
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

11-8-1994

Disk-directed I/O for MIMD Multiprocessors Disk-directed I/O for MIMD Multiprocessors

David Kotz
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Kotz, David, "Disk-directed I/O for MIMD Multiprocessors" (1994). Computer Science Technical Report
PCS-TR94-226. https://digitalcommons.dartmouth.edu/cs_tr/97

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/97?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Available at URL ftp://ftp.cs.dartmouth.edu/TR/TR94-226.ps.Z

Disk-directed I/O for MIMD Multiprocessors

David Kotz

Department of Computer Science

Dartmouth College

Hanover, NH 03755

dfk@cs.dartmouth.edu

Dartmouth PCS-TR94-226

July 22, 1994

Revised November 8, 1994

Abstract

Many scienti�c applications that run on today's multiprocessors, such as weather forecast-

ing and seismic analysis, are bottlenecked by their �le-I/O needs. Even if the multiprocessor

is con�gured with su�cient I/O hardware, the �le-system software often fails to provide the

available bandwidth to the application. Although libraries and enhanced �le-system interfaces

can make a signi�cant improvement, we believe that fundamental changes are needed in the

�le-server software. We propose a new technique, disk-directed I/O, to allow the disk servers to

determine the ow of data for maximum performance. Our simulations show that tremendous

performance gains are possible. Indeed, disk-directed I/O provided consistent high performance

that was largely independent of data distribution, obtained up to 93% of peak disk bandwidth,

and was as much as 18 times faster than traditional parallel �le systems.

1 Introduction

Scienti�c applications like weather forecasting, aircraft simulation, seismic exploration, and climate

modeling are increasingly being implemented on massively parallel supercomputers. Applications

like these have intense I/O demands, as well as massive computational requirements. Recent

multiprocessors have provided high-performance I/O hardware, in the form of disks or disk arrays

attached to I/O processors connected to the multiprocessor's interconnection network, but e�ective

�le-system software has yet to be built.

Today's typical multiprocessor has a rudimentary parallel �le system derived from Unix. While

Unix-like semantics are convenient for users porting applications to the machine, the performance

This research was funded by Dartmouth College. A condensed form of this text appears in the First Symposium

on Operating Systems Design and Implementation (OSDI), November 1994. This revised technical report updates a

few of the traditional-caching numbers from the OSDI paper (see page 13), but makes no qualitative changes.

1

is often poor. Poor performance is not surprising because the Unix �le system was designed for

a general-purpose workload [OCH+85], rather than for a parallel, scienti�c workload. Scienti�c

applications use larger �les and have more sequential access [MK91, GGL93, PP93]. Parallel

scienti�c programs access the �le with patterns not seen in uniprocessor or distributed-system

workloads, in particular, complex strided access to discontiguous pieces of the �le [KN94, NK94].

Finally, scienti�c applications use �les for more than loading raw data and storing results; �les are

used as scratch space for very large problems as application-controlled virtual memory [CK93]. In

short, multiprocessors need new �le systems that are designed for parallel scienti�c applications.

In this paper we describe a technique that is designed speci�cally for high performance on paral-

lel scienti�c applications. It is most suited for MIMD multiprocessors that have no remote-memory

access, and that distinguish between I/O Processors (IOPs), which do �le-system processing, and

Compute Processors (CPs), which do mostly application processing. Figure 1 shows such an archi-

tecture. The IBM SP-2, Intel iPSC, Intel Paragon, KSR/2, Meiko CS-2, nCUBE/2, and Thinking

Machines CM-5 all use this model; the CS-2 and the SP-2 allow IOPs to double as CPs. Fur-

thermore, our technique is best suited to applications written in a single-program-multiple-data

(SPMD) or data-parallel programming model. With our technique, disk-directed I/O, CPs collec-

tively send a single request to all IOPs, which then arrange the ow of data to optimize disk, bu�er,

and network resources.

We begin by advocating a \collective-I/O" interface for parallel �le systems. Then, in Sections 3

and 4, we consider some of the ways to support collective I/O and our implementation of these

alternatives. Section 5 describes our experiments, and Section 6 examines the results. We contrast

our system to related work in Section 7, and summarize our conclusions in Section 8.

2 Collective I/O

Consider programs that distribute large matrices across the processor memories, and the task of

loading such a matrix from a �le.1 From the point of view of a traditional �le system, each processor

independently requests its portion of the data, by reading from the �le into its local memory. If

that processor's data is not logically contiguous in the �le, as is often the case [KN94], a separate

�le-system call is needed for each contiguous chunk of the �le. The �le system is thus faced with

1This scenario arises in many situations. The �le may contain raw input data or may be a scratch �le written in

a previous phase of the application. The matrix may be the whole data set, or may be a partition of a larger data

set, for example, a 2-d slice of a 3-d matrix. Furthermore, the operation may be synchronous, with the application
waiting for I/O to complete, or asynchronous, perhaps as the result of a compiler-instigated prefetch request.

2

Network

Memory

Memory

Memory

Disk

Disk

Disk

I/O Processor

I/O Processor

I/O Processor

Memory

Memory

Memory

Compute Processor

Compute Processor

Compute Processor

Interconnection

Figure 1: Parallel Independent Disks (PID) in an MIMD multiprocessor, with separate compute

processors (CP) and I/O processors (IOP).

concurrent small requests from many processors, instead of the single large request that would

have occurred on a uniprocessor. Indeed, since most multiprocessor �le systems [CF94, FPD93,

Pie89, Roy93, DdR92, LIN+93, BGST93, Dib90, DSE88] decluster �le data across many disks,

each application request may be broken into even smaller requests that are sent to di�erent IOPs.

It is di�cult for the �le system, which is distributed across many I/O processors, to recognize

these requests as a single coordinated request, and to use that information to optimize the I/O.

Valuable semantic information | that a large, contiguous, parallel �le transfer is in progress |

is lost through this low-level interface. A collective-I/O interface, in which all CPs cooperate to

make a single, large request, retains this semantic information, making it easier to coordinate I/O

for better performance [dBC93, Nit92, PGK88].

Collective I/O need not involve matrices. Many out-of-core parallel algorithms do I/O in \mem-

oryloads," that is, they repeatedly load some subset of the �le into memory, process it, and write it

out [CK93]. Each transfer is a large, but not necessarily contiguous, set of data. Traditional caching

and prefetching policies, geared for sequential access, would be ine�ective or even detrimental for

3

this type of I/O.

Unfortunately, few multiprocessor �le systems provide a collective interface. Most have an

interface based on simple parallel extensions to the traditional read/write/seek model, focusing on

coordination of the �le pointer. Vesta [CF94] and the nCUBE �le system [DdR92] support logical

mappings between the �le and processor memories, de�ning separate \sub�les" for each processor.

Although these mappings remove the burden of managing the �le pointer from the programmer,

and allow the programmer to request noncontiguous data in a single request, there is no support for

collective I/O. CM-Fortran for the CM-5 does provide a collective-I/O interface, which leads to high

performance through cooperation among the compiler, run-time, operating system, and hardware.

ELFS [KGF94] provides an object-oriented interface that encourages operations on large objects,

and could lead to support for collective I/O. Finally, there are several interfaces for collective matrix

I/O [GGL93, BdC93, BBS+94]. For example, to read a two-dimensional matrix of integers in the

notation of [GGL93], every processor executes the following code:

/* describes my part of matrix */

PIFArrayPart mypart[2] = ... ;

/* memory for my part */

int *A = malloc(...);

PIFILE *fp = PIFOpen(...);

PIFReadDistributedArray(fp, NULL, sizeof(int), mypart, 2, A, MSG_INT);

Thus, the groundwork for collective I/O exists. The challenge is to provide mechanisms that

use the semantic-information content of collective operations to improve performance.

3 Collective-I/O implementation alternatives

In this paper we consider collective-read and -write operations that transfer a large matrix between

CP memories and a �le that is declustered, block by block, over many IOPs and disks. The

matrix is distributed among the CPs in various ways, but within each CP the data is contiguous

in memory. We discuss three implementation alternatives: traditional caching, two-phase I/O, and

disk-directed I/O. The latter two require a collective-I/O interface similar to that of Galbreath

et al [GGL93], above.

Traditional caching. This alternative mimics a \traditional" parallel �le system like Intel

CFS [Pie89], with no explicit collective-I/O interface and with IOPs that each manage a �le cache.

Figure 2a shows the function called by the application on the CP to read its part of a �le, and

4

the corresponding function executed at the IOP to service each incoming CP request. Recall that

each application process must call ReadCP once for each contiguous chunk of the �le, no matter

how small. Each IOP attempts to dynamically optimize the use of the disk, cache, and network

interface.

Two-phase I/O. Figure 2b sketches an alternative proposed by del Rosario, Bordawekar, and

Choudhary [dBC93, BdC93], which permutes the data among the CP memories before writing or

after reading. Thus, there are two phases, one for I/O and one for an in-memory permutation. The

permutation is chosen so that requests to the IOPs \conform" to the layout of the �le, that is, the

requests are for large contiguous chunks.

Disk-directed I/O. We go further by having the CPs pass the collective request on to the

IOPs, which then arrange the data transfer as shown in Figure 2c. This disk-directed model, which

essentially puts the disks (IOPs) in control of the order and timing of the ow of data, has several

potential performance advantages:

� The I/O can conform not only to the logical layout of the �le, as in two-phase I/O, but to

the physical layout on disk.

� The disk-I/O phase is integrated with the permutation phase.

� There is only one I/O request to each IOP; subsequent communication uses only low-overhead

data-transfer messages.

� Disk scheduling is improved, possibly across megabytes of data: in Figure 2c, the IOPs presort

the block list for each disk.

� Prefetching and write-behind require no guessing, and thus make no mistakes.

� Bu�er management is perfect, needing little space (two bu�ers per disk per �le), and capturing

all potential locality advantages.

� No additional memory or memory-memory copying is needed at the CPs for bu�ering,

message-passing, or permuting data.

� There is no communication among the IOPs and none, other than barriers, among the CPs.

The cost of these barriers is negligible compared to the time needed for a large �le transfer.

5

a
)

T
r
a
d
it
io
n
a
l
c
a
c
h
in
g

R
e
a
d
C
P
(
f
i
l
e
,
r
e
a
d
p
a
r
a
m
e
t
e
r
s
,
d
e
s
t
i
n
a
t
i
o
n
a
d
d
r
e
s
s
)
:

f
o
r
e
a
c
h
f
i
l
e
b
l
o
c
k
n
e
e
d
e
d
t
o
s
a
t
i
s
f
y
r
e
q
u
e
s
t

c
o
m
p
u
t
e
w
h
i
c
h
d
i
s
k
h
o
l
d
s
t
h
a
t
f
i
l
e
b
l
o
c
k

i
f
o
u
r
p
r
e
v
i
o
u
s
r
e
q
u
e
s
t
t
o
t
h
a
t
d
i
s
k
i
s
s
t
i
l
l
o
u
t
s
t
a
n
d
i
n
g
,

w
a
i
t
f
o
r
r
e
s
p
o
n
s
e
a
n
d
d
e
p
o
s
i
t
d
a
t
a
i
n
t
o
u
s
e
r
'
s
b
u
f
f
e
r

s
e
n
d
n
e
w
r
e
q
u
e
s
t
t
o
t
h
a
t
d
i
s
k
'
s
I
O
P
f
o
r
t
h
i
s
(
p
a
r
t
i
a
l
)
b
l
o
c
k

e
n
d

w
a
i
t
f
o
r
a
l
l
o
u
t
s
t
a
n
d
i
n
g
r
e
q
u
e
s
t
s
.

R
e
a
d
I
O
P
(
f
i
l
e
,
r
e
a
d
p
a
r
a
m
e
t
e
r
s
)
:

l
o
o
k
f
o
r
t
h
e
r
e
q
u
e
s
t
e
d
b
l
o
c
k
i
n
t
h
e
c
a
c
h
e

i
f
n
o
t
t
h
e
r
e

f
i
n
d
o
r
m
a
k
e
a
f
r
e
e
c
a
c
h
e
b
u
f
f
e
r

a
s
k
d
i
s
k
t
o
r
e
a
d
t
h
a
t
b
l
o
c
k
i
n
t
o
c
a
c
h
e
b
u
f
f
e
r

r
e
p
l
y
t
o
C
P
,
i
n
c
l
u
d
i
n
g
d
a
t
a
f
r
o
m
c
a
c
h
e
b
u
f
f
e
r

c
o
n
s
i
d
e
r
p
r
e
f
e
t
c
h
i
n
g
o
r
o
t
h
e
r
o
p
t
i
m
i
z
a
t
i
o
n
s

b
)
T
w
o
-
p
h
a
s
e

I
/
O

C
o
l
l
e
c
t
i
v
e
R
e
a
d
C
P
(
f
i
l
e
,
r
e
a
d
p
a
r
a
m
e
t
e
r
s
,
d
e
s
t
i
n
a
t
i
o
n
a
d
d
r
e
s
s
)
:

B
a
r
r
i
e
r
(
C
P
s
u
s
i
n
g
t
h
i
s
f
i
l
e
)
,
t
o
e
n
s
u
r
e
t
h
a
t
a
l
l
a
r
e
r
e
a
d
y

d
e
c
i
d
e
w
h
a
t
p
o
r
t
i
o
n
o
f
t
h
e
d
a
t
a
t
h
i
s
p
r
o
c
e
s
s
o
r
s
h
o
u
l
d
r
e
a
d

(
c
o
n
f
o
r
m
i
n
g
t
o
t
h
e
f
i
l
e
l
a
y
o
u
t
)

f
o
r
e
a
c
h
c
o
n
t
i
g
u
o
u
s
c
h
u
n
k
o
f
t
h
e
f
i
l
e
t
h
i
s
p
r
o
c
e
s
s
o
r
s
h
o
u
l
d
r
e
a
d

R
e
a
d
C
P
(
f
i
l
e
,
o
n
e
c
h
u
n
k
)

B
a
r
r
i
e
r
(
C
P
s
u
s
i
n
g
t
h
i
s
f
i
l
e
)
,
t
o
w
a
i
t
f
o
r
a
l
l
I
/
O
t
o
c
o
m
p
l
e
t
e

r
u
n
p
e
r
m
u
t
a
t
i
o
n
a
l
g
o
r
i
t
h
m
t
o
s
e
n
d
d
a
t
a
t
o
c
o
r
r
e
c
t
d
e
s
t
i
n
a
t
i
o
n

B
a
r
r
i
e
r
(
C
P
s
u
s
i
n
g
t
h
i
s
f
i
l
e
)
,
t
o
w
a
i
t
f
o
r
p
e
r
m
u
t
a
t
i
o
n
t
o
c
o
m
p
l
e
t
e

R
e
a
d
I
O
P

(a
s
a
bo
ve
)

c
)
D

is
k
-
d
ir
e
c
t
e
d

I
/
O

C
o
l
l
e
c
t
i
v
e
R
e
a
d
C
P
(
f
i
l
e
,
r
e
a
d
p
a
r
a
m
e
t
e
r
s
,
d
e
s
t
i
n
a
t
i
o
n
a
d
d
r
e
s
s
)
:

a
r
r
a
n
g
e
f
o
r
i
n
c
o
m
i
n
g
d
a
t
a
t
o
b
e
s
t
o
r
e
d
a
t
d
e
s
t
i
n
a
t
i
o
n
a
d
d
r
e
s
s

B
a
r
r
i
e
r
(
C
P
s
u
s
i
n
g
t
h
i
s
f
i
l
e
)
,
t
o
e
n
s
u
r
e
t
h
a
t
a
l
l
b
u
f
f
e
r
s
a
r
e
r
e
a
d
y

a
n
y
o
n
e
C
P
:

m
u
l
t
i
c
a
s
t
(
C
o
l
l
e
c
t
i
v
e
R
e
a
d
,
f
i
l
e
,
r
e
a
d
p
a
r
a
m
e
t
e
r
s
)
t
o
a
l
l
I
O
P
s

w
a
i
t
f
o
r
a
l
l
I
O
P
s
t
o
r
e
s
p
o
n
d
t
h
a
t
t
h
e
y
a
r
e
f
i
n
i
s
h
e
d

B
a
r
r
i
e
r
(
C
P
s
u
s
i
n
g
t
h
i
s
f
i
l
e
)
,
t
o
w
a
i
t
f
o
r
a
l
l
I
/
O
t
o
c
o
m
p
l
e
t
e

C
o
l
l
e
c
t
i
v
e
R
e
a
d
I
O
P
(
f
i
l
e
,
r
e
a
d
p
a
r
a
m
e
t
e
r
s
)
:

d
e
t
e
r
m
i
n
e
t
h
e
s
e
t
o
f
f
i
l
e
d
a
t
a
l
o
c
a
l
t
o
t
h
i
s
I
O
P

d
e
t
e
r
m
i
n
e
t
h
e
s
e
t
o
f
d
i
s
k
b
l
o
c
k
s
n
e
e
d
e
d

s
o
r
t
t
h
e
d
i
s
k
b
l
o
c
k
s
t
o
o
p
t
i
m
i
z
e
d
i
s
k
m
o
v
e
m
e
n
t

u
s
i
n
g
d
o
u
b
l
e
-
b
u
f
f
e
r
i
n
g
f
o
r
e
a
c
h
d
i
s
k
,

r
e
q
u
e
s
t
b
l
o
c
k
s
f
r
o
m
t
h
e
d
i
s
k

a
s
e
a
c
h
b
l
o
c
k
a
r
r
i
v
e
s
f
r
o
m
d
i
s
k
,

s
e
n
d
p
i
e
c
e
(
s
)
t
o
t
h
e
a
p
p
r
o
p
r
i
a
t
e
C
P
s

w
h
e
n
c
o
m
p
l
e
t
e
,
s
e
n
d
m
e
s
s
a
g
e
t
o
o
r
i
g
i
n
a
l
r
e
q
u
e
s
t
i
n
g
C
P

F
ig
u
re
1
:
P
se
u
d
o
-c
o
d
e
fo
r
co
ll
ec
ti
v
e-
re
a
d
im
p
le
m
en
ta
ti
o
n
s.
C
o
ll
ec
ti
v
e
w
ri
te
s
a
re
si
m
il
a
r.

6

4 Evaluation

We implemented both a traditional-caching system and a disk-directed-I/O system on a simulated

MIMD multiprocessor (see below). We did not implement two-phase I/O because, as we discuss in

Section 7.1, disk-directed I/O obtains all the bene�ts of two-phase I/O, and more. In this section,

we describe our simulated implementation.

Files were striped across all disks, block by block. Each IOP served one or more disks, using

one I/O bus. Each disk had a thread permanently running on its IOP, that controlled access to the

disk. The disk thread corresponded with threads representing CP requests through a disk-request

queue.

Message-passing and DMA. Since we assumed there was no remote-memory access, we had to

depend on message passing for data transfer. We did assume, however, that the network interface

had a direct-memory access (DMA) capability. Our implementation used DMA to speed message

passing in several ways. Each message was encoded so that the interrupt handler on the receiving

processor could quickly decide where to deposit the contents of the message, using DMA. For

requests to the IOP, it created a new thread and deposited the message in the thread's stack. Part

of each request was the address of a reply action, a structure on the CP which contained the address

where a reply could be written, and the identity of a thread to wake after the reply arrived. The

IOP included this reply-action address in its reply to a request, for the CP's interrupt handler to

interpret.

In addition to the request/reply messages, the IOP could use \Memget" and \Memput" mes-

sages to read and write the user's bu�er on the CPs. Every CP provided a base address to

its message-passing system, so that the IOPs only referred to o�sets within each CP. Memput

messages contained data, and returned only an acknowledgement. Memget messages contained a

reply-action address, and returned a reply containing the requested data.

Disk-directed I/O. Each IOP received one request, creating one new thread. The new thread

computed the list of disk blocks involved, sorted the list by location, and informed the relevant

disk threads. It then allocated two one-block bu�ers2 for each local disk, and created a thread

to manage each bu�er. While not absolutely necessary, the threads simpli�ed programming the

concurrent activities. These bu�er threads repeatedly transferred blocks, letting the disk thread

2Larger bu�ers could be used, but with today's track-bu�ering disk devices, they are not particularly helpful.

7

choose which block to transfer next. When reading, they used Memput messages to move data

from the IOP memory to the CP memories. When writing, they sent Memget messages to the CPs,

causing them to reply with a message containing the requested data. When possible the thread

sent concurrent Memget or Memput messages to many CPs.

Traditional caching. Our code followed the pseudo-code of Figure 2a. CPs did not cache

or prefetch data, so all requests involved communication with the IOP. The CP sent concurrent

requests to all the relevant IOPs, with up to one outstanding request per disk per CP. This limit

was a compromise between maximizing concurrency and the need to limit the potential load on

each IOP.3

Each IOP managed a cache that was large enough to double-bu�er an independent stream of

requests from each CP to each disk.4 The cache used an LRU-replacement strategy, prefetched one

block ahead after each read request, and ushed dirty bu�ers to disk when they were full (i.e., after

n bytes had been written to an n-byte bu�er [KE93]).

As described above, we transferred data as a part of request and reply messages, using DMA to

avoid most extraneous copies. At the IOP incoming write requests, containing the data to write,

were stored in the new thread's bu�er until the thread determined where in the cache to put the

data. Later, the thread copied the data into a cache bu�er, the only memory-memory copy we

used.5

While our cache implementation does not model any speci�c commercial cache implementation,

we believe it is reasonable and better than most, and thus a fair competitor for our disk-directed-I/O

implementation.

4.1 Simulator

The implementations described above ran on top of the Proteus parallel-architecture simula-

tor [BDCW91], which in turn ran on a DEC-5000 workstation. We con�gured Proteus using the

parameters listed in Table 1. These parameters are not meant to reect any particular machine,

but a generic machine of current technology.

3More aggressive strategies would require either more bu�er space or the addition of dynamic ow control, without
a substantial improvement in parallelism.

4While two cache bu�ers per disk per CP is not scalable, it is reasonable in most situations (e.g., only 16 MB

per IOP for 2 local disks, 512 CPs, and an 8 KB block size). Note that this is much more than the space needed for
disk-directed I/O, two bu�ers per disk.

5We chose this design because it was similar to traditional systems. In any case, we believe that avoiding the
memory-memory copy by using Memgets and dataless request messages would be unlikely to justify the extra round-

trip message tra�c, particularly for small writes.

8

Table 1: Parameters for simulator. Those marked with a * were varied in some experiments.

MIMD, distributed-memory 32 processors

Compute processors (CPs) 16 *

I/O processors (IOPs) 16 *

CPU speed, type 50 MHz, RISC

Disks 16 *

Disk type HP 97560

Disk capacity 1.3 GB

Disk peak transfer rate 2.34 Mbytes/s

File-system block size 8 KB

I/O buses (one per IOP) 16 *

I/O bus type SCSI

I/O bus peak bandwidth 10 Mbytes/s

Interconnect topology 6� 6 torus

Interconnect bandwidth 200� 106 bytes/s

bidirectional

Interconnect latency 20 ns per router

Routing wormhole

Proteus itself has been validated against real message-passing machines [BDCW91]. Proteus

has two methods for simulating the interconnection network: an exact simulation that models

every it movement, and a modeled simulation that uses stochastic techniques to estimate network

contention and its e�ect on latency.6 We compared the e�ect of this choice on a subset of our

experiments, some with thousands of very short messages, and some with many large messages,

and found that the results of each experiment using the modeled network di�ered from the same

experiment using the exact network by at most 5.4%, and typically by less than 0.1%. Thus, our

experiments used the modeled network.

We added a disk model, a reimplementation of Ruemmler and Wilkes' HP 97560 model [RW94,

KTR94]. We validated our model against disk traces provided by HP, using the same technique

and measure as Ruemmler and Wilkes. Our implementation had a demerit percentage of 3.9%,

which indicates that it modeled the 97560 accurately.

6Both methods assume that each processor has a deep hardware FIFO for incoming messages. To reduce the e�ect

of this assumption, we added ow control to limit our use of this FIFO.

9

5 Experimental Design

We used the simulator to evaluate the performance of disk-directed I/O, with the throughput for

transferring large �les as our performance metric. The primary factor used in our experiments was

the �le system, which could be one of three alternatives: traditional caching, disk-directed, or disk-

directed with block-list presort (de�ned in Figure 2c). We repeated this experiment for a variety of

system con�gurations; each con�guration was de�ned by a combination of the �le-access pattern,

disk layout, number of CPs, number of IOPs, and number of disks. Each test case was replicated

in �ve independent trials, to account for randomness in the disk layouts and in the network. To

be fair, the total transfer time included waiting for all I/O to complete, including outstanding

write-behind and prefetch requests.

The �le and disk layout. Our experiments transferred a one- or two-dimensional array of

records. Two-dimensional arrays were stored in the �le in row-major order. The �le was striped

across disks, block by block. The �le size in all cases was 10 MB (1280 8-KB blocks). While 10 MB

is not a large �le, preliminary tests showed qualitatively similar results with 100 and 1000 MB �les

(see page 23). Thus, 10 MB was a compromise to save simulation time.

Within each disk, the blocks of the �le were laid out according to one of two strategies: con-

tiguous, where the logical blocks of the �le were laid out in consecutive physical blocks on disk, or

random-blocks, where blocks were placed at random physical locations.7 A real �le system would

be somewhere between the two. As a validation, however, we experimented with a compromise

random-tracks layout. In this layout, we chose a random set of physical tracks, and placed blocks

consecutively within each track. We found our results to be qualitatively similar, and quantitatively

between the contiguous and random-blocks layouts, so we only treat the two extremes here.

The access patterns. Our read- and write-access patterns di�ered in the way the array elements

(records) were mapped into CP memories. We chose to evaluate the array-distribution possibilities

available in High-Performance Fortran [HPF93, dBC93], as shown in Figure 3. Thus, elements

in each dimension of the array could be mapped entirely to one CP (NONE), distributed among

CPs in contiguous blocks (BLOCK; note this is a di�erent \block" than the �le system \block"),

or distributed round-robin among the CPs (CYCLIC). We name the patterns using a shorthand

7We chose �ve random layouts, one for each trial, and used the same set of �ve layouts for all random-blocks

experiments. Of course, there was only one contiguous layout, used in all trials.

10

NONE
NONE

(rnn)
cs = 64

1
0

2
3

1
0

2
3

1

0

2

3

0

BLOCK
NONE

(rbn)
cs = 16

CYCLIC
NONE

(rcn)
cs = 8
s = 32

0

NONE
CYCLIC

(rnc)
cs = 1
s = 4

BLOCK
CYCLIC

(rbc)
cs = 1
s = 2

CYCLIC
CYCLIC

(rcc)
cs = 1

s = 2, 10

0
1

2
3

1
2

3

0
1

0
1

0
1

0
1

2
3

2
3

2
3

2
3

0 1
2 3 2 3 2 3 2 3

0 1 0 1 0 1

0 1
2 3 2 3 2 3 2 3

0 1 0 1 0 1

0 1
2 3 2 3 2 3 2 3

0 1 0 1 0 1

0 1
2 3 2 3 2 3 2 3

0 1 0 1 0 1

HPF array-distribution patterns

10 2 30

NONE (rn)
cs = 8

BLOCK (rb)
cs = 2

CYCLIC (rc)
cs = 1, s = 4

10 2 3 10 2 3

NONE
BLOCK

(rnb)
cs = 2
s = 8

BLOCK
BLOCK

(rbb)
cs = 4
s = 8

CYCLIC
BLOCK

(rcb)
cs = 4
s = 16

0
1

2
3

0 1

2 3

0
2

0
2

0
2

0
2

3

3

3

3
1

1

1

1

Figure 3: Examples of matrix distributions, which we used as �le-access patterns in our experi-

ments. These examples represent common ways to distribute a 1x8 vector or an 8x8 matrix over

four processors. Patterns are named by the distribution method (NONE, BLOCK, or CYCLIC)

in each dimension (rows �rst, in the case of matrices). Each region of the matrix is labeled with

the number of the CP responsible for that region. The matrix is stored in row-major order, both

in the �le and in memory. The chunk size (cs) is the size of the largest contiguous chunk of the

�le that is sent to a single CP (in units of array elements), and the stride (s) is the �le distance

between the beginning of one chunk and the next chunk destined for the same CP, where relevant.

The actual shapes used in our experiments are listed in Table 2.

beginning with r for reading and w for writing; the r names are shown in Figure 3. There was

one additional pattern, ra (ALL, not shown), which corresponds to all CPs reading the entire

�le, leading to multiple copies of the �le in memory. Table 2 shows the exact shapes used in our

experiments. A few patterns are redundant in our con�guration (rnn � rn, rnc � rc, rbn � rb)

and were not actually used.

We chose two di�erent record sizes, one designed to stress the system's capability to process

small pieces of data, with lots of interprocess locality and lots of contention, and the other designed

11

Table 2: Summary of �le-access patterns (smaller examples of these patterns are shown in Figure 3).

We list only the read patterns here. All numbers are for a 10 MB �le distributed over 16 CPs.

Two-dimensional matrices are stored in the �le in row-major order. A dash (-) indicates \not

applicable." Chunks and strides are given in records, not bytes (for 8-byte records, notice that

1 K record is one block).

Record Chunk

Pattern Row Column size size Stride Same

name distribution distribution (bytes) Rows Cols (records) (records) as

ra ALL - - - - 1280 blocks -

rn NONE - - - - 1280 blocks -

rb BLOCK - 8 1310720 - 80 K -

rc CYCLIC - 8 1310720 - 1 16

rnn NONE NONE 8 1280 1024 1280 K - rn

rnb NONE BLOCK 8 1280 1024 64 1 K

rnc NONE CYCLIC 8 1280 1024 1 16 rc

rbn BLOCK NONE 8 1280 1024 80 K - rb

rbb BLOCK BLOCK 8 1280 1024 256 1 K

rbc BLOCK CYCLIC 8 1280 1024 1 4

rcn CYCLIC NONE 8 1280 1024 1 K 16 K

rcb CYCLIC BLOCK 8 1280 1024 256 4 K

rcc CYCLIC CYCLIC 8 1280 1024 1 4, 3K+4

rb BLOCK - 8192 1280 - 80 -

rc CYCLIC - 8192 1280 - 1 16

rnn NONE NONE 8192 40 32 1280 - rn

rnb NONE BLOCK 8192 40 32 2 32

rnc NONE CYCLIC 8192 40 32 1 16 rc

rbn BLOCK NONE 8192 40 32 80 - rb

rbb BLOCK BLOCK 8192 40 32 8 32

rbc BLOCK CYCLIC 8192 40 32 1 4

rcn CYCLIC NONE 8192 40 32 32 512

rcb CYCLIC BLOCK 8192 40 32 8 128

rcc CYCLIC CYCLIC 8192 40 32 1 4,100

to work in the most-convenient unit, with little interprocess locality or contention. The small

record size was 8 bytes, the size of a double-precision oating point number. The large record

size was 8192 bytes, the size of a �le-system block and cache bu�er. These record-size choices are

reasonable [KN94]. We also tried 1024-byte and 4096-byte records (Figure 12), leading to results

between the 8-byte and 8192-byte results; we present only the extremes here.

12

6 Results

A note on the results: the numbers have been updated since the earlier version of this TR and since

the OSDI paper. Earlier, the traditional-caching code did not include some obvious optimizations,

leading to an unfair comparison. In this revision we update the traditional-caching numbers to

incorporate the optimizations; while many cases did not change, a few cases are substantially faster

than before. Thus, these numbers represent a better comparison between disk-directed I/O and

traditional caching. Overall, however, there is no qualitative di�erence or change in the conclusions.

Figures 4 and 5 show the performance of our disk-directed-I/O approach and of the traditional-

caching method.8 Each �gure has two graphs, one for 8-byte records and one for 8192-byte records.

Disk-directed I/O was usually at least as fast as traditional caching, and in one case was 18 times

faster.9

Figure 4 and Table 3 display the performance on a random-blocks disk layout. Three cases are

shown for each access pattern: traditional caching (TC), and disk-directed I/O (DDIO) with and

without a presort of the block requests by physical location. Throughput for disk-directed I/O

with presorting consistently reached 6.2 Mbytes/s for reading and 7.4{7.5 Mbytes/s for writing.

In contrast, traditional-caching throughput was highly dependent on the access pattern, was never

faster than 5 Mbytes/s, and was particularly slow for many 8-byte patterns. Cases with small

chunk sizes were the slowest, as slow as 0.7 Mbytes/s, due to the tremendous number of requests

required to transfer the data. As a result, disk-directed I/O with presorting was up to 10.6 times

faster than traditional caching.

Figure 4 and Table 3 also make clear the bene�t of presorting disk requests by physical location,

an optimization available in disk-directed I/O to an extent not possible in traditional caching or,

for that matter, in two-phase I/O. Nonetheless, disk-directed I/O without presorting was still faster

than traditional caching in most cases. At best, it was 7.1 times faster; at worst, there was no

noticeable di�erence. Disk-directed I/O thus improved performance in two ways: by reducing

overhead and by presorting the block list.

8Because the ra pattern broadcasts the same 10 MB data to all 16 CPs, its apparent throughput was inated.
We have normalized it in our graphs by dividing by the number of CPs.

9In the worst case where disk-directed I/O was slower than traditional caching by a statistically signi�cant amount,

disk-directed I/O was slower by 1.1%.

13

Throughput (MB/s)

0.0 2.0 4.0 6.0 8.0

wcn

wcc

wbc

wcb

wbb

wnb

wc

wb

wn

rcn

rcc

rbc

rcb

rbb

rnb

rc

rb

rn

ra

DDIO
(sort)

DDIO TC

b) 8192-byte records

Throughput (MB/s)

0.0 2.0 4.0 6.0 8.0

wcn

wcc

wbc

wcb

wbb

wnb

wc

wb

wn

rcn

rcc

rbc

rcb

rbb

rnb

rc

rb

rn

ra

DDIO
(sort)

DDIO TC

a) 8-byte records

Figure 4: Two graphs comparing the throughput of disk-directed I/O (DDIO) to that of traditional

caching (TC), on a random-blocks disk layout. ra throughput has been normalized by the number

of CPs. Each point represents the average of �ve trials of an access pattern on both methods

(maximum coe�cient of variation (cv) is 0.11). These data are also presented in Table 3.

14

Table 3: Throughput in MB/s for traditional caching (TC) and disk-directed I/O (\DD" for disk-

directed I/O without presort, and \DDs" for disk-directed I/O with presort), on all patterns, for

both record sizes, for the random-blocks layout, averaged over �ve trials. Along with each

pair is the average of the throughput ratios (r); those in italics do not represent a di�erence that

is statistically signi�cant at the 95% con�dence level. Disk-directed I/O was never substantially

slower than traditional caching. Pattern ra is not scaled as it is in the graphs. Patterns ra, rn,

and wn are independent of record size, and are listed in the 8192 column. These data are graphed

in Figure 4.

Random-blocks layout

8-byte records 8192-byte records

Pattern TC DD r DDs r TC DD r DDs r

ra - - - - - 66.7 70.7 1.1 99.8 1.5

rn - - - - - 4.3 4.4 1.0 6.2 1.4

rb 3.8 4.4 1.2 6.2 1.7 3.8 4.4 1.2 6.2 1.7

rc 2.1 4.4 2.1 6.2 2.9 4.4 4.4 1.0 6.2 1.4

rnb 3.3 4.4 1.3 6.2 1.9 4.4 4.4 1.0 6.2 1.4

rbb 3.7 4.4 1.2 6.2 1.7 4.3 4.4 1.0 6.2 1.5

rcb 4.1 4.4 1.1 6.2 1.5 4.5 4.4 1.0 6.2 1.4

rbc 2.0 4.4 2.2 6.2 3.1 4.2 4.4 1.1 6.2 1.5

rcc 2.3 4.4 1.9 6.2 2.6 4.2 4.4 1.0 6.2 1.5

rcn 4.4 4.4 1.0 6.2 1.4 3.9 4.4 1.1 6.2 1.6

wn - - - - - 4.9 4.9 1.0 7.4 1.5

wb 5.0 5.0 1.0 7.5 1.5 5.0 5.0 1.0 7.5 1.5

wc 1.4 5.0 3.7 7.4 5.4 4.9 5.0 1.0 7.5 1.5

wnb 4.9 5.0 1.0 7.5 1.5 4.9 5.0 1.0 7.5 1.5

wbb 4.9 5.0 1.0 7.5 1.5 4.9 5.0 1.0 7.5 1.5

wcb 4.9 5.0 1.0 7.5 1.5 5.0 5.0 1.0 7.5 1.5

wbc 0.7 5.0 7.1 7.4 10.6 4.9 5.0 1.0 7.5 1.5

wcc 1.5 5.0 3.3 7.4 4.9 5.0 5.0 1.0 7.5 1.5

wcn 4.9 5.0 1.0 7.5 1.5 5.0 5.0 1.0 7.5 1.5
Maximum coe�cient of variation on average of ratios was 0.11.

15

To test the ability of the di�erent �le-system implementations to take advantage of disk layout,

and to expose other overheads when the disk bandwidth could be fully utilized, we compared the

two methods on a contiguous disk layout (Figure 5 and Table 4). I/O on this layout was much faster

than on the random-blocks layout, by avoiding the disk-head movements caused by random layouts

and by bene�ting from the disks' own caches when using the contiguous layout. In most cases

disk-directed reading moved about 32.8 Mbytes/s, and disk-directed writing moved 34.8 Mbytes/s,

which was an impressive 93% of the disks' peak transfer rate of 37.5 Mbytes/s. The few cases where

disk-directed I/O did not get as close to the peak disk transfer rate were a�ected by the overhead

of moving individual 8-byte records to and from the CPs. Further tuning of the disk-directed-I/O

code may alleviate this problem, but the real solution would be to use gather/scatter Memput and

Memget operations.

Traditional caching was rarely able to obtain the full disk bandwidth, and had particular trou-

ble with the 8-byte patterns. Although there were cases where traditional caching could match

disk-directed I/O, traditional caching was as much as 18.2 times slower than disk-directed I/O.

Traditional caching failed in a few critical ways:

� When the CPs were active at widely di�erent locations in the �le (e.g., in rb or rcn), there was

little interprocess spatial locality. In the contiguous layout, the multiple localities defeated the

disk's internal caching and caused extra head movement, both a signi�cant performance loss.

Furthermore, the lost locality hampered the performance of IOP caching and prefetching,

causing extraneous disk I/O.

� In some patterns, IOP-prefetching mistakes caused extraneous disk reads. At the end of the

rb pattern, for example, one extra block is prefetched for each CP on each disk; these extra

blocks are negligible in large �les (see page 23), but account for most of traditional caching's

poor performance on rb in Figure 4. rcn with 8 KB records and rbb had similar problems.

� When the CPs were using 8-byte CYCLIC patterns, many IOP-request messages were nec-

essary to transfer the small non-contiguous records, requiring many (expensive) IOP-cache

accesses. In addition, the success of interprocess spatial locality was crucial for performance.

� The high data rates of the contiguous disk layout expose the cache-management overhead in

traditional caching, unable to match disk-directed I/O's performance except for wn.

16

Throughput (MB/s)

0.0 10.0 20.0 30.0 40.0

wcn

wcc

wbc

wcb

wbb

wnb

wc

wb

wn

rcn

rcc

rbc

rcb

rbb

rnb

rc

rb

rn

ra

DDIO TC

b) 8192-byte records

Throughput (MB/s)

0.0 10.0 20.0 30.0 40.0

wcn

wcc

wbc

wcb

wbb

wnb

wc

wb

wn

rcn

rcc

rbc

rcb

rbb

rnb

rc

rb

rn

ra

DDIO TC

a) 8-byte records

Figure 5: Two graphs comparing the throughput of disk-directed I/O (DDIO) and traditional

caching (TC), on a contiguous disk layout. ra throughput has been normalized by the number

of CPs. Each point represents the average of �ve trials of an access pattern on both methods

(maximum cv is 0.12). Note that the peak disk throughput was 37.5 Mbytes/s. These data are

also presented in Table 4.

17

Table 4: Throughput in MB/s for traditional caching (TC) and disk-directed I/O (DD), on all

patterns, for both record sizes, for the contiguous layout, averaged over �ve trials. Along with

each pair is the average of the throughput ratios (r); all are statistically signi�cant at the 95%

con�dence level. Disk-directed I/O was in all cases faster than traditional caching. Pattern ra is

not scaled as it is in the graphs. Patterns ra, rn, and wn are independent of record size, and are

listed in the 8192 column. These data are graphed in Figure 5.

Contiguous layout

8-byte records 8192-byte records

Pattern TC DD r TC DD r

ra - - - 469.1 522.9 1.1

rn - - - 31.4 32.7 1.0

rb 5.6 32.8 5.8 5.6 32.8 5.8

rc 2.6 19.3 7.4 31.4 32.8 1.0

rnb 18.4 32.8 1.8 31.4 32.7 1.0

rbb 6.2 32.8 5.3 8.3 32.8 4.0

rcb 27.6 32.8 1.2 10.5 32.8 3.1

rbc 2.0 15.9 7.8 6.6 32.8 4.9

rcc 2.4 16.2 6.8 10.1 32.8 3.3

rcn 31.4 32.8 1.0 6.7 32.7 4.9

wn - - - 31.6 31.4 1.0

wb 9.6 34.8 3.6 9.6 34.8 3.6

wc 1.4 17.2 12.3 31.6 34.8 1.1

wnb 31.6 34.8 1.1 8.7 34.8 4.0

wbb 9.1 34.8 3.8 9.4 34.8 3.7

wcb 31.6 34.8 1.1 10.0 34.8 3.5

wbc 0.8 13.7 18.2 7.8 34.8 4.4

wcc 1.5 13.7 9.1 9.5 34.8 3.7

wcn 31.6 34.8 1.1 10.3 34.7 3.4
Maximum coe�cient of variation on average of ratios was 0.12.

18

6.1 Sensitivity

To evaluate the sensitivity of our results to some of the parameters, we independently varied the

number of CPs, number of IOPs, and number of disks. It was only feasible to experiment with a

subset of all con�gurations, so we chose a subset that would push the limits of the system by using

the contiguous layout, and exhibit most of the variety shown earlier, by using the patterns ra, rn,

rb, and rc with 8 KB records. ra throughput was normalized as usual.

We �rst varied the number of CPs (Figure 6), holding the number of IOPs and disks �xed,

and maintaining the cache size for traditional caching at two bu�ers per disk per CP. Note that

disk-directed I/O was una�ected. Multiple localities hurt rb as before, but the most interesting

e�ect was the poor performance of traditional caching on the rc pattern. With 1-block records

and no bu�ers at the CP, each CP request can only use one disk. With fewer CPs than IOPs, the

full disk parallelism was not used. Finally, cache-management overhead, which grew with cache

size and contention by multiple CPs, reduced the performance of traditional caching on all four

patterns.

We then varied the number of IOPs (and SCSI busses), holding the number of CPs, number

of disks, and total cache size �xed (Figure 7). Performance decreased with fewer IOPs because

of increasing bus contention, particularly when there were more than two disks per bus, and was

ultimately limited by the 10 MB/s bus bandwidth. As always, traditional caching had di�culty

with the rb pattern. Cache-management overhead contributed to traditional caching's inability to

match disk-directed I/O.

19

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18

Mbytes/s

Number of CPs

Throughput of TC and DDIO, varying number of CPs

Max bandwidth

DDIO ra 3

3 3 3 3 3

DDIO rn +

+ + + + +

DDIO rb 2

2 2 2 2 2

DDIO rc �

� � � � �

TC ra 3

3 3 3
3

3

TC rn +

+ + +
+ +

TC rb 2

2

2 2 2
2

TC rc �

�

�

�
�

�

Figure 6: A comparison of the throughput of disk-directed I/O (DDIO) and traditional caching

(TC), as the number of CPs varied, for the ra, rn, rb, and rc patterns (ra throughput has

been normalized by the number of CPs). All cases used the contiguous disk layout, and all used

8 KB records.

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18

Mbytes/s

Number of IOPs

Throughput of TC and DDIO, varying number of IOPs

Max bandwidth

DDIO ra 3

3

3

3

3
3

DDIO rn +

+

+

+

+
+

DDIO rb 2

2

2

2

2
2

DDIO rc �

�

�

�

�
�

TC ra 3

3

3

3

3 3

TC rn +

+

+

+

+ +

TC rb 2

2 2 2 2 2

TC rc �

�

�

�

�
�

Figure 7: A comparison of the throughput of disk-directed I/O (DDIO) and traditional caching

(TC), as the number of IOPs (and busses) varied, for the ra, rn, rb, and rc patterns (ra

throughput has been normalized by the number of CPs). All cases used the contiguous disk

layout, and all used 8 KB records. The maximum bandwidth was determined by either the busses

(1{2 IOPs) or the disks (4{16 IOPs).

20

We then varied the number of disks, using one IOP, holding the number of CPs at 16, and

maintaining the traditional-caching cache size at two bu�ers per CP per disk (Figures 8 and 9).

Performance scaled with more disks, approaching the 10 MB/s bus-speed limit. The relationship

between disk-directed I/O and traditional caching was determined by a combination of factors:

disk-directed I/O's lower overhead and better use of the disks, and traditional caching's better use

of the bus (sometimes the \synchronous" nature of disk-directed I/O caused bus congestion on the

contiguous layout).

21

0

2

4

6

8

10

0 5 10 15 20 25 30

Mbytes/s

Number of disks

Throughput of TC and DDIO on contiguous layout, varying number of disks

Max bandwidth

DDIO (all)

TC ra 3

3

3

3

3

3

3

TC rn +
+

+

+

+

+
+

TC rb 2

2
2

2
2

2

2

TC rc �

�

�

�

�

�

�

Figure 8: A comparison of the throughput of disk-directed I/O (DDIO) and traditional caching

(TC), as the number of disks varied, for the ra, rn, rb, and rc patterns (ra throughput

has been normalized by the number of CPs). All cases used the contiguous disk layout, and all

used 8 KB records. All the DDIO cases fell on the same line, so only one curve is plotted. The

maximum bandwidth was determined either by the disks (1{4 disks) or by the (single) bus (8{32

disks).

0

2

4

6

8

10

0 5 10 15 20 25 30

Mbytes/s

Number of disks

Throughput of TC and DDIO on random-blocks layout, varying number of disks

Max bandwidth

DDIO ra 3

3
3

3

3

3

3

DDIO rn +

++
+

+

+

+DDIO rb 2

2
2

2

2

2

2
DDIO rc �

�
�

�

�

�

�

TC ra 3

3
3

3

3

3

3

TC rn +

++
+

+

+

+

TC rb 2

2
2

2

2

2

2

TC rc �

�
�

�

�

�

�

Figure 9: Similar to Figure 8, but here all cases used the random-blocks disk layout.

22

In most of this paper we simulate 10-MB �les. To examine the e�ect of this choice, Figures 10

and 11 compare throughputs for �les 10 and 100 times larger. Though the maximum throughputs

were reached with �les 100 MB or larger, we chose 10 MB for simulation e�ciency. The relative

order of test cases remained the same, with one exception: rb had much lower throughput on

10 MB �les than on 100 MB �les. This was due to the relatively large cost of prefetching mistakes

committed at the end of the pattern, since their number was independent of the �le size.

23

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000

Mbytes/s

File size in MB

Throughput of TC and DDIO on contiguous layout, varying �le size

Max bandwidth

DDIO ra 3

3 3 3

DDIO rn +

+ + +

DDIO rb 2

2 2 2

DDIO rc �

�
� �

TC ra 3

3
3 3

TC rn +

+
+ +

TC rb 2

2
2 2

TC rc �

�

� �

Figure 10: A comparison of the throughput of disk-directed I/O (DDIO) and traditional caching

(TC), as the �le size varied, for the ra, rn, rb, and rc patterns (ra throughput has been

normalized by the number of CPs). All cases used the contiguous disk layout, and all used 8 KB

records.

0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000

Mbytes/s

File size in MB

Throughput of TC and DDIO on random-blocks layout, varying �le size

Note rb change DDIO ra 3

3

3

3

DDIO rn +

+

+

+

DDIO rb 2

2

2

2

DDIO rc �

�

�

�

TC ra 3

3 3 3

TC rn +

+ + +

TC rb 2

2

2 2

TC rc �

�
� �

Figure 11: A comparison of the throughput of disk-directed I/O (DDIO) and traditional caching

(TC), as the �le size varied, for the ra, rn, rb, and rc patterns (ra throughput has been

normalized by the number of CPs). All cases used the random-blocks disk layout, and all used

8 KB records. Here, disk-directed I/O includes a presort; similar conclusions were obtained

without the presort.

24

In this paper we focus on 8- and 8192-byte record sizes. Figure 12 shows the e�ect of other

record sizes in situations where the record size was expected to make the most di�erence: traditional

caching on rc, using both contiguous and random-blocks layouts. This plot justi�es our focus on the

extremes; 8-byte records limited throughput through excessive overhead, while 8192-byte records

reduced overhead and exposed other limits (here, the disk bandwidth in the random-blocks layout).

0

5

10

15

20

25

30

35

40

8 1024 4096 8192

Mbytes/s

Record size in bytes

Throughput of TC on rc, varying record size

Max bandwidth

contiguous �

�

�

�
�

random blocks �

�

� � �

Figure 12: The throughput of traditional caching on rc patterns of various record sizes, for both

the contiguous and random-blocks layouts.

Summary. These variation experiments showed that while the relative bene�t of disk-directed

I/O over traditional caching varied, disk-directed I/O consistently provided excellent performance,

at least as good as traditional caching, often independent of access pattern, and often close to

hardware limits.

25

7 Related work

Disk-directed I/O is somewhat reminiscent of the PIFS (Bridge) \tools" interface [Dib90], in that

the data ow is controlled by the �le system rather by than the application. PIFS focuses on

managing where data ows (for memory locality), whereas disk-directed I/O focuses more on when

data ows (for better disk and cache performance).

Some parallel database machines use an architecture similar to disk-directed I/O, in that certain

operations are moved closer to the disks to allow for more optimization. In the Tandem NonStop

system [EGKS90] each query is sent to all IOPs, which scan the local database partition and send

only the relevant tuples back to the requesting node. The Super Database Computer [KHH+92]

has disk controllers that continuously produce tasks from the input data set, which are consumed

and processed by CPs as they become available. While this concept is roughly similar to our

disk-directed I/O, it is primarily a speed-matching bu�er used for load balancing.

The Jovian collective-I/O library [BBS+94] tries to coalesce fragmented requests frommany CPs

into larger requests that can be passed to the IOPs. Their \coalescing processes" are essentially a

dynamic implementation of the two-phase-I/O permutation phase.

Our model for managing a disk-directed request, that is, sending a high-level request to all

IOPs which then operate independently under the assumption that they can determine the neces-

sary actions to accomplish the task, is an example of collaborative execution like that used in the

TickerTAIP RAID controller [CLVW93].

Finally, our Memput and Memget operations are not unusual. Similar remote-memory-access

mechanisms are supported in a variety of distributed-memory systems [WMR+94, CDG+93].

7.1 Comparison to Two-phase I/O

The above results clearly show the bene�ts of disk-directed I/O over traditional caching. Two-

phase I/O [dBC93] was designed to avoid the worst of traditional caching while using the same

IOP software, by reading data in a \conforming distribution," then permuting it among the CPs.

At �rst glance, disk-directed I/O is two-phase I/O implemented by rewriting IOP software so the

IOPs do both phases simultaneously. In fact, disk-directed I/O has many advantages over two-phase

I/O:

� There is no need to choose a conforming distribution. Our data indicates that it would

be a di�cult choice, dependent on the �le layout, access pattern, record size, and cache

26

management algorithm. The designers of two-phase I/O found that an rb distribution was

appropriate for a matrix laid out in row-major order, but our results show that rb was rarely

the best choice.

� There is the opportunity to optimize disk access with disk-request presorting, in our case

obtaining a 41{50% performance boost.

� Smaller caches are needed at the IOPs, there are no prefetching mistakes, and there is no

cache thrashing.

� No extra memory is needed for permuting at the CPs.

� No extra time is needed for a permutation phase; the \permutation" is overlapped with I/O.

� Each datum moves through the interconnect only once in disk-directed I/O, and typically

twice in two-phase I/O.

� Communication is spread throughout disk transfer, not concentrated in a permutation phase.

Thus, although we did not simulate two-phase I/O, it should be slower than disk-directed I/O

because it cannot optimize the I/O as well and because the I/O and permutation phases are not

overlapped. Two-phase I/O could be faster than disk-directed I/O in some patterns if the network

were much slower than the disks, and two-phase I/O were able to use a smart permutation algorithm

not available to the more dynamically scheduled disk-directed I/O.

8 Conclusions

Our simulations showed that disk-directed I/O avoided many of the pitfalls inherent in the tradi-

tional caching method, such as cache thrashing, extraneous disk-head movements, excessive request-

response tra�c between CP and IOP, inability to use all the disk parallelism, inability to use the

disks' own caches, overhead for cache management, and memory-memory copies. Furthermore,

disk-directed I/O presorted disk requests to optimize head movement, and had smaller bu�er space

requirements. As a result, disk-directed I/O could provide consistent performance close to the limits

of the disk hardware. Indeed, it was in one case more than 18 times faster than the caching method,

and was never substantially slower. More importantly, its performance was nearly independent of

the distribution of data to CPs.

27

Our results also rea�rm the importance of disk layout to performance: throughput on the

contiguous layout was about 5 times that on a random-blocks layout. Multiprocessor �le systems

for scienti�c applications should de�nitely consider extent-based layouts or other techniques to

increase physical contiguity.

As presented here, disk-directed I/O would be most valuable when making large, collective

transfers of data between multiple disks and multiple memories, whether for loading input data,

storing result data, or swapping data to a scratch �le in an out-of-core algorithm. Indeed, the data

need not be contiguous; our random-blocks layout also simulates a request for an arbitrary subset

of blocks from a large �le. The concept of disk-directed I/O can be extended to other environments,

however. Non-collective I/O access (e.g., our rn and wn patterns) can bene�t, although the gain

is not as dramatic. Our Memput and Memget operations would �t in well on a shared-memory

machine with a block-transfer operation. Although our patterns focused on the transfer of 1-d

and 2-d matrices, we expect to see similar performance for higher-dimensional matrices and other

regular structures. Finally, there is potential to implement transfer requests that are more complex

than simple permutations, for example, selecting only a subset of records that match some criterion.

Our results emphasize that simply layering a new interface on top of a traditional �le system

will not su�ce. For maximum performance the �le-system interface must include collective-I/O

operations, and the �le-system software (in particular, the IOP software) must be redesigned to

use mechanisms like disk-directed I/O to support collective I/O. Nonetheless, there is still a place

for caches. Irregular or dynamic access patterns involving small, independent transfers and having

substantial temporal or interprocess locality will still bene�t from a cache. The challenge, then, is

to design systems that integrate the two techniques smoothly.

Future work

There are many directions for future work in this area:

� design an appropriate collective-I/O interface,

� �nd a general way to specify a collective, disk-directed access request to IOPs,

� reduce overhead by allowing the application to make \strided" requests to the traditional

caching system,

� optimize network message tra�c by using gather/scatter messages to move non-contiguous

data, and

� optimize concurrent disk-directed activities.

28

Acknowledgements

Thanks to Song Bac Toh and Sriram Radhakrishnan for implementing and validating the disk

model; to Chris Ruemmler, John Wilkes, and Hewlett Packard Corporation for allowing us to

use their disk traces to validate our disk model, and for their help in understanding the details

of the HP 97560; to Denise Ecklund of Intel for help understanding the Paragon interconnection

network; to Eric Brewer and Chrysanthos Dellarocas for Proteus; to Tom Cormen, Keith Kotay,

Nils Nieuwejaar, the anonymous reviewers, and especially Karin Petersen for feedback on drafts of

this paper.

References

[BBS+94] Robert Bennett, Kelvin Bryant, Alan Sussman, Raja Das, and Joel Saltz. Jovian: A framework

for optimizing parallel I/O. In Proceedings of the 1994 Scalable Parallel Libraries Conference.

IEEE Computer Society Press, October 1994. To appear.

[BdC93] Rajesh Bordawekar, Juan Miguel del Rosario, and Alok Choudhary. Design and evaluation of

primitives for parallel I/O. In Proceedings of Supercomputing '93, pages 452{461, 1993.

[BDCW91] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook, and William E. Weihl. Proteus:

A high-performance parallel-architecture simulator. Technical Report MIT/LCS/TR{516, MIT,

September 1991.

[BGST93] Michael L. Best, Adam Greenberg, Craig Stan�ll, and Lewis W. Tucker. CMMD I/O: A parallel

Unix I/O. In Proceedings of the Seventh International Parallel Processing Symposium, pages
489{495, 1993.

[CDG+93] David E. Culler, Andrea Drusseau, Seth Copen Goldstein, Arvind Krishnamurthy, Steven

Lumetta, Thorsten von Eicken, and Katherine Yelick. Parallel programming in Split-C. In

Proceedings of Supercomputing '93, pages 262{283, 1993.

[CF94] Peter F. Corbett and Dror G. Feitelson. Design and implementation of the Vesta parallel �le

system. In Proceedings of the Scalable High-Performance Computing Conference, pages 63{70,
1994.

[CK93] Thomas H. Cormen and David Kotz. Integrating theory and practice in parallel �le systems.

In Proceedings of the 1993 DAGS/PC Symposium, pages 64{74, Hanover, NH, June 1993. Dart-
mouth Institute for Advanced Graduate Studies. Revised from Dartmouth PCS-TR93-188.

[CLVW93] Pei Cao, Swee Boon Lim, ShivakumarVenkataraman, and John Wilkes. The TickerTAIP parallel

RAID architecture. In Proceedings of the 20th Annual International Symposium on Computer
Architecture, pages 52{63, 1993.

[dBC93] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Improved parallel I/O

via a two-phase run-time access strategy. In IPPS '93 Workshop on Input/Output in Parallel
Computer Systems, pages 56{70, 1993. Also published in Computer Architecture News 21(5),

December 1993, pages 31{38.

[DdR92] Erik DeBenedictis and Juan Miguel del Rosario. nCUBE parallel I/O software. In Eleventh
Annual IEEE International Phoenix Conference on Computers and Communications (IPCCC),
pages 0117{0124, April 1992.

[Dib90] Peter C. Dibble. A Parallel Interleaved File System. PhD thesis, University of Rochester, March

1990.

29

[DSE88] Peter Dibble, Michael Scott, and Carla Ellis. Bridge: A high-performance �le system for parallel

processors. In Proceedings of the Eighth International Conference on Distributed Computer
Systems, pages 154{161, June 1988.

[EGKS90] Susanne Englert, Jim Gray, Terrye Kocher, and Praful Shah. A benchmark of NonStop SQL

Release 2 demonstrating near-linear speedup and scaleup on large databases. In Proceedings
of the 1990 ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems,
pages 245{246, May 1990.

[FPD93] James C. French, Terrence W. Pratt, and Mriganka Das. Performance measurement of the

Concurrent File System of the Intel iPSC/2 hypercube. Journal of Parallel and Distributed
Computing, 17(1{2):115{121, January and February 1993.

[GGL93] N. Galbreath, W. Gropp, and D. Levine. Applications-driven parallel I/O. In Proceedings of
Supercomputing '93, pages 462{471, 1993.

[HPF93] High Performance Fortran Forum. High Performance Fortran Language Speci�cation, 1.0 edi-

tion, May 3 1993.

[KE93] David Kotz and Carla Schlatter Ellis. Caching and writeback policies in parallel �le systems.

Journal of Parallel and Distributed Computing, 17(1{2):140{145, January and February 1993.

[KGF94] John F. Karpovich, Andrew S. Grimshaw, and James C. French. Extensible �le systems ELFS:

An object-oriented approach to high performance �le I/O. In Proceedings of the Ninth Annual
Conference on Object-Oriented Programming Systems, Languages, and Applications, pages 191{
204, October 1994.

[KHH+92] Masaru Kitsuregawa, Satoshi Hirano, Masanobu Harada, Minoru Nakamura, and Mikio Takagi.

The Super Database Computer (SDC): System architecture, algorithm and preliminary evalu-

ation. In Proceedings of the Twenty-Fifth Annual Hawaii International Conference on System
Sciences, volume I, pages 308{319, 1992.

[KN94] David Kotz and Nils Nieuwejaar. Dynamic �le-access characteristics of a production parallel

scienti�c workload. In Proceedings of Supercomputing '94, November 1994. To appear.

[KTR94] David Kotz, Song Bac Toh, and Sriram Radhakrishnan. A detailed simulation model of the

HP 97560 disk drive. Technical Report PCS-TR94-220, Dept. of Computer Science, Dartmouth

College, July 1994.

[LIN+93] Susan J. LoVerso, Marshall Isman, Andy Nanopoulos, William Nesheim, Ewan D. Milne, and

Richard Wheeler. sfs: A parallel �le system for the CM-5. In Proceedings of the 1993 Summer
USENIX Conference, pages 291{305, 1993.

[MK91] Ethan L. Miller and Randy H. Katz. Input/output behavior of supercomputer applications. In

Proceedings of Supercomputing '91, pages 567{576, November 1991.

[Nit92] Bill Nitzberg. Performance of the iPSC/860 Concurrent File System. Technical Report RND-

92-020, NAS Systems Division, NASA Ames, December 1992.

[NK94] Nils Nieuwejaar and David Kotz. A multiprocessor extension to the conventional �le system

interface. Technical Report PCS-TR94-230, Dept. of Computer Science, Dartmouth College,

September 1994.

[OCH+85] John Ousterhout, Herv�e Da Costa, David Harrison, John Kunze, Mike Kupfer, and James

Thompson. A trace driven analysis of the UNIX 4.2 BSD �le system. In Proceedings of the
Tenth ACM Symposium on Operating Systems Principles, pages 15{24, December 1985.

[PGK88] David Patterson, Garth Gibson, and Randy Katz. A case for redundant arrays of inexpensive

disks (RAID). In ACM SIGMOD Conference, pages 109{116, June 1988.

[Pie89] Paul Pierce. A concurrent �le system for a highly parallel mass storage system. In Fourth
Conference on Hypercube Concurrent Computers and Applications, pages 155{160, 1989.

30

[PP93] Barbara K. Pasquale and George C. Polyzos. A static analysis of I/O characteristics of scienti�c

applications in a production workload. In Proceedings of Supercomputing '93, pages 388{397,
1993.

[Roy93] Paul J. Roy. Unix �le access and caching in a multicomputer environment. In Proceedings of
the Usenix Mach III Symposium, pages 21{37, 1993.

[RW94] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling. IEEE Computer,
27(3):17{28, March 1994.

[WMR+94] Stephen R. Wheat, Arthur B. Maccabe, Rolf Riesen, David W. van Dresser, and T. Mack

Stallcup. PUMA: An operating system for massively parallel systems. In Proceedings of the
Twenty-Seventh Annual Hawaii International Conference on System Sciences, 1994.

Many of these papers can be found at

http://www.cs.dartmouth.edu/pario.html

The disk-model software can be found at

http://www.cs.dartmouth.edu/cs archive/diskmodel.html

31

	Disk-directed I/O for MIMD Multiprocessors
	Dartmouth Digital Commons Citation

	tr.dvi

