.93) 
p1area 4077 854 111 425 0.85 (0.69 - 0.93) 
p1area1 1762 399 102 222 0.82 (0.61 - 0.92) 
p2area 2359 670 25 379 0.85 (0.69 - 0.93) 
p2area1 1020 300 -3 177 0.83 (0.65 - 0.92) 

SD: standard deviation; SDw: within subject standard deviation; ICC: intraclass correlation 380 
coefficient; 95% CI: 95% confidence interval381 
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 397 
 398 
Figure 1. Illustration of peak 1 (P1) and peak 2 (P2) of Ocular Response Analyzer 399 
measurement. The red line represents the infrared signal. The green line represents the 400 
pressure of the air-puff. Two black circles represent the pressure at P1 and P2 causing the 401 
inward and outward applanation of the cornea (see the red line). Difference of the two 402 
pressures was defined as corneal hysteresis (CH). 403 
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 404 
Figure 2. Bland-Altman plots (n = 30) of between-measurement difference against average 405 
of two measures for all waveform signal parameters with the 95% confidence interval of 406 
intraclass correlation coefficient ranged from 0.5 to >0.9. The solid line represents the mean 407 
difference and the two dashed lines represent the upper and lower limits of agreements, 408 
respectively. The error bars represent the 95% confidence intervals. 409 
 410 
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Figure 3. Illustration of waveform signal parameters with the 95% confidence interval of 411 
intraclass correlation coefficients ranged from 0.5 to >0.9. p1area: area under the curve 412 
from 25% point at P1; p1area1: area under the curve from 50% point at P1; p2area: area 413 
under the curve from 25% point at P2; p2area1: area under the curve from 50% point at P2; 414 
h2: the height of P2 from 25% point; h21: the height of P2 from 50% point 415 
 416 


