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Abstract

New �le systems are critical to obtain good I/O performance on large multiprocessors. Sev-

eral researchers have suggested the use of collective �le-system operations, in which all processes

in an application cooperate in each I/O request. Others have suggested that the traditional low-

level interface (read, write, seek) be augmented with various higher-level requests (e.g., read

matrix), allowing the programmer to express a complex transfer in a single (perhaps collective)

request. Collective, high-level requests permit techniques like two-phase I/O and disk-directed

I/O to signi�cantly improve performance over traditional �le systems and interfaces. Neither

of these techniques have been tested on anything other than simple benchmarks that read or

write matrices. Many applications, however, intersperse computation and I/O to work with

data sets that cannot �t in main memory. In this paper, we present the results of experiments

with an \out-of-core" LU-decomposition program, comparing a traditional interface and �le

system with a system that has a high-level, collective interface and disk-directed I/O. We found

that a collective interface was awkward in some places, and forced additional synchronization.

Nonetheless, disk-directed I/O was able to obtain much better performance than the traditional

system.

This research was supported by Dartmouth College, by NSF under grant number CCR 9404919, and by NASA

Ames Research Center under Agreement Number NCC 2-849.
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1 Introduction

Although multiprocessor systems have increased their computational power dramatically in the last

decade, the design of hardware and software for I/O has lagged and become an increasing bottleneck

in the overall performance of parallel applications. The use of disk striping [SGM86] to access many

disks in parallel has alleviated some of the hardware limitations by providing greater capacity,

bandwidth, and throughput. Good parallel �le-system software, however, is critical to a system's

I/O performance, and early �le systems often had disappointing performance [FPD93, Nit92].

Recent work shows that if an application could make high-level, collective I/O requests, the

�le system can optimize I/O transfers using disk-directed I/O [Kot94] to improve performance by

orders of magnitude. In [Kot94], however, experiments were limited to simple benchmarks that

read or wrote matrices. In this paper we evaluate the performance of disk-directed I/O on a much

more complex program, an out-of-core LU-decomposition program. This program allows us to

understand the performance bene�ts of disk-directed I/O in the context of a full program, one that

performs computation, reads and writes the same �le (indeed, rereads and rewrites the same �le

many times), and has interprocess synchronization.

In the next section we provide more detailed background information. Section 3 discusses the

LU-decomposition program. In Section 4 we describe a set of experiments used to reinforce our

discussion, and Section 5 provides the results. We conclude with commentary on the advantages

and disadvantages of high-level, collective requests, and on the underlying technique of disk-directed

I/O.

2 Background

File systems. There are many parallel �le systems today, including Bridge [DSE88], Intel CFS

[Pie89], Intel PFS [Roy93], IBM Vesta [CF94], nCUBE [DdR92], TMC sfs [LIN+93, BGST93],

Hurricane File System [Kri94], and SPIFFI [FBD95]. There are also several systems intended

for workload clusters, such as PIOUS [MS94] and VIP-FS [dHC94]. All of these systems decluster

�le data across many disks to provide parallel access to the data of any �le.

Workload. The CHARISMA project traced production parallel scienti�c computing workloads

on an Intel iPSC/860 [KN94] and on a TMC CM-5 [PEK+94] to characterize their �le-system

activity. In both cases, applications accessed large �les (megabytes or gigabytes in size) using
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surprisingly small requests (on the Intel, 96% of read requests were for less than 200 bytes). On

further examination, we discovered that most of the �les were accessed in complex yet highly regular

patterns [NK94], most likely due to accessing multidimensional matrices.

Interfaces. Most parallel �le systems present the traditional abstraction of a �le as a sequence

of bytes with Unix interface semantics, and add a few extensions to control the behavior of an

implicit �le pointer shared among the processes. This low-level interface, which restricts each

request to a contiguous portion of the �le, is one reason for the predominance of small requests

found by the CHARISMA project. Higher-level interfaces, such as specifying a strided series of

requests [NK94, Cra94] or accessing data through a mapping function [CF94, DdR92, Kot93] pro-

vide valuable semantic information to the �le system, which can then be used for optimization

purposes. Interfaces that allow the programmer to express collective I/O activity, in which all

processes cooperate to make a single, large request, provide even more semantic information to the

�le system.

Unfortunately, few multiprocessor �le systems provide a collective interface. CM-Fortran for the

CM-5 does provide a collective-I/O interface, which leads to high performance through cooperation

among the compiler, run-time, operating system, and hardware. The MPI message-passing interface

may soon be extended to include I/O [CFH+94], including collective I/O. Finally, there are several

libraries for collective matrix I/O [GGL93, BdC93, BBS+94, SW94].

Two-phase I/O. Two-phase I/O is a technique for optimizing data transfer given a high-level,

collective interface [dBC93]. A library implementing the interface breaks the request into two

phases, an I/O phase and a redistribution phase. When reading, the compute processors cooperate

to read a matrix in a \conforming distribution", chosen for best I/O performance, and then the data

is redistributed to its ultimate destination. When writing, the data is �rst redistributed and then

written in a conforming distribution. There are no published performance results for two-phase

writing, or for an out-of-core application using two-phase I/O.

Disk-directed I/O. Disk-directed I/O is a technique for optimizing data transfer given a high-

level, collective interface [Kot94]. In this scheme, the complete collective, high-level request is passed

to the I/O processors, which examine the request, make a list of disk blocks to be transferred, sort

the list, and then use double-bu�ering and special remote-memory \get" and \put" messages to

pipeline the transfer of data between compute-processor memories and the disks. Compared to a
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traditional system with caches at the I/O processors, this strategy optimizes the disk accesses, uses

less memory (no cache at the I/O processors), and has less CPU and message-passing overhead.

In experiments with reading and writing one- and two-dimensional matrices, disk-directed I/O

was as much as 18 times faster than traditional caching in some access patterns, and was never

slower [Kot94].

3 LU decomposition

LU decomposition represents the bulk of the e�ort in one technique for solving linear systems of

equations. An N �N matrix M is decomposed into two matrices, a lower-triangular matrix L and

an upper-triangular matrix U , such that LU = M . Typically, these two triangular matrices are

stored in one N � N array, occupying disjoint elements of the array. Indeed, the decomposition

can be done in place, overwriting M . A sequential algorithm (with no pivoting) looks like this:

for i = 1 to N-1

for j = i+1 to N // update rows i+1 .. N

mult(j) = M(j,i) / M(i,i)

for k = i+1 to N // each row j, update cols i+1 .. N

M(j,k) = M(j,k) - mult(j) * M(i,k)

end

end

end

One simple parallelization of this algorithm (although not the best; see [WGWR93] for a better

algorithm) is to distribute responsibility for columns of the matrix among P processors in a cyclic

pattern; that is, column k is handled by processor k mod P (see Figure 1. In iteration i, the

multipliers (called mult(j) above) are computed from column i by processor i mod P and then

broadcasted to the other processors. Then each processor updates the columns for which it is

responsible; only in the last few iterations is any processor idle.

When the matrix is moderately large, that is, too large to �t in memory but small enough so that

each processor's memory can hold at least one column of the matrix, the processors repeatedly read

a subset of their columns from the �le, update those columns, and then write those columns back to

the �le. Thus, it makes sense to store the matrix in column-major order. We call each processor's

subset of columns a \slab." Note that because of the cyclic distribution any one processor's slab

is not contiguous in the �le, but that corresponding sets of slabs for all processors collectively

represent a contiguous set of bytes in the �le.
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first slab second slab

16 columns, 4 processors

2 columns per slab per processor

Figure 1: Example of column-cyclic distribution of 16 columns across four processors. Each proces-

sor is represented here by a di�erent shade of gray. SLAB COLS is 2 here, meaning each processor

allocates space for two columns in main memory. The combined slab size is eight columns.

The code for parallel, out-of-core LU-decomposition (based on that in [TBC94]) is shown in

Figure 2. There are several things to note about this program. First, note the optimization to split

the outer loop into two loops, with the I/O pulled out of the second loop. The second loop begins

once the remaining columns all �t in memory, eliminating many unnecessary I/O transfers; indeed,

when the entire matrix �ts in memory the �rst loop is ignored and we need only load and store

the matrix once. Second, the nodes synchronize as part of the multiplier calculation, because one

node computes the multipliers and broadcasts them to the other nodes. (In my implementation

this broadcast involves a barrier synchronization). Third, the code is written so that all processors

make the same number of iterations through all loops, even though in the last few iterations some

processors will have ncols = 0, so that collective communication and I/O routines can be used if

desired. The performance cost of extra iterations is negligible, because those processors with fewer

iterations eventually wait for those with more iterations anyway. Finally, the program explicitly

waits for all pending writes to fully complete (sync()) before stopping the clock.

When based on a traditional �le-system interface, the function LU_read looks like that in

Figure 3a. LU_write would look similar. Given a collective interface, these functions would be

replaced as shown in Figure 3b. Note that no synchronization is necessary with the traditional
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// run simultaneously by all P processors

// �le initially contains N � N matrix M in column major order

// SLAB COLS is the number of columns per processor per slab

float M local[N][SLAB COLS]; // this processor's portion of a slab of M[N][N]

float multipliers[N]; // local copy of multipliers

int colsInMem = P * SLAB COLS; // number of columns in all P memories

barrier(); start clock;

for (i = 1 to N - colsInMem) f

my first = the first column I will handle; // processor i mod P handles column i

ncols = the number of columns I will handle, usually SLAB COLS;

LU read(M local, my first, ncols); // get that slab from the �le

if (I am responsible for column i) f

find the N-i multipliers;

broadcast them to all other nodes;

g else f

receive the broadcasted multipliers;

g

update the ncols columns in M local using multipliers;

LU write(M local, my first, ncols); // and write the slab back

// now update the rest of the columns

leftmost = i;

// everybody loop until everybody is done

while ((leftmost += colsInMem) <= N) f

my first += colsInMem;

ncols = the number of columns I will handle

(usually SLAB COLS, but could be fewer, or even 0);

LU read(M local, my first, ncols); // get that slab from the �le

update the ncols columns in M local using multipliers;

LU write(M local, my first, ncols); // and write the slab back

g

g

// ok, now do the colsInMem columns not handled above

my first = the first column I will handle;

ncols = the number of columns I will handle (as few as 0);

LU read(M local, my first, ncols); // get that �nal slab from the �le

for (i = i to N-1) f

if (I am responsible for column i) f

find the N-i multipliers;

broadcast them to all other nodes;

g else f

receive the broadcasted multipliers;

g

update the columns in M local using multipliers;

g

LU write(M local, my first, ncols); // and write the slab back

sync(); // wait for all disk I/O to complete

barrier(); stop clock;

Figure 2: Pseudo-code for parallel, out-of-core LU-decomposition program.
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interface, whereas the collective interface must synchronize all processors for disk-directed I/O.

This \extraneous" synchronization would in general accentuate temporary load imbalances, but it

can often allow dramatically better I/O performance.

a) the traditional read/write/seek interface:

LU read(array, first col, ncols)

f
int col bytes = N * sizeof(float); // size of a column

int col = first col;

// loop through the desired number of columns

for (i = 1 to ncols) f
seek((col-1) * col bytes); // �nd this column in the �le

read(array, col bytes); // read one column

array += col nbytes; // skip to next column

col += P; // column cyclic

g
g

b) a collective interface with disk-directed I/O support:

LU read(array, first col, ncols)

f
barrier();

first col = min(first col) over all processors;

ncols = sum(ncols) over all processors;

disk-directed read of (first col) through (first col + ncols - 1);

barrier();

g

Figure 3: Pseudo-code for LU read (LU write is similar).

Finally, we note that code like that in Figure 2 could be written by hand, incorporated in a

parallel matrix library [GGL93, BdC93, BBS+94, SW94], or generated by a smart compiler [CC94,

TBC94, BTC94].

4 Experiments

To gain a better understanding of the bene�ts of disk-directed I/O to an application like LU de-

composition, we ran several experiments. In these experiments, we ran the program in Figure 2

with both the \traditional caching" �le system (Figure 3a) and the disk-directed �le system (Fig-

ure 3b), on top of our parallel �le-system simulator [Kot94]. This simulator ran on top of the
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Proteus parallel-architecture simulator [BDCW91], which in turn ran on a DEC-5000 workstation.

We con�gured Proteus as in [Kot94], except as noted below.

Simulation overhead limited our experiments to decomposing a 1024 � 1024 matrix of single-

precision numbers, using eight compute processors (CPs), eight I/O processors (IOPs), and eight

disks (one on each IOP). This matrix only represented 4 MB of data, but when using the smallest

slab size (16 columns per CP) the algorithm moved nearly 4 GB between disk and memory. Note

that each column required 4 KB. Our �le systems striped the �le across all eight disks by 1 KB,

4 KB, or 8 KB blocks. The 4 KB blocks represent an \easy" case, where each full-column read

and write operation touches precisely one block, and there are no shared blocks or partial-block

requests. The 1 KB blocks represent a \likely" case, where each column requires several blocks.

With 8 KB blocks a full-column transfer touches only half of a block, testing the ability of the

cache to manage the subsequent spatial locality, and testing the e�ect of the extraneous disk reads

needed when writing only half a block. Within each disk the blocks were laid out either randomly

or contiguously, representing two interesting endpoints in the choice of block layouts.

We chose a slab size of 16, 32, or 128 columns per processor. With 8 CPs, these choices reect

total application memory sizes of 128, 256, or 1024 columns. In the last case, the matrix �t entirely

in memory and so only one round of reading and writing was needed.

In the traditional-caching �le system, the IOPs allocated two one-block bu�ers per compute

processor per disk, or 2 � 8 � 8 = 128 blocks of total cache, holding 32, 128, or 256 columns

depending on the block size. While this cache may seem small, it is consistent with the size of the

system and problem, and with our previous experiments [Kot94]. In the disk-directed �le system,

the IOPs allocated two one-block bu�ers per disk (for double-bu�ering each disk), or 16 blocks of

total bu�er space. Note that disk-directed I/O's bu�ers used an asymptotic order-of-magnitude

less memory than did traditional caching's cache.

5 Results

We concentrate on two primary metrics in our experiments: the amount of disk I/O (in bytes) and

the total execution time (in seconds). Given our parameters, however, the values of these measures

spanned several orders of magnitude (e.g., with 128-column slabs the matrix �ts in memory and

the program causes 8 MB of disk tra�c over about one minute, whereas with smaller slabs the

program moves the matrix in and out of memory and causes 3{4 GB of tra�c lasting for nearly

an hour). Furthermore, insights come by comparing the performance of two con�gurations, rather
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a) Disk traffic: DDIO/TC with 4 KB
blocks 

0% 20% 40% 60% 80% 100%

contig,16

contig,32

contig,64

contig,128

random,16

random,32

random,64

random,128

b) LU time: DDIO/TC with 4 KB blocks  

0% 20% 40% 60% 80% 100%

contig,16

contig,32

contig,64

contig,128

random,16

random,32

random,64

random,128

Figure 4: The ratio of disk-directed I/O (DDIO) to traditional caching (TC), in terms of bytes of

disk tra�c and seconds of execution time. The ratio is expressed as a percentage. Thus, less than

100% indicates that DDIO was better, i.e., did less I/O or took less time. There are several cases,

using either contiguous or random layouts, and 16-, 32-, 64-, or 128-column slab size. All used a

4 KB block size.

than from the absolute performance of any one con�guration. Thus, we normalize and compare by

charting the ratio of a measure between one con�guration and another.1

Figure 4 displays the ratio of disk-directed I/O's performance to traditional caching's perfor-

mance, for a variety of con�gurations using 4 KB blocks. Figure 4a focuses on the disk-I/O tra�c.

Note that the amount of �le-system tra�c generated by the LU-decomposition program depended

only on the slab size, and by using the ratio we normalize for the di�erence between slab sizes so

that any visible di�erences are due to di�erences in the way the �le systems use the disks. Note that

both �le systems caused about the same amount of disk I/O, with the traditional caching system

occasionally making mistakes that caused a little extra I/O. Figure 4b shows the total execution

time, and paints a di�erent picture. Disk-directed I/O was never slower, and was faster when using

the random-blocks layout due to its ability to optimize disk-head movement. With the exception

of 128-column slabs, the improvement of disk-directed I/O over traditional caching increased with

slab size, because the larger disk-directed requests permitted sorting over a larger set of data. With

128-column slabs the entire matrix �t in memory, the application was compute-bound, and thus

the improvements had little e�ect on execution time.

In Figure 5 we examine the performance when the block size was changed from 4 KB to 8 KB.

This change increases the disk and network transfer unit, changes the striping unit, and doubles

the size of traditional caching's cache. The larger block size hardly a�ected disk-directed I/O's disk

1See the Appendix for the raw data.
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a) Disk traffic: 8k/4k 

0% 50% 100% 150%

contig,16

contig,32

contig,128

random,16

random,32

random,128

DDIO TC

b) LU time: 8k/4k 

0% 50% 100% 150% 200% 250% 300%

contig,16

contig,32

contig,128

random,16

random,32

random,128

DDIO TC

Figure 5: The ratio of LU-decomposition performance with 8 KB blocks to that with 4 KB blocks, in

terms of bytes of disk tra�c and seconds of execution time. The ratio is expressed as a percentage.

Thus, less than 100% indicates that 8 KB was better, i.e., did less I/O or took less time. There

are several cases, using either contiguous or random layouts, and 16-, 32-, or 128-column slab size.

For each case there are two bars, one for traditional caching (TC) and one for disk-directed I/O

(DDIO).

tra�c, but (despite the larger caches) dramatically increased the amount of tra�c for traditional

caching in some cases. (The 16-column slabs were an exception, because each slab �t entirely into

the cache, and the necessary blocks remained in the cache between the read and write phases of

each iteration.) The additional tra�c was caused by the 4 KB (column) writes to 8 KB blocks,

which caused a disk read when the block was not resident in the cache. Disk-directed I/O, with

its higher-level perspective, recognized that the blocks were to be fully written and avoided these

\installation" reads.

Figure 5b shows the performance impact of traditional caching's excessive installation reads.

Disk-directed I/O was able to make e�cient use of 8 KB blocks to obtain better performance,

despite a comparable amount of disk tra�c. Traditional caching had mixed results. With 128-

column slabs, the I/O time was only a small part of execution time, so the performance impact was

small; with 32-column slabs, the e�ect was ampli�ed in the contiguous layout because the extra

I/O caused many costly seeks, and was counteracted in the random layout by the reduction in seeks

needed to reach half as many blocks.

Figure 6 compares disk-directed I/O and traditional caching on 8 KB blocks, using the same

data as Figure 5 and in the same style as Figure 4. Here we see the clear dominance of disk-directed

I/O in terms of execution time, despite the extraneous synchronization and (in some cases) extra

disk I/O. Indeed, unless the entire matrix �t in memory (128-column slabs) or the slab size was
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a) Disk traffic: DDIO/TC with 8 KB
blocks 

0% 20% 40% 60% 80% 100% 120%

contig,16

contig,32

contig,128

random,16

random,32

random,128

b) LU time: DDIO/TC with 8 KB blocks  

0% 20% 40% 60% 80% 100%

contig,16

contig,32

contig,128

random,16

random,32

random,128

Figure 6: Just like Figure 4, but using an 8 KB block size.

limited to the cache size (16-column slabs), disk-directed I/O was 2{3 times faster than traditional

caching.

In larger, more realistic problem sizes, that is, with larger matrices, the column size would be

much larger than the block size, rather than smaller. In Figure 7 we examine the situation when

the block size was 1 KB, so that each column spans four blocks (spread over four disks). The

amount of disk tra�c was nearly unchanged, but the execution times were remarkably di�erent.

The compute-bound 128-column slab cases were barely a�ected, but all other cases were drastically

slower. Much of this slowdown was due to the increased overhead of a smaller transfer unit. In the

contiguous layout the traditional caching system caused much more disk-head movement because

the each CP was active in a slightly di�erent region of the �le. Ultimately, as shown in Figure 8,

disk-directed I/O was much faster than traditional caching in the di�cult, but realistic cases where

the the matrix did not �t in memory and the column size was larger than the block size.

Figure 9 compares the tra�c and execution speed of 32-column slabs with 16-column slabs.

The LU-decomposition program causes less �le-system tra�c with 32-column slabs, as is reected

in Figure 9a. The chart again shows the cost of installation reads in traditional caching with 8 KB

blocks. The contiguous layout accentuates the cost of the extraneous I/O, because the additional

seeks remove many of the bene�ts of contiguous layout (Figure 9b).

Finally, traditional caching uses more memory on each IOP than does disk-directed I/O. Indeed,

with a 4 KB block size traditional caching with slab size 16 uses nearly the same total amount of

memory (128 columns in the CPs and 128 columns in the IOP caches) as does disk-directed I/O

with slab size 32 (256 columns in the CPs and 16 columns in the IOP bu�ers). Comparing these
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a) Disk traffic: 1k/4k  

0% 20% 40% 60% 80% 100% 120%

contig,16

contig,32

contig,128

random,16

random,32

random,128

DDIO TC

b) LU time: 1k/4k  

0% 500% 1000% 1500%

contig,16

contig,32

contig,128

random,16

random,32

random,128

DDIO TC

Figure 7: The ratio of LU-decomposition performance with 1 KB blocks to that with 4 KB blocks, in

terms of bytes of disk tra�c and seconds of execution time. The ratio is expressed as a percentage.

Thus, less than 100% indicates that 1 KB was better, i.e., did less I/O or took less time. There

are several cases, using either contiguous or random layouts, and 16-, 32-, or 128-column slab size.

For each case there are two bars, one for traditional caching (TC) and one for disk-directed I/O

(DDIO).

a) Disk traffic: DDIO/TC with 1 KB
blocks 

0% 20% 40% 60% 80% 100%

contig,16

contig,32

contig,128

random,16

random,32

random,128

b) LU time: DDIO/TC with 1 KB blocks  

0% 20% 40% 60% 80% 100%

contig,16

contig,32

contig,128

random,16

random,32

random,128

Figure 8: Just like Figure 4, but using a 1 KB block size.

two con�gurations, the DDIO/TC execution-time ratio is 90% for contiguous layouts and 70% for

random layouts. Part of this improvement is because the application could make better use of

the memory to reduce I/O demands (many I/O algorithms do asymptotically less I/O given more

memory [CK93]), and part is because the larger request sizes enable disk-directed I/O to better

optimize the I/O.

In summary, disk-directed I/O often improved the performance of the LU-decomposition pro-

gram. In a random layout, it was able to optimize the order of disk access within each disk-directed

request. This bene�t should be even larger in larger problem sizes with larger slab sizes. It also
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a) Disk traffic: 32/16 

0% 50% 100% 150%

contig/1k

contig/4k
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random/1k

random/4k

random/8k

DDIO TC

b) LU time: 32/16 
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random/4k

random/8k
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Figure 9: The ratio of 32-column slabs to 16-column slabs, in terms of bytes of disk tra�c and

seconds of execution time. Thus, less than 100% indicates that 32-column slabs were better, i.e.,

did less I/O or took less time. There are several cases, using either contiguous or random layouts,

disk-directed I/O (DDIO) or traditional caching (TC), and 1 KB, 4 KB, or 8 KB block size.

used less memory| memory that the application could use to reduce I/O demands. Furthermore,

it avoided the extraneous installation reads, unnecessary prefetches, and occasional cache mistakes

caused by traditional caching. Finally, although disk-directed I/O never made performance worse,

despite the extraneous synchronization, it had little bene�t for 4 KB blocks on contiguous layouts.

There, traditional caching was able to maintain the same performance as disk-directed I/O largely

because the I/O-request size (1 column) was the same as the caching unit (1 block). In a larger

problem, the request size would be larger, and either the caching unit (block size) must also be

larger or each request must span many blocks. The former would require a very large cache, and

the latter would have the e�ect of spreading out simultaneous multi-block requests into multiple

localities, counteracting the bene�ts of the contiguous layout [Kot94]. The results of experiments

with 1 KB blocks support this statement. Overall, the disk-directed �le system would be the faster

choice.

6 Conclusions

Until recently most multiprocessor �le systems have provided the programmer with a familiar

Unix-like interface, consisting of read, write, and seek calls, and various \modes" to control the

semantics of a shared �le pointer. While this interface is comfortable to parallel programmers

familiar with sequential programming, it is inadequate for expressing their needs [KN94]. Given

this interface and the amount of interprocessor spatial locality arising from interleaving tiny requests

13



from many processors, caching is essential for reasonable performance [KN94]. A �le system based

on traditional caching, however, can have terrible performance [Nit92] and, as we show in this

paper, can have counter-intuitive performance characteristics (increasing the block size from 4 KB

to 8 KB, or increasing the slab size from 16 to 32 columns, sometimes decreased performance).

As we show here and in [Kot94], disk-directed I/O can lead to much better performance than

traditional caching. This paper shows that disk-directed I/O, using a collective, high-level inter-

face, could be used e�ectively for an out-of-core LU-decomposition computation. The additional

synchronization of the collective interface appeared not to be a signi�cant factor here.

In our LU-decomposition example the code needed some careful structuring to ensure that all

processes participated in all I/O requests. Clearly, a collective interface that supported subsets of

processes would reduce the need to structure the code this way (the MPI-IO proposal [CFH+94]

appears to have this support). Otherwise, any of the common collective matrix-I/O interfaces

could be adapted for use. Ultimately, more cases need to be studied to determine an appropriate

general-purpose interface.

Thus disk-directed I/O was successful for out-of-core computations, despite the additional syn-

chronization of a collective interface. The next challenge is to de�ne a speci�c interface and to

experiment with real applications.
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Appendix: Raw data

Figure 10 shows the raw data from which the charts are derived. The columns are as follows, left to right:

Layout: contiguous or random

Slab: the number of columns in each processor's slab

Block: �le-system block size (and striping unit) in bytes

FS: DD (disk-directed I/O) or TC (traditional caching)

App read: total read requests to the �le system from the application, in megabytes

App wrote: total write requests to the �le system from the application, in megabytes

App total: the sum of App read and App wrote

Disk read: total read requests to the disks from the �le system, in megabytes

Disk wrote: total write requests to the disks from the �le system, in megabytes

Disk total: the sum of Disk read and Disk wrote

ination: the ratio of Disk total to App total, expressed as a percentage

DD/TC: the ratio of Disk total for that DD case to the corresponding TC case, expressed as a percentage

8k/4k: the ratio of Disk total for that 8k case to the corresponding 4k case, expressed as a percentage

1k/4k: the ratio of Disk total for that 1k case to the corresponding 4k case, expressed as a percentage

slab ratio: the ratio of Disk total for that case to the corresponding case with half the slab size (i.e., 32/16

or 64/32), expressed as a percentage

Seconds: total LU-decomposition time in seconds

DD/TC: the ratio of Seconds for that DD case to the corresponding TC case, expressed as a percentage

8k/4k: the ratio of Seconds for that 8k case to the corresponding 4k case, expressed as a percentage

1k/4k: the ratio of Seconds for that 1k case to the corresponding 4k case, expressed as a percentage

slab ratio: the ratio of Seconds for that case to the corresponding case with half the slab size (i.e., 32/16

or 64/32), expressed as a percentage
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Figure 10: Raw data for LU-decomposition experiments. See the text for an explanation of columns.
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