View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Dartmouth Digital Commons (Dartmouth College)

Dartmouth College
Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

1-1-2015

Optimistic and Parallel Ising Model Estimation

James Brofos
Dartmouth College

Rui Shu
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

b Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation
Brofos, James and Shu, Rui, "Optimistic and Parallel Ising Model Estimation” (2015). Computer Science
Technical Report TR2015-766. https://digitalcommons.dartmouth.edu/cs_tr/366

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.


https://core.ac.uk/display/337601432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/366?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth College Computer Science Technical Report TR2015-766

OPTIMISTIC AND PARALLEL ISING MODEL
ESTIMATION

By JAMES BROFOS AND RUI SHU
Dartmouth College

We consider a new method for estimating the structure of Ising
graphical models from data. We assume that the data is observed
with error, so that it is, in a sense, unreliable. We propose and inves-
tigate an “optimistic” estimator; that is, an approach that seeks to
correct the log-likelihood objective function when some amount of the
data is known to be mismeasured. We derive an interior point algo-
rithm that constructs our estimator efficiently, and demonstrate that
it leads naturally to a parallel procedure for recovering the graphi-
cal structure of Ising models. We show that the optimistic estimator
has performance comparable to, and exceeding, regularized logistic
regression in the presence of noise.

1. Introduction. Let Xi,...,X; be random variables taking values
in the dichotomous set {—1,+1}. We define G = (V, E) to be a simple,
undirected graph such that V' = [k] = {1, ..., k}. The Ising model associates
to each vertex in GG a random variable such that,

(11) ]P)[Xl :£E1,...,Xk :{L‘k] =

exp § Ou,vxu$v )

4 (0) (u,v)EE

where 0, ,, is regarded as the edge weight in G between vertices v and v. The
term Z (0) serves the role of a normalizing constant and is typically called
the partition function of the Ising graphical model.

The structure estimation procedure we consider is based on conditional
probabilities for each vertex. Defining the neighborhood of a vertex v as

(1.2) ne(v) ={ueV:(uv)€E},

it can be shown that the conditional probability distributions in the Ising
model satisfy the logistic relation

P[Xy = 24| Xy = Xy, u # ]
( ) Og<1_P[Xv_xv|Xu_wU7u7év] Z .

u€ne(v)

(1.4) = Y B

uene(v)


http://www.cs.dartmouth.edu/reports/

2 JAMES BROFOS AND RUI SHU

Estimation of the underlying graphical model, and, in particular, the edge
weight vector 6, can therefore be achieved by estimating the k logistic re-
gression problems assuming the form of (1.3). In the next section we derive
an algorithm for an estimator of the edge weight coefficients when X, is
observed in a faulty manner.

2. Main Results. Denote by X € {—1,+1}"** the data drawn in an
i.i.d. fashion from an Ising model with individual rows of the matrix being
denoted by X; for ¢ € [n]. The purpose of this analysis is to construct a
logistic regression model that optimistically corrects measurement errors. In
the language of robust optimization, we define an uncertainty set U as

(2.1) u—{Ae{O,l}”:iAigF},

i=1

where I' € [n] is assumed to be a known parameter. The natural interpre-
tation of I' is that it is an upper bound on the maximum number of flipped
bits that may be present in the response variable y. A I' = 0 corresponds to
noiseless observations of y whereas I' = n corresponds to a potentially very
noisy observation where every bit is flipped from its true value!

Given a set of n observations (y;, X;) for i € [n] we assume that y has
been corrupted so that the true response variable for the i*" observation is
ly: — A;|. Therefore, A may be viewed as a binary vector that encodes a one
in the i*" position if y; is measured with error and zero otherwise. As above,
we assume that there are at most I" corruptions of the response variable.

ProprosITION 2.1.  We evaluate an optimistic approach for obtaining the
coefficients in a logistic regression. In particular, the estimator we propose
1s defined to be the solution to the optimization problem,

2.2 log £(ly — Al. X
(2.2) max max log (ly |, X, 8, Bo),

where log L (+) is the log-likelihood function of the logistic regression model.

REMARK 2.1. The intuition behind the estimator in (2.2) is that we
view y as a worst-case corruption from |y — A| in terms of the likelihood.
Therefore, in the same traditional line as maximum likelihood, we attempt
to “correct” the response variable y so as to maximize the likelihood for
a fixed pair (S, 5p). The form of this estimator is somewhat contrary to
existing literature on robust optimization where instead |y — A| is assumed
to be the least likely configuration of the response variable.
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2.1. Dual Formulation of the Optimistic Estimator.

THEOREM 2.1. The inner optimization problem of the optimistic ap-
proach in (2.2) has the same objective value as the mazimization problem,

(2.3) max —I'p— Z g +Yyi (B'Xi + ﬁo) — log (1 + eBlXngO)
i=1

(2.4)  Such that p+q; > (—1)"" (8'X; + fo)

(2.5) p>0 and ;>0 V i€ n].

PROOF. Observe that the log-likelihood of the logistic regression model
in (2.2) may be expressed,

n

> (1Y (BXi+ Bo) A+ > yi (BXi + Bo)

i=1 i=1

(2.6) .
— Zlog (1 + exp {,B’X,- + Bo}) .
i=1

Only the terms under the first sum possess a dependency on A. Therefore,
the optimal solution to the inner maximization problem in (2.2) is identical
to that obtained from the problem,

n

(2.7) max  »_(—1)¥ (BXi+ Bo) A
=1

(2.8) Such that » A;<T and 0<A; <1V i€ [n].
=1

It is easy to see by strong duality that this maximization problem is equiv-
alent to the linear program relaxation,

(2.9) max —I'p— Z qi

i=1
(2.10) Such that p+¢; > (—1)"" (ﬂ'Xl + ﬁo)
(2.11) p>0,¢, >0 VY i€ln].

The equivalence of objective functions follows quickly from here. O
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2.2. Interior Point Derivation. For ease of notation we begin straight
away by defining a function that expresses the dual objective function of
Theorem 2.1. In particular, let Z (p,q, 3, Bo) be the objective function in
(2.3). Apparently the optimistic optimization problem,

(2.12) max  Z(p,q, B, Bo)
(2.13) Such that p+¢; — (—1)Y (5’Xi + 50) >0
(2.14) p>0 and ¢; >0 V i€ [n],

may be solved using an interior point method. We devote the remainder of
this section to the proper derivation of that interior point algorithm.

LEMMA 2.1.  The optimal solution to the optimization problem is equiv-
alent to the solution of the unconstrained mazimization problem as p — 0
iteratively,

max Z (p,q,[,50) + 1 Z log (p+ ¢i — (=1)”" (8'Xi + fo))
(2.15) =1

n
+plogp+ Y logg;.
=1

In order to further simplify the notation, we denote the objective function in
(2.15) by H (p,q, B, B0). This H () essentially serves the role of the barrier
function and p is the so-called barrier parameter.

In the style of Newtonian optimization algorithms, we first compute the
derivatives of # (+). This is conceptually simple but notationally quite cum-
bersome so we report only the ultimate results.

oM L
(2.16) 87p_ _F+“;p+qi—(—1)yi (B'X; + Bo) "

B Xi+Bo
860 Zy T 11 P Xitho

SRS

(2.17)

B Z 1)}’1
M g = (C1)Y (X, + fo)
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OH 1 p
2.18 =1+ : Laly
(2.18) Das e ) X A g

oM " eB'Xi+Bo

0, ~ T &Y T T X
(2.19) =

n (_1))’i
— : X .

; p+ai— (=1 (B'X; + o)
Additionally, we require the matrix of second derivatives. We spare the
reader the equations that are used to construct the Hessian and we refer
the reader to the appendix for a treatment of these quantities.

2.3. Eaxplicit Interior Point Algorithm for the Optimistic Estimator. We
present here an explicit algorithm for constructing the coefficients of the op-
timistic estimator. It can be readily observed (by function composition rules)
that H (p, ¢, B, Bo) is a concave function of its parameters. This, in conjunc-
tion with the twice differentiable objective function, makes the solution to
(2.15) tractable for an interior point method.

The details of the algorithm are outlined as follows.

Data: The design matrix X, the response vector y, and a positive integer I'.
Result: A vector § that estimates the edge weights of the Ising graph 6.
Initialize (p,q, 8, Bo) = (1,1,0,0). Set a stopping criterion €. Set the barrier
parameter p = 1.

while True do

Calculate the vector update direction (Ap, Agq, AB, ABy) = — (VQH)_l VH.

if [[VH]|| < e then
| Update the barrier parameter u = pu X w for some quantity 0 < w < 1.

end

if (2n+1) (u) < € then
| Break.

end
For some « > 0 update (p, q, 8, 50) = (p,q, B, Bo) + a (Ap, Aq, AB, ABo). This «
may be determined by the Armijo rule for instance.

end
Output: The edge weight coefficients 6 = g

Algorithm 1: Interior Point Algorithm for the Optimistic Estimator

REMARK 2.2. It is interesting to note that the algorithm derived here
never explicitly requires that X be a dichotomous matrix. In fact, this same
interior point algorithm holds for arbitrary design matrices. However, as the
Ising graphical model was our proposed focus area, we devote the remainder
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of this work to empirically demonstrating that the optimistic estimator is
competitive with, and even exceeds, state-of-the-art methods for estimating
the structure of such graphical models.

3. Software & Numerical Experiments. In order to evaluate the
efficacy of our approach we implement several numerical experiments and
illustrate the results in this section. The algorithms discussed here were
implemented in the Python 2.7.9 programming language. Details of the
implementation are publicly available on the software’s homepage: https:
//github.com/JamesBrofos/Optimistic-Ising-Estimation.

3.1. Parallel Estimation Paradigm. As indicated previously, estimation
of Ising graphical models via a logistic regression framework is advantageous
because structure can be inferred in parallel. In particular, this is achieved
by estimating k logistic regression models (one for each of the k vertices
appearing in the graph). To exploit this embarrassingly parallel property
with distributed computing, we take a master-worker-based approach to the
estimation problem, assigning to the master process a queue of optimistic
estimators to construct which in turn tasks these to worker processes as they
become available.

REMARK 3.1. We note that structure estimation with this distributed
logistic regression framework does contain a degree of redundancy. It is easily
seen that for vertices u and v and u € ne(v) in practice the edge weight
6., is estimated twice: once for the regression of u on ne (u) and again for
the regression of v on ne (v). In an ideal environment, these estimates would
be equal, though this is in practice unlikely to be the case. In an effort
to correct this likely issue, we simply average the coefficients obtained from
either logistic regression model and take this value as our ultimate estimated
edge weight between vertices u and v.

We make use of Message Passing Interface (MPI), a common mecha-
nism for programming and coordinating distributed systems. MPI provides
a standardized message passing interface that permits multiple processes in
a cluster to transmit and receive information.

3.2. Experimental Design. We compare the optimistic estimator to #1-
regularized logistic regression, a state-of-the-art method with appealing the-
oretical properties. To evaluate the performance of these two approaches we
generate synthetic data from an Ising graphical model and task the algo-
rithms with recovering the edge weights. In particular, we design two exper-
iments as follows:


https://github.com/JamesBrofos/Optimistic-Ising-Estimation
https://github.com/JamesBrofos/Optimistic-Ising-Estimation
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(a) Metric Errors for n = 100. (b) Metric Errors for n = 500.

Fig 1: Measurements of the £; and /5 errors for logistic regression models un-
der uncertainty in the response variable. As expected, for fixed sample size,
increasing the corruption of the dependent variable drives the error metric
higher on average. We compare the optimistic estimator with ¢;-penalized
logistic regression and find that the optimistic estimator outperforms the
alternative in the presence of errors in the variables.

1. We drawn 100 samples from an Ising graphical model with 3 vertices.
Edge weights are generated uniformly at random from a standard nor-
mal distribution. We corrupt the data such that the true likelihood
function is minimized for I' € {10, 20, 30, 40}.

2. We drawn 500 samples from an Ising graphical model with 5 vertices.
Edge weights are again generated uniformly at random from a standard
normal distribution. We corrupt the data such that the true likelihood
function is minimized for I' € {20, 40, 60, 80, 100}.

One vertex is selected as the dependent variable and the remaining vertices
are then taken as the explanatory variables. We repeat these experiments
fifty times for each value of I' and report the results. As a performance
metric, we provide the average ¢; and /o distance of the estimated edge
weights from their true values.

3.3. Results. The results of these experiments are shown in Figure 1. We
observe that the optimistic estimator, in the presence of unreliably reported
dependent variables, is consistently superior in terms of both error metrics.
We infer that the performance of either estimator decreases at approximately
the same rate I' increases.
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4. Estimation of Ising Graphical Models. Having at this point em-
pirically demonstrated a consistent performance increase related to the op-
timistic estimator we propose, we turn our attention now to evaluating the
error of our approach on some common Ising models. We evaluate the per-
formance of the optimistic estimator on the k logistic regression problems on
three different graphical model classes. The first is a 15-vertex Ising chain.
The second is 4 x 4 Ising grid. The third is a 3 x 3 x 3 Ising chimera. For each
case we select n € {50,100, 250,500} and in each case set I' = 5 This selec-
tion of I' is low and was chosen to reflect a high confidence in the accuracy
of the approximate distribution generated through Gibbs sampling.

The procedure for evaluating performance is the same for each variety
of underlying graphical structure. The edge weight parameter 6, , is drawn
uniformly at random from the interval [—1, +1] for every (u,v) € E. Samples
are then drawn approximately from the Ising model using Gibbs sampling.
For each vertex, an optimistic logistic regression model is fit and the ¢; and
{5 distances of the estimate from the truth are recorded.

REMARK 4.1. We note that it is often perfectly reasonable to anticipate
that data drawn from an Ising graphical model is obtained with some amount
of error. This is because most mechanisms for sampling from the underlying
distribution are only approximate and rely on Monte Carlo techniques to
estimate the behavior of samples.

The results of this analysis are presented in Table 1. As expected the ac-
curacy of the optimistic estimator improves, ceteris paribus, as a function of
the number of samples. More complex classes of graphs are more difficult to
estimate that simpler models, with the chimera achieving the highest error
in both the ¢; and £ norms. In order to implement a distributed estimation
scheme, we use a 2.9GHz MacBook Pro with four independent processes.
Three of these processes are devoted to the construction of the optimistic
estimators, whereas the remaining process handles the delegation of tasks.
We show that adopting the distributed approach to estimation significantly
decreases the wallclock time required to construct a single optimistic esti-
mator.

5. Conclusion. We propose an estimator of Ising graphical models
(and more generally of logistic relations) that seeks to correct inaccurately
measured response variables so that the data makes as much “sense,” in
terms of the likelihood, as possible. We derive an interior point algorithm
that can be used to efficiently construct our estimator. We demonstrate that
our approach is competitive with, and exceeds, regularized logistic regression
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TABLE 1

We measure the average performance of the optimistic estimator on three classes of
graphs and report the edge weight reconstruction accuracy and time-to-completion.
Parallel computing was performed on a 2.9GHz MacBook Pro with four processes. The

reported time is wallclock time and is shown in minutes.

Performance Metrics

£1-norm £o-norm Sequential Time Parallel Time

Ising Chain 19.0141 9.0303 3.029 1.457

(12.8499) (5.8798) (0.381) (0.721)

n = 50 Ising Grid 31.7966 12.7103 8.887 3.474
(20.8320) (9.0285) (2.139) (1.164)

Ising Chimera 112.9065 22.3757 100.357 30.205

(46.0315) (10.1972) (10.795) (5.367)

Ising Chain 11.1084 6.0591 4.864 1.745

(8.2285) (6.5071) (2.011) (1.153)

n = 100 Ising Grid 17.6933 7.3620 10.486 3.231
(9.8632) (6.2498) (2.049) (1.345)

Ising Chimera 76.0397 18.4424 110.634 38.901
(28.5035) (10.7930) (20.462) (15.189)

Ising Chain 7.2526 2.9544 6.375 2.012

(3.9337) (1.4452) (1.998) (0.993)

n = 250 Ising Grid 15.8873 5.7050 12.553 4.032
(17.1335) (7.9849) (2.856) (2.134)

Ising Chimera 40.2116 8.5715 130.971 50.420
(13.6180) (4.7329) (30.735) (22.787)

Ising Chain 4.4213 1.2967 10.138 4.337

(2.021) (1.560) (2.078) (2.624)

n = 500 Ising Grid 11.298 3.217 18.971 7.341
(10.069) (5.054) (4.638) (2.584)

Ising Chimera 30.698 4.837 160.083 70.012
(8.278) (1.021) (28.625) (25.311)

Note: Standard deviations are shown in parentheses.
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in structure estimation tasks in Ising models when variables are measured
with error. We also demonstrate that significant speed increases in struc-
ture estimation may be achieved by leveraging an embarrassingly parallel

computing architecture.
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APPENDIX A: SECOND DERIVATIVE MATRIX

We present the second derivatives relevant to the construction of the
Hessian matrix for H (-), holding the barrier parameter constant. By the
equality of mixed partials, we calculate only ten derivatives. We begin with
the unmixed second derivatives.

0*H - 1
(A1) —z—uz( -5,

apQ =1 p + q; — (_1)yz (B/X,L + BO))Q »
: a 3 B e
(A_2) O“H _ (p+qi—(—1)Yi (B'X;+50))° a7 if i = j
0q;4; 0 otherwise,
(A 3) 858 a i= (1 —+ e,B/Xi+BO)2
| 1
+u . |
; b+ a = (=17 (5% + o)’
O?H B n eﬁ X480 ‘ x
(A.4) 00k96; - - (L+ eﬂ’XwﬁD)? i,J N,k

ny Z X”sz

= (p+ai— ()Y (BX + o)

We continue on with the mixed partials as follows.

0*H J
A5 - — 9
(4.5) 000p ()Y (5K, + o))
827‘[ n (_1))%'
A6 — 9
(4.6) dfo0p le (p+a — (1) (8%, + Bo))”
2N (_1)yi
(A1) 0505 ot aq— (L1 (%1 o)
827’[ n (_1)}’i
(4.8) 9p;0p Mizl (p+aq — (1) (BXi+ Bo)”
827'[ n 65'Xi+50 %
OpodB] — £ (14 eFXery?
(A.9) <
n bod :
“Z P+ — (—1)¥ (BX; + Bo))
(A.10) LAt b

96006 "o+ g — (1) (BXi 1 Bo))
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