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Abstract

This paper introduces MEXSVMs, a mid-level represen-
tation enabling efficient recognition of actions in videos.
The entries in our descriptor are the outputs of several
movement classifiers evaluated over spatial-temporal vol-
umes of the image sequence, using space-time interest
points as low-level features. Each movement classifier is
a simple exemplar-SVM, i.e., an SVM trained using a single
positive video and a large number of negative sequences.

Our representation offers two main advantages. First,
since our mid-level features are learned from individual
video exemplars, they require minimal amount of supervi-
sion. Second, we show that even simple linear classifica-
tion models trained on our global video descriptor yield ac-
tion recognition accuracy comparable to the state-of-the-
art. Because of the simplicity of linear models, our de-
scriptor can efficiently learn classifiers for a large number
of different actions and to recognize actions even in large
video databases. Experiments on two of the most challeng-
ing action recognition benchmarks demonstrate that our ap-
proach achieves accuracy similar to the best known meth-
ods while performing 70 times faster than the closest com-
petitor.

1. Introduction

Human action recognition is an important but still largely
unsolved problem in computer vision with many potential
useful applications, including content-based video retrieval,
automatic surveillance, and human-computer interaction.
The difficulty of the task stems from the large intra-class
variations in terms of subject and scene appearance, differ-
ent motions, viewing positions and angles, as well as action
duration.

We argue that most of the existing action recognition
methods are not designed to handle such heterogeneity.

Typically, these approaches are evaluated only on simple
datasets involving a small number of action classes and
videos recorded in lab-controlled environments [2, 31, 35,

]. Furthermore, in the design of the action recognizer,
very little consideration is usually given to the computa-
tional cost which, as a result, is often very high.

We believe that modern applications of action recogni-
tion demand scalable systems that can operate efficiently
on large databases of unconstrained image sequences, such
as YouTube videos. For this purpose, we identify three key
requirements to address: 1) the action recognition system
must be able to handle the substantial variations of motion
and appearance exhibited by realistic videos; 2) the training
of each action classifier must have low-computational com-
plexity and require little human intervention in order to be
able to learn models for a large number of human actions;
and 3) the testing of the action classifier must be efficient so
as to enable recognition in large repositories, such as video-
sharing websites.

This work addresses these requirements by proposing
a global video descriptor that yields state-of-the-art action
recognition accuracy even with simple linear classification
models. The feature entries of our descriptor are obtained
by evaluating a set of movement classifiers over the video.
Each of these classifiers is an exemplar-SVM [24] trained
on quantized space-time interest points [19] and optimized
to separate a single positive video exemplar from an army
of “background” negative videos. Because only one labeled
video is needed to train the exemplar-SVM, our features can
be learned with very little human supervision. The intu-
ition behind our proposed descriptor is that it provides a
semantically-rich description of a video by measuring the
presence or absence of movements similar to those in the
exemplars. Thus, a linear classifier trained on this repre-
sentation will express a new action class as a linear combi-
nation of the movement exemplar-SVMs. We demonstrate
that these simple linear classification models produce sur-
prisingly good results on challenging action datasets. In



addition to yielding high-accuracy, these linear models are
obviously very efficient to train and test, thus enabling scal-
able action recognition, i.e., efficient recognition of many
actions in large databases.

Our approach is similar in spirit to attribute-based recog-
nition in still images [7, 16, 18], where object and scene
classes are described in terms of sets of semantic character-
istics automatically detected in the photos. In particular, our
approach can be viewed as extending to videos the idea of
classifier-based image descriptors [5, 23, 34, 38] which de-
scribe a photo in terms of its relation to a set of predefined
object classes. To represent videos, instead of using object
classes, we adopt a set of movement exemplars.

In the domain of action recognition, our approach is most
closely related to the work of Sadanand and Corso [30], who
have been the first to propose to describe videos in terms
of a set of actions, which they call the Action Bank. The
individual features in Action Bank are computed by con-
volving the video with a set of predefined action templates.
These descriptors achieve state-of-the-art accuracy on sev-
eral benchmarks. However, the template-matching step to
extract these mid-level features is very computationally ex-
pensive. As reported in [30], extracting mid-level features
from a single video of UCF50 [1] takes a minimum of 0.4
hours up to a maximum of 34 hours. This computational
bottleneck effectively limits the number of basis templates
that can be used for the representation and constrains the
applicability of the approach to small datasets.

Our main contribution is to replace this prohibitively ex-
pensive procedure with a technique that is almost two orders
of magnitude faster and yields a mid-level representation
that is comparable in terms of action recognition accuracy.
This enables the application of our descriptor for recogni-
tion in large video databases, where the Action Bank frame-
work is simply too costly to be used.

2. Related Work

Many approaches to human action recognition have been
proposed over the last ten years. Most of these techniques
differ in terms of the representation used to describe the
video. An important family of methods is the class of ac-
tion recognition systems using space-time interest points,
such as Haris3D [19], Cuboids [6], and SIFT3D [32]. Many
other features for human action recognition have been pro-
posed besides space-time interest points. Efros et al. used
optical flows to represent and classify actions. Klaser et al.
extended HOG [3] to HOG3D by making use of the tempo-
ral dimension of videos [14]. Ke et al. learned volumetric
features for action detection [13]. Wang and Suter proposed
the use of silhouettes to describe human activities [39].

On these representations, a variety of classification mod-
els have been applied to recognize human actions: bag-
of-word model [25], Hidden Markov Model [10], Metric

Learning [35], Support Vector Machines (SVM) [31], Deep
Learning [22], Boosting-based approaches [20, 21].

Although many of these approaches have been shown to
yield good accuracy on standard human action benchmarks,
they would be difficult to scale to perform recognition in
large repositories as they involve complex feature represen-
tations or learning models, which are too costly to compute
on huge datasets.

3. Approach Overview

We now introduce our approach. While Section 4 de-
scribes formally our training and testing procedure, here we
explain the approach at a high level using the schematic il-
lustration in Figure 1. During an offline stage, our method
learns N, movement exemplar-SVMs (MEXSVMs), shown
on the left side of the figure. Each MEXSVM is a bi-
nary classifier optimized to recognize a specific action in-
stance (e.g., “biking”, “ski-jetting”’) and it uses histograms
of quantized space-time interest points as low-level features
for the classification. The set of learned MEXSVMs are
then used as mid-level feature extractors to produce an in-
termediate representation for any new input video: we eval-
uate each MEXSVM on subvolumes of the input video in
order to compute the probability of the action at differ-
ent space-time positions in the sequence. Specifically, we
slide the subvolume of each MEXSVM exemplar at N,
different scales over the input video. As it will be dis-
cussed in Section 4.4, this evaluation can be performed ef-
ficiently by using Integral Videos [12]. Finally, for each
MEXSVM we perform max-pooling of the classifier scores
within N, spatial-temporal pyramid volumes. Thus, for
any input video this procedure produces a feature vector
with N, x N, x N, dimensions. Because the MEXSVM
features provide a semantically-rich representation of the
video, even simple linear classification models trained on
our descriptor achieve good action categorization accuracy,
as demonstrated in our experiments.

4. Movement Exemplar-SVMs

Our MEXSVM classifiers are linear SVMs applied to
histograms of space-time interest points (STIPs) calculated
from subvolumes of the video. We choose this model as
it can be efficiently evaluated even on long videos, and as
such it is a suitable choice for scalable action recognition.

In principle, to train each SVM classifier we need a rea-
sonable number of both positive and negative examples in
order to produce good generalization. Unfortunately, we do
not have many positive examples due to the high human cost
of annotating videos. Thus, we resort to training each SVM
using only one positive example, by extending to videos the
exemplar-SVM model first introduced by Malisiewicz et al.
for the case of still images [24]. Specifically, for each pos-
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Figure 1. Overview of our approach. During an offline stage, a collection of movement exemplar-SVMs (MEXSVMs) is learned.
Each MEXSVM is trained using a single positive video exemplar and a large number of negative sequences. These classifiers are then
used as mid-level feature extractors to produce a semantically-rich representation of videos. Our approach is similar to the Action-Bank
framework [30]. Our novel contribution is the learning of efficient exemplar SVMs, which replace the costly template-based classifiers of

Action-Bank in the computation of the mid-level features.

itive exemplar, we manually specify a space-time volume
enclosing the action of interest and excluding the irrelevant
portions of the video. The histogram of quantized STIPs
contained in this volume becomes the representation used
to describe the positive exemplar. Then, intuitively, our ob-
jective is to learn a linear SVM that separates the positive
exemplar from the histograms computed from all possible
subvolumes of the same size in negative videos.

It may appear that training a movement classifier from a
single example will lead to severe overfitting. However, as
already noted in [24], exemplar-SVMs actually have good
generalization as their decision boundary is tightly con-
strained by the millions of negative examples that the clas-
sifier must distinguish from the positive one. In a sense, the
classifier is given access to an incredible amount of training
examples to learn what the positive class is not. Further-
more, in our context, the exemplar-SVMs are simply used
as mid-level feature extractors to find movements similar
to the positive exemplar so their individual categorization
accuracy is secondary. In other words, rather than apply-
ing the individual exemplar-SVMs as action recognizers,
we use them collectively as building blocks to define our
action categorization model, thus playing a role similar to
the weak-learners in boosting [37].

In the next subsections we describe in detail the low-

level features used by MEXSVMs as well as the procedure
to learn the exemplar-classifier and then to test them effi-
ciently on novel videos.

4.1. Low-level features used by MEXSVM

Our MEXSVMs are applied to histograms of quantized
STIPs computed within video volumes. In order to learn the
dictionary used by the quantizer, we first extract STIPs from
a set of training videos using the approach described in [19],
which extends to video the traditional Harris operator for
still images. We then compute Histogram of Oriented Gra-
dients (HOG) [3] and Histogram of Flows (HOF) [4] within
space-time neighborhoods of the detected STIPs using the
implementation described in [20]. At each STIP we con-
catenate the HOG and the HOF descriptor to form a 162-
dimensional feature vector representing the interest point.
Finally, we run k-means clustering on these vectors to learn
a codebook of d cluster centroids. Given the codebook, a
video volume is represented in terms of the histogram of
codewords occurring within that volume. We normalize the
histogram using the L1 norm.

4.2. Training a MEXSVM

The input for learning a MEXSVM consists of a positive
video containing a manually-specified 3D box bounding the



action of interest, and thousands of negative videos without
action volume annotations. As we will describe in further
details in the experiment section, the only requirement on
the negative videos is that they must represent action classes
different from the category of the positive exemplar (e.g., if
the exemplar contains the action dancing, we exclude danc-
ing videos from the negative set). But this constraint can
be simply enforced given action class labels for the videos,
without the need to know the space-time volumes of these
negative actions.

It is worth noting that different movement exemplars will
have different 3D box shapes. For example, we expect a
walking action to require a tall volume while swimming
may have a volume more elongated in the horizontal direc-
tion. As further discussed below, we maintain the origi-
nal shape-ratio of the exemplar volume in both training and
testing. This means that we look for only tall volumes when
detecting walking, and only short-and-wide volumes when
searching for the swimming action.

Let z be the video volume manually-specified in the
positive example and Ny the set of all subvolumes of neg-
ative videos. Let us denote with ¢(x) the L1-norm normal-
ized histogram of codewords within a video volume z, i.e.,
¢(z) = 5 lea(@),. .. ca(@)]”, where c;(x) is the num-
ber of codeword ¢ occurring in volume z, and c¢(z) is the
total number of codewords in x.

Following [24], the exemplar-SVM training procedure
learns a linear classifier f(z) = w” ¢(x)+b, by minimizing
the following objective function:

mig [wl*> + Cih(w"¢(zg) +b)

+ Gy Y h(—wTe(z)—b) (D)
zeNE

where h(s) = max(0,1 — s) is the hinge loss function,
and C4 and C are pre-defined parameters to equalize the
unbalanced proportion of positive and negative examples.

Unfortunately, direct minimization of the objective in
formula 1 is not feasible since the last term requires opti-
mizing the SVM parameters on all possible negative subvol-
umes, which is typically a gigantic number making brute-
force evaluation impossible. Thus, we resort to an alterna-
tion scheme similar to that used in [24] and [8]: we iterate
between 1) learning the parameters (w, b) given an active
set S of negative volumes and 2) mining new negative vol-
umes with the current SVM parameters.

We first initialize the parameters of the classifier by tra-
ditional SVM training using the manually-selected volume
g as positive example and randomly selected subvolumes
from the other videos as negative examples. At each iter-
ation the current SVM is evaluated exhaustively on every
negative video to find violating subvolumes, i.e., subvol-
umes yielding a positive SVM score. These subvolumes are

added to the active set S to be used in the successive it-
erations of SVM learning. We stop the iterative alternation
between these two steps when either no new subvolumes are
added to the active set or a maximum number of iterations
M is reached. In our implementation we use M = 7, but
we find that in more than 85% of the cases, the learning pro-
cedure converges before reaching this maximum number of
iterations (see Figure 3 for further details).

Finally, our training procedure adds to the active set also
subvolumes selected from the positive exemplar video: at
each learning iteration we evaluate the current SVM on the
positive video and add to the active set two kinds of sub-
volumes. The first kind concerns subvolumes whose spatial
overlap with z g is greater than 50% but that yield a negative
classification score: these subvolumes are false negatives
and thus are added as positive examples to the active set.
We include also any subvolume having spatial overlap with
z g smaller than 20% if the classification score is positive:
these are false positives which are added to the active set as
negative examples in order to force the learning procedure
to recognize the intrinsic properties contained in x g and not
those present in irrelevant subvolumes of the positive video.

The pseudocode of our learning procedure is given in al-
gorithm 1. Lines 1 — 4 initialize the active set. The function
svm_training in line 6 learns a traditional binary linear
SVM using the labeled examples in the active set. Note that
we found that at each iteration we typically have millions of
false positive volumes detected in negative videos (lines 8—
12). In order to maintain the learning of the SVM feasible,
in practice for each negative video V;” we add to the active
set only the volumes that yield the largest violations, for a
maximum of 10 per video.

4.3. Calibrating the ensemble of MEXSVMs

The learning procedure described above is applied to
each positive exemplar independently to produce a collec-
tion of MEXSVMs. Because of this disjoint training of
the exemplar classifiers, their score ranges and distribu-
tions may vary considerably. A standard solution to this
problem is to calibrate the outputs by learning for each
classifier a function that converts the raw SVM score into
a proper posterior probability compatible across different
classes. To achieve this goal we use the procedure pro-
posed by Platt [26]: for each exemplar-SVM (wg,bg) we
learn parameters («g, Sg) to produce calibrated probabili-
ties through the sigmoid function g(z; wg, bg, ag, fg) =
1/[14exp(ap(whz+bg)+BE)]. The fitting of parameters
(ag, BE) is performed according to the iterative optimiza-
tion described in [26] using as labeled examples the positive
or negative volumes that are in the active set at the com-
pletion of the MEXSVM training procedure. As already
observed by prior work using the outputs of classifiers as
mid-level features for recognition [5, 24], we also found that



Algorithm 1 MEXSVM training

Input: A set of negative videos {V;,...,Vy} and a manually-
selected volume z z in exemplar video V.

Output: Parameters (w, b) of exemplar-SVM.

1: S« {(xg,+1)}

2: fori=1to N do

3 S« SU{(zi,—1)} with z; randomly chosen from V),

4: end for

5: for iter = 1to M do

6: (w,b) < svm_training(S)
T: Sotd < S
8.
9

fori =1to N do
: forall z in V; s.t. w'z +b >0 do
10: S < SU{(z, —1)} /false positive

11: end for

12:  end for

13 forallzin V¥ st w'z+b<0& 5L > 0.5 do
14: S <+ SU{(z,+1)} /false negative

15:  end for

16: forallzin VT st w'z+b>0& 402l <0.2do
17: S + SU{(x,—1)} /false positive

18:  end for

19: if S,1q = S then

20: break

21:  end if

22: end for

this calibration procedure yields a significant improvement
in accuracy since it makes the range of scores more homo-
geneous and diminishes the effect of outlier values.

4.4. Efficient computation of MEXSVM scores

Although replacing the template matching procedure of
Action Bank by linear SVMs gives a good computational
saving, this by itself is still not fast enough to be used in
large-scale datasets due to the exhaustive sliding volume
scheme. In fact, we use the sliding volume scheme in both
training and testing. In training, we need to slide the cur-
rent SVM over negative videos to find volumes violating
the classification constraint. In testing, we also need to slide
the entire set of MEXSVM classifiers over the test video in
order to extract the mid-level features for the subsequent
recognition. We next describe an efficient solution to the
sliding volume evaluation of the SVMs.

Let V be an input video of size R x C' x T where R,
C, and T are the numbers of rows, columns, and frames
of the video respectively. Given a MEXSVM with param-
eters (wg,bg), we need to efficiently evaluate it over all
subvolumes of V having size equal to the positive exem-
plar subvolume z g (in practice, we slide the subvolume at
N, different scales but for simplicity we illustrate the pro-
cedure assuming that we use only the original scale). It is
worth noting that the branch-and-bound method of Lam-
pert et al. [17] cannot be applied to our problem because it

can only find the subwindow maximizing the classification
score while we need the scores of all subvolumes; moreover
it requires unnormalized histograms.

Instead, we use integral videos [12] to efficiently com-
pute the MEXSVM score for each subvolume. An inte-
gral video is a volumetric data-structure having size equal
to the input sequence (in this case R x C' x T'). It is use-
ful to speed up the computation of functions defined over
subvolumes and expressed as cumulative sums over vox-
els, i.e, functions of the form H(z) = }_, . e, b1, ¢, 1),
where (7, ¢, t) denotes a space-time point in volume = and
h is a function over individual space-time voxels. The in-
tegral video for h at point (r,¢,t) is simply an accumu-
lation buffer B storing the sum of h over all voxels at
locations less than or equal to (r,c¢,t), i.e., B(r,c,t) =
Doy Dowr<e 2op<y h(r', ¢/, t"). This buffer can be built
with complexity linear in the video size. Once built, it can
be used to compute H () for any subvolume x via only a
handful of additions and subtractions of the values in B.

In our case, the use of integral video is enabled by the
fact that the classifier score can be expressed in terms of
cumulative sums of individual point contributions, as we il-
lustrate next. Let us indicate with P(z) the set of STIPs
included in subvolume z of video V and let ¢, be the code-
word index of a point p € P(x). Then we can rewrite
the classification score of exemplar-SVM (w, b) on a sub-
volume z as follows (we omit the constant bias term b for
brevity):

;A
wlo(z) = @Zwlcz(x)

- Zpe P(x) Wy,
DY @
2 peP()

Equation 2 shows that the classifier score is expressed as
a ratio where both the numerator and the denominator are
computed as sums over individual voxels. Thus, the classi-
fier score for any x can be efficiently calculated using two
integral videos (one for the numerator, one for the denom-
inator), without ever explicitly computing the histogram
¢(x) or the inner product between w and ¢(x).

5. Experiments
5.1. Experimental setup

Implementation details of MEXSVM training: Since
our approach shares many similarities with Action Bank,
we adopt training and design settings similar to those used
in Action Bank [30] in order to facilitate the comparison
between these two methods. Specifically, our MEXSVMs
are learned from the same set of UCF50 [1] videos used
to build the Action Bank templates. This set consists of



189 sequences spanning a total of 50 actions. Since the Ac-
tion Bank volume annotations are not publicly available, we
manually selected the action volume xp on each of these
exemplar sequences. We removed from this set 4 sequences
since their volume occupies almost the entire image in each
frame and thus it is not suited to a sliding window approach.
We obtain in this way N, = 185 exemplars. As nega-
tive set of videos we use the remaining 6492 sequences
in the UCF50 dataset: for these videos no manual label-
ing of the action volume is available nor it is needed by
our method. Each MEXSVM is learned by using one of
the 185 volumes as single positive exemplar; the negative
volumes are drawn from all the negative videos excluding
those containing the same action class as the category of
the positive video. Action Bank also includes 6 templates
taken from other sources but these videos have not been
made publicly available; it also uses 10 templates taken
from the KTH dataset [31]. However, as the KTH videos
are lower-resolution and contain much simpler actions com-
pared to those in UCF50, we have not used them to build
our MEXSVMs. In the experiments we show that, while
our descriptor is defined by a smaller number of movement
classifiers (185 instead of 205), the recognition performance
obtained with our mid-level features is on par with Action
Bank.

As already mentioned, we apply the MEXSVM classifier
to histograms of local HOG-HOF descriptors computed at
STIPs. The dictionary used to quantize these descriptors
is learned from the UCF50 video examples, by running k-
means using d = 5000 centroids.

Parameters of MEXSVM features: In order to com-
pute the MEXSVM features from a new video, we perform
max-pooling of the MEXSVM scores using a space-time
pyramid based on the same settings as those of Action Bank,
i.e., Ny = 3 scaled versions of the exemplar volume z g (the
scales are 1, 0.75, and 0.5), and N,, = 73 space-time sub-
volumes obtained by recursively splitting the entire video
in octrees using 3 levels (this yields 1 volume at level 1,
8 subvolumes at level 2, and 64 subvolumes at level 3).
Thus, the final dimensionality of our MEXSVM descriptor
is Ny x Ny x N, = 40515.

Action classification model: All of our action recogni-
tion experiments are performed by training a one-vs-the-rest
linear SVM on the MEXSVM descriptors given a set of la-
beled training videos. We use this classification model as it
is very efficient to train and test, and thus it is an appropriate
choice for the scenario of large-scale action recognition that
we are interested in addressing. We have also experimented
with nonlinear kernels to train the SVM (we tried the his-
togram intersection and the x? kernels), but the results were
similar to (but never better than) those obtained with a lin-
ear classifier. The same observation is made in [30]. For this
reason we present here only results obtained with the linear

Method HMDBS51 | UT-Interaction

Graph matching [27] - 70.8

Dynamic BoW [28] - 78.9

Hough Forests [9] - 82.5

Propag. Hough Voting [40] - 92.5

Action Bank [30] 26.9 85.0
C2[11] 23.0 -
HOG/HOF [20] 20.0 -

MEXSVMs (our approach) 26.9 84.2

Table 1. Comparison of recognition results on HMDBS51, and UT-
interaction. An efficient linear SVM trained on our MEXSVM
features outperforms or approaches the state-of-the-art on both
datasets.

SVM model. The hyperparameter C' of the SVM is tuned
via cross-validation for both Action Bank and MEXSVMs.

Test datasets: We test our approach on two challeng-
ing action recognition datasets: HMDBS51 [15], and UT-
Interaction [29]. These datasets represent good testbeds for
scalable, unconstrained action recognition since they con-
tain a large number of videos taken in realistic conditions
and spanning many different action classes.

HMDBSI1 consists of 6849 image sequences collected
from various sources, including movies as well as YouTube
and Google videos, and containing 51 action categories. All
results for this dataset are presented using 3-fold cross vali-
dation using the 3 publicly available splits, each containing
3580 training videos and 1540 test examples.

UT-Interaction is a smaller dataset (120 videos) contain-
ing sequences of 6 action classes: shake-hands, point, hug,
push, kick, and punch. However, this test set is interesting
as the actions are very challenging examples of interactions
involving multiple people, often including irrelevant pedes-
trians. We train and test on this dataset using leave-one-out
cross validation.

Note that we omit on purpose from our test evaluation
the two datasets that were utilized to learn Action Bank or
MEXSVMs, i.e., UCF50 [1] and KTH [31]. We decided
to do so in order to evaluate the generalization capabili-
ties of the descriptors by considering scenarios where the
test database is different from the one used to learn the fea-
tures, thus avoiding the often misleading effects of dataset
training-testing bias [33].

5.2. Action recognition results

We now present the classification performance obtained
with our approach and compare it with the best published
results on the two benchmarks considered here (HMDBS51,
UT-Interaction). The recognition accuracies achieved by
the different methods are summarized in Table 1. From
these results we see that our approach achieves the high-
est accuracy on HMDBS51 together with Action Bank but,
as discussed in more detail later, it does so with a 70-fold
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Figure 4. Distribution of runtimes to compute the mid-level descriptors (a) Action Bank and (b) MEXSVMs. Note the very different range
of runtime values. The time needed to extract MEXSVMs features for the entire UT-interaction dataset using a single CPU is only 14
hours; instead, it would take more than 41 days to compute Action Bank descriptors for this dataset.

brush hair 73.3 push 31.1 drink 13.3
golf 68.9 talk 31.1 smoke 13.3
situp 65.6 | climb stairs  28.9 eat 12.2

pullup 57.8 jump 28.9 kick ball 12.2
hug 54.4 laugh 28.9 shoot ball 11.1
catch 533 punch 27.8 shoot gun 11.1
shake hands  52.2 ride bike 25.6 sword 11.1
hit 46.7 dive 244 turn 11.1
pushup 46.7 smile 24.4 walk 11.1
fencing 433 flic flac 23.3 handstand 10.0
fall floor 38.9 | drawsword 222 cartwheel 8.9

shoot bow 38.9 chew 18.9 | sword exercise 8.9

ride horse 36.7 sit 18.9 | swing baseball 6.7
kiss 35.6 | somersault 18.9 pick 44
pour 344 kick 17.8 run 44
clap 333 stand 17.8 wave 44

climb 31.1 dribble 14.4

Table 2. Recognition accuracy on the individual classes of
HMDB51 using linear SVMs trained on MEXSVM features. Note
that random chance would yield a recognition rate of only 1.96%.
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Figure 2. Confusion matrix for the UT-Interaction dataset obtained
using linear SVM classifiers trained on MEXSVMs.

speedup (the reader can jump to Figure 4 for a quick look
at the computational costs). Table 2 provides a listing of
the accuracy achieved with our method on the individual
classes of HMDBS51.

On the UT-Interaction dataset, our approach is not the
best method but even here our approach is a very strong
performer, only about 8% worse than the best published re-
sult. Figure 2 visualizes the confusion matrix produced by
our method on this dataset. Our system confuses most often
punching with pushing, which are visually-similar actions.
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Figure 3. Training statistics of movement exemplar-SVMs: (a)
the average number of labeled examples added to the active set
at different training iterations during the learning of a MEXSVM;
(b) the percentage of MEXSVM trainers that have converged as
a function of the learning iteration; (c) runtime comparisons be-
tween MEXSVMs and Action Bank on UT-Interaction dataset.
This may indicate that more exemplars are needed to de-
scribe these two actions as distinct.

In Figure 3, we study the convergence properties of our
MEXSVM training procedure. The graph in (a) shows the
average number of negative volumes added to the active set
as a function of the iteration number. We see that while
many new violating volumes are found in the first few it-
erations, few examples are added after iteration 4. The
graph in Figure 3(b) visualizes the percentage of times the
MEXSVM training procedure converges for different iter-
ations: after 6 iterations more than 85% of the MEXSVM
trainers have converged indicating that few learning itera-
tions are needed for most movement exemplar-SVMs.

5.3. Comparison of computational costs

In this section, we provide an empirical evaluation of the
speed of our method and compare it to Action Bank (we use
the software provided by the authors of [30]). The runtime
statistics for both descriptors were collected on the com-
plete set of videos of UT-Interaction using a single-core
Linux machine with a CPU @ 2.66GHz. The distribution
of computation times needed to extract the descriptors is
shown in Figure 4. Note that in our computation we include
the time needed to detect the STIPs and extract the local
descriptors, so it is the complete time from the input of the
video to the output of the MEXSVMs. The extraction of
MEXSVMs is on average over 70 times faster than for Ac-



tion Bank. We can process the entire UT-Interaction dataset
using a single CPU in 14 hours; extracting the Action Bank
features would take 41 days.

We also provide some illustrative statistics on the
efficiency of training and testing classifiers using our
MEXSVM features. Training a linear SVM on MEXSVMs
for one of the HMDBS51 classes takes 6.2 seconds; the test-
ing of the SVM on a video takes only 7 milliseconds. This
efficiency of learning and testing makes our descriptor suit-
able for recognition in large-scale databases, even in scenar-
ios involving many classes.

6. Conclusions

We have presented an efficient approach for large-scale
human action recognition. It centers around the learning of
a mid-level video representation that enables state-of-the-
art accuracy even with simple and efficient linear classifica-
tion models. Experiments on a large-scale benchmark and
a challenging action recognition dataset show the accuracy
and efficiency of our approach.

Our mid-level features are produced by evaluating a pre-
defined set of movement classifiers over the input video.
An important question we plan to address in future work is:
how many mid-level classifiers do we need to train before
accuracy levels off? Also, what kind of movement classes
are particularly useful as mid-level features? Currently, we
are restricted in the ability to answer these questions by the
scarceness of labeled data available, in terms of both num-
ber of video examples but also number of action classes. An
exciting avenue to resolve these issues is the design of meth-
ods that can learn robust mid-level classifiers from weakly-
labeled data, such as YouTube videos. We intend to explore
this research direction in the future.

The software implementing our approach and all the data
used in the experiments will be released upon publication.
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