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Fig. 1. We show a cloud rendered with a traditional exponential transmittance (left) and with a non-exponential, long-tailed transmittance curve (right). The
non-exponential transmittance leads to both deeper light penetration as well as a denser appearance near the surface, allowing for a richer appearance.

We develop a new theory of volumetric light transport for media with
non-exponential free-flight distributions. Recent insights from atmospheric
sciences and neutron transport demonstrate that such distributions arise
in the presence of correlated scatterers, which are naturally produced by
processes such as cloud condensation and fractal-pattern formation. Our
theory accommodates correlations by disentangling the concepts of the free-
flight distribution and transmittance, which are equivalent when scatterers
are statistically independent, but become distinct when correlations are
present. Our theory results in a generalized path integral which allows us to
handle non-exponential media using the full range of Monte Carlo rendering
algorithms while enriching the range of achievable appearance. We propose
parametric models for controlling the statistical correlations by leveraging
work on stochastic processes, and we develop a method to combine such
unresolved correlations (and the resulting non-exponential free-flight be-
havior) with explicitly modeled macroscopic heterogeneity. This provides a
powerful authoring approach where artists can freely design the shape of the
attenuation profile separately from the macroscopic heterogeneous density,
while our theory provides a physically consistent interpretation in terms
of a path space integral. We address important considerations for graph-
ics including energy conservation, reciprocity, and bidirectional rendering
algorithms, all in the presence of surfaces and correlated media.

CCS Concepts: » Computing methodologies — Ray tracing;

Additional Key Words and Phrases: Computer Graphics

1 INTRODUCTION

Standard techniques in graphics for rendering scenes containing
participating media rely on the classical radiative transfer equation
(RTE) [Chandrasekhar 1960]. A central assumption of the classical

RTE is that the medium is composed of tiny, statistically indepen-
dent scatterers. This independence leads to a “memoryless” Poisson
process and the familiar exponential falloff of light (see Figure 2a).
While this model has proved useful in a wide range of applications,
it does not accurately describe media where there are any kind of
correlations between individual scatterers, including unresolved
small-scale fluctuations in density.

1.1 The case for correlated/non-exponential transport

Growing evidence from atmospheric sciences shows that clouds
have correlations in the positions of water droplets at scales ranging
at least from centimeters to kilometers [Davis et al. 1999; Kostinski
and Jameson 2000]. If significant correlations exist on the scale of
the mean-free path of the medium [Davis and Marshak 2004], non-
exponential free-flight distributions arise, where positive [Borovoi
2002; Kostinski 2001] and negative [Shaw et al. 2002] correlations
lead to slower-than-exponential and faster-than-exponential free-
flight, respectively.

In Figure 2 we perform a simple Monte Carlo experiment where
we trace random photons through 2D media consisting of explicitly
modeled absorbing particles. We gather statistics about the averaged
transmittance (e) by tabulating along the horizontal axis the fraction
of photons that survive for a given distance. In each case the average
number of particles is identical, and it is the statistical correlations
that give rise to different light attenuation behavior. Intuitively,
particles in positively correlated media (c,d) “clump” together and
leave larger gaps than expected, so photons that traverse these gaps
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Fig. 2. We show media with discrete scatterers of different distributions (a)-(d), and the average transmittance measured in these media as a function of
mean free paths (e). Independently placed scatterers ((a), white noise) lead to the classical exponential transmittance. Negatively correlated scatterers ((b), blue
noise) lead to faster-than-exponential extinction. Positively correlated scatterers ((c)-(d), pink/red noise) lead to slower-than-exponential extinction.

skew the free-flight distribution towards the tail, allowing light to
penetrate further on average. The opposite happens in negatively
correlated media. Ignoring these correlations and instead assuming
statistical independence leads to an inaccurate estimation of light
transport with notably different visual appearance; c.f. Figure 1.

We wish to account for such violations of independence in a phys-
ically plausible manner, and enable practical rendering algorithms
that enrich the level of control over the appearance of participat-
ing media. We first show (Section 2) that the simplest approach of
replacing transmittance in the classical RTE with anything other
than an exponential inevitably violates energy conservation. We
therefore (Section 3) revisit the RTE, removing the exponential
assumption, and derive a generalized RTE that allows arbitrary free-
flight PDFs while conserving energy. Our derivations reveal that
the notions of free-flight PDF and transmittance, which happen to
be the same in the classical RTE, need to be kept distinct in the
non-exponential case, requiring path segments ending on surfaces
and in volumes to be treated differently. Our theory results in a
generalized path integral which shows how to easily change any
Monte Carlo path-sampling algorithm to accommodate arbitrary
free-flight distributions. To leverage this new flexibility, we use the
mathematical formalisms of stochastic Gaussian processes and frac-
tal noise [Barnsley et al. 1988] to obtain artist-directable parametric
models for non-exponential free-flight distributions (Section 4), and
we develop a procedural way to superimpose the resulting distribu-
tions on explicitly modeled heterogeneous media (Section 5). This
results in a more flexible and directable system where artists can
author classical media properties but additionally choose between
different free-flight distributions, all while providing a consistent in-
terpretation of the light transport that is independent of the chosen
Monte Carlo rendering algorithm.

1.2 Related work

Atmospheric sciences & neutron transport. Motivated by empir-
ical observations [Davis et al. 1999; Kostinski and Jameson 2000]
of multi-scale correlations of liquid water content in clouds, the
atmospheric science community has developed many statistical
models [Borovoi 2002; Davis and Marshak 2004; Davis and Mineev-
Weinstein 2011; Davis and Xu 2014; Kostinski 2001; Shaw et al.

2002] to explain how such correlations lead to non-exponential
aggregate transport behavior. These methods typically reduce the
cloud to a fully homogenized slab while introducing statistically
equivalent non-exponential free-flights. We adopt the fractal vari-
ability model proposed by Davis and colleagues [2011; 2014], but
additional provide a way to superimpose the non-exponentiality
from such unresolved fluctuations onto resolved macro-scale het-
erogeneity. Likewise, motivated by correlations and non-uniformity
of pebble-bed reactors, Larsen and Vasquez [2011; 2014a; 2014b]
recently derived generalized RTE-like models for neutron transport
that allows non-exponential, angular-dependent free flight distribu-
tions by introducing an additional “memory” parameter tracking
the distance since the last interaction. Non-exponential behavior
also arises when there is “cross-talk” between neutrons (photons)
of different energy-levels (wavelengths). This is often ignored in
graphics - unless fluorescence/in-elastic scattering [Gutierrez et al.
2008; Jarabo and Arellano 2018] needs to be considered - but is quite
common in neutron transport where multi-energy simulations are
standard practice. D’Eon [2016] provides an excellent overview of
previous work on non-exponential free-flights outside of graphics.
Unfortunately, it is difficult to directly leverage these prior formula-
tions in graphics, since they do not construct a theory considering
both volumes and “solid” surfaces that can readily be solved using a
chosen Monte Carlo rendering algorithm.

Graphics. There has also been some work in graphics that ex-
plored non-classical transport, often in the context of approximating
complex geometry as a continuous participating medium. Moon
et al. [2007] introduced the concept of non-exponential transport to
graphics, and several approaches [Meng et al. 2015; Moon et al. 2008;
Miiller et al. 2016] have since considered the problem of accelerating
multiple scattering within discrete random (granular) media. These
methods all addressed isolated rendering problems (via data-driven
tabulation or by simplifying to the classical RTE) and do not provide
a theory for how to handle non-classical transport in general. Jakob
et al. [2010] and follow-up work [Dupuy et al. 2016; Heitz et al.
2015] took a step in this direction by enhancing the classical RTE
to account for angular structure/correlations using the microflake
model. These theories, however, still ignore the spatial correlations
that give rise to non-exponential free-flight behavior in media. Our



theory shows how to achieve this by modeling unresolved spatial
correlations and density fluctuations (volumetric “roughness”) sta-
tistically, akin to how microfacet models [Blinn 1977; Cook and
Torrance 1981] represent surface roughness statistically.

Artistic control. The film industry has recently started exploring
the use of non-exponential behavior for artistic control and accel-
erated multiple scattering [Bouthors et al. 2008; Nowrouzezahrai
et al. 2011; Wrenninge et al. 2013, 2011]. Common strategies in-
clude artificially lengthening the mean-free path for shadow rays
of higher-order scattering [Bouthors et al. 2008; Wrenninge et al.
2011] or replacing exponential transmittance with a sum of expo-
nentials [Wrenninge et al. 2013]. While originally developed in
an ad-hoc way, we discuss in Section 4 how such sums of expo-
nentials have a physically grounded interpretation. Pixar’s Ren-
derMan likewise allows specifying separate “shallow” and “deep”
scattering mean-free paths to preserve fine-scale surface details
while controlling long-range subsurface scattering. D’Eon [2013]
derived diffusion equations for non-exponential free-flights which
could conceivably be used in this context. Most recently, Wrenninge
et al. [2017] applied non-exponential free-flights from Davis and Xu
[2014] to homogeneous path-traced subsurface scattering. While
such artistic techniques have proven useful in production, the indus-
try has gradually shifted to physically based light transport using
path tracing-based approaches [Christensen and Jarosz 2016; Fong
et al. 2017; Keller et al. 2015], reinforcing the need for a more flexi-
ble theory of light transport in scenes with surfaces and correlated
heterogeneous media which can be solved in a consistent way using
any desired Monte Carlo rendering algorithm.

2 NON-EXPONENTIALITY IS NON-TRIVIAL

It is not immediately obvious why rendering with non-exponential
transmittance requires a new theory—it seems trivial to modify the
classical RTE and substitute an arbitrary, monotonically decreasing
function for the transmittance. In this section, we will therefore
first demonstrate in a simple hypothetical example why such an ap-
proach will inherently violate energy conservation. This motivates
our derivation of a new generalization of the RTE that conserves
energy even with non-exponential transmittance, which we present
in Section 3.

In the following, we consider a scene filled with a participating
medium characterized by its extinction coefficient o;(x) and albedo
a(x), where o5 = o - a is
the scattering coefficient. We © w: To)
consider a pencil beam of light X Xs Xz
starting at x traveling in direction w. The beam intersects a surface
at point x;, and we use the convention x; = x + s - @ to denote
points along the beam.

The radiance L received by points on the beam decreases with
distance as a result of extinction by the medium. The rate of decrease
is determined by the extinction coefficient, with the relationship

4 ke @) = —01(x5)L(xs. @), )
ds

which forms the cornerstone of the classical RTE [Chandrasekhar
1960]. In words, the differential equation states that at every in-
finitesimal step ds, a fraction of the radiance (defined by o;(x)) is

absorbed. The solution to the above equation is the Beer-Lambert
law, which is obtained through integration:

L(xs) = Lo(x, w) e~ J oe(xe)de , @

where Ly is the radiance at the start of the beam. The factor on the
right defines transmittance Tr in terms of the optical depth ©

Tr(r)=e ", and 7(x,%x5)= /s o (xy)dt. (3)
0

This classical definition of transmittance is a fundamental conse-
quence of starting with the differential form (1), which assumes the
total extinction arises due to a sequence of infinitesimal, independent
extinction events. At a high level, Tr(r) describes the fraction of
light that is transmitted through 7 units of medium; however, the
definition above is much more restrictive, and can only ever permit
exponential transmittance.

Even so, it appears trivial to introduce non-exponentiality at
the integral level (2) simply by substituting a function other than
an exponential for Tr(r). However, we will now show that this
inherently leads to non-physicality.

Consider the radiance at the start of the beam. Its energy must
be distributed between two terms: the amount of light that scatters
in the medium, and the remaining fraction that reaches the surface.
Assuming a non-absorptive medium (a = 1), the sum of both terms
must equal Lo(x, w)—otherwise, energy is either lost or gained along
the way. This results in the following constraint:

Lo(x, ) = Lo(x, 0)Tr(x,x,) + /z Lo(x, )Tr(x, x5)os(x) ds, (4)
0

where we have used Tr(x, xs) = Tr(z(x, Xs)). The above equation
can be simplified by dividing out Lo(x, w):

1="Tr(x,x;) + ‘/0 Tr(x, Xs)os(x) ds. (5)

Using the fact that dr/ds = 04(xs), and 0; = os when a = 1, we
can perform a change of variable from ds to dr to obtain

T(%,xz)
1= Tr(r(x,xz)) + / Tr(r)dr. 6)
0

Any transmittance function Tr that does not satisfy the above con-
straint violates energy conservation and must inevitably lead to
energy loss or energy gain when inserted into the classical RTE.

Equation (6) is an ordinary differential equation of the form
1 = f’(x) + f(x) — £(0). The only solutions that satisfy it are ex-
pressed by Tr(r) = c - e”*. In other words, only an exponential
transmittance satisfies energy conservation in the classical RTE.
Violation of energy conservation is not only a practical problem,
but also means that the underlying process is non-physical. This
suggests that a non-exponential transmittance is simply not possible
in a physically consistent framework.

However, we will show in the next section that the classical RTE
uses Tr(r) to express two distinct concepts: the transmittance and
the free-flight PDF. When Tr() is an exponential, these two quanti-
ties happen to be identical; however, failing to separate these two
ideas leads to violations of energy conservation when we attempt
to introduce non-exponentiality. To resolve these issues, we derive
a generalized theory of volumetric light transport that makes the



free-flight PDF a first-class citizen, and defines the transmittance in
terms of free-flight probabilities.

3 NON-EXPONENTIAL RADIATIVE TRANSPORT

Our goal is to derive a new theory that permits physically plausible
simulation with non-exponential transmittance functions. In order
for this new theory to be useful, it should possess the following
properties:

o Non-exponential transmittance should be supported from the
ground up, rather than introduced after the fact.

e The theory should be fully energy conserving, such that in
the absence of absorption, no energy is lost or gained.

e For an exponential transmittance, the theory should reduce
to the classical light transport framework.

This ensures that the new theory solves the problems demonstrated
in the previous section, while remaining backwards-compatible with
the traditional light transport framework.

One property of our theory is that it is not reciprocal for non-
exponential media. This is not a major practical concern, but it is
interesting from a theoretical standpoint, and we discuss details of
this fact in Section 3.8.

3.1 Basic Definitions

The focus of our new theory is on energy conservation. This moti-
vates us to reason about light transport from an analog perspective,
in which we track the physical photons that are scattered and trans-
ported within the medium. We begin our derivation by formulating
balance equations for the transport and scattering of photons that
ensure that photons do not get destroyed or created during trans-
port. This allows us to ultimately derive a new energy conserving
path integral for non-exponential transport.

Our theory will use non-exponential transmittance to represent
detail beyond what is resolved in the macroscopic properties of the
medium. Since the classical media properties—such as the extinction
coefficient o; and optical depth r—are already familiar and present
in current rendering systems, we will use them as scaffolding upon
which we build our theory. Once non-exponential transmittance
is introduced, however, these quantities no longer have the prior
physical interpretations, since they describe the medium as if no
hidden correlations were present.

In our framework, we consider the free-flight PDF p.(7) of pho-
tons a fundamental property of the medium, and we define it with
respect to the macroscopic optical depth 7. This function represents
the probability density that a photon enters a collision with the
medium after passing through an optical depth of 7. We place no
restrictions on the free-flight PDF, other than it being a proper PDF;
that is

/mpr(r)dr =1 and p.(r)>0. (7)
0

For an exponential medium, the free-flight PDF corresponds to
po®(r) = e 7. It is important to note that p;(r) is a physical prop-
erty of the medium; it is distinct from the concept of a distance-
sampling PDF in Monte Carlo rendering, which only influences the
efficiency of the algorithm.

Frequently, we need to express the free-flight PDF in units of
distance, rather than optical depth. This incurs a multiplication by
a Jacobian, and we obtain

d
Ps(x,Xs) = pr(r(x, Xs))?‘i = po(1(x,X5))or(Xs) . (®)

Using photons as a basic building block, we can describe trans-
port in the medium using densities of photon events. Of particular
interest are two densities: L;(x, @), the density of photons arriving
from w entering a collision at x; and L, (X, @), the density of photons
departing a collision at x in direction . We will also make use of
L¢(%, @), the density of photons emitted at x toward w.

By reasoning about the exchange of departing and arriving pho-
tons, we can derive a set of balance equations that link the two
densities. The densities have different form depending on whether
the interacting point is on a surface or in a medium. We decorate
quantities with a superscript to specify which density is referenced;
for example, LT" is the density of photons incident on a medium
point, and L} the density on a surface point. When no superscript
is given, L;(x, @) is understood to be equal to L} (x, ) if x lies on a
surface, and LT otherwise. The same notation applies to L, and Le.

3.2 Transport

Transport relates the density of incident photons (L;) to the density
of departing photons (L,). A photon that leaves an interaction at
xs toward direction w travels some distance through the medium
before entering another interaction at x. The probability density of
this interaction is a function of the distance between x5 and x.

If x lies in the medium, then we have already defined this proba-
bility density: It is ps(xs, x), the free-flight PDF. If x lies on a surface,
the interaction probability can be obtained from the fact that all
photons encountering a surface must interact with it, unless they
collide with the medium on the way there; i.e. it is the probability
of not interacting with the medium:

Tr(xz,x) =1 —'/0 ps(xs,x)ds. )

This quantity is precisely the transmittance! It is the probability of
interacting with the surface, or the fraction of photons transmitted
through z units of medium.

Knowing the interaction probabilities, we obtain the total incident
density at x by integrating the product of interaction probability
and exitant density L, over all potential source locations. Occlusion
only allows photons departing locations between x and the nearest
surface point x, along the ray (x, @) to contribute (see figure below).

) ~ W Ds
7
Xz X L")

Assembling these facts yields the transport equations:
z
L, 0) = pelces 0L ke~ + [ el WL =) . (10)
0

z
L3 (%, w) = Tr(xz, X)L} (X2, —) +/Tr(xs,x)L:,"(xs, —w)ds. (11)
0



Discussion. In contrast to Equation (3), Equation (9) defines the
transmittance in terms of py instead of a differential equation. To
aid analysis, we rewrite the transmittance in terms of 7:

0 =1- [ peerar = [Cpenar a2

This constrains the transmittance to be an integral of a PDF. A
transmittance defined this way has several desirable properties: It
is non-negative and monotonically decreasing, it returns a trans-
mittance of 1 for 7 = 0 and it tends to zero as 7 tends to infinity.
Crucially, if we insert the exponential free-flight PDF py T (7), we
obtain the transmittance

nm:/e4w5fuwﬁm. (13)
T

That is, the transmittance and the free-flight PDF are identical in the
exponential case. This is why the classical RTE does not distinguish
between the two concepts. As a consequence, the incident density
on surfaces and media is identical in the classical RTE, whereas we
have explicitly separated the two ((10) and (11)). As we will show
later, this allows our theory to achieve full energy conservation for
any free-flight PDF.

3.3 Scattering

Scattering in our framework proceeds identically to the classical
RTE, but we briefly derive it here for completeness. The density of
photons departing a point x consists of two terms: Particles that
were emitted at x, and photons that arrived from elsewhere and
scattered at x. If x lies in the medium, the density of interacting
photons is already known: It is LT*(x, @”), for any direction w’. Of
those photons, only the fraction a(x) is being scattered, and the
phase function p™(x, w, w”) describes the directional scattering
density for any direction w. Integrating over all incident directions
then gives the density of scattered photons.

We obtain the emission term from the product of the self-emission
L, and the density o; of the self-emitting medium. Adding emitted
and scattered densities yields

L (%, w) = o: (X)L (x, ) + / P 0, w)LT(x, o )ax)do’.
SZ

(14)

The surface case follows from identical reasoning, only that we

replace albedo and phase function with the BRDF p* and foreshort-
ening factor:

LS (x, @) = LS(x, w) + /52 (%, 0", )L (x,w") cos O dew’ . (15)

Note that @’ points toward x instead of away from x as in the
standard definition of the BRDF.

3.4 Simplifications

Equations (10-15) fully describe the transport within the medium.
We can see that Equation (10) and (11) are quite similar, and it makes
sense to simplify them into a combined equation to make the rest of
the derivation easier. Let V be the set of all volume points, and 0V

the set of all surface points. We then define the helper functions

B x) = {Tr(x’,x) ?f x € 0V (16)
pr(t(x’,x)) ifxeV
1 if xe oV
Hw_{m&)ﬁxew, an

where we call E(x’,x) the edge throughput. This is an important
term: It encapsulates the difference between our generalized theory
and the classical RTE. Notably, when free-flights are exponential,
E(x’, x) reduces to ¢~ %) for both surfaces and media.

Of particular interest is the product E(x’, x)2(x): It is equivalent
to the transmittance Tr(x’, x) when x is on a surface, and equivalent
to the free-flight PDF pg(x’, x) when x is in a medium. This product
will show up frequently in equations, and we will refer to it as the
transport kernel

T(x',x) = Ex’,x)2(x) (18)
with which we can obtain the combined equation

Li(x, w) = T(xz, X)L} (x2, —@) + /Z T(xs,x)L0 (x5, —w)ds. (19)
0

In a similar vein, we combine Equation (14) and (15) by introducing
helper functions for scattering and foreshortening factor

(x.. 0) P (x, 0, »") if x € 9V (20)
X, w, =
P P (x, w, 0 )a(x) ifxeV
Dix.) = o - n(x)| if xedV (21)
' ifxeV

to obtain

Lo(X, w) = Z(x)Le(x, w)+/ p(x, @, w)L;i(x, 0" )D(x, ®") do’.
SZ
(22)

These combined equations succinctly describe our theory. To com-
plete this section, we now derive the full path integral, which per-
mits in-depth analysis (Section 3.6-3.8) and practical rendering
algorithms (Section 6).

3.5 Generalized Path Integral

The path integral is a concise way of expressing measurements of
photon events. We use W(x, @) to denote the measurement response
of a (surface or volume) sensor. The measurement I taken by this
sensor is

I= /M /52 W(x, w)Li(x, ®)D(x, w) dow du(x), (23)

where we have used M = 9V UV to denote all points in the scene,
and dy to represent volume (area) integration for medium (surface)
points, respectively. We now proceed by recursively expanding the
L; term in the above equation and grouping the resulting terms. We
express the resulting equations in standard three-point form,; that is,
we write f(y—x) or f(xy) to mean f(y, wyx), and f(x—y—1z)
to mean f(y, wxy, @y;) Where wxy denotes a unit-length vector
fromxtoy.



Fig. 3. A five vertex path with surface-to-surface (xox;), surface-to-medium

(x1x2), medium-to-medium (x2x3) and medium-to-surface (x3x4) transport.
We show the terms of the path contribution function for the classical RTE
(red) and our generalized RTE (blue). Shared terms are shown in black.

Expanding L; yields an infinite sum of path integrals of the form

= xX)du(x) = x)du(x),
I kZl /P SR /7) &) du®) (24)

where X = xq ... Xy represents a transport path with k segments
and k + 1 vertices (with the first vertex xo on the light source, and
the last vertex xj on the sensor; see Figure 3), P} is the space of all
paths with k segments, and P = J72; P is all of path space. The
measure dy(X) is a product measure corresponding to surface area
and volume integration for surface and media vertices, respectively.
The measurement contribution function f(X) is the product of emit-
ted radiance (L), importance (W) and generalized path throughput

©):
fX) = Le(x0=x1)g(X)W (Xje—1 =X ) » (25)
with path throughput

k-1
[ ] o)
i=1

where p(x;) is shorthand for p(xj—1 — x; — xj+1), Gx',x) =

D(x’ —>x)D(x—x’)
Il —x]|?

is the binary visibility function.

9(x) = X(xo)

k-1
n T(xi,xi+1)G(xi, Xi41) |, (26)
i=0

3.6 Comparison with Classical Light Transport

Given our generalized path integral above, it is useful to compare it
to the path integral for the classical RTE. For classical exponential
transport, a pixel measurement I is typically expressed using a
path integral as in Equation (24) and (26), but with a different path
throughput g.(X):

k-1
npc(xi)
i=1

In a classical medium, the exponential transmittance Tr replaces the
transport kernel T, and the classical scattering function pc(x;) is:

ge(X) =

k-1
1_[ Tr(x;, xi+1)G(Xi, xi41) | . (27)
i=0

if 0
if xe (V, (28)

P’ (Xi-1—= Xi—Xit1))
pc(xi) = .
P Xi1—= x> Xi11)os(x;) ifxeV

An apparent difference between these two throughputs is a fac-
tor of & in our equations where traditionally the scattering coef-
ficient o5 would appear. This is merely a notational preference,
and the classical factor can be retrieved through a simple regroup-
ing of terms. By expanding the transport kernel into the product

V(x’,x) is the generalized geometry term, and V(x’, x)

T(xi,xi+1) = E(xi,Xi+1)2(Xi+1), we can match a 3(x;) to every
scattering term p(x;). If x; lies in the medium, it holds that

p(xi)2(x;) = p™ (xi)a(xi)or(xi) = pe(xi), (29)

and a similar equivalence exists if x; lies on a surface. Equation (26)
can therefore be written:

k-1

1_[ pe(xi)
i=1

After regrouping, this path contribution looks very similar to the
classical one. The X terms at emitter and sensor are due to a different
emitter model in our theory, and can be removed by redefining L,
and W to be independent of the medium density. A major and im-
portant difference is an edge throughput E that replaces the classical
transmittance term Tr. This term was obtained by reasoning about
interaction probabilities and encapsulates the distinction between
the free-flight PDF and the transmittance. It reduces to the classical
transmittance term if we assume exponential free-flights, but allows
energy conserving transport if we deviate from this assumption.

k-1

9(%) = 3(x0) [ ]G %1060, x101) | Z0x4) - (30)
i=0

3.7 Energy Conservation

A proof of energy conservation for our theory follows from taking
the transport equation (19) and showing that total energy before
transport (L,) is the same as total energy after transport (L;).

We show the full mathematical details in the supplemental doc-
ument, but the basic principle is to convert Equation (19) from
gathering photons at scattering locations, to distributing photons
from source locations. The derivation concludes in the following
equality, which, if it holds, finishes the proof:

7(x,xz)
1=Tr(r(x’,x;)) + / pe(r))dr’. (31)
0

This equation recalls Equation (6), which demonstrated that the
classical RTE cannot be energy-conserving for a non-exponential
transmittance. Compared to before, the result of our theory is a
modified right-hand term, which represents the energy deposited
in the medium. By differentiating between the free-flight PDF and
the transmittance, the above equation is now always satisfied and
guarantees energy conservation for any choice of p;.

3.8 Reciprocity

Earlier in this section, we alluded to the fact that our path integral
is not reciprocal for non-exponential media. In the following para-
graphs, we will first show a short proof of this fact, and then discuss
the implications of this result.

Reciprocity refers to the property that the measurement does not
depend on the direction of transport, i.e. the role of emitter and sen-
sor can be swapped without changing the value of the measurement.
Equivalently, we can say that the path throughput g(x) returns the
same result if the path X is reversed.

We now apply this principle to our path integral and compare
the throughputs of a path and its reverse:

g(xo - Xg) = g(Xg -+ X0) . (32)



Cancelling reciprocal terms such as the geometry factor G(x;, Xj+1)
and scattering terms pc(x;) leaves

k-1 k-1
l_[ E(xi,Xi41) = 1_[ E(xi+1,%i) . (33)
i=0 i=0

For transport to be reciprocal, this equation should hold for any path.
Consider now a two-vertex path xox; with xg € 3V and x; € V.
Equation (33) simplifies to

E(x0,x%1) = E(x1,%0) (34)
pr(t(x1,%0)) = Tr(xo,x1). (35)

The last equation states that our path integral is reciprocal as long
as the transmittance is identical to the free-flight PDF. However,
this can only be true if the transmittance is an exponential.

Discussion. At this point, it is worth discussing what reciprocity
is and what it is not. Reciprocity is a convenient property that allows
the same transport rules to be used for both importance and radi-
ance; in practice, this allows for some simplification of bidirectional
algorithms and can serve as a useful correctness test. However, lack
of reciprocity does not mean non-physicality or exclusively unidi-
rectional transport. There are many examples of generalizations of
the RTE (e.g. multi-group simulations in neutron transport or fluo-
rescence in light transport) that simulate physically valid systems,
but are not self-adjoint.

Non-reciprocity still allows for bidirectional rendering algorithms,
as long as quantities are evaluated in a consistent manner. In Sec-
tion 6, we show how this can be achieved for our theory with
relatively few changes to an existing rendering algorithm. We addi-
tionally show results rendered with unidirectional and bidirectional
algorithms to demonstrate that consistent results can be achieved
even though reciprocity does not hold.

In the end, reciprocity is a useful property, but it is not crucial for
physically based transport. Other trade-offs are certainly possible,
but for this particular generalization of the RTE, we have chosen to
trade reciprocity in favor of non-exponential transmittance, which
we see as a useful tool.

4 MODELING NON-EXPONENTIAL ATTENUATION

In Section 3 we established a theory of light transport which allowed
arbitrary free-flight PDFs, and we showed how to easily modify stan-
dard path-sampling algorithms to leverage this new flexibility in
Section 6. The last remaining question is how we should obtain, rep-
resent, and design such free-flight PDFs, and how we can physically
interpret the corresponding light transport behavior.

It is common to model surface appearance at multiple scales, e.g.
by representing large-scale variation using explicit geometry and
displacements, while modeling fine-scale roughness statistically us-
ing a BRDF. Our theory allows a similar decomposition for volumes,
where we model large-scale heterogeneous variation explicitly with
spatially-varying macroscopic media properties (a(x), o+(x), p™(x)),
but we can additionally account for scatterer correlations or unre-
solved fine-scale heterogeneity statistically by modifying the free-
flight PDF. Inspired by phenomenological [Ashikhmin and Shirley
2000; Phong 1975], data-driven [Ashikmin et al. 2000; Bagher et al.
2016; Matusik et al. 2003], and statistical microfacet [Blinn 1977;

Cook and Torrance 1981] models for surface roughness, we can
likewise obtain transmittance functions in different ways:

(1) The artist-driven “phenomenological” way (Section 4.1), where
we directly design a free-flight PDF/transmittance free-hand
or with simple parametric models;

(2) The “data-driven” physically based way (Section 4.2), where
we instantiate a distribution of physical scatterers, and obtain
the transmittance induced by these scatterers numerically
(through sampling); and

(3) The “statistical” physically based way (Section 4.3) that seeks
analytic parametric models for these functions driven by
some statistical description of the distribution of the physical
medium scatterers (Section 4.4).

4.1 Transmittance via directly designed free-flight PDFs

A simple phenomenological approach is to directly prescribe the free-
flight PDF (7) to something other than an exponential. Table 1 lists
the PDF pdf(x) and CDF cdf(x) of common statistical distributions.
We can take any such distribution defined on the positive real line,
and directly set p-(r) = pdf(zr). Equation (12) dictates that the
transmittance should be the complement of the corresponding CDF,
so we can set Tr(r) = 1 — cdf(7).

We experimented with a variety of such distributions, including a
step, linear ramp, sum of impulses, sum of exponentials, and Erlang-
2. Figure 4 shows renderings and the corresponding parametric
Tr(r) and p,(r) curves. It would also be possible to allow artists to
design custom curves using a familiar graph editor interface.

The sum of two exponentials is particularly useful as the two
exponents allow separately controlling the falloff of light near the
start and tail of the distribution. Wrenninge et al. [2013] used this
falloff for shadow rays to allow light to penetrate deeper, approx-
imating multiple scattering. Our theory allows us to incorporate
this in a consistent way for arbitrary bounces and light transport
algorithms.

Inspired by this idea, we also took a classical monopole diffusion
profile and interpreted it as a free-flight distribution. The radial
falloff of a classical monopole is proportional to an Erlang-2 dis-
tribution with rate parameter A = /3(1 — a)(1 — gar) dependent on
albedo & and the average cosine g. Simulating single scattering from
a point light in a homogeneous medium with this transmittance
profile would produce results similar to an all-bounce monopole
diffusion approximation. Applied as a transmittance profile in our
theory, this lets light penetrate further into the medium at each
bounce, and allows us to approximate multiple-scattered transport
using fewer explicitly simulated bounces.

4.2 Data-driven transmittance via ensemble averaging

While directly designing transmittance functions in this top-down
approach provides high-level artistic controls, it may not correspond
to any physically realizable distribution of scattering particles. To
obtain physically justifiable profiles, we can instead prescribe the
unresolved statistical properties of the medium, and deduce the
profiles this gives bottom-up. We will denote these unresolved sta-
tistical properties with a subscript y and, to simplify the exposition,
we will for now assume that the macroscopic medium properties
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Fig. 4. We show a homogeneous medium in a Cornell Box rendered with
six different free-flight PDFs. These are: Exponential pe " (top left), uniform
U(0, 3/4) (top right), linear L(0, 3/4) (middle left), sum of two exponentials
(middle right), delta sum III(6) (bottom left), and Erlang-2 &(2) (bottom
right). Compared to the exponential baseline (top left), we can achieve a

wide range of appearances through simple parametric transmittance curves.

are homogeneous with o; = 1 so that macroscopic optical depths 7
and distances are equivalent. We will derive free-flight PDFs p,(t)
or transmittance functions Try,(t) arising from these statistical prop-
erties initially in terms of distance ¢. In Section 6, we will combine
these two scales and parameterize the functions using the macro-
scopic optical depth 7 instead of distance ¢, giving us the free-flight
PDFs ps(7r) and transmittances Tr(r) we desire.

4.2.1 Ensemble-averaging discrete media/particles. One physi-
cally based approach would be to explicitly construct a discrete
collection of scattering particles (Figure 2) and compute the trans-
mittance as:

N
<Try(t)> = <Vﬂ(x,x + tw)> ~ ]\lj Z Vi (%4, Xi + tw;), (36)
i=1

Perlin Noise as 0,

Homogeneous (5,,) Transmittance
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Fig.5. Micro-scale density o, modeled as 3D perlin noise. We visualize a 2D
slice (left), a homogeneous medium with equivalent mean density (middle),
and the ensemble-averaged transmittance along random rays—visualized
as white arrows—and instantiations of the media (right). It has a longer
tail than the transmittance through the averaged medium due to Jensen’s
inequality.

where V), denotes the visibility within a distribution of micro-scale
particles, and () denotes an ensemble average, which can be approx-
imated using the Monte Carlo estimator on the right by generating
random rays X;, @; through different realizations of the micro-scale
particle distributions y;.

The ensemble average in Equation (36) is computing the probabil-
ity of having no scattering particles over a distance ¢ along a random
ray. If the positions of the particles are statistically independent,
then this tabulation procedure will converge to the exponential dis-
tribution (see Figure 2a,e), since it is computing the probability of no
events occurring over a distance ¢ within a Poisson process. How-
ever, it is also possible to instantiate points with specially crafted
spatial correlations that e.g. induce or inhibit clumping. Figure 2e
visualizes the transmittance curves obtained from 2D discrete points
sets with spectral power falloffs corresponding to “blue” (b), “pink”
(c) and “red” (d) noise respectively. Data-driven curves like these are
a “gold standard” in the sense that they can handle any distribution
of scatterers we can explicitly construct. But they require expensive
sampling and tabulation for every set of parameters, which quickly
becomes intractable for large collections of particles in higher di-
mensions.

4.2.2  Ensemble-averaging continuous densities. We can forego
instantiating discrete particles and instead model the spatial cor-
relations via a heterogeneous micro-scale density field ,,(x) (see
Figure 5). Given a fixed realization of 0,(x), the micro-scale trans-
mittance to a distance ¢ along a fixed ray x, w is:

Tru(x, w;t) = e Tux@it) (37)

t
where 7,(x, w;t) = / ou(x + wt’)dt’ (38)
0

is the micro-scale optical depth. We can equivalently write:

Tru(x, w;t) = e~ Soulxwit) (39)
(%, w3t 1 [t
where T, (x, w;t) = ¥ = ;‘/ ou(x + wt’)dt’  (40)
0

is the micro-scale density field ,,(x) averaged along a line segment
of length t between x and x + tw.



Table 1. The probability density functions pdf(x), cumulative distribution function cdf(x), and characteristic functions ¢(r) for a variety of statistical
distributions. I'(«) and y (s, x) are the complete and lower incomplete gamma functions, and §(x) and H(x) are the Dirac delta and Heaviside step functions.
When p is used as a parameter it specifies the mean of the corresponding PDF. We omit the implicit values of 0 or 1 in PDFs and CDFs with bounded support.
When hand-designing attenuation via free-flight distributions, pdf(z) describes the free-flight distribution, and transmittance is obtained via Tr(7) = 1—cdf(7).
When designing attenuation via 1/f noise, pdf(c;,) describes the distribution of 7, due to fBm micro-fluctuations, transmittance is obtained from ¢(iz), and
the free-flight distribution becomes —d¢(ir)/dz. The last two columns list sampling routines for these two approaches.

Sampling
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As in the discrete case, we can consider the ensemble-average of
transmittance (37) for a fixed distance t:

N
(Tra(0) = <e—zE,,(x,w;t)> ~ %Ze—@,i(x,»,wi;t), (41)
i=1
or similarly in terms of 7, using Equation (37). The Monte Carlo
estimate is averaging values returned by o, (x, w; t) for a fixed t,
but over random rays (x;, @;) and realizations of the medium y;.
Figure 5 shows the ensemble-averaged transmittance <Trﬂ (t)> of
a Perlin noise-controlled micro-scale density o, and Figure 7 illus-
trates random 1D transects and line averages o, thereof.

While computing ensemble-averaged transmittance this way
avoids the complexities of instantiating billions of discrete particles,
it still makes parametric control cumbersome due to the need for
tabulation.

4.3 Probabilistic ensemble-averaging

We can instead take a probabilistic view by treating o,,(t) (or 7, (t))
as a random variable, where we drop the explicit dependence on x
and w due to the ensemble averaging.

Longer-than-exponential tails. This allows us to explain why in
Figure 5 the ensemble-averaged transmittance (bottom, green) re-
sults in a longer tail than the exponential (bottom, blue). Jensen’s
inequality states that for a random variable X and a concave func-
tion f: (f(X)) = f({X)). Substituting the exponential for f, and
o, (t) for X, we should therefore expect:

<e*@(t>> > e~ H{au(®) (42)

This will be an equality iff 5,,(t) = (Eﬂ(t» for all ¢, which would
mean the medium had no density fluctuations (was homogeneous)
to begin with.

Link to characteristic functions. Since o), is a random variable, it
has some probability density, which we denote pdf(o), | ). This PDF

describes the variability of oy asa function of distance ¢, which we
visualized as histograms on the right-hand side of Figure 7.
We can now write the ensemble average as the integral:

(Tr, () :<e-@<’>> - /0 e pdf(3, | 1) do,.  (43)

This takes a form remarkably similar to the characteristic function
(CF), which is the Fourier transform of a random variable’s PDF:

ox(r) = <eirX> = '/Reirx pdf x (x) dx, (44)

where i = V-1 is the imaginary constant. Comparing Equation (44)
to (43), we see that for a fixed ¢ the ensemble-averaged transmittance
is simply the CF of the random variable 6}, (by passing in ti for r):!

(Tru(1) = ¢, (1) (1) (45)

This is a very powerful tool, because, as long as we can express
the variation of o, (or 7;,) using a distribution with a well-known
CF (see Table 1), we can obtain closed-form expressions for the
ensemble-averaged transmittance! Note that the parameters of the
distribution pdf(o}, | t) may depend on the distance t, as we saw in
Figure 7.

Discussion. So what should this distribution, and its dependence
on t be? We could simply choose a convenient PDF and allow an
artist to set its (potentially ¢-dependent) parameters by hand. While
this would be fully parametric and analytic, it is unclear how (or
whether) such a model would correspond to any micro-scale density
fluctuations or correlations. Alternatively, we could ensure corre-
spondence by fitting the distribution and its t-dependent parameters
to tabulated data from realizations of o), (t), like in Figure 7. Next,
we will instead leverage recent work by Davis and colleagues [2011;
2014] to obtain a parametric, closed-form transmittance function

!We could also express this using moment generating functions (MGFs), which are
defined similarly to the CF, but without the imaginary constant.
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Fig. 6. 1/f# noise (right) is characterized by a spectral exponent § which determines the slope of its power spectrum on a log-log plot (left). Qualitatively,
different values of f8 lead to noises of different “roughnesses” (right), and integrating a noise with spectral exponent § (e.g. white noise) produces another

noise with spectral exponent § + 2 (e.g. red noise).
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Fig. 7. 1D transects of a Perlin noise micro-scale density function o,(t)
for random rays and realizations, a single sample of which is highlighted
in black (top). o, is a random variable, the distribution of which, pdf(c;,)
is illustrated by the histogram on the right. The line-averaged micro-scale
density G,(¢) (bottom) is likewise a random variable, but the distribution
now potentially depends on the length of the line segment t. We show
histograms of the distribution of pdf(c),(¢)) at ¢ = 2.5 (red) and t = 22.5

(green).

whose parameters provide a physical interpretation of the underly-
ing micro-scale extinction field as a fractal medium.

4.4 Closed-form average transmittance in fractal media

We will follow Davis and Mineev-Weinstein [2011] and model the
variability in o;,(x) as a 3D fractal with 1D transects o,,(x) charac-
terized by 1/ f P fractal noise. Figure 6 provides a visual explanation:
Qualitatively, § determines how “rough” the noise will be (right),
while quantitatively it dictates that the falloff of the function’s power
spectrum will be 1/ f B (left). This directly controls the spatial corre-
lations, where = 0 means uncorrelated “white” noise, while f > 0
and f < 0 produce positive and negative correlations respectively.

We model oy, (x) statistically as a noise defined by: a mean ps, a
constant C controlling its overall amplitude, and its spectral expo-
nent -1 < f < 1 ranging from “blue” (§ = —1) to “pink” (f = 1).
For convenience, we will combine these into a parameter vector
V¥ = {yo,C, p}. This allows us to write the ensemble-averaged
transmittance (43) as:

(Tru(t1y)) = /0 e 1% pdf (G, | t,¥) o,

where the PDF is now determined by the distance ¢t and parameters
Y = {ps,C, f} defining the medium.
Given this fractal noise model, what can we say about pdf (o, | t,/)?

(46)

Gaussian 1/ fP noise. A key property of Gaussian 1/ f# noise is
that it produces fractional Brownian motion (fBm) [Mandelbrot and
Ness 1968] with 8 + 2 via integration (arrows in Figure 6).2 We
therefore know that 7, (t) will be a noise with 1 < f; < 3 and its
distribution (as well as that of 0,) will be a Gaussian. Davis and
Mineev-Weinstein [2011] formally derived the dependence of this
Gaussian on the distance t and medium parameters :

pdf(@y | £,9) = N(o, o5, (1), with v (1) = (Cue)P P71 (47)

2B is directly related to the Hurst parameter H = (8 — 1)/2 more commonly use in
the fractal literature [Barnsley et al. 1988] when describing fBm and the “persistence”
parameter of fractal Perlin noise [Ebert et al. 2002] used in graphics.
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Fig. 8. Random samples of the line-averaged micro-scale density &, (¢) (thin
transparent lines) and the standard deviation thereof (thick opaque lines).
When the micro-scale density o,,(t) is modeled as Gaussian 1/fﬂ noise,
the spectral exponent g directly controls the variance Ugﬂ(t) as a function
of distance ¢, where lower values of 8 lead to more rapid decay. “Pink” noise
(where f = 1), is scale-invariant meaning that vg, is independent of t.

Figure 8 visualizes random transects of o,(t): the medium o, av-
eraged over a distance t. This figure shows the same information
as the second row of Figure 7, but this time for media modeled as
fractal noise with f = —1,0, 1. The superimposed analytic curves
plot the standard deviation \/v?u (t) from Equation (47) as a function
of t, matching the behavior of the random transects well.

Using the characteristic function of the normal distribution (Ta-
ble 1) with these parameters, we can obtain a close-formed expres-
sion for the ensemble-averaged transmittance via Equation (45):

<Trﬂ(t | l//)> = e_FJt-PUE/‘(t)tz/Z = e7ﬂ5t+(cllat)ﬂ+l/2 (48)

Unfortunately, this is only an approximation because the Gaussian
is supported on the entire real line, but values of ¢, < 0 are non-
physical. This model for noise is therefore only reasonable when
s is set sufficiently high and v set sufficiently low so that negative
extinction coefficients are unlikely to occur.

Gamma-distributed 1/ f B noise. To counteract the artifacts aris-
ing due to these negative intrusions, Davis and Mineev-Weinstein
[2011] proposed modeling the distribution of extinction values o,
with the strictly non-negative Gamma distribution pdf(o}, | ¢, ) =
I'(ug, a(t)), with parameters set to match the mean and variance of
the Gaussian model. Combining Equation (45) with Table 1 gives:

—a(t)
(Teu(t19)) = or, , (8) = (1 + Z(Ltg) . (49)
2 -B
where a(t) = Ho _ M (50)
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Fig. 9. Ensemble-averaged transmittance curves (Tr,(t) solid) and free-
flight PDFs (p,(t), dashed) in 1/fP noise, left: for a fixed C = 1 and different
values of f; and right: for § = 1 and different values of C. The inset on the
right shows how different values of C influence pdf(c},) for pink noise.

is the Gamma model’s shape parameter that enforces a variance
dictated by Equation (47).

Discussion. Equation (49) provides a simple 3-parameter model to
produce non-exponential transmittance functions by specifying the
mean extinction y, the overall amplitude of variation C, and the
color/spectral falloff/correlation of the noise . Figure 9 visualizes
Equation (49) for various f§ and C, but a fixed pi5 = 1.

As we would hope, both the Gaussian (48) and Gamma (49) models
reduce to a simple exponential when variance v — 0 (and hence
a — oo). This will happen if the medium is actually homogeneous
(C = 0), or if we have white noise (f = 0), both of which correspond
to independent scatterers. In the latter case of white noise, we obtain
exponential falloff, but with a modified extinction coefficient.

“Pink” 1/ f noise (when f = 1) is another interesting case because
it has a “scale-invariant” property where the distribution pdf(a;,)
no longer depends on t (see Figure 8). The variance that plugs into
Equation (48) and (49) reduces to V5, = C?y2., and so « also no
longer depends on t. In this case, ensemble averaging transmittance
over a heterogeneous medium can be equivalently interpreted as
averaging transmittance across a continuum of homogeneous media,
each with a random, but spatially homogeneous extinct coefficient
drawn from the distribution pdf(cy,).

5 COMBINING MACRO- AND MICRO- PROPERTIES

Section 4 presented a variety of ways to obtain new transmittance
functions. Some of these functions, such as user-designed curves,
can be used directly. However, ensemble-averaged transmittances
<Trﬂ (t)> are defined in terms of distance t rather than optical depth
7, and it is not immediately clear how to combine the micro-scale
and macro-scale heterogeneity. In this section, we therefore first
show how to convert these transmittance functions so that they can
be used in our framework, and offer a physical interpretation of this
conversion. We then show how these transmittance functions can
be implemented in a traditional Monte Carlo rendering algorithm.
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Fig. 10. We express volumetric micro-roughness o, (7) (top) statistically and
model macro-scale extinction o(s) explicitly (black, homogeneous: middle,
heterogeneous: bottom) and combine them (blue). Since we define micro
properties with respect to macroscopic optical depth, the statistical fluc-
tuations/correlations o, (7) represents are scaled vertically and squeezed
horizontally by the local extinction coefficient (left column). The statistical
behavior of rescaled fractal noise depends on its power spectrum via Equa-
tion (53). For instance, the standard deviation of blue noise (f = —1) does
not depend on o, while for pink noise (f = 1) it is proportional to o;. The
right column illustrates this relationship for f = -1, 0, 1.

One way of viewing the ensemble-averaging process is that we
replace a (discrete or continuous) heterogeneous medium with ex-
ponential transmittance Tr by a homogenized medium with non-
exponential transmittance (Tr,,(t)). The extinction coefficient of
this homogenized medium is yi4, i.e. the average extinction of the
original heterogeneous medium. In this homogenized world, dis-
tance and optical depth are connected with the simple relation
T =1t - ys. Then we can easily define the ensemble-averaged trans-
mittance with respect to 7:

Tr(r) = <Tr;1 (T/ﬂo')>~ (51)
Now that this transmittance is defined in terms of optical depth,
we can insert the macro-scale optical depth 7(x,x”) in the above
equation to combine the macro-scale and (statistical) micro-scale
heterogeneity.

5.1

How can we interpret this combined medium?

Physical interpretation.

Deterministic micro-scale media. Let us first assume that the
macro-scale medium is homogeneous with density o; = 2 (Fig-
ure 10 middle-left) and the ensemble averaged transmittance was
obtained from a single realization of a fluctuating function with a
mean ps = 1 (Figure 10 top-left). By mapping the transmittance
through the macro-scale optical depth, the micro-scale function is
scaled vertically so that its mean u, matches that of the macro-scale
density o;, and simultaneously it is squished horizontally since
small steps in macroscopic optical depth map to larger distances
in the micro-scale medium. For heterogeneous macro-scale media
the amount of this stretching is determined by the local ratio of the
macro-scale extinction to the micro-scale mean: o;(t)/ s (Figure 10
bottom-left).

Stochastic fractal micro-scale media. With ensemble averaged
transmittance from fractal media, we can only reason about the
micro-density function in a statistical sense, and this physical inter-
pretation changes slightly. Firstly, due to the self-similar nature of
1/ f# fractal noise, horizontal squeezing and stretching has no effect
on the wavelength content and can be ignored. Instead, we can see
from Equations (48,49) that scaling the distance ¢ by some constant
c is equivalent to scaling the mean s by the same constant:

(Try (et | {no, C. 1) = (Tru (¢ {c po. C, B})).

This means that - as in the deterministic case — Equation (51) adjusts
the mean 15 of the micro-scale medium to locally match the density
ot at the macro-scale. Changing just the mean ps of the noise,
however, changes its standard deviation in a f-dependent way:

Vg, (t]{c o C. F})
# — B+
vs, (ke CBD)

This suggests that the way the density match is achieved has a
different interpretation based on the color of the noise (Figure 10
right). For both the deterministic case and “pink” noise (§ = 1), Equa-
tion (51) corresponds to scaling the micro-fluctuations vertically by
c, but as ff decreases the standard deviation is scaled less, until at
“blue” noise (f = —1) it is not scaled at all (¢ = 1), suggesting a
vertical shift/translation of the noise instead.

(52)

(53)

6 IMPLEMENTATION

In this section, we give a brief outline of the modifications that need
to be made to an existing rendering algorithm to support our theory.
For now, we assume that we are given an opaque distance-sampling
procedure sample_distance(¢), which returns a distance s given
random number &, as well as functions distance_pdf (s) and
distance_cdf(s) that express the PDF and CDF of the sampled
distance. We later expand on possible choices for this sampling
procedure.

Note that the free-flight PDF and the distance sampling PDF are
unrelated; the former is a physical property of the medium, whereas
the latter is an implementation detail of the rendering algorithm.
In practice, they can be chosen to be identical as a noise reduction
measure, but this is not required by the theory.



We outline the procedure for edge evaluation and sampling in
Algorithm 1. Evaluating E(x;, X;+1) requires vertices to be specified
in consistent order from the light source, but practical rendering
algorithms usually order vertices in the direction in which the path
is traced. To ensure consistent evaluation, we require an additional
adjoint flag specifying the direction of transport. If the edge endpoint
(from the perspective of the light source) lies on a surface, the
transmittance is returned, and the free-flight PDF otherwise.

Sampling edge vertices proceeds by sampling a random distance
s and deciding whether it lies beyond the nearest surface. If it is
(with probability 1 — distance_cdf(s)), the surface vertex x; is
generated; otherwise (with probability density distance_pdf(s)),
a medium vertex X is generated. The sampling weight is obtained
by dividing the edge throughput by the sample probability.

6.1

Algorithm 1 works for any distance sampling PDF. For efficiency
reasons, this PDF should be chosen to be as proportional to E as
possible.

In our implementation, we use a simple procedure to obtain dis-
tances distributed proportionally to ps. We first sample an optical
depth t* with density proportional to p; (t*). We do this analytically
using Table 1 for all directly designed free-flight PDFs and for those
based on 1/ f noise when f = 1. For f # 1, we numerically invert
the CDF = 1 — Tr(r) with binary search.

We then solve for the distance s such that 7* = 7(x, xg), either
exactly (trivial in homogeneous media, and using regular tracking
in heterogeneous media) or approximately (using raymarching).

When tracing radiance, the resulting edge weight is 1/0(xs)
if the sampled vertex lies in the medium, and is 1 if the vertex
lies on a surface. This is an optimal sampling strategy, but only
for paths traced from the light source. For paths traced from the
camera, the edge throughput is evaluated in reverse order compared
to the distance sampling PDF, and does not necessarily cancel. Since
regular tracking and raymarching are expensive on high-resolution
data, we probabilistically terminate transmittance evaluation at each
step with Russian Roulette if its value is close to zero.

For some of our scenes (Figure 4), the additional noise from dis-
tance sampling is negligible; for others (Figures 1, 12, 13), we op-
tionally sample the optical depth * proportionally to Tr(z*) for the
first segment traced from the camera.

As sampling is not the focus of our paper, we did not further
investigate this topic. However, the sampling strategies we use
leave ample space for improvement, and we hope to address this in
future work.

Distance Sampling

7 RESULTS

We implemented our theory in two existing rendering systems,
PBRTv3 [Pharr et al. 2016] and Tungsten [Bitterli 2018], following
the outline in Section 6.

In Figure 4, we show a homogeneous medium rendered with five
different designed transmittance curves and compare the results to
an exponential medium. The non-exponential transmittances are
simple parametric functions, such as linear or quadratic curves, but
lead to a wide range of appearances that cannot be reproduced by

Algorithm 1: Edge throughput evaluation and sampling in our theory

1 function E(x, X/, adjoint)

2 endpoint « adjoint ? x : X’
3 if endpoint € 9V then

4 ‘ return Tr(x, x’)

5 else

6 ‘ return p,(7(x, x’))

7 function sample(x;, w, £, adjoint)

8 z < raytrace(x;, )

9 s « sample_distance(¢)

10 if s < z then

1 | pdf = distance_pdf(s)

12 else

13 ‘ pdf =1 —distance_cdf(s)
14 weight = E(x;, X;+1, adjoint) /pdf
15 Xj+1 < X; + min(s, z) - @

16 return {weight, x;;; }

Path Tracing,

Light Tracing Bidirectional Path Tracing

Fig. 11. A homogeneous medium with non-exponential, linearly decreasing
transmittance rendered with three different rendering algorithms—path
tracing, light tracing and bidirectional path tracing—which were modified
to support our theory. All three algorithms produce identical images, which
shows that our theory produces consistent results in a bidirectional context,
despite being non-reciprocal.

the exponential. These curves were designed artificially and do not
have a physical interpretation in terms of correlated scatterers, but
their simplicity and ease of control makes them powerful tools for
artistic control of the medium.

Figure 11 shows a similar homogeneous medium with a linearly
decreasing, non-exponential transmittance. The same scene is ren-
dered with three different rendering algorithms—path tracing, light
tracing and bidirectional path tracing—that were modified to support
our theory. All three algorithms produce identical results, which
shows that our theory produces consistent results in a bidirectional
context.

Figure 1 shows a heterogeneous cloud, rendered with a tradi-
tional exponential transmittance, and a long-tailed non-exponential
transmittance derived from the Davis and Mineev-Weinstein model.
The long tail of the non-exponential transmittance allows light to
penetrate deeper into the cloud, which leads to a brighter and softer
appearance near the bottom. Simultaneously, the cloud appears
denser and more detailed near the surface, giving an overall richer
appearance.

Figure 12 shows a cloud rendered with the same fractal noise
model over three different colors of noise, but normalized such that
all three transmittances have the same mean free path. Even with



B = 0(exponential)

Fig. 12. We compare a cloud rendered with the Davis and Mineev-Weinstein model over three different colors of noise (), but normalized such that all three
transmittances have the same mean free path. Even with this normalization, there are significant appearance changes. This shows that the appearance of the
non-exponential transmittance could not be matched with an exponential transmittance of different mean free path.

this normalization, there are significant appearance changes, which
shows that the appearance of the non-exponential transmittance
could not be matched with an exponential and a scaled heteroge-
neous density.

Finally, in Figure 13 we compare a heterogeneous cloud rendered
using a transmittance derived from fractal noise (bottom two rows)
using the Davis and Mineev-Weinstein model with varying param-
eters (f, C). The fractal noise model allows a range of different
appearances and mean free paths. For comparison, we also provide
the same cloud rendered using an exponential with varying mean
free paths (top row).

We include a comprehensive supplemental material with full-
resolution HDR images of all our renderings, including an interactive
image viewer for better comparison, Mathematica notebooks of
different transmittance functions and additional derivations. We
encourage the reader to refer to our supplemental material for a
more careful comparison.

8 CONCLUSION

We introduced a new theory of volumetric light transport that al-
lows for media with non-exponential free-flight distributions. Such
distributions are the consequence of correlations between scatter-
ers, which can arise from physical processes in e.g. the atmospheric
sciences and neutron transport. We showed that the classical RTE
conflates the free-flight PDF and the transmittance, which leads to
violation of energy conservation when a non-exponential transmit-
tance is used. To resolve these issues, we introduced a new general-
ization of the RTE that separates the two concepts and allows for
an arbitrary free-flight PDF while conserving energy.

We presented a wide range of tools to leverage this newfound
flexibility, ranging from simple parametric transmittance curves
to powerful mathematical formalisms for Gaussian processes and
fractal noise. The latter allowed us to obtain closed-form, ensemble
averaged transmittances for scatterers distributed with different
colors of noise.

Our theory can be implemented with only minor changes to
existing rendering algorithms, and our results demonstrate that
this allows for a rich range of volumetric appearances while still
allowing for consistent unidirectional and bidirectional transport.

8.1 Limitations and Future Work

There are several limitations to our work that leave ample grounds
for future research. Our theory currently assumes that there is a
single, globally fixed free-flight PDF. This means that we cannot
handle multiple overlapping media with different transmittance
functions, even though this could be a useful tool in practice.

Unbiased distance sampling methods, such as Woodcock track-
ing, implicitly assume the underlying medium to be exponential
and cannot be used with our theory. Our implementation therefore
has to rely on either expensive (regular tracking) or approximate
(raymarching) distance sampling approaches in heterogeneous me-
dia. More research is required to adapt efficient, unbiased distance
sampling methods for heterogeneous media to our theory.

Although we could obtain a locally optimal distance sampling
procedure for paths sampled from the light source, it is unclear how
to do the same for paths sampled in the reverse direction. We hope
to address this in future work.

An interesting avenue for future research is the synergy between
non-exponential transmittance and diffusion theory. In Section 4.1,
we took the classical diffusion monopole and interpreted it as a free-
flight distribution. Extending this concept to more sophisticated
diffusion models could allow for efficient, approximate multi-bounce
rendering.

Somewhat surprisingly, the observed transport behavior in a
participating medium can be non-exponential even for classical
media where the scatterers are independently distributed. Since the
weighted average of exponentials is not an exponential, the spectral
averaging at the sensor will lead to non-exponential appearance if
the medium properties vary across the sensor’s spectral response.
The ability of our theory to model this non-exponentiality could
benefit inverse problems in computer vision and appearance capture,
which rely on accurate forward models.
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