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CrossComp: Comparing Multiple Artists Performing Similar Modeling Tasks
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Figure 1: A subset of snapshots from Scout sequence by Author.

1 Abstract

In two previous papers, we have focused on summarizing and visu-
alizing the edits of a single workflow and visualizing and merging
the edits of two independent workflows. In this paper, we focus on
visualizing the similarities and dissimilarities of many workflows
where digital artists perform similar tasks. The tasks have been
chosen so each artist starts and ends with a common state. We
show how to leverage the previous work to produce a visualization
tool that allows for easy scanning through the workflows.

2 Introduction

Let us consider the following scenario as a motivating example.
Suppose that a digital arts instructor assigns to the students the task
of creating a particular 3D model. The assignment could be used
to assess the students’ ability or technique or to teach the student
a new technique. For the former use-case, the instructor might
choose to give to the students a target model to recreate. For the
latter, the instructor might present the instructions in the form of a
video tutorial. The scenario illustrated above is a common practice
especially for web-based mentoring, such as with CG Cookie.

When the assigned task involves many components, the instructor
may ask the students to periodically save a snapshot of their model
as they work and then submit their workflow as a work-in-progress
sequence. When the task is a single piece, the students may only
report the final state of their model.

In [Denning et al. 2011] and [Denning and Pellacini 2014], we
demonstrated two systems that summarize and visualize a single
artist working on a single task. Clearly, the instructor could use
one of these tools to review the workflow of each student. These
tools and techniques, however, do not help with determining how
closely the student followed the tutorial, with identifying effective
or efficient workflow patterns, or with finding poor techniques or
common modeling problems.

In this paper, we present CrossComp, a system designed to help
compare multiple artists performing similar mesh editing tasks. We
focus on task-based polygonal modeling workflows, where the start
and ending conditions are highly defined but the workflows from
start to finish may differ. We demonstrate CrossComp by analyzing
four subjects performing four tasks, where three tasks use a video
tutorial and the fourth uses a target 3D model. We remark on some
observations on the workflows that are clear in CrossComp but
might have been missed with manual inspection or with inspecting
only snapshots. Finally, we conclude with reporting on open-ended
feedback from a professional digital artist and instructor and with
discussing limitations and future research directions for this work.

3 Related Work

The works by Kong et al. [Kong et al. 2012] and Pavel et al. [Pavel
et al. 2013] are closely related to the work presented in this paper.
The goal of their work is to help users identify the trade-offs
between many possible workflows that perform the same image-
editing task, such as “Find Edges” or “Sketch Effect”. They present
and evaluate different workflow visualizations for displaying and
comparing image-editing workflows. One visualization, called
union graph, compares two sequences of commands by showing
each sequence as a directed graph with a node for each operation
and directed edges to indicate temporal order. The similarity and
dissimilarity is indicated by overlapping nodes of the two graphs
if the corresponding operations are sufficiently similar in terms of
operation name or type and parameter settings. Another, called
alignment view, compares two or more sequences of commands by
arranging the workflows according to similarity in operation usage.
The operations of each workflow is drawn as a list, and edges are
drawn between neighboring operations that are similar.

While their data included short, highly-polished tasks scraped
from photo-editing tutorials, our work focuses on much longer
workflows that can contain errors and undone work. Furthermore,
although they provided step-by-step visualizations of the workflow
allowing for manual inspection and comparison, their automated
methods rely solely on the operation type and parameter settings.
Typically mesh editing software has far fewer number of opera-
tions that can be performed with many operations able to perform
several different types of manipulations. In other words, when
compared to image editing workflows, the differences in mesh
editing workflows depend more on the effect of the operation or
the combination of operations than the actual operation name,
parameter setting, or order of operations.

Lafrenier et al. [Lafreniere et al. 2013] describe a system, Fol-
lowUs, where a user can view a tutorial submitted by the original
author or by other users performing their version of the tutorial.
Matejka et al. [Matejka et al. 2009] describe a recommender
system, CommunityCommands, that collects usage data from a
user community and then displays to each user a set of commands
the user may not be familiar with. These two systems enhance
a user’s understanding of the tutorial or software system by
presenting how other users of the community perform the task or
use the software. The focus of our work is to provide the user a tool
to compare the workflows of the community, not just to review.



scout transporter station interceptor
Figure 2: Final meshes for each task. The scout, transporter, and station tasks were presented as video tutorials, and the subjects were
asked to follow the tutorial. The interceptor task was presented as a final mesh, and the subjects were asked to recreate the mesh as closely
as possible by using any modeling technique.

4 Data Collection

Our experiments consisted of four relatively short tasks, involving
roughly 20 to 60 minutes of modeling, of moderately increasing
difficulty. The first three tasks we presented to the subject in video
tutorial format, and the final task was given as a target model. We
asked the subjects to follow as closely as possible the steps in the
three video tutorials and to recreate as precisely as they could the
target mesh of the fourth task. For the final task, the subject could
use any modeling technique to replicate the model.

Although all of the subjects reported having some modeling
experience, some did not have any experience using the chosen
modeling software prior to starting the experiment. Therefore, we
designed the video tutorials to provide software usage instruction in
addition to high-level explanations of the mesh construction via an
overlaid audio track. The video of each tutorial is a screen-capture
time-lapse of the construction played back in an interactive video
player at real time with a few pauses to point out features. The
mesh of the final task is viewed within an interactive 3D viewer to
allow the subject to inspect and interact with the mesh.

We chose for all four tasks the theme of spaceships. Although
these goal-based tasks would limit the exploration and variability
of the workflows, we felt that open-ended tasks or goals that were
open to interpretation would inject a subjectivity and aesthetic
component into the workflow that would make objective analysis
significantly more difficult. Figure 2 shows the final mesh for each
of the four tasks.

We used an instrumented version of Blender to record the
workflows, both for the author and for the subjects. The starting
condition for all tasks contains a single unit cube. Every action
that modified the state of the modeling software was recorded,
including the undoing of work. The entire recording system for
the subject was a self-contained executable with a simple interface,
which simplified the process for the subject, and allowed the
subject to work at their own pace.

Four subjects participated in the study, but one subject did not
submit one of the tasks. See Table 1 for statistics on the recorded
workflows.

5 Correspondence and Distance

CrossComp takes as input the recorded snapshots of the cor-
responding workflows. In order to compare, CrossComp must
build an intra-correspondence of elements along each workflow
and an inter-correspondence between the workflows. The intra-
correspondences is constructed similarly to MeshFlow, where
each face is uniquely labeled (locally) upon creation and tracked
throughout the workflow.

While we cannot make any assumptions about the state of the mesh

Model Type Author Sbj. 1 Sbj. 2 Sbj. 3 Sbj. 4

scout vid 100 125 298 144 217
transporter vid 171 197 238 164 311
station vid 244 — 160 306 377
interceptor mesh 195 507 283 230 465

Table 1: Statistics for workflow comparison data. The numerical
values indicate number of mesh changing edits (no selections,
view changes, etc.). The author created the video tutorials (scout,
transporter, station) and mesh target goal (interceptor) that the
other subjects followed and tried to reproduce. Note: Subject 1 did
not finish the station task.

Figure 3: A subset of snapshots from Transporter sequence by
Author. Corresponding faces are colored similarly.

in the middle of the workflow, because the mesh can be arbitrarily
changed, we can assume that the beginning and ending states of
two workflows are similar to known states. As the beginning state
for each task is a unit cube and therefore not very informative
in terms of inter-correspondences, we use the final state of each
workflow to build inter-correspondences. We use a slightly
modified MeshGit∗ to build inter-correspondences between the
ending state of the meshes and to uniquely label (globally) the
faces. See Figure 4 for results of building inter-correspondences.

Snapshot Edit Distance. One way to compare two meshes
to find how similar or dissimilar they are is to compute an edit
distance between the pair. The edit distance between two meshes is
defined as the minimal amount of change required to turn one mesh
into the other. If the edit distance is small, then the two meshes are
quite similar; if the distance is large, then the two meshes are quite
dissimilar.

In [Denning and Pellacini 2013] we defined a mesh edit distance
which we used to build a correspondence between meshes.

∗The MeshGit modifications include: the the dot product of the ele-
ments’ normals in geometric cost are made absolute, and the greedy step
is performed one additional time at end without removing twisted faces
or faces with mismatched adjacencies. The first modification accounts for
flipped normals, and the second modification allows MeshGit to match as
many faces as possible by ignoring mismatched adjacencies.
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Figure 4: Final meshes for each of the tasks with inter-correspondences illustrated by matching face colors. The top-left subfigure for each
workflow was constructed by Author, and all other subfigures are for the modeling subjects. The faces of top-left subfigure are randomly
colored, and the faces for other workflows are colored to indicate inter-correspondences. If the face does not have an inter-correspondence,
it is colored dark red.



Figure 5: Basic user interface. The left column visualizes the
snapshots of workflows in low-dimensional space. The center
column shows a pairwise edit distance heat map. The right column
contains interactive views of each workflow.

CrossComp uses a modified version of the mesh edit distance†

along with the already established intra-correspondences and
inter-correspondences to compute an edit distance between any
two pairs of snapshots.

6 Visualization

The basic user interface for CrossComp is shown in Figure 5.
The left column shows a 3D embedding of the snapshots after
performing a nonlinear dimensionality reduction of the pairwise
edit distances, the center column visualizes a heat map of the
pairwise edit distances, and the right column consists of interactive
views of the snapshots for each workflow. While each column
visualizes different features of the workflows, they are synced
over the time dimension for each workflow. This syncing means,
for example, that adjusting the current time of a workflow in one
column will automatically update the corresponding visualizations
in the other columns. The first column indicates currently viewed
time with a white circle; the second with horizontal and vertical
lines; the third with white ticks on the colored bars below the
model. Each workflow has an associated color (red, green, yellow,
blue, purple, resp.). Changes to the mesh are indicated in the third
column by coloring the modified faces orange.

In all of the figures, the original tutorial author workflow is the first
workflow (red), and the subjects’ workflows are compared to the
author.

Edit Distance Coordinates. The left side of Figure 6 shows a
3D embedding of the Scout workflows according to their pairwise
snapshot edit distance. Each snapshot of the workflow is indicated
by a dot, colored corresponding to the workflow. The edges
between dots indicate temporal order of edits. We performed a
nonlinear dimensionality reduction on the pairwise edit distances
by using Isomap [Tenenbaum et al. 2000] with a k-nn search to
find the local neighborhood. We used a value of k = 10, but
forced at least one mesh from each workflow to be included (the
mesh with smallest edit distance) so the embedding would take all
workflows into account.

The dots corresponding to two similar snapshots will appear close
in this space, while the dots of two quite different snapshots will
be far apart. Referring back to Figure 6, note the inset figure
which zooms into the large cluster of dots near the center of the
column. These dots correspond to the early snapshots of the
workflows, where the meshes were very similar in shape (the initial

†The snapshot edit distance considers only the face elements of
MeshGit’s mesh edit distance.

Figure 6: Outliers in Scout task. Two of the workflows (2,5) used
the wrong operation or and one the wrong parameter setting (3),
causing a very large change that differed greatly from the other
workflows. Inset zooms into the initial state of the workflows.

Figure 7: Heat map of Scout task. The color in the pairwise heat
map indicates the edit distance between a pair of mesh snapshots
from all workflows of a task. Cool colors (blue, green) indicate
similar meshes, i.e., small edit distances. Warm colors (red, yellow)
indicate dissimilar meshes, i.e., large edit distances. Note: the heat
map is symmetric because we used a symmetric edit distance.

cube mesh). From these dots, all the workflows except the third
(yellow) follow very closely to each other with just a few outliers.
The outliers, selected in the figure, were caused by the artists
performing an incorrect operation (here, the spin operation instead
of subdivide). The artist quickly corrected the error by undoing
the work and then continued following closely the tutorial. The
third workflow, however, diverged from the other workflows after
performing a large number of incorrect operations, seen as the
numerous back and forth edges near the center of the inset. Close
to the end of the third workflow, we see some additional outliers
where the artist attempts to choose the correct parameter settings
for the mirror modifier. We discuss this more below.

Edit Distance Heat Map. Figure 7 shows a heat map visualiza-
tion of the pairwise edit distances of the Scout task workflows. The
topmost row and leftmost column of the heatmap correspond to
the first workflow, followed by the second workflow moving down
and right, etc. The color in the intersection of a specific row and
column indicates the edit distance between the mesh snapshots cor-
responding to the specific row and column. The color is determined
by linearly mapping the regularized distance to a color gradient
that runs from black to blue, green, red, and dark red, where a
black color indicates no edit distance (exactly the same mesh), and
a dark red color indicates a large distance (very different meshes).
Extra space is added between rows and columns to distinguish the
workflows. The horizontal and vertical lines running across the
heat map indicate the currently viewed time for the corresponding



workflow. We regularize the edit distances by dividing by the total
number of faces. We found that edit distance regularization helps
filter accumulated change and generates more intuitive heat maps.

One observation to note about the figure is the wide band of dark
red rows and columns in the early parts (top-left corner) of the third
workflow, where the artist made and corrected several mistakes.
Finally, after nearly a third of workflow, the artist was able to
follow along with the tutorial, although with some errors which is
seen with green color (moderate distance) in bottom-right corner
of each block of third row or column.

Cross-Workflow Scrubbing. While the user scrubs through
the timeline of one workflow, CrossComp can automatically snap
the other workflows to the closest snapshot in terms of the edit
distance. This cross-workflow scrubbing allows the user to inspect
how all of the workflows progressed, even though the artists may
have worked at a different pace. We define the closest snapshot in
a specific workflow to a given snapshot as the snapshot with the
lowest regularized edit distance from the given.

Spatial Filtering. Similarly to MeshFlow and 3DFlow, the user
can perform spatial filtering on the workflows to find when the
artists modified a region of interest. When the user selects a face in
one workflow, the corresponding faces in the other workflows are
selected, too. The timeline (colorbar below the model) is darkened
to indicate the edits that do not modify the selected faces. See
Figure 8 for an example.

7 Results

Figure 9 displays the results of the Transporter, Station, and
Interceptor workflows. Below we will discuss briefly some
observations for these workflows.

Transporter. Generally, all four subjects followed the Trans-
porter tutorial relatively closely. The fifth workflow contained a
few corrected errors (visualized as the purple outlier runs in the
first column.) The first and fourth workflows were the closest pair
of workflows. While all the final meshes were similar in shape, the
differences of proportions and fine details of the engines caused a
divergence of the workflows in the 3D embedded view.

Station. In the Station task, one of the subjects did not submit
the completed task, so the second workflow remains as a cube.
Also, the third workflow only loosely followed the tutorial and
involved fewer edits than the video tutorial, and the subject did
not have the mesh positioned correctly for the mirror modifier to
duplicate the other three quadrants properly, resulting in an outlier
in the first column. The first, fourth, and fifth workflows followed
each other closely.

Interceptor. Where the previous tasks were presented as a video
tutorial, the interceptor task was presented to the subjects as a final
target mesh. The subjects were free to construct the mesh using
any techniques and in any order. One important observation to note
is that while the artists can construct the mesh in any order, the ma-
jority of divergence was due to differences in adjacencies. For ex-
ample, the first and fourth workflows are relatively close in the first
column, because their meshes are topologically quite similar. How-
ever, the second, third, and fifth workflows contained many changes
in adjacency (missing features, extra faces, incorrectly connected
faces, etc.) and therefore appear to diverge from the first and fourth

workflows. The extremely large distances seen in the third work-
flow are due to setting incorrectly the mirror modifier parameters.

7.1 Feedback

We presented our findings to Jonathan Williamson, a professional
digital modeling artist and instructor for CG Cookie, in order to
gather some open-ended feedback. Williamson stated that the
embedded view made it clear when the artists made and then
corrected a mistake and that the curves hinted at the similarities of
the workflows. When shown the Interceptor dataset, he remarked
about how the subjects took a similar approach to constructing the
spaceship despite not having step-by-step instructions, which was
an unexpected observation.

Williamson said that he is quite excited about the results and
interested in finding ways to use CrossComp to instruct. One usage
scenario he proposed centers on an assignment he has given before,
which follows closely the Interceptor workflow, where he asks the
students to create a challenging mesh. CG Cookie has created four
exercises of this type in the past, and Williamson states that while
they receive many more requests to do more, they have not been
able to due to the time involved in reviewing the workflows. After
looking over the submitted final versions, he would create a video
tutorial on constructing the model while pointing out common
mistakes and pitfalls seen in the students’ results. He believed that
CrossComp would help him in finding, analyzing, and pointing out
these situations.

7.2 Limitations

There are a few limitations to our input data and approach to
analyzing. We discuss some of these limitations in this subsection.

Input Data. We designed our experiments to include instructions
for using Blender and to be relatively short and simple. This
decision was motivated by some of our subjects may have no
experience using Blender and possibly only little experience
modeling. Furthermore, despite walking the subjects step-by-step
through first three tasks, one workflow was submitted incomplete,
and two submitted with gross errors. Although these issues limit
the scope of our experiments to novices and amateurs, we found
that CrossComp was able to produce intuitive results that helped
with making key observations about individual workflows and with
comparing the workflows with one another. We leave for future
work the study of more experienced subjects performing longer
and more advanced tasks.

Correspondences. MeshGit builds a one-to-one correspon-
dence between two meshes. A discrete correspondence works
well when the two meshes are very similar in terms of face
adjacency. However, when only a fuzzy correspondence is
necessary or computable, such as when the models use the mesh to
provide a relatively loose representation the surface, other surface
correspondence methods might be more appropriate. We chose to
use MeshGit’s correspondence building method and designed our
experiments to fit in these limitations, because MeshGit computes a
mesh edit distance which we use directly. We leave the exploration
of other correspondence building and distance computing methods
for future work.

Edit Distances. Computing a full pairwise edit distance can
become quite expensive, growing polynomially in the lengths
of workflows and number of subjects. It should be noted that
the pairwise distances needs to be computed only once and then



Figure 8: Filtering to spatial selection. The user selected the faces of the engine in one task, and the corresponding faces are highlighted for
the other tasks. The edits that modify the selected region are highlighted in the timeline.

cached, is a highly parallel operation, is symmetric, and can be
only sparsely computed.

8 Conclusion

In this paper, we presented CrossComp, a method for comparing
multiple artists performing similar tasks. Motivated by real-world
digital modeling exercises, we demonstrated how to use intra-
and inter-correspondences within a set of workflows to compute
a pairwise snapshot edit distance. CrossComp can visualize
these edit distances as a heat map, where similar and dissimilar
snapshots are identified using cool and hot colors, respectively.
CrossComp can also perform nonlinear dimensionality reduction
on the distances to embed the workflows in a 3D space, where
curves and distances indicate similar editing patterns or mistakes
and errors. Open-ended feedback from a professional artist and
instructor indicate that a system like CrossComp could strongly
benefit the instruction community.
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Figure 9: Results of Transporter, Station, and Interceptor.
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