
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

5-1-2012

MeshGit: Diffing and Merging Polygonal Meshes MeshGit: Diffing and Merging Polygonal Meshes

Jonathan D. Denning
Dartmouth College

Fabio Pellacini
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Denning, Jonathan D. and Pellacini, Fabio, "MeshGit: Diffing and Merging Polygonal Meshes" (2012).
Computer Science Technical Report TR2012-722. https://digitalcommons.dartmouth.edu/cs_tr/357

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/357?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

MeshGit: Diffing and Merging Polygonal Meshes

Jonathan D. Denning, Fabio Pellacini
Dartmouth Computer Science Technical Report TR2012-722

original derivative

derivative a

merged

original

derivative b

Figure 1: Example of diffing and merging polygonal meshes done automatically by MeshGit. We determine mesh differences by computing the
minimal set of operations needed to change one mesh into another. Left: Visual difference of two versions of a model in a series. We visualize
mesh differences by showing the models side-by-side. On the original, we highlight in red faces that are either deleted or have changed. On
the derivative, we highlight in green faces that have been added or have changed, and color face vertices in blue if they have moved. Right:
MeshGit can automatically merge edits from different derivatives or detect if edits are conflicting. Here we visualize a three-way diff between
two derivates and an original, and the merged mesh. Darker and lighter colors indicate from which derivative edits come.

Abstract

This paper presents MeshGit, a practical algorithm for diffing and
merging polygonal meshes. Inspired by version control for text
editing, we introduce the mesh edit distance as a measure of the
dissimilarity between meshes. This distance is defined as the min-
imum cost of matching the vertices and faces of one mesh to those
of another. We propose an iterative greedy algorithm to approxi-
mate the mesh edit distance, which scales well with model com-
plexity, providing a practical solution to our problem. We translate
the mesh correspondence into a set of mesh editing operations that
transforms the first mesh into the second. The editing operations
can be displayed directly to provide a meaningful visual difference
between meshes. For merging, we compute the difference between
two versions and their common ancestor, as sets of editing opera-
tions. We robustly detect conflicting operations, automatically ap-
ply non-conflicting edits, and allow the user to choose how to merge
the conflicting edits. We evaluate MeshGit by diffing and merging
a variety of meshes and find it to work well for all.

1 Introduction

When managing digital files, version control greatly simplifies the
work of individuals and is indispensable for collaborative work.
Version control systems such as Subversion [Apache 2012] and Git
[Torvalds and Hamano 2012] have a large variety of features. For
text files, the features that have the most impact on workflow are
the ability to store multiple versions of files, to visually compare,
i.e., diff, the content of two revisions, and to merge the changes
of two revisions into a final one. For 3D graphics files, version
control is commonly used to maintain multiple versions of scene
files, but artists are not able to diff and merge most scene data.

We focus on polygonal meshes used in today’s subdivision model-
ing workflows, for which there is no practical approach to diff and
merge. Text-based diffs of mesh files are unintuitive, and merging
these files often breaks the models. Current common practice for
diffing is simply to view meshes side-by-side, and merging is done
manually. While this might be sufficient, albeit cumbersome, when
a couple of artists are working on a model, version control becomes
necessary as the number of artists increases and for crowd-sourcing
efforts, just like text editing. Meshes used for subdivision tend to
have relatively low face count, and both the geometry of the ver-
tices and adjacencies of the faces have a significant impact on the
subdivided mesh. Recent work has shown how to approximately
find correspondences in the shape of complex meshes [Chang et al.
2011], and smoothly blend portion of them using remeshing tech-
niques [Sharf et al. 2006]. While these algorithms could be adapted
to diff and merge complex meshes, they are not directly applicable
to our problem since we want precise diffs capturing the differences
and robust merges that do not alter the mesh adjacencies.

MeshGit . We present MeshGit, an algorithm that supports
diffing and merging polygonal meshes. Figure 1 shows the results
of diffing two versions of a model and an automatic merge of
two non-conflicting edits. We take inspiration from text editing
tools in both the underlying formalization of the problem and the
proposed user workflow (see Fig. 2). Inspired by the string edit
distance [Levenshtein 1965], we introduce the mesh edit distance
as a measure of the dissimilarity between meshes. This distance is
defined as the minimum cost of matching vertices and faces of one
mesh to those of another mesh. The mesh edit distance is related to
the maximum common subgraph-isomorphism problem, a problem
known to be NP-hard. We propose an iterative greedy algorithm to
efficiently approximate the mesh edit distance.

Figure 2: Three-way diff for text files. The original file is shown
in the middle, and two derivatives are shown on the left and right.
MeshGit follows a similar metaphor for mesh differences.

Once the matching from one mesh to another is computed, we
translate the found correspondences into a set of mesh transforma-
tions that can transform the first mesh into the second. We consider
vertex translations, addition and deletion and face addition and
deletions. With this set of transformations, we can easily display a
meaningful visual difference between the meshes by just showing
the modifications to vertices and faces, just like standard diff
tools for text editing. For merging, we compute the difference
between two versions and the original, as is done explicitly in
Git [Torvalds and Hamano 2012] and implicitly in other systems
[Apache 2012]. We partition the transformations into groups that,
when applied individually, respect the mesh adjacencies. This
partitioning limits the granularity of the edits in the same way that
grouping characters into lines does for text merging. To merge the
changes from the two versions, we apply groups of transformations
to the original mesh to obtain the merged model. Some groups can
be applied automatically, while others are conflicted and require
manual resolution. We robustly detect conflicts by determining
whether two groups from the different versions modify the
same parts of the original, i.e., they intersect on the original. In
MeshGit, non-conflicting groups are applied automatically, while
for conflicting edits, the user can either choose a version to apply or
resolve the conflict manually. We took this approach, as commonly
done in text merging, since it is unclear how to merge conflicting
transformations in a way that respects the artists’ intentions.

Contributions. In summary, this paper proposes a practical
framework for diffing and merging polygonal meshes typically
used in subdivision surface modeling. MeshGit does this by (1)
defining a mesh edit distance and describing a practical algorithm
to compute it, (2) defining a partitioning rule to reduce the
granularity of mesh transformation conflicts, and (3) deriving
diffing and merging tools for polygonal meshes that support a
familiar text-editing-inspired workflow. We believe these are the
main contributions of this paper. We evaluate MeshGit for a variety
of meshes and found it to work well for all. The remainder of this
paper will describe the algorithm, present the diffing and merging
tool, and analyze their performance.

2 Related Work

Revision Control. Recent work by [Doboš and Steed 2012]
proposes an approach to revision control for 3D assets by explicitly
splitting an asset into components. The edits of two different artists
can be merged automatically when the edits do not affect the same
component, while they need to be manually resolved otherwise.
This effectively sets the granularity of supported mesh transforma-
tions to the individual components. As a practical demonstration,
the open source movie Sintel [Blender Foundation 2011] was
produced using similar techniques. The assets of the film, such
as the characters, props, and sets, are stored in separate files and
linked together in scene files. With the files stored in an Subversion

repository, the team of artists are able to easily share edits to
individual files. While these types of systems allow for merging
changes of different components or files, any change to the same
component, regardless of the location of the edit on the component,
marks the entire component in conflict. MeshGit supports arbitrary
edits on meshes without explicitly splitting them in components,
allowing the merging of changes onto the same mesh (see Fig. 1).

Shape Registration. A visual difference between two meshes
could also be obtained by performing a partial shape registration of
the meshes, and then converting that registration to a set of mesh
transformations. Various mesh registration algorithms exist, as
reviewed recently in [Chang et al. 2011]. Some of these methods
[Chang and Zwicker 2008; Brown and Rusinkiewicz 2007] are
variants of iterative closest point [Rusinkiewicz and Levoy 2001]
that determine piece-wise rigid transformations for different mesh
regions and blend between them. In the case of heavily sculpted
meshes, these algorithms require too many cuts and transformations
to register the shapes. Others use spectral methods [Leordeanu and
Hebert 2005; Sharma et al. 2010] to determine a sparse correspon-
dence between two shapes. [Sharma et al. 2011] uses heat diffusion
as descriptors to overcome topological changes with seed-growing
and EM stages to build a dense set of correspondences. Typically,
these algorithms work by subsampling the mesh geometry since
their computational complexity is too high. [Zeng et al. 2010] pro-
pose a hierarchical method to performing dense surface registration
by first matching sparse features then building dense correspon-
dences using the sparse features to constrain the search space. [Kim
et al. 2011] propose using a weighted combination of intrinsic
maps to estimate correspondence between two meshes. In general,
we find that partial shape registration algorithms perform very well
for finely tessellated meshes where matching accuracy of mesh
adjacencies is not of paramount importance. When applied to our
application though, these algorithms either do not scale very well,
require the estimation of too many parameters, or are not sensitive
enough to adjacency changes to produce precise and meaningful
differences for the meshes typically used in subdivision modeling.
Furthermore, it remains unclear whether converting these partial
matches to transformations is robust for merging. MeshGit formal-
izes the problem directly by turning mesh matching solutions into
mesh transformations that are easy to visualize and robust to merge.

Topology Matching. [Eppstein et al. 2009] propose an algorithm
to match quadrilateral meshes that have been edited by using a
matching of unique extraordinary vertices as a seed for a matching-
propagation algorithm. Because the proposed algorithm does not
take geometry into account, it is robust to posing and sculpting
edits. Furthermore, coupled with an initial mesh-reducing tech-
nique, the proposed algorithm can solve the topological matching
very quickly. However, when applied to the types of edits of the
meshes in this paper, we found that the algorithm did not produce
an intuitive matching. The limitations of topology matching is due
to ignoring the geometry of the mesh. MeshGit strikes a balance
between geometry and topology to produce intuitive results.

Graph Edit Distance. By describing a polygonal mesh as a
properly defined attributed graph, we can reformulate the problem
of determining the changes needed to turn one mesh into another
as the problem of turning one graph into another, which is know as
the graph edit distance [Neuhaus and Bunke 2007]. The graph edit
distance is defined as the minimum cost of changing one graph into
another, where each change carries a cost. In [Bunke 1998], com-
puting the graph edit distance with a special cost function is shown
to be equivalent to the maximum common subgraph-isomorphism
problem, the problem of finding the largest subgraph of one graph

that is isomorphic to a subgraph of another. While computing the
maximum common subgraph is known to be NP-hard, [Riesen and
Bunke 2009] shows that good approximations can be computed
using polynomial time algorithms to solve the corresponding graph
matching problem.

Several approximation algorithms have been proposed that differ
in the expected properties of the input graph. We refer the reader
to [Neuhaus and Bunke 2007; Gao et al. 2010] for a recent review.
We have experimented with a few of these methods, and found
that they do not work well in our problem domain. For example,
[Riesen and Bunke 2009] propose to approximate the distance
computation as a bipartite graph matching problem. In doing so,
they approximate heavily the adjacency costs, which we found
to be problematic. [Cour et al. 2006] and [Robles-Kelly and
Hancock 2003] propose methods based on spectral matching, but
we found them to scale poorly with model size and to be generally
problematic when the graph spectrum changes. In summary, we
found that the current approximation algorithms for computing
the graph edit distance either scale poorly with the size of the
input meshes or produce poor results since they approximate too
heavily the adjacency costs. MeshGit introduces an iterative greedy
algorithm that takes into account mesh adjacencies well.

Assembly-Based Modeling. [Sharf et al. 2006] allows users
to create derivative meshes by smoothy blending separate mesh
components either created specifically or found automatically by
mesh segmentation. Recently, [Chaudhuri and Koltun 2010] and
[Chaudhuri et al. 2011] demonstrate the feasibility of constructing
3D models from a large dictionary of model parts. These methods
work by remeshing components together, so they inherently do
not respect face adjacency in the merged regions. This works well
for highly tessellated meshes, but not for meshes typically used in
subvision surface modeling where we want to maintain precisely
the mesh topology designed by artists.

Instrumenting Software. An alternative approach to provide
diff and merge is to consider full software instrumentation to
extract the editing operations. [VisTrails 2010] let the users
explore their undos histories. [Denning et al. 2011] shows rich
visual histories of mesh construction by highlighting and visually
annotating changes to the mesh. [Chen et al. 2011] demonstrates
non-linear image editing, including merging. All these approaches
record and take advantage of the exact editing operations an artist
is performing. These are semantically richer than the simpler
editing operation that MeshGit recovers automatically. At the same
time, these methods have the burden of a software instrumentation
that is not available in today’s software and would not allow
artists to work with different softwares on the same meshes.
Furthermore, despite having the construction history, it is unclear
how to determine a difference between two similar meshes that
were constructed independently or where there is no clear common
original, such as the meshes in Fig. 4.

3 Mesh Edit Distance

To display meaningful visual differences and provide robust
merges, we need to determine which parts of a mesh have changed
between revisions, and whether the changes have altered the
geometry or adjacency of the mesh elements. Inspired by the string
edit distance [Levenshtein 1965] used in text version control, we
formalize this problem as determining the partial correspondence
between two matches that minimizing a cost function we term mesh
edit distance. In this function, vertices and faces that are unaltered
between revisions incur no cost, while we penalize changes in

vertex and face geometry and adjacency. Optimizing this function
is equivalent to determining a partial matching between two
meshes, where vertices and faces are either unchanged, altered
(either geometrically or in terms of their adjacency), or added and
deleted. In this section, we will define the mesh edit distance that
we will show how to compute in the following section.

3.1 Mesh Edit Distance

Given two versions of a mesh M and M ′, we want to determine
which elements of one corresponds to which elements in the other.
In our metric, we consider vertices and faces as the mesh elements.
An element e of M is matched if it has a corresponding one e′

in M ′, while it is unmatched otherwise. A mesh matching is the
set of correspondences between all elements in M to the elements
in M ′. The matching is bidirectional and, in general, partial, in
that some elements will be unmatched, corresponding to addition
and deletion of elements during editing. To choose between the
many possible matching, we define a cost function, the mesh edit
distance, and pick the matching with minimum cost. The mesh
edit distance is comprised of three terms.

Unmatched Cost. We penalize unmatched elements, either
vertices or faces, by adding a constant cost α for each one. Without
this cost, one could simply consider all elements of M as deleted
and all elements of M ′ as added.

Geometric Cost. Matched elements incur two costs. The first
captures changes in the geometry of each element, namely its
position and normal. In our initial implementation, we consider
meshes with attributes, where vertex positions and face normals are
given, vertex normals are the average normals of the adjacent faces,
and face positions are the average position of adjacent vertices.
The geometric cost of matching e to e′ is given by

C(e↔ e′) =
||xe − xe′ ||
||xe − xe′ ||+ 1

+ (1− ne · ne′), (1)

where xe and ne are the position and normal of the element e
respectively∗.

The position term is an increasing, limited function on the Eu-
clidean distance between the elements positions. This formulation
favors matching elements of M to close-by elements in M ′ and
has no cost for matching co-located elements. We limit the position
term to allow for the matching of distant elements, albeit at a
penalty. We also include an orientation term computed as the
dot product between the elements’ normals. The inclusion of the
orientation helps in cases where many small elements are located
close to one another.

Adjacency Cost. The geometric costs alone are not sufficient
to produce intuitive visual differences since it does not take into
account changes in the elements adjacencies. For example, Fig. 3
shows two ways to match two meshes. These two matchings differ
only by which faces are matched. In one case, the adjacency of
the first mesh is maintained, while in the other it is not. In this
example, the geometric cost would not distinguish between these

∗Note that our implementation assumes that vertices are defined with
respect to the same coordinate system during editing, since this is common
practice in mesh modeling and since most modeling software stores trans-
formation matrices separately. If necessary, we could run an initial global
alignment based on ICP [Brown and Rusinkiewicz 2007]. Furthermore, we
normalize the size of both meshes to the average edge length so that vertex
distances are normalized to the size of the mesh.

Figure 3: Left: Two meshes to match. Middle and Right: Two
possible matchings of the two meshes illustrated as graphs, with
large circles denoting faces, small circles denoting vertices, and
edges denoting adjacency. The green dotted edges are unmatched,
and the red solid edges are mismatched. In this case, the right
matching costs more as the difference between these two matches
is solely in the adjacency costs for matching A to A′ and B to B′.

two cases. The top-right subfigure in Fig. 5, discussed in the
following section, shows a more complex example of the benefit of
explicitly including element adjacencies.

We assign adjacency costs to pairs of adjacent elements (e1, e2)
in M and in M ′. We consider all adjacencies of faces and vertices
(i.e., face-to-face, face-to-vertex, and vertex-to-vertex). If either e1
or e2 are unmatched, the adjacency cost is a constant β divided by
the size of the local neighborhoods A(e1, e2) around the pair. The
latter is computed as the sum of the number of elements adjacent
to e1 and e2. If both e1 and e2 are matched, but their matching
elements are not adjacent, the adjacency cost for the pair is γ
divided by size of the local neighborhoods. There is no cost for
matched adjacencies. We normalize the constants by the size of
the local neighborhoods, so the maximum cost for elements with
a large number of adjacencies (such as extraordinary vertices or
poles) is the same as those with only a few adjacencies (such as
vertices at the edges of the model).

Overall Cost. With the costs defined above, the overall cost of a
matching O between meshes M and M ′ can be as the sum of the
unmatched, geometric and adjacency costs, as follows

C(O) = α(Nu +N ′u)+

+
∑
{e↔e′}

[
||xe − xe′ ||
||xe − xe′ ||+ 1

+ (1− ne · ne′)

]
+

+
∑

(e1,e2)∈Pu

β

A(e1, e2)
+

∑
(e1,e2)∈Pm

γ

A(e1, e2)
(2)

where Nu and N ′u are the number of unmatched elements in M
and M ′ respectively, {e↔ e′} is the set of matched elements, and
Pu and Pm are the sets of adjacent element pairs in M and M ′

that are either unmatched or have different adjacency respectively.
All results in this paper are obtained with α = 2.5, β = 1.0,
and γ = 3.5. We determined these constants by matching a large
variety of meshes and choosing the values that produce the most
informative visualizations.

4 Algorithm

Equivalent Graph Matching Problems. Minimizing the mesh
edit distance to determine the optimal mesh matching is equivalent
to solving a maximum common subgraph isomorphism problem
on appropriately constructed graphs. Given a mesh, we define such
a graph by first creating attributed nodes for each mesh element,
where the attributes are the element’s geometric properties. We
then create an undirected edge between two nodes in the graph for
each adjacency relation between pairs of elements in the mesh. We

→ →

greedy step only iteration 1

→ →

iteration 2 iteration 3

· · ·

iteration 4 iteration 8

Figure 4: Two-way diffs taken for subsequent steps of our iterative
algorithm, where each iteration refines the differences to become
more precise. The top-left subfigure is the matching result after the
greedy step but before the backtracking step. Note that these two
versions were independently edited, so neither is the derivative of
the other. This is the worst case for diffing. Nonethless MeshGit
handle this case well.

can then determine a good mesh matching by minimizing Equa-
tion 2 over the graph. Unfortunately, exact sub-graph matching is
known to be NP-Complete in the general case. And, while many
polynomial-time graph-matching approximation algorithms have
been proposed, we found that they do not work well in our problem
domain, because they either ignore adjacency (i.e. edges in the
graph), approximate the adjacencies too greatly, or do not scale
to thousands of nodes. In MeshGit, we propose to compute an
approximate mesh matching using an iterative greedy algorithm
that minimizes the cost function Equation 2.

4.1 Iterative Greedy Algorithm

We initialize the matching O with all elements in M and M ′

unmatched. This initial matching represents a transformation
from M to M ′ where all elements of M are removed and all
elements of M ′ are added. By construction, this is the highest cost
matching. The algorithm then iteratively executes a greedy step
and a backtracking step. The greedy step minimizes the cost C(O)
of the matching O by greedily assigning (or removing assignment)
elements in M to elements in M ′. The backtracking step removes
matches that are likely to push the greedy algorithm into local
minima of the cost function. We iteratively repeat these two steps
until the algorithm converges, where convergence is decided when
the current matching is the same as a previous matching to within
a 1 − ε of the total number of elements. A small, non-zero value
for ε allows for the detection of small oscillations in the matching
of complex meshes, which is present in the meshes for Figs. 6 and
10. In our implementation, we set ε = 0.002. Figure 4 illustrates
how O evolves for subsequent iterations. Now we describe these
two steps in more detail.

meshgit bipartite graph matching

spectral matching shape blending

topological matching icp+graph cuts

Figure 5: Two-way diffs from different matching algorithms.
Compared to MeshGit, the results of the prior methods contain
more mismatched adjacencies, because the methods either do not
account for adjacencies, do not account for geometry changes, or
produce a fuzzy matching.

Greedy Step. The greedy step updates the matching O by
consecutively assigning unmatched elements or removing the
assignment of matched ones. We greedily choose the change that
reduces the cost C(O) the most, and we remain in the greedy step
until no change is found that is cheaper to perform than keeping
the current matching. Notice that this may leave some elements
unmatched. In practice we found that the greedy step proceeds by
growing patches. This is due to the adjacency term that favors as-
signing vertices and faces that are adjacent to already matched ones.

Backtracking Step. While we found that in many cases the
greedy step alone works well, we encountered a few instances
where the algorithm gets stuck in a local minimum, as shown in
Fig. 4, caused by the order in which the greedy step grows patches.
The geometric term favors assigning nearby elements. However,
if part of the mesh has been sculpted, the geometric term might
favor greedy element assignments that incur small adjacency costs
locally, but large overall adjacency costs as more elements are
later added to the matching. This behavior is not due to the mesh
edit distance we introduced, but to the greedy nature of the above
algorithm. In our case though, we found that there are two common
cases that are responsible for the vast majority of high cost
matchings, and that we can easily prevent them by backtracking.

The first case is one of faces that are matched together with their
vertices, but where the vertex order is different in the two meshes.
For example, suppose that a face f , defined by vertices (a, b, c, d),
matches a face f ′, defined by vertices (a′, b′, c′, d′), where a
matches a′, b to b′, c to d′, and d to c′. In this example, the
matching incurs heavy adjacency costs with adjacent faces over the
(b′, c′) and (c′, a′) edges. We can easily eliminate these cases by
removing assignments of all vertices and faces involved.

The second case is when a group of connected faces that have been
matched meets the rest of the mesh over mismatched adjacencies.
An example of this behavior is shown in the greedy step only subfig-
ure of Fig. 4, where there are small groups of matched faces, such
as on the earlobe, that are disconnected from the rest of the mesh
due to mismatched adjacencies. These disconnected groups are due
to suboptimal initial greedy assignments, favored by the geometric
term, in heavily sculpted meshes that also have edits that affect adja-

viewed from front viewed from back

Figure 6: Two-way diff showing the main limitation of our
approach. While MeshGit detects most edits correctly, it fails to
properly capture edits in the back leg since both geometry and
adjacencies change significantly.

cencies. These groups of faces are always quite small relative to the
size of the whole connected component upon which they reside. We
eliminate small patches of disconnected faces by removing the as-
signments of all their elements. We choose to backtrack in case the
group’s size is less than 10% the size of the connected component.

In our backtracking step, we detect and remove assignments of ele-
ments as described in both previous cases. Since performing these
two adjustments might leave assignments of high costs, we also
remove assigment of elements that have mismatched adjacencies
and vertices that have unmatched adjacencies. We found that if
we run the greedy algorithm after this backtracking step, we obtain
improved matchings in the case of heavily sculpted meshes with
adjacency changes. We run both steps in an iterative fashion.

Time Complexity. The cost of our algorithm is dominated by the
iterative search for the minimum cost operations in the greedy step.
Since we perform O(n) assignments, each of which considers
O(n) possible cases, a naive implementation of the greedy step
would run in O(n2) time. Given the geometric terms for vertices
and faces in the cost function, we can prune the search space con-
siderably. In our implementation, we only consider the k nearest
neighbors for each unmatched vertex or face (k = 50 in our tests).
This reduces the computation time considerably. Furthermore, we
compute the change in the cost function with local updates only,
since assigning or removing the assignment of a pair of elements
only affects the costs in their local neighborhoods. With these two
optimizations, our algorithm has a time complexity of O(n logn),
resulting in a practical solution that we found to perform well even
with large meshes of several thousand vertices and faces.

The iterative greedy algorithm repeats until the algorithm con-
verges. For the majority of meshes, the algorithm converged
within only a couple of iterations. For meshes with complex edits
(e.g., Figs. 4, 6, and 10), the algorithm requires more iterations.
Despite the higher number of iterations in these cases, we found
the iterative greedy algorithm is a practical solution to approximate
the mesh edit distance and produce intuitive visualizations of mesh
differences for all the meshes we tested, as seen in Tab. 1.

4.2 Editing Operations

Given a matching O from a mesh M to another mesh M ′, we can
define a corresponding set of low-level editing operations that will
transform M into M ′. Unmatched elements in M are considered
deleted, while unmatched elements in M ′ are added. Matched
vertices that have a geometric cost are considered transformed (i.e.,
translated), while those without geometric costs are considered
unmodified (thus not highlighted in diffs nor acted on during
merging). Matched faces are considered edited only when they
have mismatched adjacencies; in this case, we can consider them

as delete from the ancestor and added back in the derivative. Notice
that we do not explicitly account for changes in face geometry since
they are implicitly taken into account in edits to vertex geometry.

Although the set of mesh transformations produced by this process
are very low-level compared to the mesh editing operations in
a typical 3D modeling software (e.g., extrude, edge-split, merge
vertices), we found that this provides intuitive visualizations and
allows to robustly merge meshes. We leave the determination of
high-level editing operations to future work.

4.3 Discussion

Comparison. Figure 5 shows the results of using different shape
matching algorithms to show visual differences. We included
our method, bipartite graph matching [Riesen and Bunke 2009],
spectral matching [Cour et al. 2006], shape blending [Kim et al.
2011], topological matching [Eppstein et al. 2009], and iterative
closest point with graph cuts [Chang and Zwicker 2008]. The shape
blending and iterative closest point algorithms match vertices;
to generate the visualization, face matches were inferred. The
bipartite, spectral, and topological matching algorithms matched
faces instead; we infer from them vertex matches to visualize our
results. We use the same matching costs for all methods, when
applicable. The input meshes are versions 3 and 4 of the modeling
series shown in Fig. 7†.

The bipartite graph matching algorithm matched elements, re-
gardless of the implied changes to adjacent elements, producing a
large number of mismatched adjacencies. The spectral matching
and shape blending algorithms do consider adjacencies, but only
implicitly, resulting in many mismatched adjacencies where the
graph spectrum changes due to additional features or blending the
matches becomes fuzzy with additional edge loops or sculpting.
The topological matching algorithm produced topologically
consistent matches regardless of the implied changes to geometry
of the vertices, leading to matches that are clumped or shifted
toward the initial seed matching. The iterative closest point with
graph cuts algorithm worked to align chunks of the mesh, but
heavy sculpting causes the algorithm to require too many cuts. We
found these trends to be present in a variety of other examples.

It is our opinion that MeshGit is able to better visualize complex
edits that include both geometry and adjacency changes, since it
strikes a balance between accounting for both types of changes,
compared to other methods that favor one over the other. This
in turn allows us to produce intuitive visualizations as seen
throughout the paper. In our opinion, this is due to the fact that the
shape matching algorithms we compared with were not designed
specifically for our problem domain, but for other applications for
which they remain remarkably effective. Since there are tradeoffs
in determining good matches in the case of heavily edited meshes,
each algorithm makes a tradeoff specific to their problem domain,
and only MeshGit was specifically designed to address version
control issues of polygonal meshes.

Limitations. The main limitation of MeshGit is that the inclusion
of the geometric term has limitation when matching of components
that were very close in one mesh, but have been heavily transformed
in the other, if sharp adjacency changes occur also. Meshes that are
heavily sculpted are still handled well since in most cases the adja-
cency changes are limited. An example of this limitation is shown
in Fig. 6, where some of the components of the original chair are

†Version 4 in Fig. 5 was modified to contain only the largest connected
component, since the shape blending algorithm requires a single connected
mesh.

split into separate components that are translated and rotated signif-
icantly (e.g., the front left leg and the left arm rest). While MeshGit
matches well parts of the chairs, the most complex transformations
are not detected. Performing hierarchical matching by matching
connected components first followed by the elements of each com-
ponents can help, but it would make edits that partition or bridge
components difficult to detect. For an example of such an edit,
the center back support is broken into two parts, and our algorithm
can currently detect it. These issues might be alleviated by using a
geodesic or diffusion distance in the geometric term, or additional
terms inspired by iterative closest point [Brown and Rusinkiewicz
2007] could be added. At the same time though, we think that
changes such as these might make more common edits undetected,
so we leave the exploration of these modifications to future work.

5 Diffing and Merging

In this section, we describe how to visualize the differences
between meshes and how to merge two sets of differences into a
single mesh.

5.1 Mesh Diff

We visualize the mesh differences similarly to text diffs. In order
to provide as much context as possible, we display all versions of
the mesh side-by-side with vertices and faces colored to indicated
the type or magnitude of the differences. We have experimented
with many color schemes and report here the ones we found the
most informative.

Two-way Diff. A two-way diff can illustrate the differences
between two versions of a mesh. For example, Fig. 6 shows the
computed differences between two chair meshes. In a two-way
diff, the original mesh M is displayed on the left and the derivative
mesh M ′ on the right. Deleted faces in M (unmatched or with
mismatched adjacencies in M) are indicated by coloring them red.
Added faces in M ′ (unmatched or with mismatched adjacencies
in M ′) are colored green. In our visualizations, we simplify the
presentation by not drawing the vertices directly. Instead, the color
of a vertex is linearly interpolated across the adjacent faces, unless
the face has been colored red or green. A vertex in M ′ is colored
blue if it has moved, where the saturation of blue indicates the
strength of the geometric change with gray indicating no change.
Unmodified faces and vertices are colored gray.

Three-way Diff. When a mesh M has two derived versions, Ma

and Mb, a three-way mesh diff can illustrate the changes between
the derivatives and the original, allowing for a comparison of the
two sets of edits. The three meshes are shown side-by-side, with
the original M in the middle, Ma on the left, and Mb on the
right. We use a similar color scheme as with a two-way diff, but
the brightness of the color indicates from which derivative the
operation comes: light red and green are for Ma, and dark red and
green are for Mb. When a face f in M has been modified in both
derivatives, this overlap in change is indicated by coloring yellow
f in M . An example of a three-way diff is shown in Fig. 1.b.

Series Diff. An artist can also use MeshGit to visualize the
progression of work on a mesh, as shown in Fig. 7. In this example,
twelve snapshots of the model were saved during its construction,
starting from the head, then working the body, and then adding the
tail, arms, wings, and finally some extra details. Each snapshot is
visualized similarly to a three-way diff. For each snapshot, a face f
inM is colored green if it was added, red if it is deleted, and orange

version 1 version 2 version 3 version 4 version 5 version 6

version 7 version 8 version 9 version 10 version 11 version 12
Figure 7: Twelve snapshots of a model taken during its construction. MeshGit can also be used to visualize construction sequences. A
face is highlighted in green if it was added to the current snapshot or changed from the previous, red if it is deleted in the next snapshot or
changed, and orange if was added and then deleted or changed both times.

if the face was added and then deleted. An alternative approach
to visualizing mesh construction sequences is demonstrated in
MeshFlow [Denning et al. 2011], that while providing a richer
display, also requires full instrumentation of the modeling software.

5.2 Mesh Edit Merge

Merging Editing Operations. Given a mesh M and two
derivative meshes Ma and Mb, one may wish to incorporate the
changes made in both derivatives into a single resulting mesh. For
example, in Fig. 1.b, one derivative has finger nails added to the
hand, while the other has refined and sculpted the palm. Presently,
the only way to merge mesh edits such as this is for an artist to
determine the changes done and then manually perform the merge
of modifications by hand.

Merging Workflow. MeshGit supports a merging workflow
similar to text editing. We first compute two sets of mesh trans-
formations in order to transform M into Ma and into Mb. If the
two sets of transformations do not modify the same elements of
the original mesh, MeshGit merges them automatically by simply
performing both sets of transformations on M . However, if the sets
overlap on M , then they are in conflict. In this case, it is unclear
how to merge the changes automatically while respecting artists
intentions. For this reason, we follow text editing workflows, and
ask the user to either choose which set of operations to apply or to
merge the conflict by hand.

Merging Non-Conflicting Edits. An example of our automatic
merging is shown in Fig. 1.b, where the changes do not overlap
in the original mesh. In this case, MeshGit merges the changes
automatically. Another example is shown in Fig. 8. In one version
the body is sculpted by moving vertices, while in the other the
skirt is removed and the boots are replaced with sandals, thus also
changing the face adjacencies. These two sets of differences do not
affect the same elements on the original since sculpting affects only
the geometric properties of the vertices. MeshGit can safely merge
these edits. The top subfigure of Fig. 8 show the resulting merged
mesh with colors indicating the applied transformations. On the
right we show recursively applying Catmull-Clark subdivision
rules twice to demonstrate that adjacencies are well maintained.

derivative a

merged

original

derivative b

merged with
subdivision

Figure 8: Example of automatic merging of non-conflicting edits
that affect the geometry (derivative a) and adjacencies (derivative
b). The original mesh is completely connected. The merged mesh
is shown with coloring (top) and after applying Catmull-Clark sub-
division rules (far right). The subdivided merged mesh illustrates
that MeshGit maintains consistent face adjacencies.

Reducing Conflicts. In our previous definition, if even a single
mesh transformation is in conflict, none of the edits can be safely
applied. We could ask the user to resolve the conflict by picking
single transformations from each set, a situation that would be
obviously too cumbersome. To reduce the number of conflicts
and reduce the granularity of users’ decisions, we partition mesh
transformations into groups that can be safely applied individually.
This is akin to grouping text characters into lines in text merging.

The key observation is that edits that cause adjacency changes

merged
from a

derivative a

merged non-
conflicting

original

merged
from b

derivative b

Figure 9: MeshGit detects conflicting mesh differences, visualized
in yellow, between the derivatives, and partitions the changes into
groups that can be applied individually. In this set of meshes,
the expanded base of derivative a and added wings of derivative
b are conflicting edits. All non-conflicting changes are applied
automatically. On the left, the bottom row shows a three-way diff of
the meshes, and the top row shows three possible ways of resolving
the conflicting mesh edits. The insets on the right show the input
meshes from a different angle.

can be bounded by the outer edges of the involved faces. For
example, an artist may inset a patch of faces on a mesh. One way to
represent this inset operation is to delete the patch from the original
mesh and replace it with an inset version of the patch, connecting
it to the rest of the mesh in exactly the same way the original
patch was. The vertices and edges surrounding the original patch
remain present during the entire process. We use this observation
to guide our edit partitioning rule. An edge between two vertices
is on the boundary if the adjacent faces are unmatched (added or
deleted) but the vertices of the edge are matched. These boundary
edges form a boundary loop. We then partition the sets of editing
operations to within these boundary loops, essentially grouping
edits in small non-intersecting patches. We can detect conflicts
between the revisions at the granularity of these patches and ask
users to resolve the conflicts at the same granularity.

Figure 9 shows an example with a conflicting edit on a spaceship
model. In one version, features are added to the spaceship’s body
and the base of the body has been enlarged. In the other, the
cockpit exterior is detailed and wings are added to the base and
top of the body. In this case, the extended base in the first version
and the added lower wings in the second version are conflicting
edits. MeshGit successfully detected the conflicts to the body and
merged all other changes automatically. To resolve the conflicts,
the user can pick which version of edits to apply and use MeshGit
to properly apply the edits, as shown in the figure, or simply
resolve the conflict manually. The top three subfigures show three
possible ways to resolve the conflicted merge.

6 Results

We tested MeshGit on a variety of meshes, shown throughout
the paper, running our implementation on a quad-core 2.93GHz
Intel Core i7 with 16GB RAM and an ATI Radeon HD 5750
graphics card. All of the meshes and source code are available as
supplemental material.

Models. Our implementation takes as input meshes containing
vertex positions and the vertex indices for the faces. We chose
meshes from different sources and when available included all
versions. The creature (Fig. 10; [Goralczyk 2008]) and durano
(Figs. 1,7; [Vazquez 2009]) meshes are from two series of saved

Model Fig. Number of Faces Orig.→ Ver. 1
original ver. 1 ver. 2 time, iters

chairs 6 3290 3951 — 35.1s, 10
creature 10 11475 17433 — 79.4s, 3
durano 1 7 276 520 520 0.8s, 2
durano 4 7 786 906 1716 1.3s, 1
durano 7 7 1930 2186 2772 3.2s, 1
durano 10 7 3078 3722 3722 5.4s, 1
hand 1 199 209 209 0.3s, 1
shaolin 8 1850 1850 2158 2.7s, 1
sintel 4 1810 1712 — 11.3s, 8
spaceship 9 1827 2173 2031 3.0s, 1

Table 1: Statistics of input meshes and computing the mesh edit
distance. The right two columns show the total time and the
number of iterations of the iterative greedy algorithm to compute
the mesh edit distance between the original mesh and a derivative.

original derivative

Figure 10: Mesh diff of two snapshots in a construction sequence.
The original mesh has 42 components and over 11k faces, and the
derivative has 122 components and over 17k faces. Along with the
large number of additional components, MeshGit automatically
detects and highlights the many refining and reshaping changes
such as on the gumline and in the insets on shoulder ball.

snapshots taken through the mesh construction history. The sintel
(Fig. 4; [Blender Foundation 2011]) meshes are a set of mesh
variations, where there is no clear original mesh. The chair
(Fig. 6; [“Lumpycow” 2010]) meshes are an ancestor mesh and
one derivative mesh. For the hand (Fig. 1; [Williamson 2009]),
shaolin (Fig. 8; [Silva 2011b; Silva 2011a]), and spaceship (Fig. 9;
[Grassard 2011]) meshes, we model two derivative meshes from
the original one to demonstrate merging. These models span a
variety of objects, from organic to man-made, and they were taken
from different artists that likely have different styles of modeling.

Timing. As summarized in Tab. 1, the number of faces of the
tested meshes vary widely from hundreds to over seventeen-
thousand. MeshGit took from a few seconds to less than two
minutes to compute the mesh edit distance between two meshes.
This provides a practical solution for typical modeling workflows.
We further expect that these timings to be significantly improved
by a more optimized implementation of our code.

For the larger, more complex meshes, most of the time is spent
iteratively refining the mesh edit distance. We found that the
iterative greedy algorithm tended to iterate more in cases where
the derivatives had strong sculpting edits along with changes to
adjacencies. Such edits can be seen in Figs. 4 and 6.

7 Conclusion and Future Work

This paper presented MeshGit, an algorithm that supports diffing
and merging polygonal meshes. Inspired by version control for text
editing, we introduce the mesh edit distance as a measure of the
dissimilarity between meshes, and an iterative greedy algorithm
to compute it. This distance is defined as the minimum cost of
matching the vertices and faces of one mesh to those of another.
We transform the matching computed from the mesh edit distance
into a set of mesh editing operations that will transform the first
mesh into the second. These operations can then be used directly
to visualize the difference between meshes and merge edits.

In the future, we would like to extend our implementation to
support diffing and merging of other geometric attributes (e.g. UV,
bone weights, etc.). This is a mostly trivial addition to MeshGit
that requires changing our mesh elements to allow for arbitrary
data to be attached; diffing and merging would follow the same
extract algorithms. In the future, we plan to explore other uses
of our mesh edit distance in editing workflows. For example, we
believe it would allow “spatial undos”, where all operations related
to a part of the mesh could be removed regardless of the order they
were executed in. Finally, we could use MeshGit to automatically
generate mesh variations from only a few models, by automatically
applying different edits combination. This would be helpful in
creating arrays of secondary characters.

8 Acknoledgements

We would like to thank the authors of the models used and the
authors of the matching algorithms for providing source code and
support. This work was supported by NSF (CCF-0746117), Intel,
and the Sloan Foundation.

References

APACHE, 2012. Apache subversion. subversion.apache.org.

BLENDER FOUNDATION, 2011. Sintel model. www.sintel.org.

BROWN, B. J., AND RUSINKIEWICZ, S. 2007. Global non-rigid
alignment of 3-d scans. ACM Transactions on Graphics 26, 3
(July), 21:1–21:9.

BUNKE, H. 1998. On a relation between graph edit distance and
maximum common subgraph. Pattern Recognition Letters 18,
689–694.

CHANG, W., AND ZWICKER, M. 2008. Automatic registration for
articulated shapes. Computer Graphics Forum 27, 5, 1459–1468.

CHANG, W., LI, H., MITRA, N., PAULY, M., RUSINKIEWICZ,
S., AND WAND, M. 2011. Computing correspondences in geo-
metric data sets. In Eurographics Tutorial Notes.

CHAUDHURI, S., AND KOLTUN, V. 2010. Data-driven sugges-
tions for creativity support in 3d modeling. ACM Transactions
on Graphics 26, 6, 183:1–183:10.

CHAUDHURI, S., KALOGERAKIS, E., GUIBAS, L., AND
KOLTUN, V. 2011. Probabilistic reasoning for assembly-based
3D modeling. ACM Transactions on Graphics 30, 4, 35:1–35:10.

CHEN, H.-T., WEI, L.-Y., AND CHANG, C.-F. 2011. Nonlinear
revision control for images. ACM Transaction on Graphics 30,
4, 105:1–105:10.

COUR, T., SRINIVASAN, P., AND SHI, J. 2006. Balanced graph
matching. In NIPS, 313–320.

DENNING, J. D., KERR, W. B., AND PELLACINI, F. 2011. Mesh-
flow: interactive visualization of mesh construction sequences.
ACM Transaction on Graphics 30, 4, 66:1–66:8.

DOBOŠ, J., AND STEED, A. 2012. Revision control database for
3d assets. Tech. rep., University College London.

EPPSTEIN, D., GOODRICH, M. T., KIM, E., AND TAMSTORF, R.
2009. Approximate topological matching of quad meshes. The
Visual Computer, 771–783.

GAO, X., XIAO, B., TAO, D., AND LI, X. 2010. A survey of graph
edit distance. Pattern Analysis and Applications 13, 113–129.

GORALCZYK, A., 2008. Creature model. Creature Factory Blender
Open Movie Workshop, vol. 2.

GRASSARD, F., 2011. Small spaceship (low poly).
www.blendswap.com/blends/vehicles/small-spaceship-low-
poly/.

KIM, V. G., LIPMAN, Y., AND FUNKHOUSER, T. 2011. Blended
intrinsic maps. SIGGRAPH, 79:1–79:12.

LEORDEANU, M., AND HEBERT, M. 2005. A spectral technique
for correspondence problems using pairwise constraints. In In-
ternational Conference on Computer Vision, 1482–1489.

LEVENSHTEIN, V. I. 1965. Binary codes capable of correcting
spurious insertions and deletions of ones. Probl. Inf. Transmis-
sion 1, 8–17.

“LUMPYCOW”, 2010. Chair model. www.blendswap.com/3D-
models/furniture/lumpycow household brokenchair/.

NEUHAUS, M., AND BUNKE, H. 2007. Bridging the gap between
graph edit distance and kernel machines. World Scientific.

RIESEN, K., AND BUNKE, H. 2009. Approximate graph edit dis-
tance computation by means of bipartite graph matching. Image
and Vision Computing 27, 950–959.

ROBLES-KELLY, A., AND HANCOCK, E. 2003. Edit distance from
graph spectra. In International Conference on Computer Vision,
234–241.

RUSINKIEWICZ, S., AND LEVOY, M. 2001. Efficient variants
of the icp algorithm. International Conference on 3D Digital
Imaging and Modeling.

SHARF, A., BLUMENKRANTS, M., SHAMIR, A., AND COHEN-
OR, D. 2006. Snappaste: an interactive technique for easy mesh
composition. The Visual Computer 22, 835–844.

SHARMA, A., VON LAVANTE, E., AND HORAUD, R. P. 2010.
Learning shape segmentation using constrained spectral cluster-
ing and probabilistic label transfer. In European Conference on
Computer Vision, 743–756.

SHARMA, A., HORAUD, R. P., CECH, J., AND BOYER, E. 2011.
Topologically-robust 3d shape matching based on diffusion ge-
ometry and seed growing. In Computer Vision and Pattern
Recognition, 2481–2488.

SILVA, E. D. R., 2011. Lost angel model.
http://www.blendswap.com/blends/characters/lost-angel.

SILVA, E. D. R., 2011. Shaolin model. www.blendswap.com/3D-
models/characters/shaolin.

TORVALDS, L., AND HAMANO, J., 2012. Git. git.scm.com.

VAZQUEZ, P., 2009. Durano model. Venom’s Lab Blender Open
Movie Workshop, vol. 4.

VISTRAILS, 2010. VisTrails Provenance Explorer for Maya.
www.vistrails.com/maya.html.

WILLIAMSON, J., 2009. Hand model. cgcookie.com/blender/2009/
11/14/model-male-base-mesh/.

ZENG, Y., WANG, C., WANG, Y., GU, X., SAMARAS, D., AND
PARAGIOS, N. 2010. Dense non-rigid surface registration us-
ing high-order graph matching. In Computer Vision and Pattern
Recognition, 382–389.

	MeshGit: Diffing and Merging Polygonal Meshes
	Dartmouth Digital Commons Citation

	MeshGit: Diffing and Merging Polygonal Meshes

