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INFORMATION-THEORETIC LIMITS FOR DENSITY
ESTIMATION

By James Brofos∗

Dartmouth College∗

This paper is concerned with the information-theoretical limits
of density estimation for Gaussian random variables with data drawn
independently and with identical distributions. We apply Fano’s in-
equality to the space of densities and an arbitrary estimator. We
derive necessary conditions on the sample size for reliable density re-
covery and for reliable density estimation. These conditions are true
simultaneously for both finitely and infinitely dimensional density
spaces.

1. Introduction. Given a set of k normal densities {f1, . . . , fk} (as-
sumed to be univariate), a single density is selected uniformly at random
and n samples are generated from it. The density that was selected (and
in particular its index in {1, . . . , k}) is assumed to be unknown, though we
are provided the samples. Denoting these n samples collectively as Xn, the
task is then to estimate, from Xn, which of the k densities was responsible
for generating the data. This problem of density recovery from data is one
that appears ubiquitously in statistics and related fields. We also treat the
problem of density estimation, which, rather than estimating the index of
the underlying distribution, estimates the distribution itself.

In this paper, we consider the information-theoretic limits of the density
recovery and density estimation problems for Gaussian random variables
and samples generated from thm in an i.i.d. manner. We treat this problem
very generally, and in fact our results hold for any algorithm and associated
computational complexity. The key ingredient of this analysis is Fano’s in-
equality, which has been at the source of many recent exciting developments
in theoretical statistics and machine learning.

Throughout this paper we will assume that the distributions are identifi-
able in the sense that if fi is parameterized by θi =

(
µi, σ

2
i

)
, then θi 6= θj

whenever i 6= j. It is understood that, throughout this paper, probabilities
and expectations are computed with respect to the appropriate probability
measure induced by a density.

2. Main Results. We establish necessary conditions on the sample size
for both reliable density recovery and reliable density estimation associated
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2 JAMES BROFOS

with an estimator. We define ψ : X n → {1, . . . , k} to be an estimator of the
density index. We begin by introducing two definitions for ψ that will be
useful in our analysis.

Definition 2.1 (δ-Suspect and δ-Inconsistent). We say that an estima-
tor for the index of the true density ψ is δ-suspect if

max
i∈{1,...,k}

P [ψ (Xn) 6= i] ≥ δ.(2.1)

Furthermore, the density selected by ψ on the basis of n samples, denoted
fψ, is said to be δ-inconsistent if

max
i∈{1,...,k}

E
[
||fψ − fi||1

]
≥ δ.(2.2)

The notation ||·||1 denotes, as usual, the manhattan norm, which is for prob-
ability densities twice the total variation distance.

Remark 2.1. Lower bounds in 2.1 on the error probability and in 2.2
on the total variation distance are useful primarily for establishing necessary
conditions for any density index estimator ψ. In particular, one can establish
an upper bound on the right-hand side of either 2.1 or 2.2, say δ < δ′, and
deduce a lower bound on the sample size n that will depend on δ′. This lower
bound can then be viewed as a necessary (although certainly not sufficient)
condition for any estimator ψ to be reliable in terms of density recovery or
density estimation.

We now present our main results as two theorems relating the sample size
for density estimation problems for k normal densities with parameteriza-
tions {θi}ki=1 to notions arising from information theory.

Theorem 2.1 (Necessary Condition for Density Recovery). Let Ξ be
distributed uniformly at random from {1, . . . , k}. Then if Ξ = i, we have
that Xn

j ∼ fi for all j ∈ {1, . . . , n}. If ψ is an estimator of Ξ from Xn, then

max
i

P [ψ (Xn) 6= i] ≥ 1−
n
k2
∑k

a=1

∑k
b=1DKL (fa, fb) + log 2

log k
(2.3)

≥ 1−
n ·maxa,b {DKL (fa, fb)}+ log 2

log k
.(2.4)

It follows that a necessary condition for ψ to not be a δ-suspect estimator
we must have,

n >
log k

2 − δ log k

maxa,b

{
log σb

σa
+ σ2

a+(µa−µb)2
2σ2
b

− 1
2

} .(2.5)
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Theorem 2.2 (Necessary Condition for Density Estimation). Under the
same assumptions as in Theorem 2.1, we have for any density estimator fψ
that the worst case (with respect to Ξ = i), is lower bounded as

E
[
||fψ − fi||1

]
≥

mina,b

{
2− 2

√
2σaσb
σ2
a+σ

2
b
e

−1
4

(µa−µb)
2

σ2a+σ
2
b

}
2

×(
1−

n ·maxa,b {DKL (fa, fb)}+ log 2

log k

)
.

(2.6)

Denote by α the quantity attaining the minimum in 2.6. Then a necessary
condition for fψ to not be a δ-inconsistent estimator of the density is

n >
(α− 2δ) · log k − α · log 2

α ·
(

maxa,b

{
log σb

σa
+ σ2

a+(µa−µb)2
2σ2
b

− 1
2

}) .(2.7)

Remark 2.2. It should be noted that this same approach can be applied
to subsets of the k densities in the event that a more satisfying lower bound
on n can be obtained in this fashion. Indeed, if F denotes a class of densities
with a subclass of densities F′, then clearly the number of samples required
for reliable density recovery (or estimation) is the maximum of the lower
bounds obtained by applying Theorem 2.1 (or Theorem 2.2) to F and F′

individually.

Example 2.1. Suppose we have a set of three normal densities with dif-
ferent means and variances {N (0.89, 0.59) ,N (0.90, 0.60) ,N (0.91, 0.61)}.
The bounds in Theorems 2.1 and 2.2 are most useful in “difficult” esti-
mation problems, where the Kullback-Leibler divergence is small. In this
example,

max
a,b

{
log

σb
σa

+
σ2a + (µa − µb)2

2σ2b
− 1

2

}
= 0.017(2.8)

min
a,b

{
2− 2

√
2σaσb
σ2a + σ2b

e
−1
4

(µa−µb)
2

σ2a+σ
2
b

}
= 7.55× 10−5.(2.9)

Therefore, the necessary condition from Theorem 2.1 is n ≥ 18 for δ = 0.10.
Additionally, the necessary condition from Theorem 2.2 is n ≥ 22 for δ =
1× 10−6.
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3. Proof of the Main Results. Theorems 2.1 and 2.2 characterize the
number of samples required for reliable density recovery and estimation us-
ing bounds on information-theoretic quantities. The remainder of the paper
is devoted to proving these two theorems. We begin with a quantity well-
understood in statistics and information theory that quantifies the similarity
between two probability distributions.

Definition 3.1 (Squared Hellinger Distance). The squared Hellinger
distance between two probability measures π1 and π2 is given as

H2 (π1, π2) =
1

2

∫ (√
dα1

dγ
−

√
dα2

dγ

)2

dγ.(3.1)

The variable γ is a probability measure. In particular, if π1 ∼ N
(
µ1, σ

2
1

)
and π2 ∼ N

(
µ2, σ

2
2

)
then the squared Hellinger distance becomes

H2 (π1, π2) = 1−

√
2σ1σ2
σ21 + σ22

exp

{
−1

4
· (µ1 − µ2)2

σ21 + σ22

}
.(3.2)

Remark 3.1. The squared Hellinger distance will prove to be an in-
dispensable quantity for our application. It is a well-known result that the
squared Hellinger distance is always less than or equal to the total variation
distance for two probability measures. Since the total variation distance
for normally distributed random variables does not have closed-form, the
tractability of the the squared Hellinger distance makes it a natural choice
in practical applications as well.

It is easy to see that since the total variation is exactly one-half the man-
hattan distance, we can introduce a factor of two into the squared Hellinger
distance and still obtain a valid lower bound on the manhattan distance.

We have assumed that each of the k distributions are parameterized by
vectors {θi}ki=1. For our purposes it will suffice to lower bound the (non-
trivial) total variation for all distributions using the squared Hellinger dis-
tance. We see that a global lower bound, and the corresponding indices in
{1, . . . , k}, is given as

(i?, j?) = arg min
i,j∈{1,...,k}:i 6=j

1−
√

2σiσj
σ2i + σ2j

exp

{
−1

4

(µi − µj)2

σ2i + σ2j

}
.(3.3)

It makes no difference as to how ties are arbitrated and we do not discuss
the possibility further.
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As it will turn out, we will also require an upper bound on the Kullback-
Leibler divergence between all the k densities. In the case of Gaussian den-
sities, the Kullback-Leibler has a simple closed-form. In particular, we have
for Gaussian probability measures π1 and π2,

DKL (π1, π2) = log
σ2
σ1

+
σ21 + (µ1 − µ2)2

2σ22
− 1

2
.(3.4)

This quantity is easy to maximize as a function of the densities fi and
fj (noting, of course, that due to the asymmetry of the Kullback-Leibler
divergence, DKL (fi, fj) 6= DKL (fj , fi)). We denote the indices achieving
this maximum as the ordered tuple (i◦, j◦).

Theorem 3.1 (Fano’s Inequality for Statistics). Let Ξ be distributed
uniformly at random in the set {1, . . . , k}. Let a realization of Ξ be the
index i. Then the density of Xn

j is fi which has parameterization θi for all
j ∈ {1, . . . , n}. Then if ψ (Xn) is an estimator of Ξ based on the available
data, we have

max
i

P [ψ (Xn) 6= i] ≥ 1− I (Ξ : Xn) + log 2

log k
(3.5)

≥ 1− nβ + log 2

log k
.(3.6)

Here the parameter β is chosen such that ∀ i, j the Kullback-Leibler diver-
gence for densities fi and fj is upper bounded like DKL (fi, fj) ≤ β. It should
be noted that the bound in 3.6 follows from standard entropy bounds for col-
lections of random variables.

Corollary 3.1. A more general, but markedly less popular, version of
Fano’s inequality emerges when one considers the total variation distance.
The only additional requirement compared to the “vanilla” version in Theo-
rem 3.1 is a lower bound on the (non-trivial) total variation distance across
all density pairs. If we denote this lower bound by α the the general form of
Fano’s inequality becomes,

max
i

E
[
||fψ − fi||1

]
≥ α

2

(
1− nβ + log 2

log k

)
.(3.7)

We use the notation fψ to indicate an density estimated by the estimator φ
on the basis of n samples drawn in an i.i.d. fashion from fi.

At this point the proof of Theorems 2.1 and 2.2 requires only a little
algebra to derive.
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Proof. Notice from first principles that both 3.5 and 3.7 are decreasing
functions of n. It should be apparent that both can be crushed to zero in
the limit as n→∞. Plainly, if we set either of the right-hand side quantities
in 3.5 or 3.7 to be less than any δ > 0, then the bound can be satisfied by a
particular choice of n. By rearranging we have for the density recovery case,

n >
log k

2 − δ log k

β
.(3.8)

Similarly for the density estimation case,

n >
(α− 2δ) · log k − α log 2

αβ
.(3.9)

The desired inequalities can be obtained by the substitutions,

α = 2− 2

√
2σi?σj?

σ2i? + σ2j?
exp

{
−1

4
· (µi? − µj?)2

σ2i? + σ2j?

}
(3.10)

β = log
σj◦

σi◦
+
σ2i◦ + (µi◦ − µj◦)2

2σ2j◦
− 1

2
,(3.11)

This gives the claimed necessary conditions on the sample size n.
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