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Jared Duker Lichtman
Dartmouth College Technical Report TR2016-817

lichtman.18@dartmouth.edu

Abstract

We provide a problem definition of the stable marriage problem for a general number
of parties p under a natural preference scheme in which each person has simple lists
for the other parties. We extend the notion of stability in a natural way and present
so called elemental and compound algorithms to generate matchings for a problem
instance. We demonstrate the stability of matchings generated by both algorithms, as
well as show that the former runs in O(pn2) time.

1 Introduction

The stable marriage problem (SM) is a famous problem in mathematics in which
there exists a community of n men and n women, all of whom are to be paired with each
other heterogeneously in marriage. Each individual provides a complete preference list
ranking the members of the opposite sex according to his or her preference for marriage.
The final matching sought is one in which no two people would rather be married to
each other over their current spouses, and is thus called stable. It is of note that
stability is a heuristic approach to optimizing matching.

In 1962, David Gale and Lloyd Shapley [2] presented an algorithm to solve SM.
In the Gale-Shapley (GS) algorithm, each man proposes to his favorite woman, and
each woman is temporarily matched to the man that proposes to her. If a woman
is proposed to by multiple men, she is temporarily matched to the proposing man
she prefers the most. If there remain any unmatched people after the first round of
matching, the single men propose again, this time to their second choices. If a woman
who has already been matched is proposed to by a man whom she prefers over her
current partner, she will leave her current partner and become paired with the new
man. This process is repeated, with each unmatched man proposing to the women in
order of his preference list and each woman choosing her best possible mate who has
proposed to her, until everyone has been matched.

In [2], the following properties of the GS algorithm were shown:

• It terminates

• It is O(n2); maximal number of rounds is n2 − 2n+ 2

• Resultant matching is stable

• matching is optimal (of stable) for proposing party
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• matching is pessimal (of stable) for responding party

For a thorough introduction to the stable marriage problem, including the Gale-
Shapley algorithm, we refer the reader to [3].

In 1976, Donald Knuth proposed twelve open questions [6] on SM, one of which
asked to generalize SM from two to three parties—the 3-dimensional SM (3DSM).
Given the open-ended wording, the question has been addressed under various inter-
pretations with respect to structure of preferences and definitions of stability. With the
addition of indifference in preferences [5], there have been many different constructions
of 3DSM, most of which have been shown to be NP-complete [7][4].

However, 3DSM has been shown to work under a simple scheme [1] in which each
individual provides two simple preference lists for the other two parties. Along this
vein, this paper will consider the p-dimensional SM (pDSM), where p ≥ 2, and propose
two types of algorithms to deal with it. Before presenting the algorithms in their
entirety, we motivate them with the simplest nontrivial consideration, when p = 3.

In an instance of 3DSM, we have a community of men, women, and dogs. One
possible way to match the men, women, and dogs together is to choose two parties,
say men and women, and create a matching between them using the Gale-Shapley
algorithm.

Repeating this with another pair of parties, say women and dogs, we arrive at sets
of man-woman and woman-dog pairs, from which we can deduce a matching for the
entire community. This is the idea motivating the elemental algorithm.

Alternatively, we can take the man-woman pairs and view each as members of a
compound party, the humans. Each human’s preferences are constructed by combining
each (associated) man’s and woman’s preferences for dogs. Similarly, we can modify
each dog’s preferences by combining its preference of men and women into preferences
for humans. This is the idea motivating the compound algorithm.

Here the names elemental and compound are chosen in allusion to chemistry; el-
ements are the fundamental building blocks, and compounds are created by bonding
elements together. In the elemental algorithm, each party is treated as an individual
element in “pure” form, whereas in the compound algorithm, parties are “bonded”
together via stable matchings.

2 Problem Definition

We proceed with a formal construction of the multidimensional stable marriage
problem. An instance of the p-dimensional stable marriage problem (pDSM) is an
ordered pair (P, L) with a set P of p disjoint parties with n elements each, and a set
L of preference lists for every element (to be defined below). An element of a given
party is said to be a member of that party. Let UP =

⋃
P∈P P be the community

of P. For all x ∈ UP , let prt(x) return the party of which x is a member.
Associated with each x ∈ UP is a p − 1 × n strictly ordered preference array

Lx of x’s preferences defined as follows. For all y ∈ P ∈ P where x /∈ P , let Lx(y) = j
denote that y is x’s jth preferred member of P . Let

Lx(P ) = {y ∈ P | strictly ordered by Lx(y)}

Lx = {Lx(P ) | P ∈ P}
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L = {Lx | x ∈ UP}
Furthermore, given a, b ∈ P , let a �x b denote that Lx(a) < Lx(b) and let a �x b
denote that Lx(a) ≤ Lx(b).

A family F ⊆ UP is a set of p elements, one member from each party. A matching
F over P is a partition of UP into n families. Elements of a single family are said to
be relatives in F . Let relF (x, P ) return x’s relative in F from P .

For a given F , a family F /∈ F is blocking if and only if

• x �y relF
(
y, prt(x)

)
, y �x relF

(
x, prt(y)

)
for all x, y ∈ F

• for each x, there exists z ∈ F such that z �x relF
(
x, prt(z)

)
A matching F is unstable if there exists a blocking family in UP . F is otherwise
stable.

There are several possible ways to define the problem, with regards to both manner
of describing preferences and definition of stability. The manner of preferences was
chosen, in part, because of its simplicity. In 3DSM, simple preference lists leads to an
efficient algorithm, while more permutation-oriented (Cartesian product) setups have
generated complex problems proven to be NP-complete. The definition of stability
chosen resembles that of the traditional problem most closely. This is because if there
is a blocking family of elements who all prefer each other to their corresponding partners
in F , they would all “elope” and desert their established families in real life. Whereas
setups that permit indifference among individuals have led to NP-complete problems
as well [5].

Two types of algorithms will be presented for pDSM, elemental and compound,
both of which are novel extensions of the original GS algorithm. Given any algorithm
A, let 〈A〉 denote the matching generated by A. Given a set of algorithms A, let
〈A〉 = {〈A〉 |A ∈ A}.

3 Elemental Algorithms

A tentative definition of an elemental algorithm will initially be provided, which will
prompt a deeper understanding and a more rigorous definition. Let GS(P,Q) denote
that P proposes to Q according to the GS algorithm. An important way of viewing
GS(P,Q) is that it establishes a bijection between P and Q.

An elemental algorithm is a set ε of bijectionsGS(R,S) such that for all P,Q ∈ P
there exists a unique bijection (either directly, or indirectly by composition) between
P and Q. To execute ε, each element in ε is executed, generating a unique 1-1 corre-
spondence between each pair of parties, and thus a matching for the problem.

In SM, the GS algorithm is executed on the pair of men and women. This may
be viewed as a directed graph with a vertex for each party and an edge directed from
the proposing into the responding vertex. Unless otherwise specified, all graphs are
assumed to be simple and labeled.

In pDSM, these graphs may be similarly constructed. Given an elemental algorithm
ε, an elemental graph G = {V,E} is generated according to the following bijections.

P → V : P 7→ vp ε→ E : GS(P,Q) 7→ epq

The following theorem will provide a basis for the formal definition of an elemental
algorithm.
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Theorem 1. G is an elemental graph ⇐⇒ G is a tree.

Proof. This bidirectional proof will be split into two parts. The first will be proven by
contradiction, and the second by direct construction.

part 1: Take an elemental graph G. Since epq represents a bijection between P and
Q, an (undirected) walk W in G establishes a composition of bijections, relating all
parties with corresponding vertices in W to each other. Since a bijection is established
between all pairs of parties, G must be connected. Further, since each bijection is
unique, there can be no cycles in G. So G is a tree.

part 2: Take a tree T = {V,E}. Let T generate a set δ of bijections GS(P,Q)
according to the following bijections:

V → P : vp 7→ P E → δ : epq 7→ GS(P,Q)

Since T is a tree, there exists a unique walk between vp and vq, corresponding to a
unique bijection between P and Q. Thus, by definition, δ is an elemental algorithm.
Since the maps used to generate δ from T were bijective, δ may be thought to generate
T using the inverse maps. Then, since δ is an elemental algorithm, T is an elemental
graph.

The formal definition follows from the reasoning in part 2 of Theorem 1. Given a
directed tree T = {V,E} with p vertices, an elemental algorithm εT over P is a set
of bijections GS(P,Q) generated according to the following bijections:

V → P : vp 7→ P E → εT : epq 7→ GS(P,Q)

The execution of εT remains unchanged; each element of εT (P) is executed, generating
a matching 〈εT (P)〉.

It is important to note here that a directed tree is specified. The direction of the
edge indicates which party proposes, an important fact when executing the algorithm.
However, such specification was unnecessary in the proof of Theorem 1 because both
are viable elemental algorithms.

Having provided a definition, we now show that the elemental algorithm shares
many of the nice properties the GS algorithm has. Let Tp be the set of all undirected
trees with p vertices. Let E(P ) = {εT (P) | T ∈ Tp}. For ease (given appropriate
context), let ε, T and E be short for εT , Tp, and E(P), respectively.

Theorem 2. All elemental algorithms terminate.

Proof. Take ε ∈ E . By construction, ε contains p − 1 instances of the GS algorithm.
Since the GS algorithm terminates [2] and p− 1 is finite, ε must terminate.

Theorem 3. All elemental algorithms yield stable matchings.

Proof. Consider an arbitrary ε ∈ E . Suppose 〈ε〉 is unstable; there exists a blocking
family F /∈ 〈ε〉. Take x, y ∈ F where x ∈ P, y ∈ Q.

case 1: GS(P,Q) ∈ ε. Since GS(P,Q) is stable [2], we have x = rel〈ε〉(y, P ).
case 2: GS(P,Q) /∈ ε. Take the tree T = {V,E} that generated ε. There is a

unique walk W in T from vp to vq. By relabeling vertices, without loss of generality,
let

W = u1u2u3 · · ·uw for some 1 < w < p, where u1 = vp and uw = vq
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Relabeling parties accordingly, we have that

GS(Pk, Pk+1) ∈ ε for 1 ≤ k < w, where P1 = P and Pw = Q

We now apply case 1 w − 1 times on xk, xk+1, where xk ∈ Pk, x1 = x and xw = y.
This gives xk = rel〈ε〉(xk+1, Pk). Then by transitivity, x1 = rel〈ε〉(xw, P1), or x =
rel〈ε〉(y, P ).

Combining both cases, we have that F ∈ 〈ε〉, which is a contradiction. Therefore
〈ε〉 is stable.

For 3DSM, this setup was criticized for its simplicity: “It is not hard to see that
we can apply the Gale-Shapley algorithm twice to get a weak stable matching: letting
the men propose to women and then propose to dogs. Women and dogs make the
decision of acceptance or rejection based on their simple lists of men.” [4] However,
previous literature has overlooked the multitude of combinations of matchings available,
allowing one to customize the algorithm to fit the given task at hand. The following
result computes the exact number of such options.

Theorem 4. |E| = 2p−1pp−2

Proof. Since each T ∈ T generates a distinct ε(T ) ∈ E , we have that |T | = |E|. By
Cayley’s Formula, there are pp−2 undirected trees with p vertices. Since there are p−1
edges to a tree, each undirected tree corresponds to 2p−1 distinct directed trees. Thus
|E| = |T | = 2p−1pp−2.

Theorem 5. An elemental algorithm is O(pn2).

Proof. Recall that the GS algorithm is O(n2) and the maximal number of rounds is
n2 − 2n + 2. Since an elemental algorithm applies the GS algorithm p − 1 times, the
maximal number of rounds in an elemental algorithm is (p−1)(n2−2n+2). Therefore,
it is O(pn2).

4 Problem Structure

Before defining compound algorithms formally, we need to develop a vocabulary for
some of the natural structure of a multidimensional stable marriage instance.

Given a pDSM P, a qDSM Q is said to be a subproblem of P if and only if Q ⊆ P.
Given P, a set partition π(P) 6= P, {P} is said to be a problem partition containing
subproblems of P. Let Π(P) be the set of all problem partitions. For ease, let π, Π be
short for π(P), Π(P), respectively.

Given a problem partition π(P) containing 1 ≤ p′ < p subproblems with a matching
F over each Q ∈ π, then a reduced problem (P ′, L′) is a p′DSM where P ′ = π and
L′ is defined as follows. Given matchings F ,G for subproblems Q,R ∈ P ′, respectively,
for all families F ∈ F , G ∈ G, let

L′F (G) =
∑

x∈F, y∈G
Lx(y)

L′F (R) = {G ∈ G | strictly ordered according to L′F (G)}

L′F = {L′F (R) | R ∈ P ′}
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L′ = {L′F | F ∈ UP ′}

The definition of the reduced problem effectively collapses each subproblem Q ∈ P ′
into a single party and each family F ∈ F into a single individual.

Given a matching F ′ over reduced problem (P ′, L′), F ′ may be expanded to F
according to

F =
⋃

F ′∈F ′

F ′

to give the equivalent matching F over the original problem (P, L).

5 Compound Algorithms

Given a pDSM (P, L), a compound algorithm C is executed over P according to
the following recursive procedure. Two counters i, c are both intially set to zero.

1. Take an elemental algorithm ε ∈ E(P). If Π(P) 6= ∅, take a problem partition
π ∈ Π(P). Else, let 〈C〉 = 〈ε〉 and go to step 6.

2. Create reduced problem (P ′, L′): set P ′ = π; for each subproblem Q ∈ π, take
an elemental algorithm ε ∈ E(Q) and generate L′ using matchings 〈ε(Q)〉.

3. Index i by one.

4. If |π| > 1, repeat from step 1 letting (P, L) = (P ′, L′). Else, let c = i.

5. Given 〈ε(P ′)〉 used in the cth execution of step 2, construct 〈C〉 as the result of
expanding 〈ε(P ′)〉 c times.

6. Return 〈C〉.
Having provided a definition, we now show that compound algorithms share many of

the nice properties the elemental algorithms have. Let C(P) be the set of all compound
algorithms over P.

Theorem 6. All compound algorithms terminate.

Proof. The statement will be proven by induction on |P|. Take C ∈ C(P).
Base case: |P| = 2
Let P = {P,Q}. Without loss of generality, ε = GS(P,Q). The only possible set

partitions are P, {P}, neither of which are problem partitions. Thus Π(P) = ∅; for
the execution of C, we go from step 1 to step 6, return 〈GS(P,Q)〉, and terminate.

Inductive step: Given |P| = k + 1 and C(Q) terminates when |Q| = i for all
2 ≤ i ≤ k.

Recall that a problem partition omits the trivial partition π = {P}. This ensures,
for all π ∈ Π(P), that |P| > |Q| for all Q ∈ π. Thus k+ 1 > |Q|, meaning that |Q| = i
for some 2 ≤ i ≤ k. By the inductive hypothesis, C(Q) terminates. Therefore, so does
C(P).

Before showing stability, we need a lemma.

Lemma 1. Given pDSM (P, L) reduced to (P ′, L′) using stable matchings FQ for all
Q ∈ P ′. If matching F ′ over P ′ is stable, then the expanded matching F over P is
stable.
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Proof. The proof will be given by taking anyQ,R ∈ P ′ and showing that the expansion
of F ′ ∩ (Q∪R), which is F ∩ (Q∪R), is stable. For ease of notation within the proof
itself, assume that F ′ stands for F ′ ∩ (Q∪R), and F for F ∩ (Q∪R).

Take Q,R ∈ P ′. Let FQ,FR be the stable matchings over Q,R, respectively.
Suppose F is unstable; there exists a blocking family F /∈ F . Since F is blocking

and F ′ is stable, F cannot be an expansion of some F ′ ∈ F ′. Therefore, since FQ,FR
are stable, F = (G ∩Q) ∪ (H ∩R), for some G,H ∈ F ′.

For ease of notation, let

F1 = G ∩Q, F2 = G ∩R, F3 = H ∩Q, F4 = H ∩R

Thus, without loss of generality, F = F1 ∪ F4. By definition of P ′, we have that
F1, F2, F3, F4 ∈ UP ′ .

Consider x ∈ F1, y ∈ F4. Since x, y ∈ F and F is blocking, we have that x �y

relF
(
y, prt(x)

)
and y �x relF

(
x, prt(y)

)
. This means that

Lx(y) ≤ Lx

(
relF

(
x, prt(y)

))
Ly(x) ≤ Ly

(
relF

(
y, prt(x)

))
Summing over all such x, y pairs,∑

x∈F1, y∈F4

Lx(y) ≤
∑

x∈F1, y∈F4

Lx

(
relF

(
x, prt(y)

))
∑

x∈F1, y∈F4

Ly(x) ≤
∑

x∈F1, y∈F4

Ly

(
relF

(
y, prt(x)

))
Additionally, for each x ∈ F1, y ∈ F4 there exist z ∈ F4, w ∈ F1 such that z �x

relF (x, prt(z)) and w �y relF (y, prt(w)). This implies that∑
x∈F1, y∈F4

Lx(y) <
∑

x∈F1, y∈F4

Lx

(
relF

(
x, prt(y)

))
∑

x∈F1, y∈F4

Ly(x) <
∑

x∈F1, y∈F4

Ly

(
relF

(
y, prt(x)

))
Then, by definition of L′, we have

L′F1
(F4) < L′F1

(F2)

L′F4
(F1) < L′F4

(F3)

But this contradicts the fact that F ′ is stable. Therefore there can be no blocking
family in F , and thus F is stable.

Theorem 7. All compound algorithms are stable.

Proof. This statement will be proven by tracing the steps of the compound algorithm
and proving that stability is preserved throughout. Take C ∈ C(P). Upon executing
the algorithm, let c be the final number of times that steps 1− 4 were repeated.

Nothing occurs with regards to stability in steps 1, 3, 4, and 6. In step 2, by
Theorem 3 each matching 〈ε(Q)〉 is stable for all Q ∈ π. In step 5, 〈ε(P ′)〉 is stable by
Theorem 3. The initial algorithm conditions and steps 2 and 5 satisfy the givens for
Lemma 1, so by applying Lemma 1 c times on 〈ε(P ′)〉, we have that the cth expanded
matching of 〈ε(P ′)〉, 〈C〉, is stable over the original P.
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6 Open Problems

There are several interesting questions we can now ask.

• determine optimal and pessimal matchings for a given party

• determine egalitarian matchings

• determine efficiency of the compound algorithm

• determine additional structure of matchings under elemental and compound al-
gorithms (dependent on chosen directed tree, etc.)

• find applications
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