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Abstract 

Purpose: The aim of this research study is to develop a queue assessment model to evaluate 

the inflow of walk-in outpatients in a busy public hospital of an emerging economy, Pakistan, 

in the absence of appointment systems; as well as, constructing a dynamic framework dedicated 

towards the practical implementation of the proposed model, for continuous monitoring of the 

queue system. 

Methodology: The current study utilizes Data Envelopment Analysis (DEA) to develop a 

combined Queuing-DEA model as applied to evaluate the wait times of patients, within 

different stages of the Outpatients’ department at the Combined Military Hospital (CMH) in 

Lahore, Pakistan; over a period of 7 weeks (23rd April to 28th May 2014). The number of 

doctors/personnel and consultation time were considered as outputs, where consultation time 

was the non-discretionary output. The two inputs were wait time and length of queue. 

Additionally, VBA programming in Excel has been utilized to develop the dynamic framework 

for continuous queue monitoring. 

Findings: The inadequate availability of personnel (doctors/pharmacists) was observed as the 

critical issue for long wait times, along with overcrowding and variable arrival pattern of walk-

in patients. The DEA model displayed the ‘required’ number of personnel, corresponding to  

different wait times, indicating queue build-up.  

Originality/Value: The current study develops a queue evaluation model for a busy 

outpatients’ department in a public hospital, where all patients are walk-in and no appointment 

systems. This model provides vital information in the form of ‘required’ number of personnel 

which allows the administrators to control the queue pre-emptively minimizing wait times, 

with dynamic staff allocation. Additionally, the dynamic framework specifically targets 

practical implementation in resource-poor public hospitals of emerging economies for 

continuous monitoring of queues. 

Keywords: Public health system, Waiting time, Data Envelopment Analysis, Queuing theory, 

Absence of appointment system, Developing Economy  
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1 Introduction  

Public hospitals in emerging economies are unable to cater to the needs of majority of 

population, due to lack of infrastructure, limited funds, shortage and inadequate allocation of 

resources, lack of planning and organisation creating an imbalance between distribution of 

resources (Berenguer .,., 2016; Chandra 2015; Driouchi 2014) and demand of high quality 

services by patients (Susanti et al., 2020; Ahmed et al., 2017). Emerging economies face 

additional issues including high level of population and growth rate, low literacy rate, high rate 

of diseases, lack of medical equipment and aftercare facilities, late arrival of doctors, disparity 

in access to services and social/cultural barriers; resulting in increased patient suffering and 

inconvenience (Mensah et al., 2015; Bhattacharjee and Ray 2014). One such emerging 

economy is Pakistan, which is the sixth most highly populated country in the world, with a 

population of nearly 220.1 million (Qureshi 2020). Nearly 60% of the population resides in 

rural areas (World Bank data 2018). The literacy rate in Pakistan is only around 60% (PSLM 

Survey 2018-19); which is much lower than almost 100% literacy rate in developed nations, 

and even lower than some other emerging economies. Pakistan faces an increasing challenge 

of improving health outcomes due to a high population rate and increasing burden of diseases 

leading to patient dissatisfaction (Javed and Ilyas 2018; Jalal and Haq, 2014) and poor 

infrastructure with number of beds and physicians are 6 and 9 (per 10 000 of population) on 

average respectively; which is lower than many developed countries (WHO Statistics 2015 and 

2019). The current study addresses the issue of queuing problem from an emerging economy 

perspective, in a busy hospital of Pakistan.  

Low patient wait time is one of the significant criteria which not only assesses patient 

satisfaction (Oche and Adamu 2014) but also service quality and efficiency, and capacity 

planning (Mensah et al., 2015; Kuiper et al., 2019). One of the major characteristics prevailing 

within all large public hospitals in emerging economies such as Pakistan, is the absence of 

Appointment systems in Outpatients’ department; creating hurdles in the efficient management 

of patients resulting in excessive queuing (Wei et al., 2015; Safdar et al., 2016). Although the 

queuing problem has been widely researched in healthcare, however, only a limited number 

have considered walk-in patients, and even these have emphasized on improving an existing 

Appointment system considering walk-ins. The study by Bailey (1952) was one of the first to 

evaluate an appointment system. This study along with Fetter and Thompson (1966) and 

Klassen and Rohleder (1996) recommended improved appointment system mainly by 

examining the relationship between average wait times of patients and doctors’ idle time. Zhu 

et al., (2012) concluded that uneven distribution of appointment slots, late start of sessions and 

unused sessions; lead to long wait time. Barghash and Saleet (2018) evaluated the impact of 

high lateness and no show percentages when setting appointment schedules. Nappo and Ross 

(2020) propose staggered appointment schedules with small group of patients rather than two 

big shifts to increase efficiency and minimize wait times. Klassen and Yoogalingam (2019) 

investigated the effect of adding mid-level service providers (assistants and nurse practitioners) 

on patient wait time, flow time and physician service time. Cayirli and Veral (2003), Lakshmi 

and Iyer (2013) and Marynissen and Demeulemeester (2019) provide a comprehensive survey 

on appointment scheduling problems in an Outpatient setting. But in emerging economies such 
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as Pakistan, all outpatients are walk-in with variable arrival pattern, hence a dynamic 

framework which continuously monitors the patient flow system will be more effective. 

 

A limited number of studies have been carried out in emerging economies, which specifically 

considered walk-in patients within the outpatients’ department of large public hospitals. 

Huarng and Lee (1996) and Aharonson-Daniel et al., (1996), briefly discussed the option of 

implementing complete appointment systems to minimize wait times, in their studies in Taiwan 

and Hong Kong respectively. In studies in Nigeria and Ghana respectively, Oche and Adamu 

(2014) and Mensah et al., (2015) emphasized on training and supervision of health workers for 

use of electronic based systems to implement triage system, improve service and reduce wait 

times.  In a study in the Sri Lankan National Hospital Outpatients’ department, Dilrukshi et al., 

(2016) suggested that more doctors can be assigned to the roster to reduce wait times. 

Aeenparast et al., (2019) concluded that physician delay was a major factor in increased 

outpatient wait times in a General hospital in Iran. In a recent study in Pakistan, Kalwar et al., 

(2020) evaluated the wait times within a Gastronlogy department for patients with 

appointments suggesting that doctors should sit in for longer hours. Although these suggestions 

are reasonable, but not currently implementable as almost all public hospitals of developing 

economies are highly unorganised, overcrowded, and all patients are walk-in with variable 

arrival pattern. This necessitates the formulation of a flexible model which continuously 

evaluates the current walk-in patient flow system, which is the objective of the current study.   

The existing studies are dedicated towards evaluating an existing appointment system which 

incorporates scheduled and walk-in patients. In emerging economies, only a few studies have 

evaluated wait times of walk-in patients and provided recommendations; however, there is a 

need to develop a framework which continuously monitors the queue in overcrowded public 

hospitals with variable arrival patterns. but they are very less in number. The current study 

addresses this significant issue by developing a queue assessment model for a busy public 

hospital of an emerging economy, Pakistan, in the absence of appointment systems; and 

proposes a framework which can continuously act to control long queues more effectively.   

 

2 Methodology 

A number of different modelling techniques have been used by researchers to evaluate existing 

queue systems, where Discrete-Event Simulation (Harper and Gamlin 2003; Anderson et al., 

2015; Viana et al., 2020; Perez et al., 2020) and Queuing Models (Brahimi and Worthington 

1991; Peter and Sivasamy 2019; Jiang et al., 2019) are among the most commonly utilized, as 

well as Predictive models (Kortbeek et al., 2015) and Optimization models (Wang et al., 2020; 

Lou et al., 2020). The current study employs the specialized efficiency technique of DEA to 

develop a model for queue assessment presenting a novel application of this modelling tool, 

and providing evidence of its effectiveness with regard to queue management. 

2.1 Queuing-DEA Model Development 
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Over the years, different Operational Research (OR) modelling techniques have been used to 

assess the queue problem. However, many of these techniques utilize ‘average’ values and 

‘pre-specified’ statistical distributions to represent a queue system, as demonstrated by 

previous works. Anderson et al., (2015) utilized the mean service time, and employed Uniform 

distribution to estimate this variable. Mital (2010) assumed that service times as well as inter-

arrival times follow Exponential distribution. Mandelbaum et al., (2012) used Poisson and 

Exponential distributions for arrival pattern of patients and length of stay respectively. Feldman 

et al., (2014) used Poisson distribution for the number of appointment requests by patients in 

a day.  For large public hospitals in emerging economies, such as Pakistan, the arrival pattern 

of patients is highly unpredictable due to absence of appointments. Therefore, an average value 

of queuing variables and pre-specified statistical distributions might not accurately represent 

the queue system. It lacks the detail required to analyse the disorganized queue problem of this 

magnitude. Hence, for the current study, the efficiency assessment technique of Data 

Envelopment Analysis (DEA) has been employed which has the capability to address these 

issues, making it suitable to evaluate a complex queue system.  

Data Envelopment Analysis is a multiple criteria decision-making technique, which is used to 

model the relationship between multiple inputs and outputs in order to determine the efficiency 

level of all units, known as decision-making units (DMUs) (Hollingsworth 2012). It is a non-

parametric technique which does not require any a priori specification of the functional form 

or distribution of data, efficiency frontier and efficiency scores. Additionally, DEA analyses 

‘each’ unit separately rather than providing an average across all data points (Charnes et al., 

1994). A DEA model identifies benchmarks for improvements for the inefficient units. 

Additionally, the most significant advantage of this modelling technique is that it provides a 

‘target’ value for each input and output for each DMU, showing the exact amount required for 

the unit to become fully efficient. This additional information can assist policy-makers in 

decision-making, by highlighting the bottlenecks and provides a guideline for improving 

efficiency (Liu et al., 2013a; Lee and Kim 2014). Therefore, these characteristics render DEA 

analysis as highly appropriate for problems such as a complex queue system where data is 

extremely variable, and lacks a proper strategy and guidance (see Safdar et al., (2016) for 

details on the traditional model). 

The development of the DEA model for queue assessment consists of different stages (as 

shown in Figure 1). The initial structure of the DEA model was developed first and validated 

(as shown by Safdar et al., 2016), which guided the data collection process. Based on the 

preliminary results obtained from the data gathered, a refined DEA model was constructed, 

which is then used to evaluate the queue system at the designated hospital in Pakistan.  

*Insert Figure 1 here 

 

2.2 Preliminary Findings and Queuing-DEA Model Inputs/Outputs 
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Preliminary observations demonstrated that there are a number of different pathways that the 

outpatients are required to follow, from entry till exit in the patient flow system. When a patient 

first arrives at the hospital, he/she needs to be first examined by a General Duty Medical Officer 

(GDMO) (GP-equivalent doctor), and then directed accordingly, as shown in Figure 2.   

*Insert Figure 2 here 

A number of interesting findings are highlighted which along with real-time queuing data, are 

utilized to refine the DEA model to better suit the purpose of the current study. The inputs and 

outputs of the existing model are highlighted below: 

2.2.1 Output 1: Number of personnel (doctors/pharmacists) 

The most significant issue highlighted by observing the queue system, is the inadequate 

allocation of personnel. For instance, it was observed that the maximum load of outpatients is 

during early morning (7-8:30 am) at GDMO clinic and the busiest Specialist OPD, with at least 

50 patients waiting at one time. However, only 2 to 3 doctors were working when the session 

starts at 08:30am. As the availability varied over the day, it was observed that at around 10:30-

11am, the availability increases up to five in the Specialist OPD. But, by this time, a long queue 

of patients has already built up with most patients waiting since early morning. The lack of 

sync as observed between the availability of staff and excessive queuing, which is further 

worsened by the lack of appointments and irregular arrival behaviour of patients, is a critical 

issue which needs to be addressed. In an ideal situation, more doctors can be employed and 

number of clinics enhanced. But with limited staff, along with long queues, it is essential to 

determine the exact ‘required’ availability of doctors/personnel at a certain time, using certain 

criteria. In this case, the objective is to ‘increase’ the availability of personnel, hence, this 

variable has been added as an output. This is contradictory to previous queue management and 

DEA studies, where the aim is to ‘minimize’ the number of staff to improve efficiency. The 

administrators require a ‘flexible’ framework which is responsive to the rapidly varying wait 

times and load of patients, and provides a guideline to ‘optimally’ utilize personnel to minimize 

the queue.  

 2.2.2 Output 2: Consultation time (Non-discretionary Output) 

Preliminary observations indicated that the consultation time was quite low, only 5-6 minutes 

on average, with the GDMO and even with the Specialist. One of the reasons for low 

consultation as observed is that most of the patients require a regular/follow-up check-up or 

simply a renewal of medicine prescriptions, which takes less time. Only in a few instances, 

first-time visits or patient requiring a detailed examination (children or aged people) took a bit 

longer (8-9 minutes) as observed; whereas patients requiring immediate care are transferred to 

the Emergency department instantly. Therefore, it is perhaps in the best interest not to actively 

influence further reduction in doctor-patient interaction time. Hence this variable has been 

included in the Queuing-DEA model as a ‘non-discretionary’ output with a view of keeping it 

constant; as opposed to previous DEA studies where ‘non-discretionary’ inputs are considered 
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such as treatment population (Mitropoulou et al., 2013; Bastian et al., 2017) and number of 

beds (Herwartz and Schrumann 2014).  

 

2.2.3 Input 1: Wait time 

The initial findings indicated that the Radiology/Pathology department (Wait 3 as shown in 

Figure 1) is quite streamlined, with comparatively low wait times (an hour on average) and 

little variation. The main reasons in this regard are probably a limited number of patients 

requiring tests/investigations or since all OPDs do not have sessions on the same day, therefore, 

the load of patients is distributed among different days of the week. Additionally, low wait 

times were observed at the reception desk of each department, and same-day second 

consultations with GDMOs/Specialists (as they are given priority). However, high wait times 

were observed at the GDMO clinic, and some Pharmacy counters and Specialist OPDs (Wait 

1, Wait 2 and Wait 4 respectively as shown in Figure 1). Therefore, for the purpose of this 

study, the wait time of Specialist OPD will be evaluated with wait time added as an input (same 

process for GDMO clinic and Pharmacy). As compared to previous studies, where the wait 

time was defined with regard to the appointment time, the current study considered the wait 

time of walk-in patients as the difference between the time a patient arrives and when he/she 

leaves. The inclusion of wait times will identify bottlenecks such that appropriate measures can 

be taken to improve the existing queue situation. 

 2.2.4 Input 2: Length of Queue 

The initial observations showed that due to absence of appointment systems, the arrival pattern 

of patients is unpredictable; where the overload situation changes drastically in busy 

departments and a massive queue builds up just within few minutes. For instance, within the 

busiest Specialist OPD, it was observed that on busy days, the load of patients is extremely 

high with at least 50-60 patients waiting during early morning arriving between 7-7.30am. 

These patients are not examined before 10am. However, Pharmacy has less patients in the 

morning (only those patients who arrived just to collect medicines, either because they were 

unavailable on the day of consultation or they did not have time), but a drastic increase was 

observed at around 10am (normally Pharmacy is the last stage that patients visit). During busy 

days (usually Mondays and Fridays), it was observed that there were still about 40 patients 

waiting at around 12:30pm, and at this rate, the 40th patient was served at around 3pm.  

Although the influx of walk-in patients cannot be controlled, however, there is a crucial need 

to ‘measure’ the level of overload of patients to assist in deriving appropriate strategies. Hence, 

the ‘length of queue’ (total number of patients waiting) has been included in the DEA model 

for each department as an ‘indicator’ of overcrowding.  

2.3 Mathematical Representation of Queuing-DEA Model 

Over the years, a number of DEA models with non-discretionary factors have been developed 

by researchers (Banker and Morey 1986; Golany and Roll 1993; Yang and Paradi 2003), 
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however, Banker and Morey (1986) is the most  frequently used model in literature (Muniz et 

al., 2006). The main benefit of Banker and Morey (1986) model is its computational advantages 

and its ability to include non-discretionary and discretionary variables simultaneously in the 

same DEA model, but either an input or output which is suitable for the current study (as 

consultation time is the only non-discretionary output).  

The Queuing-DEA model developed for the current study is the output-oriented model with a 

non-discretionary output; where the objective is to ‘maximize’ the output (number of 

personnel) given the inputs (wait time and length of queue), with non-discretionary output 

(consultation time) unchanged. For this model, the constraint for the non-discretionary output 

is separate and does not consist of the efficiency variable ϕ, as this variable is ‘fixed’ and will 

not affect efficiency. Additionally, the slack values of non-discretionary output will not be 

included in the objective function. Furthermore, the target value for the non-discretionary 

output will not include the efficiency variable ϕ and hence, will remain unchanged (Banker 

and Morey 1986; Cooper et al., 2011).  

Model 1 (DEA Model with Non-discretionary Output) 
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The Queuing-DEA model has been specifically developed to reflect the complex patient flow 

system at the busy public hospital. The most significant finding was the inadequate scheduling 

of doctors. Also, the consultation/service time was found to be extremely low; with extreme 

overload and high variability in the arrival pattern of patients due to absence of appointments. 

These findings were utilized to develop a Queuing-DEA, with output as number of doctors and 

consultation time as non-discretionary output since it was minimal; and length of queue and 

wait time of patients with inputs. Therefore, the refined DEA model will fulfil the objective of 

evaluating the queue continuously, as well as, reflect the exact ‘required’ number of doctors, 

at a given time.  

2.4 Data Collection Using Proposed Queuing-DEA Model 

Output-oriented DEA model 

Two inputs [i = 1, 2]:                                 

Wait times and length of queue 

One discretionary output [OD=1]:            

Number of personnel 

One non-discretionary output [ON=1]: 

Consultation time 
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The proposed Queuing-DEA model as shown in Section 2.3 was applied within the designated 

hospital in Pakistan. The data was gathered at the busy Combined Military Hospital (CMH) in 

Lahore, Pakistan. Data for preliminary results was collected over a period of 7 weeks (23rd 

April to 28th May 2014) at the Outpatients’ department including GDMO clinic, Pharmacy and 

a few Specialist OPDs. The wait times of patients were observed from 7am to 4pm on 

weekdays. The data consisted of a total sample of 741 patients where 37 data points were 

excluded due to incomplete information. To maintain patient confidentiality, the patients were 

referred as P1, P2 and so on. The DEA analysis has been conducted in PIM-DEA software1 

(Version 3.2) and dynamic framework for implementation has been developed in Excel. 

3 Results  

Based on preliminary observations and results, the busiest Specialist OPD was observed to 

have excessive overloading and wait times of patients are very high; which is further 

compounded by less number of Specialists, with even fewer at the start of the clinic. The dataset 

shows that the availability of doctors varies from 2 to 5 over the day, and a total number of 

observations of 160 collected over different days of the week. As verified by the interviews 

with the Specialist OPDs administrators, the doctors need to perform some other tasks such as 

training sessions, ward rounds and other administrative responsibilities or paperwork. Hence, 

they arrive at the OPD at varying times. 

The average wait time and queue length is 168 minutes and 30 respectively; with standard 

deviation of 41 minutes and 9 respectively. A 95% confidence interval of wait time and queue 

length is (162 minutes, 174 minutes) and (28, 31) respectively. To further evaluate the 

variability in data, each wait time and queue length was individually observed, and the 

corresponding change in the ‘required’ number of doctors was noted, as shown in Figure 3; to 

identify the exact requirement of personnel (as shown by ‘target’ value in the DEA model). 

Results showed that two observations P065 and P140 are 100% efficient, which showed that 

with 4 doctors, the wait time is between 1h and 1.5h and queue length is between 12 and 16, 

keeping the consultation time unchanged. Therefore, according to the DEA model, this 

combination of queuing variables represents an ‘ideal’ situation; which may not be adhered to 

all the time. But it acts as a guideline for the department administrators. A further analysis 

showed that with current availability at 2, P004 had a wait time of nearly 2h (129 minutes) with 

queue length 32. Hence, the model showed that 7 doctors are required. In another case, P016 

showed that the wait time increased to around 2.5h (154 minutes) with a slight increase in 

queue length of 39, but the requirement increased to 8. This highlights the high variability in 

the wait time and length of queue, and the need to monitor them frequently, where the current 

DEA model proves to be very useful. For P041, the current availability was 5, but the wait time 

and length of queue were a high 3h (171 minutes) and 43 respectively, increasing the target up 

to 9. P048 showed that the wait time further increased to 3.5h (223 minutes) raising the target 

of doctors to 12, although there was a slight decrease in queue length of 38 (see Figure 3).  

 
1 www.DEAsoftware.co.uk 
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At this time, the queue has ‘already’ reached to an excessive level. Therefore, even a high 

availability is ineffective which will take another few hours to bring down the queue, and the 

model shows a further increase in target. This highlights the crucial issue of the incorrect 

‘timing’ of bringing in more doctors. This information of required number is extremely 

significant for management to obtain information regarding ‘how’ many doctors are needed 

and ‘when’. Therefore, management can determine an appropriate schedule of personnel at 

frequent intervals to control the queue and overload before it builds up; reducing the excessive 

wait times of subsequent patients. 

*Insert Figures 3 here 

 

4 Implementation  

The current study also proposes a dynamic framework dedicated towards the practical 

implementation of the queuing-DEA model. This model has been developed in Microsoft Excel 

(Excel 2013) using Visual Basic for Applications (VBA) coding. The framework has been 

designed such that it evaluates the queue system each time a patient arrives, and displays the 

required number of doctors ‘at that moment’. A screenshot of the developed model for the 

Specialist OPD is shown in Figure 4, and can be developed for other departments on a similar 

pattern. Column A requires the patient number and name, to identify a patient. The next four 

columns, B, C, D and E show the queuing data which needs to be entered manually by the 

receptionists including time in, time out, current number of doctors (this information is already 

available since doctors sign up at the Reception) and consultation time respectively. As soon 

as the patient reports at the reception, information will be entered in Column A, B and D, 

whereas data will be entered in C and E when patients report back before leaving the 

department. Additionally, queue length and wait time in Columns C and G respectively, will 

be calculated automatically and do not need to be entered manually. 

*Insert Figure 4 here 

The output-oriented DEA model has been developed in Excel for 50 patients, including the 

DEA mathematical programme and slack model in worksheet 1 (“DEAefficiency few values”) 

and worksheet 2 (“DEAslack”) respectively. Considering the first worksheet (see Figure 5 

below), the inputs and outputs of the model are displayed in Columns D to E and F to G 

respectively. The cell N2 represents the unit (patient). For the particular unit, O3 represents the 

efficiency level and Column H shows the weights (lambda values).  N2, O3 and Column H are 

changing cells, and will display the values of the 50th patient when the model completes its run. 

The formulae for the constraints (four constraints for four variables) are developed in cells J4 

to M7. For instance, J4, K4, L4 and M4 represent the first constraint related to the input wait 

time in the Specialist clinic, and similarly, the three rows below represent other constraints. 

Furthermore, the lambda values will appear in Columns Q to BN, such as rows Q2 to BN2 for 

Patient 1 up till Q51 to BN51 for Patient 50. The efficiency levels for all 50 patients are then 

displayed in Column I (with percentages in Column BO). For instance, for P003, the inefficient 
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unit needs to increase the output by 5% (as greater than 1) to obtain 100% efficiency, hence 

the efficiency level is 95%.  

 

*Insert Figure 5 here 

In the second worksheet (see Figure 6), the slack model is displayed which is set up to run 

‘after’ the DEA model in worksheet 1. Columns A to I, and cell O3 which shows the efficiency 

level, are copied from first to the second worksheet to be used by slack model. The objective 

function of the slack model is the ‘sum of slacks’ which is displayed in cell P8. The slack 

variables are set-up in cells P4, P5, P6 and P7. The constraints for slack model are set up from 

J4 to M7. When the model runs, the slacks are displayed in Columns R to U for each of the 50 

patients. For instance, Patient 1 will have slacks of two inputs and outputs in cells R2, S2, T2 

and U2; up till Patient 50 with values in R51, S51, T51 and U51. Using the slack and 

input/output values, the target values are calculated for each input and output, and displayed in 

Columns W to Z; and rounded off as shown in Columns AB to AE. Column AD represents the 

target values of the number of doctors, where this column is copied to Column P on worksheet 

1, to avoid switching between worksheets. The model will ‘re-run’ every time the data of a new 

patient is entered, updating the required number of doctors each time.  

 

*Insert Figure 6 here 

 

The proposed dynamic framework is extremely beneficial for continuous monitoring of the 

rapidly changing queue situation due to absence of appointments, and to ensure timely action 

in terms of bringing in more doctors when required. This action taken earlier on, will allow for 

controlling the queue pre-emptively, greatly minimizing the wait times of subsequent patients; 

and ensuring dynamic staff allocation. 

5 Discussion  

Prior studies have evaluated walk-in patients only with respect to improving existing 

appointment systems. Aharonson-Daniel et al., (1996) simulated an optimal appointment 

system where 50 patients were allowed within every 30-minute interval, for a total of 3.5 hours; 

where the results showed that the wait time was over 50 minutes. Baril et al., (2016) 

emphasized that maximum time of 69.31 minutes was spent waiting from the total lead time of 

around an hour (74.76 minutes). Taleb (2019) used a lean six sigma model to suggest 

improvements in the appointment schedules during weekdays and weekends, reducing wait 

times by 67% and 63% respectively, as well as 55% reduction in walk-in patient wait time 

incorporated in the appointment schedule. Cayirli et al., (2019) designed access rules for an 

appointment schedule to decide for the number of slots to be allocated for scheduled patients 

after considering uncertainty due to seasonal walk-ins, leading to a reduction of wait time of 

15 minutes for scheduled patients. The current study evaluated a queue system where ‘all’ 

patients are walk-in, and showed that the wait time and overload is very high. For instance, as 

observed at the busiest Specialist OPD, maximum patients waited for 2.5h to 3.5h with some 
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up to nearly 4h, with overload of nearly 50 patients; which is nearly double the wait time of 

most previous works, signifying the severity of the queue situation.  

The current study has utilized DEA to construct a model for queue assessment. In recent years, 

DEA modelling has moved away from its traditional and straightforward application in health. 

For instance, Wagner et al., (2003) compared the efficiency of physicians within one hospital 

using two DEA models. Osman et al., (2011) assessed the efficiency of nurses in an ICU, to 

identify best practices in order to develop suitable career development plans. Keshtkaran et al., 

(2014) compared the efficiency of radiology units of hospitals. These extended applications 

indicate the potential of DEA for assessing the efficiency of other units rather than evaluation 

of health institutions; however, such studies are very limited. Jafari et al., (2010) developed 

eight queuing models using queuing theory and used DEA to find the optimal queuing model. 

Safdar et al., (2016) identified the usefulness of DEA to assess a queue system in a health 

centre. To the best of our knowledge, these two are the only studies which have showed the 

utilization of DEA for a queue problem; and there are no studies so far which have shown the 

application of  DEA in a healthcare setting to evaluate patient queue system. The current study 

extends DEA modelling and provides evidence of its effectiveness, specifically for a queue 

system of outpatients with no appointment system using real-time queuing data of patients. The 

preliminary observations indicated that the inadequate availability of personnel is a critical 

issue. Although the availability of doctors/pharmacists varies throughout the day, however, it 

is not synced with the excessive queuing situation. Previous DEA studies have included 

personnel as an input, including physicians, as well as nurses and other clinical and non-clinical 

professionals and nurses (Ahmed et al., 2019; Lindbauer et al., 2016; Dotoli et al., 2015). 

However, the current study has included number of personnel as an output, as the objective is 

to determine the ‘required’ number of personnel; given long wait times, high overload and 

variability in the arrival pattern of patients due to absence of appointments. It can alert the 

management about the ‘exact’ number of personnel required at a specific time to ensure 

reduced wait times of subsequent patients. 

This study also constructs a dynamic framework for practical implementation of the proposed 

model. Considering previous works, some have specifically utilized Excel for improving a 

queue system. For instance, Wijewickrama and Takakuwa (2008) developed multiple 

appointment schedules in Excel using different patient sequences. Harper and Gamlin (2003) 

utilized Excel for preliminary analysis of patient flow systems in nine different clinics. 

However, when evaluating the sequencing and scheduling of routine and same-day patients 

Chen and Robinson (2014) recommended using Excel for post-analysis and implementation. 

Viana et al., (2020) utilized Excel to record service (consultation) times. The dynamic 

framework for current study has been developed in Excel using VBA coding such that the 

complex technical functions operate automatically in the background, requiring minimal effort 

from the users. Additionally, most users are familiar with Excel functionalities and it is 

currently available at the reception desks of Outpatients’ department at the designated hospital. 

Hence, Excel is a viable option encouraging smooth and quick implementation. In a recent 

study, Munavalli et al., (2020) proposed a patient scheduling model with pathway optimization, 

where the patients will be scheduled for the respective departments/two units, when they arrive. 



12 
 

In busy public hospitals of emerging economies such as Pakistan, patients arrive in a random 

manner and cannot be scheduled for a specific pathway beforehand, as they take different paths. 

This study proposes a queue management framework which uses real-time queue data, to 

continuously monitor the queue system in each department independently, display target 

number of personnel, and update automatically as new patients arrive. Utilizing this 

information, the management can respond to quickly changing queue situation through 

dynamic and efficient staff allocation. Hence, personnel can be briefly withdrawn from other 

tasks when queue is excessive, and when queue dies down, the management will know instantly 

re-allocating staff to undertake other pending activities. Consequently, the wait times of walk-

in patients can be minimized and overload can be controlled, in the absence of appointments.  

6 Implications for Research 

The current study addresses the crucial issue of long wait times and variable arrival pattern of 

patients in the absence of appointment systems; by proposing a queue assessment model which 

uses real-time queuing data to continuously monitor the patient flow system. The proposed 

model is flexible which not only evaluates the current queue situation but also proposes a 

solution by identifying the ‘exact’ number of healthcare personnel required at any given time. 

The current study has applied this model in a busy Specialist Outpatients’ department, however, 

this model is generic and has the potential to be implemented in any department of hospitals 

with no appointment systems, which experience overcrowding and quick queue build-up as in 

developing economies. Furthermore, the proposed dynamic framework has been developed in 

a spread sheet specifically to facilitate public hospitals in emerging economies. This framework 

is easy to use, requires minimal effort from the users and is an effective way to record the wait 

times of patients. Additionally, it alerts the management about queue build-up and 

demonstrates the required number of healthcare personnel at a given time using real-time queue 

data so that the management can act immediately; such as assigning more doctors at that 

particular time. This will allow the management to respond instantly to sudden overcrowding, 

while optimally utilizing the resources (e.g. health professional). This framework, with its 

practical significance and user-friendly characteristics; can be easily set-up in any department 

of any public hospital, leading to effective health delivery.  

7 Conclusion  

This study addresses the significant issue of excessive queuing in healthcare delivery in 

emerging economies, where appointment systems are non-existent. Our contribution is the 

development of a combined queuing-DEA model that specifically targets the complex queue 

system of a busy public hospital of an emerging economy, Pakistan; where all patients are 

walk-in, with variable arrival patterns and overcrowding, and inadequate staff scheduling. This 

model acts as a guideline for the management as it provides the ‘required’ number of doctors 

at a given time, which would allow them to control the exponentially accumulating queue due 

to walk-ins earlier on; leading to reduced wait times, as well as optimized scheduling of 

resource personnel. The model has been applied in a Specialist OPD and its effectiveness has 

been demonstrated, however, this model is flexible and can be applied to any department in 

any hospital, where appointment systems are absent. Additionally, this study proposes a 
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dynamic framework which has practical implications and allows for smooth and fast-track 

implementation of queuing-DEA model in any hospital, to capture the moment-to-moment 

change allowing for immediate action for smooth patient flow. This research extends the 

queuing literature by proposing a model for continuous queue monitoring in the absence of 

appointment system. This study extends the DEA literature by developing a dedicated DEA 

model for a complex queue problem and utilizing the flexible results for efficient queue 

management in public hospitals of developing economies. This research study can be furthered 

by applying this model in different hospitals, to determine the effect on managing queues with 

walk-in patients.  
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Figure 1: Summary of Different Stages for DEA Model Development 
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Figure 2: Patient Flow System at a Busy Public Hospital in Pakistan 

  



19 
 

 
 

 

Wait time Category Length of Queue 

Category 

Required Number of 

Specialists 

(Specialist OPD) 

60-90 mins 14 to 28 4 to 5 

90-120 mins 16 to 29 5 to 6 

120-150 mins 20 to 33 5 to 8 

150-180  mins 23 to 44 8 to 10 

180-210  mins 28 to 47 9 to 10 

210-240 mins 31 to 58 10 to 13 

Figure 3: Summary of Results for Busy Specialist OPD 
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Figure 4: Proposed Dynamic Framework for Queue Assessment 
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Figure 5: Model 1 of the Dynamic Framework 
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Figure 6: Model 2 of the Dynamic Framework 

 

 
 

 

 


