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1 Abstract

Garden of Eden is an exercise in procedural generation of lifelike worlds. It randomly generates a forest
scene of realistically shaped and proportioned asymmetric trees on top of a simple topographical map. This
map is then rendered in an HTML5 3D canvas, with support for user navigation. The end result of this
project is a sort of game, though without any goal, narrative, or creative purpose. It is simply a static
rendering of a natural environment, open for exploration, closed to manipulation, exploring how users find
visual pleasure and meaning in virtual environments. The passive interaction of the user is integral to this
simulation, as it reflects how one would observe a natural environment; by forcing the user into the same
perspective from which they view actual forest environments, Garden of Eden explores the concept of natural,
the distinction between real and virtual, and the user’s sense of place. All software packages are offered open
source, with detailed documentation, for users wishing to create their own arboreal experience.
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2 Introduction

This paper outlines in detail a set of software packages that, when used together, render a 3D visu-
alisation of a forest scene. The packages are provided separately as well, allowing users to take advantage
of them in order to render their own terrain, trees, and forests. The terrain construction uses a simple
midpoint displacement algorithm[5] to create fractal surfaces with the feel of a natural topography. The tree
generator uses Lindenmeyer systems[15], called henceforth L-Systems, to define recursive replacment rules
for branching. They then use a LOGO-style turtle graphics wrapper for the Three.js library to render the
tree on an HTML5 canvas, allowing for local hardware acceleration via WebGL.

The paper is broken up into several parts, first discussing the terrain and trees, then the state of
the project. The terrain section is more sparse, reflecting my focus on the more verbose tree section; both,
however, begin by describing the algorithms implemented and rationale for their use. The state of the project
is discussed by mentioning a few current issues, then going in to depth on some future improvements to the
project as a whole.

Trees are fascinating in their delicate complexity: a barren tree on a cold winter day criss-crosses in
a spider’s web of twigs, simultaneously drawing the eye and losing it in the intricate patterns of its branches.
This visual pleasure is my inspiration for the project: my intention is to use computers and botanically-
influenced algorithms as an engine of fascinating complexity. The software is open source, allowing users to
use it freely for their own purposes. It could be used to compute the geometry for any visual need: a user
might use these trees to fill out a CGI scene, adding interesting trees to an otherwise sparse landscape. The
user is bound only by the terms of the GPL v3.0 in how they use this software.

I would like to thank Professor Devin Balkcom, my advisor, for enabling me to work on this project,
even though it is outside of your field of interest. I would like to thank my parents, as well, for giving me a
childhood spent climing trees and a college where I could build them. If you do not look, you will not see.

3 Related Work

A significant body of work relating to natural feature generation exists in the video game industry.
Minecraft[13], for example, uses advanced terrain and feature generation techniques to programmatically
create such natural features as mountain ranges, cave systems, chasms, coasts, and flora biomes, as well
as artifical features such as temples, villages, and mine shafts. It achieves visually impressive scenes using
simplified graphics, resulting in a stylised look rather than striving for verisimillitude. Another game worth
mentioning in this context is Proteus[8], a small-scale “game of audio-visual exploration and discovery” that
allows users to explore a highly-stylized generated island. There are many other games that use feature
generation techniques, either as the creative force of the game world or to fill in between created features; I
mention these two primarily because, through both gameplay and simple, yet striking, natural scenery, they
served as inspiration for this project.

B. Mandelbrot and J. Van Ness[10] propose using fractal Brownian Motion, a function that uses
the idea of brownian motion with a degree of randomness to produce a natural-looking surface. The FBM
algorithm, however, is very mathematically complex, and as far simpler algorithms exists that offer adequate
approximations to its output, it will not be implemented. As both FBM and the algorithm implemented use
the same constants to describe the generated surface, however, an understanding of the workings of FBM is
valuable to proper construction of fractal terrains.

H. Hnaidi et al.[6] uses manual seeding of feature curves combined with a model of material diffusion
to generate feature-based, eroded terrain in a single step. The algorithm propsed requires more manual input
than the midpoint displacement algorithm, and is thus less desirable for the purposes of Garden of Eden.
A similar algorithm could be implemented, however, that randomly places feature curves to achieve a more
striking, feature-based landscape.

J. Bloomenthal[2] discusses detailed visual aspects of tree generation, specifically the maple tree,
assuming a realistic skeleton is available. Thus, he mostly describes some of the finer visual details in
modeling trees, such as branch continuity and bark texture modeling. Some of his methods have been
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considered as extensions, but generally, as his work was focused on the details of computer visualisations of
trees, it is out of scope.

J. Arvo et al. suggest a method for plant rendering that uses cellular automata and ray tracing to
guide the growth of plant skeletons[1]. They discusse how the propsed method might be applied to grow ivy
and grass, but also describe it as it might be used to generally grow plants, citing specifically tree generation
as the prior work from which it builds. The proposed method is heavily focused on the plant’s interaction
with the environment, and has tropism, a subject discussed in the extensions to this project, built in to
the generation. Future work might examine how such methods could be used, either in conjunction with or
instead of the recursive strategy employed.

P. de Reffye et al. discusses a model for plant generation that draws on the actual botanical methods
for plant growth[4]. The methods use stochastic states for growth and time steps to simulate the actual growth
progression, drawing from data in a library of plant information to construct a wide variety of different trees.
The method described might be well integrated with the above cellular automata geometry construction,
and suggests ways by which different species could be emulated.

Jason Weber[19] draws from an array of previous work to develop a model for the visual depiction of
trees, using extensive data to render a wide variety of flora. His paper displayed the variability of the model
with pictures of trees of several species. This accuracy was a combination of modeling a large number of
growth affectors as well as extensive research and observation of trees to obtain a reliable set of constants,
many of which could be used to improve the current ranges used for parameter variation, discussed later.

4 Terrain

4.1 Midpoint Displacement

The classic method of generating terrain maps is by using a fractal Brownian Motion function[10].
The function is fairly complex in theory; it can be approximated, however, with an algorithm called the
midpoint displacement algorithm[5]. The midpoint displacement algorithm, also known as the diamond-
square algorithm, is an easy way to generate surface height maps for terrain. The algorithm is as follows[9]:

Loop while quadrilateral side is at least 1

// Square step

For each discrete square of given quadrilateral side length

Get midpoint of square

Calculate random offset as a random number in a specified range times a scale

Midpoint becomes average of square’s corners plus random offset

// Diamond step

For each discrete diamond defined by the square step’s calculated midpoints

Get midpoint of diamond

Calculate random offset as a random number in a specified range times a scale

Midpoint becomes average of diamond’s corners plus random offset

Decrease scale by a constant fraction

Half quadrilateral side

The algorithm is works well to generate fractal surfaces, and allows for a decent amount of control
over the percieved “roughness” of the resultant surface in how one defines H, the fractal dimension. However,
there are well-documented artifacts, notably for steeper surfaces. These factors can be mitigated somewhat
with careful selection of constants, discussed below.
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4.2 Gaussian Filter

The generated terrain from the above algorithm, while showing appropriate large sloping, is far too
bumpy on the player scale to be appropriate for a navigated terrain map. The small bumps result in
constant jostling of the player camera, which is maintained at a constant distance CAMERA_HEIGHT above the
terrain. To address this problem, the terrain height map is passed through a low-pass filter, which maintains
the low frequency noise–the larger hills and valleys–while filtering out the high frequency noise that would
jostle the camera.

The low-pass filter implemented is a Gaussian filter, a common algorithm frequently implemented
in image processing applications as a blurring tool that maintains sharp edges. As with most filtering
algorithms, a kernel, or small functional matrix, is created that performs a sliding set of operations accross
the entire map. This Gaussian kernel sets the center point of the kernel to a weighted average of all points
in the neighborhood. This average is weighted as a gaussian distribution from the center point.

The Gaussian filter is not justified in any natural context; while such “low-pass filters” exist, and
are discussed in the section on extensions, they will not be implemented. The Gaussian filter is used instead
of a proper analysis of terrain constants, as such constants would likely yield a terrain map with both less
noise and more appropriate features for the type of terrain emulated. Such constants can be accurately
extracted from actual terrain data[20], but this process is fairly involved and thus will only be discussed
as a possible extension. For the current scope of the project, a Gaussian filter results in an intuitively and
visually reasonable surface.

4.3 Implementation

The terrain algorithm begins by calling the build() method, which uses the midpoint displacement
algorithm to generate a height map. It then runs this height map through a Gaussian filter in order to
smooth out the low-amplitude, high-frequency terrain noise. Then, it uses this data to construct a Three.js
plane, which is then returned as the scene’s floor.

4.3.1 terrain.js

• Terrain(size_degree, resolution): The terrain constructor takes as argument size_degree, a
scalar exponent value that is used to determine the size of the terrain. The terrain generated is
2size degree + 1 units on each side, which ensures that the diamond-square algorithm can find even,
perfect quadrilaterals on each iteration. The resolution, which defaults to 1, determines how many
vertices per unit the terrain generates.

• build(): Initializes construction of the terrain, using built-in values for all parameters and returning
a Three.js object representing the generated floor. Top-level function.

• mpd(): Midpoint displacement algorithm. The method returns an array of arrays of float values
representing the generated height at each vertex of the Three.js plane. Largely controlled by built-in
constants; for more information, see section on terrain generation.

• smooth(): Uses a Gaussian filter to smooth out low-amplitude, high-frequency noise that would cause
the user to jostle vertically as they moved around the map. The parameters of the filter are fixed.

5 Trees

5.1 L-Systems

An L-System, as defined by P. Prusinkiewicz and A. Lindenmayer[15], describes a recursive substitution
system to build increasingly complex strings. A system consists of an initial value or set of values, and a series
of rules used to recursively replace sections of the initial set. The set consists of productions, or operations
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that, when combined with a rule, represent a certain kind of predictable growth. Productions can, for
example, represent a single branching structure, or trunk growth. As such, L-Systems are an excellent way
to represent the growth of trees, as they give a simple “seed” rules by which it can branch in a biologically
feasable way into a much larger system. As L-Systems consist of self-replacement rules, they form fractal
systems, which are “self-similar” at different levels of detail. In an L-System, this self-similarity at smaller
levels of detail is a result of the recursion, which replaces productions at small levels with smaller versions
of the designs seen at a larger scale.

5.1.1 Productions

A production defines a particular recursive structure. In combination with its replacement rule, it acts
as a replacement function; a single production can be replaced by a set of other productions, including itself,
leading to interesting fractal shapes. In this project, a production alone does not represent any physical
shape, and is not drawn graphically; instead, its replacement rule can contain graphical information, the
rendering of which produces the specific physical occurance the production is said to represent. A production
can, for example, represent a bijunction branching, or a bending of a branch due to environmental influences,
or the thickening of the trunk due to age.

5.1.2 Parametric L-Systems

A parametric L-System contains parametric productions, or, more simply, producitons that take param-
eters. Production rules change to accomidate parameter logic, matching, for example, only if a production
has a “time” greater than 5. In this way, productions representing specific growth actions can have signif-
icantly different geometry while still having the same basic structure. A branch production, for example,
might take an angle parameter, which would make larger branches diverge less dramaticaly than twigs.

The below L-System can serve as an example, and is used in the L-System module’s tester in
./test/lsys_console.html[15].

ω : B(2)A(4,4)

p1 : A(x,y) : y ≤ 3 → A(x*2, x+y)

p2 : A(x,y) : y > 3 → B(x)A(x/y, 0)

p3 : B(x) : x < 1 → C

p4 : B(x) : x ≥ 1 → B(x-1)

In this example, ω gives the initial productions with parametric values. The rules have changed both to check
the values of the parameters, and replace accordingly, and to modify the parameters in the replacement step.
In this way, the productions will have different parameters at each level of recursion, reflecting changing
growth at more depth.

5.1.3 Turtle Graphics

As stated before, productions give no graphical information as to how a tree is drawn. Thus, in addition
to productions, an L-System must implement a system of graphical information. In order to create branching
structures, LOGO-style turtle graphics are used to draw on the HTML5 canvas. Invented as a simple graphics
system for educational purposes, turtle graphics consist of a set of commands that direct the movement of a
”turtle”, or a drawing point. In 3D space, Euler angles are controlled by issuing commands with a specified
radial change; drawing occurs by moving the turtle forward. The turtle commands implemented are as
follows:

The above commands are included in production replacement rules, and define what a production
draws. In this way, a production might be used not just to define where a branch or other such growth action
occurs, but also to draw the branch upon its replacement with turtle graphics commands. The number of
turtle graphics commands required to draw an appropriately detailed tree is incredibly large; the exact
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Command Symbol Argument Description

F F time Moves turtle forward by specified time value
(turtle rate is constant), drawing a line (a
cylinder primitive) from its previous location
to its new one.

f f time Moves turtle forward by specified time value,
drawing no line between positions.

pitch & radians Rotate turtle about its own x-axis by specified
amount of radians.

yaw + radians Rotate turtle about its own y-axis by specified
amount of radians.

roll / radians Rotate turtle about its own z-axis by specified
amount of radians.

set ! width Sets the line (3D cylinder) to the specified
width (diameter).

push [ none Pushes current turtle state into a stack of pre-
vious states.

pop ] none Pops current turtle state from a stack of pre-
vious states, resetting its current state to the
new one.

Table 1: Turtle Commands

“turtle string”, or set of commands, used to draw one tree is printed to the console in ./test/tree.html.
There are significant memory implications for this large turtle string, which are discussed in the section on
outstanding issues.

5.2 Biological Considerations

As with most graphical projects, the generation of trees must strike a balance between emulating actual
biological methods and using efficient computational design. In this section, I will discuss some of the
biological phenomenon modeled in the creation of trees, how they were modeled, and the effect that they
have on tree growth.

5.2.1 Discussion of Assumptions

Some assumptions were made to simplify and speed up the generation of tree structures:

1. All branches are straight. In reality, a tree branch is often curved, often noticeably. However, this
project uses straight branches exclusively, as it allows for the rendering of a branch with a single,
simple, cylindrical primitive. Future work could use splines to represent a branch, extruded to a width
specified by the turtle; this is discussed in the extensions.

2. All trees in this project are of a similar age, growing at a similar speed. In a real forest, the actual
ages of the trees tend to vary, even while the forest as a whole ages. Furthermore, due environmental
factors like light and available nutrition, trees of similar age might have grown at dramatically different
speeds. The end result is that in a real forest, trees might be noticeably different in size. This project
will not seek to emulate that, which will result in a fairly noticeable visual artefact. Future extensions
to the Forest module might consider tree age in the planting and growth steps.

3. Depth of recursion is limited to keep the run-time within reasonable limits; this results in the generation
of a fairly young-looking forest. While it is possible for users of the software package to increase the
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depth to which the L-System is run, it results in an exponentially larger amount of primitives and a
noticeably laggier simulation.

4. In this project, to limit the number of specific L-Systems that must be constructed, only a single,
archetypal tree species will be constructed. An extension where multiple species are generated is
discussed at the end.

5. Trees in nature show allometric growth with regards to the ratio of trunk diameter to tree height[3].
This effect is seen over many years; extremely old trees are often notably fat, a result of increasing
trunk diameter growth relative to height growth. This project, however, will maintain a constant
ratio of trunk width growth to height growth. Such isometric growth is a fair approximation for most
younger trees, and simplifies the growth calculation.

5.2.2 Bijunctions

A cursory glance out the window will reveal that the vast majority of branching junctions split the root
branch into exactly two smaller branches. The reasons for this will not be discussed in this paper, however,
for visual integrity, this rule will be maintained. A branching junction here is defined as any place, usually
represented in the L-System as a single production, where a single branch divides and deviates into a set
of smaller child branches. Such a junction that splits into exactly two smaller branches will be defined as a
bijunction.

The included L-System TernaryTree uses a single branching junction, modeled with the production
A(), to represent a trijunction, defined as a branching junction that splits into exactly three children[15].
There are benefits to using trijunctions. A trijunction is the smallest possible branching junction that fills a
volumetric space, where a bijunction instead is isolated to a single plane. Thus, trijunctions rapidly result in
a “fuller” looking tree, where bijunctions frequently have the effect of looking planar, or “flat”. Trijunctions
also triple the number of branches at each level of recursion, thus requiring shallower recursion to “fill
out” a decent-looking tree. This allows for more flexibility in tree appearance: as the L-System used for
TernaryTree and RandomTree grows the size of the tree while constructing branches, a tree with trijunctions
will appear more detailed at a smaller sizes.

Thus, careful consideration must be taken to “filling out” a bijunction-exclusive tree. One approach
is to use pseudo-trijunctions, a branching junction consisting of two stacked bijunctions. These junctions,
where a single branch will split off immediately before a branch fork, are fairly common in nature, and allow
for trijunction behavior without violating the bijunction rule. For further discussion of the methods used to
fill out a bijunction tree, see the below section on Probabilistic L-Systems.

5.2.3 Growth Density

A commonly measured property of forests are the density of tree growth. As larger trees tend to block
sunlight from trees growing beneath them, in general, the older a forest is, the further spaced its trees.
Furthermore, as there is a “sweet spot” of growth away from an older tree where light isn’t blocked and
roots aren’t in conflict over nutrients in the soil, trees, especially of a similar age, tend to be spaced fairly
evenly. To reflect this, many system models of forests break the area up into a grid of forest “patches”, with
the side of the grid roughly corresponding to the size of the oldest tree’s canopy[11]. This is because a largest
tree in the patch, called a canopy tree, consumes most of the light and nutrient resources of the patch, thus
dictating the growth capability of the entire patch. To be sure, other, smaller trees might grow in the same
patch, but they must compete directly with the more dominant tree.

5.3 Randomization

In nature, the growth and configuration of trees is a result of both biology and environment, and
modeling tree geometry should consider their effects. This paper will not seek to exactly model the growth
details, though it will consider some of them in the design of randomization algorithms. For this paper, it is
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sufficient to say that some growth factors are internal to the tree’s genetics, information physically encoded
and manifesting in commonalities between trees of the same species, whereas some are external to the tree,
resulting in commonalities between trees of different species in the same growth conditions[16]. Internal
information is reasonably represented by the L-System, which specifies deterministic growth patterns for a
tree. Thus, I suggest that the codified rules of L-Systems be considered a heuristic for genetic patters of tree
growth.

The tree’s local environment also plays a large hand in growth and configuration. As described in the
above section, such factors external to the tree as tropism, growth density, and elevation affect the presence
of trees, the rate of growth, branching, and the general tendency to grow in a specific direction. Weather
can affect the tree, too: heavy snow might bow a mighty branch, or a bolt of lightning might split a trunk.
Temperature patterns can affect the growth in subtle ways, as well.

The process described below are an imitation of the above internal and external factors, seeking to
replicate with selective randomness what a perfectly deterministic, physical system would otherwise be able
to reproduce. To the degree that they are based on actual growth and environmental factors, they will be
justified; many, however, are simply heuristic hacks that result in a visually realistic geometry.

5.3.1 Parameter variation

The L-System described by TernaryTree uses fixed constants for growth and branch diversion to achieve
a realistic, but static, tree. RandomTree addresses this problem in part by variation of parameters[15]. This
method involves finding appropriate ranges for the defined constants in the L-System and randomly adjusting
them at each replacement step. Thus the majority of the work in this step is finding acceptable ranges for
values.

A range of 20% is found to be good for growth constants[17]. Thus, the branch elongation constant
L_R can be randomly assigned to within 20% of its value carried over from TernaryTree, or (0.856, 1.284).
The width parameter variation of 20% led to obvious visual errors, and will thus not be implemented. It
might be possible, however, to find a better range by measuring growth rings in actual trees. This, especially
when matched with the variation used for branch elongation, could result in a reasonable emulation of good
growth years versus bad growth years.

While angle values can safely be randomly varied within ±20% of their default, such varying of the
branch elongation constants might result in a scale value that is less than 1, which would cause the production
to actually shrink the branch. While variances in growth conditions can lead to branches growing significantly
less than normal, it is unreasonable to have a growth production represent the action of backwards growth.
Thus, branch elongation variation is clamped to a minimum of 1.

5.3.2 Stochastic L-Systems

Thus far, L-Systems depicted have had replacement rules that match evenly to all of the productions
defined. This results in static branching structure, as the geometry is deterministic and limited in configu-
ration. However, using a Rule’s condition parameter, productions can be replaced randomly with one of a
set of options. The condition parameter could, for example, switch the branching style as recursion depth
increases, leading to a different configuration for branches than what is used for the trunk.

Using a provided random value from Javascript’s built-in Math.random(), condition can also be
replaced probabilistically. This can be used to represent several styles of branching. For example, while trees
only ever bijunct, trijunction-like branches can occur by closely stacking bijunctions. This style of branching
can thus be interspersed randomly with the usual bijunction style.

The L-System used to create the trees in Garden of Eden use this style of probabilistic branching.
The branching production, ’A’, can be any of the following styles:

• Normal bijunction: Branch continues along current vector, with another branch splitting off at a small
acute angle. See figure 1.
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Figure 1: The result of a normal bijunction production

• Forked bijunction: Branch splits into two, with both diverging at a small acute angle from the pre-
vious vector. The sum of the two acute divergences is equal to the divergence angle of the normal
bijunction[7]. See figure 2.

• Pseudo-trijunction: One branch from a trijunction is moved down the parent branch, resulting in a
normal bijunction stacked below a fork bijunction. See figure 3.

5.3.3 Density Management

To manage the spacing of trees in the generated forest, forest system models will be adapted, with
additional logic to make them appropriate for a visual output. As discussed above, forest gap models break
forests up into tree grids, corresponding roughly to the area of affect of the canopy trees[11]. The grids
operate under a set of assumptions[3], some which must be reconsidered for a visual output:

1. The forest is abstracted as a composite of many small patches of land, where each can have a different
age and successional stage.

2. Patches are horizontally homogeneous, meaning the tree position within a patch is not considered.

3. The leaves of each tree are located in an indefinitely thin layer at the top of the stem.

4. There are no interaction between patches.

Obviously, assumption #2 must be violated for a visual output: horizontal position in the patch is
exactly what we do care about when attempting to manage the density of the forest. As, by the model, the
position of trees in the patch doesn’t matter, however, we can conclude that the position of the canopy trees
in the patch doesn’t matter, and can be assigned randomly. Furthermore, I will make the assumption that
only a single tree in each patch is canopy-tree-sized. Assumption #4 suggests a few problems in the system,
which will be addressed at the end of the section.
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Figure 2: The result of a forked bijunction production

Thus, we begin the algorithm by following assumption #1, dividing the terrain area up into patches.
The size of these patches is the subject of disagreement, ranging from the order of 10m2[11] to 1km2[3]. I
will assume that the former is true: the size of a patch is dictated by the canopy size of the canopy trees.
This size is dictated by size and height of a tree, which is roughly correlated with the age of the tree. The
L-System used to generate the trees in this project uses recursion depth as a rough stand-in for tree age;
thus, the value assigned as the max recursion depth will be used to dictate the size of a patch. We can use
this value, along with maximal values for branch length and branching angle, to set an upper bound on the
size of the canopy. The equation governing the maximum canopy size is:

max canopy = 2DL sin(α)

Where D is the maximum recursion depth of the L-System, L is the maximum length of a branch, and α
is the maximum branching angle. I will assume that the root system of the tree behaves similarly to the
branch system, allowing the canopy to singly govern the size of the patch. Thus, the algorithm will begin by
dividing the terrain into patches of size max_canopy. Following my discussion of assumption #2, a tree which
will be rendered to maximum depth, making it a canopy tree, will be placed randomly in each patch. From
here, smaller trees could be seeded; this will be discussed in the section on extensions. This implementation
allows the details of forest generation, specifically any constants relating to how the forest is created, to be
dictated entirely by the trees used in the forest, which prevents the user from having to supply additional
detail about forest construction and allows for a very clean implementation of the Forest module.

A major problem with this algorithm is suggested by assumption #4: there is nothing preventing
two trees from existing close to their shared border, thus growing unrealistically close together, or even
colliding. A possible solution to this bug will be discussed in the aforementioned section on extensions; for
now, however, I leave this visual error up to chance.
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Figure 3: The result of a pseudo-trijunction production

5.4 Tree Implementation

The creation of a tree begins by constructing a rule set for the L-System. A few of these are defined in
./js/app/lsys_rules.js, which can be used as an example for users wishing to create their own L-Systems.
This rule set is used to create an L-System object, which will be used to generate the tree’s geometry. A
turtle must also be constructed and tied to the Three.js library in order to draw to the HTML5 canvas. Then,
by calling the L-System object’s build() method, the L-System will recursively construct a tree, storing it
in its own system variable. The built L-System is then passed into the turtle object’s run() method, which
will draw the constructed L-System as a single hierarchical object onto the HTML5 canvas.

5.4.1 turtle graphics.js

The turtle graphics module consists of a turtle object, Turtle, a set of turtle commands to control
drawing, and a run method, which, given a list of turtle commands, executes them in order from the current
position.

• Turtle(scene, material, radius): Turtle object constructor. Creates the turtle drawer, initializing
it at the world origin oriented in the +y direction. Turtle properties are as follows:

1. rate: Defaults to 1. Rate at which turtle travels when moving forward, multiplied by the forward
command’s time parameter to get the total distance traveled.

2. width: “Width” of the drawn line. Defaults to 0.25, can be passed in as an argument. Actual
value is the radius of the cylinder primitive created by the turtle.

3. scene: Three.js scene. Required. Graphics drawn in run() are added to this as a single, hierar-
chical object.

4. material: Three.js material. Required. Defines the material of the drawn cylinder lines.

• Turtle commands: The turtle commands (_F(), _f(), _pitch(), _yaw(), _roll(), _push(), _pop(),
and _set()) are all methods that specify commands to some turtle object. To use, they are attached
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to a Turtle.Action object along with the value of their argument, and then passed as a list as the
argument to run(). Each one specifies a action relative to the turtle drawer’s current position and
orientation. Details of the actions are given in table 1. The rotation actions work by multiplying a
specific rotation matrix to the turtle object’s internal orientation matrix. The use of a rotation matrix
allows for relative transforms, as opposed to Euler coordinates, which require a specific ordering of
rotations that can lead to errors. The forward movement controls drawing; it does this by creating
a cylinder of the current width and given distance (the actual given is a time parameter, which is
multiplied by the turtle’s rate to get the cylinder’s length) and moving it such that it begins at the
turtle’s starting position and is oriented in the same direction of the turtle. Then, the turtle’s position
is incremented by the given distance. _push() and _pop() save the turtle’s state in a basic object and
store or retrieve it from an internal stack.

• run(): The run commands executes a given turtle string. Looping through the string in order, it run’s
the function’s built-in call() function, specifying this as the calling object and Turtle.Action.args

as the arguments. This binds the current turtle object to the action, allowing the turtle command to
affect the turtle object’s internal variables.

5.4.2 lsys.js

lsys.js is used to describe and create an L-System of arbitrary productions and rule set. Relevant
objects, including LSystem.Production and LSystem.RuleSet, are defined, and the engine to run recursion
to a specific depth is included in a method of the base LSystem object. The L-System requires both a rule
set and an initial value to run, both of which are described below.

• LSystem: Object containing the L-System and its rule set. The only argument is rule_table, the rule
set for the L-System.

• LSystem.Production: Object containing production information. Productions, with the added infor-
mation of their rule sets, represent a specific type of growth, but are not actually drawn by the turtle
graphics wrapper. Production arguments are as follows:

1. id: ID of the production, similar to function name. For example, in the production A(1,4), the
id is “A”.

2. args: List of argument values. This is only assigned for initial values; the inject function is used
to dynamically assign these values, as the resultant value is usually some function of the previous
value, defined in the rule set.

3. inject_args: Function used to dynamically assign arguments from within the rule set. Argu-
ments after the replacement step are usually a function of their previous values; the width of
branches, for example, might decrease by a constant scale at each level of branching. The func-
tion must take args, the previous production’s arguments, and consts, a dictionary of constants
defined in the rule set. It must then assign this.args to a list of the argument values. This
method can also be used to implement parameter variation, which is also calculated dynamically,
with a random value and specified range.

• LSystem.RuleSet and LSystem.Rule: RuleSet and Rule are used to define the logic of the L-System.
RuleSet describes the entire rule system, whereas Rule defines a single rule for a specific production
and condition. The arguments for the RuleSet constructor are as follows:

1. consts: Dictionary of defined constants, such as width reduction ratios, used in calculating the
argument values at replacement.

2. initial: Initial production list values for the system.

3. rules: List of rule objects for this system. See lsys_rule.js and its below explanation for more
details on LSystem.RuleSet construction.
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The arguments for the Rule constructor are as follows:

1. id: ID corresponding to the production this rule affects.

2. condition: Condition function to the parametric term. Function takes as argument the produc-
tion object and returns a boolean. Allows the rule to match on the value of the production’s
parameter.

3. output: List of production and turtle action objects to replace the matched production with upon
recursion.

More details about the construction of a RuleSet can be seen in the documentation for lsys_rule.js.

• build(): Launcher function for the recursive L-System construction. Calls internal recursion function
on each element in the initial system; thus, it requires that the system variable is set to a list of initial
values. The internal recursion runs for a single object in the system list, matching it to the rule set
and replacing it with the appropriate output string. It then recursively calls itself on each element of
the output array, to a specified MAX_DEPTH value. Optional argument debug is a boolean that toggles
printing of the constructed system after construction.

• checkRule(): Function that checks a given element of the system against the system’s rule set, return-
ing the appropriate output. Does a linear search through the list of rules, halting when a match occurs.
Matches require that both the rule id and the production id match, as well as the rule’s condition

function returning a true. The rule’s output is then cloned to avoid problems with Javascript’s sin-
gleton objects affecting subsequent production values. The arguments are then injected using the
production’s provided inject_args function, which allows dynamic evaluation of the arguments based
on the previous production. The output is then returned. If no match is found, the initial production
is returned unchanged.

• printSystem(): Used for debugging. Pretty prints the current value of the L-System’s system variable,
in form id(args...). Activated when the debug flag is turned on in build().

5.4.3 lsys rule.js

lsys_rule.js provides a convenient package of L-System rules used in The Algorithmic Beauty of
Plants[15]. The rules found in it are used to create the trees in the final Garden of Eden project, but can
also serve as examples to users wishing to generate their own L-Systems. The structure for a rule set is given
in the above description of LSystem.RuleSet.

• HondaTree: Creates an object that inherits from LSystem.RuleSet. Description of a Honda L-System
comes from H. Honda[7]. The tree is of a constant height, but branches with increasing detail at higher
levels of recursion. Defined constants allow for a decent amount of variation on what is otherwise a
visually highly symmetrical tree.

• TernaryTree: Creates an object that inherits from LSystem.RuleSet. Description of a Ternary L-
System comes from P. Prusinkiewicz et al.[15]. By using L-System rules that match to turtle commands,
this tree actually grows both larger and more detailed at higher levels of recursion, which more closely
resembles the growth of a tree. There is only one branching rule, which uses a trijunction at each
branching node. The generated tree is visually quite complex, but has some symmetrical artefacts
visible from specific angles. Varying constants allows for a large amount of variation on this tree
structure.

• RandomTree: Creates an object that is an extension of the rule set defined in TernaryTree, but with
the randomization features discussed in this thesis. This is the tree rule set used in the Garden of
Eden.
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5.5 Forest Implementation

The Forest module manages the placement of trees, as well as running their generation and rendering.
As such, it is the top-level module for Garden of Eden. It does this in two cycles, plant() and grow(),
which are discussed below. Several significant extensions to this module are mentioned in the section on
extensions.

• Forest(geography, scene): Constructor for the Forest module. geography argument is a generated
Terrain. scene is a Three.js scene, to which the trees will be added.

• addSpecies(): Method to add L-Systems, representing different tree species, to the forest. Currently,
only the first L-System in the list is used; an extension to this is discussed.

• build(): Top-level method for the Forest. Calls plant(), then grow(). Many of the extensions,
especially growth time emulation, would involve significant changes to this method, as it currently
only has the most basic possible functionality.

• plant(): Runs the density management algorithm. Using the L-System provided by addSpecies(),
calculates the patch size for this forest. Then, looping through all patches, creates a single Turtle at
a random location within the patch as well as an L-System seeded with the given rule set, saving both
to a list of trees. Run time is very fast, as it simply sets up the more time-intensive calculation for
grow().

• grow(): Runs all of the generation and rendering tasks for each tree, thus being the predominant
limiter of run time. First, it empties the species list to free that memory. Then, popping each tree
from the list of trees, again to free up memory on completion, grow() first builds the tree’s provided
L-System, then runs the turtle commands to create the Three.js tree. It then drops the tree onto
the terrain below, sending a notice to the console upon completion. While simple, as mentioned, this
method is a massive draw on computational resources, and thus would greatly benefit from run time
improvement.

6 Outstanding Issues

6.1 Memory and Run Time

Currently, memory use and run time are a major issue when generating and rendering large forest scenes.
The memory issue stems from both a liberal use of objects throughout the code, as well as the unavoidable
exponential nature of tree geometry. Run time seems to be largely tied to the growth phase of the forest
cycle, suggesting either a re-write of the turtle graphics module or limitations of Three.js.

6.1.1 Data Structures

One of the significant memory problems is the use of object-dense data structures in intermediate and
final representations of tree structures. Objects, while logically useful for code design, are not optimized for
memory use; thus, the large number of objects used in Garden of Eden, representing everything from a single
turtle action to a single twig, suck up memory resources and tie up computation time in garbage collection.
Thus, a re-design of data structures would greatly benefit both memory use and run time.

The proposed redesign is a departure from the use of turtle graphics to represent the transition from
growth to visual rendering. The turtle graphics representation of Three.js primitives is both incredibly object
dense and unnecessarily verbose, leading to very poor use of memory. Turtle graphics are a simple way to
describe a drawing action, but for the specific case of trees, this drawing representation is unnecessary, as
a direct representation of the branches could be used instead. Trees are simply a collection of cylinders of
different size, shape, position, and orientation; thus, a more condensed representation could be constructed
of a set of cylinder transforms. The same L-System replacement action could apply, but instead of a set of
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drawing commands, a simple list of numbers could be replaced, representing new cylinder primitives. This
could take the form of a heap, with a fixed number of values representing each branch: (index, r, φ, θ, w).
Index is a value that represents the root branch of the given segment, with index 0 being the initial position.
This would allow for position values to be dropped from the list, as everything is defined relatively to previous
branches, with only an initial position of the tree required to place the whole thing in space. Thus, an entire
forest of trees could be represented in a very compact array, minimizing memory use and still allowing for
Θ(n) run-time for primitive construction.

6.1.2 Geometry

Another, simple data structure redesign is built in to Three.js. The primitive type currently used,
CylinderGeometry, is an extension of Three.js’s core Geometry object, an object-based prototype that
allows for the construction of arbitrary shapes via vertices and faces. There is, however, a more optimized
option: BufferGeometry, a buffer representation of the same geometry that saves on memory and CPU
cycles. It is more difficult to work with, but there exist methods to convert regular Geometry objects to the
more efficient BufferGeometry objects. It could also be manipulated directly, constructing a tree by adding
vertices and faces instead of cylinders, for a much more condensed tree primitive.

6.1.3 Parallelism

An avenue for increased computational efficiency that was unable to be explored, due to limitations in
Javascript, was parallel processing of the tree generation process. By setting up a generator and workers,
the branches of the tree could be solved independently, on multiple cores or multiple workstations, resulting
in a large decrease in the total computation time. As Javascript does not support parallelism, this parallel
characteristic of tree geometry was unable to be utilized; however, if the tree API discussed in the extensions
implemented the tree creation in a different language, massive improvements could be seen with appropriate
application of parallel methods.

6.2 Density Management

Currently, the density management module has a potential error in tree collisions. This will be discussed
in detail in the extensions section.

7 Extensions

7.1 Tree Rendering

Currently, there is a significant user experience issue in the time it takes to properly render out a forest
of trees. The current solution ignores this, expecting the user to patiently wait several minutes for the trees to
render into a forest. Extensions to address this issue, either by speeding up the processs or by circumventing
the issue, are proposed below.

7.1.1 Pre-Rendering

Pre-Rendering involves setting the project up with a basic framework to allow for database storage of
tree primatives. This solution would save generated tree structures, populating a forest directly from the
database upon reaching the page instead of running the full generation cycle.

Several problems arise with this solution. First, prototype data is lost when serializing a Javascript
object to JSON. Thus, a special serialization process would need to be created in order to store the Three.js
graphical primitives. Furthermore, as the objects would be created out of environmental context, growth
affectors such as global and local tropism would not be able to affect the geometry of the trees produced.
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The benefits of the solution, however, are significant. The user wait time would likely be negligible,
allowing the experience to being almost immediately upon accessing the site. For today’s impatient users,
this is extremely important. Additionally, the addition of a database could open up extensions such as saving
particularly nice generated forests.

7.1.2 Background Rendering

Javascript does not support threading; however, several worker queue libraries exist that could allow
for the creation of trees to happen asynchronously to the creation of the Three.js scene. The user would
open the page to a freshly generated, but empty, terrain; as they explore, fully-grown trees would appear
around them as the workers finish. The materialization effect would be somewhat jarring, but this could
be artistically mitigated with clever visual distraction, such as thick fog with increasing visibility as trees
appear. See also the below section on Growth Time Emulation, which could be used in conjunction with
this acceleration process.

7.1.3 Tree API

While Javascript does not allow local threading, it has significant asynchronization support in AJAX.
To take advantage of this, a tree API could be written. This would have an effect similar to Background
Rendering, except that it would utilize default Javascript functionality instead of a third party library.
Furthermore, there is nothing forcing the API server to use a language that doesn’t support threading; the
generation could be written in a much faster language, utilizing parallelism and outputting carefully serialized
Three.js objects as an asynchronous HTTP JSON response. Global forest data could also be supported by
being included as a parameter to the AJAX request to the API.

7.2 Graphical Primitives

The current primitive used by the turtle graphics wrapper is a basic cylinder, of diameter specified by
Turtle._set() and length specified by Turtle._F() and the turtle’s speed. This results in a very noticeably
blocky tree, where each branch has a discontinuous shift in diameter. Obviously, trees in nature to not display
such structure; thus, using a different graphical primitive would result in a much more realistic-looking tree.

7.2.1 Tapered Cylinder

To create a tapered cylinder, the turtle’s forward draw command would need to take in to account two
Turtle._set() commands, using them in conjunction with Three.js’s cylinder pyramid to make a conical
frustum. By matching the diameter of the top of one branch with the diameter of the bottom of the next,
the branches of the tree would blend together, resulting in the continuous look found in nature.

To do this, a new turtle command would need to be implemented. Turtle._Ft() would work
similarly to Turtle._F(), except that it would use a conic frustum as a primitive. The below row expands
on Table 1.

Command Symbol Argument Description

Ft Ft time, width Moves turtle forward by specified time value.
Draws line as a conic frustum beginning with
the turtle’s current diameter and ending at the
specified diameter. Also sets the turtle’s diam-
eter to the specified diameter.

Table 2: Turtle Taper Command
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7.2.2 Extruded Line

Another option for smoothing the discontinuities is using Three.js is to use the extruded shape feature of
Three.js, using a THREE.CurvePath to represent a path. There are several benefits to this option. Extruded
paths support tapering lines by default, which would allow a branch to be represented as a simple, light-weight
path. A collection of paths might be able to be extruded in a single step, which could improve rendering
time. Visually, this would be a very good option, as the extrusion process would smooth the branch joints,
which currently are merely the intersection of cylinder primitives and are discontinuous. Using an extruded
line might also allow for branch bending; as discussed in Section 5.2.1, branches are currently assumed to
be perfectly straight, whereas real branches are usually curved to some degree. Representing branches as
paths would allow for the manipulation of these paths, resulting in a extruded branch with a visually more
accurately curved shape.

The process of creating these paths, however, might be difficult. It might be useful, as with the
tapered cylinder, to implement another turtle command that takes as an argument a tapering constant. Post-
processing of the turtle command list might also generate data to feed to the extruded shape constructor,
adding a large list traversal but allowing the user to implement it without using an L-System constructed
with extrusion rules. The details of this implementation, however, will be left for future consideration.

7.3 Tropism

Defined biologically as growth in response to a biological stimulus, an implementation of a tree’s response
to lighting conditions, called heliotropism, and the proximity of other trees could result in a more realistic
representation of a forest ecosystem. A simple way to represent tropism is by calculating an orientation
adjustment, α, the formula for which is given below:[15]

α = e|
−→
H ×

−→
T |

Where H is a vector representing the branch, T is a vector representing the tropism on the tree, |T | is the
strength of influence of the tropism, and e is a constant representing the susceptibility of a branch to the
effects of tropism.

Thus, a vector must be found to represent tropism on the tree. This could easily be handled by the
forest model: a global vector could represent the prevailing light conditions of the area, which would then
be averaged with a per-tree vector representing the local effects of tree proximity to get the vector T .

7.4 Path Traveling

A significant design consideration when making this project is the unique interactive experience, espe-
cially with regards to modern video games. If this project is to be considered a game, then the “objective”
is not anything tangible, creative, or destructive; instead, I wish to effect a whimsical sense of exploration,
reminiscent of childlike play in nature. The user is not in control of their environment; in many ways, I hope
that this lack of agency inspires a sense of curious awe.

To this end, I would consider removing, or at least limiting, the user’s ability to navigate the world.
The current hosted version significantly limits user navigation speed and disables jumping, attempting to
“slow down” the experience and force the user to focus on the scene instead of navigation concerns and the
thrill of speed. An interesting extension, however, would be using path-finding algorithms to control, or at
least guide, user navigation.

One possible implementation would be to bias the user movement with a pathfinding algorithm,
allowing user control only as slight deviations from the path. Thus user would thus be allowed a small amount
of control over their exploration, but would ultimately be pulled towards the calculated path. Alternatively,
movement controls could be disabled completely, allowing the user only to look around as they are led on a
walk around the forest.

Several pathfinding algorithms exist for consideration. Dijkstra’s algorithm, for example, or its
extension A*, are designed to find the shortest path in a graph, and can be used to calculate a path around
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obstacles. However, these algorithms are designed to find a shortest path; in this case, as the journey is
more important than the destination, I propose an alternative algorithm, based on Namco’s Pac-Man[14].
As the user travels, a random “target point” shall be calculated. Then, the player is moved steadily towards
that point, using weighted-vector calculations. This weighted vector would tend to point directly toward the
target point, but would be deflected by nearby trees. The action can be thought of as similar to a charged
particle moving towards a strong attractor, but repulsed by nearby point charges. The user would thus
move to the most open areas that lead towards the target point; this has an appealing element of realism to
it, as people tend to travel through forest following perceived “paths”, which are usually locations of most
negative space between trees. When the user arrives at or near the target point, a new target point will be
calculated, forcing the user into perpetual motion.

7.5 Feature Extraction

The feature extraction method, from N. Yokoya et al.[20], is a fairly involved process that requires
finding actual topography data from a representative terrain and building an analytical program that runs
statistics on the output of a fractal function with reference to the slope grades found in the representative
surface. It would result in a set of justifiably accurate constants, which would render a random fractal surface
that was similar to the representative real surface. These constants include the fractal “roughness” factor,
as well as a range of scales for which the fractal representation of topography is realistic. As it was deemed
a significant tangent from the focus of the thesis, however, this method was not pursued.

7.6 Erosion Emulation

Erosion emulation[12] is a process by which generated terrain can gain the a little appearance of natural
weathering. Currently, terrain is passed through a Gaussian filter, a low-pass filter that smooths over small-
scale bumps while preserving larger features. This is visually effective at removing terrain noise, which is
annoying to the user whose height changes with respect to the terrain, causing a “bumpy” oscillation of the
camera; however, it is not naturally justified. Erosion emulation would be more effective: a natural low-pass
filter, it would smooth over annoying terrain noise while giving the scene a cool sense of natural age.

7.7 Tree Species

Currently, only a single, archetypal tree is being created by the specified L-System. Obviously, the
forests usually consist of different species of trees growing together. This could easily be implemented by
including a set of L-System rules, each representing a different tree species. The species could be randomly
selected upon the Forest’s seeding step, or, if a dominant species is desired, such as is found in a pine
forest, probability could be assigned to each species. A more sophisticated selection algorithm could take in
to consideration biological advantage for resource aquisition; for example, a tree predisposed to grow taller
might be better at capturing light. Careful consideration when constructing the L-System ruleset should
be taken if specific species are desired, but a significant body of literature exists discussing the topological
details of different tree species.

7.8 Texturing

Current, Garden of Eden almost entirely uses solid colors for a very simple look. The use of some basic
textures would make the rendered scene look nicer and more realistic.

7.8.1 Bark

A basic, brown bark texture would be a significant visual improvement over the current solid mesh.
This texture could come from images of real trees, which might result in very realistic bark; however, the
texture should be wrappable in order to avoid seam artefacts. Thus, a bark generation method[2] might be
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preferable. The proposed method uses sawtooth waves and coloration to achieve a decently-realistic bark
look that is wrappable in all directions.

7.8.2 Bump Map

Currently, branches are represented as straight, smooth cylinders. Branches in nature, however, are
twisted, gnarled, and scarred. This effect can be achieved with a bump map texture, which could be
generated with the bark texture to produce the appropriate visual. This could also be used to simulate
burls and broken branches, which could be generated along with the actual branches in the L-System, to be
rendered out by the texture engine.

7.9 Growth Time Emulation

The L-System used for the trees in Garden of Eden has replacement rules for both productions and turtle
commands; in other words, it affects both branching junctions and the length and width of the rendered
branches. Thus, the branches grow with time, offering a rough correlation between depth of recursion and
age of the tree. This extension seeks to expand on this correlation, growing the trees in a process that
actually represents time, or the age of the tree in question. A single level of recursion, for example, might
represent a year of growth. This would open up a lot of different avenues of forest growth representation.
Growth events, mentioned below, become possible. The working assumption that all trees are of a roughly
evuivalent age could also be broken: the seeding and growth step could occur in parallel, resulting in a forest
of trees and their sapling progeny.

This extension would require a significant rewrite of the Forest module and a specially written
L-System ruleset. The Forest module, with the backgrounded workflow described above, would need to
combine the seeding and growing steps. This could involve a significant amount of IPC, which Javascript
does not easily support. It therefore might work better in conjunction with the Tree API setup, which could
provide solid backgrounding support as well as the IPC required for growth time emulation.

7.10 Density Management

There are a few problems with the current density management implementation, which will be addressed
in detail below. There exists a non-deterministic (due to the use of random placement) bug where trees placed
might be too close, or even in contact with, trees in adjacent patches. Furthermore, the algorithm used easily
and logically supports the addition of younger trees to fill out the patch.

7.10.1 Seedlings

The current density management system lends itself well to extension with regards to adding new,
younger trees to a given patch. The process should take in to consideration the distance from the canopy
tree, as the dominant tree in the patch should get most of the resources, and preventing young trees from
growing too close to the canopy tree would prevent tree collisions from occurring. I propose modeling the
patch as a particle system, with the canopy tree as a source of repulsion, and deriving a probability of
elimination from the inverse square law thus derived. A constant amount of seedlings would be placed
randomly in the patch, perhaps as a part of a growth time emulation step. Then, using the above inverse
square law, the seedlings would be filtered on their derived probability. This would make the density manager
follow the gap models on which it is based much more accurately, in addition to improving the realism of
the generated forest by breaking the same-age assumption.

7.10.2 Placement Error

The aforementioned placement error arises from breaking the assumption that patches are horizontally
homogeneous, and that there are no interactions between patches. This can lead to an error where trees are
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placed close to a shared border, resulting in collision of the trees that is either unreasonable or impossible.
There are two possible solutions to this problem:

1. Edge repulsion: Similar to the seedlings problem, an inverse square law would be used to repulse
canopy trees away from the edges of the patch, resulting in a placement distribution strongly biased
towards the center of the square. This would combine well with the proposed seedling extension and
offer a probabilistic solution, which has been used throughout the problem as a stand-in for natural,
deterministic methods.

2. Closest pair algorithm: A more direct solution would be to use a closest pair algorithm[18] to obtain
a list of trees that violate visual or natural closeness constraints, then filtering said list to remove
collisions. The below algorithm is a linear solution to the problem:

Gaussian-Density-Management(density)

// Proximity detection step

Create a grid where each square is half the distance between trees, calculated

from the density

Seed grid with first tree by mapping the tree’s location to the grid and adding

it to that spot

For every subsequent tree t dest,
Map tree location to grid

If there are any trees mapped to that location or any of its compass neighbors,

For each neighboring tree t src,
Calculate the Euclidean distance between t src and t dest
Construct a pair of t src and t dest, including the calculated

distance

Add pair to a list of pairs

// Filter step

For each pair in the pair list

map distance to normal curve to get probability

filter using that probability

The algorithm fits well with the current density management system in that it partitions the terrain
plane into a grid, though of a different size than the patches used to place canopy trees. However, it
is a somewhat hacky solution, as it only fixes the bug as it occurs, instead of finding a more natural
solution to prevent it.

7.11 Growth Events

Growth events are defined generally as any effectively instantaneous event that dramatically affects
tree growth. Growth events could include, but are not limited to, weather affects such as wind damage
or lightning, disease, or damage from other trees. These effects are a random, singular event that can
significantly change the visual appearance and factors affecting the growth of a tree, and that don’t necessarily
have global affects. These events could be randomly simulated in the aforementioned growth time emulation,
with a random event affecting a single, random tree at a specific interval. The result might range from
truncated branches to split trunks, even complete removal of the tree. They would, however, have to occur
during the L-System recursion, and would require significant rewriting of the recursion structures to handle
outside affectors.
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Figure 4: Test trees rendered from the individual tree testing script. Trees are constructed from the Ran-
domTree rule set, rendered to a depth of 8.

22



Figure 5: Image from a small rendered forest. Terrain degree is 5 and tree species is RandomTree, rendered
to a depth of 8.
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