
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

7-1-2012

Privacy-Preserving Screen Capture: Closing the Loop for Medical Privacy-Preserving Screen Capture: Closing the Loop for Medical

Informatics Usability Informatics Usability

Joseph Cooley
Massachusetts Institute of Technology

Sean Smith
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Cooley, Joseph and Smith, Sean, "Privacy-Preserving Screen Capture: Closing the Loop for Medical
Informatics Usability" (2012). Computer Science Technical Report TR2012-725.
https://digitalcommons.dartmouth.edu/cs_tr/358

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/358?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Privacy-Preserving Screen Capture:

Closing the Loop for Medical Informatics UsabilityI

Joseph Cooley1, Sean Smith∗

Department of Computer Science
Dartmouth College

Hanover, NH 03755 USA

Abstract

As information technology permeates healthcare (particularly provider-facing

systems), maximizing system effectiveness requires the ability to document

and analyze tricky or troublesome usage scenarios. However, real-world med-

ical applications are typically replete with privacy-sensitive data regarding

patients, diagnoses, clinicians, and EMR user interface details; any instru-

mentation for screen capture (capturing and recording the scenario depicted

on the screen) needs to respect these privacy constraints. Furthermore, real-

world medical informatics systems are typically composed of modules from

many sources, mission-critical and often closed-source; any instrumentation

for screen capture cannot rely on access to structured output or software

IThis work is supported in part by the US National Science Foundations Trustworthy
Computing award #0910842, by the Department of the Air Force under Air Force Con-
tract #FA8721-05-C-0002, and by Google. Opinions, interpretations, conclusions, and
recommendations are those of the authors and are not necessarily endorsed by the United
States Government or Google.

∗Corresponding author
Email addresses: joe.cooley@gmail.com (Joseph Cooley), sws@cs.dartmouth.edu

(Sean Smith)
URL: www.cs.dartmouth.edu/~sws/ (Sean Smith)

1Current affiliation: MIT Lincoln Laboratory, Lexington MA 02421 USA

Preprint; Dartmouth Computer Science Technical Report TR2012-725 July 9, 2012

internals.

In this paper, we present a solution: a system that combines keyboard

video mouse (KVM) capture with automatic text redaction (and interac-

tively selectable unredaction) to produce precise technical content that can

enrich stakeholder communications and improve end-user influence on sys-

tem evolution. KVM-based capture makes our system both application and

operating-system independent because it eliminates software-interface depen-

dencies on capture targets. Using a corpus of EMR screenshots, we present

empirical measurements of redaction effectiveness and processing latency to

demonstrate system performances. We discuss how these techniques can

translate into instrumentation systems that improve real-world medical in-

formatics deployments.

Keywords: EHR/EMR, security, privacy, usability, redaction

1. Introduction

Medical enterprises large and small are supplanting paper-based systems

with IT-based ones, and upgrading old, piecemeal IT-based systems with

new, federated ones. However, as with any large engineering project, it is

unlikely that the first solution produced and deployed is exactly right. Stan-

dard engineering tenets teach the importance of “closing the loop”; under-

standing and tuning a system requires measuring it, in order for this tuning

to be a data-driven process.

However, when it comes to taking such measurements, medical informat-

ics systems raise a unique combination of challenges:

Privacy Preservation In a human-facing IT system, screenshots comprise

2

the natural domain for measurement. However, in medical systems,

screenshots are full of privacy-sensitive material. First, we have the

obvious issues: names and identifying information of patients; images

of patients; text regarding diagnoses and medication and other treat-

ments. But there are more subtle issues as well, such as names of

providers, details of an EMR user interface protected by vendor agree-

ments, and non-text indicators (such as “warning” icons) that can be-

tray confidential patient details.

A measurement methodology needs to respect these privacy constraints—

either by putting cumbersome measurements in place to ensure that

private data is never leaked throughout the analysis process, or by au-

tomatically redacting it in the first place. However, any such redaction

system needs to be effective in two ways: both at removing sensitive

information, but also at retaining (in conjunction with end-user feed-

back) the system behavior information we were trying to measure in

the first place.

Context Preservation Traditional work on privacy and confidentiality seeks

to hide information. However, to fulfill their purpose of tuning and

analysis, redacted medical screenshots still need to contain information—

a blacked-out screen would preserve all privacy, but be useless. We need

to balance hiding of privacy-protected information with communication

workflow process context.

System Impact Medical enterprises deploy IT in order to further their

medical mission, within the constraints of various business objectives.

3

A measurement methodology needs to respect these deployment constraints—

it cannot make assumptions about underlying applications, operating

systems, access to source code, access to structured protocol commu-

nications, even access to documentation. Furthermore, a measurement

methodology cannot disrupt the underlying system; besides impeding

enterprise mission, changes might also invalidate necessary certification.

Workflow Impact For clinicians using medical IT systems, the primary

motivation is helping patients rather than wrestling with computing

systems—even to document troublesome scenarios in order to enable

these systems to be fixed. Consequently, a measurement methodology

needs to minimize the work required by these users: they should be

able to quickly log some issue, and move on with their real mission.

This Paper. In this paper, we present our research addressing these needs:

instrumentation that captures text-redacted keyboard/video/mouse (KVM)

traces—the point where humanspace and cyberspace [1] intersect. By cap-

turing data at the KVM interface and text-redacting images, we eliminate

software interface dependencies. Section 2 provides an overview of our pro-

totype system. Section 3 describes our methodologies for text redaction.

Section 4 describes the broader system we built around these techniques.

Section 5 evaluates the effectiveness of our approaches. Section 6 presents

how this work can impact real-world medical informatics systems. Section 7

reviews related work, and Section 8 concludes.

4

2. System Overview

Our prototype system applies text and image redaction to KVM feeds

from medical informatics systems—see Figure 1.

Our system includes functionality essential to implementing screen cap-

ture for sensitive systems. The basic steps of instrumenting such systems in-

clude screen capture, image processing and editing, and data sharing. After

capture, the system processes an image to find and redact text.Additionally,

the system may search for regions within the image that match a set of im-

age snippets or “templates” and count, redact, or unredact matching regions.

Finally, a user may wish to edit the image and further redact or unredact a

portion of the processed screenshot.

Implementation. The bulk of our system implementation relies on a mixture

of C and C++ code spanning multiple open-source libraries and custom-

developed libraries and applications, including boost [2], C++ STL [3], OpenCV [4],

liblinear [5], and CGAL [6, 7, 8]. Altogether, we implemented approximately

9000 lines of code.

To remain system-independent, we implemented certain functionality with

higher-level APIs; our development environment is a MacBook Pro running

OS X 10.5 with 8 GB of memory.2 Certain, low-level OpenCV routines

rely on system libraries, but these are transparent to our code—OpenCV is

cross-platform.

Screen Capture. Our system relies on a virtual network computer (VNC)

arrangement to capture screen material from a remote host [9]. In a nut-

2We upgraded to OS X 10.6 midway through development and analysis.

5

Keyboard

Mouse

Video

C
lin
ic
ia
n'
s

co
m
pu
te
r

Ba
ck
-e
nd

sy
st
em

KVM
Capture

Log

Redact

Figure 1: Our measurement module listens to keyboard and mouse input from devices and

video output received by the computer—and consequently remains system independent

and accommodates closed and certified systems.

shell, VNC defines a protocol for transporting a computer’s framebuffer,

keyboard, and mouse data over the network. By building a system with this

protocol, our system can capture and operate on all KVM events in a system-

independent fashion. In our test configuration, Mac OS X 10.6 functions as

the “Capture System” and the application x11vnc [10] running on an Ubuntu

Linux 9.10 running within a VMware [11] instance serves as the “Capture

Target.” The client implements read-only functionality and therefore does

not pass keyboard or mouse events from the VNC client to the VNC server.

Our client connects to the VNC server using TCP. After connecting, the

endpoints proceed through a handshake phase and negotiate the protocol ver-

sion “RFB 003.008\n” and the “raw” pixel format to transfer screen updates

from the server to the client without compression.

6

3. Text Redaction Approaches

Text redaction is a fundamental aspect of the system because it removes

sensitive text from screen capture data, relieving the end-user from manually

redacting screen captures before sharing. By default, our approach imple-

mented a “deny-all” policy and thus redacts all text it finds. An end-user can

then “unredact” small regions as necessary to facilitate their conversation.

Because redaction affects just text and a small number of icons, our intention

is that screen context remains despite removal of potentially sensitive data.

In a different approach to redaction, our system could simply redact an en-

tire screen (e.g., turn the entire screen black) and the end-user could unredact

whichever small piece supports their needs. We believe this approach pro-

vides too little screen context to observers, and would require too much work

from end-users. Unredacted, unsensitive screen data provides context to ap-

plication stakeholders that may help focus their discussion.

Image-based text redaction consists of two principal steps: finding text in

an image, also known as text segmentation, and recoloring segmented image

regions to “remove” text. (We note that such segmentation is also the first

step of optical character recognition.) Redacting images using this approach

ensures that no “hidden” text or other data exists within the final redacted

product (as often plagues redaction in standard office document formats).

For automatic text redaction, we explored two approaches: Canny Edge

Detection [12], which aims to bound text with boxes, and Gabor-wavelet

[13] filtering, which aims to classify individual pixels as “text” or “non-text.”

For Gabor, we looked at both unsupervised classification and supervised

classification [14].

7

3.1. Canny Edge Detection

In order to be legible, screenshot text exists with an intensity contrast in

relation to its background and thus creates gradient high points. The Canny

approach analyzes an image’s intensity gradient and marks edges at gradient

high points—thus (in theory) segmenting screenshot text.

First, we convert a color screenshot to 8-bit gray scale. We then apply

a Gaussian blur using a 3x3 window to reduce image noise—Canny output

qualitatively contained less noise with this initial blurring step. Next, we ex-

ecuted Canny using low and high threshold values of 100 and 300 respectively

to find edges—the values provide qualitatively-reasonable redaction results

for a variety of desktop screenshots. Gradient magnitudes greater than the

high threshold are considered edges and traced throughout the image. Val-

ues above the low threshold denote edges that branch from an existing trace

process. Together, these tunable values reduce noise during edge detection.

After executing the Canny algorithm, we find connected components

(polygons) using Canny output and an algorithm suitable for doing so [15].

For each polygon discovered, we compute a bounding rectangle and draw a

filled version of the rectangle into an image “redaction mask.” Finally, the

redaction mask is applied to the original image to produce a redacted image.

Figure 2 shows examples from our prototype. Unfortunately, standard

practice in commercial EMR prevents customers from disclosing user inter-

face details (e.g., see [16]), so we cannot actually show the screenshots we

used in our experiments.

8

Undetected line

Rectangle-enclosed rectangles

Redacted entire globe
White space between words

Undetected line

Rectangle-enclosed rectangles

Redacted entire globe
White space between words

Undetected line

Rectangle-enclosed rectangles

Redacted entire globe
White space between words

Figure 2: Canny-based text redaction. The top image is a screenshot snippet from the

Wikipedia page about Canny edge detection [17] (recall that contractual obligations pre-

vent us from disclosing the EMR screenshots we tested on). The second image depicts the

rectangles that result from processing the first image with Canny edge detection, polygon

detection, and polygon bounding with rectangles. The third image derives from filling the

rectangles in the second image and then applying the second image as a redaction mask

to the first. Canny missed some true edges throughout the image (false negatives for edge

detection) and added edges where text does not exist near the globe (false positive for text

detection). Finally, notice whitespace between words and tiny rectangles enclosed within

larger ones.

3.2. Gabor Filters

In general, a wavelet is a wave with some orientation and frequency that

when convolved with an image, resonates and creates a detectable signal.

9

Gabor wavelets, which are commonly used in image processing, are com-

prised of a sine wave modulated by a Gaussian envelope; for our application,

they use a two-dimensional envelope. Both real and imaginary components

comprise the wavelet, but we follow the model of Jain and Bhattarchee [14]

and only use the real, symmetric (cosine) component. When an individual

filter is convolved with an image, our system extrapolates border pixels to

increase the image size and prevent the filter from “falling off” the image

edge (other extrapolation approaches failed in our experiments).

Using a bank of filters enables detection of image features of different

frequencies and orientations. In the wavelets we used in our application,

we considered five standard deviations of the Gaussian (again following Jain

and Bhattarchee). This left us two tunable parameters for wavelet functions:

wavelength (λ) and orientation (θ). Through qualitative analysis, we settled

on parameters

λ ∈ {.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0}

and

θ ∈ {0.0, 45.0, 90.0, 135.0}

for a filter-bank size of 28 filters (|λ| × |θ|).

Like Jain and Bhattarchee, we vary the parameter θ to detect signals

oriented in a uniform variety of positions. However, unlike them, we chose λ

to vary by powers of 2 in order to form a dyadic collection of filters that span

a collection of feature sizes. Through qualitative experiments, we found our

chosen values to detect features among a collection of screenshots.

Feature Vectors. We apply a Gabor wavelet filter by first convolving the

image with this wavelet function.

10

If we have a bank of n filters, we then have n filtered images, yielding

(after thresholding) an n-dimensional vector for each pixel in the image. We

then append each pixel’s x and y position to each vector, and shift each

vector to zero mean and unit standard deviation. Thus, applying a bank of

n filters yields an n + 2-dimensional feature vector for each pixel.

3.3. Classification

Once we’ve used our bank of Gabor filters to turn each pixel into a feature

vector, we then need to determine which vectors represent text pixels and

which represent non-text.

Unsupervised Classification. In our first approach, we use the k-means algo-

rithm [18] to cluster features into k classes, where k ∈ {2, 3}. The algorithm

assigns each pixel a class label i ∈ [0, k − 1], where one class may correspond

to text if text exists. (In our qualitative experiments, we found that some

screenshots clustered better visually into k = 2 classes and others into k = 3

classes.)

During k-means clustering, the system relied on stopping conditions of

the first of 10000 iterations or an error rate of .0001. We chose the initial

cluster centers using a more recent technique [19] and ran the algorithm

one time to the stopping conditions before assigning labels. After running

k-means, the label i corresponding to text must be chosen manually. The

designated “text” pixels form a mask that redacts text when combined with

the original image.

Supervised Classification. The downside to unsupervised classification is multi-

fold: k and i are chosen manually; the approach classifies pixels into k clusters

11

whether or not text exists; and k-means clustering can be slow (particularly

with a feature count easily surpassing one million with modern screen reso-

lutions).

To address these issues, we also tried supervised classification. Instead of

using k-means, we feed each feature vector to a trained classifier that labels

the pixel as “text” or “not text.” All pixels labeled as “text” are converted

to the color black; all other pixels maintain their values.

We chose a linear support vector machine (SVM) to label pixels as mem-

bers of classes {−1, 1}.

We experimented with two classifiers (a) L1-regularized L2-loss support

vector classification and (b) L1-regularized logistic regression. We chose these

classifiers because after training, they can contain a 0-valued parameter for

each feature that remained unused during the training process. Such fea-

tures can be eliminated from input during future predictions and thus not

computed in the first place. Their absence reduces computational overhead

in the running system. (Interestingly, in our tests with EMR screenshots,

only one feature was not used).

To begin machine learning, we first partition our set of screenshots into

a training set and testing set. Then to train the classifier, we generate a set

of ground-truth feature vectors and labels from the training set. We gen-

erate ground-truth by manually choosing the features and labels associated

with “best” redaction results using the unsupervised classification technique

described above. This ground-truth is fed into a program we implemented

that interfaces with the liblinear library [5] to train and save the resultant

classifier. The classifier can then be run on any image using another program

12

we wrote to classify pixels as {−1, 1} and thus redact text.

During the SVM training process, we used default liblinear values for

all SVM parameters. We experimented with cross-validation to tune the

constant C in the SVM expression (see liblinear for details [5]). However,

we experienced minimal performance improvements and therefore relied on

default values to train each classifier.

4. Experimental Tools

Section 3 above described our approaches to automatic text redaction.

However, for both EMR clinicians as well as system experimenters, it’s im-

portant to keep users in the loop. This present section describes two tools

we built for this purpose.

4.1. Tool: scrubs

Our scrubs tool (Figure 3) captures and redacts screenshot images dy-

namically, in real time, uaing Canny. Our prototype uses x11vnc [10],

pthreads [20] and the RFB protocol [9].

When an EMR user decides some sequence of activity should be logged for

later analysis, it’s possible that automatic redaction may remove too much

information (such as non-sensitive text that would help illuminate the issue

requiring analysis) or too little (such as a sensitive logo or image). Conse-

quently, our scrubs tool also provides an edit mode, which pauses display

of screen updates and allows the user to click and drag the mouse to define

custom redaction and/or unredaction rectangles (Figure 4). While paused

for user edits, the system continually processes and maintains received screen

13

scrubs

Log

automatic
redaction

Displayvideo
source

interactive tools

custom unredaction

custom redaction

Figure 3: Our scrubs tool enables automatic redaction, interactively tunable, in real time.

Custom redacted region

Custom unredacted regions

Figure 4: Our scrubs tool automatically applies redaction, and then permits custom redac-

tion and unredaction.

updates in the background, and upon returning to record mode, the system

displays a compilation of all updates processed during pause.

4.2. Tool: five in one

The Canny Edge approach to text redaction (Section 3.1) overlays a

screenshot image with rectangles marking regions of potential text. In our

experiments on EMR screenshots, we found that the resulting set of rectan-

gles could often benefit from additional massaging. Thus, for the purpose

of exploration and for end-user use, we developed a tool called “five in one”

(Figure 5). This tool permits a wide range of interactive operations, in-

14

five_in_one

Log

automatic
(Canny) redaction

Displayimage
source

interactive tools
rectangle merging,

editing, etc
template creationfive_in_one

templates

Figure 5: Our five in one tool enables experiments and end users to analyze and edit the

rectangular regions of potential text flagged by Canny redaction, and to generate and

apply templates.

cluding merging, copying and deleting rectangles; toggling display between

transparent and solid rectangles; generating (and then automatically apply-

ing) redaction templates; overlaying with a grid; and thinning out redundant

rectangles. Figure 6 shows one example.

5. Evaluation

To evaluate our system, we looked at the relative effectiveness of the

two approaches to automatic redaction (Section 5.1 and Section 5.2) and at

non-text aspects of privacy preservation (Section 5.3). We also looked at

effectiveness of context preservation (Section 5.4), as well as basic computa-

tional costs (Section 5.5).

For our empirical analysis, we used a corpus of 80 screenshots from EMR

systems at two large healthcare providers. As we noted earlier, although the

datasets contain fake patient data, the donor organizations still considered

the details sensitive, so we cannot publicly show them. In one dataset, images

were in PNG format, RGB color, and were approximately 1500× 1900 pixels

15

Begin in edit mode

Toggle ‘T’ to thin

Superfluous rectangles subsumed

Enlarged rectangles

Begin in edit mode

Toggle ‘T’ to thin

Superfluous rectangles subsumed

Enlarged rectangles

Superflous
rectangles
subsumed

Figure 6: As one example of five in one editing, a user can clean up the redaction rectangles

produced by Canny (left) by thinning out superfluous rectangles (in this case, reducing

the count about 75% from 969 to 237) and then enlarging the remaining rectangles one

pixel at a time.

����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�� ��� ��� ��� ��� ���

'DWDVHW��
'DWDVHW��

1000

5000

0 50screenshot

re
ct

an
gl

e
co

un
t dataset 2

dataset 1
color values, dataset 1

color values, dataset 20

0

250

250

1e-07

0.1

1e-07

0.1

pi
xe

l
fra

ct
io

n

��H���
��H���
��H���
�������
������
�����
����
��

�� ��� ���� ���� ���� ���� ����

5HG
*UHHQ
%OXH

��H���

��H���

��H���

�������

������

�����

����

��

�� ��� ���� ���� ���� ���� ����

5HG
*UHHQ
%OXH

��H���
��H���
��H���
�������
������
�����
����
��

�� ��� ���� ���� ���� ���� ����

5HG
*UHHQ
%OXH

��H���

��H���

��H���

�������

������

�����

����

��

�� ��� ���� ���� ���� ���� ����

5HG
*UHHQ
%OXH

pi
xe

l
fra

ct
io

n

��H���
��H���
��H���
�������
������
�����
����
��

�� ��� ���� ���� ���� ���� ����

5HG
*UHHQ
%OXH

��H���

��H���

��H���

�������

������

�����

����

��

�� ��� ���� ���� ���� ���� ����

5HG
*UHHQ
%OXH

R
G
B

Figure 7: Measures of the visual complexity of our EMR datasets: Canny redaction

rectangles, sorted (left); normalized color variety (right).

and 1-1.5 MB each. In another, images were also PNG and RGB, but 1680×

1080 pixels and 230-390 KB. Due to their sensitive nature, we stored the

corpus in an AES-encrypted disk volume.

Figure 7 illustrates the complexity of the datasets according to the num-

ber of redaction rectangles generated for each screenshot.

16

5.1. Canny

Our testing showed that Canny-based text redaction requires improve-

ments before the system can apply it meaningfully to EHR datasets.

The Canny approach had several problems. It generated redaction rectan-

gles that cover large parts of the screen, reduce potentially useful, non-private

screenshot context. (Occasionally, Canny even redacted the entire screen!)

The Canny approach also sometimes found interior edges of letters such as

“p” which produce very small rectangles embedded in larger ones. Canny left

whitespace between words, which may enable word-based frequency analy-

sis that reveals redacted text. Canny also tended to miss some text (false

negatives) while redacting some non-text (false positives). Figure 2 shows ex-

amples of whitespace and false positive issues; Figure 8 shows false negative

and spuriously large rectangle issues.

Our analysis did suggest ways that Canny redaction could be tuned to be

usable for this application. We can eliminate rectangles that cover all or most

of the screen, and (as Figure 9 shows) rectangles that contain a large number

of the other rectangles. As Figure 10 shows, we can also identify (and then

merge) rectangles that are close enough vertically to be considered on the

same “text line,” but whose horizontal gap is small enough to be considered

whitespace.

As Figure 6 noted, even manual editing with our five in one tool could

reduce the rectangle count by 75%. Reducing rectangle count can reduce

the latency of subsequent processing steps that involve all Canny rectangles,

such as rendering rectangles in an image or analyzing and merging adjacent

words.

17

Detected large rectangle

Undetected text

Figure 8: Canny redaction on a gmail inbox shows both spurious large redaction rectangles

as well as missed text.

 1e-06
 0.0001

 0.01
 1

 100
 10000
 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Co
un

t

Fraction of Total Boxes Contained by a Box (lower is favorable)

Histogram of Bounding Box Content

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Co
un

t

Area of Inner Box / Area of Outer Box (higher is favorable)

Histogram of Bounding-Box Area Ratios

eliminate

eliminate
Figure 9: Histogram of the fraction of total redaction rectangles in a screenshot contained

wholly within a given redaction rectangle.

18

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 200 400 600 800 1000 1200 1400 1600

C
ou

nt

Distance in x-Pixels Between Rectangle Pairs

Horizontal Whitespace Between Pairs of Rectangles

Merge these horizontally

(x, y) (x+w, y)

(x+w, y+h)

2h

(x’, y’)

(x’, y’+h’)

Left Rectangle Right Rectangle

Figure 10: Histogram of horizontal distances between pairs of rectangles heuristically

on the same text line. If (x + w) ≤ x′, (y − h
2) ≤ y′ ≤ (y + h

2), and

y + h
2 ≤ (y′ + h′) ≤ y + 3

2 h, then we includes the value x′ − (x + w) in

the histogram.

19

5.2. Gabor

Visually, Gabor-filtering redacts more precisely than Canny-based filter-

ing. Unlike the Canny-based approach, Gabor fills whitespace between words

and redacts fractional characters. Gabor also redacts fewer non-text objects

(such as the Wikipedia globe, in a non-EMR example we showed) and did

not erroneously redact large rectangles from the screenshot, as Canny-based

redaction did.

Qualitative Analysis. Figure 11 revisits Figure 2 using Gabor-based redaction

where k = 2 and i = 0 and Figure 12 revisits Figure 8 using k = 2 and i = 1.

In Figure 11, note how Gabor-based redaction fills whitespace between words

in sentences, does not redact objects such as the globe, and does redact

fractional characters. It does not redact large rectangles from the screen as

Canny-based redaction. In Figure 12, note how the system failed to redact

text with certain font scales and textures in the upper left corner and also

throughout lighter message-body in the message lines.

Quantitative Analysis for Unsupervised. To evaluate unsupervised Gabor

redaction, we chose a few representative but dissimilar (using the metric we

present below, in Section 5.4) screenshots from dataset 1. For each screen-

shot, we chose the unsupervised redaction that looked best qualitatively, and

then manually counted the text characters missed by redaction. In these

screenshots, the character counts ranged from 1094 to 2145. False nega-

tives (characters entirely unredacted) ranged from 0.036% to 2.7%; partial

false negatives (characters with at least one pixel left unredacted) ranged

from 1.7% to 4.3%. We did not count false positives because they represent

non-characters, and would require counting pixels to be meaningful.

20

Fractional characters redacted

Reduced whitespace between words

Does not redact entire globe

Figure 11: Gabor-based redaction does not redact large objects such as the globe, connects

whitespace between words in sentences, and redacts fractional characters found at the edge

of the screenshot.

Undetected text

Partially redacted text

Figure 12: Gabor-based redaction missed the large gmail text and small “by Google” text

below the gmail text. It partially redacted lighter message text in the inbox. Note that

Gabor-based redaction did not compute a large rectangle of false positives as Canny did

on the same image.

21

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Fr
ac

tio
n

Screenshot #

SVM Classification Performance
L1-regularized Logistic Regression (liblinear 6)

Performance True positive False positive True negative False negative

0

1

fra
ct

io
n

screenshot0 25

overall performance:

text not text

re
da

ct
ed

no
t

re
da

ct
ed

true
positive

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Fr
ac

tio
n

Screenshot #

SVM Classification Performance
L1-regularized Logistic Regression (liblinear 6)

Performance True positive False positive True negative False negative

false
positive

false
negative

true
negative

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Fr
ac

tio
n

Screenshot #

SVM Classification Performance
L1-regularized Logistic Regression (liblinear 6)

Performance True positive False positive True negative False negative

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Fr
ac

tio
n

Screenshot #

SVM Classification Performance
L1-regularized Logistic Regression (liblinear 6)

Performance True positive False positive True negative False negative

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Fr
ac

tio
n

Screenshot #

SVM Classification Performance
L1-regularized Logistic Regression (liblinear 6)

Performance True positive False positive True negative False negative 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Fr
ac

tio
n

Screenshot #

SVM Classification Performance
L1-regularized Logistic Regression (liblinear 6)

Performance True positive False positive True negative False negative

Figure 13: Effectiveness Gabor-based text redaction. We trained a liblinear L1-regularized

logistic regression classifier on on dataset 1 and applied it to dataset 2; in both cases, we

used the qualitatively best unsupervised Gabor redaction as “ground truth” labeling.

Quantitative Analysis for Supervised. As Section 3.3 above discussed, we

started by running unsupervised Gabor on dataset 1 and, for each screen-

shot, choosing the qualitatively best result as “ground truth,” and used these

labels to train the L1-regularized logistic regression classifier on dataset 1.

To evaluate supervised Gabor classification, we then applied this trained

classifier to dataset 2, and compared the results against the “ground truth”

obtained by running our unsupervised Gabor variations on each screenshot

and qualitatively choosing the best one.

The mean classification performance is 95.2% with a stddev of .953%

and a minimum performance value of 93.2%—larger minima are better than

smaller ones. The mean false-negative rate is .307% with a stddev of .338%

and a maximum value of 1.4%—smaller maxima are better than larger ones.

22

5.3. Non-Text Information Leakage

Our experiments also revealed ways in which redacted EMR screenshots

still revealed possibly sensitive information. The positioning of redacted

text within a page can betray information, as can similarities and differ-

ences between successive lines of redacted text. A tick-box with a redacted

“checkmark” is still distinguishable from unchecked box; visual “alerts” such

as red exclamation points or yellow-highlighted text also convey potentially

sensitive information.

To address these concerns, we explored techniques to normalize redaction

rectangles against a background grid, to identify and redact specific icon

templates, and to identify and redact specific colors (e.g., red). The first

author’s thesis [21] has more information.

5.4. Context Preservation

As the introduction noted, traditional approaches to privacy and confi-

dentiality seek to hide information. However, for our EMR capture tool to

be useful, we also need to preserve information: the context of the EMR

screenshot involved.

To quantitatively evaluate how well our techniques work at preserving

context, we looked at two ways of measuring differentiating information be-

tween pairs of redacted screenshots.

In the first approach, we measured the fraction of overlapping text-

redacted pixels in an image pair. With this metric, changes accumulate only

when a pair of pixels exist, at least one pixel of the pair begins non-black,

and both pixels are redacted. When one or both pixels begin non-black and

the pixels correspond to text, redaction removes differentiating information

23

by converting both values to black. Removing information reduces differ-

entiating screenshot context. Taken to the limit, redaction blackens each

screenshot entirely and leaves no differentiating information.

Looking at all pairs of screenshots in dataset 1, the mean fraction of over-

lapping, redacted text is 9.3% with a standard deviation of 3.5%; for pairs of

identical screenshots, 23.7% and 3.6%. Redaction preserves 90% of differen-

tiating information in all pairs and 76% in pairs of identical screenshots—on

average, redaction affects no more than 24% of the pixels in any screenshot.

In our second approach, we computed a distance between two screenshots

by counting the number of pixels that match within the pair. Because EHR

screenshots are nearly identical in size and aligned in content (e.g., items such

as menus are not pixel-shifted among screenshots) this measurement gives a

notion of similarity that enables useful pairwise-screenshot comparisons (as

we qualitatively validated). Figure 14 shows the results of text redaction

in similarity of over 1275 screenshot pairs of dataset 1 (we excluded pairs

of identical screenshots). Overall, redaction has little impact on pairwise

screenshot similarity with changes ranging from 2% to 15%. Text redaction

retains potentially important context in the EMR screenshots.

5.5. Latency

The principal computational component of our system consisted of text

redaction.

To measure latency of text redaction, we used a a MacBook Pro running

Mac OS X 10.7 with 8 GB of memory serves as the experimental platform.

An AES-256-encrypted disk image stores image, feature, and label files as-

sociated with redaction. To obtain timing information, we used dtrace and

24

-0.02
 0

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

 0 200 400 600 800 1000 1200 1400

Fr
ac

tio
n

of
 im

ag
e

pi
xe

ls
ch

an
ge

d
m

at
ch

in
g

st
at

us
Redaction Effect on Pairwise Image Similarity

More similar
Less similar

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 200 400 600 800 1000 1200 1400

Fr
ac

tio
n

of
 Id

en
tic

al
Im

ag
e

Pi
xe

ls

Pair #

Before Text Redaction
After Text Redaction

pair number

Figure 14: Effect of text redaction on similarity of pairs of distinct screenshots in dataset

1. Fractions that fall above the horizontal line correspond to screenshots that are more

similar after redaction.

0.096

2.077

2.077

0.009

0.722

0.017

mean stddev

Sup. Gabor

Unsup. Gabor

Canny 0.365

13.12

4.569

0.004

0.181

0.033

mean stddev

Normalize

Build

Set up
5.987

0.226

0.407

0.069

mean stddev

Labels

Features

latency to classify pixels (seconds) latency to generate elements for
28 Gabor filters (seconds)

latency to load Gabor elements
from file on disk (seconds)

Table 1: Our measured costs of redaction.

programmatically printed timing information. All file loads were measured

using a cold file cache. Table 1 shows the results.

6. Improving Real-World Systems

We designed our system within the context of a larger vision: a privacy-

protected “logging Service” that interacts with a monitored system, a “shar-

ing Service” that functions as a repository for application stakeholders to

share redacted screenshots, a monitored system with developers and main-

tainers, and an end-user who wishes their system to be monitored and a

25

web-browser through which the end-user can interact with logging and shar-

ing services. In a sample usage scenario, an end-user triggers the “Logging

Service” to log a monitored host; the “Logging Service” connects to the mon-

itored host and begins logging with automatic redaction; when the end-user

detects a scenario she wishes to bring to the attention of the system engi-

neers, she reviews, edits, and possibly unredacts the logged screenshot and

then shares it with the system engineers.

In our long-term vision, the fruit of this work can enable empirical feed-

back paths between application stakeholders. Developers, administrators,

end-users, organizations that produce or deploy a particular system, and leg-

islators or governance bodies that create rules to govern systems all represent

different types of stakeholders. With established feedback paths, such stake-

holders can begin to understand empirically the day-to-day, system-effects of

their decisions.

A simple capture system can also provide direct value to end-users by en-

dowing them with a larger, empirical role in the software maintenance cycle.

They can capture, annotate, and share problems, configurations, ideas, bugs,

and other captured scenarios with stakeholders. They can inform existing ad

hoc stakeholder interactions such as online support forums and help-desk in-

teractions with rich, contextual data. Additionally, end-users can use traces

as visual web search keys during their own investigations.

Playing a larger role in the software maintenance cycle can motivate end-

users to share their findings continually: if end-users believe and experience

that their contributions make a positive difference to their workflow, end-

users may be motivated to contribute further. Consequently, organizations

26

may improve empirical insight into their information security systems and

associated risk calculations. When organizations lack the expertise to analyze

traces in-house, they could hire third parties to do so.

7. Related Work

Our work combines existing technologies of screen capture and computer

vision with a goal of improving the quality of communications among appli-

cation stakeholders and ultimately, improving our understanding of “usable

security.” Many research and commercial products implement pieces of our

work in isolation and for different purposes.

Screen Capture. The MIT Sikuli research project combines computer vision

and programming to enable users to create machine-independent, visually-

programmed and actuated programs [22]. A commercial product call egg-

Plant also allows developers to test GUIs with machine-independent, au-

tomation scripts [23]. Many screen capture applications such as Snipping

Tool [24], Snapz Pro X [25], and xwd [26] exist. Some programs capture still

screenshots, others capture both stills and video, and some allow end-users

to annotate captures.

Our system captures data and modifies it with text redaction—we use

screen captures for a different purpose than these works.

Segmenting Text. Many commercial and free-software tools such as Gimp [27],

Photoshop [28], Aperture [29], Final Cut Studio [30], Pixelmator [31], and

Imagemagick [32] allow one to paint, create, touch up, and modify still im-

ages and/or video. These applications could be used to manually redact text

from a screenshot.

27

Our work builds on existing text segmentation research [14] to redact text

automatically from screenshots.

Google Goggles can extract and recognize text from natural scenery for

purposes such as language translation among many others [33]. The scope of

our system is limited to computer screenshots. However, screenshots taken

with a camera may include angles and lighting similar to the natural scenery

submitted to Google Goggles.

User Studies. Google’s in-house UseTube [34] supports employees who wish

to perform user studies of any network-connected computer; it simplifies the

act of performing, archiving, and accessing user studies.

Deidentifying Data. In the medical domain, a large body of work relates

to deidentifying protected health information (PHI) in electronic documents

once it is already in text format [35, 36]. Our work approaches the deidenti-

fication problem from a complementary angle. Our system does not interpret

data; rather, it redacts all text within an application screenshot and allows

a domain expert to unredact portions relevant to their needs.

Document redaction products such as Rapid Redact [37] and brava! [38]

exist in the commercial marketplace. These products parse document struc-

ture and can help users achieve WYSIWYG. In contrast, our system redacts

material from images directly (there is typically no hidden structure).

Anonymity. Deidentified data records can still contain visual information

that reveals sensitive data. Research in the context of databases that contain

a mix of sensitive and unsensitive records explored the concepts k -anonymity

[39] and l -diversity [40].

28

In some circumstances, redacted text in our system may suffer from a

visual form of the k -anonymity problem; these techniques may apply in our

setting.

Document Analysis. The International Conference on Document Analysis

and Recognition (ICDAR) has many papers and competitions related to the

problem applying machine learning and computer vision to analyze docu-

ments analysis [41]. A 2003 competition sponsored by ICDAR has datasets

available for optical character recognition (OCR), word recognition, text lo-

cating, and other purposes [42]. These datasets do not apply directly to our

problem; we segment text, in some cases have a more constrained segmenta-

tion problem, and do not apply OCR.

8. Conclusion

Effective usability engineering in any system requires closing the loop,

so users can easily identify and communicate troublesome scenarios. In an

interactive electronic system, a natural way to do this is via screenshots.

In EMR and EHR, privacy concerns require that any such screenshots have

sensitive data redacted and the logistics of certified commercial medical IT

require that any solution not touch the internals of the software.

To address these concerrns, we have designed, built, described, and em-

pirically analyzed a system that allows end-users to take screen captures on

sensitive systems. The system automatically redacts screenshot text and al-

lows end-users to fine-tune redacted results for their needs. The automated

redaction process requires no end-user intervention. We evaluated our sys-

tem using a corpus of screenshots from EMR systems at two large medical

29

facilities.

Potential areas for future work include improving Canny for general-

purpose use, implementing predicate matching to process screenshots ac-

cording to logical conditions, building a larger ground-truth data corpus,

building system components for sharing redacted screenshots, and deploying

the system in a real user environment.

Ultimately, our redaction system can facilitate data-driven communica-

tions among application stakeholders and guide system evolution to address

stakeholder needs. With accurate and timely tuning enabled by our work,

stakeholders can achieve and maintain usable and secure systems in practice.

Acknowledgments

This work is based on the first author’s MS thesis work [21].

The authors are also grateful to Andrew Gettinger, David Hanauer, Ross

Koppel, and Lorenzo Torresani and for their helpful advice and assistance.

References

[1] A. Odlyzko, Providing Security With Insecure Systems, in: Workshop

on the Economics of Information Security (WEIS), 2010.

[2] The boost Community, boost C++ Libraries, http://www.boost.org/

(April 2011).

[3] ISO/IEC 14882:2003: Programming Languages: C++, 2003.

[4] G. Bradski, The OpenCV Library, Dr. Dobb’s Journal of Software Tools.

30

[5] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, C.-J. Lin, LIBLIN-

EAR: A Library for Large Linear Classification, Journal of Machine

Learning Research 9 (2008) 1871–1874.

[6] Cgal, Computational Geometry Algorithms Library, http://www.

cgal.org.

[7] A. Zomorodian, H. Edelsbrunner, Fast software for box intersections,

in: Proceedings of the Sixteenth Annual Symposium on Computational

Geometry, SCG ’00, ACM, New York, NY, USA, 2000, pp. 129–138.

[8] L. Kettner, A. Meyer, A. Zomorodian, Intersecting Sequences of dD

Iso-oriented Boxes, in: CGAL User and Reference Manual, 3.7 Edition,

CGAL Editorial Board, 2010.

[9] T. Richardson, The RFB Protocol, RealVNC, Ltd. (3.8).

[10] Karl Runge, x11vnc: a VNC server for real X displays, http://www.

karlrunge.com/x11vnc/ (January 2011).

[11] VMware, VMware, http://www.vmware.com (April 2011).

[12] J. Canny, A Computational Approach to Edge Detection, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence PAMI–8 (6) (1986)

679–698.

[13] D. Gabor, Theory of communication. Part 1: The analysis of informa-

tion, Journal of the Institution of Electrical Engineers – Part III: Radio

and Communication Engineering 93 (26) (1946) 429 –441.

31

[14] A. Jain, S. Bhattacharjee, Text segmentation using gabor filters for au-

tomatic document processing, Machine Vision and Applications 5 (1992)

169–184.

[15] S. Suzuki, K. Abe, Topological structural analysis of digitized binary

images by border following, Computer Vision, Graphics, and Image Pro-

cessing 30 (1) (1985) 32–46.

[16] R. Koppel, D. Kreda, Health Care Information Technology Vendors’

”Hold Harmless” Clause: Implications for Patients and Clinicians, Jour-

nal of the American Medical Association 301 (12) (2009) 1276–1279.

[17] Wikipedia, Canny edge detector, http://en.wikipedia.org/wiki/

Canny edge detector (April 2011).

[18] S. Lloyd, Least squares quantization in PCM, IEEE Transactions on

Information Theory 28 (2) (1982) 129 – 137.

[19] D. Arthur, S. Vassilvitskii, k-means++: The Advantages of Careful

Seeding, Technical Report 2006-13, Stanford InfoLab (June 2006).

[20] The IEEE and The Open Group, The Open Group Base Specifications

Issue 6 – IEEE Std 1003.1, 2004 Edition, IEEE, New York, NY, USA,

2004.

[21] J. A. Cooley, Screen Capture for Sensitive Systems, Computer Sci-

ence Technical Report (M.S. Thesis) 2011-690, Dartmouth College (May

2011).

32

[22] T. Yeh, T.-H. Chang, R. C. Miller, Sikuli: using GUI screenshots for

search and automation, in: Proceedings of the 22nd Annual ACM Sym-

posium on User Interface Software and Technology, UIST ’09, ACM,

New York, NY, USA, 2009, pp. 183–192.

[23] TestPlant, eggPlant, http://www.testplant.com/ (January 2011).

[24] Microsoft, Snipping Tool, http://windows.microsoft.com (January

2011).

[25] Ambrosia Software Inc., Snapz Pro X, http://www.ambrosiasw.com/

utilities/snapzprox/ (January 2011).

[26] Community Supported, xwd, http://www.xfree86.org/ (January

2011).

[27] The GNU Project, GIMP: The GNU Image Manipulation Program,

http://www.gimp.org/ (January 2011).

[28] Adobe, Photoshop, http://www.adobe.com/products/photoshop/

photoshop/whatisphotoshop/ (January 2011).

[29] Apple, Aperture, http://www.apple.com/aperture/ (January 2011).

[30] Apple, Final Cut Studio, http://www.apple.com/finalcutstudio/

(January 2011).

[31] Pixelmator, Pixelmator, http://www.pixelmator.com/ (January

2011).

33

[32] Community Supported, ImageMagick, http://www.imagemagick.org/

script/index.php (January 2011).

[33] Google, Google Goggles, http://www.google.com/mobile/goggles/

(January 2011).

[34] M. LaRosa, D. Poole, R. Schusteritsch, Designing and Deploying Use-

Tube, Google’s Global User Experience Observation and Recording Sys-

tem., in: CHI ’09: Proceedings of the 27th International Conference

Extended Abstracts on Human Factors in Computing Systems, ACM,

New York, NY, USA, 2009, pp. 2971–2986.

[35] S. Meystre, F. Friedlin, B. South, S. Shen, M. Samore, Automatic de-

identification of textual documents in the electronic health record: a

review of recent research, BMC Medical Research Methodology 10 (1)

(2010) 70.

[36] J. Aberdeen, S. Bayer, R. Yeniterzi, B. Wellner, C. Clark, D. Hanauer,

B. Malin, L. Hirschman, The MITRE Identification Scrubber Toolkit:

Design, training, and assessment, International Journal of Medical In-

formatics 79 (12) (2010) 849–859.

[37] RapidRedact, RapidRedact, http://www.rapidredact.com/ (January

2011).

[38] Informative Graphics Corporation, brava!, http://www.infograph.

com/company.asp (January 2011).

[39] L. Sweeney, k-anonymity: A model for protecting privacy, International

34

Journal of Uncertainty Fuzziness and Knowledge Based Systems 10 (5)

(2002) 557–570.

[40] A. Machanavajjhala, D. Kifer, J. Gehrke, M. Venkitasubramaniam, L-

diversity: Privacy beyond k-anonymity, ACM Trans. Knowl. Discov.

Data 1.

[41] ICDAR, http://www.icdar2011.org/EN/volumn/home.shtml (April

2011).

[42] ICDAR Dataset, http://algoval.essex.ac.uk/icdar/Datasets.

html (April 2003).

35

	Privacy-Preserving Screen Capture: Closing the Loop for Medical Informatics Usability
	Dartmouth Digital Commons Citation

	tmp.1601667723.pdf.t8ti1

