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(a) n-rooks (2D point sampling power spectra) (b) Poisson disk (3D line sampling power spectra)

Figure 1: Illustration of (a) an expected anisotropic Fourier power spectrum for 2D n-rook (N = 256) point samples (left). The accompanying
radial power spectra correspond to the radial average (top), radial behavior along the horizontal arrow (middle), and radial behavior along
the diagonal arrow (bottom) of the 2D n-rooks power spectrum. Similarly, on the right, (b) we show the expected Fourier power spectrum
for 3D parallel line samples (generated horizontally, orthogonal to the plane containing the power) using isotropic Poisson disk samples
(N = 4096), with radial power spectra corresponding to radial averaging (top) within the 3D domain (power scaled for visualization) and
radial behavior along two directions (middle and bottom) within the subspace containing power.

Abstract

Traditional Monte Carlo (MC) integration methods use point samples
to numerically approximate the underlying integral. This approxima-
tion introduces variance in the integrated result, and this error can
depend critically on the sampling patterns used during integration.
Most of the well known samplers used for MC integration in graph-
ics, e.g. jitter, Latin hypercube (n-rooks), multi-jitter, are anisotropic
in nature. However, there are currently no tools available to analyze
the impact of such anisotropic samplers on the variance convergence
behavior of Monte Carlo integration. In this work, we propose a
mathematical tool in the Fourier domain that allows analyzing the
variance, and subsequently the convergence rate, of Monte Carlo
integration using any arbitrary (anisotropic) sampling power spec-
trum. We apply our analysis to common anisotropic point sampling
strategies in Monte Carlo integration, and extend our analysis to
recent Monte Carlo approaches relying on line samples which have
inherently anisotropic power spectra. We validate our theoretical
results with several experiments using both point and line samples.

Keywords: Stochastic Sampling, Monte Carlo Integration, Line
Sampling, Global Illumination, Rendering

1 Introduction

Since being introduced to graphics by Cook and collegues [1984],
Monte Carlo (MC) integration has become the cornerstone of most
modern rendering algorithms. Historically, MC integration in render-
ing has involved sampling a function at various stochastically placed
points to approximate an integral, e.g. the radiance through a pixel.
This estimation is error-prone, however, and many researchers [Cook
1986; Dippé and Wold 1985; Subr and Kautz 2013; Subr et al. 2014;
Pilleboue et al. 2015] have therefore investigated how the properties
of the integrand and sample points impact the error and convergence
rate of this estimation. These analyses have provided important theo-
retical insights and have lead to tangible improvements in rendering.

Many of these analyses have leveraged the Fourier domain to bet-
ter understand the underlying characteristics of different sampling
patterns. Within this domain, the radially averaged Fourier power
spectrum [Ulichney 1987] has been perhaps the most essential tool
to analyze point samples, characterizing various stochastic sampling
patterns ranging from white noise to blue noise, and more recently
being used to derive variance convergence rates of various stochastic
samplers [Pilleboue et al. 2015].

While radial averaging is appropriate for analyzing isotropic Fourier
power spectra, many of the stochastic point sampling strategies
used in rendering—such as N -rooks [Shirley 1991] or even jittered
sampling [Cook 1986]—are in fact anisotropic. For anisotropic
sampling power spectra, radial averaging can be less informative,
or worse, misleading. For example, in Fig. 1(a), the 2D N -rooks
sampling pattern has radial behavior of a jittered sampling power
spectrum along the canonical axes, but a flat, white noise radial
behavior in other directions. This information is lost in the radially
averaged power spectrum shown at the top of the radial plots.

While point sampling has dominated the view of MC in graphics for
years, Monte Carlo integration need not always be a point sampling
process. In fact, researchers have recently started employing Monte
Carlo-like estimators using line samples for rendering problems as
diverse as anti-aliasing [Jones and Perry 2000], motion blur [Gribel
et al. 2010], depth of field [Tzeng et al. 2012], hair rendering [Bar-
ringer et al. 2012], as well as density estimation [Jarosz et al. 2011a]
or path sampling [Novák et al. 2012; Georgiev et al. 2013; Křivánek
et al. 2014] in volumes. While these recent methods have shown
considerable promise, little is currently known about the theoreti-
cal properties of such line-sampling estimators, and their extreme
anisotropic nature makes them seemingly incompatible with the
wealth of prior isotropic, point-based analyses. Fig. 1(b), for in-
stance, shows line samples whose locations have a Poisson disk
distribution (with isotropic power spectrum within the subspace),
but the radially averaged power spectrum (top) does not reveal this
fact.



In this paper, we study such inherently anisotropic sampling pro-
cesses in Monte Carlo integration and the impact they have on vari-
ance and convergence rate. Our primary contribution is a mathemat-
ical derivation of variance which enables Monte Carlo convergence
rate analysis of arbitrary (isotropic or anisotropic) sampling power
spectra. We apply our formulation to Monte Carlo integration using
anisotropic point sampling, deriving convergence rates which can
inform design principles for applying these sampling strategies in
practical rendering problems. We also leverage our anisotropic vari-
ance analysis formulation to the inherently anisotropic properties of
Monte Carlo integration using line samples. We derive expressions
predicting the convergence rate of Monte Carlo line sampling, relat-
ing this to the sampling strategy used to place each line sample. Our
theoretical results and empirical validations reveal that line sampling
can not only decrease variance, but it can also improve convergence
rate.

2 Related Work

Point sampling, variance, & convergence. Since the introduc-
tion of MC to graphics [Cook et al. 1984], researchers have noted that
a careful arrangement of samples can impact the spectral distribution
and dramatically reduce the overall magnitude of error in numerical
integration [Dippé and Wold 1985; Cook 1986; Mitchell 1991]. This
has lead to extensive work on generating sample patterns which are
stochastic, yet still maintain a low discrepancy [Shirley 1991] or
which exhibit so-called blue noise frequency spectra [Cook 1986;
Lagae and Dutré 2008]. Recent work [Durand 2011; Subr and Kautz
2013; Pilleboue et al. 2015] has established a firm mathematical con-
nection between the spectral properties of the sampling pattern and
the magnitude of MC integration error. Moreover, carefully sample
placement—such as jittered [Cook 1986] and certain flavors of blue-
noise sampling [Balzer et al. 2009; Heck et al. 2013]—have now
been shown to actually lead to asymptotically faster convergence
rates [Mitchell 1996; Ramamoorthi et al. 2012; Subr and Kautz
2013; Subr et al. 2014; Pilleboue et al. 2015]. We derive similar
mathematical expressions governing variance and convergence rate,
but for the case of stochastic placement and evaluation of point or
line samples that might have an arbitrary anisotropic expected power
spectrum.

Generation/analysis of anisotropic sampling patterns. Many
sampling methods used in graphics are inherently anisotropic (e.g.
jitter, n-rooks, multi-jitter), and anisotropic variants [Feng et al.
2008; Li et al. 2010; Wachtel et al. 2014] of popular isotropic sam-
pling patterns also exist. Such approaches have been shown to
be more suitable for certain geometry processing applications [Al-
liez et al. 2003; Lévy and Liu 2010], or for instancing anisotropic
geometric primitives [Li et al. 2010]. Sun et al. [2013] generate
line (segment) samples with blue-noise properties, and projective
relaxation [Reinert et al. 2016] enforces blue noise properties un-
der multiple planar projections of a point sampling pattern, both
of which result in anisotropic sampling spectra. Isotropic Fourier
tools are ill-equipped to analyze the error arising from Monte Carlo
integration using such sampling patterns.

A few analysis approaches have been developed, however, to handle
specific forms of anisotropy outside the context of Monte Carlo vari-
ance analysis. For anisotropic distributions that arise from a global,
invertible warp, one can warp the samples back to the uniform do-
main to perform isotropic spectral analysis [Li et al. 2010]. Wei and
Wang [2011] proposed a more general framework that operates on
the inter-sample distances in order to analyze non-uniform/adaptive
sampling. With knowledge of the warping function’s Jacobian, they
can approximately eliminate differential anisotropy (i.e. local non-
uniform scaling or sheering) of the samples for analysis. While these

approaches were concerned with spectral analysis, they do not seek
to establish how such anisotropy affects variance and convergence
rate in Monte Carlo integration.

Line sampling in rendering & related fields. While line sam-
pling is relatively new in graphics (the idea being first applied to anti-
aliasing by Jones and Perry [2000]), it has been used for some time
in related fields. A class of Monte Carlo methods from neutron trans-
port simulation known as “expected value estimators” and “track
length estimators” [Spanier 1966] essentially perform Monte Carlo
integration using line samples. These were independently developed
and generalized in the graphics community in the form of “long
beam” and “short beam” estimators, first for camera rays [Jarosz
et al. 2008] and then for light rays [Jarosz et al. 2011a; Sun et al.
2010] in volumetric photon mapping, and later adapted to many-light
methods [Novák et al. 2012] and path tracing approaches [Georgiev
et al. 2013; Křivánek et al. 2014]. Line samples have also cropped
up for computing hemispherical visibility and motion blur [Gribel
et al. 2010; Gribel et al. 2011], depth of field [Tzeng et al. 2012],
visibility in hair [Barringer et al. 2012], and masked environment
lighting [Nowrouzezahrai et al. 2014]. While all of these approaches
have demonstrated practical improvements for rendering, there is
currently little theoretical understanding of how such anisotropic
sample patterns impact variance and convergence rate in the context
of Monte Carlo integration.

3 Preliminaries

We are interested in computing an integral of the form:

I =

∫
D
f(x) dx, (1)

where D is the d-dimensional Euclidean space.

Monte Carlo integration using point samples. Monte Carlo
integration forms an approximation, IN , of I by evaluating the
integrand f at N sample locations sj uniformly distributed over the
domain D. This sampling process can be expressed in continuous
form by multiplying the original integrand f with a normalized
sampling function S consisting of delta responses:

IN =

∫
D
S(x)f(x) dx, with S(x)=

1

N

N∑
j=1

δ(‖x− sj‖). (2)

In the frequency domain Φ, this integral takes the form:

IN =

∫
Φ

FS(ν)Ff (ν) dν, with FS(ν)=
1

N

N∑
j=1

e−2πi(ν·sj), (3)

where Ff is the complex conjugate of the integrand’s spectrum, and
FS is the Fourier spectrum of the normalized sampling function
where each summand is the Fourier transform of a single point.

Variance formulation. Prior work [Durand 2011; Pilleboue et al.
2015] has shown that the variance of IN depends on the power
spectrum, P(ν) = ‖F(ν)‖2, of the integrand and the expected



power spectrum of the homogenized1 sampling pattern:

Var (IN ) =

∫
Θ

〈PS(ν)〉 Pf (ν) dν , (4)

where Θ includes all frequencies except DC, and 〈PS(ν)〉 is the
expected power spectrum of the normalized2 sampling function.

Prior work [Leneman 1966; Dippé and Wold 1985; Dippé and Wold
1992] has derived analytic expected power spectra for common point
sampling patterns, for instance [Gabrielli and Torquato 2004]:

〈PS(ν)〉 =

{
1
N

for random, and
1
N

(
1−

∏d
i Sinc(πνi)

2
)

for jittered
(5)

where νi is the i-th dimension of frequency vector ν.

To analyze the variance and convergence rate of specific sampling
patterns, Pilleboue et al. [2015] further simplify Eq. (4) by going
to polar coordinates and collapsing the integrand’s power spectrum
Pf and the expected sampling power spectrum 〈PS(·)〉, under the
assumption of isotropic sampling power spectra, into their radial
averages P̆(·), arriving at:

Var (IN ) =

∫ ∞
0

ρd−1 P̆S(ρ)P̆f (ρ) dρ. (6)

With this simplification, their primary contribution was showing that
if the radially averaged sampling power spectra can be expressed
analytically, then the corresponding variance convergence rates can
be derived for a given class of functions. To more easily apply
this idea to complex radial power spectra, they showed that it is
often sufficient to piecewise bound the radial mean power spectrum
using a monomial in the low-frequency region and a constant for
high frequencies, with the degree of the low-frequency monomial
bound ultimately determining the convergence rate (for more details
please refer to Appendix A). Unfortunately, by relying on the radially
averaged power spectra, Pilleboue et al.’s analysis only truly applies
to isotropic point sampling spectra.

4 Generalized Variance Formulation

In order to obtain a variance formulation that works for anisotropic
sampling spectra, we avoid relying on the radially averaged power
spectra (6), and instead seek a formulation that allows analyzing the
radial behavior along any direction. We start by rewriting Eq. (4) in
polar coordinates:

Var (IN ) =

∫ ∞
0

ρd−1

∫
Sd−1

〈PS(ρn)〉 Pf (ρn) dn dρ (7)

where ρ represents the radial component and n is a unit-length vector
residing on the (d− 1)-dimensional sphere Sd−1 representing the
angular component of the frequency vector ω = ρn.

Generalization: We start by swapping the order of integration:

Var (IN ) =

∫
Sd−1

∫ ∞
0

ρd−1 〈PS(ρn)〉 Pf (ρn)dρ dn. (8)

1Homogenization of sampling patterns ensures that the sampling Fourier
coefficients are uniformly distributed in the complex plane resulting in an
unbiased estimator [Subr and Kautz 2013]. In the point processes literature,
homogenization refers to stationary point processes for which the average
number of points per some unit of extent such as length, area, or volume is
constant depending on the underlying mathematical space.

2Pilleboue et al. [2015] use an unnormalized sampling function, so their
expression for variance includes an additional 1/N normalization factor. We
instead fold this factor directly into the normalized sampling function.
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(c) CCVT [Balzer et al. 2009] (d) Random
Figure 3: Radial power spectra for common samplers can be approx-
imated (bounded) by simple monomial profiles. Here, monomials of
degree (a) b = 2 (quadratic), (b) b = 0 (constant), (c) b = 3 (cubic),
and (d) b = 0 (constant) bound the radial power spectra.

This equation can be seen as an integral over a hypersphere with
f(·) Lebesgue integrable, which makes the integral bounded. If we
restrict our formulation to only well-behaved Pf and PS—having
finite bounded discontinuities [Apostol 1974]—the above variance
integral (Eq. (8)) can be written as a limit of sums which corresponds
to subdividing the integral hypersphere into similar-sized (not nec-
essarily equal-sized) cones of any base-shape. These cones can be
used to approximate the volume of this hypersphere, that allows
rewriting Eq. (8) in the following form:

Var (IN ) = lim
m→∞

m∑
k=1

∫ ∞
0

ρd−1 〈PS(ρnk)〉 Pf (ρnk)dρ∆nk (9)

This is a valid representation in the context of true infinitesimal
calculus [Keisler 2012]. In the above formulation, ∆nk is a differ-
ential volume of the k-th cone. In the limit, we assume no angular
variation of power in this k-th differential cone which allows us to
consider a single direction corresponding to each cone. Here, ∆nk
is a constant that approaches to zero as m tends to infinity.

From Eq. (9), variance of Monte Carlo integration can be obtained
by summing the radially integrated terms along each individual di-
rection k. This implies that, irrespective of whether our expected
sampling power spectra 〈PS(·)〉 is isotropic or not, we can analyze
each k-th direction independently to know the overall behavior of
the underlying sampler. Doing this in practice is difficult, however,
since i) there are infinitely many possible directions, and ii) comput-
ing variance along any direction would require solving the integral
analytically which is only possible if we know the analytical form
of our sampling and integrand power spectra.

Since we are only interested in asymptotic convergence rates, it is
sufficient for us to analytically bound the radial sampling power
spectrum for any direction nk. Like prior work [Pilleboue et al.
2015], we bound the radial behaviour, along each direction nk, with
a monomial of degree bk ≥ 0 in the low frequency region (0, ν],
up to a certain radial frequency ν (as shown in Fig. 3), and a flat
spectrum beyond. Instead of doing this for the radially averaged
power spectrum, however, we consider this independently for each
angular direction nk. Assuming a highly anisotropic sampling power
spectrum (〈PS(ρnk)〉), we may require a monomial of different
degree bk along each direction nk to bound the radial behavior.

In Sec. 6, we will ultimately express the radial behavior, for each
summand of Eq. (9), within the two regions using monomials that
depend on the particular sampling pattern, and prove that the overall
variance convergence rate of the underlying sampling pattern can
be deduced by studying the power spectrum along a single partic-
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(a) Muljitter power spectrum (b) Anisotropic Poisson disk power spectrum

Figure 2: Illustration of a 2D point sampling power spectra for (a) multijitter, with the zoomed-in inset for the low frequency region is at
the top right and (b) the anisotropic Poisson disk sampling patterns. Compared to Fig. 1(b), in 2D the radially averaged Poisson disk power
spectrum still reveals the underlying Poisson disk behaviour since the anisotropy is introduced only due to skewing of points.

ular direction. We will also consider analytic best and worst case
integrands.

5 Line Samples

We now show how the generalized variance formulation we pre-
sented in Sec. 4 applies not only to anisotropic point sampling, but
also to the inherently anisotropic process induced by line sampling.
To accomplish this we first provide some mathematical background
that will allow us to express the expected power spectrum of Monte
Carlo line sampling.

Monte Carlo Estimator We denote a d-dimensional parametric
line as: l(t) = l⊥ + l‖t, where l‖ is a unit d-dimensional vector
denoting the direction of the line, and l⊥ is the point on the line
closest to the origin.

Monte Carlo integration using uniformly distributed line samples
can be expressed as in Eq. (2), but using a line sampling function:

IN =

∫
D
L(x)f(x) dx, where L(x)=

1

N

N∑
j=1

δ(dist(x, lj)), (10)

and dist(x, lj) = ‖(l⊥j −x) + (x · l‖j )l
‖
j‖ is the Euclidean distance

between x and the j-th line sample lj .

Fourier Domain In the frequency domain Φ, this integral takes
an analogous form as Eq. (3) where the point sampling spectrum FS
is replaced by the line sampling spectrum FL:

IN =

∫
Φ

Ff (ν)FL(ν) dν, (11)

The Fourier transform of a line sample can be easily derived [Santaló
1953; Gel 1966] for arbitrary dimensions. Sun and colleagues [2013]
presented the formulation in 2D for the purposes of blue-noise
sampling. We build on these formulations to express the frequency
and power spectra of Monte Carlo line sampling in d dimensions as:

FL(ν) =
1

N

N∑
j=1

δ(ν · l‖j )e
−2πi(ν·l⊥j ) , (12)

where the power spectrum is simply PL(ν) = ‖FL(ν)‖2. Note that,
for a given direction, each line sample’s frequency spectrum (each
summand above) is that of a (d− 1)-dimensional point spectrum in
the coordinates perpendicular to the line (ν · l⊥j ), and a delta impulse

in the remaining coordinate (ν · l‖j ) along the line. If all the lines

share the same direction l
‖
j = l‖, then the entire spectrum of the

sample set is that of N (d− 1)-dimensional points restricted to lie
in a hyper-plane perpendicular to the lines. Fig. 1(b) illustrates this
for d = 3 where parallel line samples are generated horizontally
such that the power spectrum lies in a subspace orthogonal to the
direction of line samples.

Dual interpretations. Inserting Eq. (12) into Eq. (11) and slightly
rearranging terms provides further insights into what is happening:

IN =

∫
Φ

Line sampling spectrum in d︷ ︸︸ ︷Original d-dimensional integrand︷ ︸︸ ︷
︸ ︷︷ ︸

Point sampling spectrum in d− 1

︸ ︷︷ ︸
Prefiltered integrand f̃

1

N

N∑
j=1

e−2πi(ν·l⊥j )δ(ν · l‖j )Ff (ν) dν. (13)

The grouping specified by the over-braces is the original interpre-
tation of the d-dimensional integration where evaluating each line
sample involves integrating the original d-dimensional integrand
along the line. The grouping specified by the under-braces shows
that we can also interpret this as first collapsing (integrating) the
original integrand’s Fourier spectrum Ff along the direction l

‖
j into

a prefiltered (d − 1)-dimensional integrand spectrum Ff̃ = δFf ,
followed by point sampling the remaining (d − 1) dimensions in
the hyperplane spanned by l⊥j . These two equivalent interpretations
are analogous to the equivalence described by the Fourier slice theo-
rem. While both views are equally valid, the second interpretation
provides a clearer explanation for how line samples can improve con-
vergence rate: i) the sampling process is equivalent to point sampling
one dimension lower, which can provide faster convergence due to
denser stratification and ii) the integrand has been pre-integrated,
which can potentially increase its smoothness and spectral decay,
resulting in further convergence improvement.

Expected Power Spectra. From the expressions for point sam-
pling (Equation 5), and the connection between line sampling in d
and point sampling in (d−1) dimensions discussed above, it follows
that the expected power spectrum for N line samples distributed
over the span of l⊥ is:

〈PL(ν)〉 =

{
1
N
δ
(
ν · l⊥

)
for random,

1
N

[
1−

∏d−1
i Sinc(πνil

⊥
i )

2
]

for jittered
(14)

line offset distributions. The product goes over the d−1 dimensions
spanning the hyperplane of possible line offsets l⊥. We illustrate
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(a) Poissondisk-Jitter (b) Random-Jitter (c) Variance anaysis Sphere (d) Variance analysis Gaussian 3D
Figure 4: Multi-directional line samples: Power spectrum of 3D line samples generated (axis-aligned for clarity) with: (a) a Poisson disk
line sample distribution along one direction and a jittered line sample distribution along the other, and (b) random–jitter. In (c) and (d) we plot
the variance convergence rates for Sphere and Gaussian 3D integrands, respectively, using a variety of multi-directional line sampling pairs
denoted pattern1–pattern2 for the sampling patterns used to generate lines along each direction.

these analytic power spectra for 3D in Fig. 4(b) for multi-directional
line sampling where one direction uses randomly generated line
samples and the other direction uses jittered line samples.

Homogenized line samples Samplers like white noise (random)
and ones derived from white noise (Poisson disk [Dippé and Wold
1985], CCVT [Balzer et al. 2009], BNOT [de Goes et al. 2012])
are homogeneous by construction [Pilleboue et al. 2015]. Since
the frequency content of parallel line samples in d-D is equivalent
to that of point samples in (d− 1)-D, homogenizing line samples
requires homogenizing the (d− 1) independent components of the
line sample offset l⊥.

5.1 Variance formulation

To derive a generalized variance formulation analogous to Eq. (9)
for the case of lines, we can simply start with either interpretation
of Eq. (13) and insert it into Eq. (4) in place of Eq. (3) to obtain an
equivalent version of Eq. (4) for line sampling. We can then express
this in polar coordinates (7), swap the order of integration (8), and
convert the spherical integral into a discrete sum of directions. At
the end of these steps, we obtain two equivalent versions of Eq. (9)
corresponding to the two interpretations of line sampling discussed
in Eq. (13):

Var (IN ) = lim
m→∞

m∑
k=1

∫ ∞
0

ρd−1 〈PL(ρnk)〉 Pf (ρnk) dρ∆n, (15a)

Var (IN ) = lim
m→∞

m∑
k=1

∫ ∞
0

ρd−1 〈PS(ρnk)〉 Pf̃ (ρnk) dρ∆n. (15b)

Eq. (15a) is directly analogous to Eq. (9) but using the expected
sampling power spectrum for d-dimensional lines 〈PL〉 instead of
d-dimensional points 〈PS〉. Eq. (15b), however, arises by inter-
preting line samples in d dimensions as point samples in (d − 1)

dimensions, but with an effective prefiltered integrand f̃ . In both
cases, since the product of the power spectra will lie only in the
hyperplane perpendicular to the lines, we only need to consider
the radial behavior of the variance along the frequency directions
nk ∈ Sd−2 on a one-dimension-lower hypersphere.

6 Theoretical convegence analysis

To derive theoretical convergence rates we first restrict our integrands
to integrable functions of the form f(x)χΩ(x) with f(x) is defined
in Ω, a bounded domain, with smooth boundary (where χΩ(x) is a

characteristic function of Ω) [Brandolini et al. 2001]. This can, how-
ever, be extended to arbitrary bounded convex regions [Brandolini
et al. 2003]. The worst case from this class of functions exhibits the
power fall- off of the order O

(
ρ−(d+1)

)
where ρ > 0 is a radial

frequency.

Best and Worse case: To obtain best and worse case conver-
gence rate for various samplers we first fix our integrand power
spectra Pf (ρnk), along each direction nk, to have the form:

PWf (ρnk)=

{
cf ρ < ρ0,

cfρ
−d−1 otherwise

and PBf (ρnk)=

{
cf ρ < ρ0,

0 otherwise. ,
(16)

where, cf > 0 is a constant and ρ0 ∈ R+/0 is finite. Note that, in
the rest of the paper we may drop the superscripts for brevity and
refer implicitly to the case (best or worst) we are studying. This will
allow us to analytically derive convergence rates for any sampling
pattern with anisotropic power spectra using our variance formula-
tion (Eq. (17)), which requires solving the integral analytically along
each k-th direction.

6.1 Convergence from a single direction

In this section, we prove that convergence rate of an anisotropic
power specrtum is dependent on a single particular direction. We
first split the radial integral in Eq. (9) into separate regions (0, ν)
and (ν,∞):

Var (IN ) = lim
m→∞

m∑
k=1

[∫ ν

0

ρd−1 〈PS(ρnk)〉 Pf (ρnk)dρ+ (17)∫ ∞
ν

ρd−1 〈PS(ρnk)〉 Pf (ρnk)dρ

]
∆nk.

Note that, this decomposition will potentially be different for every
direction. Since the sampling power spectra scales with the number
of samples N , anisotropy along a direction would potentially impact
the effective number of samples (Nk) along that direction. As a
result, ν would depend on the the effective Nk number of samples
that could potentially impact that particular direction.

This implies that, the radial behaviour along each direction, that can
be approximated by a monomial of degree bk, depends directly on



Nk:

〈PS(ρnk)〉 =


γk
N

(
ρ

αkNk

)bk
ρ < αkNk

γk
N

otherwise
, (18)

where ν = αkNk. Note that, contrary to Pilleboue et al. [2015]
this radial profile formulation is applicable to both the point and
line samples with arbitrary power spectra. Here, γk is a positive
constant, Nk represents effective number of samples along the k-th
direction, N is the total number of samples, d is the dimension and
αk ∈ R+/0 is used to quantify the range of energy-free frequency
with respect to the mean frequency along each direction.

Since variance convergence rate directly depends on the degree of
the monomial [Pilleboue et al. 2015] used to bound the radial curve,
we can derive convergence rates along each direction nk separately
in terms of the order O(·) of Nk samples. Asymptotically, the
summand from Eq. (17) showing the worst convergence rate among
all would dominate the overall convergence rate of the underlying
anisotropic samples. This implies that, ultimately, the convergence
rate would be decided by the direction nk that would exhibit the
worst convergence behaviour. A mathemtically more rigorous proof
of this statement is given in Appendix B. This proves our claim that
the variance convergence rate of an underlying sampling pattern
in Monte Carlo integration can be deduced from one particular
direction.

For isotropic samplers: To obtain convergence rates for stochas-
tic samplers with isotropic power spectra, we can simply use
Nk = d

√
N in Eq. (18) for point samples—which would make

the previously proposed convergence tool [Pilleboue et al. 2015] a
special case to our generalised version—and Nk = d−1

√
N for line

samples (more details are given in Appendix A).

In the rest of this section, we will use the monomial profiles proposed
by Pilleboue and colleagues. For example, for jittered pattern bk = 2
(quadratic profile) and for random and Poisson disk samples bk = 0
(constant profile) (Fig. 3).

6.2 Anisotropic point sampling power spectra

As shown in Sec. 4, to study the variance convergence behavior of
point sampling patterns with anisotropic power spectra it is sufficient
to analyze the radial behavior along the direction that could poten-
tially give the worst case convergence. In practice, the anisotropic
sampling patterns we encounter show anisotropy mainly along a
finite set of directions (Fig. 2). Therefore, we only need to consider
the variance formulation (Eq. (17)) along these few directions based
on the variation we observe in the power spectra. Note, however,
that to obtain variance we would need to consider all the directions.

We can now directly use Eq. (16) and (18) in Eq. (17) to analyti-
cally derive best and worst case variance convergence rates for any
sampler.

Latin hypercube sampling (LHS): In d-dimensions, to gener-
ated N Latin hypercube point samples, we first generate N 1D
jittered point samples along each dimension and then randomly per-
mute them to make a d-dimensional tuple. This implies that, we
have Nk = N effective jittered samples along each of the canon-
ical axes in d-dimensions. In Fig. 1(a), we are showing expected
Fourier power spectrum of a 2D instance of LHS sampling, which
is known as n-rooks [Shirley 1991]. This figure reveals that along
the canonical axes, we have radial behaviour of jittered sampling

pattern, which is what we expect. By substituting Eq. (16) and (18)
in Eq. (17), we obtain the convergence rate as follows:

Worst case along the canonical axes: Since Nk = N along the
canonical axes, we get:

Var (IN ) <

∫ αN

0

ρd−1 γ

N

( ρ

αN

)2

cfρ
−d−1 dρ+∫ ∞

αN

ρd−1 γ

N
cfρ
−d−1 dρ , (19)

<
cfγ

α2N3

∫ αN

0

dρ+
cfγ

N

∫ ∞
αN

ρ−2dρ , (20)

< O
(
N−2) (21)

Best case convergence along the canonical axes:

Var (IN ) <

∫ ρ0

0

ρd−1 γ

N

( ρ

αN

)2

cf dρ , (22)

< O
(
N−3) (23)

However, due to the random permutation the rest of the power
spectrum exhibits flat radial behaviour. This implies that across
all directions, other than the canonical axes, the convergence rate
would be O

(
N−1

)
. Therefore, from the variance Eq. (17), we can

summarise the overall best and worst case convergence rates in the
two regions (each of the d− 1 hyper-planes + the rest of the region)
as follows:

Var (IN ) <

{
O
(
N−2)+O

(
N−1) worst-case

O
(
N−3)+O

(
N−1) best-case .

(24)

Since the addition of two O(·) functions would asymptotically be
dominated by the one with worse convergence, the overall conver-
gence rate for most of the integrands sampled and integrated using
Latin hypercube sampling would not be better than O

(
N−1

)
. Inte-

grands that vary only along one of the dimensions, however, would
benefit from the stratification and converge much faster. For inte-
grands that vary along all dimensions, the constants in front of each
of the summands in the convergence rate would be dictated by the
relative amount of variation of the integrand in each dimension. This
means that for finite sample counts, the Monte Carlo estimator may
initially follow the slope of the faster convergence rate, but with
increasing samples the slower convergence rate will dominate any
constant factors.

Multi-jitter: For multi-jitter sampling pattern, the power spec-
trum (Fig. 2(a)) exhibits radial behaviour of jittered samples in
all the directions in the power spectrum. The only difference is that,
since the stratification along the canonical axes is exactly equal to
the number of samples N , the effective number of samples along
each dimension would beNk = N in d dimensions, whereas, across
all other directions it would be Nk = d

√
N . This explains why the

jittered radial profile is scaled along the canonical axes. Note that,
similar to LHS, for multi-jitter sampling, the convergence rate along
the canonical axes would be the same as we derived for LHS. For
other directions in the power spectrum, the radial behaviour is that of
jitter, with d

√
N effective samples, for which the worst and best case

convergence rates has been already derived [Pilleboue et al. 2015].
Here we summarize the overall variance convergence rates:

Var (IN ) <


O
(
N−2)+O

(
N−1− 1

d

)
worst-case

O
(
N−3)+O

(
N−1− 2

d

)
best-case

(25)

As before, the O(·) function with the worse asymptotic behavior
among the two summands in the best and the worst cases would
dominate the overall convergence rate. This shows that multi-jitter



samples would have convergence similar to that of jittered sampling
patterns. The only difference would be for the integrands that would
only vary along one of the canonical axes for which the convergence
rate would be way faster. As before, integrands that varying to
differing degrees in each dimension may exhibit convergence slopes
that change for finite sample counts before settling at the worse of
the two asymptotic convergence rates.

Uncorrelated jitter: Generating uncorrelated jitter samples in dif-
ferent subspaces to solve a d-dimensional integral is one of the
most highly recommended sampling strategy in rendering [Pharr
and Humphreys 2010]. The idea was first suggested by Cook [1986]
where he proposed to randomly combine different samplers for
higher-dimensional integration3. Latin hypercube sampling can be
seen as a special case of uncorrelated jitter sampling where 1D jit-
tered samples are generated for each single dimension, which are
later randomly permuted to solve the d-dimensional integral. De-
pending on the dimensionality of the subspaces on which jittered
samples are generated, the overall convergence can get affected.
Here we discuss one of the variants of uncorrelated jitter, other
variants can similarly follow the procedure to obtain the respective
convergence rates.

We consider a d-dimensional uncorrelated jitter pattern for N sam-
ples, where we generate 1D, 2D and (d − 3)D uncorrelated jit-
tered subspaces, which are then randomly permuted to form a
d-dimensional tuple. Similar to the LHS (Eq. (24)) and multi-
jitter (Eq. (25)) case, following Eq. (18) we can easily obtain the
variance convergence rate for this setting in the form:

Var (IN ) < (26)
1D︷ ︸︸ ︷ 2D︷ ︸︸ ︷ (d− 3)D︷ ︸︸ ︷

O
(
N−2)+O

(
N−1.5)+O

(
N−1− 1

d−3

)
+O

(
N−1)worst-case

O
(
N−3)+O

(
N−2)+O

(
N−1− 2

d−3

)
+O

(
N−1) best-case .

In the above equation, we are show that if the integrand will be
varying only within one of the subspaces, which contain uncorrelated
jitter samples (in 1D, 2D, (d− 3D) subspaces), we would obtain the
corresponding convergence rates as shown in Eq. (26). However,
if the integrand is varying in-between these subspaces, we will fall
back to the, much worse, Monte Carlo convergence rate ofO

(
N−1

)
.

This would happen because of the random permutation step that is
used to combine these subspaces to make a d- dimensional tuple.
Note that, there are many ways to perform uncorrelated jittering, and
depending on the dimensionality of the subspaces containing jittered
samples, the convergence expression from Eq. (26) would change.

Anisotropic blue noise samplers: There exist many blue noise
samplers that could allow generation of anisotropic blue noise power
spectra. We have shown one illustration of anisotropic Poisson disk
sampling power spectrum in Fig. 2(b), where the shape of the low
frequency region is that of axis-aligned ellipse. Note that, this kind
of anisotropy only scale the radial behaviour by a constant, and
therefore, would not affect the asymptotic convergence rate in any
direction. This is different from what we have seen in the case
of stratification methods (LHS, multi-jitter and uncorrelated-jitter)
where the anisotropy introduces different convergence rates along
different directions. This difference can be explained from the fact
that, these stratification methods change the effective number of
samples along some particular directions whereas this is not the case

3For example, to solve a 4D integral, instead of generating a 4-
dimensional jittered pattern, Cook suggested to first generate two uncor-
related 2D jittered patterns and then randomly combine both to solve the 4D
integral.

with anisotropic blue noise samplers that are generated by applying
a Jacobian to match some characteristics of the underlying density
function [Li et al. 2010; Wei and Wang 2011].

However, if the anisotropic blue noise samplers would somehow
change the effective number of samples in a particular direction or
region in the power spectrum, while keeping the underlying blue
noise characteristics, the convergence rate along that set of directions
could be highly improved. This would be the case with the recent
projective blue noise sampling approach [Reinert et al. 2016] that
ensures that all d-dimensional sample points also form denser blue-
noise sampling spectra along lower-dimensional projections.

6.3 Line sampling power spectra

From the knowledge gained from Sec. 5 and Sec. 6, we can now
easily derive the convergence rates for line samples. Using the fact
that, the expected power spectra of line samples is confined within
the d−1 subspace (as illustrated in Fig. 1(b)), we could directly apply
the convergence rates we derive in Sec. 6.2 in the d− 1 dimensions
along the directions within the Sd−2 angular domain. The same
can also be easily derived by substituting Eq. (18) into the variance
formulation Eq. (15b) for the best and the worst cases (Eq. (16)).

For an isotropic sampling power spectra in the d− 1 subspace for
lines, the overall convergence rates can be summarised as follows:

Var (IN ) <


O
(
N−

d
d−1

)
worst-case

O
(
N−

b+d−1
d−1

)
best-case ,

(27)

which is exactly what we would obtain, if we use d − 1 dimen-
sional point samples in the d-dimensional integration domain. For
line samples with offsets following an anisotropic sampling power
spectrum, all the results we derived in Sec. 6.2 for anisotropic point
sampling spectra, e.g. LHS, would directly apply to the case of line
samples, but for multi-jitter, with one dimension reduced (only for
the dimension dependent terms). Note that, we can write out the
best and worst case convergence rate by using b = 3 for CCVT and
b = 2 for jitter and multi-jitter in Eq. (27).

Multi-directional line sampling. For line samples generated over
a range of multiple directions, the variance convergence rate can
be derived for each direction separately using our variance formu-
lation4 Eq. (15b). In Fig. 4(a,b), we illustrate two examples where
line sampling is performed in two separate directions using different
sampling patterns along each direction. In the next section, we will
look at some concerete multi-directional line sampling strategies
and will analyse their variance convergence plots.

7 Experiments

We now perform a set of 2D and 3D integration experiments using
different point- and line-sampling patterns to validate our theoretical
results. To analyze the variance convergence rate of anisotropic point
samples, we implement jitter, multi-jitter, n-rooks/Latin hypercube,
and anisotropic Poisson disk samples. For line samples, we leverage
all of these techniques as well as CCVT [Balzer et al. 2009] and
Poisson disk (isotropic) samplers to specify the positions of the lines.
We generate the line sample offsets using 1D point samples for
2D integration problems, and 2D point samples for 3D integration
problems. We plan to release all our C++ analysis code publicly.

4If we have two uncorrelated random variables (MC line estimators in
different directions using uncorrelated sample locations), then their variance
is additive, and therefore the convergence rate will be the worse of the two.



To perform our worst case analysis (16), we use a binary disk func-
tion in 2D and a binary sphere function in 3D, both of which have a
worst case power decay rate [Pilleboue et al. 2015]. We use a multi-
variate Gaussian for our best case convergence analysis since it is
smooth enough (C∞) to obtain the theoretical best case convergence
rates despite having a spectrum with infinite extent. We additionally
validate these analytically verified convergence rates with realistic
test scenes including an environment map, ambient occlusion, and
homogeneous participating media.

7.1 Point Samples

We start by analyzing multi-jitter and n-rooks point samples
for 2D integration. For multi-jitter, our theoretical convergence
derivation (25) predicts best- and worst-case convergence rates of
O
(
N−2

)
and O

(
N−1.5

)
respectively, and O

(
N−1

)
for both best

and worst case with n-rook samples (24). The variance plots for the
Disk, Gaussian and the environment map integration in Fig. 5 agree
with these predictions. For n-rooks sampling, we further analyze
how the two best-case convergence rates derived in Eq. (24) would
vary as the integrand varies along a particular direction. We choose
an anisotropic Gaussian function (Fig. 5(d)) and scale its standard
deviation σx along the X-axis to induce different constant factors
in the predicted convergence rates (24). We can see that variance
exhibits a slope corresponding to the better O

(
N−3

)
convergence

rate up to some finite number of samples, but ultimately switches to
the asymptotic convergence rate of (O

(
N−1

)
) with more samples.

The exact location where this transition happens is influenced by
how much of the integrand’s power falls along the canonical axes
vs. the remainder of the frequency domain. Multi-jitter exhibits
similar behavior, starting with a variance slope of O

(
N−3

)
before

transitioning to the asymptotic convergence of O
(
N−2

)
. While the

primary motivation for our derivations was on asymptotic conver-
gence rate, they also provide (to our knowledge) the first principled
explanation for the multi-slope convergence rates of certain sampler–
integrand combinations.

Ambient Occlusion. We further confirm convergence rates for
multi-jitter and n-rooks point sampling patterns when used to render
ambient occlusion Fig. 8(a,b). Here we plot mean squared error
(MSE) vs. the number of secondary rays per pixel used to perform
hemispherical visibility integration. We generate hemispherical
samples using 2D multi-jitter and n-rooks point samples using an
area preserving polar mapping and compute the reference image
using N = 32K jittered secondary rays per pixel.

7.2 Line Samples

In this section, we empirically compare variance convergence rates
for line samples. Our theory predicts that analytically evaluating an
integrand using line samples will not only reduce the dimensionality
of the integrand but may also smooth out discontinuities. An illus-
tration is shown in Fig. 7, where we show that for disk (2D) and
sphere (3D) integrands, line samples would prefilter the true binary
integrand into a smooth function, ultimately improving the conver-
gence rate beyond dimensionality reduction. For integrands that are
already sufficiently smooth, however, the improvement in conver-
gence rate will be only due to dimensionality reduction. In Fig. 6,
we validate these findings by plotting variance convergence rates for
the disk and Gaussian in 2D and 3D for different sampling patterns.

Comparison to point samples. For the disk function (worst
case), multi-jitter point samples show (Fig. 5(a)) a convergence
rate of O

(
N−1.5

)
, while multi-jitter line samples exhibit (Fig. 6(a))

an improved convergence rate of O
(
N−2.85

)
. Note that, if there
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Figure 7: While the disk and sphere act as binary functions for
point samples, analytic line sample integration smooths these out
to effective integrands (left: disk, right: sphere) which return the
length of the lines through the original function.

would have been only convergence improvement due to dimension-
ality reduction, we should obtain a convergence rate of O

(
N−2

)
(as listed in Table 1). Since analytic integration using line samples
smooths out the discontinuities, we actually obtain a convergence
rate which is close to the best case convergence in 1D. For the Gaus-
sian function in 2D, we obtain the convergence rate of O

(
N−3

)
using line samples which is exactly what we should get for point
samples in one dimension lower (in 1D). This also confirms that
sufficiently smooth functions only get convergence benefits due to
dimensionality reduction when using line samples.

In 3D, we generate line samples using 2D point samples, for which
different point sampling stratification methods would have differ-
ent characteristics. We compare three variants of jitter with dif-
ferent blue noise sampling patterns in Fig. 6(c,d). Similar to the
2D case Fig. 6(a,b), jitter and multi-jitter sampling patterns in 3D
converge almost at the same rate for both the disk and the Gaussian
function. N-rooks, however, give a convergence rate of O

(
N−1

)
in

2D and 3D, matching our prediction (24). Poisson disk (isotropic
and anisotropic) also converges withO

(
N−1

)
as predicted, whereas

CCVT sampling patterns converge faster than both jitter and Poisson
disk. The best case (Gaussian 3D, Fig. 6(d)) convergence for CCVT
matches exactly with Eq. (27) for b = 3 (Fig. 3).

Multi-directional line sampling. We also perform multi-directional
line sampling convergence analysis, where we sample two or-
thogonal directions5 using different sampling patterns. As shown
in Fig. 4(c,d), among the two samplers used to generate line samples
along each direction, the one with the worse convergence behav-
ior ultimately decides the overall variance convergence rate. For
example, in Fig. 6(c,d) we have shown that CCVT outperforms all
samplers (along one or more directions) presented in this paper in
terms of convergence. However, during multi-directional analysis,
if one of the direction would be sampled by CCVT and the other
by n-rooks, or random or Poisson disk, the overall convergence rate
would fall back to naive Monte Carlo convergence O

(
N−1

)
.

Participating media. We also verified our predicted convergence
rates for a simple participating media rendering problem as shown
in Fig. 9. In this setup, we have a point light source in a homoge-
neous medium with a glass sphere (refractive index = 1.5) placed
at the center of the domain which cast volumetric caustics. We use
two different kinds of sampling strategies to simulate this illumina-
tion problem, corresponding to volumetric photon mapping using
points [Jarosz et al. 2008], and the long-photon beam variant [Jarosz
et al. 2011a; Jarosz et al. 2011b] which solves transmittance along
each direction analytically, forming line samples.

5Our analysis is equally valid for randomly oriented line samples.
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(a) Disk (b) Gaussian 2D (c) Environment map (d) Anisotropic Gaussian with N-Rooks

Figure 5: Point samples 2D: Illustrating variance convergence rate using 2D point samples (with anisotropic power spectra) for the worst
(Disk) and the simple (Gaussian) case integrands. Random sampling curve is there for reference. (d) We also analyse the change in convergence
by scaling an Gaussian along one direction using σx. Random sampling convergence plot is shown in dashes as reference for σx = 2, with
multi-jitter in dotted orange format.
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Note

that, since 2D line samples are generated using 1D point samples all stratifications (jitter, multi-jitter and n-rooks) would behave the same.
Figure 6: Line samples 2D & 3D: Empirical variance convergence rates for the worst (Disk, sphere) and the simple (Gaussian 2D & 3D)
case functions integrated using various line sampling patterns. For 2D, we only list jittered line samples since the 1D line positions generated
by jitter, multi-jitter and n-rooks produce identical lines and behavior.

As we go higher in dimension, the variance convergence rate deteori-
ates. However, if we compare the 2D spherecaustics scene rendered
with photons (Fig. 9(a)), to the 3D spherecaustic scene rendered
with beams (Fig. 9(d)), we see that the convergence rates are the
same. Initially, this behavior for the scene rendered with beams
in 3D seems surprising since we may expect to see improvement
in convergence due to smoothing of the underlying integrand, as
discussed in Sec. 5. The underlying sampling domain in both of
these cases (Fig. 9(a,d)), however, is actually 2D (denoted on top
of these images). The integral in Fig. 9(d) is not a smoothed out
version of light transport, but a discontinuous version over the 2D
angular domain, which would ultimately give the 2D worst case
convergence for all the samplers. This explains, why we get the
same worst case convergence rates in both Fig. 9(a) and 9(d) despite
using long beams in the latter.

8 Discussion

Just like line samples, line segment samples also have a highly
anisotropic Fourier power spectrum [Sun et al. 2013]. In this work,
we have focused our convergence analysis to line samples mainly

Table 1: Variance convergence for N , d-dimensional jittered point
samples [Pilleboue et al. 2015].

Dimension d d = 1 d = 2 d = 3

Best Case O
(
N−1− 2

d

)
O
(
N−3

)
O
(
N−2

)
O
(
N−

5
3

)
Worst Case O

(
N−1− 1

d

)
O
(
N−2

)
O
(
N−1.5

)
O
(
N−

4
3

)
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(a) Convergence plot for (b) (b) Ambient Occlusion
Figure 8: (a) Convergence analysis for a cornell box scene with
Ambient occlusion (b) using multi-jitter and n-rooks point samples
(Random samples are there for reference).
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(a) Spherecaustic 2D (Photons) (b) Spherecaustics 2D (long beams) (c) Spherecaustics 3D (photons) (d) Spherecaustics 3D (long beams)

Figure 9: Points & Lines: Illustrating variance convergence rate for a homogeneous participating media rendered in 2D and 3D using
photons (a, c) and long beams (which are photon beams that analytically compute transmittance along each direction) in (b,d). On the top, we
are showing the sampled dimensions for each case.

because all the rendering applications, that we are aware of, uses
line samples and not segments, to perform Monte Carlo integration.
However, our analysis can be easily extended to line segment sam-
ples. To illustrate that, we first write down the Fourier transform of
line segment samples that can be easily derived in the form:

FL(ν) =
1

N

N∑
j=1

e−2πi(ν·l⊥j )lSinc(ν · l‖j ) , (28)

Now, we provide a dual interpretation of line segment samples,
similar to line samples in Eq. (13):

IN =

∫
Φ

Segment sampling spectrum in d︷ ︸︸ ︷Original d-dimensional integrand︷ ︸︸ ︷
︸ ︷︷ ︸

Point sampling spectrum in d
︸ ︷︷ ︸

Prefiltered integrand f̃

1

N

N∑
j=1

e−2πi(ν·l⊥j )lSinc(ν · l‖j )Ff (ν) dν. (29)

The grouping specified by the over-braces is the original interpre-
tation of the d-dimensional integration where evaluating each line
segment sample involves integrating the original d-dimensional inte-
grand along the segment. The grouping specified by the under-braces
shows that we can also interpret this as first integrating the original
integrand’s Fourier spectrum Ff along the direction l

‖
j , within finite

extent of the segment, into a prefiltered d-dimensional integrand
spectrum, followed by point sampling the d dimensions. These two
equivalent interpretations are very similar to what we observed in
the case of line samples Eq. (13). However, the major difference
here is that there is no dimensionality reduction on integration along
the line segments. As a result, the convergence improvement that
we would obtain using line segment samples would be solely due to
smoothing of dicontinuities.

9 Appendix

A Monomial approximation of radial power spectra

We start from the very basic and look at the regular sampling power
spectrum more closely. As shown in Fig. 10, for N regular point
samples in 1D, the corresponding power spectrum ( Fig. 10(b))
contains replicas of the DC line, which is passing through the center
of Fig. 10(b)). These replicas (aliases) are N distance (frequency)
away from the DC peak, along the vertical axis. Now, if we go one
dimension higher, in 2D, the power spectrum would contain only
high energy peaks, with the horizontal or vertical distance between
the DC (component) peak and the first peak would be exactly

√
N .

As we go higher in the dimension, the first peak would be at a
distance d

√
N distance away from the DC peak along the canonical

(a) 1D point samples (b) Power spectrum of (a)

(c) 2D point samples (d) Power spectrum of (c)
Figure 10: Illustrating how far away is the first peak from the
DC component, which in (d) is located at the center of the power
spectrum and in (b) represents the horizontal line passing through
the center of the power spectrum.

axes, in d dimensions. This explains the fact why as we keep on
increasing the number of point samples, the regular sampling power
spectrum would contain less and less peaks near the low frequency
region around the DC peak.

This notion can be generalised to jitter and other stochastic (blue
noise) samplers, where the first peak in the jitter and/or blue noise
samplers can be scaled at a distance α d

√
N from the DC (component)

peak, where α > 0. Note that, the α variable can be used to align
all different radial sampling power spectra such that in the low
frequency region they all can be categorised, in an unbiased fashion,
according to their radial behaviour.

Now, for our analysis, we normalise the frequency components (νi)

of the d-dimensional power spectrum with d
√
N , which allows us to

write the PS(ν) in the normalised frequency form PS
(

ν

α
d√
N

)
. As

a result, we can represent the low frequency region, of the Power
spectrum for different samplers in a unit square, illustrated in Fig. 11,
irrespective of the number of point samples N used to compute the
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Figure 11: Radial curve is scaled using α parameter so that the low
frequency region could be well confined within the unit radial-power
axes. Note that, once the α value is adjusted, for any number of
samples, the corresponding radial power spectrum would not scale
with N , given that we normalize the radial frequency variable ρ by
α d
√
N .

power spectrum. In general, higher the number of samples used
to compute the samping power spectrum, the more accurate this
representation would be, for the power spectra.

A.1 Point Samples

To obtain the generalised polynomial profile for point samples, we
first consider the case of jittered point samples. The unnormalised
power spectrum for jittered sampling power spectra can be written
as:

〈PS(ω)〉 =


N2 DC component

N

(
1−

d∏
i

Sinc(πνi)
2

)
otherwise

,

(30)

whereas, the fully normalised power spectrum can be written as:

〈PS(ω)〉 =


1 DC component

1

N

(
1−

d∏
i

Sinc(πνi)
2

)
otherwise

.

(31)

Note that, the fully normalised sampling power spectra would have
it’s DC component value equal to 1, as shown in Eq. (31). Since the
variance does not depend on the DC component, we are only inter-
ested in the following term of the jittered power spectrum (Eq. (31)):

〈PS(ω)〉 =
1

N

(
1−

d∏
i

Sinc(πνi)
2

)
(32)

where νi is the i-th dimension of frequency vector ν. Pilleboue and
colleagues [2015] proposed a theoretical tool that allows to write the(

1−
∏d
i Sinc(πνi)

2
)

term from Eq. (32), in the following radially
averaged form:

=


γρb

αb d
√
N
b

ν < α d
√
N

γ otherwise

. (33)

where ρ > 0 is the radial frequency and b = 2 for jitter sam-
pling pattern [Gabrielli and Torquato 2004; Torquato et al. 2006].
Substituting Eq. (33) for

(
1−

∏d
i Sinc(πνi)

2
)

in Eq. (32), we

get the generalised expected power spectrum form, which in radial
frequency terms can be written as follows:

〈
P̆S(ρ)

〉
=


γρb

αb d
√
N
b
N

ν < α d
√
N

γ

N
otherwise

, (34)

where P̆S(·) represents the radial power spectrum. Note that, the
extra 1

N
factor in Eq. (34) is due to the factor 1/N in Eq. (32). This

generalised polynomial form of the power spectra is the same as
the one proposed by Pilleboue and colleagues [2015], with the only
exception that in this case (Eq. (34)) we are using a fully normalised
power spectrum that gives an extra 1

N
factor in this form.

A.2 Analytic Line Samples

In the case of line samples, we have shown in the paper that the
analytic jittered line sampling power spectrum can be written as:

〈PL(ω)〉 =
{

1
N

[
1−

∏d−1
i Sinc(πνil

⊥
i )

2
]

for jittered (35)

As a result, the above expression in Eq. (34), for the case of line
samples can be given as follows:

〈
P̆L(ρ)

〉
=


γρb

αbN
b

d−1N
ρ < αN

1
d−1

γ

N
otherwise

. (36)

where P̆L(ρ) represents the radial power spectrum, b = 2 for jitter
sampling pattern andN represents the number of line samples. Note
that, compared to Eq. (34), in Eq. (36) we have d− 1 instead of d,
which arises due to the line sampling power spectrum spanning only
a (d−1)-dimensional subspace. As a result, the line sampling power
spectrum in this d−1-dimensional subspace would have the form of
the point sampling power spectrum, with zero power along the d-th
dimension. For example, in 3D with line samples along the Z-axis,
we would obtain a 2D sampling power spectrum on the X-Y space
which would be the same as having a 2D sampling power spectrum
due to 2D point samples.

B Proof

To show that the overall convergence rate of a sampling pattern
can be obtained from a particular direction of its sampling power
spectrum, we start by assuming that only along one direction the
sampling power spectrum has constant energy over the whole radial
domain, i.e, it is bounded by a constant profile (bk = 0), whereas, for
all other directions we have a non-zero monomial behavior (bk > 0)
in the low frequency region. We rewrite Eq. (9) in-parts as follows:

Var (IN ) <

m−1
directions∑
k

[∫ ∞
0

ρd−1 〈PS(ρnk)〉 Pf (ρnk)dρ

]
∆nk (37)

+

∫ ∞
0

ρd−1 〈PS(ρnr)〉 Pf (ρnr)dρ , (38)

where, we have separated one of the direction 1 ≤ r ≤ m (with
constant profile) from all the m− 1 directions. We divide the m− 1
directions in the low and high frequency regions while keeping the



r-th direction as it is:

Var (IN ) <

m−1
directions∑
k

[∫ ν

0

ρd−1 〈PS(ρnk)〉 Pf (ρnk)dρ+∫ ∞
ν

ρd−1 〈PS(ρnk)〉 Pf (ρnk)dρ

]
∆nk (39)

+

∫ ∞
0

ρd−1 〈PS(ρnr)〉 Pf (ρnr)dρ (40)

Since the r-th direction has a constant profile (PS(ω) = γ/N ) we
can rewrite the whole integral as:

Var (IN ) <

m−1
directions∑
k

[∫ ν

0

ρd−1 〈PS(ρnk)〉 Pf (ρnk)dρ+∫ ∞
ν

ρd−1 〈PS(ρnk)〉 Pf (ρnk)dρ

]
∆nk (41)

+

∫ ∞
0

ρd−1 γ

N
Pf (ρnr)dρ (42)

Here, the integral over the r-th direction doesn’t depend on N
irrespective of what the function f is, therefore, we can rewrite it in
O(·) notation as follows:

Var (IN ) <

m−1
directions∑
k

[∫ ν

0

ρd−1 〈PS(ρnk)〉 Pf (ρnk)dρ+∫ ∞
ν

ρd−1 〈PS(ρnk)〉 Pf (ρnk)dρ

]
∆nk (43)

+O
(

1

N

)
(44)

To solve the integrals over the other m− 1 direrctions, we chose the
worst and the best cases (Eq. (16)) for a given class of functions:

Worst Case:

Var (IN ) <

m−1
directions∑
k

[∫ ρ0

0

ρd−1 γk
N

(
ρ

αkNk

)bk
cfdρ (45)

+

∫ ν

ρ0

ρd−1 γk
N

(
ρ

αkNk

)bk
cfρ
−d−1dρ (46)

+

∫ ∞
ν

ρd−1 γk
N
cfρ
−d−1dρ

]
∆nk +O

(
1

N

)

<
γk cf
N

m−1
directions∑
k

[∫ ρ0

0

ρbk+d−1

(αkNk)bk
dρ

+

∫ ν

ρ0

ρbk−2

(αkNk)bk
dρ

+

∫ ∞
ν

ρ−2dρ

]
∆nk +O

(
1

N

)
(47)

Here, ν = αkNk, which after plugging in above equation gives:

Var (IN ) <


∑ m−1

directions
k O

(
1

NNk
bk

)
+O

(
1
N

)
0 < bk < 1∑ m−1

directions
k O

(
1

NNk

)
+O

(
1
N

)
bk ≥ 1

(48)

Since, the sum ofO(·) notations is asymptotically dominated by the
worst O(·) behaviour. We can write the overall convergence rate,
using Eq. (48), in the following form:

Var (IN ) < O
(

1

N

)
(49)

This shows that, the asymptotic convergence rate of a sampling
pattern, with anisotropic sampling power spectra, depends on the
direction that has the O(1/N) convergence rate. However, if none
of the directions has a constant profile behaviour, the overall con-
vergence rate can be summarized from Eq. (48) in the following
form:

Var (IN ) <

O
(

1

NNk
bk

)
0<bk<1

infimum

O
(

1
NNk

)
bk ≥ 1

, (50)

where, the overall convergence rate would be dominated by the k-th
direction having the minimum value of bk, for bk ∈ (0, 1).

Best Case:

Var (IN ) <

m−1
directions∑
k

[∫ ρ0

0

ρd−1 γk
N

(
ρ

αkNk

)bk
cfdρ

]
∆nk +O

(
1

N

)

<
γk cf
N

m−1
directions∑
k

[∫ ρ0

0

ρbk+d−1

(αkNk)bk
dρ

]
∆nk +O

(
1

N

)
(51)

Var (IN ) <

m−1
directions∑
k

O
(

1

NNk
bk

)
+O

(
1

N

)
, (52)

where, bk > 0. Again, since the sum of O(·) notations is asymptoti-
cally dominated by the worst O(·) behaviour. The overall conver-
gence rate is:

Var (IN ) < O
(

1

N

)
(53)

However, from Eq. (52), if none of the directions has a constant
profile behaviour, the overall convergence rate would be dominated
by the k-th direction having the minimum value of bk, and can be
written in the following form:

Var (IN ) <
{
O
(

1

NNk
bk

)
∀ bk>0

infimum (54)
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