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Abstract

The LangSec approach defends against crafted input attacks by defining a formal language specifying
correct inputs and building a parser that decides that language. However, each successive input is not
necessarily in the same basic language—e.g., most communication protocols use formats that depend
on values previously received, or on some other additional context. When we try to use LangSec in
these real-world scenarios, most parsers we write need additional mechanisms to change the recognized
language as the execution progresses.

This paper discusses approaches researchers have previously taken to build parsers for such protocols
and provides formal descriptions of new sets of languages that could be considered to be a sequence
of languages, instead of a single language describing an entire protocol—thus bringing LangSec theory
closer to practice.

1 Introduction

LangSec is motivated by the real-world problem of crafted input attacks. Too often, software which receives
input makes implicit assumptions about the structure and content of that input, but acts on the input
without fully checking whether the input actually satisfies these assumptions. To address this problem, the
LangSec approach uses the tools of formal language theory:

• to precisely define the set (“language”) of expected inputs,

• to build a recognizer (a.k.a. parser) for that language,

• and then to insert that recognizer between the source of the input and the software that consumes the
input.

This basic LangSec approach itself implicitly assumes that the language accepted by some software module
stays the same over time. In communication protocols, the grammar to be accepted at any given time may
depend on the state machine of the protocol. Similarly, file formats get altered over time since specifications
are rewritten. In reality, the “correct” language may vary, This paper explores some issues that arise when
we try to extend LangSec to handle such real-world scenarios.
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Section 2 opens by reviewing tools from formal language theory. Section 3 discusses languages that change
over system execution. Section 4 discusses some initial approaches from prior work. Section 5 considers
some formal language extensions to handle the general case. Section 6 poses some questions raised by this
structure. Section 7 concludes with ideas for future directions.

2 Tools

2.1 Basics

We quickly review the basics of formal language theory.

A language is a set of strings over some finite alphabet Σ.

One way to specify a language is with a grammar G:

• a set of variables V disjoint from Σ,

• a specific start variable S ∈ V ,

• and, a set of production rules, each showing how something on the left-hand side can be replaced by
something on the right-hand side.

A string s ∈ Σ∗ is in the language corresponding to this grammar exactly when we can start with S,
repeatedly apply production rules, and end up with s.

We group grammars into classes based on the format of the production rules. In a computer scientist’s view
of the Chomsky hierarchy, the typical grammar classes of interest are regular expressions and their proper
superset, context-free grammars (with occasional nods towards context-sensitive grammars, a proper superset
of CFGs).

Another way to specify a language is with an abstract machine that says “yes” when given a string in that
language. Theory gives us two flavors:

• a decider, which says “yes” exactly when a string is in the language and “no” if not.

• a recognizer, which says “yes” exactly when a string is in the language, but may give no answer if not.

Finite state machines (FSMs) are a basic class of deciders. An FSM has a finite set Q of states (with a
distinguished start state and one or more accepting states), and a transition function δ : Q×Σ −→ Q. When
an FSM can start in the start state, take transitions according to the symbols in an input string, and end in
accepting state, then it accepts that input. As is well known, FSMs decide exactly the languages specified
by regular expressions. If we add a stack to an FSM, we obtain a pushdown automaton; these recognize the
CFGs but decide only a proper subset (e.g., the ones recognized by a deterministic pushdown automata).
Computer scientists then typically jump to full Turing machines, which recognize the computable languages
(but decide only a proper subset of them).

Other Language Classes of Interest. Although regular expressions and CFGs get the most attention
in typical computer science curricula, other language classes exist that may be of practical interest to
those exploring defense and analysis of software. The area of compiler design and construction identifies
various subclasses of CFGs (such as LR and LL(1)) which can be easier to parse automatically. More
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recent work on parsing has identified parsing expression grammars (PEGs) (e.g., [8]), which can be easy to
parse unambiguously and also interestingly contain languages beyond CFGs (although it is also currently
conjectured that CFGs contain languages that are not PEGs). Another class of potential interest are visibly
pushdown languages (VPLs) (e.g., [2]), which are those accepted by a PDA restricted to pushing on certain
input symbols and popping on certain other input symbols. VPLs lie strictly between the regular languages
and CFGs, and some interesting predicate testing problems undecidable for CFGs become decidable for
VPLs.

2.2 Other Things in the Automata Stable

Transducers. Chapter 6 in Alagar and Periyasamy [1] provides a deeper treatment of FSMs than what
might be found in typical undergraduate textbook (e.g., [12]). This treatment includes formal discussion of
transducers—FSMs that give “output” while processing an input string—and name two particular flavors:
Mealy machines, where outputs happen on transitions, and Moore machines, where outputs happen in states.

Extended FSMs. Chapter 7 then gives a nice discussion of extended FSMs, albeit marred by some bugs
(e.g., in the bounded buffer example, p 107). Basically, an EFSM has three new extensions:

• it can have internal variables,

• transitions can have guards (e.g., predicates over these variables) and actions (changing the values of
variables),

• and states can be complex: meaning the state itself is a call to another FSM.

Register Automata. Register automata (defined at http://automata.cs.ru.nl/Syntax/Register and
many other places) are a special case of Mealy EFSMs, where variables and actions on them are limited to
some simple register operations.

Definition 1. A register automata (RA) is represented as a 6 tuple (R, Q, q0, v0, F , ∆) [6]. R is a finite set
of registers, Q is a finite set of states, q0 ⊆ Q is the start state, v0 is the initial assignment of the registers in

R. The transitions ∆ are written as p
ϕ/`−−→ q, where p is the initial state, q is the next state, the transition

occurs if the input x ∈ [ϕ], and the input registers in ` are satisfied. The output of the transition is written
to the output register in `.

Hower et al. [10] showed how to infer register automata from control flow in an infinite domain and demon-
strated that this approach outperforms the L* learning algorithm. Cassel et al. [5] proposed a more succinct,
canonical form of representing register automata.

Symbolic Register Automata (SRA) are register automata, where the alphabets are given using Boolean
algebra that may have an infinite domain, and the transitions are defined using first-order predicates. SRAs
are strictly more expressive than RAs, and are extremely useful when defining automata for alphabets such
as the UTF-16 specification. With UTF-16, there would be 216 transitions out of every state, and using first
order predicates collapse those transitions to one relation.

D’Antoni et al. [6] compare the performance of SRAs to Symbolic Finita Automata (SFAs) (SFAs are DFAs
with the alphabets given using Boolean algebra and transitions in first-order logic) by creating additional
states for all the possible values registers could take. For a lot of their experiments, the corresponding SFAs
did not fit in memory. They concluded that SRAs are a succinct model to represent state transitions.
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Procedural Automata. Frohme and Steffen [9] define systems of procedural automata (Definition 1 in
that paper, with useful clarification on page 5 of its PDF). We have a set of FSMs, but some transitions can
be labeled as calls to another FSM in this set. The paper notes that any language accepted by a system of
procedural automata is a CFG. These seem to be EFSMs, without the guards, variables, and actions.

2.3 Session Types

Somewhat orthogonal to the world of formal languages, the field of session types has evolved to provide
“a theoretical foundation of communication-centered programming” [7]. The emergence of service-oriented
programming in the real world gave rise to a need to formally describe the communications between parties
carrying out some distributed computation. The literature often uses the example of a user, an ATM, and
a bank as a model: each stage in the interaction permits different types and formats of messages. This has
been an active research field, developing extensions and features to handle various distribution scenarios,
and integrating session typing into programming languages.

To the extent that the “language” of correct inputs for a software module may change based on communi-
cation, session types may provide some helpful tools. We plan to consider this further in future work.

3 Languages that Change

As Section 1 noted, in many real-world programs, the “correct” language of expected inputs can change
over the course of execution. One basic example is when interaction with the software goes through distinct
phases; the language of inputs in the “introductory handshake” phase may differ from the language during
the “data exchange” phase. However, one may easily imagine variation that is much deeper; e.g., colleagues
in the power grid have suggested that a relay should not just accept any properly formatted command, but
rather should “know” that in the current state of the physical power system, only commands with specific
parameters are reasonable.

This limitation suggests that characterizing the correct inputs of some software module requires considering
a series of formal languages. As a rough approximation, we might imagine that there exists some partition

∆0,∆1, ...

of the software’s execution into distinct sessions, and a sequence of languages

L0, L1, ...

such that at time t ∈ ∆i, the correct language is really Li.

This thinking suggests two lines of inquiry.

• Coarseness of Recognition. If we defend an interface with a validator that recognizes some language
LV but the correct language at time t is really Lt, with LV ) Lt, then our defense misses the mark
by LV \ Lt. Can we turn this into a meaningful metric of the quality of any given LangSec defense
implementation, and evaluate the tradeoffs between that metric and other engineering costs? This
thinking extends to the cases when the correct language L is constant over time, and also to when the
validator’s language LV can evolve over time.

• Languages that evolve. Formal language theory (e.g., the Chomsky hierarchy and all that) gives us
tools to describe a static language via a grammar, and a corresponding machine that recognizes this
language. How do these standard tools extend to handle evolving languages? Can these extensions be
useful?
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LSvers LSkinit

LSkreplyLSconn

Figure 1: The state-specific parsers for two of the messages in OpenSSH annotated with the languages
expected in each state.

Send DNS Request
Store values of

domains requested
in registers

Receive Resource 
Records

Clear register
values

Figure 2: Our DNS parser changes the input filter based on client actions.

4 Initial Approaches

Network protocols are commonly specified via a finite state machine (FSM); each state of the FSM represents
a different phase of the protocol, with different communications involved.

Prior work building LangSec defenses for software that spoke such a protocol would build a separate grammar
and validator for each phase, and used terms such as session parsing or session languages to describe this
problem.

For example, Tse and Johnson [13] provide a toolset to construct a session parser by first building a DFA
for the protocol, and allowing the developer to specify tests that messages must satisfy in order to transition
between the states.

Anantharaman et al. [4, 3] described protocol state machines using FSMs, and implemented language parsers
specific to the states of the FSMs. They demonstrated these language-based filters for the power protocol
IEEE C37.118 as well as IoT protocols such as MQTT. In IEEE C37.118, a configuration frame decides how
the consequent data frames are structured, and this dependency makes describing the protocol using FSMs
useful. Poll et al. [11] noted that session languages are often defined as prose or as flow diagrams, but rarely
as FSMs including all the error conditions.

Figure 1, from some of current work, shows the state-specific parsing stages for two of the messages in
OpenSSH. When we, however, looked at the DNS protocol, (Figure 2) we saw an additional wrinkle: the
response an input filter accepts must not only be formatted correctly—it must also match the domains the
client previously asked.
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5 Towards A General Model

5.1 New Languages

LangSec follows the basic dictum of using the simplest tool possible to describe an input language, to increase
the chances of getting it right. However, one can make arguments for any of the tools in Section 2.1: not
just FSMs, but also PDAs, PEGS, and perhaps even VPDAs.

Section 2.2 surveyed augmentations to FSMs from the literature. We posit that some of these augmentations
may be useful for these other tools, and suggest exploring extended X, register X, symbolic X, and systems
of procedural X, where X might be any of the items in Section 2.1.

5.2 Sequences of Languages

The general idea of the Chomsky hierarchy is that classes of grammars correspond to classes of recognizer
machines. In some sense, a grammar represents the computation necessary to decide on what sequence of
input symbols is correct. However, with session languages, we also have computation to decide what sequence
of grammars is correct. In the approaches of Section 4, the sequence of grammars was determined by an
FSM. However, many classes of grammar/machine pairs exist to describe the complexity of a sequence of
elements over some set; both the one for the grammar-sequence and also the input-symbol-sequence could
be from any of these classes.

Hence, we propose a way to characterize session languages based on this two-level process.

First, let us consider sequence of languages describing input received on the external surface of a software
module.

Definition 2. Let Lext be a finite set of languages over the alphabet Σ. Let Lseq be a language over the
alphabet Lext. Define Lseq/Lext to be the set of strings s over Σ such that:

• There exists a sequence L0, ...Lk of elements, not necessarily distinct, from Lext

• where L0, ...Lk is a string in Lseq

• and s can be written as the concatenation s0, .., sk, where each si ∈ Li

(In the terminology above, Lseq denotes “sequence” and Ltwo denotes “external.”)

The two-level structure might be seen as a generalization of EFSMs: where the overall construct as well as
the “complex state” constructs may be FSMs, or other things from Section 2.1 (such as PDAs or PEGs),
Section 2.2 (such as register automata), or even Section 5.1 (such as “register PDAs”).

Having defined two-level languages, we can now put them into classes based on the complexity of their
components.

Definition 3. Let C1 and C2 be classes of languages. Define C1/C2 to be the class of session languages

{Lseq/Lext : Lseq ∈ C1 and Lext ⊆ C2}

The grammars/recognizers in Lext play their standard role as specifying an input language. The new twist
here is Lseq: the structure/computation that describes the sequence of languages.
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The examples from Section 4 (except DNS—see below) used FSMs as Lseq. Our approach for OpenSSH (Fig-
ure 1) lived in FSM/FSM . We could describe Lseq as the regular expression LSverLSkinitLSkreply(LSconn)∗.

However, in general, the top-level Lseq could be any construct from Section 2.1. For example, for an
interaction that consists of n requests followed by n responses, we would need a CFG.

5.3 Sequences of Input Languages with Internal Action

In the standard LangSec model, a hardened parser defends software by filtering the inputs coming into it
from outside. Hence, we focus on defining the valid inputs; the two-level definitions of Section 5.2 above
focus on the complexity of describing sequences of those inputs.

However, the DNS case of Figure 2 introduces a explicit wrinkle (which was probably implicit all along):
specifying a valid sequence of inputs in an execution of some software may also requires specifying internal
actions of the software. We may not need to filter these internal actions to make sure they are properly
formatted, but we do need to know what they are, in order to filter the external inputs. The sequence of
valid external inputs for Figure 2 can be recognized by a register FSM—but it needs to set its registers from
internal actions of the software. For example, we could build the register automata in Listing 1.

In the example, we model the state machine in Figure 2 as a register automata.1 The two states are
the send dns request and receive resource records states. The specify the input symbols and output
symbols and the assignments to the output symbols in the transitions.

Hence, we revise the definitions of Section 5.2 to include internal actions.

Definition 4. Let Lext and Lint be finite sets of languages over the disjoint alphabets Σext and Σint,
respectively. Let Lseq be a language over the alphabet Lext ∪ Lint. Define Lseq/Lext/Lint to be the set of
strings s over Σext ∪ Σint such that:

• There exists a sequence L0, ...Lk of elements, not necessarily distinct, from Lext ∪ Lint

• where L0, ...Lk is a string in Lseq

• and s can be written as the concatenation s0, .., sk, where each si ∈ Li

Again, Lseq denotes “sequence” and Ltwo denotes “external.” The new Lint describes the internal actions
of the software; each string in an Lint language can then influence what the parser should expect in future
external input. Trivially, Lseq/Lext = Lseq/Lext/∅.

Definition 5. Let C1, C2, C3 be classes of languages. Define C1/C2/C3 to be the class of session languages

{Lseq/Lext/Lint : Lseq ∈ C1

and Lext ⊆ C2

and Lint ⊆ C3}

1 <register -automaton >

2 <alphabet >

3 <inputs >

4 <symbol name=" dns_req">

5 <param name=" domain_list" type="list">

1We use the syntax as described in http://automata.cs.ru.nl/Syntax/Register#Registerautomatamodel using XML syn-
tax to describe register automata.
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6 </param >

7 <param name=" src_ip" type=" ip_addr">

8 </param >

9 <param name=" dst_ip" type=" ip_addr">

10 </param >

11 </symbol >

12 <symbol name=" resource_records">

13 <param name=" domains" type="list">

14 </param >

15 <param name=" src_ip" type=" ip_addr">

16 </param >

17 <param name=" dst_ip" type=" ip_addr">

18 </param >

19 <param name=" domain_list" type="list">

20 </param >

21 </symbol >

22 </inputs >

23 <outputs >

24 <symbol name=" requested_domain_values">

25 <param name=" domains" type="list">

26 </param >

27 </symbol >

28 </outputs >

29 </alphabet >

30 <globals >

31 <variable name=" dnsserver" type=" ip_addr">

32 8.8.8.8

33 </variable >

34 <variable name=" client" type=" ip_addr">

35 0.0.0.0

36 </variable >

37 </globals >

38 <locations >

39 <location name=" send_dns_request" initial ="true">

40 </location >

41 <location name=" receive_resource_records">

42 </location >

43 </locations >

44 <transitions >

45 <transition from=" send_dns_request" params ="src_ip , dst_ip ,domain_list"

symbol =" dns_req" to=" receive_resource_records">

46 <guard >

47 dst_ip == dnsserver && src_ip == client

48 </guard >

49 <assignments >

50 <assign to=" requested_domain_values">

51 domain_list

52 </assign >

53 </assignments >

54 </transition >

55 <transition from=" receive_resource_records" params ="src_ip ,dst_ip ,

domain_list" symbol =" resource_records" to=" send_dns_request">

56 <guard >

57 dst_ip == client && src_ip == dnsserver && domain_list ==

requested_domain_values

58 </guard >

59 <assignments >

60 <assign to=" requested_domain_values">

61 null

62 </assign >

63 </assignments >

64 </transition >

65 </transitions >

66 </register -automaton >

Listing 1: Defining the protocol state machine of DNSusing Register Automata.
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6 Questions

Prior work (e.g., Section 4) shows real-world parsing problems helped when Lseq was an FSM, and a register
FSM. Are there real-world problems helped when Lseq is more powerful?

In Section 5 above, we defined sequences of the form C1/C2/C3, where each Ci was some class of languages.
Where does C1/C2/C3 itself fit in the hierarchy of languages?

Conjecture. Let C1, C2, C3 be classes of languages. Suppose for some C ∈ {C1, C2, C3} we have each
Ci ⊆ C. Then C1/C2/C3 ∈ C.

Clearly this is true when we choose classes from among TMs, regular expressions, context-free grammars,
and register automata. Is true when the classes include any other items of interest?

Even if Lseq/Lext/Lint specifies the same languages as a language in some some standard class C, there is
still an advantage to thinking this way. A validator written as as some Lseq/Lext or Lseq/Lext/Lint may be
a much better match to a system’s actual requirements—and may be much easier to get right than trying
to write the whole thing as one grammar in some standard class.

LangSec traditionally has focused on syntactic correctness of input. However, if we have a program that
expects inputs to conform to a language L but still can reject some inputs for semantic reasons (possibly
depending on internal system state), then we might be able think of this whole thing as some TM/L/TM
language. The semantic becomes syntactic. This general case when we have full Turing machines is absurd—
but can we get interesting semantic processing when we have weaker but more tractable classes? Can we build
LangSec validators for the power relays of Section 3? Where do we draw the line between the computation
of the software application under protection, and the computation of its input validator?

7 Next Steps

In this paper, we described some new ideas to describe the formal semantics of session languages. We defined
some new constructs that used newer, and lesser-used classes of automata such as Register Automata, EFSMs,
and procedural automata. We also provided an example of a register automata representation of the DNS
protocol using an XML-based syntax.

In next steps, we hope to address some of the questions we posed in Section 6. As we discussed earlier,
validators described formally as a sequence of languages may be a much more apt fit for practical protocols
then the traditional approach of describing the grammar for an entire protocol syntax.

We would also like to explore the metrics that we discussed in Section 5.2—coarseness of recognition and
languages that evolve. Future work could explore these metrics to evaluate any LangSec defense mechanism,
and by extension any parser that is used to safeguard the rest of the program from unintentional computation.

We believe this approach to session languages is a direction that is worth exploring. We are also looking into
building additional constructs to parser-combinator toolkits such as Hammer and Parsley to support such
sequences of grammars.

As noted in Section 2.3, the tools of session types may be helpful when dealing with scenarios where the cur-
rently correct language for a software module is based on communication with other entities. One approach
might be to use session types to model the communication, but use grammars rather than simpler numerical
fields as the basis of the message types. We plan further exploration in future work.
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